Science.gov

Sample records for 1a2 1b1 2a6

  1. Discovery of Western European R1b1a2 Y Chromosome Variants in 1000 Genomes Project Data: An Online Community Approach

    PubMed Central

    Rocca, Richard A.; Magoon, Gregory; Reynolds, David F.; Krahn, Thomas; Tilroe, Vincent O.; Op den Velde Boots, Peter M.; Grierson, Andrew J.

    2012-01-01

    The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data. PMID:22911832

  2. Discovery of Western European R1b1a2 Y chromosome variants in 1000 genomes project data: an online community approach.

    PubMed

    Rocca, Richard A; Magoon, Gregory; Reynolds, David F; Krahn, Thomas; Tilroe, Vincent O; Op den Velde Boots, Peter M; Grierson, Andrew J

    2012-01-01

    The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data. PMID:22911832

  3. Design synthesis and evaluation of the inhibitory selectivity of novel trans-resveratrol analogues on human recombinant CYP1A1 CYP1A2 and CYP1B1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of trans-stilbene derivatives containing 4’-thiomethyl substituent were synthesized and evaluated for inhibitory activities on human recombinant cytochrome P450(s): CYP1A1, CYP1A2, and CYP1B1. CYP1A2-related metabolism of stilbene derivatives was estimated by using NADPH oxidation assay. A...

  4. Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1

    PubMed Central

    Milichovský, Jan; Bárta, František; Schmeiser, Heinz H.; Arlt, Volker M.; Frei, Eva; Stiborová, Marie; Martínek, Václav

    2016-01-01

    Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are NAD(P)H:quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using 32P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast

  5. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk

    PubMed Central

    Bethke, Lara; Webb, Emily; Sellick, Gabrielle; Rudd, Matthew; Penegar, Stephen; Withey, Laura; Qureshi, Mobshra; Houlston, Richard

    2007-01-01

    Background Cytochrome P450 (CYP) enzymes have the potential to affect colorectal cancer (CRC) risk by determining the genotoxic impact of exogenous carcinogens and levels of sex hormones. Methods To investigate if common variants of CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1 and CYP19A1 influence CRC risk we genotyped 2,575 CRC cases and 2,707 controls for 20 single nucleotide polymorphisms (SNPs) that have not previously been shown to have functional consequence within these genes. Results There was a suggestion of increased risk, albeit insignificant after correction for multiple testing, of CRC for individuals homozygous for CYP1B1 rs162558 and heterozygous for CYP1A2 rs2069522 (odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.03–1.80 and OR = 1.34, 95% CI: 1.00–1.79 respectively). Conclusion This study provides some support for polymorphic variation in CYP1A2 and CYP1B1 playing a role in CRC susceptibility. PMID:17615053

  6. Characterization of differences in substrate specificity among CYP1A1, CYP1A2 and CYP1B1: an integrated approach employing molecular docking and molecular dynamics simulations.

    PubMed

    Kesharwani, Siddharth S; Nandekar, Prajwal P; Pragyan, Preeti; Rathod, Vijay; Sangamwar, Abhay T

    2016-08-01

    Recent trends in new drug discovery of anticancer drugs have made oncologists more aware of the fact that the new drug discovery must target the developing mechanism of tumorigenesis to improve the therapeutic efficacy of antineoplastic drugs. The drugs designed are expected to have high affinity towards the novel targets selectively. Current research highlights overexpression of CYP450s, particularly cytochrome P450 1A1 (CYP1A1), in tumour cells, representing a novel target for anticancer therapy. However, the CYP1 family is identified as posing significant problems in selectivity of anticancer molecules towards CYP1A1. Three members have been identified in the human CYP1 family: CYP1A1, CYP1A2 and CYP1B1. Although sequences of the three isoform have high sequence identity, they have distinct substrate specificities. The understanding of macromolecular features that govern substrate specificity is required to understand the interplay between the protein function and dynamics, design novel antitumour compounds that could be specifically metabolized by only CYP1A1 to mediate their antitumour activity and elucidate the reasons for differences in substrate specificity profile among the three proteins. In the present study, we employed a combination of computational methodologies: molecular docking and molecular dynamics simulations. We utilized eight substrates for elucidating the difference in substrate specificity of the three isoforms. Lastly, we conclude that the substrate specificity of a particular substrate depends upon the type of the active site residues, the dynamic motions in the protein structure upon ligand binding and the physico-chemical characteristics of a particular ligand. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26916064

  7. Functional characterization of single nucleotide polymorphisms with amino acid substitution in CYP1A2, CYP2A6, and CYP2B6 found in the Japanese population.

    PubMed

    Iwasaki, Masahiko; Yoshimura, Yoshinobu; Asahi, Satoru; Saito, Kimitoshi; Sakai, Shuichi; Morita, Shigemichi; Takenaka, Osamu; Inoda, Toshio; Kashiyama, Eiji; Aoyama, Akinori; Nakabayashi, Takeshi; Omori, Satoshi; Kuwabara, Takashi; Izumi, Takashi; Nakamura, Kouichi; Takanaka, Kaoru; Nakayama, Yukiharu; Takeuchi, Mitsuaki; Nakamura, Hideki; Kametani, Shunichi; Terauchi, Yoshiaki; Hashizume, Takanori; Nagayama, Sekio; Kume, Toshiyuki; Achira, Meguru; Kawai, Hiroyuki; Kawashiro, Takashi; Nakamura, Akio; Nakai, Yasuhiro; Kagayama, Akira; Shiraga, Toshifumi; Niwa, Takuro; Yoshimura, Takuya; Morita, Jun; Ohsawa, Fukuichi; Tani, Masato; Osawa, Nobuo; Ida, Keiichi; Noguchi, Kiyoshi

    2004-12-01

    As a part of the studies conducted by the Pharma SNPs Consortium (PSC), the enzyme activities of CYP1A2, CYP2A6 and CYP2B6 variants with altered amino acids as a result of single nucleotide polymorphisms (SNPs) found among the Japanese population were analyzed under a unified protocol using the same lots of reagents by the laboratories participating in the PSC. Mutations in CYP1A2, CYP2A6 and CYP2B6 were introduced by site-directed mutagenesis and the wild type and mutated CYP molecules were expressed in Escherichia coli. The expressed cytochrome P450s were purified and the enzyme activities were measured in reconstitution systems. CYP1A2 and CYP1A2Gln478His did not show any differences in 7-ethoxyresorufin O-deethylase activity. CYP2A6 and CYP2A6Glu419Asp metabolized coumarin to form 7-hydroxycoumarin in a similar manner, whereas CYP2A6Ile471Thr showed low activity compared to the wild-type CYP2A6. CYP2B6, CYP2B6Pro167Ala and CYP2B6Arg487Cys showed the same activity for 7-ethoxy-4-triflouromethyl-coumarin O-deethylation. However, CYP2B6Gln172His was roughly twice as active as CYP2B6 and the other CYP2B6 variants for 7-ethoxy-4-triflouromethylcoumarin O-deethylation activity. Although higher inter- and intra-laboratory variations were observed for the calculated Km and V(max) values because the studies were conducted in several different laboratories, the degree of variations was reduced by the increased number of analyses and the adoption of a simple analysis system. PMID:15681899

  8. 18 CFR 1b.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Definitions. 1b.1 Section 1b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.1 Definitions. For purposes of this part—...

  9. Theoretical Studies of Observable Transitions to Recoupled Pair Bonded States of Sulfur Halide Compounds: SF/SCl (X^2{Π}{→}A^2{Σ}^-), SF_2/SCl_2 (X^1A_1{→}1^1B_1, X^1A_1{→}1^1A_2), and SFCl (X^1A'{→}A^1A{'{'}})

    NASA Astrophysics Data System (ADS)

    Leiding, Jeff; Woon, David E.; Dunning, Thom H.; , Jr.

    2011-06-01

    In previous studies regarding the nature of hypervalent behavior, we identified low-lying excited states of SF(a^4{Σ}^-), SCl(a^4{Σ}^-), SF_2(a^3B_1,b^3A_2), SFCl(a^3A{'{'}}) and SCl_2(a^3B_1) that involve recoupled pair bonding (rpb), where the electrons of the S 3p^2 pair are made available to form bonds. While the transitions from the ground states to the quartet states of SF/SCl and the triplet states of SF_2/SFCl/SCl_2 are spin-forbidden, each of these excited states have analogs with formally spin- and dipole-allowed transitions (except ^1A_2). We performed high level MRCI+Q/aug-cc-pV(Q+d)Z calculations in order to characterize the electronic spectra, spectroscopic constants, and bonding of these species, and made comparisons to available experimental data. We found that excitation into the experimentally known and dipole-forbidden singlet rpb state, SCl_2(B^1A_2), can explain the well-known photodissociation behavior of SCl_2 used to produce SCl(X^2{Π}) radicals in the laboratory. Finally, we have also found a possible system of bond-stretch isomers on the SFCl(A^1A{'{'}}) potential energy surface that is analogous to the behavior on the triplet surface reported in our previous study. Howe, J. D.; Ashfold, M. N. R.; Morgan, R. A.;Western, C. M.; Buma, W. J.; Milan, J. B. and de Lang, C. A. J. Chem. Soc. Faraday Trans. 1995, 91, 773. Leiding, J.; Woon, D. E., and Dunning, T. H., Jr. J. Phys. Chem. A 2011, 115, 329.

  10. Phylogeography of E1b1b1b-M81 haplogroup and analysis of its subclades in Morocco.

    PubMed

    Reguig, Ahmed; Harich, Nourdin; Barakat, Abdelhamid; Rouba, Hassan

    2014-01-01

    In this study we analyzed 295 unrelated Berber-speaking men from northern, central, and southern Morocco to characterize frequency of the E1b1b1b-M81 haplogroup and to refine the phylogeny of its subclades: E1b1b1b1-M107, E1b1b1b2-M183, and E1b1b1b2a-M165. For this purpose, we typed four biallelic polymorphisms: M81, M107, M183, and M165. A large majority of the Berber-speaking male lineages belonged to the Y-chromosomal E1b1b1b-M81 haplogroup. The frequency ranged from 79.1% to 98.5% in all localities sampled. E1b1b1b2-M183 was the most dominant subclade in our samples, ranging from 65.1% to 83.1%. In contrast, the E1b1b1b1-M107 and E1b1b1b2a-M165 subclades were not found in our samples. Our results suggest a predominance of the E1b1b1b-M81 haplogroup among Moroccan Berber-speaking males with a decreasing gradient from south to north. The most prevalent subclade in this haplogroup was E1b1b1b2-M183, for which diffferences among these three groups were statistically significant between central and southern groups. PMID:25397701

  11. MAN1B1 Deficiency: An Unexpected CDG-II

    PubMed Central

    Millón, María B.; Race, Valérie; Sturiale, Luisa; Garozzo, Domenico; Mills, Philippa; Clayton, Peter; Asteggiano, Carla G.; Quelhas, Dulce; Cansu, Ali; Martins, Esmeralda; Nassogne, Marie-Cécile; Gonçalves-Rocha, Miguel; Topaloglu, Haluk; Jaeken, Jaak; Foulquier, François; Matthijs, Gert

    2013-01-01

    Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases, due to impaired protein and lipid glycosylation. In the present study, exome sequencing was used to identify MAN1B1 as the culprit gene in an unsolved CDG-II patient. Subsequently, 6 additional cases with MAN1B1-CDG were found. All individuals presented slight facial dysmorphism, psychomotor retardation and truncal obesity. Generally, MAN1B1 is believed to be an ER resident alpha-1,2-mannosidase acting as a key factor in glycoprotein quality control by targeting misfolded proteins for ER-associated degradation (ERAD). However, recent studies indicated a Golgi localization of the endogenous MAN1B1, suggesting a more complex role for MAN1B1 in quality control. We were able to confirm that MAN1B1 is indeed localized to the Golgi complex instead of the ER. Furthermore, we observed an altered Golgi morphology in all patients' cells, with marked dilatation and fragmentation. We hypothesize that part of the phenotype is associated to this Golgi disruption. In conclusion, we linked mutations in MAN1B1 to a Golgi glycosylation disorder. Additionally, our results support the recent findings on MAN1B1 localization. However, more work is needed to pinpoint the exact function of MAN1B1 in glycoprotein quality control, and to understand the pathophysiology of its deficiency. PMID:24348268

  12. [The interactions between natural products and OATP1B1].

    PubMed

    Shi, Mei-zhi; Liu, Yu; Bian, Jia-lin; Jin, Meng; Gui, Chun-shan

    2015-07-01

    Organic anion transporting polypeptide 1B1 (OATP1B1) is an important liver-specific uptake transporter, which mediates transport of numerous endogenous substances and drugs from blood into hepatocytes. To identify and investigate potential modulators of OATP1B1 from natural products, the effect of 21 frequently used natural compounds and extracts on OATP1B1-mediated fluorescein methotrexate transport was studied by using Chinese hamster ovary cells stably expressing OATP1B1 (CHO-OATP1B1) in 96-well plates. This method could be used for the screening of large compound libraries. Our studies showed that some flavonoids (e.g., quercetin, quercitrin, rutin, chrysanthemum flavonoids and mulberrin) and triterpenoids (e.g., glycyrrhetinic acid and glycyrrhizic acid) were inhibitors of OATP1B1 with IC50 values less than 16 µmol · L(-1). The IC50 value of glycyrrhetinic acid on OATP1B1 was comparable to its blood concentration in clinics, indicating an OATPlB1-mediated drug-drug interaction could occur. Structure-activity relationship analysis showed that flavonoids had much higher inhibitory activity than their glycosides. Furthermore, the type and length of saccharides had a significant effect on their activity. In addition, we used OATP1B1 substrates fluvastatin and rosuvastatin as probe drugs to investigate the substrate-dependent effect of several natural compounds on the function of OATP1B1 in vitro. Our results demonstrated that the effect of these natural products on the function of OATPlB1 was substrate-dependent. In summary, this study would be conducive to predicting and avoiding potential OATP1B1-mediated drug-drug and drug-food interactions and thus provide the experimental basis and guidance for rational drug use. PMID:26552146

  13. ALDH1B1 links alcohol consumption and diabetes.

    PubMed

    Singh, Surendra; Chen, Ying; Matsumoto, Akiko; Orlicky, David J; Dong, Hongbin; Thompson, David C; Vasiliou, Vasilis

    2015-08-01

    Aldehyde dehydrogenase 1B1 (ALDH1B1) is a mitochondrial enzyme sharing 65% and 72% sequence identity with ALDH1A1 and ALDH2 proteins, respectively. Compared to the latter two ALDH isozymes, little is known about the physiological functions of ALDH1B1. Studies in humans indicate that ALDH1B1 may be associated with alcohol sensitivity and stem cells. Our recent in vitro studies using human ALDH1B1 showed that it metabolizes acetaldehyde and retinaldehyde. To investigate the in vivo role of ALDH1B1, we generated and characterized a global Aldh1b1 knockout mouse line. These knockout (KO) mice are fertile and show overtly good health. However, ethanol pharmacokinetic analysis revealed ∼40% increase in blood acetaldehyde levels in KO mice. Interestingly, the KO mice exhibited higher fasting blood glucose levels. Collectively, we show for the first time the functional in vivo role of ALDH1B1 in acetaldehyde metabolism and in maintaining glucose homeostasis. This mouse model is a valuable tool to investigate the mechanism by which alcohol may promote the development of diabetes. PMID:26086111

  14. MISR Level 1B1 Radiance Data (MI1B1_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    summary, the Level 1B1 Product contains the Data Numbers (DNs) radiometrically-scaled to radiances with no geometric resampling. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1.1 km; Longitude_Resolution=1.1 km; Temporal_Resolution=about 15 orbits/day; Temporal_Resolution_Range=about 15 orbits/day].

  15. CYP1B1: a unique gene with unique characteristics.

    PubMed

    Faiq, Muneeb A; Dada, Rima; Sharma, Reetika; Saluja, Daman; Dada, Tanuj

    2014-01-01

    CYP1B1, a recently described dioxin inducible oxidoreductase, is a member of the cytochrome P450 superfamily involved in the metabolism of estradiol, retinol, benzo[a]pyrene, tamoxifen, melatonin, sterols etc. It plays important roles in numerous physiological processes and is expressed at mRNA level in many tissues and anatomical compartments. CYP1B1 has been implicated in scores of disorders. Analyses of the recent studies suggest that CYP1B1 can serve as a universal/ideal cancer marker and a candidate gene for predictive diagnosis. There is plethora of literature available about certain aspects of CYP1B1 that have not been interpreted, discussed and philosophized upon. The present analysis examines CYP1B1 as a peculiar gene with certain distinctive characteristics like the uniqueness in its chromosomal location, gene structure and organization, involvement in developmentally important disorders, tissue specific, not only expression, but splicing, potential as a universal cancer marker due to its involvement in key aspects of cellular metabolism, use in diagnosis and predictive diagnosis of various diseases and the importance and function of CYP1B1 mRNA in addition to the regular translation. Also CYP1B1 is very difficult to express in heterologous expression systems, thereby, halting its functional studies. Here we review and analyze these exceptional and startling characteristics of CYP1B1 with inputs from our own experiences in order to get a better insight into its molecular biology in health and disease. This may help to further understand the etiopathomechanistic aspects of CYP1B1 mediated diseases paving way for better research strategies and improved clinical management. PMID:25658124

  16. Structure-Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6.

    PubMed

    Shimada, Tsutomu; Takenaka, Shigeo; Kakimoto, Kensaku; Murayama, Norie; Lim, Young-Ran; Kim, Donghak; Foroozesh, Maryam K; Yamazaki, Hiroshi; Guengerich, F Peter; Komori, Masayuki

    2016-06-20

    Naphthalene, phenanthrene, biphenyl, and their derivatives having different ethynyl, propynyl, butynyl, and propargyl ether substitutions were examined for their interaction with and oxidation by cytochromes P450 (P450) 2A13 and 2A6. Spectral interaction studies suggested that most of these chemicals interacted with P450 2A13 to induce Type I binding spectra more readily than with P450 2A6. Among the various substituted derivatives examined, 2-ethynylnaphthalene, 2-naphthalene propargyl ether, 3-ethynylphenanthrene, and 4-biphenyl propargyl ether had larger ΔAmax/Ks values in inducing Type I binding spectra with P450 2A13 than their parent compounds. P450 2A13 was found to oxidize naphthalene, phenanthrene, and biphenyl to 1-naphthol, 9-hydroxyphenanthrene, and 2- and/or 4-hydroxybiphenyl, respectively, at much higher rates than P450 2A6. Other human P450 enzymes including P450s 1A1, 1A2, 1B1, 2C9, and 3A4 had lower rates of oxidation of naphthalene, phenanthrene, and biphenyl than P450s 2A13 and 2A6. Those alkynylated derivatives that strongly induced Type I binding spectra with P450s 2A13 and 2A6 were extensively oxidized by these enzymes upon analysis with HPLC. Molecular docking studies supported the hypothesis that ligand-interaction energies (U values) obtained with reported crystal structures of P450 2A13 and 2A6 bound to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, indole, pilocarpine, nicotine, and coumarin are of use in understanding the basis of possible molecular interactions of these xenobiotic chemicals with the active sites of P450 2A13 and 2A6 enzymes. In fact, the ligand-interaction energies with P450 2A13 4EJG bound to these chemicals were found to relate to their induction of Type I binding spectra. PMID:27137136

  17. Cyp1b1 Mediates Periostin Regulation of Trabecular Meshwork Development by Suppression of Oxidative Stress

    PubMed Central

    Zhao, Yun; Wang, Shoujian; Sorenson, Christine M.; Teixeira, Leandro; Dubielzig, Richard R.; Peters, Donna M.; Conway, Simon J.; Jefcoate, Colin R.

    2013-01-01

    Mutation in CYP1B1 has been reported for patients with congenital glaucoma. However, the underlying mechanisms remain unknown. Here we show increased diurnal intraocular pressure (IOP) in Cyp1b1-deficient (Cyp1b1−/−) mice. Cyp1b1−/− mice presented ultrastructural irregular collagen distribution in their trabecular meshwork (TM) tissue along with increased oxidative stress and decreased levels of periostin (Postn). Increased levels of oxidative stress and decreased levels of Postn were also detected in human glaucomatous TM tissues. Furthermore, Postn-deficient mice exhibited TM tissue ultrastructural abnormalities similar to those of Cyp1b1−/− mice. Administration of the antioxidant N-acetylcysteine (NAC) restored structural abnormality of TM tissue in Cyp1b1−/− mice. In addition, TM cells prepared from Cyp1b1−/− mice exhibited increased oxidative stress, altered adhesion, and decreased levels of Postn. These aberrant cellular responses were reversed in the presence of NAC or by restoration of Cyp1b1 expression. Cyp1b1 knockdown or inhibition of CYP1B1 activity in Cyp1b1+/+ TM cells resulted in a Cyp1b1−/− phenotype. Thus, metabolic activity of CYP1B1 contributes to oxidative homeostasis and ultrastructural organization and function of TM tissue through modulation of Postn expression. PMID:23979599

  18. CYP1B1 expression, a potential risk factor for breast cancer

    SciTech Connect

    Goth-Goldstein, Regine; Erdmann, Christine A.; Russell, Marion

    2001-05-31

    CYP1B1 expression in non-tumor breast tissue from breast cancer patients and cancer-free individuals was determined to test the hypothesis that high CYP1B1 expression is a risk factor for breast cancer. Large interindividual variations in CYP1B1 expression were found with CYP1B1 levels notably higher in breast cancer patients than cancer-free individuals. The results indicate that CYP1B1 might play a role in breast cancer either through increased PAH activation or through metabolism of endogenous estrogen to a carcinogenic derivative.

  19. Mechanistic role of cytochrome P450 (CYP)1B1 in oxygen-mediated toxicity in pulmonary cells: A novel target for prevention of hyperoxic lung injury.

    PubMed

    Dinu, Daniela; Chu, Chun; Veith, Alex; Lingappan, Krithika; Couroucli, Xanthi; Jefcoate, Colin R; Sheibani, Nader; Moorthy, Bhagavatula

    2016-08-01

    Supplemental oxygen, which is routinely administered to preterm infants with pulmonary insufficiency, contributes to bronchopulmonary dysplasia (BPD) in these infants. Hyperoxia also contributes to the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in adults. The mechanisms of oxygen-mediated pulmonary toxicity are not completely understood. Recent studies have suggested an important role for cytochrome P450 (CYP)1A1/1A2 in the protection against hyperoxic lung injury. The role of CYP1B1 in oxygen-mediated pulmonary toxicity has not been studied. In this investigation, we tested the hypothesis that CYP1B1 plays a mechanistic role in oxygen toxicity in pulmonary cells in vitro. In human bronchial epithelial cell line BEAS-2B, hyperoxic treatment for 1-3 days led to decreased cell viability by about 50-80%. Hyperoxic cytotoxicity was accompanied by an increase in levels of reactive oxygen species (ROS) by up to 110%, and an increase of TUNEL-positive cells by up to 4.8-fold. Western blot analysis showed hyperoxia to significantly down-regulate CYP1B1 protein level. Also, there was a decrease of CYP1B1 mRNA by up to 38% and Cyp1b1 promoter activity by up to 65%. On the other hand, CYP1B1 siRNA appeared to rescue the cell viability under hyperoxia stress, and overexpression of CYP1B1 significantly attenuated hyperoxic cytotoxicity after 48 h of incubation. In immortalized lung endothelial cells derived from Cyp1b1-null and wild-type mice, hyperoxia increased caspase 3/7 activities in a time-dependent manner, but endothelial cells lacking the Cyp1b1 gene showed significantly decreased caspase 3/7 activities after 48 and 72 h of incubation, implying that CYP1B1 might promote apoptosis in wild type lung endothelial cells under hyperoxic stress. In conclusion, our results support the hypothesis that CYP1B1 plays a mechanistic role in pulmonary oxygen toxicity, and CYP1B1-mediated apoptosis could be one of the mechanisms of oxygen

  20. Cytochrome P450 1B1: An Unexpected Modulator of Liver Fatty Acid Homeostasis

    PubMed Central

    Larsen, Michele Campaigne; Bushkofsky, Justin R.; Gorman, Tyler; Adhami, Vaqar; Mukhtar, Hasan; Wang, Suqing; Reeder, Scott B.; Sheibani, Nader; Jefcoate, Colin R.

    2015-01-01

    Cytochrome P450 1b1 (Cyp1b1) expression is absent in mouse hepatocytes, but present in liver endothelia and activated stellate cells. Increased expression during adipogenesis suggests a role of Cyp1b1 metabolism in fatty acid homeostasis. Wild-type C57BL/6j (WT) and Cyp1b1-null (Cyp1b1-ko) mice were provided low or high fat diets (LFD and HFD, respectively). Cyp1b1-deletion suppressed HFD-induced obesity, improved glucose tolerance and prevented liver steatosis. Suppression of lipid droplets in sinusoidal hepatocytes, concomitant with enhanced glycogen granules, was a consistent feature of Cyp1b1-ko mice. Cyp1b1 deletion altered the in vivo expression of 560 liver genes, including suppression of PPARγ, stearoyl CoA desaturase 1 (Scd1) and many genes stimulated by PPARα, each consistent with this switch in energy storage mechanism. Ligand activation of PPARα in Cyp1b1-ko mice by WY-14643 was, nevertheless, effective. Seventeen gene changes in Cyp1b1-ko mice correspond to mouse transgenic expression that attenuated diet-induced diabetes. The absence of Cyp1b1 in mouse hepatocytes indicates participation in energy homeostasis through extra-hepatocyte signaling. Extensive sexual dimorphism in hepatic gene expression suggests a developmental impact of estrogen metabolism by Cyp1b1. Suppression of Scd1 and increased leptin turnover support enhanced leptin participation from the hypothalamus. Cyp1b1-mediated effects on vascular cells may underlie these changes. PMID:25703193

  1. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1

    SciTech Connect

    Chang, Thomas K.H. . E-mail: tchang@interchange.ubc.ca; Chen Jie; Yeung, Eugene Y.H.

    2006-05-15

    In the present study, we investigated the effect of Ginkgo biloba extracts and some of its individual constituents on the catalytic activity of human cytochrome P450 enzymes CYP1B1, CYP1A1, and CYP1A2. G. biloba extract of known abundance of terpene trilactones and flavonol glycosides inhibited 7-ethoxyresorufin O-dealkylation catalyzed by human recombinant CYP1B1, CYP1A1, and CYP1A2, and human liver microsomes, with apparent K {sub i} values of 2 {+-} 0.3, 5 {+-} 0.5, 16 {+-} 1.4, and 39 {+-} 1.2 {mu}g/ml (mean {+-} SE), respectively. In each case, the mode of inhibition was of the mixed type. Bilobalide, ginkgolides A, B, C, and J, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, and isorhamentin 3-O-rutinoside were not responsible for the inhibition of CYP1 enzymes by G. biloba extract, as determined by experiments with these individual chemicals at the levels present in the extract. In contrast, the aglycones of quercetin, kaempferol, and isorhamentin inhibited CYP1B1, CYP1A1, and CYP1A2. Among the three flavonol aglycones, isorhamentin was the most potent in inhibiting CYP1B1 (apparent K {sub i} = 3 {+-} 0.1 nM), whereas quercetin was the least potent in inhibiting CYP1A2 (apparent K {sub i} 418 {+-} 50 nM). The mode of inhibition was competitive, noncompetitive, or mixed, depending on the enzyme and the flavonol. G. biloba extract also reduced benzo[a]pyrene hydroxylation, and the effect was greater with CYP1B1 than with CYP1A1 as the catalyst. Overall, our novel findings indicate that G. biloba extract and the flavonol aglycones isorhamnetin, kaempferol, and quercetin preferentially inhibit the in vitro catalytic activity of human CYP1B1.

  2. High CYP2A6 Enzyme Activity as Measured by a Caffeine Test and Unique Distribution of CYP2A6 Variant Alleles in Ethiopian Population

    PubMed Central

    Djordjevic, Natasa; Carrillo, Juan Antonio; Makonnen, Eyasu; Bertilsson, Leif; Ingelman-Sundberg, Magnus

    2014-01-01

    Abstract CYP2A6 metabolizes clinically relevant drugs, including antiretroviral and antimalarial drugs of major public health importance for the African populations. CYP2A6 genotype–phenotype relationship in African populations, and implications of geographic differences on enzyme activity, remain to be investigated. We evaluated the influence of CYP2A6 genotype, geographical differences, gender, and cigarette smoking on enzyme activity, using caffeine as a probe in 100 healthy unrelated Ethiopians living in Ethiopia, and 72 living in Sweden. CYP2A6 phenotype was estimated by urinary 1,7-dimethyluric acid (17U)/1,7-dimethylxanthine or paraxanthine (17X) ratio. The frequencies of CYP2A6*1B, *1D, *2, *4, *9, and *1x2 in Ethiopians were 31.3, 29.4, 0.6, 0.6, 2.8, and 0.3%, respectively. The overall mean±SD for log 17U/17X was 0.12±0.24 and coefficient of variation 199%. No significant difference in the mean log 17U/17X ratio between Ethiopians living in Sweden versus Ethiopia was observed. Analysis of variance revealed CYP2A6 genotype (p=0.04, F=2.01) but not geographical differences, sex, or cigarette smoking as predictors of CYP2A6 activity. Importantly, the median (interquartile range) of 17U/17X ratio in Ethiopians 1.35 (0.99 to 1.84) was 3- and 11-fold higher than the previously reported value in Swedes 0.52 (0.27 to 1.00) and Koreans 0.13 (0.0 to 0.35), respectively (Djordjevic et al., 2013). Taken together, we report here the relevance of CYP2A6 genotype for enzyme activity in this Ethiopian sample, as well as high CYP2A6 activity and unique distribution of the CYP2A6 variant alleles in Ethiopians as compared other populations described hitherto. Because Omics biomarker research is rapidly accelerating in Africa, CYP2A6 pharmacogenetics and clinical pharmacology observations reported herein for the Ethiopian populations have clinical and biological importance to plan for future rational therapeutics efforts in the African continent as well as therapeutics

  3. Subtyping of Y-chromosomal haplogroup E-M78 (E1b1b1a) by SNP assay and its forensic application.

    PubMed

    Caratti, S; Gino, S; Torre, C; Robino, C

    2009-07-01

    The continual discovery of new single-nucleotide polymorphisms (SNPs) has led to an increased resolution of the Y chromosome phylogeny. Some of these Y-SNPs have shown to be restricted to small geographical regions and therefore may prove useful in the forensic field as tools for the prediction of population of origin of unknown casework samples. Here, we describe a system for the molecular dissection of haplogroup E-M78 (E1b1b1a), consisting of multiplex polymerase chain reaction and minisequencing of M78 and nine population-informative Y-SNPs (M148, M224, V12, V13, V19, V22, V27, V32, V65) in a single reaction. Sensitivity and admixture studies demonstrated that the SNP protocol allows robust genotyping from as little as 50 pg of male DNA, even in the presence of 500-fold amounts of female DNA. In order to evaluate the suitability of E1b1b1a, subhaplogrouping for population-of-origin prediction, the distribution of E-M78 and its derived variants was determined in an Italian population sample (n = 326). PMID:19430804

  4. Pathogenesis-Related Protein 1b1 (PR1b1) Is a Major Tomato Fruit Protein Responsive to Chilling Temperature and Upregulated in High Polyamine Transgenic Genotypes

    PubMed Central

    Fatima, Tahira; Topuz, Muhamet; Bernadec, Anne; Sicher, Richard; Handa, Avtar K.; Mattoo, Autar K.

    2016-01-01

    Plants execute an array of mechanisms in response to stress which include upregulation of defense-related proteins and changes in specific metabolites. Polyamines – putrescine (Put), spermidine (Spd), and spermine (Spm) – are metabolites commonly found associated with abiotic stresses such as chilling stress. We have generated two transgenic tomato lines (556HO and 579HO) that express yeast S-adenosylmethionine decarboxylase and specifically accumulate Spd and Spm in fruits in comparison to fruits from control (556AZ) plants (Mehta et al., 2002). Tomato fruits undergo chilling injury at temperatures below 13°C. The high Spd and Spm tomato together with the control azygous line were utilized to address role(s) of polyamines in chilling-injury signaling. Exposure to chilling temperature (2°C) led to several-fold increase in the Put content in all the lines. Upon re-warming of the fruits at 20°C, the levels of Spd and Spm increased further in the fruit of the two transgenic lines, the higher levels remaining stable for 15 days after re-warming as compared to the fruit from the control line. Profiling their steady state proteins before and after re-warming highlighted a protein of ∼14 kD. Using proteomics approach, protein sequencing and immunoblotting, the ∼14-kD protein was identified as the pathogenesis related protein 1b1 (PR1b1). The PR1b1 protein accumulated transiently in the control fruit whose level was barely detectable at d 15 post-warming while in the fruit from both the 556HO and 579HO transgenic lines PR1b1 abundance increased and remained stable till d 15 post warming. PR1b1 gene transcripts were found low in the control fruit with a visible accumulation only on d 15 post warming; however, in both the transgenic lines it accumulated and increased soon after rewarming being several-fold higher on day 2 while in 556HO line this increase continued until d 6 than the control fruit. The chilling-induced increase in PR1b1 protein seems independent

  5. Pathogenesis-Related Protein 1b1 (PR1b1) Is a Major Tomato Fruit Protein Responsive to Chilling Temperature and Upregulated in High Polyamine Transgenic Genotypes.

    PubMed

    Goyal, Ravinder K; Fatima, Tahira; Topuz, Muhamet; Bernadec, Anne; Sicher, Richard; Handa, Avtar K; Mattoo, Autar K

    2016-01-01

    Plants execute an array of mechanisms in response to stress which include upregulation of defense-related proteins and changes in specific metabolites. Polyamines - putrescine (Put), spermidine (Spd), and spermine (Spm) - are metabolites commonly found associated with abiotic stresses such as chilling stress. We have generated two transgenic tomato lines (556HO and 579HO) that express yeast S-adenosylmethionine decarboxylase and specifically accumulate Spd and Spm in fruits in comparison to fruits from control (556AZ) plants (Mehta et al., 2002). Tomato fruits undergo chilling injury at temperatures below 13°C. The high Spd and Spm tomato together with the control azygous line were utilized to address role(s) of polyamines in chilling-injury signaling. Exposure to chilling temperature (2°C) led to several-fold increase in the Put content in all the lines. Upon re-warming of the fruits at 20°C, the levels of Spd and Spm increased further in the fruit of the two transgenic lines, the higher levels remaining stable for 15 days after re-warming as compared to the fruit from the control line. Profiling their steady state proteins before and after re-warming highlighted a protein of ∼14 kD. Using proteomics approach, protein sequencing and immunoblotting, the ∼14-kD protein was identified as the pathogenesis related protein 1b1 (PR1b1). The PR1b1 protein accumulated transiently in the control fruit whose level was barely detectable at d 15 post-warming while in the fruit from both the 556HO and 579HO transgenic lines PR1b1 abundance increased and remained stable till d 15 post warming. PR1b1 gene transcripts were found low in the control fruit with a visible accumulation only on d 15 post warming; however, in both the transgenic lines it accumulated and increased soon after rewarming being several-fold higher on day 2 while in 556HO line this increase continued until d 6 than the control fruit. The chilling-induced increase in PR1b1 protein seems independent of

  6. Ultrastructural abnormalities of the trabecular meshwork extracellular matrix in Cyp1b1-deficient mice.

    PubMed

    Teixeira, L B C; Zhao, Y; Dubielzig, R R; Sorenson, C M; Sheibani, N

    2015-03-01

    Cytochrome P450 1B1 (CYP1B1) is highly expressed in human and murine ocular tissues during development. Mutations in this gene are implicated in the development of primary congenital glaucoma (PCG) in humans. Mice deficient in Cyp1b1 (Cyp1b1(-/-) ) present developmental abnormalities similar to human primary congenital glaucoma. The present work describes the ultrastructural morphology of the iridocorneal angle of 21 eyes from 1-week-old to 8-month-old Cyp1b1(-/-) mice. Morphometric and semiquantitative analysis of the data revealed that 3-week-old Cyp1b1(-/-) mice present a significantly (P < .005) decreased amount of trabecular meshwork (TM) collagen and higher TM endothelial cell and collagen lesion scores (P < .005) than age-matched controls. Collagen loss and lesion scores were progressively increased in older animals, with 8-month-old animals presenting severe atrophy of the TM. Our findings advance the understanding of the effects of CYP1B1 mutations in TM development and primary congenital glaucoma, as well as suggest a link between TM morphologic alterations and increased intraocular pressure. PMID:24879660

  7. Role of CYP1B1 in PAH-DNA adduct formation and breast cancer risk

    SciTech Connect

    Goth-Goldstein, Regine; Russell, Marion L.; Muller, A.P.; Caleffi, M.; Eschiletti, J.; Graudenz, M.; Sohn, Michael D.

    2010-04-01

    This study investigated the hypothesis that increased exposure to polycyclic aromatic hydrocarbons (PAHs) increases breast cancer risk. PAHs are products of incomplete burning of organic matter and are present in cigarette smoke, ambient air, drinking water, and diet. PAHs require metabolic transformation to bind to DNA, causing DNA adducts, which can lead to mutations and are thought to be an important pre-cancer marker. In breast tissue, PAHs appear to be metabolized to their cancer-causing form primarily by the cytochrome P450 enzyme CYP1B1. Because the genotoxic impact of PAH depends on their metabolism, we hypothesized that high CYP1B1 enzyme levels result in increased formation of PAH-DNA adducts in breast tissue, leading to increased development of breast cancer. We have investigated molecular mechanisms of the relationship between PAH exposure, CYP1B1 expression and breast cancer risk in a clinic-based case-control study. We collected histologically normal breast tissue from 56 women (43 cases and 13 controls) undergoing breast surgery and analyzed these specimens for CYP1B1 genotype, PAH-DNA adducts and CYP1B1 gene expression. We did not detect any difference in aromatic DNA adduct levels of cases and controls, only between smokers and non-smokers. CYP1B1 transcript levels were slightly lower in controls than cases, but the difference was not statistically significant. We found no correlation between the levels of CYP1B1 expression and DNA adducts. If CYP1B1 has any role in breast cancer etiology it might be through its metabolism of estrogen rather than its metabolism of PAHs. However, due to the lack of statistical power these results should be interpreted with caution.

  8. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer

    PubMed Central

    McFadyen, M C E; Cruickshank, M E; Miller, I D; McLeod, H L; Melvin, W T; Haites, N E; Parkin, D; Murray, G I

    2001-01-01

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies world wide. Little improvement has been made in the long-term outcome of this disease, with the 5-year survival of patients only 30%. This poor prognosis is due to the late presentation of the disease and to the unpredictable response of ovarian cancer to chemotherapy. The cytochrome P450 enzymes are a superfamily of haemoproteins, known to be involved in the metabolic activation and/or detoxification of a number of anti-cancer drugs. CYP1B1 is a tumour-related form of cytochrome P450 which is over expressed in a wide variety of primary tumours of different histological type. The presence of CYP1B1 may be of importance in the modulation of these tumours to anti-cancer drugs. We have conducted a comprehensive immunohistochemical investigation, into the presence of cytochrome P450 CYP1B1 in primary and metastatic ovarian cancer. The key findings of this study are the increased expression of CYP1B1 in the majority of ovarian cancers investigated (92%), with a strong correlation demonstrated between CYP1B1 expression in both primary and metastatic ovarian cancer (P= 0.005 Spearman's rank correlation test). In contrast no detectable CYP1B1 was found in normal ovary. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461084

  9. Aryl morpholino triazenes inhibit cytochrome P450 1A1 and 1B1.

    PubMed

    Lee, Daniel; Perez, Pedro; Jackson, William; Chin, Taylor; Galbreath, Michael; Fronczek, Frank R; Isovitsch, Ralph; Iimoto, Devin S

    2016-07-15

    Many cytochrome P450 1A1 and 1B1 (CYP1A1 and CYP1B1) inhibitors, such as resveratrol, have planar, hydrophobic, aromatic rings in their structure and exhibit anti-cancer activity. Aryl morpholino triazenes have similar structural features and in addition contain a triazene unit consisting of three consecutive, conjugated nitrogen atoms. Several aryl morpholino triazenes, including 4-[(E)-2-(3,4,5-trimethoxyphenyl)diazenyl]-morpholine (2), were prepared from a reaction involving morpholine and a diazonium ion produced from different aniline derivatives, such as 3,4,5-trimethoxyaniline. The aryl morpholino triazenes were then screened at 100μM for their ability to inhibit CYP1A1 and CYP1B1 using ethoxyresorufin as the substrate. Triazenes that inhibited the enzymes to less than 80% of the uninhibited enzyme activity were assayed to determine their IC50 value. Compound 2 was the only triazene to inhibit both CYP1A1 and CYP1B1 to the same degree as resveratrol with IC50 values of 10μM and 18μM, respectively. Compounds 3 and 6 selectively inhibited CYP1B1 over CYP1A1 with IC values of 2μM and 7μM, respectively. Thus, aryl morpholino triazenes are a new class of compounds that can inhibit CYP1A1 and CYP1B1 and potentially prevent cancer. PMID:27265259

  10. [OATP1B1 in drug-drug interactions between traditional Chinese medicine Danshensu and rosuvastatin].

    PubMed

    Wen, Jin-hua; Wei, Xiao-hua; Cheng, Xiao-hua; Zuo, Rong; Peng, Hong-wei; Lü, Yan-ni; Zhou, Jian; Zheng, Xue-lian; Cai, Jun; Xiong, Yu-qing; Cao, Li

    2016-01-01

    The study was designed to explore the drug-drug interactions mechanisms mediated by OATP1B1 between traditional Chinese medicine Danshensu and rosuvastatin. First, the changes of rosuvastatin pharmacokinetics were investigated in presence of Danshensu in rats. Then, the primary rat hepatocytes model was established to explore the effects of Danshensu on the uptake of rosuvastatin by hepatocytes. Finally, HEK293T cells with overexpression of OATP1B1*a and OATP1B1*5 were established using a lentiviral delivery system to explore the effects of Danshensu on the uptake of rosuvastatin. Rosuvastatin pharmacokinetic parameters of C(max0, AUCO(0-t), AUC(0-∞) were increased about 123%, 194% and 195%, by Danshensu in rats, while the CL z/F value was decreased by 60%. Uptake of rosuvastatin in the primary rat hepatocytes was decreased by 3.13%, 41.15% and 74.62%, respectively in the presence of 20, 40 and 80 μmol x L(-1) Danshensu. The IC50 parameters was (53.04 ± 2.43) μmol x L(-1). The inhibitory effect of Danshensu on OATP1B1 mediated transport of rosuvastatin was related to the OATP1B1 gene type. In OATP1B1*5-HEK293T mutant cells, transport of rosuvastatin were reduced by (39.11 ± 4.94)% and (63.61 ± 3.94)%, respectively, by Danshensu at 1 and 10 μmol x L(-1). While transport of rosuvastatin was reduced by (8.22 ± 2.40)% and (11.56 ± 3.04)% and in OATP1B1*1a cells, respectively. Danshensu significantly altered the pharmacokinetics of rosuvastatin in rats, which was related to competitive inhibition of transport by OATPJBI. Danshensu exhibited a significant activity in the inhibition of rosuvastatin transport by OATP1B1*5-HEK293T, but not by OATP1B1*1a, suggesting a dependence on OATP1B1 sequence. PMID:27405165

  11. Somatic overgrowth associated with homozygous mutations in both MAN1B1 and SEC23A

    PubMed Central

    Gupta, Swati; Fahiminiya, Somayyeh; Wang, Tracy; Dempsey Nunez, Laura; Rosenblatt, David S.; Gibson, William T.; Gilfix, Brian; Bergeron, John J. M.; Jerome-Majewska, Loydie A.

    2016-01-01

    Using whole-exome sequencing, we identified homozygous mutations in two unlinked genes, SEC23A c.1200G>C (p.M400I) and MAN1B1 c.1000C>T (p.R334C), associated with congenital birth defects in two patients from a consanguineous family. Patients presented with carbohydrate-deficient transferrin, tall stature, obesity, macrocephaly, and maloccluded teeth. The parents were healthy heterozygous carriers for both mutations and an unaffected sibling with tall stature carried the heterozygous mutation in SEC23A only. Mutations in SEC23A are responsible for craniolenticosultura dysplasia (CLSD). CLSD patients are short, have late-closing fontanels, and have reduced procollagen (pro-COL1A1) secretion because of abnormal pro-COL1A1 retention in the endoplasmic reticulum (ER). The mutation we identified in MAN1B1 was previously associated with reduced MAN1B1 protein and congenital disorders of glycosylation (CDG). CDG patients are also short, are obese, and have abnormal glycan remodeling. Molecular analysis of fibroblasts from the family revealed normal levels of SEC23A in all cells and reduced levels of MAN1B1 in cells with heterozygous or homozygous mutations in SEC23A and MAN1B1. Secretion of pro-COL1A1 was increased in fibroblasts from the siblings and patients, and pro-COL1A1 was retained in Golgi of heterozygous and homozygous mutant cells, although intracellular pro-COL1A1 was increased in patient fibroblasts only. We postulate that increased pro-COL1A1 secretion is responsible for tall stature in these patients and an unaffected sibling, and not previously discovered in patients with mutations in either SEC23A or MAN1B1. The patients in this study share biochemical and cellular characteristics consistent with mutations in MAN1B1 and SEC23A, indicating a digenic disease. PMID:27148587

  12. Somatic overgrowth associated with homozygous mutations in both MAN1B1 and SEC23A.

    PubMed

    Gupta, Swati; Fahiminiya, Somayyeh; Wang, Tracy; Dempsey Nunez, Laura; Rosenblatt, David S; Gibson, William T; Gilfix, Brian; Bergeron, John J M; Jerome-Majewska, Loydie A

    2016-05-01

    Using whole-exome sequencing, we identified homozygous mutations in two unlinked genes, SEC23A c.1200G>C (p.M400I) and MAN1B1 c.1000C>T (p.R334C), associated with congenital birth defects in two patients from a consanguineous family. Patients presented with carbohydrate-deficient transferrin, tall stature, obesity, macrocephaly, and maloccluded teeth. The parents were healthy heterozygous carriers for both mutations and an unaffected sibling with tall stature carried the heterozygous mutation in SEC23A only. Mutations in SEC23A are responsible for craniolenticosultura dysplasia (CLSD). CLSD patients are short, have late-closing fontanels, and have reduced procollagen (pro-COL1A1) secretion because of abnormal pro-COL1A1 retention in the endoplasmic reticulum (ER). The mutation we identified in MAN1B1 was previously associated with reduced MAN1B1 protein and congenital disorders of glycosylation (CDG). CDG patients are also short, are obese, and have abnormal glycan remodeling. Molecular analysis of fibroblasts from the family revealed normal levels of SEC23A in all cells and reduced levels of MAN1B1 in cells with heterozygous or homozygous mutations in SEC23A and MAN1B1. Secretion of pro-COL1A1 was increased in fibroblasts from the siblings and patients, and pro-COL1A1 was retained in Golgi of heterozygous and homozygous mutant cells, although intracellular pro-COL1A1 was increased in patient fibroblasts only. We postulate that increased pro-COL1A1 secretion is responsible for tall stature in these patients and an unaffected sibling, and not previously discovered in patients with mutations in either SEC23A or MAN1B1. The patients in this study share biochemical and cellular characteristics consistent with mutations in MAN1B1 and SEC23A, indicating a digenic disease. PMID:27148587

  13. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

    PubMed Central

    Chun, Young-Jin; Kim, Donghak

    2016-01-01

    Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158

  14. ALDH1B1 is a potential stem / progenitor marker for multiple pancreas progenitor pools

    PubMed Central

    Ioannou, Marilia; Serafimidis, Ioannis; Arnes, Luis; Sussel, Lori; Singh, Surendra; Vasiliou, Vasilis; Gavalas, Anthony

    2013-01-01

    Aldehyde Dehydrogenase (ALDH) genes are increasingly associated with stem / progenitor cell status but their role in the maintenance of pluripotency remains uncertain. In a screen conducted for downstream Ngn3 target genes using ES derived pancreas progenitors we identified Aldh1b1, encoding a mitochondrial enzyme, as one of the genes strongly up regulated in response to Ngn3 expression. We found both by in situ hybridization and immunofluorescence using a specific antibody that ALDH1B1 is exclusively expressed in the emerging pancreatic buds of the early embryo (9.5 dpc) in a Pdx1 dependent manner. Around the time of secondary transition, ALDH1B1 expression was restricted in the tip tripotent progenitors of the branching epithelium and in a subset of the trunk epithelium. Expression in the latter was Ngn3 dependent. Subsequently, ALDH1B1 expression persisted only in the tip cells that become restricted to the exocrine lineage and declined rapidly as these cells mature. In the adult pancreas we identified rare ALDH1B1+ cells that become abundant following pancreas injury in either the caerulein or streptozotocin paradigms. Blocking ALDH catalytic activity in pancreas embryonic explants resulted in reduced size of the explants and accelerated differentiation suggesting for the first time that ALDH activity may be necessary in the developing pancreas for the maintenance and expansion of progenitor pools. PMID:23142317

  15. Inherited variation in OATP1B1 is associated with treatment outcome in acute myeloid leukemia.

    PubMed

    Drenberg, C D; Paugh, S W; Pounds, S B; Shi, L; Orwick, S J; Li, L; Hu, S; Gibson, A A; Ribeiro, R C; Rubnitz, J E; Evans, W E; Sparreboom, A; Baker, S D

    2016-06-01

    Using broad interrogation of clinically relevant drug absorption, distribution, metabolism, and excretion (ADME) genes on the DMET platform, we identified a genetic variant in SLCO1B1 (rs2291075; c.597C>T), encoding the transporter OATP1B1, associated with event-free (P = 0.006, hazard ratio = 1.74) and overall survival (P = 0.012, hazard ratio = 1.85) in children with de novo acute myeloid leukemia (AML). Lack of SLCO1B1 expression in leukemic blasts suggested the association might be due to an inherited rather than a somatic effect. rs2291075 was in strong linkage with known functional variants rs2306283 (c.388A>G) and rs4149056 (c.521T>C). Functional studies in vitro determined that four AML-directed chemotherapeutics (cytarabine, daunorubicin, etoposide, and mitoxantrone) are substrates for OATP1B1 and the mouse ortholog Oatp1b2. In vivo pharmacokinetic studies using Oatp1b2-deficient mice further confirmed our results. Collectively, these findings demonstrate an important role for OATP1B1 in the systemic pharmacokinetics of multiple drugs used in the treatment of AML and suggest that inherited variability in host transporter function influences the effectiveness of therapy. PMID:26663398

  16. Toward Prospective Prediction of Pharmacokinetics in OATP1B1 Genetic Variant Populations

    PubMed Central

    Li, R; Barton, H A; Maurer, T S

    2014-01-01

    Physiologically based pharmacokinetic (PBPK) models are increasingly being used to provide human pharmacokinetic (PK) predictions for organic anion-transporting polypeptide (OATP) substrates based on in vitro assay data. As a natural extension in the application of these models, in this study, we incorporated in vitro information of three major OATP1B1 genetic variants into a previously reported PBPK model to predict the impact of OATP1B1 polymorphisms on human PK. Using pravastatin and rosuvastatin as examples, we showed that the predicted plasma concentration–time profiles in groups carrying different OATP1B1 genetic variants reasonably matched the clinical observations from multiple studies. This modeling and simulation approach may aid decision making in early pharmaceutical research and development as well as patient-specific dose adjustment in clinical practice. PMID:25494035

  17. An engineered heterodimeric model to investigate SULT1B1 dependence on intersubunit communication.

    PubMed

    Tibbs, Zachary E; Falany, Charles N

    2016-09-01

    Cytosolic sulfotransferases (SULTs) biotransform small molecules to polar sulfate esters as a means to alter their activities within the body. Understanding the molecular mechanism by which the SULTs perform their function is important for optimizing future therapeutic applications. Recent evidence suggests each SULT isoform acts by a half-site reaction (HSR) mechanism, in which a single SULT dimer subunit is active at any given time. HSR requires communication through the highly conserved KxxxTVxxxE dimerization motif. In this investigation, we sought to test the intersubunit interactions of SULT1B1 as it relates to enzyme activity. We generated two populations of SULT1B1 isoforms that efficiently heterodimerize upon mixing by targeted point mutation of the KxxxTVxxxE motif to KxxxTVxxxK or ExxxTVxxxE. The heterodimer exhibited wildtype-like activity with regard to native size, thermal integrity, PAP affinity, and PAPS Km, therefore serving as a valid model for investigating SULT1B1 dimer subunit interactions. The approach granted control over each independent subunit, permitting mutation of the critical 3'-phosphoadenosine 5'-phosphosulfate (PAPS) binding residue Arg258 and/or the catalytic base His109 in a single subunit of the dimer. Substitution of the dysfunctional subunits for fully active subunits yielded dimeric SULT1B1 with 50% the activity of the fully competent dimer, suggesting SULT1B1 intersubunit communication does not significantly contribute to the isoform's activity. These results are a testament to the unique properties of individual SULT isoforms. The dimerization system described in this manuscript can be used to study subunit interactions in other SULT isoforms as well as proteins in other families. PMID:27338799

  18. CYP1B1 and endothelial nitric oxide synthase combine to sustain proangiogenic functions of endothelial cells under hyperoxic stress

    PubMed Central

    Tang, Yixin; Scheef, Elizabeth A.; Gurel, Zafer; Sorenson, Christine M.; Jefcoate, Colin R.

    2010-01-01

    We have recently shown that deletion of constitutively expressed CYP1B1 is associated with attenuation of retinal endothelial cell (EC) capillary morphogenesis (CM) in vitro and angiogenesis in vivo. This was largely caused by increased intracellular oxidative stress and increased production of thrombospondin-2, an endogenous inhibitor of angiogenesis. Here, we demonstrate that endothelium nitric oxide synthase (eNOS) expression is dramatically decreased in the ECs prepared from retina, lung, heart, and aorta of CYP1B1-deficient (CYP1B1−/−) mice compared with wild-type (CYP1B1+/+) mice. The eNOS expression was also decreased in retinal vasculature of CYP1B1−/− mice. Inhibition of eNOS activity in cultured CYP1B1+/+ retinal ECs blocked CM and was concomitant with increased oxidative stress, like in CYP1B1−/− retinal ECs. In addition, expression of eNOS in CYP1B1−/− retinal ECs or their incubation with a nitric oxide (NO) donor enhanced NO levels, lowered oxidative stress, and improved cell migration and CM. Inhibition of CYP1B1 activity in the CYP1B1+/+ retinal ECs resulted in reduced NO levels and attenuation of CM. In contrast, expression of CYP1B1 increased NO levels and enhanced CM of CYP1B1−/− retinal ECs. Furthermore, attenuation of CYP1B1 expression with small interfering RNA proportionally lowered eNOS expression and NO levels in wild-type cells. Together, our results link CYP1B1 metabolism in retinal ECs with sustained eNOS activity and NO synthesis and/or bioavailability and low oxidative stress and thrombospondin-2 expression. Thus CYP1B1 and eNOS cooperate in different ways to lower oxidative stress and thereby to promote CM in vitro and angiogenesis in vivo. PMID:20032512

  19. Synthesis and antiproliferative activity of imidazo[2,1-b][1,3,4]thiadiazole derivatives.

    PubMed

    Kumar, Sujeet; Gopalakrishnan, Vidya; Hegde, Mahesh; Rana, Vivek; Dhepe, Sharad S; Ramareddy, Sureshbabu A; Leoni, Alberto; Locatelli, Alessandra; Morigi, Rita; Rambaldi, Mirella; Srivastava, Mrinal; Raghavan, Sathees C; Karki, Subhas S

    2014-10-01

    A series of 2,5,6-substituted imidazo[2,1-b][1,3,4]thiadiazole derivatives have been prepared and were tested for antiproliferative activity on cancer cells at the National Cancer Institute. Results showed that molecules with a benzyl group at position 2, exhibited an increase in activity for the introduction of a formyl group at the 5 position. The compound 2-benzyl-5-formyl-6-(4-bromophenyl)imidazo[2,1-b][1,3,4]thiadiazole 22 has been chosen for understanding the mechanism of action by various molecular and cellular biology studies. Results obtained from cell cycle evaluation analysis, analysis of mitochondrial membrane potential and Annexin V-FITC by flow cytometric analysis, ROS production and expression of apoptotic and DNA-repair proteins suggested that compound 22 induced cytotoxicity by activating extrinsic pathway of apoptosis, however, without affecting cell cycle progression. PMID:25205189

  20. SLCO1B1 Variants and Urine Arsenic Metabolites in the Strong Heart Family Study

    PubMed Central

    Gribble, Matthew O.

    2013-01-01

    Arsenic species patterns in urine are associated with risk for cancer and cardiovascular diseases. The organic anion transporter coded by the gene SLCO1B1 may transport arsenic species, but its association with arsenic metabolites in human urine has not yet been studied. The objective of this study is to evaluate associations of urine arsenic metabolites with variants in the candidate gene SLCO1B1 in adults from the Strong Heart Family Study. We estimated associations between % arsenic species biomarker traits and 5 single-nucleotide polymorphisms (SNPs) in the SLCO1B1 gene in 157 participants, assuming additive genetics. Linear regression models for each SNP accounted for kinships and were adjusted for sex, body mass index, and study center. The minor allele of rs1564370 was associated with lower %MMA (p = .0003) and higher %DMA (p = .0002), accounting for 8% of the variance for %MMA and 9% for %DMA. The rs1564370 minor allele homozygote frequency was 17% and the heterozygote frequency was 43%. The minor allele of rs2291075 was associated with lower %MMA (p = .0006) and higher %DMA (p = .0014), accounting for 7% of the variance for %MMA and 5% for %DMA. The frequency of rs2291075 minor allele homozygotes was 1% and of heterozygotes was 15%. Common variants in SLCO1B1 were associated with differences in arsenic metabolites in a preliminary candidate gene study. Replication of this finding in other populations and analyses with respect to disease outcomes are needed to determine whether this novel candidate gene is important for arsenic-associated disease risks. PMID:23970802

  1. Drug-drug interactions between rosuvastatin and oral antidiabetic drugs occurring at the level of OATP1B1.

    PubMed

    van de Steeg, E; Greupink, R; Schreurs, M; Nooijen, I H G; Verhoeckx, K C M; Hanemaaijer, R; Ripken, D; Monshouwer, M; Vlaming, M L H; DeGroot, J; Verwei, M; Russel, F G M; Huisman, M T; Wortelboer, H M

    2013-03-01

    Organic anion-transporting polypeptide 1B1 (OATP1B1) is an important hepatic uptake transporter, of which the polymorphic variant OATP1B1*15 (Asn130Asp and Val174Ala) has been associated with decreased transport activity. Rosuvastatin is an OATP1B1 substrate and often concomitantly prescribed with oral antidiabetics in the clinic. The aim of this study was to investigate possible drug-drug interactions between these drugs at the level of OATP1B1 and OATP1B1*15. We generated human embryonic kidney (HEK)293 cells stably overexpressing OATP1B1 or OATP1B1*15 that showed similar protein expression levels of OATP1B1 and OATP1B1*15 at the cell membrane as measured by liquid chromatography-tandem mass spectrometry. In HEK-OATP1B1*15 cells, the V(max) for OATP1B1-mediated transport of E(2)17β-G (estradiol 17β-d-glucuronide) was decreased >60%, whereas K(m) values (Michaelis constant) were comparable. Uptake of rosuvastatin in HEK-OATP1B1 cells (K(m) 13.1 ± 0.43 μM) was nearly absent in HEK-OATP1B1*15 cells. Interestingly, several oral antidiabetics (glyburide, glimepiride, troglitazone, pioglitazone, glipizide, gliclazide, and tolbutamide), but not metformin, were identified as significant inhibitors of the OATP1B1-mediated transport of rosuvastatin. The IC(50) values for inhibition of E(2)17β-G uptake were similar between OATP1B1 and OATP1B1*15. In conclusion, these studies indicate that several oral antidiabetic drugs affect the OATP1B1-mediated uptake of rosuvastatin in vitro. The next step will be to translate these data to the clinical situation, as it remains to be established whether the studied oral antidiabetics indeed affect the clinical pharmacokinetic profile of rosuvastatin in patients. PMID:23248200

  2. Mechanisms of action of the 5-HT1B/1D receptor agonists.

    PubMed

    Tepper, Stewart J; Rapoport, Alan M; Sheftell, Fred D

    2002-07-01

    Recent studies of the pathophysiology of migraine provide evidence that the headache phase is associated with multiple physiologic actions. These actions include the release of vasoactive neuropeptides by the trigeminovascular system, vasodilation of intracranial extracerebral vessels, and increased nociceptive neurotransmission within the central trigeminocervical complex. The 5-HT(1B/1D) receptor agonists, collectively known as triptans, are a major advance in the treatment of migraine. The beneficial effects of the triptans in patients with migraine are related to their multiple mechanisms of action at sites implicated in the pathophysiology of migraine. These mechanisms are mediated by 5-HT(1B/1D) receptors and include vasoconstriction of painfully dilated cerebral blood vessels, inhibition of the release of vasoactive neuropeptides by trigeminal nerves, and inhibition of nociceptive neurotransmission. The high affinity of the triptans for 5-HT(1B/1D) receptors and their favorable pharmacologic properties contribute to the beneficial effects of these drugs, including rapid onset of action, effective relief of headache and associated symptoms, and low incidence of adverse effects. PMID:12117355

  3. Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development.

    PubMed

    Wang, Bo; Zhou, Shu-Feng

    2009-01-01

    Human cytochrome P450 1A2 (CYP1A2) is one of the major CYPs in the liver ( approximately 13%) and metabolizes about 20% of clinically used drugs. CYP1A2 is a 515-residue protein with a molecular mass of 58,294 Dal. The recently published crystal structure of CYP1A2 in complex with alpha-naphthoflavone has showed a rather compact active site with a relatively small volume of the cavity of 375 A(3), which is 44.2% and 49.3% larger than that of CYP2A6 (260 A(3)) and CYP2E1 (190 A(3)), respectively. A series of residues in the substrate recognition regions of CYP1A2 (e.g. Arg108, Thr124, Thr223, Glu225, Phe226, Lys250, Arg251, Lys253, Asn312, Asp313, Glu318, Thr319, Asp320, Thr321, Val322, Leu382, Thr385, and Ile386) have been shown to play important roles in ligand-enzyme binding based on site-directed mutagenesis and homology modeling studies. Typical CYP1A2 substrates generally contain planar ring that can fit the narrow and planar active site of the enzyme, such as propranolol, clozapine, guanabenz, flutamide, imatinib, thalidomide, carbamazepine, lidocaine, theophylline, tacrine, tizanidine, zolpidem, riluzole, zileuton, and leflunomide. CYP1A2 is one of the major enzymes that bioactivate a number of procarcinogens including polycyclic aromatic hydrocarbons (e.g., benzo[a]pyrene), heterocyclic aromatic amines/amides (e.g. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), mycotoxins (e.g. aflatoxin B(1)) and some natural compounds such as aristolochic acids present in several Chinese herbal medicines. This enzyme also metabolizes several important endogenous compounds including retinols, melatonin, steroids, uroporphyrinogen and arachidonic acids. Like many of other CYPs, CYP1A2 is subject to induction and inhibition by a number of compounds. In particular, several therapeutic drugs including antofloxacin, carbamazepine, dihydralazine, furafylline, isoniazid, rofecoxib, clorgyline, thiabendazole, and zileuton are mechanism-based inhibitors of CYP1A2. Reversible and

  4. Cytochrome P450 1B1 Contributes to the Development of Atherosclerosis and Hypertension in Apolipoprotein E-Deficient Mice.

    PubMed

    Song, Chi Young; Ghafoor, Khuzema; Ghafoor, Hafiz U; Khan, Nayaab S; Thirunavukkarasu, Shyamala; Jennings, Brett L; Estes, Anne M; Zaidi, Sahar; Bridges, Dave; Tso, Patrick; Gonzalez, Frank J; Malik, Kafait U

    2016-01-01

    Cytochrome P450 (CYP) 1B1 contributes to vascular smooth muscle cell growth and hypertension in male mice. This study was conducted to determine the contribution of CYP1B1 to the development of atherosclerosis and hypertension and associated pathogenesis in 8-week-old male apolipoprotein E-deficient (ApoE(-/-)/Cyp1b1(+/+)), and ApoE- and CYP1B1-deficient (ApoE(-/-)/Cyp1b1(-/-)) mice fed a normal or atherogenic diet for 12 weeks. A separate group of ApoE(-/-)/Cyp1b1(+/+) mice on an atherogenic diet was injected every third day with the CYP1B1 inhibitor, 2,3',4,5'-tetramethoxystilbene (300 μg/kg), or its vehicle, dimethyl sulfoxide (30 μL, IP); systolic blood pressure was measured by the tail cuff method. After 12 weeks, mice were euthanized, blood collected for lipid analysis, and aortas harvested for measuring lesions and remodeling, and for infiltration of inflammatory cells by histological and immunohistochemical analysis, respectively, and for reactive oxygen species production. Blood pressure, areas of lipids and collagen deposition, elastin breaks, infiltration of macrophages and T lymphocytes, reactive oxygen species generation in the aorta, and plasma lipid levels were increased in ApoE(-/-)/Cyp1b1(+/+) mice on an atherogenic diet; these changes were minimized in mice given 2,3',4,5'-tetramethoxystilbene, and in ApoE(-/-)/Cyp1b1(-/-) mice on an atherogenic diet; absorption/production of lipids remained unaltered in these mice. These data suggest that aortic lesions, hypertension, and associated pathogenesis in ApoE(-/-)/Cyp1b1(+/+) mice on an atherogenic diet are most likely dependent on CYP1B1-generated oxidative stress and increased plasma lipid levels independent of blood pressure and absorption of lipids. CYP1B1 could serve as a novel target for developing drugs to treat atherosclerosis and hypertension caused by hypercholesterolemia. PMID:26573711

  5. CYP1B1 expression promotes the proangiogenic phenotype of endothelium through decreased intracellular oxidative stress and thrombospondin-2 expression

    PubMed Central

    Tang, Yixin; Scheef, Elizabeth A.; Wang, Shoujian; Sorenson, Christine M.; Marcus, Craig B.; Jefcoate, Colin R.

    2009-01-01

    Reactive species derived from cell oxygenation processes play an important role in vascular homeostasis and the pathogenesis of many diseases including retinopathy of prematurity. We show that CYP1B1-deficient (CYP1B1−/−) mice fail to elicit a neovascular response during oxygen-induced ischemic retinopathy. In addition, the retinal endothelial cells (ECs) prepared from CYP1B1−/− mice are less adherent, less migratory, and fail to undergo capillary morphogenesis. These aberrant cellular responses were completely reversed when oxygen levels were lowered or an antioxidant added. CYP1B1−/− ECs exhibited increased oxidative stress and expressed increased amounts of the antiangiogenic factor thrombospondin-2 (TSP2). Increased lipid peroxidation and TSP2 were both observed in retinas from CYP1B1−/− mice and were reversed by administration of an antioxidant. Reexpression of CYP1B1 in CYP1B1−/− ECs resulted in down-regulation of TSP2 expression and restoration of capillary morphogenesis. A TSP2 knockdown in CYP1B1−/− ECs also restored capillary morphogenesis. Thus, CYP1B1 metabolizes cell products that modulate intracellular oxidative stress, which enhances production of TSP2, an inhibitor of EC migration and capillary morphogenesis. Evidence is presented that similar changes occur in retinal endothelium in vivo to limit neovascularization. PMID:19005183

  6. Carrier Frequency of CYP1B1 Mutations in the United States (An American Ophthalmological Society Thesis)

    PubMed Central

    Wiggs, Janey L.; Langgurth, Anne M.; Allen, Keri F.

    2014-01-01

    Purpose: CYP1B1 mutations cause autosomal recessive congenital glaucoma. Disease risk assessment for families with CYP1B1 mutations requires knowledge of the population mutation carrier frequency. The purpose of this study is to determine the CYP1B1 mutation carrier frequency in clinically normal individuals residing in the United States. Because CYP1B1 mutations can exhibit variable expressivity, we hypothesize that the mutation carrier frequency is higher than expected. Methods: Two hundred fifty individuals without glaucoma or a family history of glaucoma were enrolled. CYP1B1 mutations were identified by DNA sequencing, and pathogenicity was estimated by PolyPhen-2 or a previous report of disease causality. Results: Based on the disease frequency (1 in 10,000) and prevalence of CYP1B1-related congenital glaucoma (15% to 20%), the frequency of CYP1B1-related congenital glaucoma in the United States is approximately 1 in 50,000. Assuming Hardy-Weinberg equilibrium, the expected CYP1B1 mutation carrier frequency would be 1 in 112, or 0.89%. Among the 250 study participants, 11 (4.4%) are carriers of a single pathogenic mutation, representing a carrier frequency of 1 in 22, which is 5.1 times the expected frequency. A higher-than-expected carrier frequency (1 in 33, 3.0%) was also observed in 4300 white individuals sequenced by the National Heart Lung and Blood Institute Exome Sequencing Project. Conclusions: Our results show that the CYP1B1 mutation carrier frequency in the US population is between 1 in 22 and 1 in 33, which is 5.1 to 3.4 times the expected frequency. These results suggest that more individuals than expected are carriers of a deleterious CYP1B1 mutation, and that the prevalence of CYP1B1-related disease may be higher than expected. PMID:25646030

  7. Interaction between genetic polymorphism of cytochrome P450-1B1 and environmental pollutants in breast cancer risk.

    PubMed

    Saintot, M; Malaveille, C; Hautefeuille, A; Gerber, M

    2004-02-01

    Cytochrome P450 1B1 (CYP1B1) is implicated in the activation of potentially carcinogenic xenobiotics and oestrogens. The polymorphism of the CYP1B1 gene at codon 432 (Val-->Leu) is associated with change in catalytic function. In a case-series study of breast cancer patients, we investigated the interaction between this polymorphism and environmental exposure. The women carrying the Val CYP1B1 allele and who had lived near to a waste incinerator for more than 10 years had a higher risk of breast cancer than those never exposed with the Leu/Leu genotype (odds ratio of interactions (ORi)=3.26, 95% confidence interval (CI) 1.20-8.84). Also, the Val CYP1B1 allele increased the susceptibility to breast cancer for women exposed during their life to agricultural products used in farming (ORi = 2.18, 95% CI 1.10-4.32). These xenobiotics, mainly organochlorine hydrocarbons, are known to bind to the aromatic hydrocarbon receptor (AhR), and to induce the expression of CYP1B1 enzyme. The excess risk for exposed women with a Val CYP1B1 homo/heterozygous genotype could result from a higher exposure to activated metabolites of pesticides or dioxin-like substances. Also, a higher induction of CYP1B1 enzyme by xenobiotics could increase the formation of genotoxic catechol-oestrogens among exposed women carrying the Val CYP1B1 allele. Our results suggested that the Val CYP1B1 allele increases the susceptibility to breast cancer in women exposed to waste incinerator or agricultural pollutants. PMID:15075793

  8. MISR Level 1B1 Local Mode Radiance Data (MIB1LM_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The results of two types of processing are included in this product. First, the Radiance Scaling operation converts the camera's digital number output to a measure of energy incident on the front optical surface. The measurement is expressed in units called radiance (energy per unit area, wavelength, and solid angle) as defined by the International Standard (SI). Second, Radiance Conditioning modifies the radiances to remove instrument-dependent effects. Specifically, image sharpening is applied, and focal-plane scattering is removed. Additionally, all radiances are adjusted to remove slight spectral sensitivity differences among the 1504 detector elements of each spectral band and each camera. In addition to the Level 1B1 radiometric product for MISR's Global Mode imagery, there is a separate Level 1B1 product for each high-resolution Local Mode scene. The Radiometric Product contains spectral radiances for all MISR channels (four spectral bands and nine cameras). Each radiance value represents the incident radiance averaged over the sensor's total band response. Processing includes both radiance scaling and conditioning steps. Radiance scaling converts the Level 1A data from digital counts to radiances using coefficients derived in combination with the On-Board Calibrator (OBC) and vicarious calibrations. The OBC contains Spectralon calibration panels which are deployed monthly and reflect sunlight into the cameras. The OBC detector standards then measure this reflected light to provide the calibration. Vicarious field campaigns are conducted less frequently but provide an independent methodology useful for reducing systematic errors. Radiance conditioning removes undesirable instrument effects. Image enhancement is provided by deconvolving the scene with the sensor's point-spread-function. Additionally, in-band scaling adjusts the reported radiances to correspond to a nominal band response profile. This frees the Level 2 software from the need to correct for

  9. HLA-DQA1/B1 alleles as putative susceptibility markers in congenital toxoplasmosis.

    PubMed

    Shimokawa, Paulo Tadashi; Targa, Lília Spaleta; Yamamoto, Lidia; Rodrigues, Jonatas Cristian; Kanunfre, Kelly Aparecida; Okay, Thelma Suely

    2016-05-18

    Host and parasite genotypes are among the factors associated with congenital toxoplasmosis pathogenesis. As HLA class II molecules play a key role in the immune system regulation, the aim of this study was to investigate whether HLA-DQA1/B1 alleles are associated with susceptibility or protection to congenital toxoplasmosis. One hundred and twenty-two fetuses with and 103 without toxoplasmosis were studied. The two study groups were comparable according to a number of socio-demographic and genetic variables. HLA alleles were typed by PCR-SSP. In the HLA-DQA1 region, the allele frequencies showed that *01:03 and *03:02 alleles could confer susceptibility (OR= 3.06, p = 0.0002 and OR= 9.60, p= 0.0001, respectively) as they were more frequent among infected fetuses. Regarding the HLA-DQB1 region, the *05:04 allele could confer susceptibility (OR = 6.95, p < 0.0001). Of the 122 infected fetuses, 10 presented susceptibility haplotypes contrasting with only one in the non-infected group. This difference was not statistically significant after correction for multiple comparison (OR = 9.37, p=0.011). In the casuistic, there were two severely damaged fetuses with high parasite loads determined in amniotic fluid samples and HLA-DQA1 susceptibility alleles. In the present study, a discriminatory potential of HLA-DQA1/B1 alleles to identify susceptibility to congenital toxoplasmosis and the most severe cases has been shown. PMID:26856406

  10. Mutations in ap1b1 Cause Mistargeting of the Na+/K+-ATPase Pump in Sensory Hair Cells

    PubMed Central

    Clemens Grisham, Rachel; Kindt, Katie; Finger-Baier, Karin; Schmid, Bettina; Nicolson, Teresa

    2013-01-01

    The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1) gene. Ap1b1 is a subunit of the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na+/K+-ATPase pump (NKA) was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1 mutant hair cells. Accordingly, intracellular Na+ levels were increased in ap1b1 mutant hair cells. Our results suggest that Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells. PMID:23593334

  11. Mutations in ap1b1 cause mistargeting of the Na(+)/K(+)-ATPase pump in sensory hair cells.

    PubMed

    Clemens Grisham, Rachel; Kindt, Katie; Finger-Baier, Karin; Schmid, Bettina; Nicolson, Teresa

    2013-01-01

    The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1) gene. Ap1b1 is a subunit of the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na(+)/K(+)-ATPase pump (NKA) was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1 mutant hair cells. Accordingly, intracellular Na(+) levels were increased in ap1b1 mutant hair cells. Our results suggest that Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells. PMID:23593334

  12. The serotonin transporter promotes a pathological estrogen metabolic pathway in pulmonary hypertension via cytochrome P450 1B1

    PubMed Central

    2016-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a devastating vasculopathy that predominates in women and has been associated with dysregulated estrogen and serotonin signaling. Overexpression of the serotonin transporter (SERT+) in mice results in an estrogen-dependent development of pulmonary hypertension (PH). Estrogen metabolism by cytochrome P450 1B1 (CYP1B1) contributes to the pathogenesis of PAH, and serotonin can increase CYP1B1 expression in human pulmonary arterial smooth muscle cells (hPASMCs). We hypothesized that an increase in intracellular serotonin via increased SERT expression may dysregulate estrogen metabolism via CYP1B1 to facilitate PAH. Consistent with this hypothesis, we found elevated lung CYP1B1 protein expression in female SERT+ mice accompanied by PH, which was attenuated by the CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS). Lungs from female SERT+ mice demonstrated an increase in oxidative stress that was marked by the expression of 8-hydroxyguanosine; however, this was unaffected by CYP1B1 inhibition. SERT expression was increased in monocrotaline-induced PH in female rats; however, TMS did not reverse PH in monocrotaline-treated rats but prolonged survival. Stimulation of hPASMCs with the CYP1B1 metabolite 16α-hydroxyestrone increased cellular proliferation, which was attenuated by an inhibitor (MPP) of estrogen receptor alpha (ERα) and a specific ERα antibody. Thus, increased intracellular serotonin caused by increased SERT expression may contribute to PAH pathobiology by dysregulation of estrogen metabolic pathways via increased CYP1B1 activity. This promotes PASMC proliferation by the formation of pathogenic metabolites of estrogen that mediate their effects via ERα. Our studies indicate that targeting this pathway in PAH may provide a promising antiproliferative therapeutic strategy. PMID:27162617

  13. The serotonin transporter promotes a pathological estrogen metabolic pathway in pulmonary hypertension via cytochrome P450 1B1.

    PubMed

    Johansen, Anne Katrine Z; Dean, Afshan; Morecroft, Ian; Hood, Katie; Nilsen, Margaret; Loughlin, Lynn; Anagnostopoulou, Aikaterini; Touyz, Rhian M; White, Kevin; MacLean, Margaret R

    2016-03-01

    Pulmonary arterial hypertension (PAH) is a devastating vasculopathy that predominates in women and has been associated with dysregulated estrogen and serotonin signaling. Overexpression of the serotonin transporter (SERT(+)) in mice results in an estrogen-dependent development of pulmonary hypertension (PH). Estrogen metabolism by cytochrome P450 1B1 (CYP1B1) contributes to the pathogenesis of PAH, and serotonin can increase CYP1B1 expression in human pulmonary arterial smooth muscle cells (hPASMCs). We hypothesized that an increase in intracellular serotonin via increased SERT expression may dysregulate estrogen metabolism via CYP1B1 to facilitate PAH. Consistent with this hypothesis, we found elevated lung CYP1B1 protein expression in female SERT(+) mice accompanied by PH, which was attenuated by the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS). Lungs from female SERT(+) mice demonstrated an increase in oxidative stress that was marked by the expression of 8-hydroxyguanosine; however, this was unaffected by CYP1B1 inhibition. SERT expression was increased in monocrotaline-induced PH in female rats; however, TMS did not reverse PH in monocrotaline-treated rats but prolonged survival. Stimulation of hPASMCs with the CYP1B1 metabolite 16α-hydroxyestrone increased cellular proliferation, which was attenuated by an inhibitor (MPP) of estrogen receptor alpha (ERα) and a specific ERα antibody. Thus, increased intracellular serotonin caused by increased SERT expression may contribute to PAH pathobiology by dysregulation of estrogen metabolic pathways via increased CYP1B1 activity. This promotes PASMC proliferation by the formation of pathogenic metabolites of estrogen that mediate their effects via ERα. Our studies indicate that targeting this pathway in PAH may provide a promising antiproliferative therapeutic strategy. PMID:27162617

  14. Cytochrome P450 1B1 Contributes to the Development of Atherosclerosis and Hypertension in Apolipoprotein E–Deficient Mice

    PubMed Central

    Song, Chi Young; Ghafoor, Khuzema; Ghafoor, Hafiz U.; Khan, Nayaab S.; Thirunavukkarasu, Shyamala; Jennings, Brett L.; Estes, Anne M.; Zaidi, Sahar; Bridges, Dave; Tso, Patrick; Gonzalez, Frank J.

    2016-01-01

    Cytochrome P450 (CYP) 1B1 contributes to vascular smooth muscle cell growth and hypertension in male mice. This study was conducted to determine the contribution of CYP1B1 to the development of atherosclerosis and hypertension and associated pathogenesis in 8-week-old male apolipoprotein E–deficient (ApoE−/−/Cyp1b1+/+), and ApoE- and CYP1B1-deficient (ApoE−/−/Cyp1b1−/−) mice fed a normal or atherogenic diet for 12 weeks. A separate group of ApoE−/−/Cyp1b1+/+ mice on an atherogenic diet was injected every third day with the CYP1B1 inhibitor, 2,3′,4,5′-tetramethoxystilbene (300 μg/kg), or its vehicle, dimethyl sulfoxide (30 μL, IP); systolic blood pressure was measured by the tail cuff method. After 12 weeks, mice were euthanized, blood collected for lipid analysis, and aortas harvested for measuring lesions and remodeling, and for infiltration of inflammatory cells by histological and immunohistochemical analysis, respectively, and for reactive oxygen species production. Blood pressure, areas of lipids and collagen deposition, elastin breaks, infiltration of macrophages and T lymphocytes, reactive oxygen species generation in the aorta, and plasma lipid levels were increased in ApoE−/−/Cyp1b1+/+ mice on an atherogenic diet; these changes were minimized in mice given 2,3′,4,5′-tetramethoxystilbene, and in ApoE−/−/Cyp1b1−/− mice on an atherogenic diet; absorption/production of lipids remained unaltered in these mice. These data suggest that aortic lesions, hypertension, and associated pathogenesis in ApoE−/−/Cyp1b1+/+ mice on an atherogenic diet are most likely dependent on CYP1B1-generated oxidative stress and increased plasma lipid levels independent of blood pressure and absorption of lipids. CYP1B1 could serve as a novel target for developing drugs to treat atherosclerosis and hypertension caused by hypercholesterolemia. PMID:26573711

  15. Profiles of 5-HT 1B/1D agonists in acute migraine with special reference to second generation agents.

    PubMed

    Deleu, D; Hanssens, Y

    1999-06-01

    The efficacy of 5-hydroxytryptamine 1B/1D (5-HT 1B/1D) agonists is related to their inhibitory effects on neurogenic inflammation, mediated through serotoninergic control mechanisms. Recently, a series of oral second generation 5-HT 1B/1D agonists (eletriptan, naratriptan, rizatriptan and zolmitriptan) have been developed and are reviewed in this paper. Their in vitro and in vivo pharmacological properties, clinical efficacy, drug interactions, and adverse effects are evaluated and compared to the gold standard in the treatment of acute migraine, sumatriptan. PMID:10427351

  16. Polymorphisms in P450 CYP1B1 affect the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol.

    PubMed

    Li, D N; Seidel, A; Pritchard, M P; Wolf, C R; Friedberg, T

    2000-06-01

    Most drug metabolizing cytochrome P450s (P450) are predominantly expressed in the liver. In contrast, human CYP1B1 is an extrahepatic P450 which is overexpressed in many tumours and has been strongly implicated in the activation of carcinogens. Rare allelic variants of the CYP1B1 gene which encode an inactive protein have been identified. However, four polymorphisms which most likely do not abolish functionality have been described. In this report, we have characterized the functional consequences of these. A CYP1B1 cDNA, identical to a cDNA published previously, served as a template to introduce allelic changes either separately or in combination. The resulting effects on CYP1B1 activity were determined in membranes isolated from Escherichia coli which coexpressed CYP1B1 together with P450 reductase. None of the allelic changes affected the CYP1B1 expression level. The allelic changes Arg48 to Gly, Ala19 to Ser and Asn453 to Ser had little influence on the Vmax and the Km of the CYP1B1 mediated 2- and 4-hydroxylation of estradiol. In contrast, the Km of these metabolic pathways was increased at least three-fold by the allelic change Va432 to Leu or by simultaneously changing Val432 to Leu and Asn453 to Ser. However, these alterations had little effect on the kinetic parameters of other CYP1B1 mediated reactions such as the epoxidation of (-)-trans-(7R,8R)-benzo[a]pyrene 7,8-dihydrodiol as determined by (r-7,t-8,t-9,c-10)-benzo[a]pyrene tetraol formation, or such as the O-dealkylation of ethoxyresorufin and the 1'-hydroxylation of bufuralol. Molecular modelling suggests that amino acid residue 432 of CYP1B1 may be involved in the interaction between CYP1B1 and P450 reductase. Since 4-hydroxyestradiol has been implicated in hormonal carcinogenesis and CYP1B1 is expressed in target tissues, the data presented demonstrate that polymorphisms in CYP1B1 have the potential to affect disease susceptibility. PMID:10862525

  17. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update.

    PubMed

    Ramsey, L B; Johnson, S G; Caudle, K E; Haidar, C E; Voora, D; Wilke, R A; Maxwell, W D; McLeod, H L; Krauss, R M; Roden, D M; Feng, Q; Cooper-DeHoff, R M; Gong, L; Klein, T E; Wadelius, M; Niemi, M

    2014-10-01

    Simvastatin is among the most commonly used prescription medications for cholesterol reduction. A single coding single-nucleotide polymorphism, rs4149056T>C, in SLCO1B1 increases systemic exposure to simvastatin and the risk of muscle toxicity. We summarize evidence from the literature supporting this association and provide therapeutic recommendations for simvastatin based on SLCO1B1 genotype. This article is an update to the 2012 Clinical Pharmacogenetics Implementation Consortium guideline for SLCO1B1 and simvastatin-induced myopathy. PMID:24918167

  18. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    SciTech Connect

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su; Kang, Wonku; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  19. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse

    SciTech Connect

    Siddens, Lisbeth K.; Bunde, Kristi L.; Harper, Tod A.; McQuistan, Tammie J.; Löhr, Christiane V.; Bramer, Lisa M.; Waters, Katrina M.; Tilton, Susan C.; Krueger, Sharon K.; and others

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4 h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. - Highlights: • Cyp1b1 null mice exhibit lower skin cancer sensitivity to DBC but not BaP or CTE. • Cyp1b1 expression impacts expression of other PAH metabolizing enzymes. • cis/trans-DBCDE-dA ratio significantly higher in the skin than the spleen, lung or liver • Potency of DBC and CTE in mouse skin is higher than predicted by RPFs.

  20. Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3'- 5'-diphosphate (PAP)

    SciTech Connect

    Dombrovski, Luidmila; Dong, Aiping; Bochkarev, Alexey; Plotnikov, Alexander N.

    2008-09-17

    Cytosolic sulfotransferases (SULTs), often referred as Phase II enzymes of chemical defense, are a superfamily of enzymes that catalyze the transfer of a sulfonate group from 3{prime}-phosphoadenosine 5{prime}-phosphosulfate (PAPS) to an acceptor group of substrates. This reaction modulates the activities of a large array of small endogenous and foreign chemicals including drugs, toxic compounds, steroid hormones, and neurotransmitters. In some cases, however, SULTs activate certain food and environmental compounds to mutagenenic and carcinogenic metabolites. Twelve human SULTs have been identified, which are partitioned into three families: SULT1, SULT2 and SULT4. The SULT1 family is further divided in four subfamilies, A, B, C, and E, and comprises eight members (1A1, 1A2, 1A3, 1B1, 1C1, 1C2, 1C3, and 1E1). Despite sequence and structural similarity among the SULTs, the family and subfamily members appear to have different biological function. SULT1 family shows substrate-binding specificity for simple phenols, estradiol, and thyroid hormones, as well as environmental xenobiotics and drugs. Human SULT1B1 is expressed in liver, colon, small intestine, and blood leukocytes, and shows substrate-binding specificity to thyroid hormones and benzylic alcohols. Human SULT1C1 is expressed in the adult stomach, kidney, and thyroid, as well as in fetal kidney and liver. SULT1C1 catalyzes the sulfonation of p-nitrophenol and N-hydroxy-2-acetylaminofluorene in vitro. However, the in vivo function of the enzyme remains unknown. We intend to solve the structures for all of the SULTs for which structural information is not yet available, and compare the structural and functional features of the entire SULT superfamily. Here we report the structures of two members of SULT1 family, SULT1B1 and SULT1C1, both in complex with the product of the PAPS cofactor, adenosine-3{prime}-5{prime}-diphosphate (PAP).

  1. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver

    PubMed Central

    Harkitis, P.; Lang, M. A.; Marselos, M.; Fotopoulos, A.; Albucharali, G.; Konstandi, M.

    2015-01-01

    Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens. PMID:26466350

  2. Dimeric human sulfotransferase 1B1 displays cofactor-dependent subunit communication

    PubMed Central

    Tibbs, Zachary E; Falany, Charles N

    2015-01-01

    The cytosolic sulfotransferases (SULTs) are dimeric enzymes that catalyze the transformation of hydrophobic drugs and hormones into hydrophilic sulfate esters thereby providing the body with an important pathway for regulating small molecule activity and excretion. While SULT dimerization is highly conserved, the necessity for the interaction has not been established. To perform its function, a SULT must efficiently bind the universal sulfate donor, 3′-phosphoadenosine-5′-phosphosulfate (PAPS), and release the byproduct, 3′, 5′-diphosphoadenosine (PAP), following catalysis. We hypothesize this efficient binding and release of PAPS/PAP may be connected to SULT dimerization. To allow for the visualization of dynamic protein interactions critical for addressing this hypothesis and to generate kinetically testable hypotheses, molecular dynamic simulations (MDS) of hSULT1B1 were performed with PAPS and PAP bound to each dimer subunit in various combinations. The results suggest the dimer subunits may possess the capability of communicating with one another in a manner dependent on the presence of the cofactor. PAP or PAPS binding to a single side of the dimer results in decreased backbone flexibility of both the bound and unbound subunits, implying the dimer subunits may not act independently. Further, binding of PAP to one subunit of the dimer and PAPS to the other caused increased flexibility in the subunit bound to the inactive cofactor (PAP). These results suggest SULT dimerization may be important in maintaining cofactor binding/release properties of SULTs and provide hypothetical explanations for SULT half-site reactivity and substrate inhibition, which can be analyzed in vitro. PMID:26236487

  3. The frequency of SLCO1B1*5 polymorphism genotypes among Russian and Sakha (Yakutia) patients with hypercholesterolemia

    PubMed Central

    Sychev, Dmitrij Alekseevitch; Shuev, Grigorij Nikolaevich; Chertovskih, Jana Valer’evna; Maksimova, Nadezhda Romanovna; Grachev, Andrej Vladimirovich; Syrkova, Ol’ga Aleksandrovna

    2016-01-01

    Introduction Statins are the most commonly prescribed medicines for treatment of hypercholesterolemia. At the same time, up to 25% of patients cannot tolerate or have to discontinue the statin therapy due to statin-induced myopathy. In a majority of cases, statin-induced myopathy is attributed to SLCO1B1 gene polymorphism. The strongest association between statin-induced myopathy and SLCO1B1 gene polymorphism was described for simvastatin. Our research was focused on the frequency of SLCO1B1*5 genetic variant in the Russian population and in the native population of Sakha (Yakutia). Materials and methods A total of 1,071 hyperlipidemic Russian and 76 hyperlipidemic Sakha (Yakutian) patients were included in the study. Genotypes of SLCO1B1*5 (c.521T>C, rs4149056) were determined with polymerase chain reaction amplification. The results of our study were compared with data about hyperlipidemic patients in available publications. Results In the Russian population 665 (62%) patients had TT genotype of SLCO1B1*5, 346 (32%) patients had TC genotype, and in 60 patients (6%) CC variant was found (Hardy–Weinberg’s chi-square test was 3.1 P=0.21). In comparison with Brazil, France, the People’s Republic of China, Japan, and the native population of Sakha (Yakutia), C-allele, which causes an increased risk of statin-induced myopathy, was found significantly more often in the Russian population. In the native population of Sakha (Yakutia) SLCO1B1 polymorphism was TT – 62 (82%), TC – 11 (14%), CC – 3 (4%) (Hardy–Weinberg’s chi-square test was 5.13 P=0.077). In comparison with data from Brazil, France, the People’s Republic of China, and Japan, C-allele frequency in the Sakha (Yakutian) population was not significantly different. Conclusion Thus, we have studied the incidence of pathologic SLCO1B1 c.521C-allele in Russian and Sakha hyperlipidemic patients. The presence of SLCO1B1 C-allele in patients with hyperlipidemia forces us to be more careful in

  4. Inhibition of the organic anion-transporting polypeptide 1B1 by quercetin: an in vitro and in vivo assessment

    PubMed Central

    Wu, Lan-Xiang; Guo, Cheng-Xian; Chen, Wang-Qing; Yu, Jing; Qu, Qiang; Chen, Yao; Tan, Zhi-Rong; Wang, Guo; Fan, Lan; Li, Qing; Zhang, Wei; Zhou, Hong-Hao

    2012-01-01

    AIM To investigate the effect of quercetin on organic anion transporting polypeptide 1B1 (OATP1B1) activities in vitro and on the pharmacokinetics of pravastatin, a typical substrate for OATP1B1 in healthy Chinese-Han male subjects. METHODS Using human embryonic kidney 293 (HEK293) cells stably expressing OATP1B1, we observed the effect of quercetin on OATP1B1-mediated uptake of estrone-3-sulphate (E3S) and pravastatin. The influence of quercetin on the pharmacokinetics of pravastatin was measured in 16 healthy Chinese-Han male volunteers receiving a single dose of pravastatin (40 mg orally) after co-administration of placebo or 500 mg quercetin capsules (once daily orally for 14 days). RESULTS Quercetin competitively inhibited OATP1B1-mediated E3S uptake with a Ki value of 17.9 ± 4.6 µm and also inhibited OATP1B1-mediated pravastatin uptake in a concentration dependent manner (IC50, 15.9 ± 1.4 µm). In healthy Chinese-Han male subjects, quercetin increased the pravastatin area under the plasma concentration – time curve (AUC(0,10 h) and the peak plasma drug concentration (Cmax) to 24% (95% CI 15, 32%, P < 0.001) and 31% (95% CI 20, 42%, P < 0.001), respectively. After administration of quercetin, the elimination half-life (t1/2) of pravastatin was prolonged by 14% (95% CI 4, 24%, P = 0.027), with no change in the time to reach Cmax (tmax). Moreover, quercetin decreased the apparent clearance (CL/F) of pravastatin by 18% (95% CI 75, 89%, P < 0.001). CONCLUSIONS These findings suggest that quercetin inhibits the OATP1B1-mediated transport of E3S and pravastatin in vitro and also has a modest inhibitory influence on the pharmacokinetics of pravastatin in healthy Chinese-Han male volunteers. The effects of quercetin on other OATP1B1 substrate drugs deserve further investigation. PMID:22114872

  5. Association of CYP2D6*10, OATP1B1 A388G, and OATP1B1 T521C Polymorphisms and Overall Survival of Breast Cancer Patients after Tamoxifen Therapy

    PubMed Central

    Zhang, Xuefeng; Pu, Zhichen; Ge, Jun; Shen, Jie; Yuan, Xiaolong; Xie, Haitang

    2015-01-01

    Background The global incidence of breast cancer is increasing, mainly due to the sharp rise in breast cancer incidence in Asia. The aim of this study was to evaluate the association of CYP2D6*10 (c.100C>T and c.1039C>T), OATP1B1 A388G, and OATP1B1 T521C polymorphisms with overall survival (OS) for hormone receptor (estrogen receptor or progesterone receptor)-positive tumors (ER+/PR+) breast cancer patients after adjuvant tamoxifen (TAM) therapy. Material/Method We included 296 invasive breast cancer patients with hormone receptor-positive tumors during the period 2002–2009. We collected patient data, including clinical features, TAM therapy, and survival status. Archived paraffin blocks from surgery were the source of tissue for genotyping. CYP2D6*10, OATP1B1 A388G, and T521C polymorphisms were detected by direct sequencing of genomic DNA. OS was assessed with Kaplan-Meier analysis, while the Cox proportional hazards model was used to implement multivariate tests for the prognostic significance. Results There was a significant difference in OS between OATP1B1 T521C wild-type and the mutant genotype C carrier (P=0.034). However, there was no difference in overall survival between wild-type and carrier groups for CYP2D6*10 (P=0.096) and OATP1B1 A388G (P=0.388), respectively. Conclusions These results suggest that the OATP1B1 T521C mutation may be an independent prognostic marker for breast cancer patients using TAM therapy. PMID:25701109

  6. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse.

    PubMed

    Siddens, Lisbeth K; Bunde, Kristi L; Harper, Tod A; McQuistan, Tammie J; Löhr, Christiane V; Bramer, Lisa M; Waters, Katrina M; Tilton, Susan C; Krueger, Sharon K; Williams, David E; Baird, William M

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. PMID:26049101

  7. 7 CFR 1a.2 - Authorization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Authorization. 1a.2 Section 1a.2 Agriculture Office of the Secretary of Agriculture LAW ENFORCEMENT AUTHORITIES § 1a.2 Authorization. Any official of the Office of Inspector General who is designated by the Inspector General according to §§ 1a.3 and 1a.5...

  8. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation.

    PubMed

    Kwon, Yeo-Jung; Baek, Hyoung-Seok; Ye, Dong-Jin; Shin, Sangyun; Kim, Donghak; Chun, Young-Jin

    2016-01-01

    Cytochrome P450 1B1 (CYP1B1) is a major E2 hydroxylase involved in the metabolism of potential carcinogens. CYP1B1 expression has been reported to be higher in tumors compared to normal tissues, especially in hormone-related cancers including breast, ovary, and prostate tumors. To explore the role of CYP1B1 in cancer progression, we investigated the action of CYP1B1 in cells with increased CYP1B1 via the inducer 7,12-dimethylbenz[α]anthracene (DMBA) or an overexpression vector, in addition to decreased CYP1B1 via the inhibitor tetramethoxystilbene (TMS) or siRNA knockdown. We observed that CYP1B1 promoted cell proliferation, migration, and invasion in MCF-7 and MCF-10A cells. To understand its molecular mechanism, we measured key oncogenic proteins including β-catenin, c-Myc, ZEB2, and matrix metalloproteinases following CYP1B1 modulation. CYP1B1 induced epithelial-mesenchymal transition (EMT) and activated Wnt/β-catenin signaling via upregulation of CTNNB1, ZEB2, SNAI1, and TWIST1. Sp1, a transcription factor involved in cell growth and metastasis, was positively regulated by CYP1B1, and suppression of Sp1 expression by siRNA or DNA binding activity using mithramycin A blocked oncogenic transformation by CYP1B1. Therefore, we suggest that Sp1 acts as a key mediator for CYP1B1 action. Treatment with 4-hydroxyestradiol (4-OHE2), a major metabolite generated by CYP1B1, showed similar effects as CYP1B1 overexpression, indicating that CYP1B1 activity mediated various oncogenic events in cells. In conclusion, our data suggests that CYP1B1 promotes cell proliferation and metastasis by inducing EMT and Wnt/β-catenin signaling via Sp1 induction. PMID:26981862

  9. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation

    PubMed Central

    Kwon, Yeo-Jung; Baek, Hyoung-Seok; Ye, Dong-Jin; Shin, Sangyun; Kim, Donghak; Chun, Young-Jin

    2016-01-01

    Cytochrome P450 1B1 (CYP1B1) is a major E2 hydroxylase involved in the metabolism of potential carcinogens. CYP1B1 expression has been reported to be higher in tumors compared to normal tissues, especially in hormone-related cancers including breast, ovary, and prostate tumors. To explore the role of CYP1B1 in cancer progression, we investigated the action of CYP1B1 in cells with increased CYP1B1 via the inducer 7,12-dimethylbenz[α]anthracene (DMBA) or an overexpression vector, in addition to decreased CYP1B1 via the inhibitor tetramethoxystilbene (TMS) or siRNA knockdown. We observed that CYP1B1 promoted cell proliferation, migration, and invasion in MCF-7 and MCF-10A cells. To understand its molecular mechanism, we measured key oncogenic proteins including β-catenin, c-Myc, ZEB2, and matrix metalloproteinases following CYP1B1 modulation. CYP1B1 induced epithelial-mesenchymal transition (EMT) and activated Wnt/β-catenin signaling via upregulation of CTNNB1, ZEB2, SNAI1, and TWIST1. Sp1, a transcription factor involved in cell growth and metastasis, was positively regulated by CYP1B1, and suppression of Sp1 expression by siRNA or DNA binding activity using mithramycin A blocked oncogenic transformation by CYP1B1. Therefore, we suggest that Sp1 acts as a key mediator for CYP1B1 action. Treatment with 4-hydroxyestradiol (4-OHE2), a major metabolite generated by CYP1B1, showed similar effects as CYP1B1 overexpression, indicating that CYP1B1 activity mediated various oncogenic events in cells. In conclusion, our data suggests that CYP1B1 promotes cell proliferation and metastasis by inducing EMT and Wnt/β-catenin signaling via Sp1 induction. PMID:26981862

  10. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide.

    PubMed

    Jeong, Hyeon-Uk; Kwon, Mihwa; Lee, Yongnam; Yoo, Ji Seok; Shin, Dae Hee; Song, Im-Sook; Lee, Hye Suk

    2015-01-01

    We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1), OAT3, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 1 (OCT1), OCT2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3) and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3). The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (K m) =41.5 μM, maximum uptake rate (V max) =46.2 pmol/minute, and intrinsic clearance (CL int) =1.11 μL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CL int values of 0.035 and 0.034 μL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 μM, respectively. However, catalposide did not significantly inhibit the transport activities of OCT1, OCT2, OAT1, P-gp, or BCRP. In conclusion, OAT3, OATP1B1, and OATP1B3 are major transporters that may regulate the pharmacokinetic properties and may cause herb-drug interactions of catalposide, although their clinical relevance awaits further evaluation. PMID:25653502

  11. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide

    PubMed Central

    Jeong, Hyeon-Uk; Kwon, Mihwa; Lee, Yongnam; Yoo, Ji Seok; Shin, Dae Hee; Song, Im-Sook; Lee, Hye Suk

    2015-01-01

    We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1), OAT3, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 1 (OCT1), OCT2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3) and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3). The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (Km) =41.5 μM, maximum uptake rate (Vmax) =46.2 pmol/minute, and intrinsic clearance (CLint) =1.11 μL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CLint values of 0.035 and 0.034 μL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 μM, respectively. However, catalposide did not significantly inhibit the transport activities of OCT1, OCT2, OAT1, P-gp, or BCRP. In conclusion, OAT3, OATP1B1, and OATP1B3 are major transporters that may regulate the pharmacokinetic properties and may cause herb–drug interactions of catalposide, although their clinical relevance awaits further evaluation. PMID:25653502

  12. Effect of SLCO1B1 Polymorphisms on Rifabutin Pharmacokinetics in African HIV-Infected Patients with Tuberculosis

    PubMed Central

    Naiker, Suhashni; Reddy, Tarylee; Egan, Deirdre; Kellerman, Tracy; Wiesner, Lubbe; Owen, Andrew; McIlleron, Helen; Pym, Alexander

    2015-01-01

    Rifabutin, used to treat HIV-infected tuberculosis, shows highly variable drug exposure, complicating dosing. Effects of SLCO1B1 polymorphisms on rifabutin pharmacokinetics were investigated in 35 African HIV-infected tuberculosis patients after multiple doses. Nonlinear mixed-effects modeling found that influential covariates for the pharmacokinetics were weight, sex, and a 30% increased bioavailability among heterozygous carriers of SLCO1B1 rs1104581 (previously associated with low rifampin concentrations). Larger studies are needed to understand the complex interactions of host genetics in HIV-infected tuberculosis patients. (This study has been registered at ClinicalTrials.gov under registration no. NCT00640887.) PMID:26482301

  13. Mixed effects of OATP1B1, BCRP and NTCP polymorphisms on the population pharmacokinetics of pravastatin in healthy volunteers.

    PubMed

    Lu, Xue-Feng; Zhou, Yang; Bi, Kai-Shun; Chen, Xiao-Hui

    2016-09-01

    1. Pravastatin is a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor used for the treatment of hyperlipidaemia. This study aims to investigate the effects of genetic polymorphisms in OATP1B1, BCRP and NTCP on pravastatin population pharmacokinetics in healthy Chinese volunteers using a non-linear mixed-effect modelling (NONMEM) approach. A two-compartment model with a first-order absorption and elimination described plasma pravastatin concentrations well. 2. Genetic polymorphisms of rs4149056 (OATP1B1) and rs2306283 (OATP1B1) were found to be associated with a significant (p < 0.01) decrease in the apparent clearance from the central compartment (CL/F), while rs2296651 (NTCP) increased CL/F to a significant degree (p < 0.01). The combination of these three polymorphisms reduced the inter-individual variability of CL/F by 78.8%. 3. There was minimal effect of rs2231137 (BCRP) and rs2231142 (BCRP) on pravastatin pharmacokinetics (0.01 < p < 0.05), whereas rs11045819 (OATP1B1), rs1061018 (BCRP) and rs61745930 (NTCP) genotypes do not appear to be associated with pravastatin pharmacokinetics based on the population model (p > 0.05). 4. The current data suggest that the combination of rs4149056, rs2306283 and rs2296651 polymorphisms is an important determinant of pravastatin pharmacokinetics. PMID:26744986

  14. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells

    SciTech Connect

    Chan, Nelson L.S.; Wang Huan; Wang Yun; Leung, H.Y.; Leung, Lai K. . E-mail: laikleung@yahoo.com

    2006-06-01

    Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 {mu}M of POH was effective in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis.

  15. Spectroscopic characterization of the first singlet (Ã 1B1) excited state of 7Li16O7Li

    NASA Astrophysics Data System (ADS)

    Bellert, D.; Winn, D. K.; Breckenridge, W. H.

    2003-11-01

    Using laser induced fluorescence (LIF) and resonance enhanced two-photon ionization (R2PI) spectroscopy, several (ν1',ν2',ν3') vibrational bands of the à 1B1(K'=1)←X˜ 1Σg+(0,0,0) perpendicular transition of the 7Li16O7Li molecule have been rotationally resolved and analyzed to yield effective A',B',C' values. The estimated geometry of the à 1B1 state does not vary with ν1' (symmetric stretch mode), but θ' increases and R' decreases slightly as ν2' (bending mode) increases. Extrapolation leads to an estimate for the (0,0,0) state of θ0'=105±5°, R0'=1.86±0.04 Å, and for the potential minimum θe'=102±5°, Re'=1.87±0.04 Å. The strongly bent nature of the à 1B1 state is due to promotion of an O-2 p-electron (b1) from the strongly ionic, linear Li+O-2Li+ ground state to an a1 molecular orbital which has Li/Li bonding character. The Ã1B1 state thus has an approximately Li+1/2O-1Li+1/2 charge distribution, so that the ionic bonding is less strong than in the linear ground state, where (from this study and an earlier stimulation-emission pumping study) R0″=1.611±0.003 Å. In fact, the Li-Li distance in the à 1B1 state, ˜3.0 Å, is quite similar to that of the Li2+1 ion, so the bonding may be described as that of Li2+1 bound ionically to the O-1 ion.

  16. Human ALDH1B1 polymorphisms may affect the metabolism of acetaldehyde and all-trans retinaldehyde – in vitro studies and computational modeling

    PubMed Central

    Jackson, Brian C.; Reigan, Philip; Miller, Bettina; Thompson, David C.; Vasiliou, Vasilis

    2014-01-01

    Purpose To elucidate additional substrate specificities of ALDH1B1 and determine the effect that human ALDH1B1 polymorphisms will have on substrate specificity. Methods Computational-based molecular modeling was used to predict the binding of the substrates propionaldehyde, 4-hydroxynonenal, nitroglycerin, and all-trans retinaldehyde to ALDH1B1. Based on positive in silico results, the capacity of purified human recombinant ALDH1B1 to metabolize nitroglycerin and all-trans retinaldehyde was explored. Additionally, metabolism of 4-HNE by ALDH1B1 was revisited. Databases queried to find human polymorphisms of ALDH1B1 identified three major variants: ALDH1B1*2 (A86V), ALDH1B1*3 (L107R), and ALDH1B1*5 (M253V). Computational modeling was used to predict the binding of substrates and of cofactor (NAD+) to the variants. These human polymorphisms were created and expressed in a bacterial system and specific activity was determined. Results ALDH1B1 metabolizes (and appears to be inhibited by) nitroglycerin and has favorable kinetics for the metabolism of all-trans retinaldehyde. ALDH1B1 metabolizes 4-HNE with higher apparent affinity than previously described, but with low throughput. Recombinant ALDH1B1*2 is catalytically inactive, whereas both ALDH1B1*3 and ALDH1B1*5 are catalytically active. Modeling indicated that the lack of activity in ALDH1B1*2 is likely due to poor NAD+ binding. Modeling also suggests that ALDH1B1*3 may be less able to metabolize all-trans retinaldehyde and that ALDH1B1*5 may bind NAD+ poorly. Conclusions ALDH1B1 metabolizes nitroglycerin and all-trans-retinaldehyde. One of the three human polymorphisms, ALDH1B1*2, is catalytically inactive, likely due to poor NAD+ binding. Expression of this variant may affect ALDH1B1-dependent metabolic functions in stem cells and ethanol metabolism. PMID:25413692

  17. CYP1B1 deficiency ameliorates obesity and glucose intolerance induced by high fat diet in adult C57BL/6J mice.

    PubMed

    Liu, Xiaocong; Huang, Tingting; Li, Lu; Tang, Yumeng; Tian, Yatao; Wang, Suqing; Fan, Cuifang

    2015-01-01

    Cytochrome P450 1B1 (CYP1B1) expression increases in multi-potential mesenchymal stromal cells C3H10T1/2 during adipogenesis, which parallel with PPARγ, a critical transcriptional factor in adipogenic process. To assess the role of CYP1B1 in fatty acid metabolism, adult C57BL/6J wild-type and CYP1B1 deficiency mice were fed with high fat diets (HFD) for 6 weeks. CYP1B1 deficiency attenuated HFD-induced obesity when compared with their wild type counterparts, and improve glucose tolerance. The reduction in body weight gain and white adipose tissue in CYP1B1 deficient mice exhibited coordinate decreases in fatty acid synthesis (PPARγ, CD36, FAS, SCD-1) and increases in fatty acid oxidation (UCP-2, CPT-1a) when compared with wild type ones. Lower hepatocyte TG contents were consistent with hepatic Oil-Red-O staining in the CYP1B1 deficiency mice. AMPK, a nutrient sensors for energy homeostasis, was activated in both fat pad and liver by CYP1B1 deficiency. However, in vitro system, knock down CYP1B1 in C3H10T1/2 cells does not abolish adipogenesis induced by adipogenic agents IDM (Insulin, Dexamethasone, Methylisobutylxanthine). Our in vivo and in vitro findings of CYP1B1 deficiency in fat metabolism suggest a complex regulation network between CYP1B1 and energy homeostasis. PMID:26064443

  18. Identification of Novel Inhibitors of Organic Anion Transporting Polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) Using a Consensus Vote of Six Classification Models

    PubMed Central

    2015-01-01

    Organic anion transporting polypeptides 1B1 and 1B3 are transporters selectively expressed on the basolateral membrane of the hepatocyte. Several studies reveal that they are involved in drug–drug interactions, cancer, and hyperbilirubinemia. In this study, we developed a set of classification models for OATP1B1 and 1B3 inhibition based on more than 1700 carefully curated compounds from literature, which were validated via cross-validation and by use of an external test set. After combining several sets of descriptors and classifiers, the 6 best models were selected according to their statistical performance and were used for virtual screening of DrugBank. Consensus scoring of the screened compounds resulted in the selection and purchase of nine compounds as potential dual inhibitors and of one compound as potential selective OATP1B3 inhibitor. Biological testing of the compounds confirmed the validity of the models, yielding an accuracy of 90% for OATP1B1 and 80% for OATP1B3, respectively. Moreover, at least half of the new identified inhibitors are associated with hyperbilirubinemia or hepatotoxicity, implying a relationship between OATP inhibition and these severe side effects. PMID:26469880

  19. Development of Flavone Propargyl Ethers as Potent and Selective Inhibitors of Cytochrome P450 Enzymes 1A1 and 1A2

    PubMed Central

    Sridhar, Jayalakshmi; Ellis, Jamie; Dupart, Patrick; Liu, Jiawang; Stevens, Cheryl L.; Foroozesh, Maryam

    2014-01-01

    Naturally occurring flavonoids are known to be metabolized by several cytochrome P450 enzymes including P450s 1A1, 1A2, 1B1, 2C9, 3A4, and 3A5. In general flavonoids can act as substrates, inducers, and/or inhibitors of P450 enzymes. The position of the substituents on the flavone backbone has been shown to impact the biological activity against P450 enzymes. To explore the effect of a propargyl ether substitution on flavones and flavanones, 2′-flavone propargyl ether (2′-PF), 3′-flavone propargyl ether (3′-PF), 4′-flavone propargyl ether (4′-PF), 5-flavone propargyl ether (5-PF), 6-flavone propargyl ether (6-PF), 7-flavone propargyl ether (7-PF), 6-flavanone propargyl ether (6-PFN), and 7-flavanone propargyl ether (7-PFN) were synthesized. All of the newly synthesized compounds and the parent hydroxy flavones were tested for both direct inhibition and mechanism-based inhibition of cytochrome P450 enzymes 1A1, 1A2, 2A6, and 2B1. The flavone propargyl ether derivatives were found to be more potent inhibitors of P450s 1A1 and 1A2. None of the flavones and flavanones in our study showed any inhibition of P450 2A6. Only 2′-PF and 6-PFN inhibited P450 2B1. 3′-PF showed direct inhibition of P450 1A1 with the highest observed potency of 0.02 μM, in addition to its ability to cause mechanism-based inhibition with KI and kinactivation values of 0.24 μM and 0.09 min−1 for this enzyme. 7-Hydroxy flavone also exhibited mechanism-based inhibition of P450 1A1 with KI and kinactivation values of 2.43 μM and 0.115 min−1. Docking studies and QSAR studies on P450 enzymes 1A1 and 1A2 were performed which revealed important insights into the nature of binding of these molecules and provided us with good QSAR models that can be used to design new flavone derivatives. PMID:23506553

  20. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3.

    PubMed

    Gozalpour, Elnaz; Greupink, Rick; Wortelboer, Heleen M; Bilos, Albert; Schreurs, Marieke; Russel, Frans G M; Koenderink, Jan B

    2014-06-01

    Digitalis-like compounds (DLCs) such as digoxin, digitoxin, and ouabain, also known as cardiac glycosides, are among the oldest pharmacological treatments for heart failure. The compounds have a narrow therapeutic window, while at the same time, DLC pharmacokinetics is prone to drug-drug interactions at the transport level. Hepatic transporters organic anion transporting polypeptide (OATP) 1B1, OATP1B3, and Na(+)-dependent taurocholate co-transporting polypeptide (NTCP) influence the disposition of a variety of drugs by mediating their uptake from blood into hepatocytes. The interaction of digoxin, digitoxin, and ouabain with hepatic uptake transporters has been studied before. However, here, we systematically investigated a much wider range of structurally related DLCs for their capability to inhibit or to be transported by these transporters in order to better understand the relation between the activity and chemical structure of this compound type. We studied the uptake and inhibitory potency of a series of 14 structurally related DLCs in Chinese hamster ovary cells expressing NTCP (CHO-NTCP) and human embryonic kidney cells expressing OATP1B1 and OATP1B3 (HEK-OATP1B1 and HEK-OATP1B3). The inhibitory effect of the DLCs was measured against taurocholic acid (TCA) uptake in CHO-NTCP cells and against uptake of β-estradiol 17-β-d-glucuronide (E217βG) in HEK-OATP1B1 and HEK-OATP1B3 cells. Proscillaridin A was the most effective inhibitor of NTCP-mediated TCA transport (IC50 = 22 μM), whereas digitoxin and digitoxigenin were the most potent inhibitors of OATP1B1 and OAPTP1B3, with IC50 values of 14.2 and 36 μM, respectively. Additionally, we found that the sugar moiety and hydroxyl groups of the DLCs play different roles in their interaction with NTCP, OATP1B1, and OATP1B3. The sugar moiety decreases the inhibition of NTCP and OATP1B3 transport activity, whereas it enhances the inhibitory potency against OATP1B1. Moreover, the hydroxyl group at position 12

  1. Increased expression of CYP1A1 and CYP1B1 in ovarian/peritoneal endometriotic lesions.

    PubMed

    Piccinato, Carla A; Neme, Rosa M; Torres, Natália; Sanches, Lívia Renta; Cruz Derogis, Priscilla Bento Mattos; Brudniewski, Heloísa F; E Silva, Júlio C Rosa; Ferriani, Rui A

    2016-06-01

    Endometriosis is an estrogen-dependent disease affecting up to 10% of all premenopausal women. There is evidence that different endometriosis sites show distinct local estrogen concentration, which, in turn, might be due to a unique local estrogen metabolism. We aimed to investigate whether there was a site-specific regulation of selected enzymes responsible for the oxidative metabolism of estrogens in biopsy samples and endometrial and endometriotic stromal cells. Cytochrome P450 (CYP) 1A1 and CYP1B1 mRNA and protein expressions in deep-infiltrating (rectal, retossigmoidal, and uterossacral) lesions, superficial (ovarian and peritoneal) lesions, and eutopic and healthy (control) endometrium were evaluated by real-time PCR and western blot. Using a cross-sectional study design with 58 premenopausal women who were not under hormonal treatment, we were able to identify an overall increased CYP1A1 and CYP1B1 mRNA expression in superficial lesions compared with the healthy endometrium. CYP1A1 mRNA expression in superficial lesions was also greater than in the eutopic endometrium. Interestingly, we found a similar pattern of CYP1A1 and CYP1B1 expression in in vitro stromal cells isolated from ovarian lesions (n=3) when compared with stromal cells isolated from either rectum lesions or eutopic endometrium. In contradiction, there was an increased half-life of estradiol (measured by HPLC-MS-MS) in ovarian endometriotic stromal cells compared with paired eutopic stromal endometrial cells. Our results indicate that there is a site-dependent regulation of CYP1A1 and CYP1B1 in ovarian/peritoneal lesions and ovarian endometriotic stromal cells, whereas a slower metabolism is taking place in these cells. PMID:27012269

  2. Phylogenetic analysis of a circulating hepatitis C virus recombinant strain 1b/1a isolated in a French hospital centre.

    PubMed

    Morel, Virginie; Ghoubra, Faten; Izquierdo, Laure; Martin, Elodie; Oliveira, Catarina; François, Catherine; Brochot, Etienne; Helle, François; Duverlie, Gilles; Castelain, Sandrine

    2016-06-01

    Genetic recombination is now a well-established feature of the hepatitis C virus (HCV) variability and evolution, with the recent identification of circulating recombinant forms. In Amiens University Hospital Centre (France), a discrepancy of genotyping results was observed for 9 samples, between their 5' untranslated region assigned to genotype 1b and their NS5B region assigned to genotype 1a, suggesting the existence of a recombinant strain. In the present study, clinical and phylogenetic analyses of these isolates were conducted and a putative relationship with previously identified HCV 1b/1a recombinants was investigated. The results revealed that all 9 strains displayed a breakpoint within the beginning of the core protein, were closely related between each other and with the H23 strain identified in Uruguay (Moreno et al., 2009). Then, the clinical characteristics of the 9 unlinked individuals infected with this 1b/1a genotype were analysed. This is the first report on the circulation, in a French population, of a HCV recombinant strain 1b/1a. The identification of this genotype in other patients and in other geographical zones would allow to further investigate its prevalence in the population and to better understand its molecular epidemiology. PMID:26444584

  3. Cytochrome P450 1B1 Contributes to the Development of Angiotensin II-Induced Aortic Aneurysm in Male Apoe(-/-) Mice.

    PubMed

    Thirunavukkarasu, Shyamala; Khan, Nayaab S; Song, Chi Young; Ghafoor, Hafiz U; Brand, David D; Gonzalez, Frank J; Malik, Kafait U

    2016-08-01

    Cytochrome P450 (CYP) 1B1 is implicated in vascular smooth muscle cell migration, proliferation, and hypertension. We assessed the contribution of CYP1B1 to angiotensin (Ang) II-induced abdominal aortic aneurysm (AAA). Male Apoe(-/-)/Cyp1b1(+/+) and Apoe(-/-)/Cyp1b1(-/-) mice were infused with Ang II or its vehicle for 4 weeks; another group of Apoe(-/-)/Cyp1b1(+/+) mice was coadministered the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS) every third day for 4 weeks. On day 28 of Ang II infusion, AAAs were analyzed by ultrasound and ex vivo by Vernier calipers, mice were euthanized, and tissues were harvested. Ang II produced AAAs in Apoe(-/-)/Cyp1b1(+/+) mice; mice treated with TMS or Apoe(-/-)/Cyp1b1(-/-) mice had reduced AAAs. Ang II enhanced infiltration of macrophages, T cells, and platelets and increased platelet-derived growth factor D, Pdgfrb, Itga2, and matrix metalloproteinases 2 and 9 expression in aortic lesions; these changes were inhibited in mice treated with TMS and in Apoe(-/-)/Cyp1b1(-/-) mice. Oxidative stress resulted in cyclooxygenase-2 expression in aortic lesions. These effects were minimized in Apoe(-/-)/Cyp1b1(+/+) mice treated with TMS and in Apoe(-/-)/Cyp1b1(-/-) mice and by concurrent treatment with the superoxide scavenger 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl. CYP1B1 contributed to the development of Ang II-induced AAA and associated pathogenic events in mice, likely by enhancing oxidative stress and associated signaling events. Thus, CYP1B1 may serve as a target for therapeutic agents for AAA in males. PMID:27301358

  4. 6β-Hydroxytestosterone, a Cytochrome P450 1B1-Testosterone-Metabolite, Mediates Angiotensin II-Induced Renal Dysfunction in Male Mice.

    PubMed

    Pingili, Ajeeth K; Thirunavukkarasu, Shyamala; Kara, Mehmet; Brand, David D; Katsurada, Akemi; Majid, Dewan S A; Navar, L Gabriel; Gonzalez, Frank J; Malik, Kafait U

    2016-05-01

    6β-Hydroxytestosterone, a cytochrome P450 1B1-derived metabolite of testosterone, contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the maintenance of renal homeostasis, development of hypertension, and end-organ damage, this study was conducted to determine the contribution of 6β-hydroxytestosterone to angiotensin II actions on water consumption and renal function in maleCyp1b1(+/+)andCyp1b1(-/-)mice. Castration ofCyp1b1(+/+)mice orCyp1b1(-/-)gene disruption minimized the angiotensin II-induced increase in water consumption, urine output, proteinuria, and sodium excretion and decreases in urine osmolality. 6β-Hydroxytestosterone did not alter angiotensin II-induced increases in water intake, urine output, proteinuria, and sodium excretion or decreases in osmolality inCyp1b1(+/+)mice, but restored these effects of angiotensin II inCyp1b1(-/-)or castratedCyp1b1(+/+)mice.Cyp1b1gene disruption or castration prevented angiotensin II-induced renal fibrosis, oxidative stress, inflammation, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, and angiotensin-converting enzyme. 6β-Hydroxytestosterone did not alter angiotensin II-induced renal fibrosis, inflammation, oxidative stress, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, or angiotensin-converting enzyme inCyp1b1(+/+)mice. However, inCyp1b1(-/-)or castratedCyp1b1(+/+)mice, it restored these effects of angiotensin II. These data indicate that 6β-hydroxytestosterone contributes to increased thirst, impairment of renal function, and end-organ injury associated with angiotensin II-induced hypertension in male mice and that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension in male mice. PMID:26928804

  5. Frequencies of two functionally significant SNPs and their haplotypes of organic anion transporting polypeptide 1B1 SLCO1B1 gene in six ethnic groups of Pakistani population

    PubMed Central

    Rajput, Tausif Ahmed; Naveed, Abdul Khaliq; Khan, Shakir; Farooqi, Zia-Ur-Rehman

    2014-01-01

    Objective(s): Organic anion transporter polypeptide 1B1 (OATP1B1) encoded by solute carrier organic transporter 1B1 (SLCO1B1) gene; a transporter involved in the uptake of drugs and endogenous compounds is present in hepatocyte sinusoidal membrane. Aim of this study was to investigate the frequencies of functionally significant SNPs (388A>G and 521T>C) and their haplotypes in 6 ethnic groups of Pakistani population through the development of rapid and efficient Tetra amplification refractory mutation system (T. ARMS) genotyping assay. Materials and Methods: Frequencies of alleles, genotype, and haplotypes of two functionally significant Single nucleotide polymorphism in 180 healthy Pakistani subjects and distributions in six ethnic groups by using a single step T. ARMS genotyping assay. Results: The allelic frequency for 388A>G SNP was 50% in total Pakistani population with Single nucleotide polymorphism distributions of 9.7%, 15.1%, 19.4%, 16.1%, 18.3%, and 21.5% in Punjabi, Sindhi, Balouchi, Pathan, Kashmiri and Hazara/Baltistan groups respectively; and for 521T>C SNP it was 23.9% in total Pakistani population with distributions of 11.1%, 8.9%, 15.6%, 11.1%, 31.1% and 22.2% in Punjabi, Sindhi, Balouchi, Pathan, Kashmiri, and Hazara/Baltistan groups. Both functionally significant SNPs occurred in four major haplotypes with a frequency of 35.5% for 388A/521T (*1A), 40.5% for 388G/521T (*1B), 14.4% for 388A/521C (*5), and 9.4% for 388G/521C (*15) with varying distributions among six ethnic groups. Conclusion: The 388A>G and 521T>C genotypes and corresponding haplotypes are present at varying frequencies in various ethnic groups of Pakistani population. Pharmacokinetic and pharmacodynamic profiling is needed to assess and characterize the effects of these haplotypes in our population. PMID:25140206

  6. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels

    PubMed Central

    2011-01-01

    Background AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP) enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. Methods Expression of AhR and Cyp1b1 was detected in isolated rat brain microvessels. AhR was immunovisualised in brain microvessel endothelial cells. The effect of AhR ligands on Cyp1b1 expression was studied using isolated brain microvessels after ex vivo and/or in vivo exposure to TCDD, heavy hydrocarbons containing diesel exhaust particles (DEP) or Δ9-tetrahydrocannabinol (Δ9-THC). Results After ex vivo exposure to TCDD (a highly potent AhR ligand) for 3 h, Cyp1b1 expression was significantly increased by 2.3-fold in brain microvessels. A single i.p. dose of TCDD also increased Cyp1b1 transcripts (22-fold) and Cyp1b1 protein (2-fold) in rat brain microvessels at 72 h after TCDD. Likewise, DEP treatment (in vivo and ex vivo) strongly induced Cyp1b1 protein in brain microvessels. DEP-mediated Cyp1b1 induction was inhibited by actinomycin D, cycloheximide, or by an AhR antagonist. In contrast, a sub-chronic in vivo treatment with Δ9-THC once daily for 7 seven days had no effect on Cyp1b1 expression Conclusions Our results show that TCDD and DEP strongly induced Cyp1b1 in rat brain microvessels, likely through AhR activation. PMID:21867498

  7. Furocoumarins from grapefruit juice and their effect on human CYP 3A4 and CYP 1B1 isoenzymes.

    PubMed

    Girennavar, Basavaraj; Poulose, Shibu M; Jayaprakasha, Guddadarangavvanahally K; Bhat, Narayan G; Patil, Bhimanagouda S

    2006-04-15

    Bioactive compounds present in grapefruit juice are known to increase the bioavailability of certain medications by acting as potent CYP 3A4 inhibitors. An efficient technique has been developed for isolation and purification of three furocoumarins. The isolated compounds have been tested for the inhibition of human CYP 1B1 isoform using specific substrates. Grapefruit juice was extracted with ethyl acetate (EtOAc) and the dried extract was loaded onto silica gel column chromatography. Further, column fractions were subjected to preparative HPLC to obtain three compounds. The purity of these compounds was analyzed by HPLC and structures were determined by NMR studies. The identified compounds, bergamottin, 6',7'-dihydroxybergamottin (DHB), and paradisin-A, were tested for their inhibitory effects on hydroxylase and O-dealkylase activities of human cytochrome P450 isoenzymes CYP 3A4 and CYP 1B1. Paradisin-A was found to be a potent CYP 3A4 inhibitor with an IC50 of 1.2 microM followed by DHB and bergamottin. All three compounds showed a substantial inhibitory effect on CYP 3A4 below 10 microM. Inhibitory effects on CYP 1B1 exhibited a greater variation due to the specificity of substrates. Paradisin A showed an IC50 of 3.56+/-0.12 microM for the ethoxy resorufin O-dealkylase (EROD) activity and 33.56+/-0.72 microM for the benzyloxy resorufin (BROD). DHB and bergamottin showed considerable variations for EROD and BROD activities with an IC50 of 7.17 microM and 13.86 microM, respectively. PMID:16338240

  8. A spectrum of CYP1B1 mutations associated with primary congenital glaucoma in families of Pakistani descent.

    PubMed

    Rauf, Bushra; Irum, Bushra; Kabir, Firoz; Firasat, Sabika; Naeem, Muhammad Asif; Khan, Shaheen N; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Riazuddin, S Amer

    2016-01-01

    Glaucoma is the second leading cause of blindness, affecting ~65 million people worldwide. We identified and ascertained a large cohort of inbred families with multiple individuals manifesting cardinal symptoms of primary congenital glaucoma (PCG) to investigate the etiology of the disease at a molecular level. Ophthalmic examinations, including slit-lamp microscopy and applanation tonometry, were performed to characterize the causal phenotype and confirm that affected individuals fulfilled the diagnostic criteria for PCG. Subsequently, exclusion analysis was completed with fluorescently labeled short tandem repeat markers, followed by Sanger sequencing to identify pathogenic variants. Exclusion analysis suggested linkage to the CYP1B1 locus, with positive two-point logarithm of odds scores in 23 families, while Sanger sequencing identified a total of 11 variants, including two novel mutations, in 23 families. All mutations segregated with the disease phenotype in their respective families. These included the following seven missense mutations: p.Y81N, p.E229K, p.R368H, p.R390H, p.W434R, p.R444Q and p.R469W, as well as one nonsense mutation, p.Q37*, and three frameshift mutations, p.W246Lfs81*, p.T404Sfs30* and p.P442Qfs15*. In conclusion, we identified a total of 11 mutations, reconfirming the genetic heterogeneity of CYP1B1 in the pathogenesis of PCG. To the best of our knowledge, this is the largest study investigating the contribution of CYP1B1 to the pathogenesis of PCG in the Pakistani population. PMID:27508083

  9. A spectrum of CYP1B1 mutations associated with primary congenital glaucoma in families of Pakistani descent

    PubMed Central

    Rauf, Bushra; Irum, Bushra; Kabir, Firoz; Firasat, Sabika; Naeem, Muhammad Asif; Khan, Shaheen N; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Riazuddin, S Amer

    2016-01-01

    Glaucoma is the second leading cause of blindness, affecting ~65 million people worldwide. We identified and ascertained a large cohort of inbred families with multiple individuals manifesting cardinal symptoms of primary congenital glaucoma (PCG) to investigate the etiology of the disease at a molecular level. Ophthalmic examinations, including slit-lamp microscopy and applanation tonometry, were performed to characterize the causal phenotype and confirm that affected individuals fulfilled the diagnostic criteria for PCG. Subsequently, exclusion analysis was completed with fluorescently labeled short tandem repeat markers, followed by Sanger sequencing to identify pathogenic variants. Exclusion analysis suggested linkage to the CYP1B1 locus, with positive two-point logarithm of odds scores in 23 families, while Sanger sequencing identified a total of 11 variants, including two novel mutations, in 23 families. All mutations segregated with the disease phenotype in their respective families. These included the following seven missense mutations: p.Y81N, p.E229K, p.R368H, p.R390H, p.W434R, p.R444Q and p.R469W, as well as one nonsense mutation, p.Q37*, and three frameshift mutations, p.W246Lfs81*, p.T404Sfs30* and p.P442Qfs15*. In conclusion, we identified a total of 11 mutations, reconfirming the genetic heterogeneity of CYP1B1 in the pathogenesis of PCG. To the best of our knowledge, this is the largest study investigating the contribution of CYP1B1 to the pathogenesis of PCG in the Pakistani population. PMID:27508083

  10. Mercury modulates the cytochrome P450 1a1, 1a2 and 1b1 in C57BL/6J mice: in vivo and in vitro studies

    SciTech Connect

    Amara, Issa E.A.; Anwar-Mohamed, Anwar; Abdelhamid, Ghada; El-Kadi, Ayman O.S.

    2013-02-01

    In the current study C57BL/6J mice were injected intraperitoneally with Hg{sup 2+} in the absence and presence of TCDD. After 6 and 24 h the liver was harvested and the expression of Cyps was determined. In vitro, isolated hepatocytes were incubated with TCDD in the presence and absence of Hg{sup 2+}. At the in vivo level, Hg{sup 2+} significantly decreased the TCDD-mediated induction of Cyps at 6 h while potentiating their levels at 24 h. In vitro, Hg{sup 2+} significantly inhibited the TCDD-mediated induction of Cyp1a1 in a concentration- and time-dependent manner. Interestingly, Hg{sup 2+} increased the serum hemoglobin (Hb) levels in mice treated for 24 h. Upon treatment of isolated hepatocytes with Hb alone, there was an increase in the AhR-dependent luciferase activity with a subsequent increase in Cyp1a1 protein and catalytic activity levels. Importantly, when hepatocytes were treated for 2 h with Hg{sup 2+} in the presence of TCDD, then the medium was replaced with new medium containing Hb, there was potentiation of the TCDD-mediated effect. In addition, Hg{sup 2+} increased heme oxygenase-1 (HO-1) mRNA, which coincided with a decrease in the Cyp1a1 activity level. When the competitive HO-1 inhibitor, tin mesoporphyrin was applied to the hepatocytes there was a partial restoration of Hg{sup 2+}-mediated inhibition of Cyp1a1 activity. In conclusion, we demonstrate for the first time that there is a differential modulation of the TCDD-mediated induction of Cyp1a1 by Hg{sup 2+} in C57BL/6J mice livers and isolated hepatocytes. Moreover, this study implicates Hb as an in vivo specific modulator of Cyp1 family. -- Highlights: ► In vivo, Hg{sup 2+} decreased the Cyps at 6 h while potentiating their levels at 24 h. ► In vitro, Hg{sup 2+} significantly inhibited the TCDD-mediated induction of Cyps. ► Hg{sup 2+} increased the serum Hb levels in animals treated for 24 h. ► Hb potentiated the TCDD-mediated effect on Cyps. ► Tin mesoporphyrin partially restored Hg{sup 2+}-mediated inhibition of Cyp1a1.

  11. Hypervelocity Impact (HVI). Volume 8; Tile Small Targets A-1, Ag-1, B-1, and Bg-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, Ag-1, B-1, and Bg-1 was to study hypervelocity impacts on the reinforced Shuttle Heat Shield Tiles of the Wing. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  12. Cytochrome P450 1B1 contributes to increased blood pressure and cardiovascular and renal dysfunction in spontaneously hypertensive rats

    PubMed Central

    Jennings, Brett L.; Montanez, David E.; May, Michael E.; Estes, Anne M.; Fang, Xiao R.; Yaghini, Fariborz A.; Malik, Kafait U.; Kanu, Alie

    2015-01-01

    Purpose We investigated the contribution of cytochrome P450 (CYP) 1B1 to hypertension and its pathogenesis by examining the effect of its selective inhibitor, 2,4,3′,5′-tetramethoxystilbene (TMS), in spontaneously hypertensive rats (SHR). Methods Blood pressure (BP) was measured bi-weekly. Starting at 8 weeks, TMS (600 μg/kg, i.p.) or its vehicle was injected daily. At 14 weeks, samples were collected for measurement. Results TMS reversed increased BP in SHR (207±7 vs. 129±2 mmHg) without altering BP in Wistar-Kyoto rats. Increased CYP1B1 activity in SHR was inhibited by TMS (RLU: aorta, 5.4±0.7 vs. 3.7±0.7; heart, 6.0±0.8 vs. 3.4±0.4; kidney, 411±45 vs. 246±10). Increased vascular reactivity, cardiovascular hypertrophy, endothelial and renal dysfunction, cardiac and renal fibrosis in SHR were minimized by TMS. Increased production of reactive oxygen species and NADPH oxidase activity in SHR, were diminished by TMS. In SHR, TMS reduced increased plasma levels of nitrite/nitrate (46.4±5.0 vs. 28.1±4.1 μM), hydrogen-peroxide (36.0±3.7 vs. 14.1±3.8 μM), and thiobarbituric acid reactive substances (6.9±1.0 vs. 3.4±1.5 μM). Increased plasma levels of pro-inflammatory cytokines and catecholamines, and cardiac activity of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, c-Srctyrosine kinase, and protein kinase B in SHR were also inhibited by TMS. Conclusions These data suggests that increased oxidative stress generated by CYP1B1 contributes to hypertension, increased cytokine production and sympathetic activity, and associated pathophysiological changes in SHR. CYP1B1 could be a novel target for developing drugs to treat hypertension and its pathogenesis. PMID:24477449

  13. Downregulation of Organic Anion Transporting Polypeptide (OATP) 1B1 Transport Function by Lysosomotropic Drug Chloroquine: Implication in OATP-Mediated Drug-Drug Interactions.

    PubMed

    Alam, Khondoker; Pahwa, Sonia; Wang, Xueying; Zhang, Pengyue; Ding, Kai; Abuznait, Alaa H; Li, Lang; Yue, Wei

    2016-03-01

    Organic anion transporting polypeptide (OATP) 1B1 mediates the hepatic uptake of many drugs including lipid-lowering statins. Decreased OATP1B1 transport activity is often associated with increased systemic exposure of statins and statin-induced myopathy. Antimalarial drug chloroquine (CQ) is also used for long-term treatment of rheumatoid arthritis and systemic lupus erythematosus. CQ is lysosomotropic and inhibits protein degradation in lysosomes. The current studies were designed to determine the effects of CQ on OATP1B1 protein degradation, OATP1B1-mediated transport in OATP1B1-overexpressing cell line, and statin uptake in human sandwich-cultured hepatocytes (SCH). Treatment with lysosome inhibitor CQ increased OATP1B1 total protein levels in HEK293-OATP1B1 cells and in human SCH as determined by OATP1B1 immunoblot. In HEK293-FLAG-tagged OATP1B1 stable cell line, co-immunofluorescence staining indicated that intracellular FLAG-OATP1B1 is colocalized with lysosomal associated membrane glycoprotein (LAMP)-2, a marker protein of late endosome/lysosome. Enlarged LAMP-2-positive vacuoles with FLAG-OATP1B1 protein retained inside were readily detected in CQ-treated cells, consistent with blocking lysosomal degradation of OATP1B1 by CQ. In HEK293-OATP1B1 cells, without pre-incubation, CQ concentrations up to 100 μM did not affect OATP1B1-mediated [(3)H]E217G accumulation. However, pre-incubation with CQ at clinically relevant concentration(s) significantly decreased [(3)H]E217G and [(3)H]pitavastatin accumulation in HEK293-OATP1B1 cells and [(3)H]pitavastatin accumulation in human SCH. CQ pretreatment (25 μM, 2 h) resulted in ∼1.9-fold decrease in Vmax without affecting Km of OATP1B1-mediated [(3)H]E217G transport in HEK293-OATP1B1 cells. Pretreatment with monensin and bafilomycin A1, which also have lysosome inhibition activity, significantly decreased OATP1B1-mediated transport in HEK293-OATP1B1 cells. Pharmacoepidemiologic studies using data from the U.S. Food

  14. Expression Patterns of Organic Anion Transporting Polypeptides 1B1 and 1B3 Protein in Human Pediatric Liver.

    PubMed

    Thomson, Margaret M S; Hines, Ronald N; Schuetz, Erin G; Meibohm, Bernd

    2016-07-01

    Determining appropriate pharmacotherapy in young children can be challenging due to uncertainties in the development of drug disposition pathways. With knowledge of the ontogeny of drug-metabolizing enzymes and an emerging focus on drug transporters, the developmental pattern of the uptake transporters organic anion transporting polypeptide (OATP) 1B1 and 1B3 was assessed by relative protein quantification using Western blotting in 80 human pediatric liver specimens covering an age range from 9 days to 12 years. OATP1B3 exhibited high expression at birth, which declined over the first months of life, and then increased again in the preadolescent period. In comparison with children 6-12 years of age, the relative protein expression of highly glycosylated (total) OATP1B3 was 235% (357%) in children <3 months of age, 33% (64%) in the age group from 3 months to 2 years, and 50% (59%) in children 2-6 years of age. The fraction of highly glycosylated to total OATP1B3 increased with age, indicating ontogenic processes not only at the transcriptional level but also at the post-translational level. Similar to OATP1B3, OATP1B1 showed high interindividual variability in relative protein expression but no statistically significant difference among the studied age groups. PMID:27098745

  15. Association Between SLCO1B1 Gene T521C Polymorphism and Statin-Related Myopathy Risk

    PubMed Central

    Hou, Qingtao; Li, Sheyu; Li, Ling; Li, Yun; Sun, Xin; Tian, Haoming

    2015-01-01

    Abstract Statin-related myopathy is an important adverse effect of statin which is classically unpredictable. The evidence of association between solute carrier organic anion transporter 1B1 (SLCO1B1) gene T521C polymorphism and statin-related myopathy risk remained controversial. This study aimed to investigate this genetic association. Databases of PubMed, EMBASE, Chinese Biomedical Literature Database (CBM), China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database, and Wanfang Data were searched till June 17, 2015. Case-control studies investigating the association between SLCO1B1 gene T521C polymorphism and statin-related myopathy risk were included. The Newcastle–Ottawa Scale (NOS) was used for assessing the quality of included studies. Data were pooled by odds ratios (ORs) and their 95% confidence intervals (CIs). Nine studies with 1360 cases and 3082 controls were included. Cases of statin-related myopathy were found to be significantly associated with the variant C allele (TC + CC vs TT: OR = 2.09, 95% CI = 1.27–3.43, P = 0.003; C vs T: OR = 2.10, 95% CI = 1.43–3.09, P < 0.001), especially when statin-related myopathy was defined as an elevation of creatine kinase (CK) >10 times the upper limit of normal (ULN) or rhabdomyolysis (TC + CC vs TT: OR = 3.83, 95% CI = 1.41–10.39, P = 0.008; C vs T: OR = 2.94, 95% CI = 1.47–5.89, P = 0.002). When stratified by statin type, the association was significant in individuals receiving simvastatin (TC + CC vs TT: OR = 3.09, 95% CI = 1.64–5.85, P = 0.001; C vs T: OR = 3.00, 95% CI = 1.38–6.49, P = 0.005), but not in those receiving atorvastatin (TC + CC vs TT: OR = 1.31, 95% CI = 0.74–2.30, P = 0.35; C vs T: OR = 1.33, 95% CI = 0.57–3.12, P = 0.52). The available evidence suggests that SLCO1B1 gene T521C polymorphism is associated with an increased risk of

  16. OATP1B1 and tumour OATP1B3 modulate exposure, toxicity, and survival after irinotecan-based chemotherapy

    PubMed Central

    Teft, W A; Welch, S; Lenehan, J; Parfitt, J; Choi, Y-H; Winquist, E; Kim, R B

    2015-01-01

    Background: Treatment of advanced and metastatic colorectal cancer with irinotecan is hampered by severe toxicities. The active metabolite of irinotecan, SN-38, is a known substrate of drug-metabolising enzymes, including UGT1A1, as well as OATP and ABC drug transporters. Methods: Blood samples (n=127) and tumour tissue (n=30) were obtained from advanced cancer patients treated with irinotecan-based regimens for pharmacogenetic and drug level analysis and transporter expression. Clinical variables, toxicity, and outcomes data were collected. Results: SLCO1B1 521C was significantly associated with increased SN-38 exposure (P<0.001), which was additive with UGT1A1*28. ABCC5 (rs562) carriers had significantly reduced SN-38 glucuronide and APC metabolite levels. Reduced risk of neutropenia and diarrhoea was associated with ABCC2–24C/T (odds ratio (OR)=0.22, 0.06–0.85) and CES1 (rs2244613; OR=0.29, 0.09–0.89), respectively. Progression-free survival (PFS) was significantly longer in SLCO1B1 388G/G patients and reduced in ABCC2–24T/T and UGT1A1*28 carriers. Notably, higher OATP1B3 tumour expression was associated with reduced PFS. Conclusions: Clarifying the association of host genetic variation in OATP and ABC transporters to SN-38 exposure, toxicity and PFS provides rationale for personalising irinotecan-based chemotherapy. Our findings suggest that OATP polymorphisms and expression in tumour tissue may serve as important new biomarkers. PMID:25611302

  17. Mutations in the Alpha 1,2-Mannosidase Gene, MAN1B1, Cause Autosomal-Recessive Intellectual Disability

    PubMed Central

    Rafiq, Muhammad Arshad; Kuss, Andreas W.; Puettmann, Lucia; Noor, Abdul; Ramiah, Annapoorani; Ali, Ghazanfar; Hu, Hao; Kerio, Nadir Ali; Xiang, Yong; Garshasbi, Masoud; Khan, Muzammil Ahmad; Ishak, Gisele E.; Weksberg, Rosanna; Ullmann, Reinhard; Tzschach, Andreas; Kahrizi, Kimia; Mahmood, Khalid; Naeem, Farooq; Ayub, Muhammad; Moremen, Kelley W.; Vincent, John B.; Ropers, Hans Hilger; Ansar, Muhammad; Najmabadi, Hossein

    2011-01-01

    We have used genome-wide genotyping to identify an overlapping homozygosity-by-descent locus on chromosome 9q34.3 (MRT15) in four consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability (NS-ARID) and one in which the patients show additional clinical features. Four of the families are from Pakistan, and one is from Iran. Using a combination of next-generation sequencing and Sanger sequencing, we have identified mutations in the gene MAN1B1, encoding a mannosyl oligosaccharide, alpha 1,2-mannosidase. In one Pakistani family, MR43, a homozygous nonsense mutation (RefSeq number NM_016219.3: c.1418G>A [p.Trp473∗]), segregated with intellectual disability and additional dysmorphic features. We also identified the missense mutation c. 1189G>A (p.Glu397Lys; RefSeq number NM_016219.3), which segregates with NS-ARID in three families who come from the same village and probably have shared inheritance. In the Iranian family, the missense mutation c.1000C>T (p.Arg334Cys; RefSeq number NM_016219.3) also segregates with NS-ARID. Both missense mutations are at amino acid residues that are conserved across the animal kingdom, and they either reduce kcat by ∼1300-fold or disrupt stable protein expression in mammalian cells. MAN1B1 is one of the few NS-ARID genes with an elevated mutation frequency in patients with NS-ARID from different populations. PMID:21763484

  18. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  19. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  20. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  1. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  2. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  3. Skatole (3-Methylindole) Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes

    PubMed Central

    Balaguer, Patrick; Ekstrand, Bo; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2016-01-01

    Skatole (3-methylindole) is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR) regulated genes, such as cytochrome P450 1A1 (CYP1A1), in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway. PMID:27138278

  4. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression.

    PubMed

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. PMID:25110054

  5. Investigation of the impact of substrate selection on in vitro organic anion transporting polypeptide 1B1 inhibition profiles for the prediction of drug-drug interactions.

    PubMed

    Izumi, Saki; Nozaki, Yoshitane; Maeda, Kazuya; Komori, Takafumi; Takenaka, Osamu; Kusuhara, Hiroyuki; Sugiyama, Yuichi

    2015-02-01

    The risk assessment of organic anion transporting polypeptide (OATP) 1B1-mediated drug-drug interactions (DDIs) is an indispensable part of drug development. We previously reported that in vitro inhibitory potencies of several inhibitors on OATP1B1 depend on the substrates when prototypical substrates, estradiol-17β-glucuronide (E₂G), estrone-3-sulfate, and sulfobromophthalein were used as test substrates. The purpose of this study was to comprehensively investigate this substrate-dependent inhibition of OATP1B1 using clinically relevant OATP1B1 inhibitors and substrate drugs. Effects of cyclosporine A (CsA), rifampin, and gemfibrozil on OATP1B1-mediated uptake of 12 substrate drugs were examined in OATP1B1-expressing human embryonic kidney 293 cells. The Ki values (μM) for CsA varied from 0.0771 to 0.486 (6.3-fold), for rifampin from 0.358 to 1.23 (3.4-fold), and for gemfibrozil from 9.65 to 252 (26-fold). Except for the inhibition of torasemide uptake by CsA and that of nateglinide uptake by gemfibrozil, the Ki values were within 2.8-fold of those obtained using E₂G as a substrate. Preincubation potentiated the inhibitory effect of CsA on OATP1B1 with similar magnitude regardless of the substrates. R values calculated based on a static model showed some variation depending on the Ki values determined with various substrates, and such variability could have an impact on the DDI predictions particularly for a weak-to-moderate inhibitor (gemfibrozil). OATP1B1 substrate drugs except for torasemide and nateglinide, or E₂G as a surrogate, is recommended as an in vitro probe in the inhibition experiments, which will help mitigate the risk of false-negative DDI predictions potentially caused by substrate-dependent Ki variation. PMID:25414411

  6. Cytochrome P450 1B1 Val432Leu polymorphism and breast cancer risk in Nigerian women: a case control study

    PubMed Central

    Okobia, Michael N; Bunker, Clareann H; Garte, Seymour J; Zmuda, Joseph M; Ezeome, Emmanuel R; Anyanwu, Stanley NC; Uche, Emmanuel EO; Osime, Usifo; Ojukwu, Joseph; Kuller, Lewis H; Ferrell, Robert E; Taioli, Emanuela

    2009-01-01

    Background Cytochrome P450 1B1 (CYP1B1) is active in the metabolism of estrogens to reactive catechols and of different procarcinogens. Several studies have investigated the relationship between genetic polymorphisms of CYP1B1 and breast cancer risk with inconsistent results. A G → C transversion polymorphism in the heme-binding region in codon 432 of the gene results in amino acid change (Val → Leu); the Leu allele display increased catalytic efficiency for 4-hydroxylation of estradiol in some experimental systems. Methods In this study, we utilized a polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) assay to assess the relationship between this polymorphism and breast cancer risk in a case control study including 250 women with breast cancer and 250 controls from four University Teaching Hospitals in Southern Nigeria. Results Heterozygosity for the CYP1B1 M1 genotype (CYP1B1 M1 [Val/Leu]) was associated with a significant 59% increased risk of breast cancer (OR = 1.59, 95% CI 1.01–2.58) while homozygosity for the genotype (CYP1B1 M1 [Leu/Leu]) conferred a non-significant 51% increased risk of breast cancer. These risk profiles were modified in subgroup analysis. In premenopausal women, harboring at least one CYP1B1 (Leu) allele conferred a significant two-fold increased risk of breast cancer (OR = 2.04, 95% CI 1.10–3.78). No significant association was observed in postmenopausal women (OR = 1.08, 95% CI 0.57–2.04). Conclusion Our results suggest that the codon 432 polymorphism of the CYP1B1 gene is associated with increased risk of breast cancer and is particularly involved in breast cancer risk in premenopausal women of African descent. PMID:19208203

  7. 20 CFR 655.700 - What statutory provisions govern the employment of H-1B, H-1B1, and E-3 nonimmigrants and how do...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (Public Law 106-95) and the regulations issued thereunder, 20 CFR part 655, subparts L and M. (3) E-3... U.S.C. 1101(a)(15)(H)(i)(b1)), under the U.S.-Chile and U.S.-Singapore Free Trade Agreements as long... condition application is for an “E-3 Australia,” “H-1B1 Chile,” or “H-1B1 Singapore” nonimmigrant....

  8. 20 CFR 655.700 - What statutory provisions govern the employment of H-1B, H-1B1, and E-3 nonimmigrants and how do...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (Public Law 106-95) and the regulations issued thereunder, 20 CFR part 655, subparts L and M. (3) E-3... employment of H-1B, H-1B1, and E-3 nonimmigrants and how do employers apply for H-1B, H-1B1, and E-3 visas... Requirements for Employers Seeking To Employ Nonimmigrants on H-1b Visas in Specialty Occupations and...

  9. 20 CFR 655.700 - What statutory provisions govern the employment of H-1B, H-1B1, and E-3 nonimmigrants and how do...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (Public Law 106-95) and the regulations issued thereunder, 20 CFR part 655, subparts L and M. (3) E-3... employment of H-1B, H-1B1, and E-3 nonimmigrants and how do employers apply for H-1B, H-1B1, and E-3 visas... Requirements for Employers Seeking To Employ Nonimmigrants on H-1b Visas in Specialty Occupations and...

  10. 20 CFR 655.700 - What statutory provisions govern the employment of H-1B, H-1B1, and E-3 nonimmigrants and how do...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (Public Law 106-95) and the regulations issued thereunder, 20 CFR part 655, subparts L and M. (3) E-3... employment of H-1B, H-1B1, and E-3 nonimmigrants and how do employers apply for H-1B, H-1B1, and E-3 visas... Requirements for Employers Seeking To Employ Nonimmigrants on H-1b Visas in Specialty Occupations and...

  11. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  12. Screening of the LTBP2 gene in 214 Chinese sporadic CYP1B1-negative patients with primary congenital glaucoma

    PubMed Central

    Chen, Xueli; Chen, Yuhong; Fan, Bao Jian; Xia, Mingying; Wang, Li

    2016-01-01

    Purpose To identify deleterious mutations in the latent transforming growth factor-β–binding protein 2 (LTBP2) gene in sporadic patients with primary congenital glaucoma (PCG) from a Han Chinese population, which had been excluded for mutations in the CYP1B1 gene. Methods In this retrospective case–control study, 36 coding exons and adjacent exon–intron boundaries of LTBP2 were amplified with PCR and screened for mutations with Sanger sequencing in DNA samples of 214 sporadic patients with PCG. Sequence variants identified in the patients with PCG were subsequently screened in 100 unaffected control subjects and the unaffected parents of the patients with PCG who had sequence changes in LTBP2. Results Eight heterozygous single nucleotide polymorphisms (SNPs) in coding regions of LTBP2 were identified in the patients with PCG. Four of these SNPs were missense changes that resulted in the replacement of amino acids (rs2304707, rs116914994, rs45468895, and rs763035721), two of which (rs2304707 and rs116914994) were also present in the control subjects. No significant differences in the frequencies of the missense SNPs were found between the patients with PCG and the controls. The two missense SNPs, rs45468895 and rs763035721, which were each found in one patient also existed in their unaffected parents, suggesting that these two SNPs were not segregated in these families and are unlikely to be a disease-causative variant. In addition, four synonymous SNPs were detected in the patients with PCG (rs61738025, rs862031, rs199805158, and rs12586758). Conclusions The results showed that no deleterious mutations were found in coding regions of LTBP2 in patients with PCG, suggesting that it is not a causal gene for PCG in the Han Chinese population. PMID:27293371

  13. ANGIOTENSIN II-INDUCED VASCULAR SMOOTH MUSCLE CELL MIGRATION AND GROWTH ARE MEDIATED BY CYTOCHROME P450 1B1-DEPENDENT SUPEROXIDE GENERATION

    PubMed Central

    Yaghini, Fariborz A.; Song, Chi Young; Lavrentyev, Eduard N.; Ghafoor, Hafiz U. B.; Fang, Xiao R.; Estes, Anne M.; Campbell, William B.; Malik, Kafait U.

    2010-01-01

    Cytochrome P450 1B1, expressed in vascular smooth muscle cells, can metabolize arachidonic acid in vitro into several products including 12- and 20-hydroxyeicosatetraenoic acids that stimulate vascular smooth muscle cell growth. This study was conducted to determine if cytochrome P450 1B1 contributes to angiotensin II-induced rat aortic smooth muscle cell migration, proliferation and protein synthesis. Ang II stimulated migration of these cells, measured by the wound healing approach, by 1.78 fold and DNA synthesis, measured by [3H]thymidine incorporation, by 1.44 fold after 24 hours, and protein synthesis, measured by [3H]leucine incorporation, by 1.40 fold after 48 hours. Treatment of vascular smooth muscle cells with the cytochrome P450 1B1 inhibitor, 2, 4, 3′, 5′-tetramethoxystilbene, or transduction of these cells with adenovirus cytochrome P450 1B1 shRNA, but not its scrambled control, reduced the activity of this enzyme and abolished angiotensin II- and arachidonic acid-induced cell migration, [3H]thymidine and [3H]leucine incorporation. Metabolism of arachidonic acid to 5-, 12-, 15- and 20-hydoxyeicosatetraenoic acids in these cells was not altered, but angiotensin II- and arachidonic acid-induced reactive oxygen species production and extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase, activity were inhibited by 2, 4, 3′, 5′-tetramethoxystilbene and cytochrome P450 1B1 shRNA, and by tempol that inactivates reactive oxygen species. Tempol did not alter cytochrome P450 1B1 activity. These data suggest that angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by reactive oxygen species generated from arachidonic acid by cytochrome P450 1B1 and activation of extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase. PMID:20439821

  14. The enhanced atorvastatin hepatotoxicity in diabetic rats was partly attributed to the upregulated hepatic Cyp3a and SLCO1B1.

    PubMed

    Shu, Nan; Hu, Mengyue; Ling, Zhaoli; Liu, Peihua; Wang, Fan; Xu, Ping; Zhong, Zeyu; Sun, Binbin; Zhang, Mian; Li, Feng; Xie, Qiushi; Liu, Xiaodong; Liu, Li

    2016-01-01

    Liver injury is a common adverse effect of atorvastatin. This study aimed to investigate atorvastatin-induced hepatotoxicity in diabetic rats induced by high-fat diet combined with streptozotocin. The results showed that 40 mg/kg atorvastatin was lethal to diabetic rats, whose mean survival time was 6.2 days. Severe liver injury also occurred in diabetic rats treated with 10 mg/kg and 20 mg/kg atorvastatin. The in vitro results indicated that atorvastatin cytotoxicity in hepatocytes of diabetic rats was more severe than normal and high-fat diet feeding rats. Expressions and activities of hepatic Cyp3a and SLCO1B1 were increased in diabetic rats, which were highly correlated with hepatotoxicity. Antioxidants (glutathione and N-Acetylcysteine), Cyp3a inhibitor ketoconazole and SLCO1B1 inhibitor gemfibrozil suppressed cytotoxicity and ROS formation in primary hepatocytes of diabetic rats. In HepG2 cells, up-regulations of CYP3A4 and SLCO1B1 potentiated hepatotoxicity and ROS generation, whereas knockdowns of CYP3A4 and SLCO1B1 as well as CYP3A4/SLCO1B1 inhibitions showed the opposite effects. Phenobarbital pretreatment was used to induce hepatic Cyp3a and SLCO1B1 in rats. Phenobarbital aggravated atorvastatin-induced hepatotoxicity, while decreased plasma exposure of atorvastatin. All these findings demonstrated that the upregulations of hepatic Cyp3a and SLCO1B1 in diabetic rats potentiated atorvastatin-induced hepatotoxicity via increasing ROS formation. PMID:27624558

  15. Characterization of inhibitory effects of perfluorooctane sulfonate on human hepatic cytochrome P450 isoenzymes: focusing on CYP2A6.

    PubMed

    Narimatsu, Shizuo; Nakanishi, Ryoko; Hanioka, Nobumitsu; Saito, Keita; Kataoka, Hiroyuki

    2011-11-15

    Perfluorooctane sulfonate (PFOS) is a chemically stable compound extensively used as oil and water repellent, surface active agents in our daily life. Accumulative research evidence gradually appears the toxicity of PFOS against mammals, but the whole figure remains to be elucidated. The present study was conducted to know the effects of PFOS on human hepatic drug metabolizing-type cytochrome P450 (CYP) isoenzymes such as CYP1A2 (7-ethoxyresorufin as a substrate), CYP2A6 (coumarin), CYP2B6 (7-ethoxy-4-trifluoromethylcoumarin), CYP2C8 (paclitaxel), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin), CYP2D6 (bufuralol), CYP2E1 (chlorzoxazone) and CYP3A4 (testosterone) in human livers employing their typical substrates. Although all of the oxidation reactions tested were more or less inhibited by PFOS, diclofenac 4'-hydroxylation mediated mainly by CYP2C9 was most strongly inhibited (K(i) value of 40 nM), followed by paclitaxel 6α-hydroxylation mediated mainly by CYP2C8 (K(i) value of 4 μM). The substrate oxidation reactions catalyzed by CYP2A6, CYP2B6, CYP2C19 and CYP3A4 were moderately (K(i) values of 35 to 45 μM), and those by CYP1A2, CYP2D6 and CYP2E1 were weakly inhibited by PFOS (K(i) values of 190-300 μM). The inhibition by PFOS for coumarin 7-hydroxylation mainly catalyzed by human liver microsomal CYP2A6 as well as by the recombinant enzyme was found to be enhanced by the preincubation of PFOS with human liver microsomes and NADPH as compared to the case without preincubation. The inhibition of the human liver microsomal cumarin 7-hydroxylation was PFOS concentration-dependent, and exhibited pseudo-first-order kinetics with respect to preincubation time, yielding K(inact) and K(I) values of 0.06 min(-1) and 23 μM, respectively. These results suggest that the metabolism of medicines which are substrates for CYP2C9 may be altered by PFOS in human bodies, and that PFOS is a mechanism-based inhibitor of CYP2A6. PMID:21964418

  16. Scutellarin inhibits cytochrome P450 isoenzyme 1A2 (CYP1A2) in rats.

    PubMed

    Jian, Tun-Yu; He, Jian-Chang; He, Gong-Hao; Feng, En-Fu; Li, Hong-Liang; Bai, Min; Xu, Gui-Li

    2012-08-01

    Scutellarin is the most important flavone glycoside in the herbal drug Erigeron breviscapus (Vant.) Hand.-Mazz. It is used frequently in the clinic to treat ischemic vascular diseases in China. However, the direct relationship between scutellarin and cytochrome P450 (CYP450) is unclear. The present study investigated the in vitro and in vivo effects of scutellarin on cytochrome P450 1A2 (CYP 1A2) metabolism. According to in vitro experiments, scutellarin (10-250 µM) decreased the formation of 4-acetamidophenol in a concentration-dependent manner, with an IC₅₀ value of 108.20 ± 0.657 µM. Furthermore, scutellarin exhibited a weak mixed-type inhibition against the activity of CYP1A2 in rat liver microsomes, with a K(i) value of 95.2 µM. Whereas in whole animal studies, scutellarin treatment for 7 days (at 5, 15, 30 mg/kg, i.p.) decreased the clearance (CL), and increased the T(1/2) (at 15, 30 mg/kg, i.p.), it did not affect the V(d) of phenacetin. Scutellarin treatment (at 5, 15, 30 mg/kg, i.p.) increased the AUC(0-∞) by 14.3%, 67.3% and 159.2%, respectively. Scutellarin at 30 mg/kg also weakly inhibited CYP1A2 activity, in accordance with our in vitro study. Thus, the results indicate that CYP1A2 is inhibited directly, but weakly, by scutellarin in vivo, and provide useful information on the safe and effective use of scutellarin in clinical practice. PMID:22228482

  17. Disruption of the cytochrome P-450 1B1 gene exacerbates renal dysfunction and damage associated with angiotensin II-induced hypertension in female mice

    PubMed Central

    Jennings, Brett L.; Moore, Joseph A.; Pingili, Ajeeth K.; Estes, Anne M.; Fang, Xiao R.; Kanu, Alie; Gonzalez, Frank J.

    2015-01-01

    Recently, we demonstrated in female mice that protection against ANG II-induced hypertension and associated cardiovascular changes depend on cytochrome P-450 (CYP)1B1. The present study was conducted to determine if Cyp1b1 gene disruption ameliorates renal dysfunction and organ damage associated with ANG II-induced hypertension in female mice. ANG II (700 ng·kg−1·min−1) infused by miniosmotic pumps for 2 wk in female Cyp1b1+/+ mice did not alter water consumption, urine output, Na+ excretion, osmolality, or protein excretion. However, in Cyp1b1−/− mice, ANG II infusion significantly increased (P < 0.05) water intake (5.50 ± 0.42 ml/24 h with vehicle vs. 8.80 ± 0.60 ml/24 h with ANG II), urine output (1.44 ± 0.37 ml/24 h with vehicle vs. 4.30 ± 0.37 ml/24 h with ANG II), and urinary Na+ excretion (0.031 ± 0.016 mmol/24 h with vehicle vs. 0.099 ± 0.010 mmol/24 h with ANG II), decreased osmolality (2,630 ± 79 mosM/kg with vehicle vs. 1,280 ± 205 mosM/kg with ANG II), and caused proteinuria (2.60 ± 0.30 mg/24 h with vehicle vs. 6.96 ± 0.55 mg/24 h with ANG II). Infusion of ANG II caused renal fibrosis, as indicated by an accumulation of renal interstitial α-smooth muscle actin, collagen, and transforming growth factor-β in Cyp1b1−/− but not Cyp1b1+/+ mice. ANG II also increased renal production of ROS and urinary excretion of thiobarburic acid-reactive substances and reduced the activity of antioxidants and urinary excretion of nitrite/nitrate and the 17β-estradiol metabolite 2-methoxyestradiol in Cyp1b1−/− but not Cyp1b1+/+ mice. These data suggest that Cyp1b1 plays a critical role in female mice in protecting against renal dysfunction and end-organ damage associated with ANG II-induced hypertension, in preventing oxidative stress, and in increasing activity of antioxidant systems, most likely via generation of 2-methoxyestradiol from 17β-estradiol. PMID:25694484

  18. High-Resolution Spectroscopy of Jet-Cooled Naphthalene: the 000 and 3301 Bands of the A~1B1u<--X~1Ag Transition

    NASA Astrophysics Data System (ADS)

    Joo, Duck-Lae; Takahashi, Rika; O'Reilly, John; Katô, Hajime; Baba, Masaaki

    2002-09-01

    Rotationally resolved excitation spectra of the 0 00 and 33 01 bands of the Ã1B1 u← X˜1Ag electronic transition of naphthalene were measured by a frequency-doubled single-mode tunable laser and a jet-cooled collimated molecular beam. The observed linewidth was 18 MHz, and the absolute wavenumber was determined with an accuracy of better than 0.0002 cm -1. The molecular constants of the X˜1Ag( v=0), Ã1B1 u( v=0), and Ã1B1 u( v33=1) levels were determined and represent the most accurate measurements to date. Three rotational constants were sufficient to fit 3386 lines of J=1-43 and Ka=0-21 with a standard deviation 0.0002 cm -1. This indicates that the molecular structures are rigid both in the X˜1Ag and Ã1B1 u states. When a magnetic field was applied, spectral line broadening was observed for levels with small Ka value in the Ã1B1 u( v33=1) state, and the Zeeman splitting was observed to increase with increasing J. No broadening, however, was observed in the 0 00 band up to H=0.65 T.

  19. A Golgi-localized Mannosidase (MAN1B1) Plays a Non-enzymatic Gatekeeper Role in Protein Biosynthetic Quality Control*

    PubMed Central

    Iannotti, Michael J.; Figard, Lauren; Sokac, Anna M.; Sifers, Richard N.

    2014-01-01

    Conformation-based disorders are manifested at the level of protein structure, necessitating an accurate understanding of how misfolded proteins are processed by the cellular proteostasis network. Asparagine-linked glycosylation plays important roles for protein quality control within the secretory pathway. The suspected role for the MAN1B1 gene product MAN1B1, also known as ER mannosidase I, is to function within the ER similar to the yeast ortholog Mns1p, which removes a terminal mannose unit to initiate a glycan-based ER-associated degradation (ERAD) signal. However, we recently discovered that MAN1B1 localizes to the Golgi complex in human cells and uncovered its participation in ERAD substrate retention, retrieval to the ER, and subsequent degradation from this organelle. The objective of the current study was to further characterize the contribution of MAN1B1 as part of a Golgi-based quality control network. Multiple lines of experimental evidence support a model in which neither the mannosidase activity nor catalytic domain is essential for the retention or degradation of the misfolded ERAD substrate Null Hong Kong. Instead, a highly conserved, vertebrate-specific non-enzymatic decapeptide sequence in the luminal stem domain plays a significant role in controlling the fate of overexpressed Null Hong Kong. Together, these findings define a new functional paradigm in which Golgi-localized MAN1B1 can play a mannosidase-independent gatekeeper role in the proteostasis network of higher eukaryotes. PMID:24627495

  20. The effects of moclobemide on the pharmacokinetics of the 5-HT1B/1D agonist rizatriptan in healthy volunteers

    PubMed Central

    van Haarst, A D; van Gerven, J M A; Cohen, A F; De Smet, M; Sterrett, A; Birk, K L; Fisher, A L; De Puy, M E; Goldberg, M R; Musson, D G

    1999-01-01

    Aims The new 5-HT1B/1D agonist rizatriptan (MK-0462) has recently been registered for the treatment of migraine. Its primary route of metabolism is via monoamine oxidase-A (MAO-A). Antidepressants such as the MAO-A inhibitor moclobemide may be used in patients with chronic headache syndromes. Hence, this study aimed to investigate the interactions between rizatriptan and moclobemide. Methods In a double-blind, randomized, placebo-controlled, two-period cross-over study 12 healthy, young volunteers (six males, six females) were treated with moclobemide (150 mg twice daily) or placebo for 4 days. On the fourth day, a single dose of rizatriptan (10 mg) was administered, and subsequently blood and urine samples were collected for assay of rizatripan and N-monodesmethyl rizatriptan. Plasma concentrates of 3,4-dihydroxyphenylglycol (DHPG), a marker of MAO-A inhibition, were also assessed. Supine and standing blood pressure were measured regularly. Results Both treatments were well tolerated. During moclobemide, the increase in supine diastolic blood pressure following rizatriptan administration was augmented. Inhibition of MAO by moclobemide was inferred from a persistent decrease in DHPG level (43% on average). When rizatriptan was coadministered with moclobemide, the area under the plasma drug concentration-time profiles for rizatriptan and its N-monodesmethyl metabolite increased 2.2-fold (90% CI, 1.93–2.47) and 5.3-fold (90% CI, 4.81–5.91), respectively, when compared with placebo. Peak plasma drug concentrations for rizatriptan and its n-monodesmethyl metabolite increased 1.4-fold (90% CI, 1.11–1.80) and 2.6-fold (90% CI, 2.23–3.14), respectively, and half-lives of both were prolonged. Conclusions Moclobemide inhibited the metabolism of rizatriptan and its active N-monodesmethyl metabolite through inhibition of MAO-A. Thus, moclobemide may considerably potentiate rizatriptan action. Concurrent administration of moclobemide and rizatriptan is not recommended

  1. Metabolism of bilirubin by human cytochrome P450 2A6

    SciTech Connect

    Abu-Bakar, A'edah; Arthur, Dionne M.; Wikman, Anna S.; Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu; Ng, Jack C.; Lang, Matti A.

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic CYP2

  2. 2-(4-Chlorobenzyl)-6-arylimidazo[2,1-b][1,3,4]thiadiazoles: synthesis, cytotoxic activity and mechanism of action.

    PubMed

    Kumar, Sujeet; Hegde, Mahesh; Gopalakrishnan, Vidya; Renuka, Vinaya Kumar; Ramareddy, Sureshbabu A; De Clercq, Erik; Schols, Dominique; Gudibabande Narasimhamurthy, Anil Kumar; Raghavan, Sathees C; Karki, Subhas S

    2014-09-12

    The cytotoxic activity of a new series of 2-(4'-chlorobenzyl)-5,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazoles against different human and murine cancer cell lines is reported. Among the tested compounds, two derivatives namely 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-yl)imidazo[2,1-b][1,3,4]thiadiazole-5-carbaldehyde 4i and 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-yl)imidazo[2,1-b][1,3,4]thiadiazol-5-yl thiocyanate 5i emerged as the most potent against all the cell lines. To investigate the mechanism of action, we selected compounds 4i for cell cycle study, analysis of mitochondrial membrane potential and Annexin V-FITC flow cytometric analysis and DNA fragmentation assay. Results showed that 4i induced cytotoxicity by inducing apoptosis without arresting the cell cycle. PMID:25064346

  3. Meta-Analysis of the SLCO1B1 c.521T>C Variant Reveals Slight Influence on the Lipid-Lowering Efficacy of Statins

    PubMed Central

    Dou, Ye; Zhu, Xiaohai; Tian, Xuewen; Cheng, Jingjing

    2015-01-01

    Background Several studies have focused on the association between the lipid-lowering efficacy of statins and the SLCO1B1 c.521T>C polymorphism; however, the results are conflicting. The effects of statins show significant variability between individuals. This meta-analysis aimed to investigate the effects of the SLCO1B1 c.521T>C polymorphism on the lipid-lowering effects of statins. Methods We systematically searched PubMed and Web of Science to screen relevant studies. Meta-analysis was performed to identify the association between SLCO1B1 c.521 polymorphisms and the lipid-lowering effects of statinson the basis of the standard mean difference (SMD) and 95% confidence intervals (CIs). Additionally, we checked for heterogeneity (I2) among studies and evidence of publication bias. We obtained eight studies including 2,012 wild genotype (T/T) and 526 variant genotype (T/C and C/C) cases. Results No significant difference was observed in the lipid-lowering efficacy of statins between the wildand variant genotypes of SLCO1B1, with a pooled SMD of 0.03 (95% CI: -0.07-0.13). Furthermore, there was no significant effect in the meta-analyses of the variant heterozygote, homozygote, and Chinese populations. Subgroup meta-analysis indicated that the timerequired for the statin to take effectdid notsignificantly affect the association between lipid-lowering efficacy of statins and SLCO1B1 c.521T>C polymorphism. However, thewild genotype improved the lipid-lowering efficacy of simvastatin with a pooled SMD of -0.26 (95% CI: -0.47- -0.05). Conclusions No significant association was detected between the lipid-lowering efficacy of statins and the SLCO1B1 c.521T>C polymorphism, with the exception of simvastatin. PMID:25932441

  4. Interactions between genetic polymorphism of cytochrome P450-1B1, sulfotransferase 1A1, catechol-o-methyltransferase and tobacco exposure in breast cancer risk.

    PubMed

    Saintot, Monique; Malaveille, Christian; Hautefeuille, Agnès; Gerber, Mariette

    2003-11-20

    Genetic polymorphisms of enzymes involved in the metabolism of xenobiotics and estrogens might play a role in breast carcinogenesis related to environmental exposures. In a case-only study on 282 women with breast cancer, we studied the interaction effects (ORi) between smoking habits and the gene polymorphisms of Cytochrome P450 1B1 (Val432Leu CYP1B1), Phenol-sulfotransferase 1A1 (Arg213His SULT1A1) and Catechol-O-methyltransferase (Val158Met COMT). The smokers carrying the Val CYP1B1 allele associated with a high hydroxylation activity had a higher risk of breast cancer than never smokers with the Leu/Leu genotype (ORi=2.32, 95%CI: 1.00-5.38). Also, the smokers carrying the His SULT1A1 allele associated with a low sulfation activity had a 2-fold excess risk compared to never smokers carrying Arg/Arg SULT1A1 common genotype (ORi= 2.55, 95%CI: 1.21-5.36). The His SULT1A1 allele increased the risk only in premenopausal patients. The Met COMT allele with a lower methylation activity than Val COMT did not modify the risk among smokers. The excess risk due to joint effect could result from a higher exposure to activated tobacco-compounds for women homo/heterozygous for the Val CYP1B1 allele. Also, a lower sulfation of the tobacco carcinogens among women with His SULT1A1 could increase exposure to genotoxic compounds. Alternatively, the Val CYP1B1 or His SULT1A1 allele with modified ability to metabolize estrogens could increase the level of genotoxic catechol estrogen (i.e., 4-hydroxy-estradiol) among smokers. Our study showed that gene polymorphisms of CYP1B1 and SULT1A1 induce an individual susceptibility to breast cancer among current smokers. PMID:14520706

  5. Inflammatory mediators accelerate metabolism of benzo[a]pyrene in rat alveolar type II cells: the role of enhanced cytochrome P450 1B1 expression.

    PubMed

    Smerdová, Lenka; Neča, Jiří; Svobodová, Jana; Topinka, Jan; Schmuczerová, Jana; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan

    2013-12-01

    Long-term deregulated inflammation represents one of the key factors contributing to lung cancer etiology. Previously, we have observed that tumor necrosis factor-α (TNF-α), a major pro-inflammatory cytokine, enhances genotoxicity of benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon, in rat lung epithelial RLE-6TN cells, a model of alveolar type II cells. Therefore, we analyzed B[a]P metabolism in RLE-6TN cells under inflammatory conditions, simulated using either recombinant TNF-α, or a mixture of inflammatory mediators derived from activated alveolar macrophage cell line. Inflammatory conditions significantly accelerated BaP metabolism, as evidenced by decreased levels of both parent B[a]P and its metabolites. TNF-α altered production of the metabolites associated with dihydrodiol-epoxide and radical cation pathways of B[a]P metabolism, especially B[a]P-dihydrodiols, and B[a]P-diones. We then evaluated the role of cytochrome P450 1B1 (CYP1B1), which is strongly up-regulated in cells treated with B[a]P under inflammatory conditions, in the observed effects. The siRNA-mediated CYP1B1 knock-down increased levels of B[a]P and reduced formation of stable DNA adducts, thus confirming the essential role of CYP1B1 in B[a]P metabolism under inflammatory conditions. TNF-α also reduced expression of aldo-keto reductase 1C14, which may compete with CYP1B1 for B[a]P-7,8-dihydrodiol and divert it from the formation of ultimate B[a]P dihydrodiol epoxide. Together, the present data suggests that the CYP1B1-catalyzed metabolism of polycyclic aromatic hydrocarbons might contribute to their enhanced bioactivation and genotoxic effects under inflammatory conditions. PMID:24025706

  6. CYP2A6 Polymorphisms May Strengthen Individualized Treatment for Nicotine Dependence

    PubMed Central

    Akrodou, Yawo Mawuli

    2015-01-01

    Each CYP2A6 gene variant metabolizes nicotine differently depending on its enzymatic activities. The normal nicotine metabolizer CYP2A6*1A is associated with high scores of nicotine dependence (5–10) on the Fagerström Test for Nicotine Dependence (FTND) scale because it encodes for enzymes that catalyze nicotine 100%. Slow nicotine metabolizers (i.e., CYP2A6*1H, CYP2A6*4A, CYP2A6*9, and CYP2A6*12A) are associated with underrated nicotine metabolizing activity (50%–75%), linking them to low scores for nicotine dependence (0–4) on the FTND scale. In a clinical trial involving the use of bupropion, people who were carriers of slow nicotine metabolizers were found to have a tendency to maintain abstinence 1.7 times longer than people with normal nicotine metabolizers. An overview of CYP2A6 polymorphism enzymatic activities in nicotine dependence etiology and treatment revealed that slow nicotine metabolizers may strengthen the individualized treatment of nicotine dependence. PMID:26060595

  7. 7,12-Dimethylbenzanthracene induces apoptosis in RL95-2 human endometrial cancer cells: Ligand-selective activation of cytochrome P450 1B1

    SciTech Connect

    Kim, Ji Young; Lee, Seung Gee; Chung, Jin-Yong; Kim, Yoon-Jae; Park, Ji-Eun; Oh, Seunghoon; Lee, Se Yong; Choi, Hong Jo; Yoo, Young Hyun; and others

    2012-04-15

    7,12-Dimethylbenzanthracene (DMBA), a polycyclic aromatic hydrocarbon, exhibits mutagenic, carcinogenic, immunosuppressive, and apoptogenic properties in various cell types. To achieve these functions effectively, DMBA is modified to its active form by cytochrome P450 1 (CYP1). Exposure to DMBA causes cytotoxicity-mediated apoptosis in bone marrow B cells and ovarian cells. Although uterine endometrium constitutively expresses CYP1A1 and CYP1B1, their apoptotic role after exposure to DMBA remains to be elucidated. Therefore, we chose RL95-2 endometrial cancer cells as a model system for studying DMBA-induced cytotoxicity and cell death and hypothesized that exposure to DMBA causes apoptosis in this cell type following CYP1A1 and/or CYP1B1 activation. We showed that DMBA-induced apoptosis in RL95-2 cells is associated with activation of caspases. In addition, mitochondrial changes, including decrease in mitochondrial potential and release of mitochondrial cytochrome c into the cytosol, support the hypothesis that a mitochondrial pathway is involved in DMBA-induced apoptosis. Exposure to DMBA upregulated the expression of AhR, Arnt, CYP1A1, and CYP1B1 significantly; this may be necessary for the conversion of DMBA to DMBA-3,4-diol-1,2-epoxide (DMBA-DE). Although both CYP1A1 and CYP1B1 were significantly upregulated by DMBA, only CYP1B1 exhibited activity. Moreover, knockdown of CYP1B1 abolished DMBA-induced apoptosis in RL95-2 cells. Our data show that RL95-2 cells are susceptible to apoptosis by exposure to DMBA and that CYP1B1 plays a pivotal role in DMBA-induced apoptosis in this system. -- Highlights: ► Cytotoxicity-mediated apoptogenic action of DMBA in human endometrial cancer cells. ► Mitochondrial pathway in DMBA-induced apoptosis of RL95-2 endometrial cancer cells. ► Requirement of ligand-selective activation of CYP1B1 in DMBA-induced apoptosis.

  8. Differential expression of CYP1A1 and CYP1A2 genes in H4IIE rat hepatoma cells exposed to TCDD and PAHs.

    PubMed

    Kaisarevic, Sonja; Dakic, Vanja; Hrubik, Jelena; Glisic, Branka; Lübcke-von Varel, Urte; Pogrmic-Majkic, Kristina; Fa, Svetlana; Teodorovic, Ivana; Brack, Werner; Kovacevic, Radmila

    2015-01-01

    Rat hepatoma cells H4IIE were treated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons (PAHs) (dibenz(a,h)anthracene, benzo(a)pyrene, benz(a)anthracene, chrysene), low-concentration mixtures of PAHs and TCDD, and environmental mixtures contaminated by PAHs and their derivatives. Expression of the gene battery comprising cytochrome P450 Cyp1a1, Cyp1a2, Cyp1b1, and glutathione-s-transferase Gsta2 and Gstp was investigated using quantitative real time polymerase chain reaction (qRT-PCR) analysis. The results revealed that TCDD induce Cyp1a1>Cyp1a2>Cyp1b1, while PAHs and PAH-containing environmental mixtures induce Cyp1a2>Cyp1a1>Cyp1b1 gene expression pattern. While low-concentration mixtures elicited a more pronounced response in comparison to single treatments, the typical gene expression patterns were not observed. In all samples, Gsta2 was predominantly expressed relative to Gstp. These findings indicate that differential Cyp1a1 and Cyp1a2 expression in the H4IIE cells might be used for detection of PAHs in highly contaminated environmental mixtures, but not in low-concentration mixtures of these compounds. PMID:25555259

  9. In vitro metabolism of (-)-camphor using human liver microsomes and CYP2A6.

    PubMed

    Gyoubu, Kunihiko; Miyazawa, Mitsuo

    2007-02-01

    The in vitro metabolism of (-)-camphor was examined in human liver microsomes and recombinant enzymes. Biotransformation of (-)-camphor was investigated by gas chromatography-mass spectrometry (GC-MS). (-)-Camphor was oxidized to 5-exo-hydroxyfenchone by human liver microsomal cytochrome (P450) enzymes. The formation of metabolites of (-)-camphor was determined by the relative abundance of mass fragments and retention time on gas chromatography (GC). CYP2A6 was the major enzyme involved in the hydroxylation of (-)-camphor by human liver microsomes, based on the following lines of evidence. First, of eleven recombinant human P450 enzymes tested, CYP2A6 catalyzed the oxidation of (-)-camphor. Second, oxidation of (-)-camphor was inhibited by (+)-menthofuran and anti-CYP2A6 antibody. Finally, there was a good correlation between CYP2A6 contents and (-)-camphor hydroxylation activities in liver microsomes of 9 human samples. PMID:17268056

  10. 20 CFR 655.705 - What Federal agencies are involved in the H-1B and H-1B1 programs, and what are the...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CFR 214.2(h)(4)(iii)(B)(2), which specifies the employer will comply with the terms of the LCA for the... Employers Seeking To Employ Nonimmigrants on H-1b Visas in Specialty Occupations and as Fashion Models, and Requirements for Employers Seeking To Employ Nonimmigrants on H-1b1 and E-3 Visas in Specialty...

  11. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1

    PubMed Central

    Potter, G A; Patterson, L H; Wanogho, E; Perry, P J; Butler, P C; Ijaz, T; Ruparelia, K C; Lamb, J H; Farmer, P B; Stanley, L A; Burke, M D

    2002-01-01

    Resveratrol is a cancer preventative agent that is found in red wine. Piceatannol is a closely related stilbene that has antileukaemic activity and is also a tyrosine kinase inhibitor. Piceatannol differs from resveratrol by having an additional aromatic hydroxy group. The enzyme CYP1B1 is overexpressed in a wide variety of human tumours and catalyses aromatic hydroxylation reactions. We report here that the cancer preventative agent resveratrol undergoes metabolism by the cytochrome P450 enzyme CYP1B1 to give a metabolite which has been identified as the known antileukaemic agent piceatannol. The metabolite was identified by high performance liquid chromatography analysis using fluorescence detection and the identity of the metabolite was further confirmed by derivatisation followed by gas chromatography–mass spectrometry studies using authentic piceatannol for comparison. This observation provides a novel explanation for the cancer preventative properties of resveratrol. It demonstrates that a natural dietary cancer preventative agent can be converted to a compound with known anticancer activity by an enzyme that is found in human tumours. Importantly this result gives insight into the functional role of CYP1B1 and provides evidence for the concept that CYP1B1 in tumours may be functioning as a growth suppressor enzyme. British Journal of Cancer (2002) 86, 774–778. DOI: 10.1038/sj/bjc/6600197 www.bjcancer.com © 2002 Cancer Research UK PMID:11875742

  12. Inhibition of Human Recombinant Cytochromes P450 CYP1A1 and CYP1B1 by Trans-resveratrol Methyl Ethers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CYP 1A1 and CYP1B1 are the inducible forms of cytochrome P450 expressed in extrahepatic tissues, which are responsible for the biotransformation of polycyclic aromatic hydrocarbons, heterocyclic amines and estradiol to the carcinogenic intermediates. The aim of our research was to determine and comp...

  13. 20 CFR 655.705 - What Federal agencies are involved in the H-1B and H-1B1 programs, and what are the...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What Federal agencies are involved in the H-1B and H-1B1 programs, and what are the responsibilities of those agencies and of employers? 655.705 Section 655.705 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY EMPLOYMENT OF FOREIGN WORKERS IN THE...

  14. Frequencies of single-nucleotide polymorphisms and haplotypes of the SLCO1B1 gene in selected populations of the western balkans.

    PubMed

    Grapci, A Daka; Dimovski, A J; Kapedanovska, A; Vavlukis, M; Eftimov, A; Geshkovska, N Matevska; Labachevski, N; Jakjovski, K; Gorani, D; Kedev, S; Mladenovska, K

    2015-06-01

    As a membrane influx transporter, organic anion-transporting polypeptide 1B1 (OATP1B1) regulates the cellular uptake of a number of endogenous compounds and drugs. The aim of this study was to characterize the diversity of the solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene encoding this transporter in two ethnic groups populating the Western Balkans. The distribution of SCLO1B1 alleles was determined at seven variant sites (c.388A>G, c.521T>C, c.571T>C, c.597C>T, c.1086C>T, c.1463G>C and c.*439T>G) in 266 Macedonians and 94 Albanians using the TaqMan allelic discrimination assay. No significant difference in the frequencies of the single nucleotide polymorphisms (SNPs) was observed between these populations. The frequency of the c.521T>C SNP was the lowest (<13.7 and 12.2%, respectively), while the frequencies of all other SNP alleles were above 40.0%. Variant alleles of c.1463G>C and c.1086 C>T SNPs were not identified in either ethnic group. The haplotype analysis revealed 20 and 21 different haplotypes in the Macedonian and Albanian population, respectively. The most common haplotype in both ethnic groups, *1J/*1K/*1L, had a frequency of 39.0% and 26.6%, respectively. In both populations, the variant alleles of the functionally significant c.521T>C and c.388A>G SNPs existed in one major haplotype (*15/*16/*17), with a frequency of 8.6 and 2.4% in the Macedonian and Albanian subjects, respectively. In conclusion, sequence variations of the SLCO1B1 gene in the studied populations occur at high frequencies, which are similar to that of the Caucasian population. Further studies are needed to evaluate the clinical significance of these SNPs and/ or the major SLCO1B1 haplotypes they form for a large number of substrates and for susceptibility to certain diseases. PMID:26929901

  15. Frequencies of single-nucleotide polymorphisms and haplotypes of the SLCO1B1 gene in selected populations of the western balkans

    PubMed Central

    Grapci, A Daka; Dimovski, AJ; Kapedanovska, A; Vavlukis, M; Eftimov, A; Geshkovska, N Matevska; Labachevski, N; Jakjovski, K; Gorani, D; Kedev, S; Mladenovska, K

    2015-01-01

    As a membrane influx transporter, organic anion-transporting polypeptide 1B1 (OATP1B1) regulates the cellular uptake of a number of endogenous compounds and drugs. The aim of this study was to characterize the diversity of the solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene encoding this transporter in two ethnic groups populating the Western Balkans. The distribution of SCLO1B1 alleles was determined at seven variant sites (c.388A>G, c.521T>C, c.571T>C, c.597C>T, c.1086C>T, c.1463G>C and c.*439T>G) in 266 Macedonians and 94 Albanians using the TaqMan allelic discrimination assay. No significant difference in the frequencies of the single nucleotide polymorphisms (SNPs) was observed between these populations. The frequency of the c.521T>C SNP was the lowest (<13.7 and 12.2%, respectively), while the frequencies of all other SNP alleles were above 40.0%. Variant alleles of c.1463G>C and c.1086 C>T SNPs were not identified in either ethnic group. The haplotype analysis revealed 20 and 21 different haplotypes in the Macedonian and Albanian population, respectively. The most common haplotype in both ethnic groups, *1J/*1K/*1L, had a frequency of 39.0% and 26.6%, respectively. In both populations, the variant alleles of the functionally significant c.521T>C and c.388A>G SNPs existed in one major haplotype (*15/*16/*17), with a frequency of 8.6 and 2.4% in the Macedonian and Albanian subjects, respectively. In conclusion, sequence variations of the SLCO1B1 gene in the studied populations occur at high frequencies, which are similar to that of the Caucasian population. Further studies are needed to evaluate the clinical significance of these SNPs and/ or the major SLCO1B1 haplotypes they form for a large number of substrates and for susceptibility to certain diseases. PMID:26929901

  16. The Prostaglandin F Synthase Activity of the Human Aldose Reductase AKR1B1 Brings New Lenses to Look at Pathologic Conditions

    PubMed Central

    Bresson, Eva; Lacroix-Pépin, Nicolas; Boucher-Kovalik, Sofia; Chapdelaine, Pierre; Fortier, Michel A.

    2012-01-01

    Prostaglandins are important regulators of female reproductive functions to which aldose reductases exhibiting hydroxysteroid dehydrogenase activity also contribute. Our work on the regulation of reproductive function by prostaglandins (PGs), lead us to the discovery that AKR1B5 and later AKR1B1were highly efficient and physiologically relevant PGF synthases. PGE2 and PGF2α are the main prostanoids produced in the human endometrium and proper balance in their relative production is important for normal menstruation and optimal fertility. Recent evidence suggests that PGE2/EP2 and PGF2α/FP may constitute a functional dyad with physiological relevance comparable to the prostacyclin-thromboxane dyad in the vascular system. We have recently reported that AKR1B1 was expressed and modulated in association with PGF2α production in response to IL-1β in the human endometrium. In the present study, we show that the human AKR1B1 (gene ID: 231) also known as ALDR1 or ALR2 is a functional PGF2α synthase in different models of living cells and tissues. Using human endometrial cells, prostate, and vascular smooth muscle cells, cardiomyocytes and endothelial cells we demonstrate that IL-1β is able to up regulate COX-2 and AKR1B1 proteins as well as PGF2α production under normal glucose concentrations. We show that the promoter activity of AKR1B1 gene is increased by IL-1β particularly around the multiple stress response region containing two putative antioxidant response elements adjacent to TonE and AP1. We also show that AKR1B1 is able to regulate PGE2 production through PGF2α acting on its FP receptor and that aldose reductase inhibitors like alrestatin, Statil (ponalrestat), and EBPC exhibit distinct and characteristic inhibition of PGF2α production in different cell models. The PGF synthase activity of AKR1B1 represents a new and important target to regulate ischemic and inflammatory responses associated with several human pathologies. PMID:22654757

  17. Pharmacogenetics of the organic anion transporting polypeptide 1A2

    PubMed Central

    Franke, Ryan M; Scherkenbach, Lisa A; Sparreboom, Alex

    2016-01-01

    The solute carrier, human organic anion transporting polypeptide 1A2 (OATP1A2, OATP-A, OATP1 and OATP) is highly expressed in the intestine, kidney, cholangiocytes and the blood–brain barrier. This localization suggests that OATP1A2 may be vitally important in the absorption, distribution and excretion of a broad array of clinically important drugs. Several nonsynonymous polymorphisms have been identified in the gene encoding OATP1A2, SLCO1A2 (SLC21A3), with some of these variants demonstrating functional changes in the transport of OATP1A2 substrates. PMID:19290786

  18. SLCO1B1 c.388A>G Polymorphism Is Associated with HDL-C Levels in Response to Atorvastatin in Chilean Individuals

    PubMed Central

    Prado, Yalena; Saavedra, Nicolás; Zambrano, Tomás; Lagos, Jenny; Rosales, Alexy; Salazar, Luis A.

    2015-01-01

    The use of statins as the preferred lipid-lowering therapy has clearly demonstrated its efficacy in the treatment of hypercholesterolemia, reducing also the risk of coronary events and cardiovascular disease mortality. In this study, we assessed single nucleotide polymorphisms (SNPs) in the SLCO1B1 gene and their effect on atorvastatin response. We included 129 Chilean hypercholesterolemic patients undergoing 10 mg/day of atorvastatin therapy during 4 weeks. Lipid profile was determined before and after drug administration. Genotyping of SLCO1B1 rs4149056 (c.521T>C) SNP was performed with allele-specific polymerase chain reaction, whilst polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for genotyping the SLCO1B1 rs2306283 (c.388A>G) variant. After statin therapy, concentrations of TC, LDL-C and TG had a decrease from baseline (p < 0.05). Also, HDL-C levels increased (p < 0.05). Minor allele frequencies for the rs2306283 and rs4149056 variants were 0.547 and 0.136, respectively. LDL-C response to atorvastatin was not associated with the SLCO1B1 rs4149056 nor the rs2306283 polymorphisms (p > 0.05). However, the latter SNP was associated with HDL-C variability after atorvastatin medication (p = 0.02). This study indicates that LDL-C reduction following atorvastatin therapy is not influenced by the SNPs evaluated. In addition, the polymorphism rs2306283 at the SLCO1B1 gene determines greater HDL-C concentrations in response to atorvastatin medication in Chilean hypercholesterolemic subjects. PMID:26334272

  19. Functional and Structural Analyses of CYP1B1 Variants Linked to Congenital and Adult-Onset Glaucoma to Investigate the Molecular Basis of These Diseases.

    PubMed

    Banerjee, Antara; Chakraborty, Subhadip; Chakraborty, Abhijit; Chakrabarti, Saikat; Ray, Kunal

    2016-01-01

    Glaucoma, the leading cause of irreversible blindness, appears in various forms. Mutations in CYP1B1 result in primary congenital glaucoma (PCG) by an autosomal recessive mode of inheritance while it acts as a modifier locus for primary open angle glaucoma (POAG). We investigated the molecular basis of the variable phenotypes resulting from the defects in CYP1B1 by using subclones of 23 CYP1B1 mutants reported in glaucoma patients, in a cell based system by measuring the dual activity of the enzyme to metabolize both retinol and 17β-estradiol. Most variants linked to POAG showed low steroid metabolism while null or very high retinol metabolism was observed in variants identified in PCG. We examined the translational turnover rates of mutant proteins after the addition of cycloheximide and observed that the levels of enzyme activity mostly corroborated the translational turnover rate. We performed extensive normal mode analysis and molecular-dynamics-simulations-based structural analyses and observed significant variation of fluctuation in certain segmental parts of the mutant proteins, especially at the B-C and F-G loops, which were previously shown to affect the dynamic behavior and ligand entry/exit properties of the cytochrome P450 family of proteins. Our molecular study corroborates the structural analysis, and suggests that the pathologic state of the carrier of CYP1B1 mutations is determined by the allelic state of the gene. To our knowledge, this is the first attempt to dissect biological activities of CYP1B1 for correlation with congenital and adult onset glaucomas. PMID:27243976

  20. Isolation of Modulators of the Liver-Specific Organic Anion-Transporting Polypeptides (OATPs) 1B1 and 1B3 from Rollinia emarginata Schlecht (Annonaceae)

    PubMed Central

    Roth, Megan; Araya, Juan J.; Timmermann, Barbara N.

    2011-01-01

    Organic anion-transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) are liver-specific transporters that mediate the uptake of a broad range of drugs into hepatocytes, including statins, antibiotics, and many anticancer drugs. Compounds that alter transport by one or both of these OATPs could potentially be used to target drugs to hepatocytes or improve the bioavailability of drugs that are cleared by the liver. In this study, we applied a bioassay-guided isolation approach to identify such compounds from the organic extract of Rollinia emarginata Schlecht (Annonaceae). Fractions of the plant extract were screened for effects on OATP1B1- and OATP1B3-mediated transport of the model substrates estradiol-17β-glucuronide and estrone-3-sulfate. We isolated three compounds, ursolic acid, oleanolic acid, and 8-trans-p-coumaroyloxy-α-terpineol, which inhibited estradiol-17β-glucuronide uptake by OATP1B1 but not OATP1B3. In addition, a rare compound, quercetin 3-O-α-l-arabinopyranosyl(1→2) α-l-rhamnopyranoside, was identified that had distinct effects on each OATP. OATP1B1 was strongly inhibited, as was OATP1B3-mediated transport of estradiol-17β-glucuronide. However, OATP1B3-mediated uptake of estrone-3-sulfate was stimulated 4- to 5-fold. Kinetic analysis of this stimulation revealed that the apparent affinity for estrone-3-sulfate was increased (decreased Km), whereas the maximal rate of transport (Vmax) was significantly reduced. These results demonstrate a mechanism through which the hepatic uptake of drug OATP substrates could be stimulated. PMID:21846839

  1. SLCO1B1 c.388A>G Polymorphism Is Associated with HDL-C Levels in Response to Atorvastatin in Chilean Individuals.

    PubMed

    Prado, Yalena; Saavedra, Nicolás; Zambrano, Tomás; Lagos, Jenny; Rosales, Alexy; Salazar, Luis A

    2015-01-01

    The use of statins as the preferred lipid-lowering therapy has clearly demonstrated its efficacy in the treatment of hypercholesterolemia, reducing also the risk of coronary events and cardiovascular disease mortality. In this study, we assessed single nucleotide polymorphisms (SNPs) in the SLCO1B1 gene and their effect on atorvastatin response. We included 129 Chilean hypercholesterolemic patients undergoing 10 mg/day of atorvastatin therapy during 4 weeks. Lipid profile was determined before and after drug administration. Genotyping of SLCO1B1 rs4149056 (c.521T>C) SNP was performed with allele-specific polymerase chain reaction, whilst polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for genotyping the SLCO1B1 rs2306283 (c.388A>G) variant. After statin therapy, concentrations of TC, LDL-C and TG had a decrease from baseline (p < 0.05). Also, HDL-C levels increased (p < 0.05). Minor allele frequencies for the rs2306283 and rs4149056 variants were 0.547 and 0.136, respectively. LDL-C response to atorvastatin was not associated with the SLCO1B1 rs4149056 nor the rs2306283 polymorphisms (p > 0.05). However, the latter SNP was associated with HDL-C variability after atorvastatin medication (p = 0.02). This study indicates that LDL-C reduction following atorvastatin therapy is not influenced by the SNPs evaluated. In addition, the polymorphism rs2306283 at the SLCO1B1 gene determines greater HDL-C concentrations in response to atorvastatin medication in Chilean hypercholesterolemic subjects. PMID:26334272

  2. Functional and Structural Analyses of CYP1B1 Variants Linked to Congenital and Adult-Onset Glaucoma to Investigate the Molecular Basis of These Diseases

    PubMed Central

    Chakrabarti, Saikat; Ray, Kunal

    2016-01-01

    Glaucoma, the leading cause of irreversible blindness, appears in various forms. Mutations in CYP1B1 result in primary congenital glaucoma (PCG) by an autosomal recessive mode of inheritance while it acts as a modifier locus for primary open angle glaucoma (POAG). We investigated the molecular basis of the variable phenotypes resulting from the defects in CYP1B1 by using subclones of 23 CYP1B1 mutants reported in glaucoma patients, in a cell based system by measuring the dual activity of the enzyme to metabolize both retinol and 17β-estradiol. Most variants linked to POAG showed low steroid metabolism while null or very high retinol metabolism was observed in variants identified in PCG. We examined the translational turnover rates of mutant proteins after the addition of cycloheximide and observed that the levels of enzyme activity mostly corroborated the translational turnover rate. We performed extensive normal mode analysis and molecular-dynamics-simulations-based structural analyses and observed significant variation of fluctuation in certain segmental parts of the mutant proteins, especially at the B-C and F-G loops, which were previously shown to affect the dynamic behavior and ligand entry/exit properties of the cytochrome P450 family of proteins. Our molecular study corroborates the structural analysis, and suggests that the pathologic state of the carrier of CYP1B1 mutations is determined by the allelic state of the gene. To our knowledge, this is the first attempt to dissect biological activities of CYP1B1 for correlation with congenital and adult onset glaucomas. PMID:27243976

  3. In vitro inhibition and induction of human liver cytochrome P450 enzymes by gentiopicroside: potent effect on CYP2A6.

    PubMed

    Deng, Yating; Wang, Lu; Yang, Yong; Sun, Wenji; Xie, Renming; Liu, Xueying; Wang, Qingwei

    2013-01-01

    Gentiopicroside (GE), a naturally occurring iridoid glycoside, has been developed into a Novel Traditional Chinese Drug named gentiopicroside injection, and it was approved for the treatment of acute jaundice and chronic active hepatitis by SFDA. However, the inhibitory and inducible effects of GE on the activity of cytochrome P450 (CYP450) are unclear. The purpose of this study was to evaluate the ability of GE to inhibit and induce human cytochrome P450 enzymes in vitro. In human liver microsomes, GE inhibited CYP2A6 and CYP2E1 in a concentration-dependent manner, with IC₅₀ values of 21.8 µg/ml and 594 µg/ml, respectively, and the IC₅₀ of CYP2A6 was close to the C(max) value observed clinically. GE was a non-competitive inhibitor of CYP2A6 at lower concentrations and a competitive inhibitor at higher concentrations. GE did not produce inhibition of CYP2C9, CYP2D6, CYP1A2 or CYP3A4 activities. However, a significant increase of CYP1A2 and CYP3A4 activity was observed at high concentrations. In cultured human hepatocytes no significant induction of CYP1A2, CYP3A4 or CYP2B6 was observed. Given these results, the in vivo potential inhibition of GE on CYP2A6 deserves further investigation, and it seems that the hepatoprotective effect of GE is irrelevant to its effect on P450s. PMID:23419353

  4. Genetic polymorphism analysis of the drug-metabolizing enzyme CYP1A2 in a Uyghur Chinese population: a pilot study.

    PubMed

    Geng, Tingting; Zhang, Xi Yang; Wang, Li; Wang, Huijuan; Shi, Xugang; Kang, Longli; Hou, Peng; Jin, Tianbo

    2016-06-01

    1. CYP1A2 is a highly polymorphic gene and CYP1A2 enzyme results in broad inter-individual variability in response to certain pharmacotherapies, while little is known about the genetic variation of CYP1A2 in Uyghur Chinese population. The aim of the present study was to screen Uyghur volunteers for CYP1A2 genetic polymorphisms. 2. We used DNA sequencing to investigate promoter, exons, introns, and 3' UTR of the CYP1A2 gene in 96 unrelated healthy Uyghur individuals. We also used SIFT (Sorting Intolerant From Tolerant) and PolyPhen-2 (Polymorphism Phenotyping v2) to predict the protein function of the novel non-synonymous mutation in CYP1A2 coding regions. 3. We identified 20 different CYP1A2 polymorphisms in the Uyghur Chinese population, including two novel variants (119A > G and 2410G > A). Variant 119A > G was predicted to be probably damaging on protein function by PolyPhen-2, by contrast, 2410G > A was identified as benign. The allele frequencies of CYP1A2*1A, *1B, *1F, *1G, *1J, *1M, *4, and *9 were 23.4%, 53.1%, 3.7%, 2.6%, 2.6%, 13.5%, 0.5%, and 0.5%, respectively. The frequency of *1F, a putative high inducibility allele, was higher in our sample population compared with that in the Caucasian population (p < 0.05). The most common genotype combinations were *1A/*1B (46.9%) and *1B/*1M (27.1%). 4. Our results provide basic information on CYP1A2 polymorphisms in Uyghur individuals and suggest that the enzymatic activities of CYP1A2 may differ among the diverse ethnic populations of the world. PMID:26383175

  5. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    SciTech Connect

    Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  6. Prostaglandin (PG) F2 Alpha Synthesis in Human Subcutaneous and Omental Adipose Tissue: Modulation by Inflammatory Cytokines and Role of the Human Aldose Reductase AKR1B1

    PubMed Central

    Michaud, Andréanne; Lacroix-Pépin, Nicolas; Pelletier, Mélissa; Veilleux, Alain; Noël, Suzanne; Bouchard, Céline; Marceau, Picard; Fortier, Michel A.; Tchernof, André

    2014-01-01

    Introduction PGF2α may be involved in the regulation of adipose tissue function. Objectives 1) To examine PGF2α release by primary preadipocytes, mature adipocytes and whole tissue explants from the subcutaneous and omental fat compartments; 2) To assess which PGF synthase is the most relevant in human adipose tissue. Methods Fat samples were obtained by surgery in women. PGF2α release by preadipocytes, adipocytes and explants under stimulation by TNF-α, IL-1β or both was measured. Messenger RNA expression levels of AKR1B1 and AKR1C3 were measured by RT-PCR in whole adipose tissue and cytokine-treated preadipocytes. The effect of AKR1B1 inhibitor ponalrestat on PGF2α synthesis was investigated. Results PGF2α release was significantly induced in response to cytokines compared to control in omental (p = 0.01) and to a lesser extent in subcutaneous preadipocytes (p = 0.02). Messenger RNA of COX-2 was significantly higher in omental compared to subcutaneous preadipocytes in response to combined TNF-α and IL-1β (p = 0.01). Inflammatory cytokines increased AKR1B1 mRNA expression and protein levels (p≤0.05), but failed to increase expression levels of AKR1C3 in cultured preadipocytes. Accordingly, ponalrestat blunted PGF2α synthesis by preadipocytes in basal and stimulated conditions (p≤0.05). Women with the highest PGF2α release by omental adipocytes had a higher BMI (p = 0.05), waist circumference (p≤0.05) and HOMAir index (p≤0.005) as well as higher mRNA expression of AKR1B1 in omental (p<0.10) and subcutaneous (p≤0.05) adipose tissue compared to women with low omental adipocytes PGF2α release. Positive correlations were observed between mRNA expression of AKR1B1 in both compartments and BMI, waist circumference as well as HOMAir index (p≤0.05 for all). Conclusion PGF2α release by omental mature adipocytes is increased in abdominally obese women. Moreover, COX-2 expression and PGF2α release is particularly responsive to

  7. Differential Effects of Glycyrrhiza Species on Genotoxic Estrogen Metabolism: Licochalcone A Downregulates P450 1B1, whereas Isoliquiritigenin Stimulates It.

    PubMed

    Dunlap, Tareisha L; Wang, Shuai; Simmler, Charlotte; Chen, Shao-Nong; Pauli, Guido F; Dietz, Birgit M; Bolton, Judy L

    2015-08-17

    Estrogen chemical carcinogenesis involves 4-hydroxylation of estrone/estradiol (E1/E2) by P450 1B1, generating catechol and quinone genotoxic metabolites that cause DNA mutations and initiate/promote breast cancer. Inflammation enhances this effect by upregulating P450 1B1. The present study tested the three authenticated medicinal species of licorice [Glycyrrhiza glabra (GG), G. uralensis (GU), and G. inflata (GI)] used by women as dietary supplements for their anti-inflammatory activities and their ability to modulate estrogen metabolism. The pure compounds, liquiritigenin (LigF), its chalcone isomer isoliquiritigenin (LigC), and the GI-specific licochalcone A (LicA) were also tested. The licorice extracts and compounds were evaluated for anti-inflammatory activity by measuring inhibition of iNOS activity in macrophage cells: GI ≫ GG > GU and LigC ≅ LicA ≫ LigF. The Michael acceptor chalcone, LicA, is likely responsible for the anti-inflammatory activity of GI. A sensitive LC-MS/MS assay was employed to quantify estrogen metabolism by measuring 2-MeOE1 as nontoxic and 4-MeOE1 as genotoxic biomarkers in the nontumorigenic human mammary epithelial cell line, MCF-10A. GG, GU, and LigC increased 4-MeOE1, whereas GI and LicA inhibited 2- and 4-MeOE1 levels. GG, GU (5 μg/mL), and LigC (1 μM) also enhanced P450 1B1 expression and activities, which was further increased by inflammatory cytokines (TNF-α and IFN-γ). LicA (1, 10 μM) decreased cytokine- and TCDD-induced P450 1B1 gene expression and TCDD-induced xenobiotic response element luciferase reporter (IC50 = 12.3 μM), suggesting an antagonistic effect on the aryl hydrocarbon receptor, which regulates P450 1B1. Similarly, GI (5 μg/mL) reduced cytokine- and TCDD-induced P450 1B1 gene expression. Collectively, these data suggest that, of the three licorice species that are used in botanical supplements, GI represents the most promising chemopreventive licorice extract for women's health. Additionally, the

  8. Associations of CYP2A6 genotype with smoking behaviors in southern China

    PubMed Central

    Liu, Tao; David, Sean P.; Tyndale, Rachel F.; Wang, Hui; Zhou, Qian; Ding, Peng; He, Yan-Hui; Yu, Xue-Qing; Chen, Wei; Crump, Casey; Wen, Xiao-Zhong; Chen, Wei-Qing

    2011-01-01

    Aims To investigate the association of CYP2A6 genetic polymorphisms with smoking-related phenotypes in Chinese smokers. Design Case-only genetic association study. Setting Southern China Participants A total of 1,328 Han Chinese smokers who participated in a community-based chronic disease screening project in Guangzhou and Zhuhai from 2006 to 2007. Measurements All participants were answered a structured questionnaire about socio-demographic status and smoking behaviors and informative alleles for the cytochrome P450 2A6 (CYP2A6) gene (CYP2A6 *4, *5, *7, *9 and *10) were genotyped. Findings The frequencies of CYP2A6 *4, *5, *7, *9 and *10 alleles were 8.5%, 1.2%, 6.3%, 13.5% and 2.4%, which corresponded to 48.9%, 15.4%, 24.2% and 11.5% of participants being classified as normal, intermediate, slow and poor metabolizers, respectively. Multivariate analyses demonstrated that compared with normal metabolizers, poor metabolizers reported smoking fewer cigarettes per day (adjusted OR = 0.49; 95% CI: 0.32–0.76), started smoking regularly later in life (adjusted OR = 1.55; 95% CI: 1.06–2.26) and, amongst former smokers, reported smoking for a shorter duration prior to quitting (adjusted OR = 0.33; 95% CI: 0.12–0.94). However, poor metabolizers were less likely to quit smoking and remain abstinent than normal metabolizers (OR = 0.54; 95% CI: 0.34–0.86). Conclusions Reduced metabolism function of CYP2A6 in smokers appears to be associated with fewer cigarettes smoked, later initiation of smoking regularly, shorter smoking duration and lower likelihood of smoking cessation. PMID:21205058

  9. An in vivo bioassay for detecting antiandrogens using humanized transgenic mice coexpressing the tetracycline-controlled transactivator and human CYP1B1 gene.

    PubMed

    Hwang, Dae Y; Cho, Jung S; Oh, Jae H; Shim, Sun B; Jee, Seung W; Lee, Su H; Seo, Su J; Kang, Hyun G; Sheen, Yhun Y; Lee, Seok H; Kim, Yong K

    2005-01-01

    The typical strategy used in analysis of antiandrogens involves the morphological changes of a marker in castrated rats Hershberger assay for the prostate, seminal vesicle, levator ani plus bulbocavernosus muscles (LABC), Cowper's gland, and glans penis. However, there are disadvantages to this approach, such as the time required, and the results may not correspond to those in actual human exposure. To evaluate its ability for detecting antiandrogens, in vivo the dose effect of di-(2-ethylhexyl) phthalate (DEHP) and time effect of five antiandrogens, DEHP, di-n-butyl phthalate (DBP), diethyl phthalate (DEP), linuron (3-(4-dichlorophenyl)-methoxy-1-methylurea), and 2,4'-DDE (1,1-dichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl)ethylene), were investigated using humanized transgenic mice coexpressing tetracycline-controlled transactivator (tTA) and the human cytochrome P450 (CYP) enzyme CYP1B1 (hCYP1B1). Adult transgenic males were treated with each of the five antiandrogens, and their tTA-driven hCYP1B1 expressions analyzed by real-time polymerase chain reaction (PCR) and/or Western blot and for O-debenzylation activity. Herein, the treatments of adult males with the five antiandrogens were shown to affect the increased levels of tTA-driven hCYP1B1 expression in both dose-dependent and repeated experiments. Thus, this novel in vivo bioassay, using humanized transgenic mice, is useful for measuring antiandrogens, and is a means to a more relevant bioassay relating to actual human exposure. PMID:16040568

  10. Protein expression of CYP1A1, CYP1B1, ALDH1A1, and ALDH2 in young patients with oral squamous cell carcinoma.

    PubMed

    Kaminagakura, E; Caris, A; Coutinho-Camillo, C; Soares, F A; Takahama-Júnior, A; Kowalski, L P

    2016-06-01

    The purpose of this study was to evaluate the expression of the enzymes involved in the biotransformation of tobacco and alcohol. A study group of 41 young patients (≤40 years old) with oral squamous cell carcinoma (OSCC) was compared to 59 control subjects (≥50 years old) with tumours of similar clinical stages and topographies. The immunohistochemical expression of CYP1A1, CYP1B1, ALDH1A1, and ALDH2 was evaluated using the tissue microarray technique. There was a predominance of males, smokers, and alcohol drinkers in both groups. Most tumours were located in the tongue (43.9% vs. 50.8%), were well-differentiated (63.4% vs. 56.6%), and were in clinical stages III or IV (80.5% vs. 78.0%). No difference was observed in the expression of CYP1A1, ALDH1A1, or ALDH2 between the two groups. CYP1A1 and ALDH2 protein expression had no influence on the prognosis. The immunoexpression of CYP1B1 was significantly higher in the control group than in the young group (P<0.001). The 5-year relapse-free survival was better in patients with CYP1B1 overexpression vs. protein underexpression (64% vs. 25%; P<0.05), regardless of age. ALDH1A1 expression improved relapse-free survival in young patients. These results suggest a lower risk of recurrence with increased metabolism of carcinogens by CYP1B1. Further studies involving other genes and proteins are necessary to complement the results of this research. PMID:26944893

  11. Antiproliferative effect of the Ginkgo biloba extract is associated with the enhancement of cytochrome P450 1B1 expression in estrogen receptor-negative breast cancer cells

    PubMed Central

    ZHAO, XIAO-DAN; DONG, NI; MAN, HONG-TAO; FU, ZHONG-LIN; ZHANG, MEI-HONG; KOU, SHUANG; MA, SHI-LIANG

    2013-01-01

    Ginkgo biloba is a dioecious tree and its extract is a complex mixture that has been used for thousands of years to treat a variety of ailments in traditional Chinese medicine. The aim of this study was to present our observations on the inhibitory effects of different Ginkgo biloba extracts on human breast cancer cell proliferation and growth. Our results demonstrated that treatment of MCF-7 and MDA-MB-231 human breast cancer cells with Ginkgo biloba leaves and ginkgo fruit extract inhibited cell proliferation. It was also observed that this inhibition was accompanied by the enhancement of cytochrome P450 (CYP) 1B1 expression in MDA-MB-231 cells. In addition, treatment with ginkgo fruit extract resulted in a higher CYP1B1 expression in MDA-MB-231 cells compared to treatment with the Ginkgo biloba leaves extract. Our results suggested that the inhibitory effects of the Ginkgo biloba extract on estrogen receptor-negative breast cancer proliferation and the induction of CYP1B1 expression may be exerted through an alternative pathway, independent of the estrogen receptor or the aryl hydrocarbon receptor pathway. PMID:24649031

  12. Exome sequencing in developmental eye disease leads to identification of causal variants in GJA8, CRYGC, PAX6 and CYP1B1.

    PubMed

    Prokudin, Ivan; Simons, Cas; Grigg, John R; Storen, Rebecca; Kumar, Vikrant; Phua, Zai Y; Smith, James; Flaherty, Maree; Davila, Sonia; Jamieson, Robyn V

    2014-07-01

    Developmental eye diseases, including cataract/microcornea, Peters anomaly and coloboma/microphthalmia/anophthalmia, are caused by mutations encoding many different signalling and structural proteins in the developing eye. All modes of Mendelian inheritance occur and many are sporadic cases, so provision of accurate recurrence risk information for families and affected individuals is highly challenging. Extreme genetic heterogeneity renders testing for all known disease genes clinically unavailable with traditional methods. We used whole-exome sequencing in 11 unrelated developmental eye disease patients, as it provides a strategy for assessment of multiple disease genes simultaneously. We identified five causative variants in four patients in four different disease genes, GJA8, CRYGC, PAX6 and CYP1B1. This detection rate (36%) is high for a group of patients where clinical testing is frequently not undertaken due to lack of availability and cost. The results affected clinical management in all cases. These variants were detected in the cataract/microcornea and Peters anomaly patients. In two patients with coloboma/microphthalmia, variants in ABCB6 and GDF3 were identified with incomplete penetrance, highlighting the complex inheritance pattern associated with this phenotype. In the coloboma/microphthalmia patients, four other variants were identified in CYP1B1, and CYP1B1 emerged as a candidate gene to be considered as a modifier in coloboma/microphthalmia. PMID:24281366

  13. Measuring electron-impact cross sections of water: elastic scattering and electronic excitation of the ã3B1 and Ã1B1 states

    NASA Astrophysics Data System (ADS)

    Matsui, Midori; Hoshino, Masamitsu; Kato, Hidetoshi; Ferreira da Silva, Fillipe; Limão-Vieira, Paulo; Tanaka, Hiroshi

    2016-04-01

    Here, we report elastic differential cross sections (DCSs) for electron scattering from water in the incident energy range of 2-100 eV. Furthermore, we present a complete study on the electronic excitation of the ã3B1 and Ã1B1 states at electron impact energies of 15, 20, and 30 eV and in the scattering angle range of 10° - 130°. Integral cross sections (ICSs) are determined from the DCSs. Measuring elastic DCSs in various experimental conditions confirmed the reproducibility of the data. The present results agree with the data previously obtained from a conventional collimating tube gas source. Ambiguities associated with the unfolding procedure of the electron energy loss (EEL) spectra for the electronic excitations have been reduced by comparison against the EEL spectrum at high electron impact energy and for small scattering angle. The reliability of the extracted DCSs is improved significantly for optically forbidden contributions from the overlap of the ã3B1 and Ã1B1 electronic states. The BEf-scaling model is also confirmed to produce the integral cross section for the optical allowed transition of the Ã1B1 state in the intermediate electron energy region above 15 eV.

  14. Frequency distribution of polymorphisms of CYP2C19, CYP2C9, VKORC1 and SLCO1B1 genes in the Yakut population

    PubMed Central

    Vasilyev, Filipp Filippovich; Danilova, Diana Aleksandrovna; Kaimonov, Vladimir Sergeevich; Chertovskih, Yana Valerievna; Maksimova, Nadezda Romanovna

    2016-01-01

    Allele frequencies of single nucleotide polymorphisms (SNPs) are variable among different populations; therefore the study of SNPs in ethnic groups is important for establishing the clinical significance of the screening of these polymorphisms. The main goal of the research is to study the polymorphisms of CYP2C9, CYP2C19, VKORC1, and SLCO1B1 in Yakuts. Genomic DNA from 229 Yakut subjects were analyzed by real-time polymerase chain reaction (PCR) (SLCO1B1 +521T > C, VKORC1 -1639G>A, CYP2C19 +681G>A, +636G>A, CYP2C9 +430С>T, +1075A>C). Genotype frequencies of polymorphisms in the population of the Yakuts were more characteristic of the Asian population. The results have been included in the software application “Lekgen” that we developed for the interpretation of pharmacogenetic testing. The data of our study obtained on frequency carriers of polymorphisms of genes SLCO1B1, CYP2C19, CYP2C9, VKORC1 among the Yakuts may be useful in developing recommendations for a personalized therapy.

  15. Structural Insight Into the Altered Substrate Specificity of Human Cytochrome P450 2a6 Mutants

    SciTech Connect

    Sansen, S.; Hsu, M.-H.; Stout, C.David.; Johnson, E.F.

    2007-07-12

    Human P450 2A6 displays a small active site that is well adapted for the oxidation of small planar substrates. Mutagenesis of CYP2A6 resulted in an increased catalytic efficiency for indole biotransformation to pigments and conferred a capacity to oxidize substituted indoles (Wu, Z.-L., Podust, L.M., Guengerich, F.P. J. Biol. Chem. 49 (2005) 41090-41100.). Here, we describe the structural basis that underlies the altered metabolic profile of three mutant enzymes, P450 2A6 N297Q, L240C/N297Q and N297Q/I300V. The Asn297 substitution abolishes a potential hydrogen bonding interaction with substrates in the active site, and replaces a structural water molecule between the helix B-C region and helix I while maintaining structural hydrogen bonding interactions. The structures of the P450 2A6 N297Q/L240C and N297Q/I300V mutants provide clues as to how the protein can adapt to fit the larger substituted indoles in the active site, and enable a comparison with other P450 family 2 enzymes for which the residue at the equivalent position was seen to function in isozyme specificity, structural integrity and protein flexibility.

  16. Metabolism of (+)- and (-)-menthols by CYP2A6 in human liver microsomes.

    PubMed

    Miyazawa, Mitsuo; Marumoto, Shinsuke; Takahashi, Toshiyuki; Nakahashi, Hiroshi; Haigou, Risa; Nakanishi, Kyousuke

    2011-01-01

    The in vitro metabolism of (+)-(1S,3S,4R) and (-)-(1R,3R,4S)-menthol enantiomers was examined by incubation with human liver microsomes, and the oxidative metabolites thus formed were analyzed using gas chromatography-mass spectrometry (GC-MS). The (+)- and (-)-menthols were found to be oxidized to the respective (+)-(1S,3S,4S)- and (-)-(1R,3R,4R)-trans-p-menthane-3,8-diol derivatives by human liver microsomal P450 enzymes. Cytochrome P450 (CYP) 2A6 was determined to be the major enzyme involved in the hydroxylation of (+)- and (-)-menthols by human liver microsomes on the basis of the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 catalyzed the oxidation of (+)- and (-)-menthols. Second, oxidation of (+)- and (-)-menthols was inhibited by (+)-menthofuran and anti-CYP2A6 antibody. Finally, (+)- and (-)-menthol activities were found to correlate with contents of CYP2A6 in liver microsomes of 9 human samples. PMID:21343660

  17. Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism

    PubMed Central

    Sachse, Christoph; Bhambra, Upinder; Smith, Gillian; Lightfoot, Tracy J; Barrett, Jennifer H; Scollay, Jenna; Garner, R Colin; Boobis, Alan R; Wolf, C Roland; Gooderham, Nigel J

    2003-01-01

    Aim Several single nucleotide polymorphisms (SNPs) of the cytochrome P450 enzyme 1A2 gene (CYP1A2) have been reported. Here, frequencies, linkage disequilibrium and phenotypic consequences of six SNPs are described. Methods From genomic DNA, 114 British Caucasians (49 colorectal cancer cases and 65 controls) were genotyped for the CYP1A2 polymorphisms −3858G→A (allele CYP1A2*1C), −2464T→delT (CYP1A2*1D), −740T→G (CYP1A2*1E and *1G), −164A→C (CYP1A2*1F), 63C→G (CYP1A2*2), and 1545T→C (alleles CYP1A2*1B, *1G, *1H and *3), using polymerase chain reaction–restriction fragment length polymorphism assays. All patients and controls were phenotyped for CYP1A2 by h.p.l.c. analysis of urinary caffeine metabolites. Results In 114 samples, the most frequent CYP1A2 SNPs were 1545T→C (38.2% of tested chromosomes), −164A→C (CYP1A2*1F, 33.3%) and −2464T→delT (CYP1A2*1D, 4.82%). The SNPs were in linkage disequilibrium: the most frequent constellations were found to be −3858G/−2464T/−740T/−164A/63C/1545T (61.8%), −3858G/−2464T/−740T/−164C/63C/1545C (33.3%), and −3858G/−2464delT/−740T/−164A/63C/1545C (3.51%), with no significant frequency differences between cases and controls. In the phenotype analysis, lower caffeine metabolic ratios were detected in cases than in controls. This was significant in smokers (n = 14, P = 0.020), and in a subgroup of 15 matched case-control pairs (P = 0.007), but it was not significant in nonsmokers (n = 100, P = 0.39). There was no detectable association between CYP1A2 genotype and caffeine phenotype. Conclusions (i) CYP1A2 polymorphisms are in linkage disequilibrium. Therefore, only −164A→C (CYP1A2*1F) and −2464T→delT (CYP1A2*1D) need to be analysed in the routine assessment of CYP1A2 genotype; (ii) in vivo CYP1A2 activity is lower in colorectal cancer patients than in controls, and (iii) CYP1A2 genotype had no effect on phenotype (based on the caffeine metabolite ratio). However, this

  18. Biotransformation of methyl tert-butyl ether by human cytochrome P450 2A6.

    PubMed

    Shamsipur, Mojtaba; Miran Beigi, Ali Akbar; Teymouri, Mohammad; Poursaberi, Tahereh; Mostafavi, S Mojtaba; Soleimani, Parviz; Chitsazian, Fereshteh; Tash, Shahram Abolhassan

    2012-04-01

    Methyl tert-butyl ether (MTBE) is widely used as gasoline oxygenate and octane number enhancer for more complete combustion in order to reduce the air pollution caused by motor vehicle exhaust. The possible adverse effects of MTBE on human health are of major public concern. However, information on the metabolism of MTBE in human tissues is scarce. The present study demonstrates that human cytochrome P450 2A6 is able to metabolize MTBE to tert-butyl alcohol (TBA), a major circulating metabolite and marker for exposure to MTBE. As CYP2A6 is known to be constitutively expressed in human livers, we infer that it may play a significant role in metabolism of gasoline ethers in liver tissue. PMID:21915685

  19. Competitive inhibition of carcinogen-activating CYP1A1 and CYP1B1 enzymes by a standardized complex mixture of PAH extracted from coal tar

    SciTech Connect

    Mahadevan, B.; Marston, C.P.; Luch, A.; Dashwood, W.M.; Brooks, E.; Pereira, C.; Doehmer, J.; Baird, W.M.

    2007-03-15

    A complex mixture of polycyclic aromatic hydrocarbons (PAH) extracted from coal tar, the Standard Reference Material (SRM) 1597, was recently shown to decrease the levels of DNA binding of the 2 strong carcinogens benzo(a)pyrene (BP) and dibenzo(a,l)pyrene (DBP) in the human mammary carcinoma-derived cell line MCF-7. The present study was designed to further elucidate the biochemical mechanisms involved in this inhibition process. We examined the effects of SRM 1597 on the metabolic activation of BP and DBP toward DNA-binding derivatives in Chinese hamster cells expressing either human cytochrome P450 (CYP) 1A1 or CYP1B1. The data obtained from biochemical experiments revealed that SRM 1597 competitively inhibited the activity of both human enzymes as analyzed by 7-ethoxyresorufin O-deethylation assays. While the Michaelis-Menten constant (K-M) was {lt} 0.4 {mu}M in the absence of SRM 1597, this value increased up to 1.12 (CYP1A1) or 4.45 {mu}M (CYP1B1) in the presence of 0.1 {mu} g/ml SRM 1597. Hence the inhibitory effects of the complex mixture on human CYP1B1 were much stronger when compared to human CYP1A1 Taken together, the decreases in PAH-DNA adduct formation on co-treatment with SRM 1597 revealed inhibitory effects on the CYP enzymes that convert carcinogenic PAH into DNA-binding metabolites. The implications for the tumorigenicity of complex environmental PAR mixtures are discussed.

  20. Role of 5-HT5A and 5-HT1B/1D receptors in the antinociception produced by ergotamine and valerenic acid in the rat formalin test.

    PubMed

    Vidal-Cantú, Guadalupe C; Jiménez-Hernández, Mildred; Rocha-González, Héctor I; Villalón, Carlos M; Granados-Soto, Vinicio; Muñoz-Islas, Enriqueta

    2016-06-15

    Sumatriptan, dihydroergotamine and methysergide inhibit 1% formalin-induced nociception by activation of peripheral 5-HT1B/1D receptors. This study set out to investigate the pharmacological profile of the antinociception produced by intrathecal and intraplantar administration of ergotamine (a 5-HT1B/1D and 5-HT5A/5B receptor agonist) and valerenic acid (a partial agonist at 5-HT5A receptors). Intraplantar injection of 1% formalin in the right hind paw resulted in spontaneous flinching behavior of the injected hindpaw of female Wistar rats. Intrathecal ergotamine (15nmol) or valerenic acid (1 nmol) blocked in a dose dependent manner formalin-induced nociception. The antinociception by intrathecal ergotamine (15nmol) or valerenic acid (1nmol) was partly or completely blocked by intrathecal administration of the antagonists: (i) methiothepin (non-selective 5-HT5A/5B; 0.01-0.1nmol); (ii) SB-699551 (selective 5-HT5A; up to 10nmol); (iii) anti-5-HT5A antibody; (iv) SB-224289 (selective 5-HT1B; 0.1-1nmol); or (v) BRL-15572 (selective 5-HT1D; 0.1-1nmol). Likewise, antinociception by intraplantar ergotamine (15nmol) and valerenic acid (10nmol) was: (i) partially blocked by methiothepin (1nmol), SB-699551 (10nmol) or SB-224289 (1nmol); and (ii) abolished by BRL-15572 (1nmol). The above doses of antagonists (which did not affect per se the formalin-induced nociception) were high enough to completely block their respective receptors. Our results suggest that ergotamine and valerenic acid produce antinociception via 5-HT5A and 5-HT1B/1D receptors located at both spinal and peripheral sites. This provides new evidence for understanding the modulation of nociceptive pathways in inflammatory pain. PMID:27068146

  1. Impact of aberrant DNA methylation patterns including CYP1B1 methylation in adolescents and young adults with acute lymphocytic leukemia

    PubMed Central

    DiNardo, CD; Gharibyan, V; Yang, H; Wei, Y; Pierce, S; Kantarjian, HM; Garcia-Manero, G; Rytting, M

    2014-01-01

    Introduction Aberrant promoter DNA methylation is a well-described mechanism of leukemogenesis within hematologic malignancies, including acute lymphoblastic leukemia (ALL). However, the importance of methylation patterns among the adolescent and young adult (AYA) ALL population has not been well established. Methods DNA methylation of 18 candidate genes in 33 AYA ALL patients was analyzed at diagnosis and during treatment, to evaluate the frequency and clinical relevance of aberrant methylation in an AYA population treated on a uniform therapeutic regimen. Results Of 16 informative genes, there was a median of 6 methylated genes per AYA ALL patient. Correlations were identified between increasing number of methylated genes with male sex (p=0.04), increased white blood cell (WBC) count (p=0.04) and increased bone-marrow blast percentage (p=0.04). Increasing age was associated with EPHA5 methylation (p=0.05). Overall, patients experienced favorable outcomes with median survival that was not reached. On univariate analysis, methylation of CYP1B1 was associated with worse overall survival (HR 10.7, 95% CI 1.3–87.6, p=0.03), disease-free survival (HR 3.7, 95% CI 1.1–9.2, p=0.04) and correlated with decreased CYP1B1 gene expression. Conclusions A significant incidence of methylation within the AYA ALL population was identified, with increased methylation associated with distinct clinicopathologic features including male gender and elevated WBC count. Our results suggest aberrant methylation among AYA patients is frequent, and may provide a common pathogenic mechanism. The inferior outcome identified with methylation of the cytochrome p450 gene CYP1B1, an enzyme involved in drug metabolism and steroid synthesis, warrants further investigation. PMID:23757320

  2. Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxy-tryptamine (5-HT1B/1D) receptors

    PubMed Central

    Goadsby, Peter J; Knight, Yolande

    1997-01-01

    The observation that 5-hydroxytryptamine (5-HT) is effective in treating acute attacks of migraine when administered intravenously resulted in a research effort that led to the discovery of the 5-HT1B/1D receptor agonist sumatriptan. Clinical experience has shown sumatriptan to be an effective treatment with some limitations, such as relatively poor bioavailability, which naratriptan was developed to address. Increasing bioavailability has been achieved with greater lipophilicity and thus the potential for greater activity in the central nervous system. In this study the increased access to central sites has been exploited in an attempt to characterize the pharmacology of those central receptors with the newer tools available. Trigeminovascular activation was examined in the model of superior sagittal sinus stimulation. Cats were anaesthetized with α-chloralose (60 mg kg−1, intraperitoneal), paralyzed (gallamine 6 mg kg−1, intravenously) and ventilated. The superior sagittal sinus was accessed and isolated for electrical stimulation (250 μs pulses, 0.3 Hz, 100 V) by a mid-line circular craniotomy. The region of the dorsal surface of C2 spinal cord was exposed by a laminectomy and an electrode placed for recording evoked activity from sinus stimulation. Stimulation of the superior sagittal sinus resulted in activation of cells in the dorsal horn of C2. Cells fired with a probability of 0.69±0.1 at a latency of 9.2±0.2 ms. Intravenous (i.v.) administration of naratriptan at clinically relevant doses (30 and 100 μg kg−1), inhibited neuronal activity in trigeminal neurones of the C2 dorsal horn, reducing probability of firing without affecting latency. The effect of naratriptan could be reversed by administration of the selective 5-HT1B/1D receptor antagonist GR127935 (100 μg kg−1, i.v.). These data establish that naratriptan acts on central trigeminal neurones since sagittal sinus stimulation activates axons within the tentorial

  3. Electrochemical detection of human cytochrome P450 2A6 inhibition: a step toward reducing dependence on smoking.

    PubMed

    Castrignanò, Silvia; Ortolani, Alex; Sadeghi, Sheila J; Di Nardo, Giovanna; Allegra, Paola; Gilardi, Gianfranco

    2014-03-01

    Inhibition of human cytochrome P450 2A6 has been demonstrated to play an important role in nicotine metabolism and consequent smoking habits. Here, the "molecular Lego" approach was used to achieve the first reported electrochemical signal of human CYP2A6 and to improve its catalytic efficiency on electrode surfaces. The enzyme was fused at the genetic level to flavodoxin from Desulfovibrio vulgaris (FLD) to create the chimeric CYP2A6-FLD. Electrochemical characterization by cyclic voltammetry shows clearly defined redox transitions of the haem domain in both CYP2A6 and CYP2A6-FLD. Electrocatalysis experiments using coumarin as substrate followed by fluorimetric quantification of the product were performed with immobilized CYP2A6 and CYP2A6-FLD. Comparison of the kinetic parameters showed that coumarin catalysis was carried out with a higher efficiency by the immobilized CYP2A6-FLD, with a calculated kcat value significantly higher (P < 0.005) than that of CYP2A6, whereas the affinity for the substrate (KM) remained unaltered. The chimeric system was also successfully used to demonstrate the inhibition of the electrochemical activity of the immobilized CYP2A6-FLD, toward both coumarin and nicotine substrates, by tranylcypromine, a potent and selective CYP2A6 inhibitor. This work shows that CYP2A6 turnover efficiency is improved when the protein is linked to the FLD redox module, and this strategy can be utilized for the development of new clinically relevant biotechnological approaches suitable for deciphering the metabolic implications of CYP2A6 polymorphism and for the screening of CYP2A6 substrates and inhibitors. PMID:24527722

  4. Montelukast Disposition: No Indication of Transporter-Mediated Uptake in OATP2B1 and OATP1B1 Expressing HEK293 Cells

    PubMed Central

    Brännström, Marie; Nordell, Pär; Bonn, Britta; Davis, Andrew M.; Palmgren, Anna-Pia; Hilgendorf, Constanze; Rubin, Katarina; Grime, Ken

    2015-01-01

    Clinical studies with montelukast show variability in effect and polymorphic OATP2B1-dependent absorption has previously been implicated as a possible cause. This claim has been challenged with conflicting data and here we used OATP2B1-transfected HEK293 cells to clarify the mechanisms involved. For montelukast, no significant difference in cell uptake between HEK-OATP2B1 and empty vector cell lines was observed at pH 6.5 or pH 7.4, and no concentration-dependent uptake was detected. Montelukast is a carboxylic acid, a relatively potent inhibitor of OATP1B1, OATP1B3, and OATP2B1, and has previously been postulated to be actively transported into human hepatocytes. Using OATP1B1-transfected HEK293 cells and primary human hepatocytes in the presence of OATP inhibitors we demonstrate for the first time that active OATP-dependent transport is unlikely to play a significant role in the human disposition of montelukast. PMID:26694455

  5. Preferential expression of cytochrome CYP CYP2R1 but not CYP1B1 in human cord blood hematopoietic stem and progenitor cells.

    PubMed

    Xu, Shuoqi; Ren, Zhihua; Wang, Yanan; Ding, Xinxin; Jiang, Yongping

    2014-12-01

    Cytochrome P450 (CYP) enzymes metabolize numerous endogenous substrates, such as retinoids, androgens, estrogens and vitamin D, that can modulate important cellular processes, including proliferation, differentiation and apoptosis. The aim of this study is to characterize the expression of CYP genes in CD34+ human cord blood hematopoietic stem and early progenitor cells (CBHSPCs) as a first step toward assessment of the potential biological functions of CYP enzymes in regulating the expansion or differentiation of these cells. CD34+ CBHSPCs were purified from umbilical cord blood via antibody affinity chromatography. Purity of CD34+ CBHSPCs was assessed using fluorescence-activated cell sorting. RNA was isolated from purified CD34+ CBHSPCs and total mononuclear cells (MNCs) for RNA-PCR analysis of CYP expression. Fourteen human CYPs were detected in the initial screening with qualitative RT-PCR in CD34+ CBHSPCs. Further quantitative RNA-PCR analysis of the detected CYP transcripts yielded evidence for preferential expression of CYP2R1 in CD34+ CBHSPCs relative to MNCs; and for greater expression of CYP1B1 in MNCs relative to CD34+ CBHSPCs. These findings provide the basis for further studies on possible functions of CYP2R1 and CYP1B1 in CBHSPCs׳ proliferation and/or differentiation and their potential utility as targets for drugs designed to modulate CD34+ CBHSPC expansion or differentiation. PMID:26579418

  6. Preferential expression of cytochrome CYP CYP2R1 but not CYP1B1 in human cord blood hematopoietic stem and progenitor cells

    PubMed Central

    Xu, Shuoqi; Ren, Zhihua; Wang, Yanan; Ding, Xinxin; Jiang, Yongping

    2014-01-01

    Cytochrome P450 (CYP) enzymes metabolize numerous endogenous substrates, such as retinoids, androgens, estrogens and vitamin D, that can modulate important cellular processes, including proliferation, differentiation and apoptosis. The aim of this study is to characterize the expression of CYP genes in CD34+ human cord blood hematopoietic stem and early progenitor cells (CBHSPCs) as a first step toward assessment of the potential biological functions of CYP enzymes in regulating the expansion or differentiation of these cells. CD34+ CBHSPCs were purified from umbilical cord blood via antibody affinity chromatography. Purity of CD34+ CBHSPCs was assessed using fluorescence-activated cell sorting. RNA was isolated from purified CD34+ CBHSPCs and total mononuclear cells (MNCs) for RNA-PCR analysis of CYP expression. Fourteen human CYPs were detected in the initial screening with qualitative RT-PCR in CD34+ CBHSPCs. Further quantitative RNA-PCR analysis of the detected CYP transcripts yielded evidence for preferential expression of CYP2R1 in CD34+ CBHSPCs relative to MNCs; and for greater expression of CYP1B1 in MNCs relative to CD34+ CBHSPCs. These findings provide the basis for further studies on possible functions of CYP2R1 and CYP1B1 in CBHSPCs׳ proliferation and/or differentiation and their potential utility as targets for drugs designed to modulate CD34+ CBHSPC expansion or differentiation. PMID:26579418

  7. Wave-of-Advance Models of the Diffusion of the Y Chromosome Haplogroup R1b1b2 in Europe

    PubMed Central

    Sjödin, Per; François, Olivier

    2011-01-01

    Whether or not the spread of agriculture in Europe was accompanied by movements of people is a long-standing question in archeology and anthropology, which has been frequently addressed with the help of population genetic data. Estimates on dates of expansion and geographic origins obtained from genetic data are however sensitive to the calibration of mutation rates and to the mathematical models used to perform inference. For instance, recent data on the Y chromosome haplogroup R1b1b2 (M269) have either suggested a Neolithic origin for European paternal lineages or a more ancient Paleolithic origin depending on the calibration of Y-STR mutation rates. Here we examine the date of expansion and the geographic origin of hgR1b1b2 considering two current estimates of mutation rates in a total of fourteen realistic wave-of-advance models. We report that a range expansion dating to the Paleolithic is unlikely to explain the observed geographical distribution of microsatellite diversity, and that whether the data is informative with respect to the spread of agriculture in Europe depends on the mutation rate assumption in a critical way. PMID:21720564

  8. Effect of uptake transporters OAT3 and OATP1B1 and efflux transporter MRP2 on the pharmacokinetics of eluxadoline

    PubMed Central

    Davenport, J Michael; Covington, Paul; Bonifacio, Laura; McIntyre, Gail; Venitz, Jürgen

    2015-01-01

    The effects of OATP1B1, OAT3, and MRP2 on the pharmacokinetics of eluxadoline, an oral, locally active, opioid receptor agonist/antagonist being developed for treatment of IBS-d were assessed in vivo. Coadministration of a single 200 mg dose of eluxadoline with cyclosporine, and probenecid increased eluxadoline systemic exposure [AUC(0–inf)] by 4.4- and 1.4-fold, respectively, whereas peak exposure (Cmax) increased 6.2-fold and 1.3-fold, respectively. Cyclosporine had little effect on renal clearance (CLren) of eluxadoline whereas probenecid reduced CLren by nearly 50%. These study results suggested that sinusoidal OATP1B1-mediated hepatic uptake of eluxadoline (during first-pass and systemic extraction) plays a major role in its absorption and disposition, whereas OAT3-mediated basolateral uptake in the proximal renal tubules and MRP2-mediated canalicular and renal tubular apical efflux play only minor roles in its overall disposition. All treatments were safe and well tolerated. PMID:25491493

  9. MicroRNA-187-5p suppresses cancer cell progression in non-small cell lung cancer (NSCLC) through down-regulation of CYP1B1.

    PubMed

    Mao, Ming; Wu, Zhouqing; Chen, Jiakuan

    2016-09-16

    Lung cancer remains a leading cause of cancer-associated mortality worldwide and non-small lung cancer (NSCLC) is responsible for over 80% of lung cancer-related deaths. Identifying novel molecular biomarker that can inhibit the progression of lung cancer will facilitate the development of new treatment strategies. Herein, we demonstrated that miR-187-5p is a tumor-suppressor miRNA in NSCLC progression. We found that expression of miR-187-5p was decreased obviously in NSCLC tissues. Down-regulation of miR-187-5p was associated with TNM stage and postoperative survival. Overexpression of miR-187-5p inhibited the growth and metastasis of NSCLC cells. The CYP1B1 was a direct target of miR-187-5p and promoted the growth and metastasis of NSCLC cells. Further study showed that CYP1B1 could reverse the inhibitory effect of miR-187-5p on growth and metastasis of NSCLC cells. Taken together, our data highlight the pivotal role of miR-187-5p in the progression of NSCLC. Thus, miR-187-5p may be a potential prognostic marker and of treatment relevance for NSCLC progression intervention. PMID:27495872

  10. Montelukast Disposition: No Indication of Transporter-Mediated Uptake in OATP2B1 and OATP1B1 Expressing HEK293 Cells.

    PubMed

    Brännström, Marie; Nordell, Pär; Bonn, Britta; Davis, Andrew M; Palmgren, Anna-Pia; Hilgendorf, Constanze; Rubin, Katarina; Grime, Ken

    2015-01-01

    Clinical studies with montelukast show variability in effect and polymorphic OATP2B1-dependent absorption has previously been implicated as a possible cause. This claim has been challenged with conflicting data and here we used OATP2B1-transfected HEK293 cells to clarify the mechanisms involved. For montelukast, no significant difference in cell uptake between HEK-OATP2B1 and empty vector cell lines was observed at pH 6.5 or pH 7.4, and no concentration-dependent uptake was detected. Montelukast is a carboxylic acid, a relatively potent inhibitor of OATP1B1, OATP1B3, and OATP2B1, and has previously been postulated to be actively transported into human hepatocytes. Using OATP1B1-transfected HEK293 cells and primary human hepatocytes in the presence of OATP inhibitors we demonstrate for the first time that active OATP-dependent transport is unlikely to play a significant role in the human disposition of montelukast. PMID:26694455

  11. A comparison of substrate dynamics in human CYP2E1 and CYP2A6

    SciTech Connect

    Harrelson, John P. . E-mail: harrelsonj@pacificu.edu; Henne, Kirk R.; Alonso, Darwin O.V.; Nelson, Sidney D.

    2007-01-26

    Considering the dynamic nature of CYPs, methods that reveal information about substrate and enzyme dynamics are necessary to generate predictive models. To compare substrate dynamics in CYP2E1 and CYP2A6, intramolecular isotope effect experiments were conducted, using deuterium labeled substrates: o-xylene, m-xylene, p-xylene, 2,6-dimethylnaphthalene, and 4,4'-dimethylbiphenyl. Competitive intermolecular experiments were also conducted using d{sub 0}- and d{sub 6}-labeled p-xylene. Both CYP2E1 and CYP2A6 displayed full isotope effect expression for o-xylene oxidation and almost complete suppression for dimethylbiphenyl. Interestingly (k {sub H}/k {sub D}){sub obs} for d{sub 3}-p-xylene oxidation ((k {sub H}/k {sub D}){sub obs} = 6.04 and (k {sub H}/k {sub D}){sub obs} = 5.53 for CYP2E1 and CYP2A6, respectively) was only slightly higher than (k {sub H}/k {sub D}){sub obs} for d{sub 3}-dimethylnaphthalene ((k {sub H}/k {sub D}){sub obs} = 5.50 and (k {sub H}/k {sub D}){sub obs} = 4.96, respectively). One explanation is that in some instances (k {sub H}/k {sub D}){sub obs} values are generated by the presence of two substrates-bound simultaneously to the CYP. Speculatively, if this explanation is valid, then intramolecular isotope effect experiments should be useful in the mechanistic investigation of P450 cooperativity.

  12. Inactivation of CYP2A6 by the Dietary Phenylpropanoid trans-Cinnamic Aldehyde (Cinnamaldehyde) and Estimation of Interactions with Nicotine and Letrozole.

    PubMed

    Chan, Jeannine; Oshiro, Tyler; Thomas, Sarah; Higa, Allyson; Black, Stephen; Todorovic, Aleksandar; Elbarbry, Fawzy; Harrelson, John P

    2016-04-01

    Human exposure to trans-cinnamic aldehyde [t-CA; cinnamaldehyde; cinnamal; (E)-3-phenylprop-2-enal] is common through diet and through the use of cinnamon powder for diabetes and to provide flavor and scent in commercial products. We evaluated the likelihood of t-CA to influence metabolism by inhibition of P450 enzymes. IC50 values from recombinant enzymes indicated that an interaction is most probable for CYP2A6 (IC50 = 6.1 µM). t-CA was 10.5-fold more selective for human CYP2A6 than for CYP2E1; IC50 values for P450s 1A2, 2B6, 2C9, 2C19, 2D6, and 3A4 were 15.8-fold higher or more. t-CA is a type I ligand for CYP2A6 (KS = 14.9 µM). Inhibition of CYP2A6 by t-CA was metabolism-dependent; inhibition required NADPH and increased with time. Glutathione lessened the extent of inhibition modestly and statistically significantly. The carbon monoxide binding spectrum was dramatically diminished after exposure to NADPH and t-CA, suggesting degradation of the heme or CYP2A6 apoprotein. Using a static model and mechanism-based inhibition parameters (K(I) = 18.0 µM; k(inact) = 0.056 minute(-1)), changes in the area under the concentration-time curve (AUC) for nicotine and letrozole were predicted in the presence of t-CA (0.1 and 1 µM). The AUC fold-change ranged from 1.1 to 3.6. In summary, t-CA is a potential source of pharmacokinetic variability for CYP2A6 substrates due to metabolism-dependent inhibition, especially in scenarios when exposure to t-CA is elevated due to high dietary exposure, or when cinnamon is used as a treatment of specific disease states (e.g., diabetes). PMID:26851241

  13. The involvement of intracellular Ca2+ in 5-HT1B/1D receptor-mediated contraction of the rabbit isolated renal artery

    PubMed Central

    Hill, P B; Dora, K A; Hughes, A D; Garland, C J

    2000-01-01

    5-Hydroxytryptamine1B/1D (5-HT1B/1D) receptor coupling to contraction was investigated in endothelium-denuded rabbit isolated renal arteries, by simultaneously measuring tension and intracellular [Ca2+], and tension in permeabilized smooth muscle cells.In intact arterial segments, 1 nM–10 μM 5-HT failed to induce contraction or increase the fura-2 fluorescence ratio (in the presence of 1 μM ketanserin and prazosin to block 5-HT2 and α1-adrenergic receptors, respectively). However, in vessels pre-exposed to either 20 mM K+ or 30 nM U46619, 5-HT stimulated concentration-dependent increases in both tension and intracellular [Ca2+].1 nM–10 μM U46619 induced concentration-dependent contractions. In the presence of nifedipine (0.3 and 1 μM) the maximal contraction to U46619 (10 μM) was reduced by around 70%. The residual contraction was abolished by the putative receptor operated channel inhibitor, SKF 96365 (2 μM).With 0.3 μM nifedipine present, 100 nM U46619 evoked similar contraction to 30 nM U46619 in the absence of nifedipine, but contraction to 5-HT (1 nM–10 μM) was abolished.In permeabilized arterial segments, 10 mM caffeine, 1 μM IP3 or 100 μM phenylephrine, each evoked transient contractions by releasing Ca2+ from intracellular stores, whereas 5-HT had no effect. In intact arterial segments pre-stimulated with 20 mM K+, 5-HT-evoked contractions were unaffected by 1 μM thapsigargin, which inhibits sarco- and endoplasmic reticulum calcium-ATPases.In vessels permeabilized with α-toxin and then pre-contracted with Ca2+ and GTP, 5-HT evoked further contraction, reflecting increased myofilament Ca2+-sensitivity.Contraction linked to 5-HT1B/1D receptor stimulation in the rabbit renal artery can be explained by an influx of external Ca2+ through voltage-dependent Ca2+ channels and sensitization of the contractile myofilaments to existing levels of Ca2+, with no release of Ca2+ from intracellular stores. PMID

  14. Novel imidazo[2,1-b]-1,3,4-thiadiazoles as promising antifungal agents against clinical isolate of Cryptococcus neoformans.

    PubMed

    Alwan, Wesam S; Karpoormath, Rajshekhar; Palkar, Mahesh B; Patel, Harun M; Rane, Rajesh A; Shaikh, Mahamadhanif S; Kajee, Afsana; Mlisana, Koleka P

    2015-05-01

    We herein report the synthesis and in vitro antimicrobial evaluation of twenty five novel hybrid derivatives of imidazo [2,1-b]-1,3,4-thiadiazole containing chalcones (5a-o) and Schiff bases (6a-j) against three fungal strains (Candida albicans, Cryptococcus neoformans and Aspergillus niger). Most of the tested compounds displayed substantial anti-fungal activity with MICs ranging between 1.56 and 100 μg/mL. Compounds 5a, 5b and 5n exhibited promising activity against C. neoformans at a MIC 1.56 μg/mL. In addition, compound 5n also demonstrated significant antifungal activity against the clinical isolates of C. neoformans at MIC 3.125 μg/mL. However, moderate activity was observed for these compounds against four bacterial strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa) and Mycobacterium tuberculosis (H37Rv). PMID:25847769

  15. Design and synthesis of pyrido[2,1-b][1,3,5]thiadiazine library via uncatalyzed Mannich-type reaction.

    PubMed

    Dotsenko, Victor V; Frolov, Konstantin A; Pekhtereva, Tatyana M; Papaianina, Olena S; Suykov, Sergey Yu; Krivokolysko, Sergey G

    2014-10-13

    This Research Article describes the synthesis of an over 700-member library of (8R/8S)-3-R-8-aryl-6-oxo-3,4,7,8-tetrahydro-2H,6H-pyrido[2,1-b][1,3,5]thiadiazin-9-carbonitriles by uncatalyzed Mannich-type reaction of N-methylmorpholinium (4R/4S)-4-aryl-3-cyano-6-oxo-1,4,5,6-tetrahydropyridin-2-thiolates with a set of primary amines and excessive HCHO. The scope and limitations of the reaction were studied. Starting thiolates were obtained in yields of 53-82% by multicomponent reaction of aromatic aldehydes, cyanothioacetamide, 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid), and N-methylmorpholine, followed by heterocyclization of the resulting Michael adducts. PMID:25191927

  16. Gene-gene-environment interactions between drugs, transporters, receptors, and metabolizing enzymes: Statins, SLCO1B1, and CYP3A4 as an example.

    PubMed

    Sadee, Wolfgang

    2013-09-01

    Pharmacogenetic biomarker tests include mostly specific single gene-drug pairs, capable of accounting for a portion of interindividual variability in drug response and toxicity. However, multiple genes are likely to contribute, either acting independently or epistatically, with the CYP2C9-VKORC1-warfarin test panel, an example of a clinically used gene-gene-dug interaction. I discuss here further instances of gene-gene-drug interactions, including a proposed dynamic effect on statin therapy by genetic variants in both a transporter (SLCO1B1) and a metabolizing enzyme (CYP3A4) in liver cells, the main target site where statins block cholesterol synthesis. These examples set a conceptual framework for developing diagnostic panels involving multiple gene-drug combinations. PMID:23436703

  17. A full CI treatment of the 1A1, 1B1, and 3B1 states of SiH2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1987-01-01

    Full CI calculations are presented for the 1A1, 3B1, and 1B1 states of SiH2 at their respective equilibrium geometries and at geometries with the SiH bonds stretched. These results are compared with those obtained from single-reference and multireference CI calculations. The computed Te values agree well with the full CI results, provided that the effects of higher-than-double excitations are accounted for either by the Davidson correction or by a multireference approach. When the SiH bonds are stretched, the single-reference methods are not sufficiently flexible, and only CASSCF/MRCI achieves chemical accuracy (i.e., agrees with the full CI to 1 kcal/mol). Overall, the accuracy of the various approximate methods is very similar to that found for H2O, NH2, and CH2.

  18. Cross-Species Integrative Functional Genomics in GeneWeaver Reveals a Role for Pafah1b1 in Altered Response to Alcohol.

    PubMed

    Bubier, Jason A; Wilcox, Troy D; Jay, Jeremy J; Langston, Michael A; Baker, Erich J; Chesler, Elissa J

    2016-01-01

    Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or genome-wide functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, Gene Weaver (http://www.geneweaver.org), couples curated results from genomic studies to graph-theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver's database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression, and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated to alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol. PMID:26834590

  19. Cross-Species Integrative Functional Genomics in GeneWeaver Reveals a Role for Pafah1b1 in Altered Response to Alcohol

    PubMed Central

    Bubier, Jason A.; Wilcox, Troy D.; Jay, Jeremy J.; Langston, Michael A.; Baker, Erich J.; Chesler, Elissa J.

    2016-01-01

    Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or genome-wide functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, Gene Weaver (http://www.geneweaver.org), couples curated results from genomic studies to graph-theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver's database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression, and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated to alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol. PMID:26834590

  20. Genetic Polymorphisms of CYP2A6 in a Case-Control Study on Bladder Cancer in Japanese Smokers.

    PubMed

    Kumondai, Masaki; Hosono, Hiroki; Orikasa, Kazuhiko; Arai, Yoichi; Arai, Tomio; Sugimura, Haruhiko; Ozono, Seiichiro; Sugiyama, Takayuki; Takayama, Tatsuya; Sasaki, Takamitsu; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2016-01-01

    Several of the procarcinogens inhaled in tobacco smoke, the primary risk factor for bladder cancer, are activated by CYP2A6. The association between the whole-gene deletion of CYP2A6 (CYP2A6*4) and a reduced risk of bladder cancer was suggested in Chinese Han smokers. However, there is no evidence for association between the risk of bladder cancer and CYP2A6 genotypes in the Japanese population. Using genomic DNA from smokers of the Japanese population (163 bladder cancer patients and 116 controls), we conducted a case-control study to assess the association between CYP2A6 polymorphisms and the risk of bladder cancer. Determination of CYP2A6 genotypes was carried out by amplifying each exon of CYP2A6 using polymerase chain reaction (PCR) and Sanger sequencing. The CYP2A6*4 allele was identified by an allele-specific PCR assay. Bladder cancer risk was evaluated using the activity score (AS) system based on CYP2A6 genotypes. The odds ratios (95% confidence interval) for the AS 0, AS 0.5, AS 1.0, and AS 1.5 groups were 0.46 (0.12-1.83), 0.43 (0.15-1.25), 0.86 (0.40-1.86), and 1.36 (0.60-3.06), respectively. In conclusion, although decreased CYP2A6 AS tended to reduce the risk of bladder cancer in Japanese smokers, no significant association was recognized in this population. However, given the relatively small size of the sample, further study is required to conclude the lack of a statistically significant association between CYP2A6 genotypes and the risk of bladder cancer. PMID:26725431

  1. Genetics is a major determinant of expression of the human hepatic uptake transporter OATP1B1, but not of OATP1B3 and OATP2B1

    PubMed Central

    2013-01-01

    Background Organic anion transporting polypeptide (OATP) 1B1, OATP1B3, and OATP2B1 (encoded by SLCO1B1, SLCO1B3, SLCO2B1) mediate the hepatic uptake of endogenous compounds like bile acids and of drugs, for example, the lipid-lowering atorvastatin, thereby influencing hepatobiliary elimination. Here we systematically elucidated the contribution of SLCO variants on expression of the three hepatic OATPs under consideration of additional important covariates. Methods Expression was quantified by RT-PCR and immunoblotting in 143 Caucasian liver samples. A total of 109 rare and common variants in the SLCO1B3-SLCO1B1 genomic region and the SLCO2B1 gene were genotyped by MALDI-TOF mass spectrometry and genome-wide SNP microarray technology. SLCO1B1 haplotypes affecting hepatic OATP1B1 expression were associated with pharmacokinetic data of the OATP1B1 substrate atorvastatin (n = 82). Results Expression of OATP1B1, OATP1B3, and OATP2B1 at the mRNA and protein levels showed marked interindividual variability. All three OATPs were expressed in a coordinated fashion. By a multivariate regression analysis adjusted for non-genetic and transcription covariates, increased OATP1B1 expression was associated with the coding SLCO1B1 variant c.388A > G (rs2306283) even after correction for multiple testing (P = 0.00034). This held true for haplotypes harboring c.388A > G but not the functional variant c.521T > C (rs4149056) associated with statin-related myopathy. c.388A > G also significantly affected atorvastatin pharmacokinetics. SLCO variants and non-genetic and regulatory covariates together accounted for 59% of variability of OATP1B1 expression. Conclusions Our results show that expression of OATP1B1, but not of OATP1B3 and OATP2B1, is significantly affected by genetic variants. The SLCO1B1 variant c.388A > G is the major determinant with additional consequences on atorvastatin plasma levels. PMID:23311897

  2. Parkinson's disease and CYP1A2 activity

    PubMed Central

    Forsyth, J T; Grünewald, R A; Rostami-Hodjegan, A; Lennard, M S; Sagar, H J; Tucker, G T

    2000-01-01

    Aims MPTP, a neurotoxin which induces parkinsonism is partially metabolized by the enzyme CYP1A2. Smoking appears to protect against Parkinson's disease (PD) and cigarette smoke induces CYP1A2 activity. Thus, we investigated the hypothesis that idiopathic PD is associated with lower CYP1A2 activity using caffeine as a probe compound. Methods CYP1A2 activity was assessed using saliva paraxanthine (PX) to caffeine (CA) ratios. Caffeine half-life was also estimated from salivary concentrations of caffeine at 2 and 5 h post dose. 117 treated and 40 untreated patients with PD and 105 healthy control subjects were studied. Results PX/CA ratios were 0.57, 0.93 and 0.77 in treated patients, untreated patients and healthy control subjects, respectively, with no significant differences between study groups (95% CI: treated patients vs controls −0.24, 0.57; untreated patients vs controls −0.75, 0.35). However, patients with PD (treated or untreated) had caffeine half-lives shorter than that in controls (treated patients: 262 min, untreated patients: 244 min, controls: 345 min; 95% CI: controls vs treated patients 23, 143 (P = 0.003); controls vs untreated patients 19, 184 (P = 0.011)). Amongst the patients with PD, caffeine half-life was also inversely related to the age of onset of disease (P = 0.012); gender and concomitant drugs did not influence this significantly. Conclusions Based on PX/CA ratio, there was no evidence of decreased CYP1A2 activity in patients compared with control subjects. The observed decrease in the elimination half-life of caffeine in PD may be caused by increased CYP2E1 activity, an enzyme that also contributes to the metabolism of caffeine. The latter warrants further investigation. PMID:11012552

  3. Affine Kac-Moody symmetric spaces related with A1^{(1)}, A2^{(1)},} A2^{(2)}

    NASA Astrophysics Data System (ADS)

    Nayak, Saudamini; Pati, K. C.

    2014-08-01

    Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A1^{(1)}, A2^{(1)}, A2^{(2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.

  4. The effect of the CYP1A2 *1F mutation on CYP1A2 inducibility in pregnant women

    PubMed Central

    Nordmark, Anna; Lundgren, Stefan; Ask, Birgitta; Granath, Fredrik; Rane, Anders

    2002-01-01

    Aims To investigate the influence of the CYP1A2*1F mutation on CYP1A2 activity in smoking and nonsmoking pregnant women. Methods Pregnant women (n = 904) who served as control subjects in a case-control study of early fetal loss were investigated. They were phenotyped for CYP1A2 using dietary caffeine and the urinary ratio AFMU + 1X + 1 U/1,7 U. An assay for CYP1A2*1F using 5′-nuclease assay (Taqman) was developed to genotype the population. Results The frequencies of *1 A and *1F alleles among Swedish women were 0.29 and 0.71, respectively. There was no statistically significant difference in CYP1A2 activity between the genotypes, although a trend towards enhanced activity was observed in *1F/*1F (log MRc 0.77) and *1F/*1 A (log MRc 0.82) genotypes compared with the *1 A/*1 A genotype (log MRc 0.71) (anovaP = 0.07). The mean difference between the *1 A homozygotes and the heterozygotes was 0.11 [95% confidence interval of the difference: (−0.21, −0.01)] and that between the *1 A and *1F homozygotes was 0.05 [95% confidence interval of the difference: (−0.13, 0.03)]. No significant effect (P = 0.22) of the *1F on CYP1A2 activity was observed in smokers, tested using an interaction term (smoking * genotype) in the anova model (*1F/*1F log MRc 0.79, *1F/*1 A log MRc 0.86, and *1 A/*1 A log MRc 0.73). In smokers, there was no difference in ratio between homozygotes for the *1 A and *1F alleles [mean difference −0.06; 95% confidence interval of the difference: −0.22, 0.11] or between *1 A/*1 A and *1 A/*1F genotypes [mean difference −0.13; 95% confidence interval of the difference: −0.29, 0.04]. Conclusions The effect of the CYP1A2*1F mutation on CYP1A2 activity in smoking pregnant women could not be confirmed. PMID:12445029

  5. GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population.

    PubMed

    Hung, Rayjean J; Boffetta, Paolo; Brennan, Paul; Malaveille, Christian; Hautefeuille, Agnès; Donato, Francesco; Gelatti, Umberto; Spaliviero, Massimiliano; Placidi, Donatella; Carta, Angela; Scotto di Carlo, Antonio; Porru, Stefano

    2004-07-01

    Tobacco smoking and occupation are major risk factors of bladder cancer via exposure to polycyclic aromatic hydrocarbons (PAHs) and aromatic amines. Glutathione S-transferase (GST) M1, T1 and P1 are involved in the detoxification of PAH reactive metabolites. Two N-acetyltransferase isozymes, NAT2 and NAT1, have major roles in catalyzing the N-acetylation and O-acetylation of aromatic amines. Cytochrome p450 1B1 (CYP1B1) and sulfotransferase 1A1 (SULT1A1) are also involved in the metabolism of PAHs and aromatic amines. It is hypothesized that the genetic polymorphisms of these metabolic enzymes have an effect on the individual susceptibility to bladder cancer in particular by interacting with relevant environmental exposures. A hospital-based case-control study among men in Brescia, Northern Italy recruited 201 incidence cases and 214 controls from 1997-2000. Occupational exposures were blindly coded by occupational physicians. Genotyping of polymorphisms were carried out with PCR-RFLP method. Unconditional multivariate logistic regression was applied to model the association between genetic polymorphisms and bladder cancer risk. Effect modifications by age of onset, smoking and occupational exposures to PAHs and aromatic amines were evaluated. We also conducted an analysis of interaction between genetic factors. GSTM1 and GSTT1 null genotype were associated with an increased risk of bladder cancer with an odds ratio (OR) of 1.69 (95% confidence interval [CI] = 1.11-2.56) and 1.74 (95% CI = 1.02-2.95), respectively. The effect of GSTM1 null was seen particularly in heavy smokers, and there was a combined effect with occupational exposure of aromatic amines (OR = 2.77, 95% CI = 1.08-7.10). We observed a trend (p-value < 0.01) of increasing cancer risk comparing subjects with normal GSTM1 and T1 activity to subjects with one (OR = 1.82, 95% CI = 1.16-2.85) or both null genotypes (OR = 2.58, 95% CI = 1.27-5.23). NAT2 slow acetylator was associated with marginally

  6. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior

    PubMed Central

    Thorgeirsson, Thorgeir E.; Gudbjartsson, Daniel F.; Surakka, Ida; Vink, Jacqueline M.; Amin, Najaf; Geller, Frank; Sulem, Patrick; Rafnar, Thorunn; Esko, Tõnu; Walter, Stefan; Gieger, Christian; Rawal, Rajesh; Mangino, Massimo; Prokopenko, Inga; Mägi, Reedik; Keskitalo, Kaisu; Gudjonsdottir, Iris H.; Gretarsdottir, Solveig; Stefansson, Hreinn; Thompson, John R.; Aulchenko, Yurii S.; Nelis, Mari; Aben, Katja K.; den Heijer, Martin; Dirksen, Asger; Ashraf, Haseem; Soranzo, Nicole; Valdes, Ana M; Steves, Claire; Uitterlinden, André G; Hofman, Albert; Tönjes, Anke; Kovacs, Peter; Hottenga, Jouke Jan; Willemsen, Gonneke; Vogelzangs, Nicole; Döring, Angela; Dahmen, Norbert; Nitz, Barbara; Pergadia, Michele L.; Saez, Berta; De Diego, Veronica; Lezcano, Victoria; Garcia-Prats, Maria D.; Ripatti, Samuli; Perola, Markus; Kettunen, Johannes; Hartikainen, Anna-Liisa; Pouta, Anneli; Laitinen, Jaana; Isohanni, Matti; Huei-Yi, Shen; Allen, Maxine; Krestyaninova, Maria; Hall, Alistair S; Jones, Gregory T.; van Rij, Andre M.; Mueller, Thomas; Dieplinger, Benjamin; Haltmayer, Meinhard; Jonsson, Steinn; Matthiasson, Stefan E.; Oskarsson, Hogni; Tyrfingsson, Thorarinn; Kiemeney, Lambertus A.; Mayordomo, Jose I.; Lindholt, Jes S; Pedersen, Jesper Holst; Franklin, Wilbur A.; Wolf, Holly; Montgomery, Grant W.; Heath, Andrew C.; Martin, Nicholas G.; Madden, Pamela A.F.; Giegling, Ina; Rujescu, Dan; Järvelin, Marjo-Riitta; Salomaa, Veikko; Stumvoll, Michael; Spector, Tim D; Wichmann, H-Erich; Metspalu, Andres; Samani, Nilesh J.; Penninx, Brenda W.; Oostra, Ben A.; Boomsma, Dorret I.; Tiemeier, Henning; van Duijn, Cornelia M.; Kaprio, Jaakko; Gulcher, Jeffrey R.; McCarthy, Mark I.; Peltonen, Leena; Thorsteinsdottir, Unnur; Stefansson, Kari

    2011-01-01

    Smoking is a risk factor for most of the diseases leading in mortality1. We conducted genome-wide association (GWA) meta-analyses of smoking data within the ENGAGE consortium to search for common alleles associating with the number of cigarettes smoked per day (CPD) in smokers (N=31,266) and smoking initiation (N=46,481). We tested selected SNPs in a second stage (N=45,691 smokers), and assessed some in a third sample (N=9,040). Variants in three genomic regions associated with CPD (P< 5·10−8), including previously identified SNPs at 15q25 represented by rs1051730-A (0.80 CPD,P=2.4·10−69), and SNPs at 19q13 and 8p11, represented by rs4105144-C (0.39 CPD, P=2.2·10−12) and rs6474412-T (0.29 CPD,P= 1.4·10−8), respectively. Among the genes at the two novel loci, are genes encoding nicotine-metabolizing enzymes (CYP2A6 and CYP2B6), and nicotinic acetylcholine receptor subunits (CHRNB3 and CHRNA6) highlighted in previous studies of nicotine dependence2-3. Nominal associations with lung cancer were observed at both 8p11 (rs6474412-T,OR=1.09,P=0.04) and 19q13 (rs4105144-C,OR=1.12,P=0.0006). PMID:20418888

  7. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure.

    PubMed

    Jacob, Aude; Potin, Sophie; Chapy, Hélène; Crete, Dominique; Glacial, Fabienne; Ganeshamoorthy, Kayathiri; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier

    2015-07-10

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor activated by a variety of widespread persistent environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). It can transactivate the expression of several target genes. Recently AhR transcripts were detected in isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line, an in vitro model of the human cerebral endothelium. To date AhR implication in the co-regulation of ABCB1, ABCG2 and CYP1B1 at human cerebral endothelium has not been addressed. Here we investigated whether AhR could co-regulate ABCB1, ABCG2 and CYP1B1 expressions in the hCMEC/D3 cell line. Exposure to TCDD induced a concentration-dependent increase in CYP1B1 expression. We demonstrated AhR involvement in the TCDD-mediated increase in CYP1B1 expression by using small interfering RNA against AhR. Western blotting analysis also revealed an increase in CYP1B1 protein expression following TCDD exposure in hCMEC/D3. Regarding ABCB1 and ABCG2, exposure to TCDD had no effect on their protein expressions and functional activities. In conclusion our data indicated a differential modulation of CYP1B1 and ABCB1/ABCG2 expressions in hCMEC/D3 cells following TCDD exposure. PMID:25858487

  8. FSH-induced p38-MAPK-mediated dephosphorylation at serine 727 of the signal transducer and activator of transcription 1 decreases Cyp1b1 expression in mouse granulosa cells.

    PubMed

    Du, Xue-Hai; Zhou, Xiao-Long; Cao, Rui; Xiao, Peng; Teng, Yun; Ning, Cai-Bo; Liu, Hong-Lin

    2015-01-01

    Most mammalian follicles undergo atresia at various stages before ovulation, and granulosa cell apoptosis is a major cause of antral follicular atresia. Estradiol is an essential mitogen for granulosa cell proliferation in vivo and inhibition of apoptosis. The estradiol-producing capacity and metabolism levels are important for follicle health, and sufficient estradiol is necessary for follicle development and ovulation. Cyp1b1, a member of the cytochrome P450 1 subfamily, is responsible for the metabolism of a wide variety of halogenated and polycyclic aromatic hydrocarbons in diverse tissues. In mouse follicles, Cyp1b1 converts estradiol to 4-hydroxyestradiol. We investigated mouse granulosa cells (MGCs) in vivo and in vitro and found that Cyp1b1 played a crucial role in estradiol metabolism in dominant follicles. Follicle-stimulating hormone (FSH) decreased estrogen metabolism by reducing Cyp1b1 mRNA and protein levels in MGCs. Furthermore, FSH regulated signal transducer and activator of transcription 1 (STAT1), a significant transcription factor of Cyp1b1, by mediating the dephosphorylation of STAT1 on serine 727 (Ser(727)) in MGCs. p38 mitogen-activated protein kinase (MAPK) may be involved in the FSH-induced dephosphorylation of STAT1 on Ser(727) in MGCs. These results suggested that FSH functions via p38 MAPK-induced dephosphorylation at Ser(727) of STAT1 to downregulate Cyp1b1 expression and maintain the estradiol levels in mouse dominant follicles. PMID:25315223

  9. A new 17p13.3 microduplication including the PAFAH1B1 and YWHAE genes resulting from an unbalanced X;17 translocation.

    PubMed

    Hyon, Capucine; Marlin, Sandrine; Chantot-Bastaraud, Sandra; Mabboux, Philippe; Beaujard, Marie-Paule; Al Ageeli, Essam; Vazquez, Marie-Paule; Picard, Arnaud; Siffroi, Jean-Pierre; Portnoï, Marie-France

    2011-01-01

    Submicroscopic duplications of the genomic interval deleted in Miller-Dieker syndrome (MDS) were recently identified by array-based comparative genomic hybridization (a-CGH) studies, describing new genomic disorders in the MDS locus. These rearrangements of varying size, from 59-88 kb to 4 Mb, were non-recurrent, and appear to result from diverse molecular mechanisms. Only five patients had overlapping 17p13.3 duplications including the entire MDS critical region. We describe here a 13-year-old girl with a novel microduplication of the MDS critical region, involving the PAFAH1B1 and YWHAE genes. She presented with moderate psychomotor retardation, speech delay, behavioral problems, and bilateral cleft lip and palate, a previously unreported manifestation. Initially diagnosed as having an apparently simple terminal Xq26 deletion on standard cytogenetic analysis, she was found to have an associated terminal 4.2 Mb 17p13.3 submicroscopic duplication, identified by subtelomere FISH analysis, further characterized by high-resolution array CGH, resulting from an unbalanced X;17 translocation. Phenotypic comparison with the 5 other patients previously described, revealed common phenotypic features, such as hypotonia, mild to moderate developmental delay/mental retardation, speech abnormalities, behavioral problems, recurrent infections, relatively increase of body weight, discrete facial dysmorphism including downslanting palpebral fissures, broad midface, pointed chin, contributing to further delineate this new 17p13.3 microduplication syndrome. PMID:21195811

  10. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6.

    PubMed

    Hu, Hao; Yu, Ting; Arpiainen, Satu; Lang, Matti A; Hakkola, Jukka; Abu-Bakar, A'edah

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5'-Luc constructs--down to -160bp from the TSS--showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from -160 to -74bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene--a well-known p53 activator--increased the expression of the p53 responsive positive control and the CYP2A6-5'-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5'-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. PMID:26343999

  11. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior.

    PubMed

    Thorgeirsson, Thorgeir E; Gudbjartsson, Daniel F; Surakka, Ida; Vink, Jacqueline M; Amin, Najaf; Geller, Frank; Sulem, Patrick; Rafnar, Thorunn; Esko, Tõnu; Walter, Stefan; Gieger, Christian; Rawal, Rajesh; Mangino, Massimo; Prokopenko, Inga; Mägi, Reedik; Keskitalo, Kaisu; Gudjonsdottir, Iris H; Gretarsdottir, Solveig; Stefansson, Hreinn; Thompson, John R; Aulchenko, Yurii S; Nelis, Mari; Aben, Katja K; den Heijer, Martin; Dirksen, Asger; Ashraf, Haseem; Soranzo, Nicole; Valdes, Ana M; Steves, Claire; Uitterlinden, André G; Hofman, Albert; Tönjes, Anke; Kovacs, Peter; Hottenga, Jouke Jan; Willemsen, Gonneke; Vogelzangs, Nicole; Döring, Angela; Dahmen, Norbert; Nitz, Barbara; Pergadia, Michele L; Saez, Berta; De Diego, Veronica; Lezcano, Victoria; Garcia-Prats, Maria D; Ripatti, Samuli; Perola, Markus; Kettunen, Johannes; Hartikainen, Anna-Liisa; Pouta, Anneli; Laitinen, Jaana; Isohanni, Matti; Huei-Yi, Shen; Allen, Maxine; Krestyaninova, Maria; Hall, Alistair S; Jones, Gregory T; van Rij, Andre M; Mueller, Thomas; Dieplinger, Benjamin; Haltmayer, Meinhard; Jonsson, Steinn; Matthiasson, Stefan E; Oskarsson, Hogni; Tyrfingsson, Thorarinn; Kiemeney, Lambertus A; Mayordomo, Jose I; Lindholt, Jes S; Pedersen, Jesper Holst; Franklin, Wilbur A; Wolf, Holly; Montgomery, Grant W; Heath, Andrew C; Martin, Nicholas G; Madden, Pamela A F; Giegling, Ina; Rujescu, Dan; Järvelin, Marjo-Riitta; Salomaa, Veikko; Stumvoll, Michael; Spector, Tim D; Wichmann, H-Erich; Metspalu, Andres; Samani, Nilesh J; Penninx, Brenda W; Oostra, Ben A; Boomsma, Dorret I; Tiemeier, Henning; van Duijn, Cornelia M; Kaprio, Jaakko; Gulcher, Jeffrey R; McCarthy, Mark I; Peltonen, Leena; Thorsteinsdottir, Unnur; Stefansson, Kari

    2010-05-01

    Smoking is a common risk factor for many diseases. We conducted genome-wide association meta-analyses for the number of cigarettes smoked per day (CPD) in smokers (n = 31,266) and smoking initiation (n = 46,481) using samples from the ENGAGE Consortium. In a second stage, we tested selected SNPs with in silico replication in the Tobacco and Genetics (TAG) and Glaxo Smith Kline (Ox-GSK) consortia cohorts (n = 45,691 smokers) and assessed some of those in a third sample of European ancestry (n = 9,040). Variants in three genomic regions associated with CPD (P < 5 x 10(-8)), including previously identified SNPs at 15q25 represented by rs1051730[A] (effect size = 0.80 CPD, P = 2.4 x 10(-69)), and SNPs at 19q13 and 8p11, represented by rs4105144[C] (effect size = 0.39 CPD, P = 2.2 x 10(-12)) and rs6474412-T (effect size = 0.29 CPD, P = 1.4 x 10(-8)), respectively. Among the genes at the two newly associated loci are genes encoding nicotine-metabolizing enzymes (CYP2A6 and CYP2B6) and nicotinic acetylcholine receptor subunits (CHRNB3 and CHRNA6), all of which have been highlighted in previous studies of smoking and nicotine dependence. Nominal associations with lung cancer were observed at both 8p11 (rs6474412[T], odds ratio (OR) = 1.09, P = 0.04) and 19q13 (rs4105144[C], OR = 1.12, P = 0.0006). PMID:20418888

  12. Tritium analyses of COBRA-1A2 beryllium pebbles

    SciTech Connect

    Baldwin, D.L.

    1998-03-01

    Selected tritium measurements have been completed for the COBRA-1A2 experiment C03 and D03 beryllium pebbles. The completed results, shown in Tables 1, 2, and 3, include the tritium assay results for the 1-mm and 3-mm C03 pebbles, and the 1-mm D03 pebbles, stepped anneal test results for both types of 1-mm pebbles, and the residual analyses for the stepped-anneal specimens. All results have been reported with date-of-count and are not corrected for decay. Stepped-anneal tritium release response is provided in addenda.

  13. Effects of 5-HT1B/1D receptor agonist rizatriptan on cerebral blood flow and blood volume in normal circulation.

    PubMed

    Okazawa, Hidehiko; Tsuchida, Tatsuro; Pagani, Marco; Mori, Tetsuya; Kobayashi, Masato; Tanaka, Fumiko; Yonekura, Yoshiharu

    2006-01-01

    To investigate the vasoconstrictor effect of 5-hydroxytryptamine (5-HT1B/1D) receptor agonists for migraine treatment, changes in cerebral blood flow (CBF) and blood volume induced by rizatriptan were assessed by positron emission tomography (PET). Eleven healthy volunteers underwent PET studies before and after rizatriptan administration. Dynamic PET data were acquired after bolus injection of H2(15)O to analyze CBF and arterial-to-capillary blood volume (V0) images using the three-weighted integral method. After a baseline scan, three further acquisitions were performed at 40 to 50, 60 and 70 to 80 mins after drug administration. Global and regional differences in CBF and V0 between conditions were compared using absolute values in the whole brain and cortical regions, as well as statistical parametric mapping (SPM) analysis. The global and regional values for CBF and V0 decreased significantly after rizatriptan administration compared with the baseline condition. However, both values recovered to baseline within 80 mins after treatment. The maximal reduction in global CBF and V0 was approximately 13% of baseline value. The greatest decrease in CBF was observed approximately 60 mins after drug administration, whereas the maximal reduction in V0 was observed approximately 5 mins earlier. Statistical parametric mapping did not highlight any regional differences between conditions. Thus, in brain circulation, rizatriptan caused significant CBF and V0 decreases, which are consistent with the vasoconstrictor effect of triptans on the large cerebral arteries. The gradual recovery in the late phase from the maximal CBF and V0 decrease suggests that rizatriptan does not affect the cerebral autoregulatory response in small arteries induced by CBF reduction. PMID:15944648

  14. Analysis of dibenzo[def,p]chrysene-deoxyadenosine adducts in wild-type and cytochrome P450 1b1 knockout mice using stable-isotope dilution UHPLC-MS/MS.

    PubMed

    Harper, Tod A; Morré, Jeff; Lauer, Fredine T; McQuistan, Tammie J; Hummel, Jessica M; Burchiel, Scott W; Williams, David E

    2015-04-01

    The polycyclic aromatic hydrocarbon (PAH), dibenzo[def,p]chrysene (DBC; also known as dibenzo[a,l]pyrene), is a potent carcinogen in animal models and a class 2A human carcinogen. Recent investigations into DBC-mediated toxicity identified DBC as a potent immunosuppressive agent similar to the well-studied immunotoxicant 7,12-dimethylbenz[a]anthracene (DMBA). DBC, like DMBA, is bioactivated by cytochrome P450 (CYP) 1B1 and forms the reactive metabolite DBC-11,12-diol-13,14-epoxide (DBCDE). DBCDE is largely responsible for the genotoxicity associated with DBC exposure. The immunosuppressive properties of several PAHs are also linked to genotoxic mechanisms. Therefore, this study was designed to identify DBCDE-DNA adduct formation in the spleen and thymus of wild-type and cytochrome P450 1b1 (Cyp1b1) knockout (KO) mice using a highly sensitive stable-isotope dilution UHPLC-MS/MS method. Stable-isotope dilution UHPLC-MS/MS identified the major DBC adducts (±)-anti-cis-DBCDE-dA and (±)-anti-trans-DBCDE-dA in the lung, liver, and spleen of both WT and Cyp1b1 KO mice. However, adduct formation in the thymus was below the level of quantitation for our method. Additionally, adduct formation in Cyp1b1 KO mice was significantly reduced compared to wild-type (WT) mice receiving DBC via oral gavage. In conclusion, the current study identifies for the first time DBCDE-dA adducts in the spleen of mice supporting the link between genotoxicity and immunosuppression, in addition to supporting previous studies identifying Cyp1b1 as the primary CYP involved in DBC bioactivation to DBCDE. The high levels of DBC-DNA adducts identified in the spleen, along with the known high levels of Cyp1b1 expression in this organ, supports further investigation into DBC-mediated immunotoxicity. PMID:25868132

  15. Analysis of Dibenzo[def,p]chrysene-Deoxyadenosine Adducts in Wild-Type and Cytochrome P450 1b1 Knockout Mice using Stable-Isotope Dilution UHPLC-MS/MS

    PubMed Central

    Harper, Tod A.; Morré, Jeff; Lauer, Fredine T.; McQuistan, Tammie J.; Hummel, Jessica M.; Burchiel, Scott W.; Williams, David E.

    2015-01-01

    The polycyclic aromatic hydrocarbon (PAH), dibenzo[def,p]chrysene (DBC; also known as dibenzo[a,l]pyrene), is a potent carcinogen in animal models and a class 2A human carcinogen. Recent investigations into DBC-mediated toxicity identified DBC as a potent immunosuppressive agent similar to the well-studied immunotoxicant 7,12-dimethylbenz[a]anthracene (DMBA). DBC, like DMBA, is bioactivated by cytochrome P450 (CYP) 1B1 and forms the reactive metabolite DBC-11,12-diol-13,14-epoxide (DBCDE). DBCDE is largely responsible for the genotoxicity associated with DBC exposure. The immunosuppressive properties of several PAHs are also linked to genotoxic mechanisms. Therefore, this study was designed to identify DBCDE-DNA adduct formation in the spleen and thymus of wild-type and cytochrome P450 1b1 (Cyp1b1) knockout (KO) mice using a highly sensitive stable-isotope dilution UHPLC-MS/MS method. Stable-isotope dilution UHPLC-MS/MS identified the major DBC adducts (±)-anti-cis-DBCDE-dA and (±)-anti-trans-DBCDE-dA in the lung, liver, and spleen of both WT and Cyp1b1 KO mice. However, adduct formation in the thymus was below the level of quantitation for our method. Additionally, adduct formation in Cyp1b1 KO mice was significantly reduced compared to wild-type (WT) mice receiving DBC via oral gavage. In conclusion, the current study identifies for the first time DBCDE-dA adducts in the spleen of mice supporting the link between genotoxicity and immunosuppression, in addition to supporting previous studies identifying Cyp1b1 as the primary CYP involved in DBC bioactivation to DBCDE. The high levels of DBC-DNA adducts identified in the spleen, along with the known high levels of Cyp1b1 expression in this organ, supports further investigation into DBC-mediated immunotoxicity. PMID:25868132

  16. Influence of β-adrenoceptor antagonists on the pharmacokinetics of rizatriptan, a 5-HT1B/1D agonist: differential effects of propranolol, nadolol and metoprolol

    PubMed Central

    Goldberg, Michael R; Sciberras, David; De Smet, Marina; Lowry, Richard; Tomasko, Lisa; Lee, Yih; Olah, Timothy V; Zhao, Jamie; Vyas, Kamlesh P; Halpin, Rita; Kari, Prasad H; James (deceased), Ian

    2001-01-01

    Aims Patients with migraine may receive the 5-HT1B/1D agonist, rizatriptan (5 or 10 mg), to control acute attacks. Patients with frequent attacks may also receive propranolol or other β-adrenoceptor antagonists for migraine prophylaxis. The present studies investigated the potential for pharmacokinetic or pharmacodynamic interaction between β-adrenoceptor blockers and rizatriptan. Methods Four double-blind, placebo-controlled, randomized crossover investigations were performed in a total of 51 healthy subjects. A single 10 mg dose of rizatriptan was administered after 7 days' administration of propranolol (60 and 120 mg twice daily), nadolol (80 mg twice daily), metoprolol (100 mg twice daily) or placebo. Rizatriptan pharmacokinetics were assessed. In vitro incubations of rizatriptan and sumatriptan with various β-adrenoceptor blockers were performed in human S9 fraction. Production of the indole-acetic acid-MAO-A metabolite of each triptan was measured. Results Administration of rizatriptan during propranolol treatment (120 mg twice daily for 7.5 days) increased the AUC(0,∞) for rizatriptan by approximately 67% and the Cmax by approximately 75%. A reduction in the dose of propranolol (60 mg twice daily) and/or the incorporation of a delay (1 or 2 h) between propranolol and rizatriptan administration did not produce a statistically significant change in the effect of propranolol on rizatriptan pharmacokinetics. Administration of rizatriptan together with nadolol (80 mg twice daily) or metoprolol (100 mg twice daily) for 7 days did not significantly alter the pharmacokinetics of rizatriptan. No untoward adverse experiences attributable to the pharmacokinetic interaction between propranolol and rizatriptan were observed, and no subjects developed serious clinical, laboratory, or other significant adverse experiences during coadministration of rizatriptan with any of the β-adrenoceptor blockers. In vitro incubations showed that propranolol, but not other

  17. SLCO1B1 and SLC19A1 Gene Variants and Irinotecan-Induced Rapid Response and Survival: A Prospective Multicenter Pharmacogenetics Study of Metastatic Colorectal Cancer

    PubMed Central

    Liao, Xin; Yu, Qianqian; Feng, Jueping; Ma, Hong; Dai, Jing; Li, Min; Chen, Jigui; Zang, Aihua; Wang, Qian; Ge, Shuwang; Qin, Kai; Cai, Juan; Yuan, Xianglin

    2013-01-01

    Background Rapid response to chemotherapy in metastatic colorectal cancer (mCRC) patients (response within 12 weeks of chemotherapy) may increase the chance of complete resection and improved survival. Few molecular markers predict irinotecan-induced rapid response and survival. Single-nucleotide polymorphisms (SNPs) in solute carrier genes are reported to correlate with the variable pharmacokinetics of irinotecan and folate in cancer patients. This study aims to evaluate the predictive role of 3 SNPs in mCRC patients treated with irinotecan and fluoropyrimidine-containing regimens. Materials and Methods Three SNPs were selected and genotyped in 137 mCRC patients from a Chinese prospective multicenter trial (NCT01282658). The chi-squared test, univariate and multivariable logistic regression model, and receiver operating characteristic analysis were used to evaluate correlations between the genotypes and rapid response. Kaplan-Meier survival analysis and Cox proportional hazard models were used to evaluate the associations between genotypes and survival outcomes. Benjamini and Hochberg False Discovery Rate correction was used in multiple testing Results Genotype GA/AA of SNP rs2306283 of the gene SLCO1B1 and genotype GG of SNP rs1051266 of the gene SLC19A1 were associated with a higher rapid response rate (odds ratio [OR] =3.583 and 3.521, 95%CI =1.301-9.871 and 1.271-9.804, p=0.011 and p=0.013, respectively). The response rate was 70% in patients with both genotypes, compared with only 19.7% in the remaining patients (OR = 9.489, 95%CI = 2.191-41.093, Fisher's exact test p=0.002). Their significances were all maintained even after multiple testing (all pc < 0.05). The rs2306283 GA/AA genotype was also an independent prognostic factor of longer progression-free survival (PFS) (hazard ratio = 0.402, 95%CI = 0.171-0.945, p=0.037). None of the SNPs predicted overall survival. Conclusions Polymorphisms of solute carriers’ may be useful to predict rapid response to

  18. More Power to OATP1B1: An Evaluation of Sample Size in Pharmacogenetic Studies Using a Rosuvastatin PBPK Model for Intestinal, Hepatic, and Renal Transporter-Mediated Clearances.

    PubMed

    Emami Riedmaier, Ariane; Burt, Howard; Abduljalil, Khaled; Neuhoff, Sibylle

    2016-07-01

    Rosuvastatin is a substrate of choice in clinical studies of organic anion-transporting polypeptide (OATP)1B1- and OATP1B3-associated drug interactions; thus, understanding the effect of OATP1B1 polymorphisms on the pharmacokinetics of rosuvastatin is crucial. Here, physiologically based pharmacokinetic (PBPK) modeling was coupled with a power calculation algorithm to evaluate the influence of sample size on the ability to detect an effect (80% power) of OATP1B1 phenotype on pharmacokinetics of rosuvastatin. Intestinal, hepatic, and renal transporters were mechanistically incorporated into a rosuvastatin PBPK model using permeability-limited models for intestine, liver, and kidney, respectively, nested within a full PBPK model. Simulated plasma rosuvastatin concentrations in healthy volunteers were in agreement with previously reported clinical data. Power calculations were used to determine the influence of sample size on study power while accounting for OATP1B1 haplotype frequency and abundance in addition to its correlation with OATP1B3 abundance. It was determined that 10 poor-transporter and 45 intermediate-transporter individuals are required to achieve 80% power to discriminate the AUC0-48h of rosuvastatin from that of the extensive-transporter phenotype. This number was reduced to 7 poor-transporter and 40 intermediate-transporter individuals when the reported correlation between OATP1B1 and 1B3 abundance was taken into account. The current study represents the first example in which PBPK modeling in conjunction with power analysis has been used to investigate sample size in clinical studies of OATP1B1 polymorphisms. This approach highlights the influence of interindividual variability and correlation of transporter abundance on study power and should allow more informed decision making in pharmacogenomic study design. PMID:27385171

  19. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials.

    PubMed

    Ferrari, M D; Goadsby, P J; Roon, K I; Lipton, R B

    2002-10-01

    The triptans, selective serotonin 5-HT1B/1D agonists, are very effective acute migraine drugs. Soon, seven different triptans will be clinically available at 13 different oral doses, making evidence-based selection guidelines necessary. Triptan trials have similar designs, facilitating meta-analysis. We wished to provide an evidence-based foundation for using triptans in clinical practice, and to review the methodological issues surrounding triptan trials. We asked pharmaceutical companies and the principal investigators of company-independent trials for the 'raw patient data' of all double-blind, randomized, controlled, clinical trials with oral triptans in migraine. All data were cross-checked with published or presented data. We calculated summary estimates across studies for important efficacy and tolerability parameters, and compared these with those from direct, head-to-head, comparator trials. Out of 76 eligible clinical trials, 53 (12 not yet published) involving 24089 patients met the criteria for inclusion. Mean results (and 95% confidence intervals) for sumatriptan 100 mg, the first available and most widely prescribed oral triptan, are 59% (57-60) for 2 h headache response (improvement from moderate or severe to mild or no pain); 29% (27-30) for 2 h pain free (improvement to no pain); 20% (18-21) for sustained pain free (pain free by 2 h and no headache recurrence or use of rescue medication 2-24 h post-dose), and 67% (63-70) for consistency (response in at least two out of three treated attacks); placebo-subtracted proportions for patients with at least one adverse event (AE) are 13% (8-18), for at least one central nervous system AE 6% (3-9), and for at least one chest AE 1.9% (1.0-2.7). Compared with these data: rizatriptan 10 mg shows better efficacy and consistency, and similar tolerability; eletriptan 80 mg shows better efficacy, similar consistency, but lower tolerability; almotriptan 12.5 mg shows similar efficacy at 2 h but better sustained

  20. Case study 5. Deconvoluting hyperbilirubinemia: differentiating between hepatotoxicity and reversible inhibition of UGT1A1, MRP2, or OATP1B1 in drug development.

    PubMed

    Templeton, Ian; Eichenbaum, Gary; Sane, Rucha; Zhou, Jin

    2014-01-01

    New molecular entities (NMEs) are evaluated using a rigorous set of in vitro and in vivo studies to assess their safety and suitability for testing in humans. Regulatory health authorities require that therapeutic and supratherapeutic doses be administered, by the intended route of administration, to two nonclinical species prior to human testing (ICH Expert Working Group. The international conference on harmonization of technical requirements for registration of pharmaceuticals for human use (ICH); Multidisciplinary guidelines; Nonclinical safety studies (M3). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M3_R2/Step4/M3_R2__Guideline.pdf , 2009). The purpose of these studies is to identify potential target organ toxicity and to determine if the effects are reversible. Liver is a potential site for toxicity caused by orally administered NMEs due to high exposure during first pass after oral administration. A range of clinical chemistry analytes are routinely measured in both nonclinical and clinical studies to evaluate and monitor for hepatotoxicity. While bilirubin itself circulates within a wide range of concentrations in many animal species and humans, without causing adverse effects and possibly providing benefits (Sedlak and Snyder. Pediatrics 113(6):1776-1782, 2004), bilirubin is one of the few readily monitored circulating biomarkers that can provide insight into liver function. Therefore, any changes in plasma or urine bilirubin levels must be carefully evaluated. Changes in bilirubin may occur as a result of adaptive nontoxic changes or severe toxicity. Examples of adaptive nontoxic changes in liver function, which may elevate direct (conjugated) and/or indirect (unconjugated) bilirubin above baseline levels, include reversible inhibition of UGT1A1-mediated bilirubin metabolism and OATP1B1-, OATP1B3-, or MRP2-mediated transport (Keogh. Adv Pharmacol 63:1-42, 2012). Alternatively, hepatocellular necrosis

  1. Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine

    SciTech Connect

    DeVore, Natasha M.; Meneely, Kathleen M.; Bart, Aaron G.; Stephens, Eva S.; Battaile, Kevin P.; Scott, Emily E.

    2013-11-20

    Human xenobiotic-metabolizing cytochrome P450 (CYP) enzymes can each bind and monooxygenate a diverse set of substrates, including drugs, often producing a variety of metabolites. Additionally, a single ligand can interact with multiple CYP enzymes, but often the protein structural similarities and differences that mediate such overlapping selectivity are not well understood. Even though the CYP superfamily has a highly canonical global protein fold, there are large variations in the active site size, topology, and conformational flexibility. We have determined how a related set of three human CYP enzymes bind and interact with a common inhibitor, the muscarinic receptor agonist drug pilocarpine. Pilocarpine binds and inhibits the hepatic CYP2A6 and respiratory CYP2A13 enzymes much more efficiently than the hepatic CYP2E1 enzyme. To elucidate key residues involved in pilocarpine binding, crystal structures of CYP2A6 (2.4 {angstrom}), CYP2A13 (3.0 {angstrom}), CYP2E1 (2.35 {angstrom}), and the CYP2A6 mutant enzyme, CYP2A6 I208S/I300F/G301A/S369G (2.1 {angstrom}) have been determined with pilocarpine in the active site. In all four structures, pilocarpine coordinates to the heme iron, but comparisons reveal how individual residues lining the active sites of these three distinct human enzymes interact differently with the inhibitor pilocarpine.

  2. Charakterisierung von Sulfotransferasen im Gastrointestinaltrakt von Mensch und Ratte und Aktivierung von Promutagenen in V79-Zellen, die eine intestinale Form (1B1) des Menschen und der Ratte exprimieren

    NASA Astrophysics Data System (ADS)

    Teubner, Wera

    2001-05-01

    Die Ausstattung der gastrointestinalen Mukosa des Menschen und der Ratte mit Sulfotransferasen wurde mit Hilfe von Immunodetektion und Enzymaktivitätsmessungen untersucht. In Proben aus Colon und Rektum von 39 Personen wurden die Formen h1A1, h1A3 und h1B1 identifiziert, wobei in einer weiteren Probe, die als einzige von einem an Colitis Ulcerosa erkrankten Patienten stammte, keine Sulfotransferasen nachgewiesen werden konnten. Bei der Immunblot-Analyse war das Expressionsmuster der einzelnen Formen in allen Proben ähnlich. In wenigen Proben waren die relativen Signalintensitäten der h1A1 und der h1B1 um die Hälfte erniedrigt. Der Gehalt von SULT an zytosolischem Protein zeigte einen bis zu 8 - 10fachen Unterschied, er betrug jedoch bei zwei Dritteln der Proben zwischen 0,15 und 0,3 (h1A1 und h1A3) bzw. 0,6 und 0,8 Promille (h1B1). Die Variation konnte nicht auf Alter, Geschlecht oder Krankheitsbild der Patienten zurückgeführt werden. Auch der für die allelischen Varianten der h1A1 beschriebene Effekt auf die Enzymaktiviät bzw. Stabilität konnte in der Menge an immunreaktivem Protein nicht in diesem Ausma detektiert werden. Die Allelhäufigkeit von h1A1*R und h1A1*H war gegenüber der gesunden Bevölkerung nicht verändert. In den sieben Proben aus dem Dünndarm (Coecum, viermal Ileum, Jejunum) konnten zusätzlich die Formen h1E1 und h2A1 identifiziert werden. Ein möglicherweise der Form h1C1 entsprechendes Protein wurde im Magen detektiert. Im Vergleich zum Menschen war die Expression in der Ratte stärker auf die Leber konzentriert. Während beim Menschen in allen untersuchten Abschnitten Sulfotransferasen in Mengen detektiert wurden, die in zwei Fällen (h1B1 und h1A3) sogar den Gehalt in der Leber überstiegen, beschränkte sich die Expression in der Ratte auf im Vergleich zur Leber geringe Mengen im Magen und Dickdarm. Nachgewiesen wurden die r1B1, r1A1 sowie eine nicht identifizierte Form von 35kD, bei der es sich vermutlich um die r1C2 handelt. Im

  3. Molecular diagnosis of distal renal tubular acidosis in Tunisian patients: proposed algorithm for Northern Africa populations for the ATP6V1B1, ATP6V0A4 and SCL4A1 genes

    PubMed Central

    2013-01-01

    Background Primary distal renal tubular acidosis (dRTA) caused by mutations in the genes that codify for the H + −ATPase pump subunits is a heterogeneous disease with a poor phenotype-genotype correlation. Up to now, large cohorts of dRTA Tunisian patients have not been analyzed, and molecular defects may differ from those described in other ethnicities. We aim to identify molecular defects present in the ATP6V1B1, ATP6V0A4 and SLC4A1 genes in a Tunisian cohort, according to the following algorithm: first, ATP6V1B1 gene analysis in dRTA patients with sensorineural hearing loss (SNHL) or unknown hearing status. Afterwards, ATP6V0A4 gene study in dRTA patients with normal hearing, and in those without any structural mutation in the ATP6V1B1 gene despite presenting SNHL. Finally, analysis of the SLC4A1 gene in those patients with a negative result for the previous studies. Methods 25 children (19 boys) with dRTA from 20 families of Tunisian origin were studied. DNAs were extracted by the standard phenol/chloroform method. Molecular analysis was performed by PCR amplification and direct sequencing. Results In the index cases, ATP6V1B1 gene screening resulted in a mutation detection rate of 81.25%, which increased up to 95% after ATP6V0A4 gene analysis. Three ATP6V1B1 mutations were observed: one frameshift mutation (c.1155dupC; p.Ile386fs), in exon 12; a G to C single nucleotide substitution, on the acceptor splicing site (c.175-1G > C; p.?) in intron 2, and one novel missense mutation (c.1102G > A; p.Glu368Lys), in exon 11. We also report four mutations in the ATP6V0A4 gene: one single nucleotide deletion in exon 13 (c.1221delG; p.Met408Cysfs*10); the nonsense c.16C > T; p.Arg6*, in exon 3; and the missense changes c.1739 T > C; p.Met580Thr, in exon 17 and c.2035G > T; p.Asp679Tyr, in exon 19. Conclusion Molecular diagnosis of ATP6V1B1 and ATP6V0A4 genes was performed in a large Tunisian cohort with dRTA. We identified three different ATP6V1

  4. Proteasome inhibitors MG-132 and bortezomib induce AKR1C1, AKR1C3, AKR1B1, and AKR1B10 in human colon cancer cell lines SW-480 and HT-29.

    PubMed

    Ebert, Bettina; Kisiela, Michael; Wsól, Vladimir; Maser, Edmund

    2011-05-30

    Aldo-keto reductases (AKRs) play central roles in the reductive metabolism of endogenous signaling molecules and in the detoxification of xenobiotics. AKRC1-1C3, AKR1B1 and AKR1B10 have been shown to be regulated via nuclear factor-erythroid 2 related factor 2 (Nrf2), a transcription factor that is activated upon oxidative stress. Proteasome inhibitors bortezomib and MG-132 produce mild oxidative stress that activates Nrf2-mediated gene expression that in turn may have cytoprotective effects. Bortezomib is clinically approved to treat haematological malignancies and it has also proven activity in solid tumors such as colon cancer. The present study investigated the effect of bortezomib and MG-132 on the expression of AKR1C1-1C4, AKR1B1, and AKR1B10 in colon cancer cell lines HT-29 and SW-480. Human cancer cell lines derived from different organs (lung, colon, pancreas, skin, liver, ovary) were initially assayed for the expression of the AKRs, showing a very unequal distribution. Even among the colon cell lines HT-29, Caco-2, HCT116 and SW-480, the AKRs were expressed quite non-uniformly. HT-29 cells expressed all AKRs on the mRNA level including liver-specific AKR1C4, but AKR1B1 was almost undetectable. In SW-480 cells, treatment with bortezomib (50 nM, 48 h) dramatically increased mRNA levels of AKR1B10 (32-fold), AKR1B1 (5.5-fold), and, to a lesser extent, AKR1C1 and AKR1C3. Drug-efflux transporter MRP2 (ABCC2) and Cox-2 were induced as well. AKR1C2 mRNA was down-regulated in SW-480 but induced in HT-29 cells. MG-132 increased mRNA amounts of AKR1C1, 1C3, 1B1, and 1B10 in a concentration-dependent manner. AKR1B10 and AKR1B1 protein expression was inducible by bortezomib in HT-29 cells, but not detectable in SW-480 cells. In conclusion, treatment with proteasome inhibitors increased the expression of several AKRs as well as of MRP2. It remains to be investigated whether this enzyme induction may contribute to enhanced cell survival and thereby supporting the

  5. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    PubMed

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-01

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated. PMID:26580496

  6. Differences in 4-hydroxyestradiol levels in leukocytes are related to CYP1A1(∗)2C, CYP1B1(∗)3 and COMT Val158Met allelic variants.

    PubMed

    Martínez-Ramírez, O C; Pérez-Morales, R; Petrosyan, P; Castro-Hernández, C; Gonsebatt, M E; Rubio, J

    2015-10-01

    Exposure to estrogen and its metabolites, including catechol estrogens (CEs) and catechol estrogen quinones (CE-Qs) is closely related to breast cancer. Polymorphisms of the genes involved in the catechol estrogens metabolism pathway (CEMP) have been shown to affect the production of CEs and CE-Qs. In this study, we measured the induction of CYP1A1, CYP1B1, COMT, and GSTP1 by 17β-estradiol (17β-E2) in leukocytes with CYP1A1(∗)2C, CYP1B1(∗)3, COMT Val158Met and GSTP1 Ile105Val polymorphisms by semi quantitative RT-PCR and compared the values to those of leukocytes with wild type alleles; we also compared the differences in formation of 4- hydroxyestradiol (4-OHE2) and DNA-adducts. The data show that in the leukocytes with mutant alleles treatment with 17β-E2 up-regulates CYP1A1 and CYP1B1 and down-regulates COMT mRNA levels, resulting in major increments in 4-OHE2 levels compared to leukocytes with wild-type alleles. Therefore, we propose induction levels of gene expression and intracellular 4-OHE2 concentrations associated with allelic variants in response to exposure of 17β-E2 as a noninvasive biomarker that can help determine the risk of developing non-hereditary breast cancer in women. PMID:26123186

  7. CYP1A2, GSTM1, and GSTT1 polymorphisms and diet effects on CYP1A2 activity in a crossover feeding trial*

    PubMed Central

    Peterson, Sabrina; Schwarz, Yvonne; Li, Shuying S.; Li, Lin; King, Irena B.; Chen, Chu; Eaton, David L.; Potter, John D.; Lampe, Johanna W.

    2009-01-01

    Cytochrome P-450 1A2 (CYP1A2) is a biotransformation enzyme that activates several procarcinogens. CYP1A2 is induced by cruciferous and inhibited by apiaceous vegetable intake. Using a randomized, cross-over feeding trial in humans, we investigated dose effects of cruciferous vegetables and effects of any interaction between cruciferous and apiaceous vegetables on CYP1A2 activity. We also investigated whether response varied by CYP1A2*1F, GSTM1, and GSTT1 genotypes (glutathione S-transferases that metabolize crucifer constituents) and whether CYP1A2 activity rebounds after apiaceous vegetables are removed from the diet. Participants (N = 73), recruited based on genotypes, consumed four diets for two weeks each: low-phytochemical diet (basal), basal plus single dose of cruciferous (1C), basal plus double dose of cruciferous (2C), and basal plus single dose of cruciferous and apiaceous vegetables (1C+A). CYP1A2 activity was determined by urine caffeine tests administered at baseline and the end of each feeding period. Compared with basal diet, the 1C diet increased CYP1A2 activity (P < 0.0001) and the 2C diet resulted in further increases (P < 0.0001) with men experiencing greater dose-response than women. The 1C+A diet decreased CYP1A2 activity compared to the 1C and 2C diets (P < 0.0001 for both). Although there was no overall effect of CYP1A2*1F or GSTM1-null/GSTT1-null genotypes or genotype-by-diet interactions, there were significant diet response differences within each genotype. Additionally, CYP1A2 activity recovered modestly one day after the removal of apiaceous vegetables. These results suggest complex interactions among dietary patterns, genetic variation, and modulation of biotransformation that may not be apparent in observational studies. PMID:19843669

  8. Inhibition of human Cytochrome P450 2E1 and 2A6 by aldehydes: Structure and activity relationships

    PubMed Central

    Kandagatla, Suneel K.; Mack, Todd; Simpson, Sean; Sollenberger, Jill; Helton, Eric; Raner, Gregory M.

    2014-01-01

    The purpose of this study was to probe active site structure and dynamics of human cytochrome P4502E1 and P4502A6 using a series of related short chain fatty aldehydes. Binding efficiency of the aldehydes was monitored via their ability to inhibit the binding and activation of the probe substrates p-nitrophenol (2E1) and coumarin (2A6). Oxidation of the aldehydes was observed in reactions with individually expressed 2E1, but not 2A6, suggesting alternate binding modes. For saturated aldehydes the optimum chain length for inhibition of 2E1 was 9 carbons (KI=7.8 ±0.3 μM), whereas for 2A6 heptanal was most potent (KI=15.8 ±1.1 μM). A double bond in the 2-position of the aldehyde significantly decreased the observed KI relative to the corresponding saturated compound in most cases. A clear difference in the effect of the double bond was observed between the two isoforms. With 2E1, the double bond appeared to remove steric constraints on aldehyde binding with KI values for the 5–12 carbon compounds ranging between 2.6 ± 0.1 μM and 12.8± 0.5 μM, whereas steric effects remained the dominant factor in the binding of the unsaturated aldehydes to 2A6 (observed KI values between 7.0± 0.5 μM and >1000 μM). The aldehyde function was essential for effective inhibition, as the corresponding carboxylic acids had very little effect on enzyme activity over the same range of concentrations, and branching at the 3-position of the aldehydes increased the corresponding KI value in all cases examined. The results suggest that a conjugated π-system may be a key structural determinant in the binding of these compounds to both enzymes, and may also be an important feature for the expansion of the active site volume in 2E1. PMID:24924949

  9. 2,3,7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)-MEDIATED OXIDATIVE STRESS IN FEMALE CYP1A-2 KNOCKOUT (CYP1A2-/-) MICE

    EPA Science Inventory

    2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD)-Mediated Oxidative Stress in Female CYP1A2 Knockout (CYP1A2-/-) Mice

    Deborah Burgin1, Janet Diliberto2, Linda Birnbaum2
    1UNC Toxicology; 2USEPA/ORD/NHEERL, RTP, NC

    Most of the effects due to TCDD exposure are mediated via...

  10. Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study

    PubMed Central

    Hong, Chi-Chen; Tang, Bing-Kou; Hammond, Geoffrey L; Tritchler, David; Yaffe, Martin; Boyd, Norman F

    2004-01-01

    Introduction Breast cancer risk may be determined by various genetic, metabolic, and lifestyle factors that alter sex hormone metabolism. Cytochrome P450 1A2 (CYP1A2) is responsible for the metabolism of estrogens and many exogenous compounds, including caffeine. Methods In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity and known or suspected risk factors for breast cancer. Blood levels of sex hormones, lipids, and growth factors were measured. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Stepwise and maximum R regression analyses were used to identify covariates related to CYP1A2 activity after adjustment for ethnicity. Results In both menopausal groups CYP1A2 activity was positively related to smoking and levels of sex hormone binding globulin. In premenopausal women, CYP1A2 activity was also positively related to insulin levels, caffeine intake, age, and plasma triglyceride levels, and negatively related with total cholesterol levels and body mass index. In postmenopausal women CYP1A2 activity was positively associated with insulin-like growth factor-1, and negatively associated with plasma triglyceride, high-density lipoprotein cholesterol, and age at menarche. Conclusion These results suggest that CYP1A2 activity is correlated with hormones, blood lipids, and lifestyle factors associated with breast cancer risk, although some of the observed associations were contrary to hypothesized directions and suggest that increased CYP1A2 function may be associated with increased risk for breast cancer. PMID:15217502

  11. Charakterisierung von Sulfotransferasen im Gastrointestinaltrakt von Mensch und Ratte und Aktivierung von Promutagenen in V79-Zellen, die eine intestinale Form (1B1) des Menschen und der Ratte exprimieren

    NASA Astrophysics Data System (ADS)

    Teubner, Wera

    2001-05-01

    Die Ausstattung der gastrointestinalen Mukosa des Menschen und der Ratte mit Sulfotransferasen wurde mit Hilfe von Immunodetektion und Enzymaktivitätsmessungen untersucht. In Proben aus Colon und Rektum von 39 Personen wurden die Formen h1A1, h1A3 und h1B1 identifiziert, wobei in einer weiteren Probe, die als einzige von einem an Colitis Ulcerosa erkrankten Patienten stammte, keine Sulfotransferasen nachgewiesen werden konnten. Bei der Immunblot-Analyse war das Expressionsmuster der einzelnen Formen in allen Proben ähnlich. In wenigen Proben waren die relativen Signalintensitäten der h1A1 und der h1B1 um die Hälfte erniedrigt. Der Gehalt von SULT an zytosolischem Protein zeigte einen bis zu 8 - 10fachen Unterschied, er betrug jedoch bei zwei Dritteln der Proben zwischen 0,15 und 0,3 (h1A1 und h1A3) bzw. 0,6 und 0,8 Promille (h1B1). Die Variation konnte nicht auf Alter, Geschlecht oder Krankheitsbild der Patienten zurückgeführt werden. Auch der für die allelischen Varianten der h1A1 beschriebene Effekt auf die Enzymaktiviät bzw. Stabilität konnte in der Menge an immunreaktivem Protein nicht in diesem Ausma detektiert werden. Die Allelhäufigkeit von h1A1*R und h1A1*H war gegenüber der gesunden Bevölkerung nicht verändert. In den sieben Proben aus dem Dünndarm (Coecum, viermal Ileum, Jejunum) konnten zusätzlich die Formen h1E1 und h2A1 identifiziert werden. Ein möglicherweise der Form h1C1 entsprechendes Protein wurde im Magen detektiert. Im Vergleich zum Menschen war die Expression in der Ratte stärker auf die Leber konzentriert. Während beim Menschen in allen untersuchten Abschnitten Sulfotransferasen in Mengen detektiert wurden, die in zwei Fällen (h1B1 und h1A3) sogar den Gehalt in der Leber überstiegen, beschränkte sich die Expression in der Ratte auf im Vergleich zur Leber geringe Mengen im Magen und Dickdarm. Nachgewiesen wurden die r1B1, r1A1 sowie eine nicht identifizierte Form von 35kD, bei der es sich vermutlich um die r1C2 handelt. Im

  12. Binding free energies for nicotine analogs inhibiting cytochrome P450 2A6 by a combined use of molecular dynamics simulations and QM/MM-PBSA calculations.

    PubMed

    Lu, Haiting; Huang, Xiaoqin; AbdulHameed, Mohamed Diwan M; Zhan, Chang-Guo

    2014-04-01

    Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations have been performed to explore the dynamic behaviors of cytochrome P450 2A6 (CYP2A6) binding with nicotine analogs (that are typical inhibitors) and to calculate their binding free energies in combination with Poisson-Boltzmann surface area (PBSA) calculations. The combined MD simulations and QM/MM-PBSA calculations reveal that the most important structural parameters affecting the CYP2A6-inhibitor binding affinity are two crucial internuclear distances, that is, the distance between the heme iron atom of CYP2A6 and the coordinating atom of the inhibitor, and the hydrogen-bonding distance between the N297 side chain of CYP2A6 and the pyridine nitrogen of the inhibitor. The combined MD simulations and QM/MM-PBSA calculations have led to dynamic CYP2A6-inhibitor binding structures that are consistent with the observed dynamic behaviors and structural features of CYP2A6-inhibitor binding, and led to the binding free energies that are in good agreement with the experimentally-derived binding free energies. The agreement between the calculated binding free energies and the experimentally-derived binding free energies suggests that the combined MD and QM/MM-PBSA approach may be used as a valuable tool to accurately predict the CYP2A6-inhibitor binding affinities in future computational design of new, potent and selective CYP2A6 inhibitors. PMID:24631364

  13. Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: Roles of PAH interactions and PAH metabolites

    SciTech Connect

    Spink, David C. Wu, Susan J.; Spink, Barbara C.; Hussain, Mirza M.; Vakharia, Dilip D.; Pentecost, Brian T.; Kaminsky, Laurence S.

    2008-02-01

    The interactions of polycyclic aromatic hydrocarbons (PAH) and cytochromes P450 (CYP) are complex; PAHs are enzyme inducers, substrates, and inhibitors. In T-47D breast cancer cells, exposure to 0.1 to 1 {mu}M benzo(k)fluoranthene (BKF) induced CYP1A1/1B1-catalyzed 17{beta}-estradiol (E{sub 2}) metabolism, whereas BKF levels greater than 1 {mu}M inhibited E{sub 2} metabolism. Time course studies showed that induction of CYP1-catalyzed E{sub 2} metabolism persisted after the disappearance of BKF or co-exposed benzo(a)pyrene, suggesting that BKF metabolites retaining Ah receptor agonist activity were responsible for prolonged CYP1 induction. BKF metabolites were shown, through the use of ethoxyresorufin O-deethylase and CYP1A1-promoter-luciferase reporter assays to induce CYP1A1/1B1 in T-47D cells. Metabolites formed by oxidation at the C-2/C-3 region of BKF had potencies for CYP1 induction exceeding those of BKF, whereas C-8/C-9 oxidative metabolites were somewhat less potent than BKF. The activities of expressed human CYP1A1 and 1B1 with BKF as substrate were investigated by use of HPLC with fluorescence detection, and by GC/MS. The results showed that both enzymes efficiently catalyzed the formation of 3-, 8-, and 9-OHBKF from BKF. These studies indicate that the inductive effects of PAH metabolites as potent CYP1 inducers are likely to be additional important factors in PAH-CYP interactions that affect metabolism and bioactivation of other PAHs, ultimately modulating PAH toxicity and carcinogenicity.

  14. Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: roles of PAH interactions and PAH metabolites

    PubMed Central

    Spink, David C.; Wu, Susan J.; Spink, Barbara C.; Hussain, Mirza M.; Vakharia, Dilip D.; Pentecost, Brian T.; Kaminsky, Laurence S.

    2008-01-01

    The interactions of polycyclic aromatic hydrocarbons (PAH) and cytochromes P450 (CYP) are complex; PAHs are enzyme inducers, substrates, and inhibitors. In T-47D breast cancer cells, exposure to 0.1 to 1 μM benzo(k)fluoranthene (BKF) induced CYP1A1/1B1-catalyzed 17β-estradiol (E2) metabolism, whereas BKF levels greater than 1 μM inhibited E2 metabolism. Time-course studies showed that induction of CYP1-catalyzed E2 metabolism persisted after the disappearance of BKF or co-exposed benzo(a)pyrene, suggesting that BKF metabolites retaining Ah receptor agonist activity were responsible for prolonged CYP1 induction. BKF metabolites were shown, through the use of ethoxyresorufin O-deethylase and CYP1A1-promoter-luciferase reporter assays, to induce CYP1A1/1B1 in T-47D cells. Metabolites formed by oxidation at the C-2/C-3 region of BKF had potencies for CYP1 induction exceeding those of BKF, whereas C-8/C-9 oxidative metabolites were somewhat less potent than BKF. The activities of expressed human CYP1A1 and 1B1 with BKF as substrate were investigated by use of HPLC with fluorescence detection, and by GC/MS. The results showed that both enzymes efficiently catalyzed the formation of 3-, 8-, and 9-OHBKF from BKF. These studies indicate that the inductive effects of PAH metabolites as potent CYP1 inducers are likely to be additional important factors in PAH-CYP interactions that affect metabolism and bioactivation of other PAHs, ultimately modulating PAH toxicity and carcinogenicity. PMID:17919675

  15. Prenatal 3,3',4,4',5-pentachlorobiphenyl exposure modulates induction of rat hepatic CYP 1A1, 1B1, and AhR by 7,12-dimethylbenz[a]anthracene

    SciTech Connect

    Wakui, Shin . E-mail: wakui@azabu-u.ac.jp; Yokoo, Kiyofumi; Takahashi, Hiroyuki; Muto, Tomoko; Suzuki, Yoshihiko; Kanai, Yoshikatsu; Hano, Hiroshi; Furusato, Masakuni; Endou, Hitoshi

    2006-02-01

    We previously reported the finding that prenatal exposure to a relatively low dose of PCB126 increases the rate of DMBA-induced rat mammary carcinoma, while a high dose decreased it. One of the most important factors determining the sensitivity to mammary carcinogenesis is the metabolic stage at administration of the carcinogenic agent. DMBA is a procarcinogen that recruits the host metabolism to yield its ultimate carcinogenic form, and CYP1A1 and CYP1B1 (CYP1) conduct this metabolism. We investigated the hepatic expression of CYP1 and AhR following oral administration of DMBA (100 mg/kg b.w.) (i.g.) to 50-day-old female Sprague-Dawley rats whose dams had been treated (i.g.) with 2.5 ng, 250 ng, 7.5 {mu}g of PCB126/kg or the vehicle on days 13 to 19 post-conception. Real-time quantitative RT-PCR analysis revealed that the prenatal exposure to a relatively low dose of PCB126 (the 250 ng group) prolonged the higher expression of CYP1A1, CYP1B1, and AhR mRNA, while prenatal exposure to a high dose of PCB126 (the 7.5 {mu}g group) prolonged the higher expression of CYP1A1 and AhR mRNA. Western blotting and immunohistochemical analyses were consistent with mRNAs changes. Because DMBA oxidation produces a highly mutagenic metabolite and is finally catalyzed by CYP1B1, a relatively low PCB126 dose might produce the biological character to potentially increase the risk of DMBA-induced mammary carcinoma.

  16. Cytogenetic damage in Turkish coke oven workers exposed to polycyclic aromatic hydrocarbons: Association with CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms.

    PubMed

    Ada, Ahmet Oguz; Demiroglu, Canan; Yilmazer, Meltem; Suzen, Halit Sinan; Demirbag, Ali Eba; Efe, Sibel; Alemdar, Yilmaz; Iscan, Mumtaz; Burgaz, Sema

    2013-09-01

    The aim of this study was to determine the frequencies of chromosomal aberrations (CA) and cytochalasin-blocked micronuclei (CBMN) in peripheral blood lymphocytes from Turkish coke oven workers and the influence of CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms on these biomarkers. Cytogenetic analysis showed that occupational exposure significantly increased the CA and CBMN frequencies. Gene polymorphisms, on the other hand, did not affect CA or CBMN in either exposed or control subjects. However, due to the limited sample size, our findings need to be verified in future studies with a larger sample. PMID:24084344

  17. Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells

    PubMed Central

    Hřebačková, Jana; Poljaková, Jitka; Eckschlager, Tomáš; Hraběta, Jan; Procházka, Pavel; Smutný, Svatopluk; Stiborová, Marie

    2009-01-01

    Histone deacetylase inhibitors such as valproic acid (VPA) and trichostatin A (TSA) were shown to exert antitumor activity. Here, the toxicity of both drugs to human neuroblastoma cell lines was investigated using MTT test, and IC50 values for both compounds were determined. Another target of this work was to evaluate the effects of both drugs on expression of cytochrome P450 (CYP) 1A1, 1B1 and 3A4 enzymes, which are known to be expressed in neuroblastoma cells. A malignant subset of neuroblastoma cells, so-called N-type cells (UKF-NB-3 cells) and the more benign S-type neuroblastoma cells (UKF-NB-4 and SK-N-AS cell lines) were studied from both two points of view. VPA and TSA inhibited the growth of neuroblastoma cells in a dose-dependent manner. The IC50 values ranging from 1.0 to 2.8 mM and from 69.8 to 129.4 nM were found for VPA and TSA, respectively. Of the neuroblastoma tested here, the N-type UKF-NB-3 cell line was the most sensitive to both drugs. The different effects of VPA and TSA were found on expression of CYP1A1, 1B1 and 3A4 enzymes in individual neuroblastoma cells tested in the study. Protein expression of all these CYP enzymes in the S-type SK-N-AS cell line was not influenced by either of studied drugs. On the contrary, in another S-type cell line, UKF-NB-4, VPA and TSA induced expression of CYP1A1, depressed levels of CYP1B1 and had no effect on expression levels of CYP3A4 enzyme. In the N-type UKF-NB-3 cell line, the expression of CYP1A1 was strongly induced, while that of CYP1B1 depressed by VPA and TSA. VPA also induced the expression of CYP3A4 in this neuroblastoma cell line. PMID:21217856

  18. Substrate-dependent drug-drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3.

    PubMed

    Noé, Johannes; Portmann, Renée; Brun, Marie-Elise; Funk, Christoph

    2007-08-01

    Hepatic uptake carriers of the organic anion-transporting peptide (OATP) family of solute carriers are more and more recognized as being involved in hepatic elimination of many drugs and potentially associated drug-drug interactions. The gemfibrozil-statin interaction was studied at the level of active hepatic uptake as a model for such drug-drug interactions. Active, temperature-dependent uptake of fluvastatin into primary human hepatocytes was shown. Multiple transporters are involved in this uptake as Chinese hamster ovary or HEK293 cells expressing either OATP1B1 (K(m) = 1.4-3.5 microM), OATP2B1 (K(m) = 0.7-0.8 microM), or OATP1B3 showed significant fluvastatin uptake relative to control cells. For OATP1B1 the inhibition by gemfibrozil was substrate-dependent as the transport of fluvastatin (IC(50) of 63 microM), pravastatin, simvastatin, and taurocholate was inhibited by gemfibrozil, whereas the transport of estrone-3-sulfate and troglitazone sulfate (both used at 3 microM) was not affected. The OATP1B1- but not OATP2B1-mediated transport of estrone-3-sulfate displayed biphasic saturation kinetics, with two distinct affinity components for estrone-3-sulfate (0.23 and 45 microM). Only the high-affinity component was inhibited by gemfibrozil. Recombinant OATP1B1-, OATP2B1-, and OATP1B3-mediated fluvastatin transport was inhibited to 97, 70, and 62% by gemfibrozil (200 microM), respectively, whereas only a small inhibitory effect by gemfibrozil (200 microM) on fluvastatin uptake into primary human hepatocytes was observed (27% inhibition). The results indicate that the in vitro engineered systems can not always predict the behavior in more complex systems such as freshly isolated primary hepatocytes. Therefore, selection of substrate, substrate concentration, and in vitro transport system are critical for the conduct of in vitro interaction studies involving individual liver OATP carriers. PMID:17470528

  19. PDZK1 and NHERF1 Regulate the Function of Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) by Modulating Its Subcellular Trafficking and Stability

    PubMed Central

    Zheng, Jian; Chan, Ting; Cheung, Florence Shin Gee; Zhu, Ling; Murray, Michael; Zhou, Fanfan

    2014-01-01

    The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins, especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This study investigated the role of PDZK1 and NHERF1 in the regulation of OATP1A2 in an in vitro cell model. Transporter function and protein expression were assessed in OATP1A2-transfected HEK-293 cells that co-expressed PDZK1 or NHERF1. Substrate (estrone-3-sulfate) uptake by OATP1A2 was significantly increased to ∼1.6- (PDZK1) and ∼1.8- (NHERF1) fold of control; this was dependent on the putative PDZ-binding domain within the C-terminus of OATP1A2. The functional increase of OATP1A2 following PDZK1 or NHERF1 over-expression was associated with increased transporter expression at the plasma membrane and in the whole cell, and was reflected by an increase in the apparent maximal velocity of estrone-3-sulfate uptake (Vmax: 138.9±4.1 (PDZK1) and 181.4±16.7 (NHERF1) versus 55.5±3.2 pmol*(µg*4 min)−1 in control; P<0.01). Co-immunoprecipitation analysis indicated that the regulatory actions of PDZK1 and NHERF1 were mediated by direct interaction with OATP1A2 protein. In further experiments PDZK1 and NHERF1 modulated OATP1A2 expression by decreasing its internalization in a clathrin-dependent (but caveolin-independent) manner. Additionally, PDZK1 and NHERF1 enhanced the stability of OATP1A2 protein in HEK-293 cells. The present findings indicated that PDZK1 and NHERF1 regulate the transport function of OATP1A2 by modulating protein internalization via a clathrin-dependent pathway and by enhancing protein stability. PMID:24728453

  20. Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study

    PubMed Central

    Hong, Chi-Chen; Tang, Bing-Kou; Rao, Venketeshwer; Agarwal, Sanjiv; Martin, Lisa; Tritchler, David; Yaffe, Martin; Boyd, Norman F

    2004-01-01

    Introduction Mammographically dense breast tissue is a strong predictor of breast cancer risk, and is influenced by both mitogens and mutagens. One enzyme that is able to affect both the mitogenic and mutagenic characteristics of estrogens is cytochrome P450 1A2 (CYP1A2), which is principally responsible for the metabolism of 17β-estradiol. Methods In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity, malondialdehyde (MDA) levels, and mammographic density. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Levels of serum and urinary MDA, and MDA–deoxyguanosine adducts in DNA were measured. Mammograms were digitized and measured using a computer-assisted method. Results CYP1A2 activity in postmenopausal women, but not in premenopausal women, was positively associated with mammographic density, suggesting that increased CYP1A2 activity after the menopause is a risk factor for breast cancer. In premenopausal women, but not in postmenopausal women, CYP1A2 activity was positively associated with serum and urinary MDA levels; there was also some evidence that CYP1A2 activity was more positively associated with percentage breast density when MDA levels were high, and more negatively associated with percentage breast density when MDA levels were low. Conclusion These findings provide further evidence that variation in the activity level of enzymes involved in estrogen metabolism is related to levels of mammographic density and potentially to breast cancer risk. PMID:15217501

  1. Design, synthesis and evaluation of small molecule imidazo[2,1-b][1,3,4]thiadiazoles as inhibitors of transforming growth factor-β type-I receptor kinase (ALK5).

    PubMed

    Patel, Harun M; Sing, Baljeet; Bhardwaj, Varun; Palkar, Mahesh; Shaikh, Mahamadhanif S; Rane, Rajesh; Alwan, Wesam S; Gadad, Andanappa K; Noolvi, Malleshappa N; Karpoormath, Rajshekhar

    2015-03-26

    A new series of imidazo[2,1-b][1,3,4]thiadiazoles 5(a-g), 6(a-g), 9(a-i) and 12(a-h) were synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin receptor-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and their TGF-β -induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. Compound 6d, 2-(5-((2-cyclopropyl-6-(4-fluorophenyl) imidazo [2,1-b][1,3,4]thiadiazol-5-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid, shows prominent ALK5 inhibition (IC50 = 0.0012 μM) and elective inhibition (91%) against the P38αkinase at10 μM. The binding mode of compound 6d by XP docking studies shows that it fits well into the active site cavity of ALK5 by forming broad and tight interactions. Lipinski's rule and in silico ADME pharmacokinetic parameters are within the acceptable range defined for human use thereby indicating their potential as a drug-like molecules. PMID:25234355

  2. Genetic determinants of CYP2A6 activity across racial/ethnic groups with different risks of lung cancer and effect on their smoking intensity.

    PubMed

    Park, Sungshim L; Tiirikainen, Maarit I; Patel, Yesha M; Wilkens, Lynne R; Stram, Daniel O; Le Marchand, Loic; Murphy, Sharon E

    2016-03-01

    Genetic variation in cytochrome P450 2A6 (CYP2A6) gene is the primary contributor to the intraindividual and interindividual differences in nicotine metabolism and has been found to influence smoking intensity. However, no study has evaluated the relationship between CYP2A6 genetic variants and the CYP2A6 activity ratio (total 3-hydroxycotinine/cotinine) and their influence on smoking intensity [total nicotine equivalents (TNE)], across five racial/ethnic groups found to have disparate rates of lung cancer. This study genotyped 10 known functional CYP2A6 genetic or copy number variants in 2115 current smokers from the multiethnic cohort study [African Americans (AA) = 350, Native Hawaiians (NH) = 288, Whites = 413, Latinos (LA) = 437 and Japanese Americans (JA) = 627] to conduct such an investigation. Here, we found that LA had the highest CYP2A6 activity followed by Whites, AA, NH and JA, who had the lowest levels. Adjusting for age, sex, race/ethnicity and body mass index, we found that CYP2A6 diplotypes were predictive of TNE levels, particularly in AA and JA (P trend < 0.0001). However, only in JA did the association remain after accounting for cigarettes per day. Also, it is only in this population that the lower activity ratio supports lower TNE levels, carcinogen exposure and thereby lower risk of lung cancer. Despite the association between nicotine metabolism (CYP2A6 activity phenotype and diplotypes) and smoking intensity (TNE), CYP2A6 levels did not correlate with the higher TNE levels found in AA nor the lower TNE levels found in LA, suggesting that other factors may influence smoking dose in these populations. Therefore, further study in these populations is recommended. PMID:26818358

  3. Association between SLCO1B1 -521T>C and -388A>G polymorphisms and risk of statin-induced adverse drug reactions: A meta-analysis.

    PubMed

    Jiang, Jiajia; Tang, Qing; Feng, Jing; Dai, Rong; Wang, Yang; Yang, Yuan; Tang, Xiaojun; Deng, Changkai; Zeng, Huan; Zhao, Yong; Zhang, Fan

    2016-01-01

    An increasing number of studies have investigated the association between SLCO1B1 -521T>C and -388A>G polymorphisms and the risk of statin-induced adverse drug reactions (ADRs), but the results have been inconsistent. This meta-analysis was performed to gain more insight into the relationship. PubMed, Embase, Cochrane Library and Web of Science were searched for relevant articles published before March 5th, 2015. The quality of included studies was evaluated by the Newcastle-Ottawa Quality scale. Pooled effect estimates (odds ratios [ORs] or hazard ratios [HRs) and corresponding 95 % confidence intervals (CIs) were calculated to assess the association in overall and subgroup analyses for various genetic models. Begg's rank correlation test and Egger's linear regression test were used to examine the publication bias. A total of nine cohort and four case-control studies involving 11, 246 statin users, of whom 2, 355 developing ADRs were included in the analysis. Combined analysis revealed a significant association between the SLCO1B1-521T>C polymorphism and increased risk for ADRs caused by various statins, but the synthesis heterogeneity was generally large (dominant model: pooled effect estimate = 1.85, 95 % CI 1.20-2.85, P = 0.005; I (2) = 80.70 %, Pheterogeneity < 0.001). Subgroup analysis by statin type showed that the ADRs risk was significantly elevated among simvastatin users (dominant model: pooled effect estimate = 3.43, 95 % CI 1.80-6.52, P = 0.001; I (2) = 59.60 %, Pheterogeneity = 0.060), but not among atorvastatin users. No significant relationship was found between the -388A>G polymorphism and ADRs caused by various statins (dominant model: pooled effect estimate = 0.94, 95 % CI 0.79-1.13, P = 0.526; I (2) = 40.10 %, Pheterogeneity = 0.196). The meta-analysis suggests that SLCO1B1 -521T>C polymorphism may be a risk factor for statin-induced ADRs, especially in simvastatin therapy. Conversely, there may be no significant

  4. CYP1A2 polymorphism in Chinese patients with acute liver injury induced by Polygonum multiflorum.

    PubMed

    Ma, K F; Zhang, X G; Jia, H Y

    2014-01-01

    The objective of this study was to evaluate the genotype and allelic frequencies of CYP1A2 in Chinese patients with acute liver injury induced by Polygonum multiflorum. We examined the clinical mechanism of acute liver injury induced by P. multiflorum. According to the diagnostic criteria for drug-induced liver injury (DILI), 43 cases of P. multiflorum-induced liver injury admitted to the First Affiliated Hospital, Zhejiang University were identified between January 2008 and December 2012. An additional 43 control subjects were also chosen. Several alleles, including 1C, 1F, 2, 7, 9, and 11 of CYP1A2 were amplified from genomic DNA and sequenced. We used the chi-square test to determine whether CYP1A2 allele polymorphisms are associated with acute liver injury induced by P. multiflorum. The frequency of the CYP1A2 1C allele was 46.5% in P. multiflorum-induced DILI patients, which was significantly different from the frequency of 27.9% observed in healthy subjects. The frequency of the CYP1A2 1F allele was 63.9% in P. multiflorum-induced DILI patients, compared to 57.0% in healthy controls; the difference was not significant. The allelic frequencies of CYP1A2 2, CYP1A2 7, CYP1A2 9, and CYP1A2 11 were too low to be detected. The frequency of the CYP1A2 1C mutation in Chinese patients with P. multiflorum-induced acute liver injury differed from that in healthy Chinese people, indicating that CYP1A2 1C is probably related to metabolism of P. multiflorum, which is followed by acute liver injury. PMID:25117321

  5. Hole concentration and phonon renormalization of the 340-cm-1 B1g mode in 2% Ca-doped YBa2Cu3Oy (6.76⩽y⩽7.00)

    NASA Astrophysics Data System (ADS)

    Hewitt, K. C.; Chen, X. K.; Roch, C.; Chrzanowski, J.; Irwin, J. C.; Altendorf, E. H.; Liang, R.; Bonn, D.; Hardy, W. N.

    2004-02-01

    In order to access the overdoped regime of the YBa2Cu3Oy phase diagram, 2% Ca is substituted for Y in YBa2Cu3Oy (y=7.00,6.93,6.88,6.76). Raman scattering studies have been carried out on these four single crystals. Measurements of the superconductivity-induced renormalization in frequency (Δω) and linewidth (Δ2γ) of the 340-cm-1 B1g phonon demonstrate that the magnitude of the renormalization is directly related to the hole concentration p and not simply the oxygen content. The changes in Δω with p imply that the superconducting gap (Δmax) decreases monotonically with increasing hole concentration in the overdoped regime, and Δω falls to zero in the underdoped regime. The linewidth renormalization Δ2γ is negative in the underdoped regime, crossing over at optimal doping to a positive value in the overdoped state.

  6. Induction of Cyp1a1 and Cyp1b1 and formation of DNA adducts in C57BL/6, Balb/c, and F1 mice following in utero exposure to 3-methylcholanthrene

    SciTech Connect

    Xu Mian; Nelson, Garret B.; Moore, Joseph E.; McCoy, Thomas P.; Dai, Jian; Manderville, Richard A.; Ross, Jeffrey A.; Miller, Mark Steven . E-mail: msmiller@wfubmc.edu

    2005-11-15

    Fetal mice are more sensitive to chemical carcinogens than are adults. Previous studies from our laboratory demonstrated differences in the mutational spectrum induced in the Ki-ras gene from lung tumors isolated from [D2 x B6D2F1]F2 mice and Balb/c mice treated in utero with 3-methylcholanthrene (MC). We thus determined if differences in metabolism, adduct formation, or adduct repair influence strain-specific responses to transplacental MC exposure in C57BL/6 (B6), Balb/c (BC), and reciprocal F1 crosses between these two strains of mice. The induction of Cyp1a1 and Cyp1b1 in fetal lung and liver tissue was determined by quantitative fluorescent real-time PCR. MC treatment caused maximal induction of Cyp1a1 and Cyp1b1 RNA 2-8 h after injection in both organs. RNA levels for both genes then declined in both fetal organs, but a small biphasic, secondary increase in Cyp1a1 was observed specifically in the fetal lung 24-48 h after MC exposure in all four strains. Cyp1a1 induction by MC at 4 h was 2-5 times greater in fetal liver (7000- to 16,000-fold) than fetal lung (2000- to 6000-fold). Cyp1b1 induction in both fetal lung and liver was similar and much lower than that observed for Cyp1a1, with induction ratios of 8- to 18-fold in fetal lung and 10- to 20-fold in fetal liver. The overall kinetics and patterns of induction were thus very similar across the four strains of mice. The only significant strain-specific effect appeared to be the relatively poor induction of Cyp1b1 in the parental strain of B6 mice, especially in fetal lung tissue. We also measured the levels of MC adducts and their disappearance from lung tissue by the P{sup 32} post-labeling assay on gestation days 18 and 19 and postnatal days 1, 4, 11, and 18. Few differences were seen between the different strains of mice; the parental strain of B6 mice had nominally higher levels of DNA adducts 2 (gestation day 19) and 4 (postnatal day 1) days after injection, although this was not statistically

  7. Effect of peptides corresponding to extracellular domains of serotonin 1B/1D receptors and melanocortin 3 and 4 receptors on hormonal regulation of adenylate cyclase in rat brain.

    PubMed

    Shpakova, E A; Derkach, K V; Shpakov, A O

    2014-03-01

    The ligand-recognizing part of G protein-coupled receptors consists of their extracellular loops and N-terminal domain. Identification of these sites is essential for receptor mapping and for the development and testing of new hormone system regulators. The peptides corresponding by their structure to extracellular loop 2 of serotonin 1B/1D receptor (peptide 1), extracellular loop 3 of melanocortin 3 receptor (peptide 2), and N-terminal domain of melanocortin 4 (peptide 3) were synthesized by the solid-phase method. In synaptosomal membranes isolated from rat brain, peptide 1 (10(-5)-10(-4) M) attenuated the effects of 5-nonyloxytryptamine (selective agonist of serotonin 1B/1D receptor) and to a lesser extent serotonin and 5-methoxy-N,N-dimethyltryptamine acting on all the subtypes of serotonin receptor 1. Peptide 2 (10(-5)-10(-4) M) significantly reduced the adenylate cyclase-stimulating effect of γ-melanocyte-stimulating hormone (agonist of melanocortin receptor 3), but had no effect on the adenylate cyclase effect of THIQ (agonist melanocortin receptor 4). Peptide 3 reduced the adenylate cyclase-stimulating effects of THIQ and α-melanocyte-stimulating hormone (non-selective agonist of melanocortin receptors 3 and 4), but did not modulate the effect of γ-melanocyte-stimulating hormone. The effect of peptide 3 was weaker: it was observed at peptide 3 concentration of 10(-4) M. Peptides 1-3 did no change the adenylate cyclase-modulating effects of hormones acting through non-homologous receptors. Thus, the synthesized peptides specifically inhibited the regulatory effects of hormones acting through homologous receptors. This suggests that the corresponding extracellular domains are involved in ligand recognition and binding and determine functional activity of the receptor. PMID:24770752

  8. Inhibitory Effects of Green Tea and (–)-Epigallocatechin Gallate on Transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-Glycoprotein

    PubMed Central

    Singer, Katrin; Hoier, Eva; Müller, Fabian; Glaeser, Hartmut; König, Jörg; Fromm, Martin F.

    2015-01-01

    Green tea catechins inhibit the function of organic anion transporting polypeptides (OATPs) that mediate the uptake of a diverse group of drugs and endogenous compounds into cells. The present study was aimed at investigating the effect of green tea and its most abundant catechin epigallocatechin gallate (EGCG) on the transport activity of several drug transporters expressed in enterocytes, hepatocytes and renal proximal tubular cells such as OATPs, organic cation transporters (OCTs), multidrug and toxin extrusion proteins (MATEs), and P-glycoprotein (P-gp). Uptake of the typical substrates metformin for OCTs and MATEs and bromosulphophthalein (BSP) and atorvastatin for OATPs was measured in the absence and presence of a commercially available green tea and EGCG. Transcellular transport of digoxin, a typical substrate of P-gp, was measured over 4 hours in the absence and presence of green tea or EGCG in Caco-2 cell monolayers. OCT1-, OCT2-, MATE1- and MATE2-K-mediated metformin uptake was significantly reduced in the presence of green tea and EGCG (P < 0.05). BSP net uptake by OATP1B1 and OATP1B3 was inhibited by green tea [IC50 2.6% (v/v) and 0.39% (v/v), respectively]. Green tea also inhibited OATP1B1- and OATP1B3-mediated atorvastatin net uptake with IC50 values of 1.9% (v/v) and 1.0% (v/v), respectively. Basolateral to apical transport of digoxin was significantly decreased in the presence of green tea and EGCG. These findings indicate that green tea and EGCG inhibit multiple drug transporters in vitro. Further studies are necessary to investigate the effects of green tea on prototoypical substrates of these transporters in humans, in particular on substrates of hepatic uptake transporters (e.g. statins) as well as on P-glycoprotein substrates. PMID:26426900

  9. An isolated case of lissencephaly caused by the insertion of a mitochondrial genome-derived DNA sequence into the 5' untranslated region of the PAFAH1B1 (LIS1) gene.

    PubMed

    Millar, David S; Tysoe, Carolyn; Lazarou, Lazarus P; Pilz, Daniela T; Mohammed, Shehla; Anderson, Katharine; Chuzhanova, Nadia; Cooper, David N; Butler, Rachel

    2010-08-01

    A 130 base pair (bp) insertion (g.-8delCins130) into the 5' untranslated region of the PAFAH1B1 (LIS1) gene, seven nucleotides upstream of the translational initiation site, was detected in an isolated case of lissencephaly. The inserted DNA sequence exhibited perfect homology to two non-contiguous regions of the mitochondrial genome (8479 to 8545 and 8775 to 8835, containing portions of two genes, ATP8 and ATP6 ), as well as near-perfect homology (1 bp mismatch) to a nuclear mitochondrial pseudogene (NUMT) sequence located on chromosome 1p36. This lesion was not evident on polymerase chain reaction (PCR) sequence analysis of either parent, indicating that the mutation had occurred de novo in the patient. Experiments designed to distinguish between a mitochondrial and a nuclear genomic origin for the inserted DNA sequence were, however, inconclusive. Mitochondrial genome sequences from both the patient and his parents were sequenced and found to be identical to the sequence inserted into the PAFAH1B1 gene. Analysis of parental PCR products from the chromosome 1-specific NUMT were also consistent with the interpretation that the inserted sequence had originated directly from the mitochondrial genome. The chromosome 1-specific NUMT in the patient proved to be refractory to PCR analysis, however, suggesting that this region of chromosome 1 could have been deleted or rearranged. Although it remains by far the most likely scenario, in the absence of DNA sequence information from the patient's own chromosome 1-specific NUMT, we cannot unequivocally confirm that the 130 bp insertion originated from mitochondrial genome rather than from the NUMT. PMID:20846927

  10. INHIBITION OF HUMAN AND RAT CYP1A2 BY TCDD AND DIOXIN-LIKE CHEMICALS

    EPA Science Inventory

    Dioxins have been shown to bind and induce rodent CYP1A2, producing a dose-dependent hepatic sequestration in vivo. The induction of CYP1A2 activity has been used as a noninvasive biomarker for human exposure to dioxins; while there is a consistent relationship between exposure ...

  11. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... communication (See also § 1917.1(a)(2)(vi))....

  12. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... communication (See also § 1917.1(a)(2)(vi))....

  13. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... communication (See also § 1917.1(a)(2)(vi))....

  14. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... communication (See also § 1917.1(a)(2)(vi))....

  15. Genetic effects of ATP1A2 in familial hemiplegic migraine type II and animal models

    PubMed Central

    2013-01-01

    Na+/K+-ATPase alpha 2 (Atp1a2) is an integral plasma membrane protein belonging to the P-type ATPase family that is responsible for maintaining the sodium (Na+) and potassium (K+) gradients across cellular membranes with hydrolysis of ATP. Atp1a2 contains two subunits, alpha and beta, with each having various isoforms and differential tissue distribution. In humans, mutations in ATP1A2 are associated with a rare form of hereditary migraines with aura known as familial hemiplegic migraine type II. Genetic studies in mice have revealed other neurological effects of Atp1a2 in mice including anxiety, fear, and learning and motor function disorders. This paper reviews the recent findings in the literature concerning Atp1a2. PMID:23561701

  16. Single tube genotyping of CYP2A6 gene deletion based on copy number determination by quantitative real-time PCR.

    PubMed

    Liu, Jin-hui; Xun, Xiao-jie; Pang, Cong; Ma, Jun; Zou, Hui; Chen, Chao; Dai, Peng-gao

    2014-12-01

    The CYP2A6*4 allele, characterized as the whole deletion of this gene, is closely associated with nicotine dependence, cancer susceptibility, and drug responsiveness. It has long been a significant challenge for pharmacogenetics scientists to develop a reliable method to detect this molecular variant due to its high homology with its homologous genes CYP2A6 and CYP2A3 in the clinical setting. Here, we introduce a quantitative real-time PCR assay that specifically amplifies CYP2A6 by designing a specific set of primers and the probe, which effectively prevent the amplification of the CYP2A7 and CYP2A13 alleles. CYP2A6 gene copy numbers were normalized to albumin (ALB) which was co-amplified simultaneously in a single-tube duplex reaction and at a setting as the internal reference gene. The established assay was validated with a selection of previously genotyped DNA samples, which harbored none, one or two CYP2A6 gene copies. The results were in complete concordance with previously published data and no overlap between the three groups was observed. Further analysis of a cohort of 120 samples revealed high specificity and sensitivity of this assay as demonstrated by the agreement of determined gene copy numbers in all of the cases. In conclusion, this novel assay allows reliable and sensitive detection of the CYP2A6 gene deletion, which will be useful for pharmacogenetics studies and routine clinical settings. PMID:25446842

  17. Cytochrome P450 1A2 Metabolizes 17β-Estradiol to Suppress Hepatocellular Carcinoma

    PubMed Central

    Ren, Jianwai; Chen, George G.; Liu, Yi; Su, Xianwei; Hu, Baoguang; Leung, Billy C. S.; Wang, Y.; Ho, Rocky L. K.; Yang, Shengli; Lu, Gang; Lee, C. G.; Lai, Paul B. S.

    2016-01-01

    Hepatocellular carcinoma (HCC) occurs more frequently in men than in women. It is commonly agreed that estrogen plays important roles in suppressing HCC development, however, the underlying mechanism remains largely unknown. Since estrogen is mainly metabolized in liver and its metabolites affect cell proliferation, we sought to investigate if the liver-specific cytochrome P450 1A2 (CYP1A2) mediated the inhibitory effect of estrogen on HCC. In this study, the expression of estrogen-metabolizing enzyme CYP1A2 was determined in HCC tissues and cell lines. Cell proliferation and apoptosis were assessed in cells with or without CYP1A2 overexpression. The levels of 17β-estradiol (E2) and its metabolite 2-methoxyestradiol (2-ME) were determined. A xenograft tumor model in mice was established to confirm the findings. It was found that CYP1A2 expression was greatly repressed in HCC. E2 suppressed HCC cell proliferation and xenograft tumor development by inducing apoptosis. The inhibitory effect was significantly enhanced in cells with CYP1A2 overexpression, which effectively conversed E2 to the cytotoxic 2-ME. E2 in combination with sorafenib showed an additive effect on HCC. The anti-HCC effect of E2 was not associated with estrogen receptors ERα and ERβ as well as tumor suppressor P53 but enhanced by the approved anti-HCC drug sorafenib. In addition, HDAC inhibitors greatly induced CYP1A2 promoter activities in cancer cells, especially liver cancer cells, but not in non-tumorigenic cells. Collectively, CYP1A2 metabolizes E2 to generate the potent anti-tumor agent 2-ME in HCC. The reduction of CYP1A2 significantly disrupts this metabolic pathway, contributing the progression and growth of HCC and the gender disparity of this malignancy. PMID:27093553

  18. Cytochrome P450 1A2 Metabolizes 17β-Estradiol to Suppress Hepatocellular Carcinoma.

    PubMed

    Ren, Jianwai; Chen, George G; Liu, Yi; Su, Xianwei; Hu, Baoguang; Leung, Billy C S; Wang, Y; Ho, Rocky L K; Yang, Shengli; Lu, Gang; Lee, C G; Lai, Paul B S

    2016-01-01

    Hepatocellular carcinoma (HCC) occurs more frequently in men than in women. It is commonly agreed that estrogen plays important roles in suppressing HCC development, however, the underlying mechanism remains largely unknown. Since estrogen is mainly metabolized in liver and its metabolites affect cell proliferation, we sought to investigate if the liver-specific cytochrome P450 1A2 (CYP1A2) mediated the inhibitory effect of estrogen on HCC. In this study, the expression of estrogen-metabolizing enzyme CYP1A2 was determined in HCC tissues and cell lines. Cell proliferation and apoptosis were assessed in cells with or without CYP1A2 overexpression. The levels of 17β-estradiol (E2) and its metabolite 2-methoxyestradiol (2-ME) were determined. A xenograft tumor model in mice was established to confirm the findings. It was found that CYP1A2 expression was greatly repressed in HCC. E2 suppressed HCC cell proliferation and xenograft tumor development by inducing apoptosis. The inhibitory effect was significantly enhanced in cells with CYP1A2 overexpression, which effectively conversed E2 to the cytotoxic 2-ME. E2 in combination with sorafenib showed an additive effect on HCC. The anti-HCC effect of E2 was not associated with estrogen receptors ERα and ERβ as well as tumor suppressor P53 but enhanced by the approved anti-HCC drug sorafenib. In addition, HDAC inhibitors greatly induced CYP1A2 promoter activities in cancer cells, especially liver cancer cells, but not in non-tumorigenic cells. Collectively, CYP1A2 metabolizes E2 to generate the potent anti-tumor agent 2-ME in HCC. The reduction of CYP1A2 significantly disrupts this metabolic pathway, contributing the progression and growth of HCC and the gender disparity of this malignancy. PMID:27093553

  19. Pharmacological evidence that 5-HT1A/1B/1D, α2-adrenoceptors and D2-like receptors mediate ergotamine-induced inhibition of the vasopressor sympathetic outflow in pithed rats.

    PubMed

    Villamil-Hernández, Ma Trinidad; Alcántara-Vázquez, Oscar; Sánchez-López, Araceli; Gutiérrez-Lara, Erika J; Centurión, David

    2014-10-01

    The sympathetic nervous system that innervates the peripheral circulation is regulated by several mechanisms/receptors. It has been reported that prejunctional 5-HT1A, 5-HT1B, 5-HT1D, D2-like receptors and α2-adrenoceptors mediate the inhibition of the vasopressor sympathetic outflow in pithed rats. In addition, ergotamine, an antimigraine drug, displays affinity at the above receptors and may explain some of its adverse/therapeutic effects. Thus, the aims of this study were to investigate in pithed rats: (i) whether ergotamine produces inhibition of the vasopressor sympathetic outflow; and (ii) the major receptors involved in this effect. For this purpose, male Wistar pithed rats were pre-treated with gallamine (25 mg/kg; i.v.) and desipramine (50 µg/kg) and prepared to stimulate the vasopressor sympathetic outflow (T7-T9; 0.03-3 Hz) or to receive i.v. bolus of exogenous noradrenaline (0.03-3 µg/kg). I.v. continuous infusions of ergotamine (1 and 1.8 μg/kgmin) dose-dependently inhibited the vasopressor responses to sympathetic stimulation but not those to exogenous noradrenaline. The sympatho-inhibition elicited by 1.8 μg/kg min ergotamine was (i) unaffected by saline (1 ml/kg); (ii) partially antagonised by WAY 100635 (5-HT1A; 30 μg/kg) and rauwolscine (α2-adrenoceptor; 300 μg/kg), and (iii) dose-dependently blocked by GR 127935 (5-HT1B/1D; 100 and 300 μg/kg) or raclopride (D2-like; 300 and 1000 μg/kg), The above doses of antagonists did not modify per se the sympathetically-induced vasopressor responses. The above results suggest that ergotamine induces inhibition of the vasopressor sympathetic outflow by activation of prejunctional 5-HT1A, 5-HT1B/1D, α2-adrenoceptors and D2-like receptors in pithed rats. PMID:24975101

  20. Comparison of CYP1A2 and NAT2 Phenotypes between Black and White Smokers

    PubMed Central

    Muscat, Joshua E.; Pittman, Brian; Kleinman, Wayne; Lazarus, Philip; Stellman, Steven D.; Richie, John P.

    2008-01-01

    The lower incidence rate of transitional cell carcinoma of the urinary bladder in blacks than in whites may be due to racial differences in the catalytic activity of enzymes that metabolize carcinogenic arylamines in tobacco smoke. To examine this, we compared cytochrome P4501A2 (CYP1A2) and N-acetyltransferase-2 activities (NAT2) in black and white smokers using urinary caffeine metabolites as a probe for enzyme activity in a community-based study of 165 black and 183 white cigarette smokers. The paraxanthine (1,7-dimethylxanthine, 17X)/caffeine (trimethylxanthine, 137X) ratio or [17X + 1,7-dimethyluric acid (17U)]/137X ratio was used as an indicator of CYP1A2 activity. The 5-acetyl-amino-6-formylamino-3-methyluracil (AFMU)/1-methylxanthine (1X) ratio indicated NAT2 activity. The odds ratio for the slow NAT2 phenotype associated with black race was 0.4; 95% confidence intervals 0.2–0.7. The putative combined low risk phenotype (slow CYP1A2/rapid NAT2) was more common in blacks than in whites (25% vs. 15%, P<0.02). There were no significant racial differences in slow and rapid CYP1A2 phenotypes, and in the combined slow NAT2/rapid CYP1A2 phenotype. Age, education, cigarette smoking amount, body mass index, GSTM1 and GSTM3 genotypes were unrelated to CYP1A2 and NAT2 activity. Intake of cruciferous vegetables (primarily broccoli), red meat, carrots, grapefruit and onions predicted CYP1A2 activity either for all subjects or in race-specific analyses. Carrot and grapefruit consumption was related to NAT2 activity. Collectively, these results indicated that phenotypic differences in NAT2 alone or in combination with CYP1A2 might help explain the higher incidence rates of transitional cell bladder cancer in whites. PMID:18703023

  1. Comparison of CYP1A2 and NAT2 phenotypes between black and white smokers.

    PubMed

    Muscat, Joshua E; Pittman, Brian; Kleinman, Wayne; Lazarus, Philip; Stellman, Steven D; Richie, John P

    2008-10-01

    The lower incidence rate of transitional cell carcinoma of the urinary bladder in blacks than in whites may be due to racial differences in the catalytic activity of enzymes that metabolize carcinogenic arylamines in tobacco smoke. To examine this, we compared cytochrome P4501A2 (CYP1A2) and N-acetyltransferase-2 activities (NAT2) in black and white smokers using urinary caffeine metabolites as a probe for enzyme activity in a community-based study of 165 black and 183 white cigarette smokers. The paraxanthine (1,7-dimethylxanthine, 17X)/caffeine (trimethylxanthine, 137X) ratio or [17X+1,7-dimethyluric acid (17U)]/137X ratio was used as an indicator of CYP1A2 activity. The 5-acetyl-amino-6-formylamino-3-methyluracil (AFMU)/1-methylxanthine (1X) ratio indicated NAT2 activity. The odds ratio for the slow NAT2 phenotype associated with black race was 0.4; 95% confidence intervals 0.2-0.7. The putative combined low risk phenotype (slow CYP1A2/rapid NAT2) was more common in blacks than in whites (25% vs. 15%, P<0.02). There were no significant racial differences in slow and rapid CYP1A2 phenotypes, and in the combined slow NAT2/rapid CYP1A2 phenotype. Age, education, cigarette smoking amount, body mass index, GSTM1 and GSTM3 genotypes were unrelated to CYP1A2 and NAT2 activity. Intake of cruciferous vegetables (primarily broccoli), red meat, carrots, grapefruit and onions predicted CYP1A2 activity either for all subjects or in race-specific analyses. Carrot and grapefruit consumption was related to NAT2 activity. Collectively, these results indicated that phenotypic differences in NAT2 alone or in combination with CYP1A2 might help explain the higher incidence rates of transitional cell bladder cancer in whites. PMID:18703023

  2. Hexachlorobenzene stimulates uroporphyria in low affinity AHR mice without increasing CYP1A2

    SciTech Connect

    Gorman, Nadia; Trask, Heidi S.; Robinson, Susan W.; Sinclair, Jacqueline F.; Smith, Andrew G.; Sinclair, Peter R. . E-mail: psinc@dartmouth.edu

    2007-06-01

    Hexachlorobenzene (HCB), a weak ligand of the aryl hydrocarbon receptor (AHR), causes hepatic uroporphyrin (URO) accumulation (uroporphyria) in humans and animals. CYP1A2 has been shown to be necessary in the development of uroporphyria in mice. Using mice expressing the low affinity form of the AH receptor (AHRd), we investigated whether the enhancement of uroporphyria by HCB involves an obligatory increase in CYP1A2 as measured by specific enzyme assays and immunoblotting. We compared the ability of HCB, in combination with iron dextran and the porphyrin precursor, 5-aminolevulinate (ALA), to cause uroporphyria in a strain of mice (C57BL/6) which expresses the high affinity form of the receptor (AHRb{sub 1}), with three strains of mice (SWR and two 129 sublines) expressing the low affinity AHRd. In C57BL/6 mice, HCB-enhanced uroporphyria was associated with a doubling of CYP1A2. HCB treatment produced uroporphyria in iron-loaded mice expressing AHRd, even though there was little or no increase in CYP1A2. Cyp1a2(-/-) mice in a 129 background were completely resistant to HCB-induced uroporphyria, and female Hfe(-/-) 129 mice, in which the levels of hepatic CYP1A2 were half of those of the male levels, responded poorly. The effect of exogenous iron, administered in the form of iron dextran, on HCB enhancement of uroporphryia could be replicated utilizing the endogenous hepatic iron accumulated in 129 Hfe(-/-) mice. In conclusion, some minimal basal expression of CYP1A2 is essential for HCB-mediated enhancement of uroporphyria, but increases in CYP1A2 above that level are not essential.

  3. Chloroquine and Hydroxychloroquine Are Novel Inhibitors of Human Organic Anion Transporting Polypeptide 1A2.

    PubMed

    Xu, Chenghao; Zhu, Ling; Chan, Ting; Lu, Xiaoxi; Shen, Weiyong; Madigan, Michele C; Gillies, Mark C; Zhou, Fanfan

    2016-02-01

    Chloroquine (CQ) and hydroxychloroquine (HCQ) are widely used to treat malaria and inflammatory diseases, long-term usage of which often causes severe side effects, especially retinopathy. Solute carrier transporters (SLCs) are important proteins responsible for the cellular uptake of endogenous and exogenous substances. Inhibitors competing with transporter substrates for SLCs often results in unfavorable toxicities and unsatisfactory therapeutic outcomes. We investigated the inhibitory effect of CQ and HCQ on substrate uptake mediated through a range of important SLC transporters in overexpressing human embryonic kidney (HEK293) cells. Our data revealed that both CQ and HCQ potently inhibit the uptake activity of organic anion transporting polypeptide 1A2 (OATP1A2). We recently reported OATP1A2 to be expressed in human retinal pigment epithelium (RPE), where it mediates cellular uptake of all-trans-retinol (atROL), a key step in the classical visual cycle. In this study, we demonstrate that CQ and HCQ could markedly impair atROL uptake in OATP1A2-expressing HEK293 cells and more importantly, in primary human RPE cells. Our study shows that CQ and HCQ are novel inhibitors of OATP1A2 and significantly impair OATP1A2-mediated substrate uptake, particularly transport of atROL into the RPE. This effect may compromise the function of the classic visual cycle leading to vision impairment and contribute to the retinopathy observed clinically in patients using CQ or HCQ. PMID:26429523

  4. Suppression of Lipid Accumulation by Indole-3-Carbinol Is Associated with Increased Expression of the Aryl Hydrocarbon Receptor and CYP1B1 Proteins in Adipocytes and with Decreased Adipocyte-Stimulated Endothelial Tube Formation.

    PubMed

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2016-01-01

    This study investigated the effects of indole-3-carbinol (I3C) on adipogenesis- and angiogenesis-associated factors in mature adipocytes. The cross-talk between mature adipocytes and endothelial cells (ECs) was also explored by cultivating ECs in a conditioned medium (CM) by using I3C-treated adipocytes. The results revealed that I3C significantly inhibited triglyceride accumulation in mature adipocytes in association with significantly increased expression of AhR and CYP1B1 proteins as well as slightly decreased nuclear factor erythroid-derived factor 2-related factor 2, hormone-sensitive lipase, and glycerol-3-phosphate dehydrogenase expression by mature adipocytes. Furthermore, I3C inhibited CM-stimulated endothelial tube formation, which was accompanied by the modulated secretion of angiogenic factors in adipocytes, including vascular endothelial growth factor, interleukin-6, matrix metalloproteinases, and nitric oxide. In conclusion, I3C reduced lipid droplet accumulation in adipocytes and suppressed adipocyte-stimulated angiogenesis in ECs, suggesting that I3C is a potential therapeutic agent for treating obesity and obesity-associated disorders. PMID:27527145

  5. Suppression of Lipid Accumulation by Indole-3-Carbinol Is Associated with Increased Expression of the Aryl Hydrocarbon Receptor and CYP1B1 Proteins in Adipocytes and with Decreased Adipocyte-Stimulated Endothelial Tube Formation

    PubMed Central

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2016-01-01

    This study investigated the effects of indole-3-carbinol (I3C) on adipogenesis- and angiogenesis-associated factors in mature adipocytes. The cross-talk between mature adipocytes and endothelial cells (ECs) was also explored by cultivating ECs in a conditioned medium (CM) by using I3C-treated adipocytes. The results revealed that I3C significantly inhibited triglyceride accumulation in mature adipocytes in association with significantly increased expression of AhR and CYP1B1 proteins as well as slightly decreased nuclear factor erythroid-derived factor 2–related factor 2, hormone-sensitive lipase, and glycerol-3-phosphate dehydrogenase expression by mature adipocytes. Furthermore, I3C inhibited CM-stimulated endothelial tube formation, which was accompanied by the modulated secretion of angiogenic factors in adipocytes, including vascular endothelial growth factor, interleukin-6, matrix metalloproteinases, and nitric oxide. In conclusion, I3C reduced lipid droplet accumulation in adipocytes and suppressed adipocyte-stimulated angiogenesis in ECs, suggesting that I3C is a potential therapeutic agent for treating obesity and obesity-associated disorders. PMID:27527145

  6. Identification of amino acid residues involved in 4-chloroindole 3-hydroxylation by cytochrome P450 2A6 using screening of random libraries

    PubMed Central

    Zhang, Zhi-Gang; Liu, Yan; Guengerich, F. Peter; Matse, Johannes H.; Chen, Jun; Wu, Zhong-Liu

    2016-01-01

    Cytochrome P450 (P450) 2A6 is able to catalyze indole hydroxylation to form the blue dye indigo. The wild type P450 2A6 enzyme was randomly mutated throughout the whole open reading frame and screened using 4-chloroindole hydroxylation, a substituted indole selected from 30 indole compounds for enhanced color development. Mutants with up to 5-fold increases of catalytic efficiency (kcat/Km) and 2-fold increases in kcat were selected after two rounds of screening. Important residues located both in (e.g., Thr305) and outside the active site (e.g., Ser224) were identified. The study utilized a better substrate for "indigo assay" to obtain new information on the structure-functional relationship of P450 2A6 that was not revealed by previous mutagenesis studies with this enzyme. PMID:18984015

  7. Induction of cytochrome P-450 1A2 by oxidized tryptophan in Hepa lclc7 cells.

    PubMed

    Sindhu, R K; Mitsuhashi, M; Kikkawa, Y

    2000-03-01

    Recent studies from this laboratory have demonstrated that L-tryptophan, after oxidation either by UV-irradiation or ozone, induces aryl hydrocarbon receptor (AhR) activation and binding of the liganded AhR complex to its specific DNA recognition site, thereby initiating transcription of the cytochrome P-450 1a1 (Cyp1a1) gene with concomitant increase of CYP1A1 protein and 7-ethoxyresorufin O-deethylase activity in wild-type mouse hepatoma cells, Hepa lclc7 (Hepa-1), in culture. Temporary inhibition of protein synthesis by cycloheximide resulted in superinduction of oxidized tryptophan-inducible CYP1A1 mRNA, protein, and 7-ethoxyresorufin O-deethylase activity in Hepa-1 cells. In the present communication, the results obtained by immunoblot analyses with monoclonal CYP1A1/1A2 antibody (NIH 1-7-1) demonstrate that both UV- or ozone-oxidized tryptophan also induce CYP1A2 protein in Hepa-1 cells. CYP1A2 mRNA, detected by reverse transcription-polymerase chain reaction, was markedly induced in the UV- or ozone-oxidized tryptophan-treated cells. Temporary inhibition of protein synthesis by cycloheximide further induced oxidized tryptophan-inducible CYP1A2 mRNA as well as the protein in Hepa-1 cells. This is the first report demonstrating the induction of CYP1A2 mRNA and protein in Hepa-1 cells. PMID:10688617

  8. Allele dependent silencing of COL1A2 using small interfering RNAs

    PubMed Central

    Lindahl, Katarina; Rubin, Carl-Johan; Kindmark, Andreas; Ljunggren, Östen

    2008-01-01

    Osteogenesis imperfecta (OI) is generally caused by a dominant mutation in Collagen I, encoded by the genes COL1A1 and COL1A2. To date there is no satisfactory therapy for OI, but inactivation of the mutant allele through small interfering RNAs (siRNA) is a promising approach, as siRNAs targeting each allele of a polymorphism could be used for allele-specific silencing irrespective of the location of the actual mutations. In this study we examined the allele dependent effects of several tiled siRNAs targeting a region surrounding an exonic COL1A2 T/C polymorphism (rs1800222) in heterozygous primary human bone cells. Relative abundances of COL1A2 alleles were determined by cDNA sequencing and overall COL1A2 abundance was analyzed by quantitative PCR. One of the siRNAs decreased overall COL1A2 abundance by 71% of which 75% was due to silencing of the targeted T-allele. In conclusion, allele-preferential silencing of Collagen type I genes may be a future therapeutic approach for OI. PMID:19015742

  9. Data package addendum for COBRA-1A2 life extension to 400 EFPD

    SciTech Connect

    Hecht, S.L.; Ermi, A.M.

    1994-08-29

    The COBRA-1A experiment was originally designed for irradiations up to 350 effective full power days (EFPD) in EBR-II. Three of the seven B7A test capsules were discharged after 88.6 EFPD (COBRA-1A1; EBR-II designation X516), while the remaining four capsules continued to be irradiated to a goal exposure of 300 EFPD (COBRA-1A2; EBR-II designation X516A). However, it was recently decided that COBRA-1A2 was to remain in the reactor during Run 170, giving and nominal end-of-life (EOL) exposure of 375 EFPD. Since the revised test exposure exceeds the design basis given in supporting analyses, amended analyses are provided herein, giving the technical bases for the extended irradiation. This report describes the safety analysis for the extension of the COBRA-1A2 test (X516A) to 400 effective full power days in FBR-II.

  10. PCB Exposure and in Vivo CYP1A2 Activity among Native Americans

    PubMed Central

    Fitzgerald, Edward F.; Hwang, Syni-An; Lambert, George; Gomez, Marta; Tarbell, Alice

    2005-01-01

    Cytochrome P-450 1A2 (CYP1A2) is an enzyme involved in the metabolic activation of some carcinogens and is believed to be induced by xenobiotics. Very few studies, however, have investigated the association between environmental exposures and in vivo CYP1A2 activity in humans. To address this issue, a study was conducted of CYP1A2 activity among Native Americans exposed to polychlorinated biphenyls (PCBs) from the consumption of fish from the St. Lawrence River. At the Mohawk Nation at Akwesasne (in New York and in Ontario and Quebec, Canada), 103 adults were interviewed, and they donated blood for serum PCB analysis and underwent the caffeine breath test (CBT), a safe and noninvasive procedure that uses caffeine as a probe for CYP1A2 activity in vivo. The results supported the findings of other studies that CBT values are higher among smokers and men and lower among women who use oral contraceptives. Despite a relatively low average total PCB body burden in this population, the sum of serum levels for nine mono- or di-ortho-substituted PCB congeners showed positive associations with CBT values (p = 0.052 wet weight and p = 0.029 lipid adjusted), as did toxic equivalent quantities (TEQs; p = 0.091 for wet weight and 0.048 for lipid adjusted). Regarding individual congeners, serum levels of PCB-153, PCB-170, and PCB-180 were significantly correlated with CBT values. The results support the notion that CYP1A2 activity may be a marker of an early biological effect of exposure to PCBs in humans and that the CBT may be a useful tool to monitor such effects. PMID:15743714

  11. EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2

    EPA Science Inventory

    EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2. T M Ross1, B P Anderson1, G Zhao2, R A Pegram1 and J W Allis1. 1U.S. EPA, ORD, NHEERL, Research Triangle Park, NC; 2University of North Carolina, Chapel Hill, NC.
    Sponsor: H Barton

    Bromodichlorometh...

  12. Thermal ramp tritium release in COBRA-1A2 C03 beryllium pebbles

    SciTech Connect

    Baldwin, D.L.

    1998-03-01

    Tritium release kinetics, using the method of thermal ramp heating at three linear ramp rates, were measured on the COBRA-1A2 C03 1-mm beryllium pebbles. This report includes a brief discussion of the test, and the test data in graph format.

  13. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Marine Terminal Operations § 1917.28...

  14. COMPARING ENVIRONMENTALLY RELEVANT PCBS TO TCDD IN CYP1A2 NULL AND WILDTYPE MICE

    EPA Science Inventory


    The role of CYP1A2 on the interactions of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin, dioxin), dioxin-like (DL) and non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) was compared in multiple responses of different laboratory-defined mixtures, based on mass ratios found in...

  15. The collisional removal of the carbene CCl 2(X˜(0,0,0)) and CCl 2( Ã 1B1(0,7,0)) by rare gases and simple molecules

    NASA Astrophysics Data System (ADS)

    Merelas, I.; Fernández, J. A.; Puyuelo, P.; Sánchez Rayo, M. N.; Husain, D.; Castaño, F.

    2000-03-01

    Absolute rate constants have been measured at room temperature for the collisional removal of dichlorocarbene, CCl 2, in its X˜ 1A 1(0,0,0) ground electronic state by simple alkenes, CF 2CCl 2, He and Ar. Rate data for CCl 2 in the first singlet electronically excited state, à 1B 1(0,7,0), obtained by time-resolved emission, are reported for rare gases, simple alkenes (C 2H 4, C 3H 6, 1-C 4H 8, i-C 4H 8, 1,3-butadiene), NO, O 2, N 2, CH 4, HCl and the precursor CF 2CCl 2 itself as collision partners. The rate constants for the removal of the Ã(0,7,0) state are found to be close to those of the collision number (≈10 -10 cm 3 molecule -1 s -1), indicating the role played by long-range attractive forces in the collisional quenching and analogy to the behaviour of other three-atom carbenes in analogous electronic states. The kinetic data for the à and X˜ states have been analysed within the framework of several kinetic models. The application of Parmenter's potential-well model, based on the attractive component of the potential, indicates that the quenching partners fall into three main groups for the quenching behaviour of the A state. Rare gases exhibit the lowest rate constants. Quenching by CH 4 and double-bonded molecular partners, permitting cyclic addition, is more rapid. Collisional removal by the third group comprising the inorganic diatoms N 2, O 2, NO and HCl, is found to be the most rapid. The potential-well depth for CCl 2(Ã) has been evaluated to be ( ɛAA/ k) 1/2=34.6 K1/2. A collision-complex model also groups the reactants into three sets, roughly similar to those in Parmenter's plot, one physical and the other two chemical in nature, but the correlation is poor. For quenching partners where reactive channels are available, the collision-complex model indicates that, once the transition state is formed, removal then proceeds via different channels. Correlation of rate constants for the removal of the à state with ionisation potential

  16. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk.

    PubMed

    Wassenaar, Catherine A; Dong, Qiong; Wei, Qingyi; Amos, Christopher I; Spitz, Margaret R; Tyndale, Rachel F

    2011-09-01

    Genetic variations in the CYP2A6 nicotine metabolic gene and the CHRNA5-CHRNA3-CHRNB4 (CHRNA5-A3-B4) nicotinic gene cluster have been independently associated with lung cancer. With genotype data from ever-smokers of European ancestry (417 lung cancer patients and 443 control subjects), we investigated the relative and combined associations of polymorphisms in these two genes with smoking behavior and lung cancer risk. Kruskal-Wallis tests were used to compare smoking variables among the different genotype groups, and odds ratios (ORs) for cancer risk were estimated using logistic regression analysis. All statistical tests were two-sided. Cigarette consumption (P < .001) and nicotine dependence (P = .036) were the highest in the combined CYP2A6 normal metabolizers and CHRNA5-A3-B4 AA (tag single-nucleotide polymorphism rs1051730 G>A) risk group. The combined risk group also exhibited the greatest lung cancer risk (OR = 2.03; 95% confidence interval [CI] = 1.21 to 3.40), which was even higher among those who smoked 20 or fewer cigarettes per day (OR = 3.03; 95% CI = 1.38 to 6.66). Variation in CYP2A6 and CHRNA5-A3-B4 was independently and additively associated with increased cigarette consumption, nicotine dependence, and lung cancer risk. CYP2A6 and CHRNA5-A3-B4 appear to be more strongly associated with smoking behaviors and lung cancer risk, respectively. PMID:21747048

  17. Production of {sup 4}He and tritium from Be in the COBRA-1A2 irradiation

    SciTech Connect

    Greenwood, L.R.

    1998-03-01

    The production of {sup 4}He and tritium has been calculated for beryllium irradiated in the COBRA-1A2 experiment in the Experimental Breeder Reactor II. Reaction rates were based on adjusted neutron spectra determined from reactor dosimetry measurements at three different elevations in the region of the beryllium capsules. Equations are given so that gas production can be calculated for any specific capsule elevation.

  18. A Function for the hnRNP A1/A2 Proteins in Transcription Elongation

    PubMed Central

    Lemieux, Bruno; Blanchette, Marco; Monette, Anne; Mouland, Andrew J.; Wellinger, Raymund J.; Chabot, Benoit

    2015-01-01

    The hnRNP A1 and A2 proteins regulate processes such as alternative pre-mRNA splicing and mRNA stability. Here, we report that a reduction in the levels of hnRNP A1 and A2 by RNA interference or their cytoplasmic retention by osmotic stress drastically increases the transcription of a reporter gene. Based on previous work, we propose that this effect may be linked to a decrease in the activity of the transcription elongation factor P-TEFb. Consistent with this hypothesis, the transcription of the reporter gene was stimulated when the catalytic component of P-TEFb, CDK9, was inhibited with DRB. While low levels of A1/A2 stimulated the association of RNA polymerase II with the reporter gene, they also increased the association of CDK9 with the repressor 7SK RNA, and compromised the recovery of promoter-distal transcription on the Kitlg gene after the release of pausing. Transcriptome analysis revealed that more than 50% of the genes whose expression was affected by the siRNA-mediated depletion of A1/A2 were also affected by DRB. RNA polymerase II-chromatin immunoprecipitation assays on DRB-treated and A1/A2-depleted cells identified a common set of repressed genes displaying increased occupancy of polymerases at promoter-proximal locations, consistent with pausing. Overall, our results suggest that lowering the levels of hnRNP A1/A2 elicits defective transcription elongation on a fraction of P-TEFb-dependent genes, hence favoring the transcription of P-TEFb-independent genes. PMID:26011126

  19. Novel action of FOXL2 as mediator of Col1a2 gene autoregulation.

    PubMed

    Marongiu, Mara; Deiana, Manila; Marcia, Loredana; Sbardellati, Andrea; Asunis, Isadora; Meloni, Alessandra; Angius, Andrea; Cusano, Roberto; Loi, Angela; Crobu, Francesca; Fotia, Giorgio; Cucca, Francesco; Schlessinger, David; Crisponi, Laura

    2016-08-01

    FOXL2 belongs to the evolutionarily conserved forkhead box (FOX) superfamily and is a master transcription factor in a spectrum of developmental pathways, including ovarian and eyelid development and bone, cartilage and uterine maturation. To analyse its action, we searched for proteins that interact with FOXL2. We found that FOXL2 interacts with specific C-terminal propeptides of several fibrillary collagens. Because these propeptides can participate in feedback regulation of collagen biosynthesis, we inferred that FOXL2 could thereby affect the transcription of the cognate collagen genes. Focusing on COL1A2, we found that FOXL2 indeed affects collagen synthesis, by binding to a DNA response element located about 65Kb upstream of this gene. According to our hypothesis we found that in Foxl2(-/-) mouse ovaries, Col1a2 was elevated from birth to adulthood. The extracellular matrix (ECM) compartmentalizes the ovary during folliculogenesis, (with type I, type III and type IV collagens as primary components), and ECM composition changes during the reproductive lifespan. In Foxl2(-/-) mouse ovaries, in addition to up-regulation of Col1a2, Col3a1, Col4a1 and fibronectin were also upregulated, while laminin expression was reduced. Thus, by regulating levels of extracellular matrix components, FOXL2 may contribute to both ovarian histogenesis and the fibrosis attendant on depletion of the follicle reserve during reproductive aging and menopause. PMID:27212026

  20. Novel de novo EEF1A2 missense mutations causing epilepsy and intellectual disability

    PubMed Central

    Lam, Wayne W.K.; Millichap, John J.; Soares, Dinesh C.; Chin, Richard; McLellan, Ailsa; FitzPatrick, David R.; Elmslie, Frances; Lees, Melissa M.; Schaefer, G. Bradley

    2016-01-01

    Background Exome sequencing has led to the discovery of mutations in novel causative genes for epilepsy. One such gene is EEF1A2, encoding a neuromuscular specific translation elongation factor, which has been found to be mutated de novo in five cases of severe epilepsy. We now report on a further seven cases, each with a different mutation, of which five are newly described. Methods New cases were identified and sequenced through the Deciphering Developmental Disabilities project, via direct contact with neurologists or geneticists, or recruited via our website. Results All the mutations cause epilepsy and intellectual disability, but with a much wider range of severity than previously identified. All new cases share specific subtle facial dysmorphic features. Each mutation occurs at an evolutionarily highly conserved amino acid position indicating strong structural or functional selective pressure. Conclusions EEF1A2 should be considered as a causative gene not only in cases of epileptic encephalopathy but also in children with less severe epilepsy and intellectual disability. The emergence of a possible discernible phenotype, a broad nasal bridge, tented upper lip, everted lower lip and downturned corners of the mouth may help in identifying patients with mutations in EEF1A2. PMID:27441201

  1. Overexpression of MMP-7 increases collagen 1A2 in the aging kidney

    PubMed Central

    Ślusarz, Anna; Nichols, LaNita A; Grunz-Borgmann, Elizabeth A; Chen, Gang; Akintola, Adebayo D; Catania, Jeffery M; Burghardt, Robert C; Trzeciakowski, Jerome P; Parrish, Alan R

    2013-01-01

    The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis that leads to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however, it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, with over a 500-fold upregulation in 2-year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of protein kinase A (PKA), src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 upregulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src, and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD. PMID:24273653

  2. Overexpression of MMP-7 Increases Collagen 1A2 in the Aging Kidney.

    PubMed

    Oelusarz, Anna; Nichols, Lanita A; Grunz-Borgmann, Elizabeth A; Chen, Gang; Akintola, Adebayo D; Catania, Jeffery M; Burghardt, Robert C; Trzeciakowski, Jerome P; Parrish, Alan R

    2013-10-01

    The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis, that lead to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, and over a 500 fold up-regulation in 2 year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of PKA, src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 up-regulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD. PMID:24273653

  3. Oxidation of N-Nitrosoalkylamines by human cytochrome P450 2A6: sequential oxidation to aldehydes and carboxylic acids and analysis of reaction steps.

    PubMed

    Chowdhury, Goutam; Calcutt, M Wade; Guengerich, F Peter

    2010-03-12

    Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH(3)CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect ((D)k(app) approximately 10), which was highly expressed in a variety of competitive and non-competitive experiments. The (D)k(app) for DEN was approximately 3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO(2)H and CH(3)CO(2)H, respectively. In neither case was a lag observed, which was unexpected considering the k(cat) and K(m) parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde). PMID:20061389

  4. [Evaluation of pharmacokinetic interaction of aphobazole with CYP1A2 drug-substrate in experiments].

    PubMed

    Novitskaia, Ia G; Litvin, A A; Viglinskaia, A O; Zherdev, V P

    2013-01-01

    The effect of aphobazole on CYP1A2 (drug-marker caffeine) was studied in rats. Aphobazole was administered orally at doses 5 and 25 mg/kg, caffeine 50 mg/kg. The metabolic ratios (MR) for the caffeine metabolites (theobromine and paraxanthine) were accounted. After aphobazole administration at the effective, anxiolytic dose (5 mg/kg) for 4 days (3 times per day every 3 hours) neither the inhibiting nor the inducing effects on NOD1A2 was revealed. Increasing the aphobazole dose up to 25 mg/kg after 2 days repeated administrations of the drug made it possible to reveal a moderate inducing effect. Longer aphobazole administration (4 days), the inducing effect is amplified. Since the MR values on theobromine and paraxanthine after 2-day administration aphobazole exceed similar values in the control of 2.5 and 3.3 times, respectively. MR values after the 4-days aphobazole administration in dose 25 mg/kg exceed similar values in the control of 4.2 times for theobromine and in 6.1 times for paraxanthine. PMID:24003488

  5. USE OF CYP1A2(-/-) KNOCKOUT AND CYP1A2(+/+) C57BL/6N PARENTAL STRAINS OF MICE TO COMPARE METABOLISM OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)

    EPA Science Inventory

    USE OF CYP1A2 (-/-) KNOCKOUT AND CYP1A2 (+/+) C57BL/6N PARENTAL STRAINS OF MICE TO COMPARE METABOLISM OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD). J J Diliberto1 and H Hakk2. 1USEPA ORD, NHEERL, ETD, PKB, Research Triangle Park, NC, USA; 2USDA-ARS, BRL, Fargo, ND, USA. Spons...

  6. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1091 Ship radio equipment—Sea areas A1, A2, and A3....

  7. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1091 Ship radio equipment—Sea areas A1, A2, and A3....

  8. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1091 Ship radio equipment—Sea areas A1, A2, and A3....

  9. AhrdCyp1a2(−/−) mice show increased susceptibility to PCB-induced developmental neurotoxicity

    PubMed Central

    Curran, Christine Perdan; Altenhofen, Emily; Ashworth, Amy; Brown, Austin; Kamau-Cheggeh, Cellestine; Curran, Melinda; Evans, Amber; Floyd, Rikki; Fowler, Jocelyn; Garber, Helen; Hays, Breann; Kraemer, Sarah; Lang, Anna; Mynhier, Andrea; Samuels, Ashton; Strohmaier, Carly

    2012-01-01

    Polychlorinated biphenyls (PCBs) are developmental neurotoxicants that produce cognitive and behavioral changes in children exposed during gestation and lactation. Coplanar PCBs bind the aryl hydrocarbon receptor (AHR) and can be sequestered in liver by cytochrome P450 1A2 (CYP1A2). The AHR is a ligand-activated transcription factor which increases expression of the CYP1 family, including CYP1A2. Our previous work examining genetic susceptibility to developmental PCB neurotoxicity showed that AhrbCyp1a2(−/−) mice with the high-affinity Ahrb allele and lacking CYP1A2 were most susceptible while AhrbCyp1a2(+/+) and poor-affinity AhrdCyp1a2(+/+) mice were resistant. To follow up, a fourth line of mice was generated with the AhrdCyp1a2(−/−) genotype and compared with the background strain AhrbCyp1a2(+/+). Dams received a PCB mixture or the corn oil vehicle at gestational day 10 (GD10) and postnatal day 5 (PND5). Offspring were tested at PND60 in open field locomotor, acoustic startle with pre-pulse inhibition (PPI), novel object recognition and Morris water maze. Locomotor activity was increased in PCB-treated AhrbCyp1a2(+/+) mice, but no differences were seen in control v. PCB-treated AhrdCyp1a2(−/−) mice. PCB-treated AhrdCyp1a2(−/−) mice had a higher baseline startle response and significantly reduced pre-pulse inhibition at the 74dB level compared with corn oil-treated controls (P<0.05). PCB-treated AhrdCyp1a2(−/−) mice had impairments in novel objective recognition (P<0.05) and during all three hidden platform phases of Morris water maze (P<0.01). Combined with our previous findings, these results indicate Cyp1a2 genotype is more important in susceptibility to PCB-induced deficits in learning and memory, but Ahr genotype appears more important when assessing acoustic startle-PPI and locomotor activity. PMID:22935098

  10. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer

    SciTech Connect

    Sun, Yue; Du, Chengli; Wang, Bo; Zhang, Yanling; Liu, Xiaoyan; Ren, Guoping

    2014-07-18

    Highlights: • The expression of eEF1A2 is up-regulated in prostate cancer tissues. • Suppression of eEF1A2 inhibits the proliferation and promotes apoptosis. • Inhibition of eEF1A2 enhances the expression of apoptotic relevant proteins. • The expressions of eEF1A2 and cleavage-caspase3 are inversely correlated. - Abstract: Background: eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. Methods: We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Results: Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Conclusion: Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.

  11. Evidence that glutathione S-transferases B1B1 and B2B2 are the products of separate genes and that their expression in human liver is subject to inter-individual variation. Molecular relationships between the B1 and B2 subunits and other Alpha class glutathione S-transferases.

    PubMed Central

    Hayes, J D; Kerr, L A; Cronshaw, A D

    1989-01-01

    The Alpha class glutathione S-transferases (GSTs) in human liver are composed of polypeptides of Mr 25,900. These enzymes are dimeric, and two immunochemically distinct subunits, B1 and B2, have been described that combine to form GSTs B1B1, B1B2 and B2B2 [Stockman, Beckett & Hayes (1985) Biochem. J. 227, 457-465]. Gradient affinity elution from GSH-Sepharose has been used to resolve the three Alpha class GSTs, and this method has been applied to demonstrate marked inter-individual differences in the hepatic content of GSTs B1B1, B1B2 and B2B2. The B1 and B2 subunits can be resolved by reverse-phase h.p.l.c., and their elution positions suggest that they are equivalent to the alpha chi and alpha y h.p.l.c. peaks described by Ketterer and his colleagues [Ostlund Farrants, Meyer, Coles, Southan, Aitken, Johnson & Ketterer (1987) Biochem. J. 245, 423-428]. The B1 and B2 subunits have now been cleaved with CNBr and the fragments subjected to automated amino acid sequence analysis. The sequence data show that B1 and B2 subunits do not arise from post-translational modification, as had been previously believed for the hepatic Alpha class GSTs, but are instead the products of separate genes; B1 and B2 subunits were found to contain different amino acid residues at positions 88, 110, 111, 112, 116, 124 and 127. The relationship between the B1 and B2 subunits and the cloned GTH1 and GTH2 cDNA sequences [Rhoads, Zarlengo & Tu (1987) Biochem. Biophys. Res. Commun. 145, 474-481] is discussed. PMID:2604726

  12. Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation-A mammalian cell-based mutagenesis approach

    SciTech Connect

    Chiang, Huai-chih; Wang, Chin-Ying; Lee, Hui-Ling; Tsou, Tsui-Chun

    2011-06-01

    Both cytochrome P450 2A6 (CYP2A6) and cytochrome P450 2A13 (CYP2A13) are involved in metabolic activation of tobacco-specific nitrosamines and may play important roles in cigarette smoking-induced lung cancer. Unlike CYP2A6, effects of CYP2A13 on the tobacco-specific nitrosamine-induced mutagenesis in lung cells remain unclear. This study uses a supF mutagenesis assay to examine the relative effects of CYP2A6 and CYP2A13 on metabolic activation of a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and its resulting mutagenesis in human lung cells. A recombinant adenovirus-mediated CYP2A6/CYP2A13 expression system was established to specifically address the relative effects of these two CYPs. Mutagenesis results revealed that both CYP2A6 and CYP2A13 significantly enhanced the NNK-induced supF mutation and that the mutagenic effect of CYP2A13 was markedly higher than that of CYP2A6. Analysis of NNK metabolism indicated that {>=} 70% of NNK was detoxified to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), either with or without CYP2A6/CYP2A13 expression. Both CYP2A6 and CYP2A13 significantly enhanced the {alpha}-hydroxylation of NNK; and the {alpha}-hydroxylation activity of CYP2A13 was significantly higher than that of CYP2A6. Analysis of the NNK-related DNA adduct formation indicated that, in the presence of CYP2A13, NNK treatments caused marked increases in O{sup 6}-methylguanine (O{sup 6}-MeG). The present results provide the first direct in vitro evidence demonstrating the predominant roles of CYP2A13 in NNK-induced mutagenesis, possibly via metabolic activation of NNK {alpha}-hydroxylation.

  13. Quantitative Assessment of the Influence of Cytochrome P450 1A2 Gene Polymorphism and Colorectal Cancer Risk

    PubMed Central

    Rewuti, Abudouaini; Ma, Yu-Shui; Wang, Xiao-Feng; Xia, Qing; Fu, Da; Han, Yu-Song

    2013-01-01

    Cytochrome P450 1A2 (CYP1A2) encodes a member of the cytochrome P450 superfamily of enzymes, which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of colorectal cancer (CRC). The CYP1A2*C (rs2069514) and CYP1A2*F (rs762551) polymorphism are two of the most commonly studied polymorphisms of the gene for their association with risk of CRC, but the results are conflicting. To derive a more precise estimation of the relationship between CYP1A2 and genetic risk of CRC, we performed a comprehensive meta-analysis which included 7088 cases and 7568 controls from 12 published case-control studies. In a combined analysis, the summary per-allele odds ratio for CRC was 0.91 (95% CI: 0.83–1.00, P = 0.04), and 0.91 (95% CI: 0.68–1.22, P = 0.53), for CYP1A2 *F and *C allele, respectively. In the subgroup analysis by ethnicity, significant associations were found in Asians for CYP1A2*F and CYP1A2*C, while no significant associations were detected among Caucasian populations. Similar results were also observed using dominant genetic model. Potential sources of heterogeneity were explored by subgroup analysis and meta-regression. No significant heterogeneity was detected in most of comparisons. This meta-analysis suggests that the CYP1A2 *F and *C polymorphism is a protective factor against CRC among Asians. PMID:23951174

  14. Pharmacogenetics of CYP2B6, CYP2A6 and UGT2B7 in HIV treatment in African populations: focus on efavirenz and nevirapine.

    PubMed

    Čolić, Antoinette; Alessandrini, Marco; Pepper, Michael S

    2015-05-01

    The CYP450 and UGT enzymes are involved in phase I and phase II metabolism of the majority of clinically prescribed drugs, including the non-nucleoside reverse transcriptase inhibitors, efavirenz and nevirapine, used in the treatment of HIV/AIDS. Variations in the activity of these enzymes due to gene polymorphisms can affect an individual's drug response or may lead to adverse drug reactions. There is an inter-ethnic distribution in the frequency of these polymorphisms, with African populations exhibiting higher genetic diversity compared to other populations. African specific alleles with clinical relevance have also emerged. Given the high prevalence of HIV/AIDS in sub-Saharan Africa, understanding the frequency of pharmacogenetically relevant alleles in populations of African origin, and their impact on efavirenz and nevirapine metabolism, is becoming increasingly critical. This review aims to investigate ethnic variation of CYP2B6, CYP2A6 and UGT2B7, and to understand the pharmacogenetic relevance when comparing frequencies in African populations to other populations worldwide. PMID:25391641

  15. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta.

    PubMed

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Huang, Yihe; Ma, Yan; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-06-01

    The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7μm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution

  16. Effects of heme precursors on CYP1A2 and POR expression in the baculovirus/Spodoptera frugiperda system☆

    PubMed Central

    Lu, Huiyuan; Ma, Jun; Liu, Nian; Wang, Shoulin

    2010-01-01

    Objective CYP1A2 and NADPH-CYP450 oxidoreductase (POR) were expressed in the baculovirus/Spodoptera frugiperda (sf9) system. The aim of this study was to investigate the effects of heme precursors on the expression of CYP1A2 and POR. Methods The heme precursors [δ-Aminolaevulinic Acid (5-ALA), Fe3+ and hemin] were introduced into the system to evaluate their effects on the expression of CYP1A2, POR and their co-expression. All the proteins were identified using immunoblotting, CO-difference spectroscopy, or cytochrome c assay. Results In the present study, functional CYP1A2 and POR were successfully expressed in the baculovirus/sf9 system, and both of them showed high activities. Co-addition of 5-ALA and Fe3+ significantly improved expression of CYP1A2 by about 50% compared with the addition of 5-ALA, Fe3+ or hemin alone. Either co-addition of 5-ALA and Fe3+ or addition of 5-ALA or Fe3+ alone improved the POR expression level 2 fold and its activity 7-10 fold compared with control (no addition). However, unlike CYP1A2, there was no difference between the co-addition and addition of these heme precursors alone. Different ratios of BvCYP1A2 to BvPOR also affected the co-expression of CYP1A2 and POR, with a 3:1 ratio of BvCYP1A2 / BvPOR significantly increasing their co-expression. Surprisingly, the addition of 0.1 mM 5-ALA or Fe3+ alone, but not their co-addition, could significantly improve the CYP1A2 and POR co-expression (P < 0.05). Conclusion 5-ALA and Fe3+ increased the expression of CYP1A2 and POR in a baculovirus/sf9 system, but the pattern of their expression was different between their expression alone and co-expression. PMID:23554636

  17. CYP1A2 rs762551 polymorphism contributes to risk of lung cancer: a meta-analysis.

    PubMed

    Ma, Zheng; Guo, Wei; Gong, Taiqian; Niu, Hui-Jun; Wang, Ru-Wen; Jiang, Yao-Guang

    2014-03-01

    Previous studies proposed that CYP1A2 rs762551 polymorphism might be associated with risk of lung cancer by influencing the function of CYP1A2. However, previous studies on the association between CYP1A2 rs762551 polymorphism and risk of lung cancer reported inconsistent findings. We performed a meta-analysis of the published case-control studies to assess the association between CYP1A2 rs762551 polymorphism and risk of lung cancer. PubMed and Embase were searched to identify relevant studies on the association between CYP1A2 rs762551 polymorphism and risk of lung cancer, and seven studies with a total of 3,320 subjects were finally included into the meta-analysis. The pooled odds ratio (OR) and 95 % confidence interval (95%CI) was calculated to evaluate the association. Meta-analysis of total studies showed that CYP1A2 rs762551 polymorphism contributed to risk of lung cancer under all four genetic models (C versus A: OR = 1.26, 95%CI 1.13 to 1.40, P < 0.001; CC versus AA: OR = 1.61, 95%CI 1.28 to 2.04, P < 0.001; CC versus AA/AC: OR = 1.52, 95%CI 1.11 to 2.09, P = 0.009; CC/AC versus AA: OR = 1.28, 95%CI 1.10 to 1.48, P = 0.001). Subgroup analysis based on ethnicity further suggested that CYP1A2 rs762551 polymorphism was associated with risk of lung cancer in Caucasians. These results from the meta-analysis suggest that CYP1A2 rs762551 polymorphism contributes to risk of lung cancer. PMID:24293373

  18. Expression of Organic Anion Transporting Polypeptide 1A2 in Red Blood Cells and Its Potential Impact on Antimalarial Therapy.

    PubMed

    Hubeny, Andrea; Keiser, Markus; Oswald, Stefan; Jedlitschky, Gabriele; Kroemer, Heyo K; Siegmund, Werner; Grube, Markus

    2016-10-01

    Important antimalarial drugs, including quinolines, act against blood schizonts by interfering with hemoglobin metabolism. To reach their site of action, these compounds have to cross the plasma membrane of red blood cells (RBCs). Organic cation transporters (OCTs) and organic anion transporting polypeptides (OATPs) are important uptake transporters and interesting candidates for local drug transport. We therefore studied their interaction with antimalarial compounds (quinine, chloroquine, mefloquine, pyrimethamine, artemisinin, and artesunate) and characterized the expression of OATP1A2 and OATP2B1 in RBCs. Competition assays using transporter-overexpressing Madin-Darby canine kidney (MDCKII) cells and the model substrate estrone-3-sulfate identified quinine and chloroquine as potent inhibitors of OATP1A2 function (IC50 quinine: 0.7 ± 1.2 µM; chloroquine: 1.0 ± 1.5 µM), but no or only moderate effects were observed for OATP2B1. Subsequently, quinine was identified as a substrate of OATP1A2 (Km 23.4 µM). The OATP1A2-mediated uptake was sensitive to the OATP1A2-specific inhibitor naringin. Both OATPs were expressed in human RBCs, and ex vivo transport studies demonstrated naringin-sensitive accumulation of quinine in these cells (60 pmol versus 38 pmol/5 × 10(5) RBCs). Additional transport studies using OCT1-3 and organic cation transporter novel type 1 (OCTN1) indicated only significant quinine uptake by OCT1, which was not detected in RBCs. In conclusion, our data demonstrate expression of OATP2B1 and OATP1A2 in RBCs as well as OATP1A2-mediated uptake of quinine. Therefore, modulation of OATP1A2 function may affect quinine uptake into erythrocytes. PMID:27504015

  19. NblA1/A2-Dependent Homeostasis of Amino Acid Pools during Nitrogen Starvation in Synechocystis sp. PCC 6803

    PubMed Central

    Kiyota, Hiroshi; Hirai, Masami Yokota; Ikeuchi, Masahiko

    2014-01-01

    Nutrient balance is important for photosynthetic growth and biomass production in microalgae. Here, we investigated and compared metabolic responses of amino acid pools to nitrogen and sulfur starvation in a unicellular model cyanobacterium, Synechocystis sp. PCC 6803, and its mutant nblA1/A2. It is known that NblA1/A2-dependent and -independent breakdown of abundant photosynthetic phycobiliproteins and other cellular proteins supply nutrients to the organism. However, the contribution of the NblA1/A2-dependent nutrient supply to amino acid pool homeostasis has not been studied. Our study demonstrates that changes in the pool size of many amino acids during nitrogen starvation can be categorized as NblA1/A2-dependent (Gln, Glu, glutathione, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Tyr and Val) and NblA1/A2-independent (Ala, Asn, Lys, and Trp). We also report unique changes in amino acid pool sizes during sulfur starvation in wild type and the mutant and found a generally marked increase in the Lys pool in cyanobacteria during nutrient starvation. In conclusion, the NblA1/A2-dependent protein turnover contributes to the maintenance of many amino acid pools during nitrogen starvation. PMID:24983765

  20. Identification of inhibitory component in cinnamon--O-methoxycinnamaldehyde inhibits CYP1A2 and CYP2E1-.

    PubMed

    Hasegawa, Atsushi; Yoshino, Masaki; Nakamura, Hiroyoshi; Ishii, Itsuko; Watanabe, Toshiko; Kiuchi, Masahiro; Ishikawa, Tsutomu; Ohmori, Shigeru; Kitada, Mitsukazu

    2002-01-01

    The Cinnamomi Cortex and Ephedra Herba were found to more strongly inhibit aminopyrine N-demethylation in rat liver microsomes compared to other constituents included in Sho-seiryu-to. The component inhibiting drug oxidations catalyzed by CYP1A2 and CYP2E1 was isolated from Cinnamomi Cortex, and was identified as o-methoxycinnamaldehyde (OMCA). When phenacetin and 4-nitrophenol were used as probe substrates for CYP1A2 and CYP2E1, respectively, the OMCA was shown to be a competitive inhibitor against CYP1A2 while it was a mixed type inhibitor against CYP2E1. The inhibitory effect of OMCA on 4-nitrophenol 2-hydroxylation (K(i)=6.3 microM) was somewhat potent compared to that observed on phenacetin O-deethylation (K(i)=13.7 microM) in rat liver microsomes. PMID:15618674

  1. Meta-analysis of correlation between the CYP1A2 -3860 G > A polymorphism and lung cancer risk.

    PubMed

    Ren, J; He, B Z; Zhang, T S; Lu, S P; Yan, T

    2016-01-01

    The aim of this meta-analysis was to assess the association between a polymorphism (-3860 G > A) in the cytochrome P450 1A2 (CYP1A2) gene and lung cancer susceptibility. Relevant studies were retrieved from the PubMed and EMBase databases, and additionally evaluated for conformance with the inclusion criteria. The odds ratios (ORs) and their 95% confidence intervals (95%CIs) in all selected studies were used to assess the relationship between the CYP1A2 -3860 G > A polymorphism and lung cancer risk. The data was pooled using Stata v.11. Six studies, comprising 1168 lung cancer patients and 1598 controls, were included in this meta-analysis. We found no correlation between the CYP1A2 -3860 G > A polymorphism and lung cancer risk in any of the models (AA vs GG: OR = 4.79, 95%CI = 0.03-702.67; GA vs GG: OR = 1.33, 95%CI = 0.74-2.39; dominant model: OR = 1.41, 95%CI = 0.69-2.90; recessive model: OR = 4.07, 95%CI = 0.04-368.35). Moreover, we observed no statistically significant association between CYP1A2 -3860 G > A and lung cancer susceptibility when stratified by the ethnicity of the sample populations, sample size, and study quality, except in a low-quality study. Our findings indicated that the -3860 G > A polymorphism in CYP1A2 might not be a risk factor for lung cancer. PMID:27323197

  2. Variable inhibitory effect of herbal supplements of different brands on human P450 CYP1A2

    PubMed Central

    Wanwimolruk, Sompon; Prachayasittikul, Virapong

    2012-01-01

    Herbal supplements are not governed by the same regulations as prescription drugs, we hypothesize that the content of their active ingredients may vary largely among different manufacturers. This may produce variable therapeutic outcomes. This study aims to examine this hypothesis on commonly used herbal supplements among cancer patients. CYP1A2 has been implicated in the activation of many carcinogens and alteration in its activity may be a mechanism associated with the protective effect of herbal products. Activity of human CYP1A2 was used to determine the effect of four herbal supplements of different brands, namely, black cohosh (BC), ginseng, grape seed extract (GSE) and green tea extract (GTE). The herbal content was extracted with methanol, and extract aliquots were used to determine their effect on CYP1A2. Human liver microsomes, the CYP1A2 probe (7-ethoxyresorufin) and NADPH in buffer were incubated with and without herbal extract. Metabolite (resorufin) formation was monitored by HPLC. Seven BC products caused a mild inhibition of CYP1A2, ranging from 2.4 % by GNC Plus to 21.9 % by Nature's Resource. Among nine ginseng products tested, the inhibitory effect varied from 4.2 % by Imperial to 44.6 % by Solarays. The effect of nine GSE brands also varied, ranging from 1.7 % (Country Life) to 26.5 % (Veg Life). Of twelve GTE products, the inhibitory effect varied from 2.9 % by Henry's to 46.6 % by GNC Plus. It appears that the inhibition of selected herbal supplements on CYP1A2 activity varies considerably among different brands of the products. This may be due to variations in the herbal products' active ingredients content. PMID:27298605

  3. Properties of L=1 B(1) and B(2)* mesons.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, C; Clément, B; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; de Jong, P; De La Cruz-Burelo, E; Martins, C De Oliveira; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutierrez, P; Gutierrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Y Garzón, G J Otero; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perea, P M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pompos, A; Pope, B G; Popov, A V; Potter, C; da Silva, W L Prado; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Williams, M R J; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yu, C; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2007-10-26

    This Letter presents the first strong evidence for the resolution of the excited B mesons B(1) and B(2)* as two separate states in fully reconstructed decays to B(+)(*)pi(-). The mass of B(1) is measured to be 5720.6+/-2.4+/-1.4 MeV/c(2) and the mass difference DeltaM between B(2)* and B(1) is 26.2+/-3.1+/-0.9 MeV/c;{2}, giving the mass of the B(2)* as 5746.8+/-2.4+/-1.7 MeV/c(2). The production rate for B(1) and B(2)* mesons is determined to be a fraction (13.9+/-1.9+/-3.2)% of the production rate of the B+ meson. PMID:17995320

  4. Screening of CACNA1A and ATP1A2 genes in hemiplegic migraine: clinical, genetic, and functional studies.

    PubMed

    Carreño, Oriel; Corominas, Roser; Serra, Selma Angèlica; Sintas, Cèlia; Fernández-Castillo, Noèlia; Vila-Pueyo, Marta; Toma, Claudio; Gené, Gemma G; Pons, Roser; Llaneza, Miguel; Sobrido, María-Jesús; Grinberg, Daniel; Valverde, Miguel Ángel; Fernández-Fernández, José Manuel; Macaya, Alfons; Cormand, Bru

    2013-11-01

    Hemiplegic migraine (HM) is a rare and severe subtype of autosomal dominant migraine, characterized by a complex aura including some degree of motor weakness. Mutations in four genes (CACNA1A, ATP1A2, SCN1A and PRRT2) have been detected in familial and in sporadic cases. This genetically and clinically heterogeneous disorder is often accompanied by permanent ataxia, epileptic seizures, mental retardation, and chronic progressive cerebellar atrophy. Here we report a mutation screening in the CACNA1A and ATP1A2 genes in 18 patients with HM. Furthermore, intragenic copy number variant (CNV) analysis was performed in CACNA1A using quantitative approaches. We identified four previously described missense CACNA1A mutations (p.Ser218Leu, p.Thr501Met, p.Arg583Gln, and p.Thr666Met) and two missense changes in the ATP1A2 gene, the previously described p.Ala606Thr and the novel variant p.Glu825Lys. No structural variants were found. This genetic screening allowed the identification of more than 30% of the disease alleles, all present in a heterozygous state. Functional consequences of the CACNA1A-p.Thr501Met mutation, previously described only in association with episodic ataxia, and ATP1A2-p.Glu825Lys, were investigated by means of electrophysiological studies, cell viability assays or Western blot analysis. Our data suggest that both these variants are disease-causing. PMID:24498617

  5. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    PubMed

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-07-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants. PMID:26771455

  6. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of these standards can be inspected at the Federal... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System...

  7. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  8. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  9. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  10. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  11. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of these standards can be inspected at the Federal... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System...

  12. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  13. Screening of CACNA1A and ATP1A2 genes in hemiplegic migraine: clinical, genetic, and functional studies

    PubMed Central

    Carreño, Oriel; Corominas, Roser; Serra, Selma Angèlica; Sintas, Cèlia; Fernández-Castillo, Noèlia; Vila-Pueyo, Marta; Toma, Claudio; Gené, Gemma G; Pons, Roser; Llaneza, Miguel; Sobrido, María-Jesús; Grinberg, Daniel; Valverde, Miguel Ángel; Fernández-Fernández, José Manuel; Macaya, Alfons; Cormand, Bru

    2013-01-01

    Hemiplegic migraine (HM) is a rare and severe subtype of autosomal dominant migraine, characterized by a complex aura including some degree of motor weakness. Mutations in four genes (CACNA1A, ATP1A2, SCN1A and PRRT2) have been detected in familial and in sporadic cases. This genetically and clinically heterogeneous disorder is often accompanied by permanent ataxia, epileptic seizures, mental retardation, and chronic progressive cerebellar atrophy. Here we report a mutation screening in the CACNA1A and ATP1A2 genes in 18 patients with HM. Furthermore, intragenic copy number variant (CNV) analysis was performed in CACNA1A using quantitative approaches. We identified four previously described missense CACNA1A mutations (p.Ser218Leu, p.Thr501Met, p.Arg583Gln, and p.Thr666Met) and two missense changes in the ATP1A2 gene, the previously described p.Ala606Thr and the novel variant p.Glu825Lys. No structural variants were found. This genetic screening allowed the identification of more than 30% of the disease alleles, all present in a heterozygous state. Functional consequences of the CACNA1A-p.Thr501Met mutation, previously described only in association with episodic ataxia, and ATP1A2-p.Glu825Lys, were investigated by means of electrophysiological studies, cell viability assays or Western blot analysis. Our data suggest that both these variants are disease-causing. PMID:24498617

  14. Suppression of Hepatic Cyp1a2 by Total Ginsenosides in Lipopolysaccharide-Treated Mice and Primary Mouse Hepatocytes.

    PubMed

    Sun, Haiyan; Yan, Yijing; Xu, Chenshu; Wan, Hongxia; Liu, Dong

    2016-03-23

    The roots of Panax ginseng (ginseng) have been extensively used in traditional Chinese medicine. However, herb-drug interactions between ginseng and other co-administered drugs are not fully understood concerning the effect of ginseng on drug metabolism and clearance. The current study aimed to elucidate the effect of total ginsenosides, a typical ginseng extract, on the regulation of Cyp1a2, a key enzyme to regulate drug metabolism under the normal and inflammatory conditions in mice. Female C57BL/6J mice treated with vehicle and lipopolysaccharide (LPS) were intragastrically administered ginseng extract for 7 days before hepatic P450 expression was analyzed. Primary mouse hepatocytes were also employed to further explore the effects of total ginsenosides on Cyp1a2 expression. The results showed that total ginsenosides in P. ginseng extract exhibited a concentration-dependent suppression on Cyp1a2 mRNA and protein level in both mice and primary mouse hepatocytes. Notably, the inhibitory effects of total ginsenosides on Cyp1a2 mRNA and protein expression were further enhanced following LPS treatment. Therefore, future research is warranted to investigate the role of ginsenosides in the regulation of hepatic CYP450s. Moreover, consumption of ginseng as food or supplement should be monitored for patients on combinational therapy, especially those with inflammatory diseases. PMID:26923348

  15. Genetic determinants of cytochrome P450 2A6 activity and biomarkers of tobacco smoke exposure in relation to risk of lung cancer development in the Shanghai cohort study.

    PubMed

    Yuan, Jian-Min; Nelson, Heather H; Butler, Lesley M; Carmella, Steven G; Wang, Renwei; Kuriger-Laber, Jacquelyn K; Adams-Haduch, Jennifer; Hecht, Stephen S; Gao, Yu-Tang; Murphy, Sharon E

    2016-05-01

    Cytochrome P450 2A6 (CYP2A6) catalyzes nicotine metabolism and contributes to the metabolism of the tobacco-specific lung carcinogen, NNK. Genetic variation in CYP2A6 may affect smoking behavior and contribute to lung cancer risk. A nested case-control study of 325 lung cancer cases and 356 controls was conducted within a prospective cohort of 18,244 Chinese men in Shanghai, China. Quantified were 4 allelic variants of CYP2A6 [*1(+51A), *4, *7, and *9] and urinary total nicotine, total cotinine, total trans-3'-hydroxycotinine (3HC) and total NNAL (an NNK metabolite). Calculated were total nicotine equivalents (TNE), the sum of total nicotine, total cotinine and total 3HC and the total 3HC:total cotinine ratio as a measure of CYP2A6 activity. The nicotine metabolizer status (normal, intermediate, slow and poor) was determined by CYP2A6 genotypes. The smoking-adjusted odds ratios (95% confidence intervals) of lung cancer for the highest vs lowest quartile of total nicotine, total cotinine, total 3HC, TNE and total NNAL were 3.03 (1.80-5.10), 4.70 (2.61-8.46), 4.26 (2.37-7.68), 4.71 (2.61-8.52), and 3.15 (1.86-5.33) (all Ptrend  < 0.001), respectively. Among controls CYP2A6 poor metabolizers had a 78% lower total 3HC:total cotinine ratio and 72% higher total nicotine (Ptrend ≤ 0.002). Poor metabolizers had an odds ratio of 0.64 (95% confidence interval = 0.43-0.97) for lung cancer, which was statistically nonsignificant (odds ratio = 0.74, 95% confidence interval = 0.48-1.15) after adjustment for urinary TNE and smoking intensity and duration. The lower lung cancer risk observed in CYP2A6 poor metabolizers is partially explained by the strong influence of CYP2A6 genetic polymorphisms on nicotine uptake and metabolism. PMID:26662855

  16. Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients.

    PubMed

    Fernández-Santander, Ana; Gaibar, María; Novillo, Apolonia; Romero-Lorca, Alicia; Rubio, Margarita; Chicharro, Luis Miguel; Tejerina, Armando; Bandrés, Fernando

    2013-01-01

    Tamoxifen is a pro-drug widely used in breast cancer patients to prevent tumor recurrence. Prior work has revealed a role of cytochrome and sulfotransferase enzymes in tamoxifen metabolism. In this descriptive study, correlations were examined between concentrations of tamoxifen metabolites and genotypes for CYP2D6, CYP3A4, CYP3A5, SULT1A1, SULT1A2 and SULT1E1 in 135 patients with estrogen receptor-positive breast cancer. Patients were genotyped using the Roche-AmpliChip® CYP450 Test, and Real-Time and conventional PCR-RFLP. Plasma tamoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen, endoxifen and tamoxifen-N-oxide were isolated and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Significantly higher endoxifen levels were detected in patients with the wt/wt CYP2D6 compared to the v/v CYP2D6 genotype (p<0.001). No differences were detected in the remaining tamoxifen metabolites among CYP2D6 genotypes. Patients featuring the SULT1A2*2 and SULT1A2*3 alleles showed significantly higher plasma levels of 4-hydroxy-tamoxifen and endoxifen (p = 0.025 and p = 0.006, respectively), as likely substrates of the SULT1A2 enzyme. Our observations indicate that besides the CYP2D6 genotype leading to tamoxifen conversion to potent hydroxylated metabolites in a manner consistent with a gene-dose effect, SULT1A2 also seems to play a role in maintaining optimal levels of both 4-hydroxy-tamoxifen and endoxifen. PMID:23922954

  17. Relationship between Genotypes Sult1a2 and Cyp2d6 and Tamoxifen Metabolism in Breast Cancer Patients

    PubMed Central

    Fernández-Santander, Ana; Gaibar, María; Novillo, Apolonia; Romero-Lorca, Alicia; Rubio, Margarita; Chicharro, Luis Miguel; Tejerina, Armando; Bandrés, Fernando

    2013-01-01

    Tamoxifen is a pro-drug widely used in breast cancer patients to prevent tumor recurrence. Prior work has revealed a role of cytochrome and sulfotransferase enzymes in tamoxifen metabolism. In this descriptive study, correlations were examined between concentrations of tamoxifen metabolites and genotypes for CYP2D6, CYP3A4, CYP3A5, SULT1A1, SULT1A2 and SULT1E1 in 135 patients with estrogen receptor-positive breast cancer. Patients were genotyped using the Roche-AmpliChip® CYP450 Test, and Real-Time and conventional PCR-RFLP. Plasma tamoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen, endoxifen and tamoxifen-N-oxide were isolated and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Significantly higher endoxifen levels were detected in patients with the wt/wt CYP2D6 compared to the v/v CYP2D6 genotype (p<0.001). No differences were detected in the remaining tamoxifen metabolites among CYP2D6 genotypes. Patients featuring the SULT1A2*2 and SULT1A2*3 alleles showed significantly higher plasma levels of 4-hydroxy-tamoxifen and endoxifen (p = 0.025 and p = 0.006, respectively), as likely substrates of the SULT1A2 enzyme. Our observations indicate that besides the CYP2D6 genotype leading to tamoxifen conversion to potent hydroxylated metabolites in a manner consistent with a gene-dose effect, SULT1A2 also seems to play a role in maintaining optimal levels of both 4-hydroxy-tamoxifen and endoxifen. PMID:23922954

  18. Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man.

    PubMed

    Kall, M A; Clausen, J

    1995-10-01

    Two studies were performed in order to evaluate cytochrome P450 1A2 mediated caffeine metabolism during different nutritional conditions. 1. In the first study, 23 healthy male non-smokers, mean age 25, changed from a customary mixed diet to a standard diet in 6 days. The 6 day's standard diet was based on bread, potatoes, rice and boiled meat. Thus, broccoli, cabbage and other cruciferous vegetables, spinach, leeks, onion, parsley, grapefruit, toasted bread, fried and charcoal grilled food, smoked fish and meat, ham and sausages were avoided. 2. In the second study, 33 healthy non-smoking subjects, 24 men and nine women mean age 25 years, volunteered. The study was designed to compare a customary home dietary period with the 6 day period of low dietary P450 induction and with a 5 day supplementary dietary period, i.e. ingestion of known dietary inducers. None of the women were using oral contraceptives or were pregnant during the experimental period. In the period of diet supplementation, the volunteers received charcoal grilled hamburger as a supplement to the standard low induction diet for lunch for 5 days. The hamburgers were made with 150 g beef (18-20% fat) and were grilled on charcoal for 10 min on each side until they were 'well done'. In the present study P450 1A2 activity was estimated from the caffeine metabolic ratio, the so-called CYP 1A2 index:(AFMU + 1-MX + 1-MU/ 17 -DMU) of the caffeine metabolites formed after oral ingestion of 200 mg caffeine. Urine was collected 4-8 h after caffeine ingestion in study 1 and 5 h after caffeine ingestion in study 2. In study 1 the CYP 1A2 index decreased from 4.28 +/- 0.98 in the customary home dietary period to 3.87 +/- 0.69 in the standard dietary period corresponding to 10.6% (P < 0.06) decrease in the CYP 1A2 index. In study 2 the CYP 1A2 index decreased from 4.47 +/- 1.76 in the customary home dietary period to 3.90 +/- 1.12 in the standard dietary period corresponding to a 14.6% decrease (P < 0.2) in P450 1A

  19. Identification and characterization of reactive metabolites in myristicin-mediated mechanism-based inhibition of CYP1A2.

    PubMed

    Yang, Ai-Hong; He, Xin; Chen, Jun-Xiu; He, Li-Na; Jin, Chun-Huan; Wang, Li-Li; Zhang, Fang-Liang; An, Li-Jun

    2015-07-25

    Myristicin belongs to the methylenedioxyphenyl or allyl-benzene family of compounds, which are found widely in plants of the Umbelliferae family, such as parsley and carrot. Myristicin is also the major active component in the essential oils of mace and nutmeg. However, this compound can cause adverse reactions, particularly when taken inappropriately or in overdoses. One important source of toxicity of natural products arises from their metabolic biotransformations into reactive metabolites. Myristicin contains a methylenedioxyphenyl substructure, and this specific structural feature may allow compounds to cause a mechanism-based inhibition of cytochrome P450 enzymes and produce reactive metabolites. Therefore, the aim of this work was to identify whether the role of myristicin in CYP enzyme inhibition is mechanism-based inhibition and to gain further information regarding the structure of the resulting reactive metabolites. CYP cocktail assays showed that myristicin most significantly inhibits CYP1A2 among five CYP enzymes (CYP1A2, CYP2D6, CYP2E1, CYP3A4 and CYP2C19) from human liver microsomes. The 3.21-fold IC50 shift value of CYP1A2 indicates that myristicin may be a mechanism-based inhibitor of CYP1A2. Next, reduced glutathione was shown to block the inhibition of CYP1A2, indicating that myristicin utilized a mechanism-based inhibition. Phase I metabolism assays identified two metabolites, 5-allyl-1-methoxy-2,3-dihydroxybenzene (M1) and 1'-hydroxymyristicin or 2',3'-epoxy-myristicin (M2). Reduced glutathione capturing assays captured the glutathione-M1 adduct, and the reactive metabolites were identified using UPLC-MS(2) as a quinone and its tautomer. Thus, it was concluded that myristicin is a mechanism-based inhibitor of CYP1A2, and the reactive metabolites are quinone tautomers. Additionally, the cleavage process of the glutathione-M1 adduct was analyzed in further detail. This study provides additional information on the metabolic mechanism of myristicin

  20. In vitro inhibitory effect of piperlonguminine isolated from Piper longum on human cytochrome P450 1A2.

    PubMed

    Song, Min; Hwang, Jae Yun; Lee, Min Young; Jee, Jun-Goo; Lee, You Mie; Bae, Jong-Sup; Kim, Jeong Ah; Lee, Seung Ho; Lee, Sangkyu

    2014-08-01

    Piperlonguminine (PL), a major alkaloid isolated from Piper longum fruits, shows several biological activities including anti-tumor, anti-hyperlipidemic and anti-inflammatory effects. Although there have been studies of the biological effects of PL, the potential drug-interaction effect of PL following evaluation of inhibitory effects of cytochrome P450 (CYP) activities was not investigated. Here, to investigate the inhibitory effects of PL on the activities of CYP isoforms, CYP inhibition assays were conducted using a cocktail of probe substrates in pooled human liver microsome (HLMs) and human recombinant cDNA-expressed CYP. PL strongly inhibited CYP1A2-mediated phenacetin O-deethylation with an IC50 value of 8.8 μM, as NADPH-independent inhibition, while other CYPs were not significantly inhibited. A Lineweaver-Burk plot resulted in the inhibition mechanism of PL being divided into two different modes, reversible competitive inhibition in a low concentration range of 0-16 μM with a Ki value of 1.39 μM and uncompetitive inhibitory behavior at a high concentration range of 16-40 μM. In addition, PL only decreased CYP 1A2-catalyzed phenacetin O-deethylase activity with IC50 values of 10.0 μM in human recombinant cDNA-expressed 1A2, not 1A1. Overall, this is the first investigation of potential herb-drug interactions associated with PL conducted by identifying the competitive inhibitory effects of PL on CYP1A2 in HLMs. PMID:24194261

  1. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2.

    PubMed

    Reed, James R; dela Cruz, Albert Leo N; Lomnicki, Slawo M; Backes, Wayne L

    2015-12-01

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductase and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2-CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2. PMID:26423927

  2. A1/A2-Diamino-Substituted Pillar[5]arene-Based Acid-Base-Responsive Host-Guest System.

    PubMed

    Hu, Wei-Bo; Hu, Wen-Jing; Zhao, Xiao-Li; Liu, Yahu A; Li, Jiu-Sheng; Jiang, Biao; Wen, Ke

    2016-05-01

    An acid-base-responsive supramolecular host-guest system based on a planarly chiral A1/A2-diamino-substituted pillar[5]arene (1)/imidazolium ion recognition motif was created. The pillar[4]arene[1]diaminobenzene 1 can bring an electron-deficient imidazolium cation into its cylindrically shaped cavity under neutral or basic conditions and release it under acidic conditions. PMID:27088317

  3. The functions of the A1A2A3 domains in von Willebrand factor include multimerin 1 binding.

    PubMed

    Parker, D'Andra N; Tasneem, Subia; Farndale, Richard W; Bihan, Dominique; Sadler, J Evan; Sebastian, Silvie; de Groot, Philip G; Hayward, Catherine P M

    2016-07-01

    Multimerin 1 (MMRN1) is a massive, homopolymeric protein that is stored in platelets and endothelial cells for activation-induced release. In vitro, MMRN1 binds to the outer surfaces of activated platelets and endothelial cells, the extracellular matrix (including collagen) and von Willebrand factor (VWF) to support platelet adhesive functions. VWF associates with MMRN1 at high shear, not static conditions, suggesting that shear exposes cryptic sites within VWF that support MMRN1 binding. Modified ELISA and surface plasmon resonance were used to study the structural features of VWF that support MMRN1 binding, and determine the affinities for VWF-MMRN1 binding. High shear microfluidic platelet adhesion assays determined the functional consequences for VWF-MMRN1 binding. VWF binding to MMRN1 was enhanced by shear exposure and ristocetin, and required VWF A1A2A3 region, specifically the A1 and A3 domains. VWF A1A2A3 bound to MMRN1 with a physiologically relevant binding affinity (KD: 2.0 ± 0.4 nM), whereas the individual VWF A1 (KD: 39.3 ± 7.7 nM) and A3 domains (KD: 229 ± 114 nM) bound to MMRN1 with lower affinities. VWF A1A2A3 was also sufficient to support the adhesion of resting platelets to MMRN1 at high shear, by a mechanism dependent on VWF-GPIbα binding. Our study provides new information on the molecular basis of MMRN1 binding to VWF, and its role in supporting platelet adhesion at high shear. We propose that at sites of vessel injury, MMRN1 that is released following activation of platelets and endothelial cells, binds to VWF A1A2A3 region to support platelet adhesion at arterial shear rates. PMID:27052467

  4. A Characterization of the CH 2ã1A1(1,2,0),(2,0,0),(0,5,0),(1,3,0) and b˜1B1(1,14 2,0),(0,18 0,0),(0,19 1,0) Vibronic Levels by Fourier-Transform Dispersed Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Qin, D.; Hartland, G. V.; Dai, H. L.

    1994-12-01

    The CH2ã1A1, (1, 2, 0), (2, 0, 0), (0, 5, 0), (1, 3, 0) and b˜1B1 (1, 142, 0), (0, 180, 0), (0, 191, 0) levels are characterized by Fourier-transform dispersed fluorescence spectroscopy (FTDFS). Rotational transitions in the b˜ ← ã 1102140, 2180, and 2190 fluorescence excitation bands and those of the b˜ → ã 1012162, 1012172, 1022160, 2185, 2195, 1012183 and 1102193 bands in dispersed fluorescence spectra have been assigned. The rotational constants and vibrational term values for these vibrational levels have been obtained. Due to the limits brought by Renner-Teller coupling and Franck-Condon factors, this work, along with previous studies on lower vibrational levels, has characterized almost all ã vibrational levels detectable in the b˜↔ã transitions.

  5. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity

    PubMed Central

    Härtter, Sebastian; Nordmark, Anna; Rose, Dirk-Matthias; Bertilsson, Leif; Tybring, Gunnel; Laine, Kari

    2003-01-01

    Aims The aim of this study was to assess the influence of concomitant caffeine intake on the pharmacokinetics of oral melatonin, a probe drug for CYP1A2 activity. Methods Twelve healthy subjects, six smokers and six nonsmokers, were given melatonin (6 mg) either alone or in combination with caffeine (3 × 200 mg). Blood samples for the analysis of melatonin or caffeine and paraxanthine were taken from 1 h before until 6 h after intake of melatonin. Subjects were genotyped with respect to the CYP1A2*1F (C734A) polymorphism. Results When caffeine was coadministered the Cmax and AUC of melatonin were increased on average by 142% (P = 0.001, confidence interval on the difference 44, 80%) and 120% (P < 0.001, confidence interval on the difference 63, 178%), respectively. The inhibitory effect of caffeine was more pronounced in nonsmokers and in individuals with the *1F/*1F genotype. Conclusion The results of this study revealed a pronounced effect of caffeine on the bioavailability of orally given melatonin, most probably due to inhibition of CYP1A2 activity. PMID:14616429

  6. Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia

    PubMed Central

    Deng, Xiangdong; Shibata, Hiroki; Ninomiya, Hideaki; Tashiro, Nobutada; Iwata, Nakao; Ozaki, Norio; Fukumaki, Yasuyuki

    2004-01-01

    Background The glutamatergic dysfunction hypothesis of schizophrenia suggests that genes involved in glutametergic transmission are candidates for schizophrenic susceptibility genes. We have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. In this study we report an association study of the excitatory amino acid transporter 2 gene, SLC1A2 with schizophrenia. Methods We genotyped 100 Japanese schizophrenics and 100 controls recruited from the Kyushu area for 11 single nucleotide polymorphism (SNP) markers distributed in the SLC1A2 region using the direct sequencing and pyrosequencing methods, and examined allele, genotype and haplotype association with schizophrenia.The positive finding observed in the Kyushu samples was re-examined using 100 Japanese schizophrenics and 100 controls recruited from the Aichi area. Results We found significant differences in genotype and allele frequencies of SNP2 between cases and controls (P = 0.013 and 0.008, respectively). After Bonferroni corrections, the two significant differences disappeared. We tested haplotype associations for all possible combinations of SNP pairs. SNP2 showed significant haplotype associations with the disease (P = 9.4 × 10-5, P = 0.0052 with Bonferroni correction, at the lowest) in 8 combinations. Moreover, the significant haplotype association of SNP2-SNP7 was replicated in the cumulative analysis of our two sample sets. Conclusion We concluded that at least one susceptibility locus for schizophrenia is probably located within or nearby SLC1A2 in the Japanese population. PMID:15296513

  7. Sequence variants at CYP1A1–CYP1A2 and AHR associate with coffee consumption

    PubMed Central

    Sulem, Patrick; Gudbjartsson, Daniel F.; Geller, Frank; Prokopenko, Inga; Feenstra, Bjarke; Aben, Katja K.H.; Franke, Barbara; den Heijer, Martin; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Yanek, Lisa R.; Becker, Lewis C.; Boyd, Heather A.; Stacey, Simon N.; Walters, G. Bragi; Jonasdottir, Adalbjorg; Thorleifsson, Gudmar; Holm, Hilma; Gudjonsson, Sigurjon A.; Rafnar, Thorunn; Björnsdottir, Gyda; Becker, Diane M.; Melbye, Mads; Kong, Augustine; Tönjes, Anke; Thorgeirsson, Thorgeir; Thorsteinsdottir, Unnur; Kiemeney, Lambertus A.; Stefansson, Kari

    2011-01-01

    Coffee is the most commonly used stimulant and caffeine is its main psychoactive ingredient. The heritability of coffee consumption has been estimated at around 50%. We performed a meta-analysis of four genome-wide association studies of coffee consumption among coffee drinkers from Iceland (n = 2680), the Netherlands (n = 2791), the Sorbs Slavonic population isolate in Germany (n = 771) and the USA (n = 369) using both directly genotyped and imputed single nucleotide polymorphisms (SNPs) (2.5 million SNPs). SNPs at the two most significant loci were also genotyped in a sample set from Iceland (n = 2430) and a Danish sample set consisting of pregnant women (n = 1620). Combining all data, two sequence variants significantly associated with increased coffee consumption: rs2472297-T located between CYP1A1 and CYP1A2 at 15q24 (P = 5.4 · 10−14) and rs6968865-T near aryl hydrocarbon receptor (AHR) at 7p21 (P = 2.3 · 10−11). An effect of ∼0.2 cups a day per allele was observed for both SNPs. CYP1A2 is the main caffeine metabolizing enzyme and is also involved in drug metabolism. AHR detects xenobiotics, such as polycyclic aryl hydrocarbons found in roasted coffee, and induces transcription of CYP1A1 and CYP1A2. The association of these SNPs with coffee consumption was present in both smokers and non-smokers. PMID:21357676

  8. N-NITROSODIETHYLAMINE AND 4-(METHYLNITROSAMINO)-1-(3-PYRIDYL)-1-BUTANONE INDUCED MORPHOLOGICAL TRANSFORMATION OF CH3/10T1/2CL8 CELLS EXPRESSING HUMAN CYTOCHROME P450 2A6

    EPA Science Inventory

    Transfection of specific genes into cells capable of expressing chemically-induced morphological cell transformation provides a valuable approach to study the mechanisms of action of carcinogens. uman cytochrome P450 isozyme, CYP2A6, has been successfully expressed from a retrovi...

  9. ATP1A2 Mutations in Migraine: Seeing through the Facets of an Ion Pump onto the Neurobiology of Disease

    PubMed Central

    Friedrich, Thomas; Tavraz, Neslihan N.; Junghans, Cornelia

    2016-01-01

    Mutations in four genes have been identified in familial hemiplegic migraine (FHM), from which CACNA1A (FHM type 1) and SCN1A (FHM type 3) code for neuronal voltage-gated calcium or sodium channels, respectively, while ATP1A2 (FHM type 2) encodes the α2 isoform of the Na+,K+-ATPase's catalytic subunit, thus classifying FHM primarily as an ion channel/ion transporter pathology. FHM type 4 is attributed to mutations in the PRRT2 gene, which encodes a proline-rich transmembrane protein of as yet unknown function. The Na+,K+-ATPase maintains the physiological gradients for Na+ and K+ ions and is, therefore, critical for the activity of ion channels and transporters involved neuronal excitability, neurotransmitter uptake or Ca2+ signaling. Strikingly diverse functional abnormalities have been identified for disease-linked ATP1A2 mutations which frequently lead to changes in the enzyme's voltage-dependent properties, kinetics, or apparent cation affinities, but some mutations are truly deleterious for enzyme function and thus cause full haploinsufficiency. Here, we summarize structural and functional data about the Na+,K+-ATPase available to date and an overview is provided about the particular properties of the α2 isoform that explain its physiological relevance in electrically excitable tissues. In addition, current concepts about the neurobiology of migraine, the correlations between primary brain dysfunction and mechanisms of headache pain generation are described, together with insights gained recently from modeling approaches in computational neuroscience. Then, a survey is given about ATP1A2 mutations implicated in migraine cases as documented in the literature with focus on mutations that were described to completely destroy enzyme function, or lead to misfolded or mistargeted protein in particular model cell lines. We also discuss whether or not there are correlations between these most severe mutational effects and clinical phenotypes. Finally, perspectives

  10. ATP1A2 Mutations in Migraine: Seeing through the Facets of an Ion Pump onto the Neurobiology of Disease.

    PubMed

    Friedrich, Thomas; Tavraz, Neslihan N; Junghans, Cornelia

    2016-01-01

    Mutations in four genes have been identified in familial hemiplegic migraine (FHM), from which CACNA1A (FHM type 1) and SCN1A (FHM type 3) code for neuronal voltage-gated calcium or sodium channels, respectively, while ATP1A2 (FHM type 2) encodes the α2 isoform of the Na(+),K(+)-ATPase's catalytic subunit, thus classifying FHM primarily as an ion channel/ion transporter pathology. FHM type 4 is attributed to mutations in the PRRT2 gene, which encodes a proline-rich transmembrane protein of as yet unknown function. The Na(+),K(+)-ATPase maintains the physiological gradients for Na(+) and K(+) ions and is, therefore, critical for the activity of ion channels and transporters involved neuronal excitability, neurotransmitter uptake or Ca(2+) signaling. Strikingly diverse functional abnormalities have been identified for disease-linked ATP1A2 mutations which frequently lead to changes in the enzyme's voltage-dependent properties, kinetics, or apparent cation affinities, but some mutations are truly deleterious for enzyme function and thus cause full haploinsufficiency. Here, we summarize structural and functional data about the Na(+),K(+)-ATPase available to date and an overview is provided about the particular properties of the α2 isoform that explain its physiological relevance in electrically excitable tissues. In addition, current concepts about the neurobiology of migraine, the correlations between primary brain dysfunction and mechanisms of headache pain generation are described, together with insights gained recently from modeling approaches in computational neuroscience. Then, a survey is given about ATP1A2 mutations implicated in migraine cases as documented in the literature with focus on mutations that were described to completely destroy enzyme function, or lead to misfolded or mistargeted protein in particular model cell lines. We also discuss whether or not there are correlations between these most severe mutational effects and clinical phenotypes

  11. Adaptations for the Oxidation of Polycyclic Aromatic Hydrocarbons Exhibited By the Structure of Human 450 1a2

    SciTech Connect

    Sansen, S.; Yano, J.K.; Reynald, R.L.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F.

    2007-07-12

    Microsomal cytochrome P450 family 1 enzymes play prominent roles in xenobiotic detoxication and procarcinogen activation. P450 1A2 is the principal cytochrome P450 family 1 enzyme expressed in human liver and participates extensively in drug oxidations. This enzyme is also of great importance in the bioactivation of mutagens, including the N-hydroxylation of arylamines. P450-catalyzed reactions involve a wide range of substrates, and this versatility is reflected in a structural diversity evident in the active sites of available P450 structures. Here, we present the structure of human P450 1A2 in complex with the inhibitor alpha-naphthoflavone, determined to a resolution of 1.95 A. alpha-Naphthoflavone is bound in the active site above the distal surface of the heme prosthetic group. The structure reveals a compact, closed active site cavity that is highly adapted for the positioning and oxidation of relatively large, planar substrates. This unique topology is clearly distinct from known active site architectures of P450 family 2 and 3 enzymes and demonstrates how P450 family 1 enzymes have evolved to catalyze efficiently polycyclic aromatic hydrocarbon oxidation. This report provides the first structure of a microsomal P450 from family 1 and offers a template to study further structure-function relationships of alternative substrates and other cytochrome P450 family 1 members.

  12. Preliminary Investigation of the Contribution of CYP2A6, CYP2B6, and UGT1A9 Polymorphisms on Artesunate-Mefloquine Treatment Response in Burmese Patients with Plasmodium falciparum Malaria

    PubMed Central

    Phompradit, Papichaya; Muhamad, Poonuch; Cheoymang, Anurak; Na-Bangchang, Kesara

    2014-01-01

    CYP2A6, CYP2B6, and UGT1A9 genetic polymorphisms and treatment response after a three-day course of artesunate-mefloquine was investigated in 71 Burmese patients with uncomplicated Plasmodium falciparum malaria. Results provide evidence for the possible link between CYP2A6 and CYP2B6 polymorphisms and plasma concentrations of artesunate/dihydroartemisinin and treatment response. In one patient who had the CYP2A6*1A/*4C genotype (decreased enzyme activity), plasma concentration of artesunate at one hour appeared to be higher, and the concentration of dihydroartemisinin was lower than for those carrying other genotypes (415 versus 320 ng/mL). The proportion of patients with adequate clinical and parasitologic response who had the CYP2B6*9/*9 genotype (mutant genotype) was significantly lower compared with those with late parasitologic failure (14.0% versus 19.0%). Confirmation through a larger study in various malaria-endemic areas is required before a definite conclusion on the role of genetic polymorphisms of these drug-metabolizing enzymes on treatment response after artesunate-based combination therapy can be made. PMID:24891466

  13. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas

    SciTech Connect

    Sun, Yu; Wong, Nicholas; Guan, Yinghui; Salamanca, Clara M.; Cheng, Jung Chien; Lee, Jonathan M.; Gray, Joe W.; Auersperg, Nelly

    2008-04-25

    Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.

  14. Variability of cytochrome P450 1A2 activity over time in young and elderly healthy volunteers

    PubMed Central

    Simon, T; Becquemont, L; Hamon, B; Nouyrigat, E; Chodjania, Y; Poirier, J M; Funck-Brentano, C; Jaillon, P

    2001-01-01

    Aims To assess the age-associated changes over time of plasma paraxanthine/caffeine (PAX/CAF) ratios used as a probe for CYP1A2 activity. Methods Intraindividual and interindividual variabilities in PAX/CAF ratio were compared by phenotyping with caffeine, 16 young and 16 elderly healthy subjects on five occasions. Results PAX/CAF ratio variability was comparable regardless of age (intraindividual CV: 17.6 ± 6% and 16.2 ± 5.9%, interindividual CV: 48.1 ± 2.9% and 42.7 ± 3.6% in young and elderly, respectively). The PAX/CAF ratio was lower in elderly than in young subjects (95% CI for the difference: 0.004, 0.32) but the difference was not significant in nonsmokers compared separately. Conclusions The variability over time of the PAX/CAF ratio is not influenced by age. PMID:11736870

  15. Structure-Activity Relationships of Antitubercular Nitroimidazoles. 3. Exploration of the Linker and Lipophilic Tail of ((S)-2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-yl)-(4-trifluoromethoxybenzyl)amine (6-amino PA-824)

    PubMed Central

    Cherian, Joseph; Choi, Inhee; Nayyar, Amit; Manjunatha, Ujjini H.; Mukherjee, Tathagata; Lee, Yong Sok; Boshoff, Helena I.; Singh, Ramandeep; Ha, Young Hwan; Goodwin, Michael; Lakshminarayana, Suresh B.; Niyomrattanakit, Pornwaratt; Jiricek, Jan; Ravindran, Sindhu; Dick, Thomas; Keller, Thomas H.; Dartois, Veronique; Barry, Clifton E.

    2011-01-01

    The (S)-2-nitro-6-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine named PA-824 (1) has demonstrated antitubercular activity in vitro and in animal models and is currently in clinical trials. We synthesized derivatives at three positions of the 4-(trifluoromethoxy)benzylamino tail and these were tested for whole-cell activity against both replicating and non-replicating Mycobacterium tuberculosis (Mtb). In addition, we determined their kinetic parameters as substrates of the deazaflavin-dependent nitroreductase (Ddn) from Mtb that reductively activates these pro-drugs. These studies yielded multiple compounds with 40nM aerobic whole cell activity and 1.6μM anaerobic whole cell activity - ten fold improvements over both characteristics from the parent molecule. Some of these compounds exhibited enhanced solubility with acceptable stability to microsomal and in vivo metabolism. Analysis of the conformational preferences of these analogs using quantum chemistry suggests a preference for a pseudoequatorial orientation of the linker and lipophilic tail. PMID:21755942

  16. Variable Bone Fragility Associated With an Amish COL1A2 Variant and a Knock-in Mouse Model

    PubMed Central

    Daley, Ethan; Streeten, Elizabeth A; Sorkin, John D; Kuznetsova, Natalia; Shapses, Sue A; Carleton, Stephanie M; Shuldiner, Alan R; Marini, Joan C; Phillips, Charlotte L; Goldstein, Steven A; Leikin, Sergey; McBride, Daniel J

    2010-01-01

    Osteogenesis imperfecta (OI) is a heritable form of bone fragility typically associated with a dominant COL1A1 or COL1A2 mutation. Variable phenotype for OI patients with identical collagen mutations is well established, but phenotype variability is described using the qualitative Sillence classification. Patterning a new OI mouse model on a specific collagen mutation therefore has been hindered by the absence of an appropriate kindred with extensive quantitative phenotype data. We benefited from the large sibships of the Old Order Amish (OOA) to define a wide range of OI phenotypes in 64 individuals with the identical COL1A2 mutation. Stratification of carrier spine (L1–4) areal bone mineral density (aBMD) Z-scores demonstrated that 73% had moderate to severe disease (less than −2), 23% had mild disease (−1 to −2), and 4% were in the unaffected range (greater than −1). A line of knock-in mice was patterned on the OOA mutation. Bone phenotype was evaluated in four F1 lines of knock-in mice that each shared approximately 50% of their genetic background. Consistent with the human pedigree, these mice had reduced body mass, aBMD, and bone strength. Whole-bone fracture susceptibility was influenced by individual genomic factors that were reflected in size, shape, and possibly bone metabolic regulation. The results indicate that the G610C OI (Amish) knock-in mouse is a novel translational model to identify modifying genes that influence phenotype and for testing potential therapies for OI. © 2010 American Society for Bone and Mineral Research PMID:19594296

  17. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation

    PubMed Central

    Capoferri, Luigi; Verkade-Vreeker, Marlies C. A.; Buitenhuis, Danny; Commandeur, Jan N. M.; Pastor, Manuel; Vermeulen, Nico P. E.; Geerke, Daan P.

    2015-01-01

    Prediction of human Cytochrome P450 (CYP) binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD) simulations and Linear Interaction Energy (LIE) theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE) of 4.1 kJ mol-1 and a standard error in prediction (SDEP) in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units). PMID:26551865

  18. Cytochrome P450 expression system for high-throughput real-time detection of genotoxicity: Application to the study of human CYP1A2 variants.

    PubMed

    Palma, Bernardo Brito; Moutinho, Daniela; Urban, Philippe; Rueff, José; Kranendonk, Michel

    2016-08-01

    Individual variations in cytochrome P450-mediated metabolism are believed to contribute to individual susceptibility to chemical carcinogenesis. CYP1A2 is one of the major forms of cytochrome P450 involved in drug metabolism and bioactivation of carcinogens. We have applied a recently developed high-throughput Salmonella typhimurium TA1535 system for detection of DNA damaging agents to the study of CYP1A2 polymorphisms. Non-synonymous variants T83M [CYP1A2*9], S212C [CYP1A2*12], S298R [part of CYP1A2*21], G299S [CYP1A2*13], I314V [no allele designation], I386F [CYP1A2*4], C406Y [CYP1A2*5] and R456H [CYP1A2*8] were examined. The cDNAs for each of these variants and the wild-type were co-expressed with human NADPH cytochrome P450 oxidoreductase in the TA1535-based system. The bioactivation capacity of these CYP1A2 variants was investigated using three CYP1A2-dependent pro-mutagens, 1-aminopyrene (1AP), 2-aminoanthracene (2AA), and 2-amino-3-methylimidazo(4,5-f)quinoline (IQ). All CYP1A2 variants except R456H, T83M, and I386F gave positive responses with all three compounds. Variant R456H generated no detectable holoenzyme and no detectable response for any of the compounds; I386F did not bioactivate IQ; T83M did not bioactivate 1AP. Multivariate analysis indicated variant T83M to be substantially altered in catalytic properties when compared with wild-type CYP1A2; variants G299S and I386F are slightly but significantly different. These results corroborate our previous studies, indicating the effectiveness of this new high-throughput system, not only for examining the effect of CYP1A2 polymorphisms on pro-mutagen bioactivation, but also for obtaining insights on CYP1A2 function at the mechanistic level. PMID:27476332

  19. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism: Mexiletine N-Hydroxylation by Cytochrome P450 1A2.

    PubMed

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik; Harvey, Jeremy N; Mulholland, Adrian J

    2016-06-20

    The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site, but this is not a prerequisite for reaction via either mechanism. Several active site residues play a role in the binding of mexiletine in the active site, including Thr124 and Phe226. This work reveals key details of the N-hydroxylation of mexiletine and further demonstrates that mechanistic studies using QM/MM methods are useful for understanding drug metabolism. PMID:27064685

  20. 13C-methacetin breath test reproducibility study reveals persistent CYP1A2 stimulation on repeat examinations

    PubMed Central

    Kasicka-Jonderko, Anna; Nita, Anna; Jonderko, Krzysztof; Kamińska, Magdalena; Błońska-Fajfrowska, Barbara

    2011-01-01

    AIM: To find the most reproducible quantitative parameter of a standard 13C-methacetin breath test (13C-MBT). METHODS: Twenty healthy volunteers (10 female, 10 male) underwent the 13C-MBT after intake of 75 mg 13C-methacetin p.o. on three occasions. Short- and medium-term reproducibility was assessed with paired examinations taken at an interval of 2 and 18 d (medians), respectively. RESULTS: The reproducibility of the 1-h cumulative 13C recovery (AUC0-60), characterized by a coefficient of variation of 10%, appeared to be considerably better than the reproducibility of the maximum momentary 13C recovery or the time of reaching it. Remarkably, as opposed to the short gap between consecutive examinations, the capacity of the liver to handle 13C-methacetin increased slightly but statistically significantly when a repeat dose was administered after two to three weeks. Regarding the AUC0-60, the magnitude of this fixed bias amounted to 7.5%. Neither the time gap between the repeat examinations nor the gender of the subjects affected the 13C-MBT reproducibility. CONCLUSION: 13C-MBT is most reproducibly quantified by the cumulative 13C recovery, but the exactitude thereof may be modestly affected by persistent stimulation of CYP1A2 on repeat examinations. PMID:22174547

  1. Overexpression of PDZK1IP1, EEF1A2 and RPL41 genes in intrahepatic cholangiocarcinoma.

    PubMed

    Yang, Guanghua; Zong, Huajie

    2016-06-01

    Intrahepatic cholangiocarcinoma (iCCA) is an aggressive malignancy in the liver, which is associated with a poor prognosis. However, the molecular pathogenesis of iCCA remains unclear. RNA-Seq for tumor and para-tumor sample pairs enables the characterization of changes in the gene expression profiles of patients with iCCA. The present study analyzed RNA‑Seq data of seven iCCA para‑tumor and tumor sample pairs. Differential gene expression analysis demonstrated significant upregulation of PDZK1IP1, EEF1A2 and RPL41 (ENSG00000279483) genes in the iCCA samples when compared with the matched para‑tumor samples. Furthermore, genes associated with the immune system, metabolism and metabolic energy were significantly downregulated in the iCCA tumor tissues, indicating that this is involved in the pathogenesis of iCCA. The present study aimed to elucidate the gene expression patterns associated with the tumorigenesis of iCCA by comparing tumor and normal tissues, in order to isolate novel diagnostic factors for iCCA. PMID:27082702

  2. A simple chromatographic method for determining norfloxacin and enoxacin in pharmacokinetic study assessing CYP1A2 inhibition.

    PubMed

    Kobayashi, Toshimi; Homma, Masato; Momo, Kenji; Kobayashi, Daisuke; Kohda, Yukinao

    2011-04-01

    We developed a simple assay method for the determination of serum and urine norfloxacin and enoxacin using reversed-phase high-performance liquid chromatography and perchloric acid precipitation for sample pre-treatment. Optimized conditions can permit detection of norfloxacin and enoxacin in the same chromatogram, so either compound can be used as an internal standard for another determinant. Supernatants of the precipitated samples were analyzed by the octadecylsilyl silica-gel column under ambient temperature and an ultraviolet wavelength of 272  nm. A mobile phase solvent consisting of 20 mm sodium dihydrogenphosphate (pH 3.0) and acetonitrile (85:15, v/v) was pumped at a flow rate of 1.0 mL/min. The calibration curves for norfloxacin and enoxacin at a concentration of 62.5-1000 ng/mL for serum and 250-4000 ng/mL for urine were linear (r > 0.9997). The recoveries of norfloxacin and enoxacin from serum and urine were >94% with the coefficient of variations (CV) <5%. The CVs for intra- and inter-day assay of norfloxacin and enoxacin were <4.2 and <5.5%, respectively. This method can be applied to the pharmacokinetic study of norfloxacin and enoxacin after repeated administration to assess changes in CYP1A2 activity in healthy subjects. PMID:20662110

  3. The first Japanese case of the arthrochalasia type of Ehlers-Danlos syndrome with COL1A2 gene mutation.

    PubMed

    Hatamochi, Atsushi; Hamada, Takahiro; Yoshino, Makoto; Hashimoto, Takashi

    2014-03-15

    This is the first report for a Japanese case of arthrochalasia type of Ehlers-Danlos syndrome (EDS). A 46-year-old woman consulted us for joint hypermobility and skin hyperextensibility that had been present soon after birth. There was no family history of a similar disease. She was diagnosed as having bilateral congenital hip dislocation and bilateral habitual shoulder dislocation at her childhood. Her skin was velvety, doughy and hyperextensible. She showed hypermobility of the joints of the hands and feet and generalized joint laxity, with no evidence of scoliosis. Electrophoretic analysis of collagenous proteins revealed the presence of an additional band in the position of pNα2(I) in the sample from culture medium of the patient fibroblasts. Analysis of the α2 chains of type I collagen gene, COL1A2, showed a heterozygous G to T transition at the +1 position of the exon 6 donor splice site (c.279+1G>T). This mutation resulted in skipping of exon 6, which leads to deficient processing of the amino-terminal end of proα2(I) chains of type I collagen. Based on these findings, we made a diagnosis of the arthrochalasia type of EDS, which corresponds to EDS type VIIB in the former classification. PMID:24440294

  4. Prediction of inter-individual variability on the pharmacokinetics of CYP1A2 substrates in non-smoking healthy volunteers.

    PubMed

    Haraya, Kenta; Kato, Motohiro; Chiba, Koji; Sugiyama, Yuichi

    2016-08-01

    The activity of CYP1A2, a major drug-metabolizing enzyme, is known to be affected by various environmental factors. Our study aimed to predict inter-individual variability of AUC/Dose of CYP1A2 substrates in non-smoking healthy volunteers using the Monte Carlo simulation. Inter-individual variability in hepatic intrinsic clearance of CYP1A2 substrates (CLint,h,1A2) was estimated using dispersion model based on the inter-individual variability (N = 96) of the AUC of caffeine, a major CYP1A2 substrate. The estimated coefficient of variation (CV) of CLint,h,1A2 was 55%, similar to previously reported CLint,h,2D6 (60%) but larger than CLint,h,3A4 (33%). Then, this estimated CV was validated by predicting the CVs of AUC/Dose of tizanidine and phenacetin, which are mainly metabolized by CYP1A2 and have negligible renal clearance. As a result, reported CVs were successfully predicted within 2.5-97.5 percentile range of predicted values. Moreover, CVs for AUC/Dose of the CYP1A2 substrates theophylline and lidocaine, which are affected by other CYPs and renal clearance, were also successfully predicted. The inter-individual variability of AUC/Dose of CYP1A2 substrates was successfully predicted using 55% CV for CLint,h,1A2, and the results, along with those reported by our group for other CYPs, support the prediction of inter-individual variability of pharmacokinetics in the clinical setting. PMID:27318879

  5. In Utero and Lactational Exposure to PCBs in Mice: Adult Offspring Show Altered Learning and Memory Depending on Cyp1a2 and Ahr Genotypes

    PubMed Central

    Curran, Christine P.; Genter, Mary Beth; Patel, Krishna V.; Schaefer, Tori L.; Skelton, Matthew R.; Williams, Michael T.; Vorhees, Charles V.

    2011-01-01

    Background: Both coplanar and noncoplanar polychlorinated biphenyls (PCBs) exhibit neurotoxic effects in animal studies, but individual congeners do not always produce the same effects as PCB mixtures. Humans genetically have > 60-fold differences in hepatic cytochrome P450 1A2 (CYP1A2)-uninduced basal levels and > 12-fold variability in aryl hydrocarbon receptor (AHR)affinity; because CYP1A2 is known to sequester coplanar PCBs and because AHR ligands include coplanar PCBs, both genotypes can affect PCB response. Objectives: We aimed to develop a mouse paradigm with extremes in Cyp1a2 and Ahr genotypes to explore genetic susceptibility to PCB-induced developmental neurotoxicity using an environmentally relevant mixture of PCBs. Methods: We developed a mixture of eight PCBs to simulate human exposures based on their reported concentrations in human tissue, breast milk, and food supply. We previously characterized specific differences in PCB congener pharmacokinetics and toxicity, comparing high-affinity–AHR Cyp1a2 wild-type [Ahrb1_Cyp1a2(+/+)], poor-affinity–AHR Cyp1a2 wild-type [Ahrd_Cyp1a2(+/+)], and high-affinity–AHR Cyp1a2 knockout [Ahrb1_Cyp1a2(–/–)] mouse lines [Curran CP, Vorhees CV, Williams MT, Genter MB, Miller ML, Nebert DW. 2011. In utero and lactational exposure to a complex mixture of polychlorinated biphenyls: toxicity in pups dependent on the Cyp1a2 and Ahr genotypes. Toxicol Sci 119:189–208]. Dams received a mixture of three coplanar and five noncoplanar PCBs on gestational day 10.5 and postnatal day (PND) 5. In the present study we conducted behavioral phenotyping of exposed offspring at PND60, examining multiple measures of learning, memory, and other behaviors. Results: We observed the most significant deficits in response to PCB treatment in Ahrb1_Cyp1a2(–/–) mice, including impaired novel object recognition and increased failure rate in the Morris water maze. However, all PCB-treated genotypes showed significant differences on

  6. A re-consideration of the HEAO-1 A2 Measurements of the Cosmic X-ray Background Surface Brightness

    NASA Astrophysics Data System (ADS)

    Jahoda, K.

    2005-12-01

    The HEAO-1 A2 experiment was designed to make high precision and low systematics measurements of the Cosmic X-ray Background from 0.1 - 60 keV. No subsequent experiment has been capable of similarly clean separation of cosmic and instrumental background. Most more recent measurements of the 2-10 keV surface brightness are 20% higher than values derived from the spectral parameterization of the 3-50 keV spectrum given in the original A2 analysis of Marshall et al. (1980, ApJ 235, 4 (M80)). A recent analysis of archival A2 data by Revnivtsev et al. (astro-ph/0412304 (R05)) finds a surface brightness 15-20% higher than M80, an uncomfortably large discrepancy for data taken from a single experiment. We present a third analysis of the A2 data and identify two effects neglected in the comparison of previous A2 results: (a) the extrapolation of the M80 parameterization below 3 keV fails to describe the data; (b) R05 uses an unabsorbed, and high, value for the flux from the Crab nebula plus pulsar which results in a high value for the inferred count rate to CXB surface brightness conversion. Correcting for these effects, our best estimate of the 2-10 keV surface brightness is 1.84 × 10-11 ergs cm-2 s-1 deg-2 on a flux scale where the (absorbed) 2-10 Crab flux is 2.32 × 10-8 ergs cm-2 s-1. This value is only about 10% below the average compiled by Moretti et al. (2003, ApJ, 588, 696). We discuss how well the X-ray brightness of the Crab, to which this measurement is normalized, is known. This research made use of data from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center.

  7. RFX family proteins differentially interact with HDACs to repress collagen alpha 2(I) gene (COL1A2) expression

    PubMed Central

    Xu, Y.; Sengupta, P.K.; Seto, E.; Smith, B.D.

    2006-01-01

    Our studies indicate that regulatory factor for X-box (RFX) family proteins repress collagen alpha2(I) gene (COL1A2) expression (1,2). In the present investigation, we examine the mechanism(s) underlying the repression of collagen gene by RFX proteins. Two members of the RFX family, RFX1 and RFX5, associate with distinct sets of co-repressors on the collagen transcription start site in vitro. RFX5 specifically interacts with histone deacetylase 2 (HDAC2) and the mammalian transcriptional repressor (mSin3B) whereas RFX1 preferably interacts with HDAC1 and mSin3A. HDAC2 cooperates with RFX5 to down-regulate collagen promoter activity while HDAC1 enhances inhibition of collagen promoter activity by RFX1. IFN-γ promotes the recruitment of RFX5/HDAC2/mSin3B to the collagen transcription start site but decreases the occupancy by RFX1/mSin3A as manifested by chromatin immunoprecipitation (ChIP) assay. RFX1 binds to methylated collagen sequence with much higher affinity than unmethylated sequence, recruiting more HDAC1 and mSin3A. The DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (aza-dC), that inhibits DNA methylation, reduces RFX1/HDAC1 binding to the collagen transcription start site in ChIP assays. Finally, both RFX1 and RFX5 are acetylated in vivo. TSA stimulates the acetylation of RFX proteins and activates the collagen promoter activity. Collectively, our data strongly indicate two separate pathways for RFX proteins to repress collagen gene expression: one for RFX5/HDAC2 in IFN-γ mediated repression, the other for RFX1/HDAC1 in methylation mediated collagen silencing. PMID:16464847

  8. Preferred Binding Orientations of Phenacetin in CYP1A1 and CYP1A2 Are Associated with Isoform-Selective Metabolism

    PubMed Central

    Huang, Qingbiao; Deshmukh, Rahul S.; Ericksen, Spencer S.; Tu, Youbin

    2012-01-01

    Human cytochromes P450 1A1 and 1A2 play important roles in drug metabolism and chemical carcinogenesis. Although these two enzymes share high sequence identity, they display different substrate specificities and inhibitor susceptibilities. In the present studies, we investigated the structural basis for these differences with phenacetin as a probe using a number of complementary approaches, such as enzyme kinetics, stoichiometric assays, NMR, and molecular modeling. Kinetic and stoichiometric analyses revealed that substrate specificity (kcat/Km) of CYP1A2 was approximately 18-fold greater than that of CYP1A1, as expected. Moreover, despite higher H2O2 production, the coupling efficiency of reducing equivalents to acetaminophen formation in CYP1A2 was tighter than that in CYP1A1. CYP1A1, in contrast to CYP1A2, displayed much higher uncoupling, producing more water. The subsequent NMR longitudinal (T1) relaxation studies with the substrate phenacetin and its product acetaminophen showed that both compounds displayed similar binding orientations within the active site of CYP1A1 and CYP1A2. However, the distance between the OCH2 protons of the ethoxy group (site of phenacetin O-deethylation) and the heme iron was 1.5 Å shorter in CYP1A2 than in CYP1A1. The NMR findings are thus consistent with our kinetic and stoichiometric results, providing a likely molecular basis for more efficient metabolism of phenacetin by CYP1A2. PMID:22949628

  9. Engineering the metabolism of the phenylurea herbicide chlortoluron in genetically modified Arabidopsis thaliana plants expressing the mammalian cytochrome P450 enzyme CYP1A2.

    PubMed

    Kebeish, Rashad; Azab, Ehab; Peterhaensel, Christoph; El-Basheer, Radwa

    2014-01-01

    Transgenic Arabidopsis thaliana plants were generated by introduction of the human P450 CYP1A2 gene, which metabolizes a number of herbicides, insecticides and industrial chemicals. Transgenic A. thaliana plants expressing CYP1A2 gene showed remarkable resistance to the phenylurea herbicide chlortoluron (CTU) supplemented either in plant growth medium or sprayed on foliar parts of the plants. HPLC analyses showed a strong reduction in CTU accumulation in planta supporting the tolerance of transgenic lines to high concentrations of CTU. Besides increased herbicide tolerance, expression of CYP1A2 resulted in no other visible phenotype in transgenic plants. Our data indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. Moreover, these transgenic plants appear to be useful for herbicide resistance as well as phytoremediation of environmental contaminants. PMID:24920432

  10. Hyper- and Hypo- Induction of Cytochrome P450 activities with Aroclor 1254 and 3-Methylcholanthrene in Cyp1a2(−/−) mice

    PubMed Central

    Barker, Melissa L.; Hathaway, Laura B.; Arch, Dorinda D.; Westbroek, Mark L.; Kushner, James P.; Phillips, John D.; Franklin, Michael R.

    2009-01-01

    The response of hepatic mono-oxygenase activities to Aroclor 1254 or 3-methylcholanthrene was investigated in wild-type and Cyp1a2(−/−) mice. Cytochrome P450 concentrations were similar in naïve Cyp1a2(−/−) and wild-type mice. There was no difference between naïve wild-type and Cyp1a2(−/−) animals in 7-ethoxyresorufin and 7-ethoxy-4-trifluoromethylcoumarin dealkylase activities, nor was the induction response after 3-methylcholanthrene any different between the two genotypes. However, both activities were induced to a higher extent in Cyp1a2(−/−) mice after Aroclor 1254. In contrast, 7-pentoxyresorufin dealkylation activity was lower in Cyp1a2(−/−) mice and this differential was maintained during induction by both agents. 7-Methoxy- and 7-benzoxyresorufin dealkylation activities were also lower than wild-type in naïve Cyp1a2(−/−) animals and during 3-methylcholanthrene induction, but showed accelerated induction in Cyp1a2(−/−) mice with Aroclor 1254. Bufuralol 1′- and testosterone 6β-hydroxylation activities, and P450 characteristics were evaluated 48 hours after inducer administration. Bufuralol 1′-hydroxylation, a sexual dimorphic activity (female > male) showed no genotype differences in naïve animals. Activity changes varied across gender and genotype, with 3-methylcholanthrene and Aroclor 1254 inducing in male Cyp1a2(−/−), and Aroclor 1254 inducing in female wild-type. Testosterone 6β-hydroxylation activity was 16% higher in Cyp1a2(−/−) mice and neither 3-methylcholanthrene nor Aroclor 1254 elicited induction. After Aroclor 1254, a 24% increase in P450 concentration with a hypsochromic shift in the ferrous-CO maximum characteristic of CYP1A enzymes occurred in wild-type, compared to no change in either parameter in Cyp1a2(−/−) mice. Induction changes with 3-methylcholanthrene were greater in wild-type mice, a 60% increase in concentration and ~2 nm hypsochromic shift versus a 10% increase and ~1 nm hypsochromic

  11. Interplay between the nuclear receptor pregnane X receptor and the uptake transporter organic anion transporter polypeptide 1A2 selectively enhances estrogen effects in breast cancer.

    PubMed

    Meyer zu Schwabedissen, Henriette E; Tirona, Rommel G; Yip, Cindy S; Ho, Richard H; Kim, Richard B

    2008-11-15

    The ligand-activated nuclear receptor pregnane X receptor (PXR) is known to play a role in the regulated expression of drug metabolizing enzymes and transporters. Recent studies suggest a potential clinically relevant role of PXR in breast cancer. However, the relevant pathway or target genes of PXR in breast cancer biology and progression have not yet been fully clarified. In this study, we show that mRNA expression of organic anion transporter polypeptide 1A2 (OATP1A2), a transporter capable of mediating the cellular uptake of estrogen metabolites, is nearly 10-fold greater in breast cancer compared with adjacent healthy breast tissues. Immunohistochemistry revealed exclusive expression of OATP1A2 in breast cancer tissue. Interestingly, treatment of breast cancer cells in vitro with the PXR agonist rifampin induced OATP1A2 expression in a time-dependent and concentration-dependent manner. Consistent with its role as a hormone uptake transporter, induction of OATP1A2 was associated with increased uptake of estrone 3-sulfate. The rifampin response was abrogated after small interfering RNA targeting of PXR. We then identified a PXR response element in the human OATP1A2 promoter, located approximately 5.7 kb upstream of the transcription initiation site. The specificity of PXR-OATP1A2 promoter interaction was confirmed using chromatin immunoprecipitation. Importantly, we used a novel potent and specific antagonist of PXR (A-792611) to show the reversal of the rifampin effect on the cellular uptake of E(1)S. These data provide important new insights into the interplay between a xenobiotic nuclear receptor PXR and OATP1A2 that could contribute to the pathogenesis of breast cancer and may also prove to be heretofore unrecognized targets for breast cancer treatment. PMID:19010908

  12. Genetic polymorphisms and function of the organic anion-transporting polypeptide 1A2 and its clinical relevance in drug disposition.

    PubMed

    Zhou, Yinhui; Yuan, Jingjing; Li, Zhisong; Wang, Zhongyu; Cheng, Dan; Du, Yingying; Li, Wenlu; Kan, Quancheng; Zhang, Wei

    2015-01-01

    The solute carrier organic anion-transporting polypeptides (OATPs) are a family of transporter proteins that have been extensively recognized as key determinants of absorption, distribution, metabolism and excretion of various drugs because of their broad substrate specificity and wide tissue distribution as well as the involvement of drug-drug interaction. Human OATP1A2 is a drug uptake transporter known for its broad substrate specificity, including many drugs in clinical use. OATP1A2 expression has been detected in the intestine, liver, brain and kidney. A considerable number of single nucleotide polymorphisms have been found for the OATP1A2 gene. A number of studies have shown that the cellular uptake and pharmacokinetic behavior of some drugs may be impaired in the case of certain OATP1A2 variants. Interestingly, some studies show that the mRNA expression of OATP1A2 is nearly 10-fold higher in breast cancer compared with adjacent healthy breast tissues. This review is, therefore, focused on the genetic polymorphisms, function and clinical relevance of OATP1A2 as well as on the substrates transported by it. PMID:25924632

  13. RT-PCR detection of CYP1A1, 1A2, and 2E1 mRNAs in rat nasal tissue

    SciTech Connect

    Reddy, S.L.; Kim, S.G.; States, J.C.; Dahl, A.R.; Hotchkiss, J.; Novak, R.F. Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM )

    1991-03-15

    The expression of P450 in nasal tissue is of considerable importance given the exposure of these tissues to xenobiotics and the role of P450s in xenobiotic metabolism. CYP1A1, 1A2 and 2E1 mRNA expression was examined in olfactory tissue of rats exposed to 5 ppm pyridine 6 h daily for 4 d. RT-PCR was performed on poly(A){sup +} RNA using gene specific primers selected from published rat liver 1A1, 1A2 and 2E1 cDNAs. RT-PCR products derived from nasal mRNAs were detected and co-migrated with liver 1A1, 1A2 and 2W1 Rt-PCR products. Identical restriction patterns were obtained from HinfI and HpaII digests of nasal and liver 1A1 RT-PCR products; restriction digest patterns of nasal and liver 1A2 RT-PCR products were also identical. Southern analyses of nasal RT-PCR products, using liver 1A1 and 12 DNA probes, showed a single band suggesting considerable homology between nasal and liver 1A1 and 1A2 fragments. Cloning and sequencing of nasal 1A1, 1A2 and 2E1 RT-PCR products will confirm the identity of these gene products. These results show that 1A1, 1A2 and 2E1 mRNAs are expressed in rat olfactory tissue and suggest that the fragments examined share homology with those expressed in liver.

  14. The structures of the human calcium channel {alpha}{sub 1} subunit (CACNL1A2) and {beta} subunit (CACNLB3) genes

    SciTech Connect

    Yamada, Yuichiro; Masuda, Kazuhiro; Li, Qing

    1995-05-20

    Calcium influx in pancreatic {beta}-cells is regulated mainly by L-type voltage-dependent calcium channels (VDCCs) and triggers insulin secretion. The {alpha}{sub 1} subunit (CACN4) and the {beta} subunit ({beta}{sub 3}) of VDCCs, both of which are expressed in pancreatic islets, are major components for the VDCC activity, and so they may play a critical role in the regulation of insulin secretion. The authors have determined the structures of the human CACN4 (CACNL1A2) and the human {beta}{sub 3} (CACNLB3) genes. The CACNL1A2 gene spans more than 155 kb and has 49 exons. Most of the positions interrupted by introns are well conserved between the CACNL1A2 gene and the previously reported L-type VDCC {alpha}{sub 1} subunit, CACNL1A1, gene. On the other hand, the CACNLB3 gene distributes in {approximately} 8 kb and comprises 13 exons, most of which are located together within {approximately} 5 kb. Comparisons of the genomic sequences of CACNL1A2 with the previously reported cDNA sequences indicate that there are a number of polymorphisms in the human CACNL1A2 gene. In addition, the PCR-SSCP procedure of exon 1 of CACNL1A2 revealed a change from 7 to 8 ATG trinucleotide repeats in a patient with noninsulin-dependent diabetes mellitus (NIDDM), resulting in an addition of methionine at the amino-terminus of CACN4. The determination of the structures of the human CACNL1A2 and CACNLB3 genes should facilitate study of the role of these genes in the development of NIDDM and also other genetic diseases such as long QT syndrome. 39 refs., 3 figs., 3 tabs.

  15. Tumor suppressor p16INK4a inhibits cancer cell growth by downregulating eEF1A2 through a direct interaction

    PubMed Central

    Lee, Mee-Hyun; Choi, Bu Young; Cho, Yong-Yeon; Lee, Sung-Young; Huang, Zunnan; Kundu, Joydeb Kumar; Kim, Myoung Ok; Kim, Dong Joon; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2013-01-01

    Summary The tumor suppressor protein p16INK4a is a member of the INK4 family of cyclin-dependent kinase (Cdk) inhibitors, which are involved in the regulation of the eukaryotic cell cycle. However, the mechanisms underlying the anti-proliferative effects of p16INK4a have not been fully elucidated. Using yeast two-hybrid screening, we identified the eukaryotic elongation factor (eEF)1A2 as a novel interacting partner of p16INK4a. eEF1A2 is thought to function as an oncogene in cancers. The p16INK4a protein interacted with all but the D2 (250–327 aa) domain of eEF1A2. Ectopic expression of p16INK4a decreased the expression of eEF1A2 and inhibited cancer cell growth. Furthermore, suppression of protein synthesis by expression of p16INK4a ex vivo was verified by luciferase reporter activity. Microinjection of p16INK4a mRNA into the cytoplasm of Xenopus embryos suppressed the luciferase mRNA translation, whereas the combination of p16INK4a and morpholino-eEF1A2 resulted in a further reduction in translational activity. We conclude that the interaction of p16INK4a with eEF1A2, and subsequent downregulation of the expression and function of eEF1A2 is a novel mechanism explaining the anti-proliferative effects of p16INK4a. PMID:23444377

  16. The CYP1A2 genotype modifies the association between coffee consumption and breast cancer risk among BRCA1 mutation carriers.

    PubMed

    Kotsopoulos, Joanne; Ghadirian, Parviz; El-Sohemy, Ahmed; Lynch, Henry T; Snyder, Carrie; Daly, Mary; Domchek, Susan; Randall, Susan; Karlan, Beth; Zhang, Phil; Zhang, Shiyu; Sun, Ping; Narod, Steven A

    2007-05-01

    We have recently reported that, among BRCA1 mutation carriers, the consumption of caffeinated coffee was associated with a significant reduction in breast cancer risk. Because the metabolism of caffeine is primarily by CYP1A2, we examined whether or not the CYP1A2 genotype modifies the association between a history of coffee consumption and the risk of breast cancer. A common A to C polymorphism in the CYP1A2 gene is associated with decreased enzyme inducibility and impaired caffeine metabolism. Information regarding coffee consumption habits and the CYP1A2 genotype was available for 411 BRCA1 mutation carriers (170 cases and 241 controls). We estimated the odds ratios (ORs) and 95% confidence intervals (95% CIs) for breast cancer associated with the CYP1A2 genotype and a history of coffee consumption before age 35, adjusting for potential confounders. The CYP1A2 genotype did not affect breast cancer risk. Among women with at least one variant C allele (AC or CC), those who consumed coffee had a 64% reduction in breast cancer risk, compared with women who never consumed coffee (OR, 0.36; 95% CI, 0.18-0.73). A significant protective effect of coffee consumption was not observed among women with the CYP1A2 AA genotype (OR, 0.93; 95% CI, 0.49-1.77). Similar results were obtained when the analysis was restricted to caffeinated coffee. This study suggests that caffeine protects against breast cancer in women with a BRCA1 mutation and illustrates the importance of integrating individual genetic variability when assessing diet-disease associations. PMID:17507615

  17. Interplay between the nuclear receptor PXR and the uptake transporter OATP1A2 selectively enhances estrogen effects in breast cancer

    PubMed Central

    Meyer zu Schwabedissen, Henriette E.; Tirona, Rommel G.; Yip, Cindy S.; Ho, Richard H.; Kim, Richard B.

    2008-01-01

    The ligand-activated nuclear receptor PXR is known to play a role in the regulated expression of drug metabolizing enzymes and transporters. Recent studies suggest a potential clinically relevant role of PXR in breast cancer. However, the relevant pathway or target genes of PXR in breast cancer biology and progression have not yet been fully clarified. In this study, we show that mRNA expression of OATP1A2, a transporter capable of mediating the cellular uptake of estrogen metabolites, is nearly 10-fold greater in breast cancer compared to adjacent healthy breast tissues. Immunohistochemistry revealed exclusive expression of OATP1A2 in breast cancer tissue. Interestingly, treatment of breast cancer cells in vitro with the PXR agonist rifampin induced OATP1A2 expression in a time- and concentration-dependent manner. Consistent with a role as a hormone uptake transporter, induction of OATP1A2 was associated with increased uptake of estrone 3-sulfate. The rifampin response was abrogated after si-RNA targeting of PXR. We then identified a PXR response element in the human OATP1A2 promoter, located approximately 5.7 kb upstream of the transcription initiation site. The specificity of PXR-OATP1A2 promoter interaction was confirmed using chromatin immunoprecipitation. Importantly we utilized a novel potent and specific antagonist of PXR (A-792611) to demonstrate the reversal of the rifampin effect on the cellular uptake of E1S. These data provide important new insights into the interplay between a xenobiotic nuclear receptor PXR and OATP1A2 that could contribute to the pathogenesis of breast cancer and may also prove to be heretofore unrecognized targets for breast cancer treatment. PMID:19010908

  18. Measurement of human CYP1A2 induction by inhalation exposure to benzo(a)pyrene based on in vivo isotope breath method.

    PubMed

    Duan, Xiaoli; Shen, Guofeng; Yang, Hongbiao; Lambert, George; Wei, Fusheng; Zhang, Junfeng Jim

    2016-01-01

    Cytochrome P450 1A2 (CYP1A2) is an enzyme involved in the metabolic activation of certain carcinogens, and inducible by toxic substrates. To date, few studies have investigated in vivo CYP1A2 induction in humans and its relationship to polycylic aromatic hydrocarbons (PAHs) like benzo(a)pyrene (BaP). Non-smoking healthy male coke-oven workers (n = 30) were recruited as 'exposure' group, and non-smoking healthy office workers in the same city (n = 10) were selected as 'control' group, to test whether high inhalation exposure to PAHs can induce CYP1A2 activity in human livers. Significantly higher inhalation exposure of PAHs were found among the exposure group compared to the control. Inhalation BaP exposure concentration in the exposure group was more than 30 times higher than the control group (p < 0.001). However, the exposure group did not exhale significant higher levels of (13)CO2/(12)CO2 in breath samples (p = 0.81), and no significant relationship was found between the inhaled BaP concentration and the (13)CO2/(12)CO2 ratio (p = 0.91). A significant association was found between the (13)CO2/(12)CO2 exhalation and dietary BaP intake level. Hepatic CYP1A2 activity/induction level was not effected by inhaled BaP but was altered by ingestion of BaP. PMID:26552516

  19. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus)

    PubMed Central

    Feng, Ruijuan; Fang, Lingling; Cheng, Yunying; He, Xue; Jiang, Wentao; Dong, Ranran; Shi, Hongjuan; Jiang, Dongneng; Sun, Lina; Wang, Deshou

    2015-01-01

    Meiosis is a process unique to the differentiation of germ cells. Retinoic acid (RA) is the key factor controlling the sex-specific timing of meiotic initiation in tetrapods; however, the role of RA in meiotic initiation in teleosts has remained unclear. In this study, the genes encoding RA synthase aldh1a2, and catabolic enzyme cyp26a1 were isolated from Nile tilapia (Oreochromis niloticus), a species without stra8. The expression of aldh1a2 was up-regulated and expression of cyp26a1 was down-regulated before the meiotic initiation in ovaries and in testes. Treatment with RA synthase inhibitor or disruption of Aldh1a2 by CRISPR/Cas9 resulted in delayed meiotic initiation, with simultaneous down-regulation of cyp26a1 and up-regulation of sycp3. By contrast, treatment with an inhibitor of RA catabolic enzyme and disruption of cyp26a1 resulted in earlier meiotic initiation, with increased expression of aldh1a2 and sycp3. Additionally, treatment of XY fish with estrogen (E2) and XX fish with fadrozole led to sex reversal and reversion of meiotic initiation. These results indicate that RA is indispensable for meiotic initiation in teleosts via a stra8 independent signaling pathway where both aldh1a2 and cyp26a1 are critical. In contrast to mammals, E2 is a major regulator of sex determination and meiotic initiation in teleosts. PMID:25976364

  20. Ephedra water decoction and cough tablets containing ephedra and liquorice induce CYP1A2 but not CYP2E1 hepatic enzymes in rats.

    PubMed

    Tang, Jingling; Ji, Hongyu; Shi, Jing; Wu, Linhua

    2016-01-01

    1. Ephedra water decoction (EWD) and cough tablets containing ephedra and liquorice (maxing cough tablets, MXCT) have been widely used in the treatment of asthma. In the clinic, EWD and MXCT may be prescribed with theophylline, one of the most popular antiasthmatic drugs. CYP1A2 and CYP2E1 are mainly involved in the oxidative metabolism of theophylline in human liver. Drug interactions involving the cytochrome P450 (CYP) isoforms generally are of two types: enzyme induction or enzyme inhibition. Enzyme inhibition reduces metabolism, whereas induction can increase it. 2. To evaluate the pretreatment effect of EWD and MXCT on CYP1A2 and CYP2E1, CYP1A2 and CYP2E1 activity, the protein expression and mRNA expression levels were determined. After pretreatment with EWD or MXCT, the enzyme activity, mRNA expression and protein expression of CYP1A2 were increased significantly (p < 0.05), but enzyme activity of CYP2E1 did not change compared with the control. 3. It was demonstrated that EWD or MXCT pretreatment obviously induced CYP1A2, therefore, in patients taking EWD or MXCT, possible CYP-induced drug interaction should be noted to decrease the risk of therapeutic failure or adverse effects resulting from the use of additional therapeutic agents. PMID:26153439

  1. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation.

    PubMed

    Gagliardi, Rosa; Llambí, Silvia; Arruga, M Victoria

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294

  2. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation

    PubMed Central

    Gagliardi, Rosa; Llambí, Silvia

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294

  3. CYP1A2 and CYP2D6 Gene Polymorphisms in Schizophrenic Patients with Neuroleptic Drug-Induced Side Effects.

    PubMed

    Ivanova, S A; Filipenko, M L; Vyalova, N M; Voronina, E N; Pozhidaev, I V; Osmanova, D Z; Ivanov, M V; Fedorenko, O Yu; Semke, A V; Bokhan, N A

    2016-03-01

    Polymorphic variants of CYP1A2 and CYP2D6 genes of the cytochrome P450 system were studied in patients with schizophrenia with drug-induced motor disorders and hyperprolactinemia against the background of long-term neuroleptic therapy. We revealed an association of polymorphic variant C-163A CYP1A2*1F of CYP1A2 gene with tardive dyskinesia and association of polymorphic variant 1846G>A CY2D6*4 and genotype A/A of CYP2D6 gene (responsible for debrisoquin-4-hydroxylase synthesis) with limbotruncal tardive dyskinesia in patients with schizophrenia receiving neuroleptics for a long time. PMID:27021090

  4. In vitro inhibition of CYP1A2 by model inhibitors, anti-inflammatory analgesics and female sex steroids: predictability of in vivo interactions.

    PubMed

    Karjalainen, Marjo J; Neuvonen, Pertti J; Backman, Janne T

    2008-08-01

    The cytochrome P450 enzyme CYP1A2 is crucial for the metabolism of many drugs, for example, tizanidine. As the effects of several non-steroidal anti-inflammatory drugs (NSAID) and female sex steroids on CYP1A2 activity in vitro are unknown, their effects on phenacetin O-deethylation were studied and compared with the effects of model inhibitors in human liver microsomes, followed by prediction of their interaction potential with tizanidine in vivo. In vitro, fluvoxamine, tolfenamic acid, mefenamic acid and rofecoxib potently inhibited CYP1A2 [the 50% inhibitory concentration (IC(50)) < 10 microM]. Ethinyloestradiol, celecoxib, desogestrel and zolmitriptan were moderate (IC(50) 20-200 microM), and etodolac, ciprofloxacin, etoricoxib and gestodene weak inhibitors of CYP1A2 (IC(50) > 200 microM). At 100 microM, the other tested NSAIDs and steroids inhibited CYP1A2 less than 35%. Pre-incubation increased the inhibitory effects of rofecoxib, progesterone and desogestrel. Using the free portal plasma inhibitor concentration and the competitive inhibition model, the effect of fluvoxamine and the lack of effects of tolfenamic acid and celecoxib on tizanidine pharmacokinetics in human beings were well predicted. However, the effects of ciprofloxacin, rofecoxib and oral contraceptives were greatly underestimated even when the predictions were based on their total portal plasma concentration. Besides rofecoxib, and possibly mefenamic acid, other NSAIDs were predicted not to significantly inhibit CYP1A2 in human beings. The type of enzyme inhibition, particularly metabolism-dependent inhibition, free inhibitor concentration and accumulation of the inhibitor into the hepatocytes should be considered in extrapolations of in vitro results to human beings. PMID:18816299

  5. Functional Interactions between Cytochromes P450 1A2 and 2B4 Require Both Enzymes to Reside in the Same Phospholipid Vesicle

    PubMed Central

    Reed, James R.; Eyer, Marilyn; Backes, Wayne L.

    2010-01-01

    Previous studies have shown that the combined presence of two cytochrome P450 enzymes (P450s) can affect the function of both enzymes, results that are consistent with the formation of heteromeric P450·P450 complexes. The goal of this study was to provide direct evidence for a physical interaction between P450 1A2 (CYP1A2) and P450 2B4 (CYP2B4), by determining if the interactions required both enzymes to reside in the same lipid vesicles. When NADPH-cytochrome P450 reductase (CPR) and a single P450 were incorporated into separate vesicles, extremely slow reduction rates were observed, demonstrating that the enzymes were anchored in the vesicles. Next, several reconstituted systems were prepared: 1) CPR·CYP1A2, 2) CPR·CYP2B4, 3) a mixture of CPR·CYP1A2 vesicles with CPR·CYP2B4 vesicles, and 4) CPR·CYP1A2·CYP2B4 in the same vesicles (ternary system). When in the ternary system, CYP2B4-mediated metabolism was significantly inhibited, and CYP1A2 activities were stimulated by the presence of the alternate P450. In contrast, P450s in separate vesicles were unable to interact. These data demonstrate that P450s must be in the same vesicles to alter metabolism. Additional evidence for a physical interaction among CPR, CYP1A2, and CYP2B4 was provided by cross-linking with bis(sulfosuccinimidyl) suberate. The results showed that after cross-linking, antibody to CYP1A2 was able to co-immunoprecipitate CYP2B4 but only when both proteins were in the same phospholipid vesicles. These results clearly demonstrate that the alterations in P450 function require both P450s to be present in the same vesicles and support a mechanism whereby P450s form a physical complex in the membrane. PMID:20071338

  6. Solute Carrier Family of the Organic Anion-Transporting Polypeptides 1A2- Madin-Darby Canine Kidney II: A Promising In Vitro System to Understand the Role of Organic Anion-Transporting Polypeptide 1A2 in Blood-Brain Barrier Drug Penetration.

    PubMed

    Liu, Houfu; Yu, Na; Lu, Sijie; Ito, Sumito; Zhang, Xuan; Prasad, Bhagwat; He, Enuo; Lu, Xinyan; Li, Yang; Wang, Fei; Xu, Han; An, Gang; Unadkat, Jashvant D; Kusuhara, Hiroyuki; Sugiyama, Yuichi; Sahi, Jasminder

    2015-07-01

    Organic anion-transporting polypeptide (OATP) 1A2 has the potential to be a target for central nervous system drug delivery due to its luminal localization at the human blood-brain barrier and broad substrate specificity. We found OATP1A2 mRNA expression in the human brain to be comparable to breast cancer resistance protein and OATP2B1 and much higher than P-glycoprotein (P-gp), and confirmed greater expression in the brain relative to other tissues. The goal of this study was to establish a model system to explore OATP1A2-mediated transcellular transport of substrate drugs and the interplay with P-gp. In vitro (human embryonic kidney 293 cells stably expressing Oatp1a4, the closest murine isoform) and in vivo (naïve and Oatp1a4 knock-out mice) studies with OATP1A2 substrate triptan drugs demonstrated that these drugs were not Oatp1a4 substrates. This species difference demonstrates that the rodent is not a good model to investigate the active brain uptake of potential OATP1A2 substrates. Thus, we constructed a novel OATP1A2 expressing Madin-Darby canine kidney (MDCK) II wild type and an MDCKII-multidrug resistance protein 1 (MDR1) system using BacMam virus transduction. The spatial expression pattern of OATP1A2 after transduction in MDCKII-MDR1 cells was superimposed to P-gp, confirming apical membrane localization. OATP1A2-mediated uptake of zolmitriptan, rosuvastatin, and fexofenadine across monolayers increased with increasing OATP1A2 protein expression. OATP1A2 counteracted P-gp efflux for cosubstrates zolmitriptan and fexofenadine. A three-compartment model incorporating OATP1A2-mediated influx was used to quantitatively describe the time- and concentration-dependent apical-to-basolateral transcellular transport of rosuvastatin across OATP1A2 expressing the MDCKII monolayer. This novel, simple and versatile experimental system is useful for understanding the contribution of OATP1A2-mediated transcellular transport across barriers, such as the blood

  7. The Caffeine Cytochrome P450 1A2 Metabolic Phenotype Does Not Predict the Metabolism of Heterocyclic Aromatic Amines in Humans

    PubMed Central

    Turesky, Robert J.; White, Kami K.; Wilkens, Lynne R.; Marchand, Loïc Le

    2015-01-01

    2-Amino-1-methylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are carcinogenic heterocyclic aromatic amines (HAAs) formed in well-done cooked meats. Chemicals that induce cytochrome P450 (P450) 1A2, a major enzyme involved in the bioactivation of HAAs, also form in cooked meat. Therefore, well-done cooked meat may pose an increase in cancer risk because it contains both inducers of P450 1A2 and procarcinogenic HAAs. We examined the influence of components in meat to modulate P450 1A2 activity and the metabolism of PhIP and MeIQx in volunteers during a 4 week feeding study of well-done cooked beef. The mean P450 1A2 activity, assessed by caffeine metabolic phenotyping, ranged from 6.3 to 7.1 before the feeding study commenced and from 9.6 to 10.4 during the meat feeding period: the difference in means was significant (P < 0.001). Unaltered PhIP, MeIQx, and their P450 1A2 metabolites, N2-(β-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (HON-PhIP-N2-Gl); N3-(β-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (HON-PhIP-N3-Gl); 2-amino-3-methylimidazo-[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH); and 2-amino-8-(hydroxymethyl)-3-methylimidazo[4,5-f]quinoxaline (8-CH2OH-IQx) were measured in urine during days 2, 14, and 28 days of the meat diet. Significant correlations were observed on these days between the levels of the unaltered HAAs and their oxidized metabolites, when expressed as percent of dose ingested or as metabolic ratios. However, there was no statistically significant correlation between the caffeine P450 1A2 phenotype and any urinary HAA biomarker. Although the P450 1A2 activity varied by greater than 20-fold among the subjects, there was a large intra-individual variation of the P450 1A2 phenotype and inconsistent responses to inducers of P450 1A2. The coefficient of variation of the P450 1A2 phenotype within-individual ranged between 1 to 112% (median=40

  8. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway

    PubMed Central

    Awortwe, Charles; Manda, Vamshi K.; Avonto, Cristina; Khan, Shabana I.; Khan, Ikhlas A.; Walker, Larry A.; Bouic, Patrick J.; Rosenkranz, Bernd

    2015-01-01

    This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. Thus E. purpurea preparations cause herb–drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation. PMID:25377539

  9. A missense variant of the ATP1A2 gene is associated with a novel phenotype of progressive sensorineural hearing loss associated with migraine.

    PubMed

    Oh, Se-Kyung; Baek, Jeong-In; Weigand, Karl M; Venselaar, Hanka; Swarts, Herman G P; Park, Seong-Hyun; Hashim Raza, Muhammad; Jung, Da Jung; Choi, Soo-Young; Lee, Sang-Heun; Friedrich, Thomas; Vriend, Gert; Koenderink, Jan B; Kim, Un-Kyung; Lee, Kyu-Yup

    2015-05-01

    Hereditary sensorineural hearing loss is an extremely clinical and genetic heterogeneous disorder in humans. Especially, syndromic hearing loss is subdivided by combinations of various phenotypes, and each subtype is related to different genes. We present a new form of progressive hearing loss with migraine found to be associated with a variant in the ATP1A2 gene. The ATP1A2 gene has been reported as the major genetic cause of familial migraine by several previous studies. A Korean family presenting progressive hearing loss with migraine was ascertained. The affected members did not show any aura or other neurologic symptoms during migraine attacks, indicating on a novel phenotype of syndromic hearing loss. To identify the causative gene, linkage analysis and whole-exome sequencing were performed. A novel missense variant, c.571G>A (p.(Val191Met)), was identified in the ATP1A2 gene that showed co-segregation with the phenotype in the family. In silico studies suggest that this variant causes a change in hydrophobic interactions and thereby slightly destabilize the A-domain of Na(+)/K(+)-ATPase. However, functional studies failed to show any effect of the p.(Val191Met) substitution on the catalytic rate of this enzyme. We describe a new phenotype of progressive hearing loss with migraine associated with a variant in the ATP1A2 gene. This study suggests that a variant in Na(+)/K(+)-ATPase can be involved in both migraine and hearing loss. PMID:25138102

  10. CYP1A2 DOES NOT PLAY A CRITICAL ROLE IN 2, 3 7, 8-TETRACHLORODIBENZO-P-DIOXIN-INDUCED IMMUNOSUPRESSION

    EPA Science Inventory

    CYP1A2 IS NOT REQUIRED FOR 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN-INDUCED IMMUNOSUPPRESSION Smialowicz, Ralph J1; Burgin, Deborah E2; Williams, Wanda C1; Diliberto, Janet J1; Birnbaum, Linda S1
    1 Experimental Toxicology Division, US EPA, RTP, NC, USA; 2Curriculum in Toxicology, U...

  11. High coffee intake, but not caffeine, is associated with reduced estrogen receptor negative and postmenopausal breast cancer risk with no effect modification by CYP1A2 genotype.

    PubMed

    Lowcock, Elizabeth C; Cotterchio, Michelle; Anderson, Laura N; Boucher, Beatrice A; El-Sohemy, Ahmed

    2013-01-01

    Associations between caffeine and coffee consumption and breast cancer risk are uncertain, with studies suggesting inverse and null associations. Variation in cytochrome P450 1A2 (CYP1A2), a gene responsible for caffeine metabolism, may modify these associations. Cases (n = 3,062) were recruited through the Ontario Cancer Registry and controls (n = 3,427) through random digit dialing. Logistic regression was used to evaluate associations between breast cancer risk and intakes of 7 caffeine-containing items and total caffeine, and examine whether a genetic variant in CYP1A2 (rs762551) modified these associations. Analyses were stratified by estrogen receptor (ER), menopausal, and smoking status. Generally, coffee and caffeine were not associated with breast cancer risk; however, a significant reduction in risk was observed with the highest category of coffee consumption [≥5 cups per day vs. never, multivariate-adjusted odds ratio (MVOR) = 0.71, 95% confidence interval (CI): 0.51, 0.98]. Variant rs762551 did not modify associations. In stratified analyses, high coffee intake was associated with reduced risk of ER- (MVOR = 0.41, 95% CI: 0.19, 0.92) and postmenopausal breast cancer (MVOR = 0.63, 95% CI: 0.43, 0.94). High coffee consumption, but not total caffeine, may be associated with reduced risk of ER- and postmenopausal breast cancers, independent of CYP1A2 genotype. Further studies are needed to replicate these findings. PMID:23530639

  12. In Silico Docking of Ligands to Drug Oxidation Enzymes Cytochrome P450 3A4 and Cytochrome P450 1A2.

    NASA Astrophysics Data System (ADS)

    Smith, David; Guglielmon, Jonathan; Glenn, Marsch; Peter, Guengerich F.

    2009-03-01

    Cytochrome P450 3A4 (CYP3A4) and Cytochrome P450 1A2 (CYP1A2) oxidize most drugs in humans. Protein modeling toolkits from OpenEye Scientific Software were used to examine the interaction of drug substrates with CYP3A4 and CYP1A2. Conformers and partial atomic charges were generated for each drug molecule. User-defined volumes were defined around CYP3A4 and CYP1A2 active sites. Ligands were docked assuming protein and substrates as rigid bodies. To assess rigid docking accuracy, x-ray diffraction coordinates of CYP3A4-erythromycin and CYP3A4-metyrapone complexes were obtained. Rigid re-docking of erythromycin and metyrapone into CYP3A4 yielded poses similar to the crystal structures. Rigid docking revealed two other energetically-favorable CYP3A4-metyrapone poses. The best poses were obtained by using all the Open Eye scoring functions. Optimization of protein-ligand interactions within 5-10 Angstroms of the docked ligand was then performed using the Merck Molecular Force Field in which the protein was assumed to be flexible and the ligand to be rigid. Nearby protein residues pulled slightly closer to the substrate, reducing the volume of the active site.

  13. Strategy for prenatal diagnosis of osteogenesis imperfecta by linkage analysis to the type I collagen loci COL1A1 and COL1A2.

    PubMed

    Benušienė, E; Kučinskas, V

    2000-01-01

    To improve prenatal diagnosis of osteogenesis imperfecta (OI) in Lithuania, possibilities of indirect molecular genetic diagnosis were investigated in 11 families with dominant OI. Segregation of polymorphic DNA markers closely linked to COL1A1 and COL1A2 genes with OI phenotype was investigated. Polymorphic DNA markers applied were individual haplotypes constructed using a set of restriction enzyme sites within or close to the genes. Comparison of phenotypic features with the concordant collagen locus showed that in four pedigrees with OI Sillence type I segregated with COL1A1, while two pedigrees with OI Sillence type I and OI type IV segregated with COL1A2. Out of six remaining pedigrees with OI Sillence type I, three were concordant at both loci, two pedigrees were discordant at the locus COL1A2 and non-informative at the locus COL1A1 and one pedigree was concordant at the locus COL1A1 and non-informative at the locus COL1A2. Informativity of DNA markers applied was also investigated in the Lithuanian OI families. The frequencies of six restriction enzyme site dimorphisms in type I collagen loci were estimated and polymorphism information content (PIC) values were calculated for each restriction site and for a combination of three sites. COL1A1 locus dimorphisms A/MspI, B/RsaI and F/MnlI, showed PIC values of 0.327, 0.191 and 0.366, respectively, giving a combined PIC of 0.656 at the locus, while COL1A2 locus dimorphisms C/EcoRI, D/MspI and E/RsaI RFLPs had PIC values of 0.357, 0.168 and 0.331, respectively, giving a combined PIC of 0.655 at the locus. PMID:11208313

  14. Vavilosides A1/A2-B1/B2, new furostane glycosides from the bulbs of Allium vavilovii with cytotoxic activity.

    PubMed

    Zolfaghari, Behzad; Sadeghi, Masoud; Troiano, Raffaele; Lanzotti, Virginia

    2013-04-01

    A phytochemical analysis of the bulbs of Allium vavilovii M. Pop. & Vved. was attained for the first time extensively, affording to the isolation of four new furostanol saponins, named vavilosides A1/A2-B1/B2 (1a/b-2a/2b), as two couple of isomers in equilibrium, together with ascalonicoside A1/A2 (3a/3b) and 22-O-methyl ascalonicoside A1/A2 (4a/4b), previously isolated from shallot, Allium ascalonicum. High concentrations of kaempferol, kaempferide, and kaempferol 4(I)-glucoside were also isolated. The chemical structures of the new compounds, established through a combination of extensive nuclear magnetic resonance, mass spectrometry and chemical analyses, were identified as (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-galactopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside A1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-galactopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside A2), (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-xylopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside B1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-d-xylopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside B2). The isolated saponins showed cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma, cell lines with the following rank: vaviloside B1/B2>ascalonicoside A1/A2>vaviloside A1/A2. PMID:23415085

  15. Loss of translation elongation factor (eEF1A2) expression in vivo differentiates between Wallerian degeneration and dying-back neuronal pathology

    PubMed Central

    Murray, Lyndsay M; Thomson, Derek; Conklin, Annalijn; Wishart, Thomas M; Gillingwater, Thomas H

    2008-01-01

    Wallerian degeneration and dying-back pathology are two well-known cellular pathways capable of regulating the breakdown and loss of axonal and synaptic compartments of neurons in vivo. However, the underlying mechanisms and molecular triggers of these pathways remain elusive. Here, we show that loss of translation elongation factor eEF1A2 expression in lower motor neurons and skeletal muscle fibres in homozygous Wasted mice triggered a dying-back neuropathy. Synaptic loss at the neuromuscular junction occurred in advance of axonal pathology and by a mechanism morphologically distinct from Wallerian degeneration. Dying-back pathology in Wasted mice was accompanied by reduced expression levels of the zinc finger protein ZPR1, as found in other dying-back neuropathies such as spinal muscular atrophy. Surprisingly, experimental nerve lesion revealed that Wallerian degeneration was significantly delayed in homozygous Wasted mice; morphological assessment revealed that ∼80% of neuromuscular junctions in deep lumbrical muscles at 24 h and ∼50% at 48 h had retained motor nerve terminals following tibial nerve lesion. This was in contrast to wild-type and heterozygous Wasted mice where < 5% of neuromuscular junctions had retained motor nerve terminals at 24 h post-lesion. These data show that eEF1A2 expression is required to prevent the initiation of dying-back pathology at the neuromuscular junction in vivo. In contrast, loss of eEF1A2 expression significantly inhibited the initiation and progression of Wallerian degeneration in vivo. We conclude that loss of eEF1A2 expression distinguishes mechanisms underlying dying-back pathology from those responsible for Wallerian degeneration in vivo and suggest that eEF1A2-dependent cascades may provide novel molecular targets to manipulate neurodegenerative pathways in lower motor neurons. PMID:19094180

  16. MLIF Alleviates SH-SY5Y Neuroblastoma Injury Induced by Oxygen-Glucose Deprivation by Targeting Eukaryotic Translation Elongation Factor 1A2

    PubMed Central

    Liu, Yulan; Cheng, Hao; Wang, Jing; Zhang, Yue; Rui, Yaocheng; Li, Tiejun

    2016-01-01

    Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide, has been shown to exert potent anti-inflammatory effects in ischemic brain injury. In this study, we investigated the neuroprotective action of MLIF against oxygen-glucose deprivation (OGD)-induced injury in human neuroblastoma SH-SY5Y cells. MTT assay was used to assess cell viability, and flow cytometry assay and Hoechst staining were used to evaluate apoptosis. LDH assay was used to exam necrosis. The release of inflammatory cytokines was detected by ELISA. Levels of the apoptosis associated proteins were measured by western blot analysis. To identify the protein target of MLIF, pull-down assay and mass spectrometry were performed. We observed that MLIF enhanced cell survival and inhibited apoptosis and necrosis by inhibiting p-JNK, p53, c-caspase9 and c-caspase3 expression. In the microglia, OGD-induced secretion of inflammatory cytokines was markedly reduced in the presence of MLIF. Furthermore, we found that eukaryotic translation elongation factor 1A2 (eEF1A2) is a downstream target of MLIF. Knockdown eEF1A2 using short interfering RNA (siRNA) almost completely abrogated the anti-apoptotic effect of MLIF in SH-SY5Y cells subjected to OGD, with an associated decrease in cell survival and an increase in expression of p-JNK and p53. These results indicate that MLIF ameliorates OGD-induced SH-SY5Y neuroblastoma injury by inhibiting the p-JNK/p53 apoptotic signaling pathway via eEF1A2. Our findings suggest that eEF1A2 may be a new therapeutic target for ischemic brain injury. PMID:26918757

  17. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes.

    PubMed

    Turpeinen, Miia; Hofmann, Ute; Klein, Kathrin; Mürdter, Thomas; Schwab, Matthias; Zanger, Ulrich M

    2009-05-01

    Nabumetone, a widely used nonsteroidal anti-inflammatory drug, requires biotransformation into 6-methoxy-2-naphthylacetic acid (6-MNA), a close structural analog to naproxen, to achieve its analgesic and anti-inflammatory effects. Despite its wide use, the enzymes involved in metabolism have not been identified. In the present study, several in vitro approaches were used to identify the cytochrome P450 (P450) enzyme(s) responsible for 6-MNA formation. In human liver microsomes (HLMs) 6-MNA formation displayed monophasic Michaelis-Menten kinetics with apparent K(m) and V(max) values (mean +/- S.D.) of 75.1 +/- 15.3 microM and 1304 +/- 226 pmol/min/mg protein, respectively, and formation rate of 6-MNA varied approximately 5.5-fold (179-983 pmol/min/mg protein). 6-MNA activity correlated strongly with both CYP1A2-mediated phenacetin O-deethylation activity and CYP1A2 protein content (r = 0.85 and 0.74, respectively; p < 0.0001 for both). Additional correlations were found with model activities of CYP2C19 and CYP3A4. Of 11 cDNA-expressed recombinant P450s used, recombinant CYP1A2 was the major form catalyzing the 6-MNA formation with an apparent K(m) of 45 microM and V(max) of 8.7 pmol/min/pmol P450. Minor fractions were catalyzed by recombinant P450s CYP1A1, CYP2B6, CYP2C19, CYP2D6, and CYP2E1. Experiments with P450-selective chemical inhibitors and monoclonal anti-P450 antibodies showed that furafylline, a mechanism-based inhibitor CYP1A2, and anti-CYP1A2 antibody markedly inhibited 6-MNA formation, whereas inhibitors for other P450s did not show significant inhibitory effects. Taken together, these studies indicate that the formation of the active metabolite of nabumetone, 6-MNA, is predominantly catalyzed by CYP1A2 in HLMs with only minor contribution of other P450s. PMID:19204080

  18. Extramedullary blast crisis as initial presentation in chronic myeloid leukemia with the e1a2 BCR-ABL1 transcript: A case report

    PubMed Central

    AI, DI; LIU, WEI; LU, GARY; PATEL, KEYUR PRAVINCHANDRA; CHEN, ZI

    2015-01-01

    A 23-year-old woman presented with enlarged right inguinal lymph nodes. The pathological examination of the nodes revealed infiltration by myeloid sarcoma. A bone marrow smear and biopsy revealed cytogenetic abnormalities, with 46,XX,t(9;22) and chronic myeloid leukemia (CML) was diagnosed. The e1a2 BCR-ABL1 fusion transcript was detected. The patient received imatinib-based combined chemotherapy, allogeneic hematopoietic stem cell transplantation, donor lymphocyte infusions and dasatinib treatment. The patient achieved complete response and has remained leukemia-free for >48 months. To the best of our knowledge, this is the first case report of CML with the e1a2 BCR-ABL1 transcript, with extramedullary blast crisis as the initial presentation. The aim of the present study was to discuss this special case with reference to the literature. PMID:26807241

  19. Potent inhibition of CYP1A2 by Frutinone A, an active ingredient of the broad spectrum antimicrobial herbal extract from P. fruticosa.

    PubMed

    Thelingwani, Roslyn S; Dhansay, Kariema; Smith, Peter; Chibale, Kelly; Masimirembwa, Collen M

    2012-10-01

    1. Frutinone is an active ingredient extracted from the lipophilic fraction of the Polygala Fruticosa demonstrating various antibacterial and fungal properties. The aim of this study was to characterize its metabolism in an effort to understand metabolism based drug-herb interactions. 2. In vitro metabolic clearance and metabolite identification studies were done using cryopreserved hepatocytes. Reaction phenotyping and inhibition studies were done using human liver microsomes and recombinant cytochrome P450s (CYPs). Frutinone A-CYP1A2 interactions were rationalized using docking simulations. 3. Hepatic clearance was predicted to be low (7.17 mL/min/kg), with reaction phenotyping studies indicating no clearance by the enzymes tested. Frutinone was identified as a potent inhibitor of CYP1A2 with moderate effects on CYP2C19, 2C9, 2D6 and 3A4. CYP1A2 inhibition was reversible and characterised by an IC(50) of 0.56 µM. Inhibition was differential showing mixed (K(i) = 0.48 µM) and competitive (K(i) = 0.31 µM) inhibition with 3-cyano-7-ethoxycoumarin and ethoxyresorufin, respectively. Two binding sites, one for inhibitors and the other for substrates were identified in silico. 4. The potent CYP1A2 inhibition by Frutinone A could be predictive of the potential drug-herb interaction risk in the use of herbal extracts from P. fruticosa. The data suggest future pharmacological research on this chromocoumarin should take metabolic properties into account. PMID:22533317

  20. Consistent linkage of dominantly inherited osteogenesis imperfecta to the type I collagen loci: COL1A1 and COL1A2.

    PubMed

    Sykes, B; Ogilvie, D; Wordsworth, P; Wallis, G; Mathew, C; Beighton, P; Nicholls, A; Pope, F M; Thompson, E; Tsipouras, P

    1990-02-01

    The segregation of COL1A1 and COL1A2, the two genes which encode the chains of type I collagen, was analyzed in 38 dominant osteogenesis imperfecta (OI) pedigrees by using polymorphic markers within or close to the genes. This was done in order to estimate the consistency of linkage of OI genes to these two loci. None of the 38 pedigrees showed evidence of recombination between the OI gene and both collagen loci, suggesting that the frequency of unlinked loci in the population must be low. From these results, approximate 95% confidence limits for the proportion of families linked to the type I collagen genes can be set between .91 and 1.00. This is high enough to base prenatal diagnosis of dominantly inherited OI on linkage to these genes even in families which are too small for the linkage to be independently confirmed to high levels of significance. When phenotypic features were compared with the concordant collagen locus, all eight pedigrees with Sillence OI type IV segregated with COL1A2. On the other hand, Sillence OI type I segregated with both COL1A1 (17 pedigrees) and COL1A2 (7 pedigrees). The concordant locus was uncertain in the remaining six OI type I pedigrees. Of several other features, the presence or absence of presenile hearing loss was the best predictor of the mutant locus in OI type I families, with 13 of the 17 COL1A1 segregants and none of the 7 COL1A2 segregants showing this feature. PMID:1967900

  1. Dual A1/A2B Receptor Blockade Improves Cardiac and Renal Outcomes in a Rat Model of Heart Failure with Preserved Ejection Fraction.

    PubMed

    Tofovic, Stevan P; Salah, Eman M; Smits, Glenn J; Whalley, Eric T; Ticho, Barry; Deykin, Aaron; Jackson, Edwin K

    2016-02-01

    Heart failure with preserved ejection fraction (HFpEF) is prevalent and often accompanied by metabolic syndrome. Current treatment options are limited. Here, we test the hypothesis that combined A1/A2B adenosine receptor blockade is beneficial in obese ZSF1 rats, an animal model of HFpEF with metabolic syndrome. The combined A1/A2B receptor antagonist 3-[4-(2,6-dioxo-1,3-dipropyl-7H-purin-8-yl)-1-bicyclo[2.2.2]octanyl]propanoic acid (BG9928) was administered orally (10 mg/kg/day) to obese ZSF1 rats (n = 10) for 24 weeks (from 20 to 44 weeks of age). Untreated ZSF1 rats (n = 9) served as controls. After 24 weeks of administration, BG9928 significantly lowered plasma triglycerides (in mg/dl: control group, 4351 ± 550; BG9928 group, 2900 ± 551) without adversely affecting plasma cholesterol or activating renin release. BG9928 significantly decreased 24-hour urinary glucose excretion (in mg/kg/day: control group, 823 ± 179; BG9928 group, 196 ± 80) and improved oral glucose tolerance, polydipsia, and polyuria. BG9928 significantly augmented left ventricular diastolic function in association with a reduction in cardiac vasculitis and cardiac necrosis. BG9928 significantly reduced 24-hour urinary protein excretion (in mg/kg/day: control group, 1702 ± 263; BG9928 group, 1076 ± 238), and this was associated with a reduction in focal segmental glomerulosclerosis, tubular atrophy, tubular dilation, and deposition of proteinaceous material in the tubules. These findings show that, in a model of HFpEF with metabolic syndrome, A1/A2B receptor inhibition improves hyperlipidemia, exerts antidiabetic actions, reduces HFpEF, improves cardiac histopathology, and affords renal protection. We conclude that chronic administration of combined A1/A2B receptor antagonists could be beneficial in patients with HFpEF, in particular those with comorbidities such as obesity, diabetes, and dyslipidemias. PMID:26585572

  2. COMPARISON OF OVERALL METABOLISM OF 1, 2, 7, 8-PECDD IN CYP1A2(-L-) KNOCKOUT AND C57BL/6N PARENTAL STRAINS OF MICE

    EPA Science Inventory

    COMPARISON OF OVERALL METABOLISM OF 1,2,3,7,8-PeCDD
    IN CYP1A2 (-/-) KNOCKOUT AND C57BL/6N PARENTAL
    STRAINS OF MICE

    Heldur Hakk1 and Janet J. Diliberto2

    1 USDA-ARS, Biosciences Research Laboratory, P.O. Box 5674, Fargo, ND, USA
    2 US EPA, ORD, National Heal...

  3. A Novel DHPLC-Based Procedure for the Analysis of COL1A1 and COL1A2 Mutations in Osteogenesis Imperfecta

    PubMed Central

    Fuccio, Antonella; Iorio, Mariangela; Amato, Felice; Elce, Ausilia; Ingino, Rosaria; Filocamo, Mirella; Castaldo, Giuseppe; Salvatore, Francesco; Tomaiuolo, Rossella

    2011-01-01

    Approximately 90% of patients with osteogenesis imperfecta (OI) exhibit dominant COL1A1 or COL1A2 mutations; however, molecular analysis is difficult because these genes span 51 and 52 exons, respectively. We devised a PCR-denaturing high-performance liquid chromatography (DHPLC) procedure to analyze the COL1A1 or COL1A2 coding regions and validated it using 130 DNA samples from individuals without OI, 25 DNA samples from two cells to investigate the procedure's potential for preimplantation diagnosis, and DNA samples from 10 patients with OI. Three novel intronic variants in vitro were expressed using a minigene assay to assess their effects on splicing. The procedure is rapid, inexpensive, and reproducible. Analysis of samples from individuals without OI revealed six novel and some known polymorphisms useful for linkage diagnosis because of high heterozygosity. Analysis of two-cell samples confirmed the known genotype in 24 of 25 experiments; DNA failed to amplify in only one case. No incidence of allele dropout was recorded. DHPLC revealed six novel mutations, three of which were intronic, in all patients with OI, and these results were confirmed by means of COL1A1 and COL1A2 direct sequencing. Expression of intronic mutations demonstrated that variant 804 + 2_804 + 3delTG in intron 11 disrupts normal splicing, thereby leading to formation of two alternative products. Variants c.3046-4_3046-5dupCT (COL1A1) and c.891 + 77A>T (COL1A2) did not affect splicing. The described DHPLC protocol combined with the minigene assay may contribute to molecular diagnosis in OI. Moreover, this protocol will aid in counseling about prenatal and preimplantation diagnosis. PMID:21884818

  4. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk-results from the EPIC cohort study.

    PubMed

    Dik, Vincent K; Bueno-de-Mesquita, H B As; Van Oijen, Martijn G H; Siersema, Peter D; Uiterwaal, Cuno S P M; Van Gils, Carla H; Van Duijnhoven, Fränzel J B; Cauchi, Stéphane; Yengo, Loic; Froguel, Philippe; Overvad, Kim; Bech, Bodil H; Tjønneland, Anne; Olsen, Anja; Boutron-Ruault, Marie-Christine; Racine, Antoine; Fagherazzi, Guy; Kühn, Tilman; Campa, Daniele; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Peppa, Eleni; Oikonomou, Eleni; Palli, Domenico; Grioni, Sara; Vineis, Paolo; Tumino, Rosaria; Panico, Salvatore; Peeters, Petra H M; Weiderpass, Elisabete; Engeset, Dagrun; Braaten, Tonje; Dorronsoro, Miren; Chirlaque, María-Dolores; Sánchez, María-José; Barricarte, Aurelio; Zamora-Ros, Raul; Argüelles, Marcial; Jirström, Karin; Wallström, Peter; Nilsson, Lena M; Ljuslinder, Ingrid; Travis, Ruth C; Khaw, Kay-Tee; Wareham, Nick; Freisling, Heinz; Licaj, Idlir; Jenab, Mazda; Gunter, Marc J; Murphy, Neil; Romaguera-Bosch, Dora; Riboli, Elio

    2014-07-15

    Coffee and tea contain numerous antimutagenic and antioxidant components and high levels of caffeine that may protect against colorectal cancer (CRC). We investigated the association between coffee and tea consumption and CRC risk and studied potential effect modification by CYP1A2 and NAT2 genotypes, enzymes involved in the metabolization of caffeine. Data from 477,071 participants (70.2% female) of the European Investigation into Cancer and Nutrition (EPIC) cohort study were analyzed. At baseline (1992-2000) habitual (total, caffeinated and decaffeinated) coffee and tea consumption was assessed with dietary questionnaires. Cox proportional hazards models were used to estimate adjusted hazard ratio's (HR) and 95% confidence intervals (95% CI). Potential effect modification by genotype-based CYP1A2 and NAT2 activity was studied in a nested case-control set of 1,252 cases and 2,175 controls. After a median follow-up of 11.6 years, 4,234 participants developed CRC (mean age 64.7 ± 8.3 years). Total coffee consumption (high vs. non/low) was not associated with CRC risk (HR 1.06, 95% CI 0.95-1.18) or subsite cancers, and no significant associations were found for caffeinated (HR 1.10, 95% CI 0.97-1.26) and decaffeinated coffee (HR 0.96, 95% CI 0.84-1.11) and tea (HR 0.97, 95% CI 0.86-1.09). High coffee and tea consuming subjects with slow CYP1A2 or NAT2 activity had a similar CRC risk compared to non/low coffee and tea consuming subjects with a fast CYP1A2 or NAT2 activity, which suggests that caffeine metabolism does not affect the link between coffee and tea consumption and CRC risk. This study shows that coffee and tea consumption is not likely to be associated with overall CRC. PMID:24318358

  5. Development and validation of a reversed-phase HPLC method for CYP1A2 phenotyping by use of a caffeine metabolite ratio in saliva.

    PubMed

    Begas, Elias; Kouvaras, Evangelos; Tsakalof, Andreas K; Bounitsi, Maria; Asprodini, Eftihia Konstadinos

    2015-11-01

    CYP1A2 is important for metabolizing various clinically used drugs. Phenotyping of CYP1A2 may prove helpful for drug individualization therapy. Several HPLC methods have been developed for quantification of caffeine metabolites in plasma and urine. Aim of the present study was to develop a valid and simple HPLC method for evaluating CYP1A2 activity during exposure in xenobiotics by the use of human saliva. Caffeine and paraxanthine were isolated from saliva by liquid-liquid extraction (chlorophorm/isopropanol 85/15v/v). Extracts were analyzed by reversed-phase HPLC on a C18 column with mobile phase 0.1% acetic acid/methanol/acetonitrile (80/20/2 v/v) and detected at 273nm. Caffeine and paraxanthine elution times were <13min with no interferences from impurities or caffeine metabolites. Detector response was linear (0.10-8.00µg/ml, R(2) >0.99), recovery was >93% and bias <4.47%. Intra- and inter-day precision was <5.14% (n=6). The limit of quantitation was 0.10µg/ml and the limit of detection was 0.018±0.002µg/mL for paraxanthine and 0.032±0.002µg/ml for caffeine. Paraxanthine/caffeine ratio of 34 healthy volunteers was significantly higher in smokers (p<0.001). Saliva paraxanthine/caffeine ratios and urine metabolite ratios were highly correlated (r=0.85, p<0.001). The method can be used for the monitoring of CYP1A2 activity in clinical practice and in studies relevant to exposure to environmental and pharmacological xenobiotics. PMID:25891161

  6. Downregulation of let‑7b promotes COL1A1 and COL1A2 expression in dermis and skin fibroblasts during heat wound repair.

    PubMed

    Liu, Jinyan; Luo, Chengqun; Yin, Zhaoqi; Li, Ping; Wang, Shaohua; Chen, Jia; He, Quanyong; Zhou, Jianda

    2016-03-01

    MicroRNAs (miRs), a class of non‑coding RNAs 18‑25 nucleotides in length, generally serve suppressive role in the regulation of gene expression via directly binding to the 3'‑untranslated region (UTR) of their target mRNA. Previous studies have identified several miRs to be involved in thermal injury repair. However, the role of miR let‑7b during the recovery of thermal injury, in addition to the underlying mechanisms, has not previously been studied. In the present study, the expression of let‑7b was observed to be significantly increased in skin tissue shortly following thermal injury, however, gradually reduced during the recovery of thermal injury. Notably, similar findings were observed in heat‑denatured skin fibroblasts. Furthermore, collagen, type I, alpha 1 (COL1A1) and collagen, type I, alpha 2 (COL1A2), which are associated with the synthesis of type I collagen, were identified as two targets of let‑7b in skin fibroblasts. The overexpression of let‑7b was observed to upregulate the protein expression levels of COL1A1 and COL1A2, while knockdown of let‑7b reduced the levels of COL1A1 and COL1A2 in skin fibroblasts. Furthermore, COL1A1 and COL1A2 were significantly downregulated shortly following thermal injury, while gradually upregulated during healing, in heat‑damaged skin tissue and skin fibroblasts, with the expression profiles opposite to that of let‑7b. Taken together, this suggests that the downregulation of let‑7b in heat‑damaged dermis promotes the synthesis of type I collagen and thus aids in burn wound repair. PMID:26861712

  7. In vitro inhibition of human CYP1A2, CYP2D6, and CYP3A4 by six herbs commonly used in pregnancy.

    PubMed

    Langhammer, Astrid Jordet; Nilsen, Odd Georg

    2014-04-01

    Black elderberry, cranberry, fennel, ginger, horsetail, and raspberry leaf, herbs frequently used in pregnancy, were investigated for their in vitro CYP1A2, 2D6, and 3A4 inhibitory potential. Aqueous or ethanolic extracts were made from commercially available herbal products, and incubations were performed with recombinant cDNA-expressed human CYP enzymes in the presence of positive inhibitory controls. Metabolite formation was determined by validated LCMS/MS or HPLC methodologies. IC50 inhibition constants were estimated from CYP activity inhibition plots using non-linear regression. The most potent inhibition was shown for fennel towards CYP2D6 and 3A4 with respective IC50 constants of 23 ± 2 and 40 ± 4 µg/ml, horsetail towards CYP1A2 with an IC50 constant of 27 ± 1 µg/ml, and raspberry leaf towards CYP1A2, 2D6, and 3A4 with IC50 constants of 44 ± 2, 47 ± 8, and 81 ± 11 µg/ml, respectively. Based on the recommended dosing of the different commercial herbal products, clinically relevant systemic CYP inhibitions could be possible for fennel, horsetail, and raspberry leaf. In addition, fennel and raspberry leaf might cause a clinically relevant inhibition of intestinal CYP3A4. The in vivo inhibitory potential of these herbs towards specific CYP enzymes should be further investigated. PMID:23843424

  8. Functional and pharmacological characterization of two different ASIC1a/2a heteromers reveals their sensitivity to the spider toxin PcTx1.

    PubMed

    Joeres, Niko; Augustinowski, Katrin; Neuhof, Andreas; Assmann, Marc; Gründer, Stefan

    2016-01-01

    Acid Sensing Ion Channels (ASICs) detect extracellular proton signals and are involved in synaptic transmission and pain sensation. ASIC subunits assemble into homo- and heteromeric channels composed of three subunits. Single molecule imaging revealed that heteromers composed of ASIC1a and ASIC2a, which are widely expressed in the central nervous system, have a flexible 2:1/1:2 stoichiometry. It was hitherto not possible, however, to functionally differentiate these two heteromers. To have a homogenous population of ASIC1a/2a heteromers with either 2:1 or 1:2 stoichiometry, we covalently linked subunits in the desired configuration and characterized their functional properties in Xenopus oocytes. We show that the two heteromers have slightly different proton affinity, with an additional ASIC1a subunit increasing apparent affinity. Moreover, we found that zinc, which potentiates ASIC2a-containing ASICs but not homomeric ASIC1a, potentiates both heteromers. Finally, we show that PcTx1, which binds at subunit-subunit interfaces of homomeric ASIC1a, inhibits both heteromers suggesting that ASIC2a can also contribute to a PcTx1 binding site. Using this functional fingerprint, we show that rat cortical neurons predominantly express the ASIC1a/2a heteromer with a 2:1 stoichiometry. Collectively, our results reveal the contribution of individual subunits to the functional properties of ASIC1a/2a heteromers. PMID:27277303

  9. Functional and pharmacological characterization of two different ASIC1a/2a heteromers reveals their sensitivity to the spider toxin PcTx1

    PubMed Central

    Joeres, Niko; Augustinowski, Katrin; Neuhof, Andreas; Assmann, Marc; Gründer, Stefan

    2016-01-01

    Acid Sensing Ion Channels (ASICs) detect extracellular proton signals and are involved in synaptic transmission and pain sensation. ASIC subunits assemble into homo- and heteromeric channels composed of three subunits. Single molecule imaging revealed that heteromers composed of ASIC1a and ASIC2a, which are widely expressed in the central nervous system, have a flexible 2:1/1:2 stoichiometry. It was hitherto not possible, however, to functionally differentiate these two heteromers. To have a homogenous population of ASIC1a/2a heteromers with either 2:1 or 1:2 stoichiometry, we covalently linked subunits in the desired configuration and characterized their functional properties in Xenopus oocytes. We show that the two heteromers have slightly different proton affinity, with an additional ASIC1a subunit increasing apparent affinity. Moreover, we found that zinc, which potentiates ASIC2a-containing ASICs but not homomeric ASIC1a, potentiates both heteromers. Finally, we show that PcTx1, which binds at subunit-subunit interfaces of homomeric ASIC1a, inhibits both heteromers suggesting that ASIC2a can also contribute to a PcTx1 binding site. Using this functional fingerprint, we show that rat cortical neurons predominantly express the ASIC1a/2a heteromer with a 2:1 stoichiometry. Collectively, our results reveal the contribution of individual subunits to the functional properties of ASIC1a/2a heteromers. PMID:27277303

  10. Ischaemia and reperfusion injury of rat liver increases expression of glutathione S-transferase A1/A2 in zone 3 of the hepatic lobule.

    PubMed Central

    Branum, G D; Selim, N; Liu, X; Whalen, R; Boyer, T D

    1998-01-01

    Effects of ischaemia-reperfusion injury (I/R) of liver on expression of rat glutathione S-transferase (rGST) isoenzymes that metabolize products of oxidative stress were examined. Rats underwent lobar liver ischaemia for 30 min followed by reperfusion. In ischaemic lobes, rGSTA1/A2 transcript levels increased significantly 12 h after I/R (2.94-fold) and protein levels increased significantly at 24 h (1.45-fold); increased transcript levels were also observed in nonischaemic lobes (1.78-fold). Superoxide dismutase prevented I/R and the increases in transcript and protein levels in ischaemic and non-ischaemic lobes. By in-situ hybridization, increases in transcript levels at 6 h were present in zones 2 and 3 of the ischaemic lobes and peaked at 12 h (2.5-fold zone 2, 4.5-fold zone 3). Significant increases in transcript levels also were observed at 24 h in zones 2 (2.0-fold) and 3 (2.9-fold) of non-ischaemic lobes. Nuclear run-off assays showed a 1.8-fold increase in rGSTA1/A2 transcription rates in ischaemic lobes at 3 h. We conclude that I/R causes increased rGSTA1/A2 expression in the zone of the hepatic lobule most susceptible to oxidative injury and that this expression may be an important defence against injury. PMID:9461493

  11. Analysis of caffeine and paraxanthine in human saliva with ultra-high-performance liquid chromatography for CYP1A2 phenotyping.

    PubMed

    Jordan, Nan Yeun; Mimpen, Jolet Y; van den Bogaard, Willie J M; Flesch, Frits M; van de Meent, Michiel H M; Torano, Javier Sastre

    2015-07-15

    Cytochrome P450 1A2 (CYP1A2) plays an important role in drug metabolism. Caffeine (CAF) is converted into paraxanthine (PX) by this enzyme and is used as a xenobiotic substrate to determine the CYP1A2 phenotype in humans. A method for the quantification of CAF and PX in saliva was developed using liquid-liquid extraction with ethyl acetate and analysis with ultra-high-performance liquid chromatography. Peaks from CAF, PX and internal standard were resolved within 6min. The method was validated from 0.05 to 5μgmL(-1) CAF and 0.025-2.5μgmL(-1) PX. Inter- and intra-day accuracies ranged from 91.2 to 107.2% with precisions <13.5%. The limits of detection were 0.16 and 0.63 ngmL(-1) for PX and CAF, respectively. PX/CAF concentration ratios from volunteers were 0.26-1.09 with mean ratios of 0.78±0.26 and 0.38±0.10 for regular and light/non-coffee drinkers, respectively. PMID:26038236

  12. Isolation of two cytochrome P450 cDNAs, CYP1A1 and CYP1A2, from harp seal (Phoca groenlandica) and grey seal (Halichoerus grypus).

    PubMed

    Tilley, Rachel E; Kemp, Graham D; Teramitsu, Ikuko; Hall, Ailsa J

    2002-06-01

    Two cytochrome P450 (CYP), CYP1A1 and CYP1A2, cDNA sequences have been isolated and cloned from harp seal (Phoca groenlandica) and grey seal (Halichoerus grypus). EROD, a model substrate for CYP1A, and heterologous antibodies have been employed as a biomarker in marine mammals, however the CYP1A sequences have not been characterised in these two seal species. mRNA was used as the template in RT-PCR, rather than DNA as this indicates transcription of the CYP1A gene in these seal species exposed to environmental contaminants. Harp and grey seal CYP1A1 amino acid sequences exhibited >99% identity and the CYP1A2 sequences were >98% identical. Phylogenetic analyses of the two seal species with other mammalian, and avian CYP1A sequences, showed the CYP1A1 and CYP1A2 sequences clustered with corresponding sequences in other mammalian species. The closest sequences to the seal CYP1As was dog CYP1A. The CYP1A sequence information presented in this study has provided the necessary data for the future production of species-specific probes for the use as biomarkers of environmental contaminant exposure. PMID:12106895

  13. Pathogenesis-related protein 1b1 (PR1b1) is a major tomato fruit protein responsive to chilling temperature and upregulated in high polyamine transgenic genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants execute an array of mechanisms in response to stress which include upregulation of defense-related proteins and changes in specific metabolites. A group of commonly found metabolites implicated in protection against stresses such as chilling stress constitute ubiquitous biogenic amines calle...

  14. CYP1A1 and CYP1A2 expression: comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines.

    PubMed

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how "human-like" can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs. PMID:19285097

  15. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    SciTech Connect

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  16. SIRT1 deacetylates RFX5 and antagonizes repression of collagen type I (COL1A2) transcription in smooth muscle cells

    SciTech Connect

    Xia, Jun; Wu, Xiaoyan; Yang, Yuyu; Zhao, Yuhao; Fang, Mingming; Xie, Weiping; Wang, Hong; Xu, Yong

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer SIRT1 interacts with and deacetylates RFX5. Black-Right-Pointing-Pointer SIRT1 activation attenuates whereas SIRT1 inhibition enhances collagen repression by RFX5 in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 promotes cytoplasmic localization and proteasomal degradation of RFX5 and cripples promoter recruitment of RFX5. Black-Right-Pointing-Pointer IFN-{gamma} represses SIRT1 expression in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 agonist alleviates collagen repression by IFN-{gamma} in vascular smooth muscle cells. -- Abstract: Decreased expression of collagen by vascular smooth muscle cells (SMCs) within the atherosclerotic plaque contributes to the thinning of the fibrous cap and poses a great threat to plaque rupture. Elucidation of the mechanism underlying repressed collagen type I (COL1A2) gene would potentially provide novel solutions that can prevent rupture-induced complications. We have previously shown that regulatory factor for X-box (RFX5) binds to the COL1A2 transcription start site and represses its transcription. Here we report that SIRT1, an NAD-dependent, class III deacetylase, forms a complex with RFX5. Over-expression of SIRT1 or NAMPT, which synthesizes NAD+ to activate SIRT1, or treatment with the SIRT1 agonist resveratrol decreases RFX5 acetylation and disrupts repression of the COL1A2 promoter activity by RFX5. On the contrary, knockdown of SIRT1 or treatment with SIRT1 inhibitors induces RFX5 acetylation and enhances the repression of collagen transcription. SIRT1 antagonizes RFX5 activity by promoting its nuclear expulsion and proteasomal degradation hence dampening its binding to the COL1A2 promoter. The pro-inflammatory cytokine IFN-{gamma} represses COL1A2 transcription by down-regulating SIRT1 expression in SMCs. Therefore, our data have identified as novel pathway whereby SIRT1 maintains collagen synthesis in SMCs by modulating RFX5 activity.

  17. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    SciTech Connect

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2012-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  18. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    SciTech Connect

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  19. Arginine vasotocin V1a2 receptor and GnRH-I co-localize in preoptic neurons of the sex changing grouper, Epinephelus adscensionis.

    PubMed

    Kline, Richard J; Holt, G Joan; Khan, Izhar A

    2016-01-01

    The arginine vasotocin/vasopressin (AVT/AVP) and gonadotropin releasing hormone (GnRH) systems are known to control sexual behaviors and reproduction, respectively, in different vertebrate groups. However, a direct functional connection between these two neuroendocrine systems has not been demonstrated for any vertebrate species. Therefore, the objective of this research was to test the hypothesis that AVT acts on the GnRH system via an AVT V1a receptor in a sex changing grouper species, the rock hind, Epinephelus adscensionis. AVT V1a2 receptors were co-localized with GnRH-I on neurons in the preoptic anterior hypothalamus identifying a structural linkage between the AVT system and GnRH-I. Transcripts for avt, gnrh-I, and two AVT receptor subtypes (v1a1 and v1a2) were isolated and characterized for E. adscensionis and their expression was measured in males and females by q-RT-PCR. Translation of V1a-type cDNA sequences revealed two distinct forms of the AVT V1a receptor in E. adscensionis brain similar to those reported for other species. The observation of significantly higher gnrh-I mRNA in the POA+H of rock hind males as compared to females suggests differential regulation of the gnrh-I transcripts in the two sexes of this protogynous species. In male E. adscensionis, but not in females, a negative relationship was seen between plasma 11-ketotestosterone (11-KT) and the v1a1 receptor mRNA levels in the POA+H, while a positive trend was observed between 11-KT and v1a2 receptor mRNA levels, indicating that these receptor forms may be differentially regulated. PMID:26361870

  20. A Physiologically Based Pharmacokinetic Model to Predict Disposition of CYP2D6 and CYP1A2 Metabolized Drugs in Pregnant Women

    PubMed Central

    Ke, Alice Ban; Nallani, Srikanth C.; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina

    2013-01-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age–dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2–metabolized drug theophylline (THEO) and CYP2D6–metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  1. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women.

    PubMed

    Ke, Alice Ban; Nallani, Srikanth C; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina; Unadkat, Jashvant D

    2013-04-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age-dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2-metabolized drug theophylline (THEO) and CYP2D6-metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  2. Targeting the annulus fibrosus of the intervertebral disc: Col1a2-Cre(ER)T mice show specific activity of Cre recombinase in the outer annulus fibrosus.

    PubMed

    Bedore, Jake; Quesnel, Katherine; Quinonez, Diana; Séguin, Cheryle A; Leask, Andrew

    2016-06-01

    Degeneration of the intervertebral disc (IVD) is a major underlying contributor to back pain-the single leading cause of disability worldwide. However, we possess a limited understanding of the etiology underlying IVD degeneration. To date, there are a limited number of mouse models that have been used to target proteins in specific compartments of the IVD to explore their functions in disc development, homeostasis and disease. Furthermore, the majority of reports exploring the composition and function of the outer encapsulating annulus fibrosus (AF) of the IVD have considered it as one tissue, without considering the numerous structural and functional differences existing between the inner and outer AF. In addition, no mouse models have yet been reported that enable specific targeting of genes within the outer AF. In the current report, we discuss these issues and demonstrate the localized activity of Cre recombinase in the IVD of Col1a2-Cre(ER)T;ROSA26mTmG mice possessing a tamoxifen-dependent Cre recombinase driven by a Cola2 promoter and distal enhancer and the mTmG fluorescent reporter. Following tamoxifen injection of 3-week-old Col1a2-Cre(ER)T;ROSA26mTmG mice, we show Cre activity specifically in the outer AF of the IVD, as indicated by expression of the GFP reporter. Thus, Col1a2-Cre(ER)T;ROSA26mTmG mice may prove to be a valuable tool in delineating the function of proteins in this unique compartment of the IVD, and in further exploring the compositional differences between the inner and outer AF in disc homeostasis, aging and disease. PMID:27173473

  3. Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of Chios mastic gum to male Wistar rats.

    PubMed

    Katsanou, Efrosini S; Kyriakopoulou, Katerina; Emmanouil, Christina; Fokialakis, Nikolas; Skaltsounis, Alexios-Leandros; Machera, Kyriaki

    2014-01-01

    Chios mastic gum (CMG), a resin derived from Pistacia lentiscus var. chia, is known since ancient times for its pharmacological activities. CYP1A1 and CYP1A2 enzymes are among the most involved in the biotransformation of chemicals and the metabolic activation of pro-carcinogens. Previous studies referring to the modulation of these enzymes by CMG have revealed findings of unclear biological and toxicological significance. For this purpose, the modulation of CYP1A1 and CYP1A2 enzymes in the liver of male Wistar rats following oral administration of CMG extract (CMGE), at the levels of mRNA and CYP1A1 enzyme activity, was compared to respective enzyme modulation following oral administration of a well-known bioactive natural product, caffeine, as control compound known to involve hepatic enzymes in its metabolism. mRNA levels of Cyp1a1 and Cyp1a2 were measured by reverse transcription real-time polymerase chain reaction and their relative quantification was calculated. CYP1A1 enzyme induction was measured through the activity of ethoxyresorufin-O-deethylase (EROD). The results indicated that administration of CMGE at the recommended pharmaceutical dose does not induce significant transcriptional modulation of Cyp1a1/2 and subsequent enzyme activity induction of CYP1A1 while effects of the same order of magnitude were observed in the same test system following the administration of caffeine at the mean daily consumed levels. The outcome of this study further confirms the lack of any toxicological or biological significance of the specific findings on liver following the administration of CMGE. PMID:24950217

  4. Hypervelocity Impact (HVI). Volume 2; WLE Small-Scale Fiberglass Panel Flat Multi-Layer Targets A-1, A-2, and B-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, A-2, and B-2 was to study hypervelocity impacts through multi-layered panels simulating Whipple shields on spacecraft. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  5. Effect of Cytochrome b5 Content on the Activity of Polymorphic CYP1A2, 2B6, and 2E1 in Human Liver Microsomes

    PubMed Central

    Zhang, Haifeng; Gao, Na; Liu, Tingting; Fang, Yan; Qi, Bing; Wen, Qiang; Zhou, Jun; Jia, Linjing; Qiao, Hailing

    2015-01-01

    Human cytochrome b5 (Cyt b5) plays important roles in cytochrome P450 (CYP)-mediated drug metabolism. However, the expression level of Cyt b5 in normal human liver remains largely unknown. The effect of Cyt b5 on overall CYP activity in human liver microsomes (HLM) has rarely been reported and the relationship between Cyt b5 and the activity of polymorphic CYP has not been systematically investigated. In this study, we found that the median value of Cyt b5 protein was 270.01 pmol/mg from 123 HLM samples, and 12- and 19-fold individual variation was observed in Cyt b5 mRNA and protein levels, respectively. Gender and smoking clearly influenced Cyt b5 content. In addition, we found that Cyt b5 protein levels significantly correlated with the overall activity of CYP1A2, 2B6, and 2E1 in HLM. However, when the CYP activities were sorted by single nucleotide polymorphisms (SNP), the effect of Cyt b5 protein on the kinetic parameters varied greatly. There were significant correlations between Cyt b5 content and Vmax and CLint of CYP1A2 wild-types (3860GG, 2159GG, and 5347CC) as well as homozygous mutants (163AA and 3113GG). In contrast to Vmax and CLint, the Km of CYP2B6 516GG and 785AA genotypes was inversely associated with Cyt b5 content. Correlations between Cyt b5 content and Vmax and CLint of CYP2E1 -1293GG, -1293GC, 7632TT, 7632TA, -333TT, and -352AA genotypes were also observed. In conclusion, Cyt b5 expression levels varied considerably in the Chinese cohort from this study. Cyt b5 had significant impact on the overall activity of CYP1A2, 2B6, and 2E1 in HLM and the effects of Cyt b5 protein on polymorphic CYP1A2, 2B6, and 2E1 activity were SNP-dependent. These findings suggest that Cyt b5 plays an important role in CYP-mediated activities in HLM and may possibly be a contributing factor for the individual variation observed in CYP enzyme activities. PMID:26046844

  6. Gene sequences for cytochromes p450 1A1 and 1A2: the need for biomarker development in sea otters (Enhydra lutris).

    PubMed

    Hook, Sharon E; Cobb, Michael E; Oris, James T; Anderson, Jack W

    2008-11-01

    There has been recent public concern regarding the impacts of environmental pollution on populations of otters. Population level impacts have been seen with otter (Lutra lutra) populations in Europe due to polychlorinated biphenyls, and with some segments of the Prince William Sound, AK, sea otter (Enhydra lutris) population following the Exxon Valdez oil spill. Despite public interest in these animals and their ecological significance, there are few tools that allow for the study of otter's response to contaminant exposure. Cytochrome p450 1A (CYP1A) performs the first step in metabolizing many xenobiotics, including many polychlorinated biphenyls and polycyclic aromatic hydrocarbons. CYP1A induction is a frequently used biomarker of exposure to these compounds. Despite the potential importance of this gene in ecological risk assessment, the complete coding sequence has not been published for any otter species. This study's objective was to isolate the gene for CYP1A1 and CYP1A2 in sea otters using a series of PCR-based approaches. The coding sequences from CYP1A1 and CYP1A2 from sea otters were identified and published in GenBank. Both CYP1A sequences are homologous to those obtained from marine mammals and other carnivores. These sequences will be useful as tools for researchers assessing contaminant exposure in mustelid populations. PMID:18761099

  7. Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: Evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta

    SciTech Connect

    Spotila, L.D.; Constantinou, C.D.; Sereda, L.; Ganguly, A.; Prockop, D.J. ); Riggs, B.L. )

    1991-06-15

    Mutations in the two genes for type I collagen (COL1A1 or COL1A2) cause osteogenesis imperfecta (OI), a heritable disease characterized by moderate to extreme brittleness of bone early in life. Here, the authors show that a 52-year-old post menopausal woman with severe osteopenia and a compression fracture of a thoracic vertebra had a mutation in the gene for the {alpha}2(I) chain of type I collagen (COL1A2) similar to mutations that cause OI. cDNA was prepared from the woman's skin fibroblast RNA and assayed for the presence of a mutation by treating DNA heteroduplexes with carbodiimide. The results indicated a sequence variation in the region encoding amino acid residues 660-667 of the {alpha}2(I) chain. Further analysis demonstrated a single-base mutation that caused a serine-for-glycine substitution at position 661 of the {alpha}2(I) triple-helical domain. The substitution produced posttranslational overmodification of the collagen triple helix, as is seen with most glycine substitutions that cause OI. The patient had a history of five previous fractures, slightly blue sclerae, and slight hearing loss. Therefore, the results suggest that there may be phenotypic and genotypic overlap between mild osteogenesis imperfecta and postmenopausal osteoporosis, and that a subset of women with postmenopausal osteoporosis may have mutations in the genes for type I procollagen.

  8. Quantification of caffeine in human saliva by Nuclear Magnetic Resonance as an alternative method for cytochrome CYP1A2 phenotyping.

    PubMed

    Schievano, Elisabetta; Finotello, Claudia; Navarini, Luciano; Mammi, Stefano

    2015-08-01

    The first step in caffeine metabolism is mediated for over 95% by the CYP1A2 isoform of cytochrome P450. Therefore, CYP1A2 activity is most conveniently measured through the determination of caffeine clearance. The HPLC quantification of caffeine is fully validated and is the most widely used method. It can be performed on saliva, which is gaining importance as a diagnostic biofluid and permits easy and low invasive sampling. Here, we present a quantitative (1)H nuclear magnetic resonance (NMR) method to determine caffeine in human saliva. The procedure is simple because it involves only an ultra-filtration step and a direct extraction in a deuterated solvent, yielding a matrix that is then analyzed. The reliability of this NMR method was demonstrated in terms of linearity, accuracy, recovery, and limits of detection (LoD). Good precision (relative standard deviation, RSD <4%), a recovery of >95% and LoD of 6.8·10(-7) mol L(-1) were obtained. The method was applied to samples collected from different volunteers over 24h following a single oral dose of about 100mg of caffeine administered with either coffee beverage or a capsule. PMID:26048820

  9. Modelling the metabolic action of human and rat CYP1A2 and its relationship with the carcinogenicity of heterocyclic amines

    NASA Astrophysics Data System (ADS)

    da Fonseca, Rute; Menziani, Maria Cristina; Melo, André; João Ramos, Maria

    Cytochrome P450 (CYP) is a family of enzymes responsible for organism detoxification. However, some of the members of the CYP1A subfamily also catalyse the activation of heterocyclic amines (HAs), present in cooked meat, to carcinogenic compounds which have been shown to increase the risk of breast, colorectal and lung cancer. In humans, CYP1A2 is the enzyme with the most significant action in HA metabolism but in rodents CYP1A1 is also important in this biotransformation. Understanding the metabolic action of these enzymes is essential to predict the factors that enable the formation of the carcinogenic products. We have built two models of CYP1A2, one for the human enzyme and one for the rat homologue. The templates chosen include the only X-ray structure published to date for a mammal CYP, a quimeric C2A5 from rabbit, as well as CYPs belonging to Bacillus megaterium (CYPBm-3), Pseudomonas putida (CYPcam), Pseudomonas sp. (CYPterp), and Saccharopolyspora erythraea (CYPeryf). Two HAs, MeIQ (2-amino-3,4-dimethylimidazo[4,5-f]quinoline) and MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline), known substrates of human and rat CYPIA2, were docked in the active site of the models, providing information regarding the different catalytic rates associated with the metabolisms in both enzymes. This is important for analysing the behaviour of animal models concerning the testing of anticancer drugs.

  10. CYP1A2 and NAT2 phenotyping and 3-aminobiphenyl and 4-aminobiphenyl hemoglobin adduct levels in smokers and non-smokers

    SciTech Connect

    Sarkar, Mohamadi; Stabbert, Regina; Kinser, Robin D.; Oey, Jan; Rustemeier, Klaus; Holt, Klaus von; Schepers, Georg; Walk, Roger A.; Roethig, Hans J.

    2006-06-15

    Some aromatic amines are considered to be putative bladder carcinogens. Hemoglobin (Hb) adducts of 3-aminobiphenyl (3-ABP) and 4-aminobiphenyl (4-ABP) have been used as biomarkers of exposure to aromatic amines from cigarette smoke. One of the goals of this study was to determine intra- and inter-individual variability in 3-ABP and 4-ABP Hb adducts and to explore the predictability of ABP Hb adduct levels based on caffeine phenotyping. The study was conducted in adult smokers (S, n = 65) and non-smokers (NS, n 65). The subjects were phenotyped for CYP1A2 and NAT2 using urinary caffeine metabolites. Blood samples were collected twice within 6 weeks and adducts measured by GC/MS. The levels of 4-ABP Hb adducts were significantly (p < 0.0001) greater in S (34.5 {+-} 21.06 pg/g Hb) compared to NS (6.3 {+-} 3.02 pg/g Hb). The levels of 3-ABP Hb adducts were below the limit of quantification (BLOQ) in most (82%) of the NS and about 10-fold lower in S (3.6 {+-} 3.29 pg/g Hb) compared to 4-ABP Hb adducts. No differences were observed in the adduct levels between weeks 1 and 6 in the smokers, suggesting that a single sample would be adequate to monitor cigarette smoke exposure. The regression model developed with CYP1A2, NAT2 phenotype and number of cigarettes smoked (NCIG) accounted for 47% of the variability in 3-ABP adducts, whereas 32% variability in 4-ABP adducts was accounted by CYP1A2 and NCIG. The ratio of 4-ABP Hb adducts in adult S:NS was {approx} 5:1, whereas 3-ABP Hb adducts levels were BLOQ in some S, exhibited large interindividual variability ({approx} 91% compared to 57% for 4-ABP Hb) and poor dose response relationship. Therefore, 4-ABP Hb adduct levels may be a more useful biomarker of aminobiphenyl exposure from cigarette smoke.

  11. Understanding the Mechanism of Human P450 CYP1A2 Using Coupled Quantum-Classical Simulations in a Dynamical Environment

    SciTech Connect

    Draeger, E W; Bennion, B; Gygi, F; Lightstone, F

    2006-02-10

    The reaction mechanism of the human P450 CYP1A2 enzyme plays a fundamental role in understanding the effects of environmental carcinogens and mutagens on humans. Despite extensive experimental research on this enzyme system, key questions regarding its catalytic cycle and oxygen activation mechanism remain unanswered. In order to elucidate the reaction mechanism in human P450, new computational methods are needed to accurately represent this system. To enable us to perform computational simulations of unprecedented accuracy on these systems, we developed a dynamic quantum-classical (QM/MM) hybrid method, in which ab initio molecular dynamics are coupled with classical molecular mechanics. This will provide the accuracy needed to address such a complex, large biological system in a fully dynamic environment. We also present detailed calculations of the P450 active site, including the relative charge transfer between iron porphine and tetraphenyl porphyrin.

  12. High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica

    SciTech Connect

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; Reddy, T. B. K.; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Baeshen, Mohammed; Baeshen, Nabih; Kyrpides, Nikos; Reeve, Wayne

    2015-06-14

    Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. Lastly, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.

  13. High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica

    DOE PAGESBeta

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; Reddy, T. B. K.; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Baeshen, Mohammed; Baeshen, Nabih; et al

    2015-06-14

    Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. Lastly, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Rootmore » Nodule Bacteria (GEBA-RNB) project proposal.« less

  14. Comparative ability of various PCBs, PCDFs, and TCDD to induce cytochrome P450 1A1 and 1A2 activity following 4 weeks of treatment (short communication)

    SciTech Connect

    De Vito, M.J.; Maier, W.E.; Diliberto, J.J.; Birnbaum, L.S.

    1993-01-01

    The toxic equivalency factors (TEF) have been proposed for dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls (PCBs). The proposed TEFs, which are presently being evaluated in the authors' laboratory are currently used to estimate the potential health risk associated with exposure to complex mixtures containing these chemicals. Hepatic cytochrome P-450 1A1 and 1A2 activities were determined for all chemicals tested and compared to those from TCDD treated mice. These initial studies indicate that the interim TEFs for the dibenzofurans adequately predict the relative induction potency for these compounds. However, the TEFs proposed for the dioxin-like PCBs overestimate the potency of these compounds by factors of 10-10,000. The present study indicates that more experimental data is required before TEFs for PCBs are used in regulatory decision making.

  15. Higher gene expression of CYP1A2, 2B1 and 2D2 in the brain of female compared with male rats.

    PubMed

    Nagai, K; Fukuno, S; Suzuki, H; Konishi, H

    2016-06-01

    Cytochrome P450 (CYP) in the brain plays an essential role in the local metabolism of various compounds, including clinically used drugs, toxins, and endogenous substances. In the present study, we compared the expression profiles of mRNAs for several CYP subtypes in the brain between male and female rats. The expression of CYP1A2, CYP2B1, and CYP2D2 in females was significantly higher than that in males. On the other hand, the expression level of the other CYP subtypes examined in the male brain was similar to that in the female brain. These results strongly suggest that marked gender differences exist in the expression profiles of some CYP subtypes in rat brain. PMID:27455552

  16. prep1.2 and aldh1a2 participate to a positive loop required for branchial arches development in zebrafish.

    PubMed

    Vaccari, Enrico; Deflorian, Gianluca; Bernardi, Elisa; Pauls, Stefan; Tiso, Natascia; Bortolussi, Marino; Argenton, Francesco

    2010-07-01

    Segmentation is a key step in embryonic development. Acting in all germ layers, it is responsible for the generation of antero-posterior asymmetries. Hox genes, with their diverse expression in individual segments, are fundamental players in the determination of different segmental fates. In vertebrates, Hox gene products gain specificity for DNA sequences by interacting with Pbx, Prep and Meis homeodomain transcription factors. In this work we cloned and analysed prep1.2 in zebrafish. In-situ hybridization experiments show that prep1.2 is maternally and ubiquitously expressed up to early somitogenesis when its expression pattern becomes more restricted to the head and trunk mesenchyme. Experiments of loss of function with prep1.2 morpholinos change the shape of the hyoid and third pharyngeal cartilages while arches 4-7 and pectoral fins are absent, a phenotype strikingly similar to that caused by loss of retinoic acid (RA). In fact, we show that prep1.2 is positively regulated by RA and required for the normal expression of aldh1a2 at later stages, particularly in tissues involved in the development of the branchial arches and pectoral fins. Thus, prep1.2 and aldh1a2 are members of an indirect positive feedback loop required for pharyngeal endoderm and posterior branchial arches development. As the paralogue gene prep1.1 is more important in hindbrain patterning and neural crest chondrogenesis, we provide evidence of a functional specialization of prep genes in zebrafish head segmentation and morphogenesis. PMID:20423710

  17. Membrane-Anchored Cytochrome P450 1A2-Cytochrome b5 Complex Features an X-Shaped Contact between Antiparallel Transmembrane Helices.

    PubMed

    Jeřábek, Petr; Florián, Jan; Martínek, Václav

    2016-04-18

    Eukaryotic cytochromes P450 (P450) are membrane-bound enzymes oxidizing a broad spectrum of hydrophobic substrates, including xenobiotics. Protein-protein interactions play a critical role in this process. In particular, the formation of transient complexes of P450 with another protein of the endoplasmic reticulum membrane, cytochrome b5 (cyt b5), dictates catalytic activities of several P450s. To lay a structural foundation for the investigation of these effects, we constructed a model of the membrane-bound full-length human P450 1A2-cyt b5 complex. The model was assembled from several parts using a multiscale modeling approach covering all-atom and coarse-grained molecular dynamics (MD). For soluble P450 1A2-cyt b5 complexes, these simulations yielded three stable binding modes (sAI, sAII, and sB). The membrane-spanning transmembrane domains were reconstituted with the phospholipid bilayer using self-assembly MD. The predicted full-length membrane-bound complexes (mAI and mB) featured a spontaneously formed X-shaped contact between antiparallel transmembrane domains, whereas the mAII mode was found to be unstable in the membrane environment. The mutual position of soluble domains in binding mode mAI was analogous to the sAI complex. Featuring the largest contact area, the least structural flexibility, the shortest electron transfer distance, and the highest number of interprotein salt bridges, mode mAI is the best candidate for the catalytically relevant full-length complex. PMID:26918755

  18. Caffeine raises the serum melatonin level in healthy subjects: an indication of melatonin metabolism by cytochrome P450(CYP)1A2.

    PubMed

    Ursing, C; Wikner, J; Brismar, K; Röjdmark, S

    2003-05-01

    Caffeine is metabolized in the liver by cytochrome P450(CYP)1A2. Recent findings imply that this enzyme may also be of importance for the metabolism of human melatonin (MT). If caffeine and MT are metabolized by the same enzyme, one may expect to find different serum MT levels after ingestion of coffee compared with placebo. Although coffee is consumed by people all over the world, few studies have focused on whether caffeine actually affects serum MT levels in normal subjects. We decided to study that particular topic. For that purpose 12 healthy individuals were tested on two occasions, one week apart. On one of these occasions they were given a capsule containing 200 mg caffeine in the evening. On the other, they received placebo. The experimental order was randomized. Serum MT levels were determined every second hour between 22:00 h and 08:00 h, and the melatonin areas under the curve (MT-AUCs) were calculated. After caffeine the serum MT level rose from 0.09 +/- 0.03 nmol/l at 22:00 h to 0.48 +/- 0.07 nmol/l at 04:00 h. The corresponding rise after placebo was less prominent (from 0.06 +/- 0.01 to 0.35 +/- 0.06 nmol/l). This was reflected by the MT-AUC which was 32% larger after ingestion of caffeine compared with placebo (MT-AUC(caffeine) 3.16 +/- 0.44 nmol/l x h vs MT-AUC(placebo) 2.39 +/- 0.40 nmol/l x h; p < 0.02). These findings imply that caffeine, ingested in the evening at a dose corresponding to two ordinary cups of coffee, augments the nocturnal serum MT level, which in turn supports the notion that cytochrome P450(CYP)1A2 is involved in the hepatic metabolism of human MT. PMID:12906366

  19. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM

    PubMed Central

    Amin, N; Byrne, E; Johnson, J; Chenevix-Trench, G; Walter, S; Nolte, I M; Vink, J M; Rawal, R; Mangino, M; Teumer, A; Keers, J C; Verwoert, G; Baumeister, S; Biffar, R; Petersmann, A; Dahmen, N; Doering, A; Isaacs, A; Broer, L; Wray, N R; Montgomery, G W; Levy, D; Psaty, B M; Gudnason, V; Chakravarti, A; Sulem, P; Gudbjartsson, D F; Kiemeney, L A; Thorsteinsdottir, U; Stefansson, K; van Rooij, F J A; Aulchenko, Y S; Hottenga, J J; Rivadeneira, F R; Hofman, A; Uitterlinden, A G; Hammond, C J; Shin, S-Y; Ikram, A; Witteman, J C M; Janssens, A C J W; Snieder, H; Tiemeier, H; Wolfenbuttel, B H R; Oostra, B A; Heath, A C; Wichmann, E; Spector, T D; Grabe, H J; Boomsma, D I; Martin, N G; van Duijn, C M

    2012-01-01

    Coffee consumption is a model for addictive behavior. We performed a meta-analysis of genome-wide association studies (GWASs) on coffee intake from 8 Caucasian cohorts (N=18 176) and sought replication of our top findings in a further 7929 individuals. We also performed a gene expression analysis treating different cell lines with caffeine. Genome-wide significant association was observed for two single-nucleotide polymorphisms (SNPs) in the 15q24 region. The two SNPs rs2470893 and rs2472297 (P-values=1.6 × 10−11 and 2.7 × 10−11), which were also in strong linkage disequilibrium (r2=0.7) with each other, lie in the 23-kb long commonly shared 5′ flanking region between CYP1A1 and CYP1A2 genes. CYP1A1 was found to be downregulated in lymphoblastoid cell lines treated with caffeine. CYP1A1 is known to metabolize polycyclic aromatic hydrocarbons, which are important constituents of coffee, whereas CYP1A2 is involved in the primary metabolism of caffeine. Significant evidence of association was also detected at rs382140 (P-value=3.9 × 10−09) near NRCAM—a gene implicated in vulnerability to addiction, and at another independent hit rs6495122 (P-value=7.1 × 10−09)—an SNP associated with blood pressure—in the 15q24 region near the gene ULK3, in the meta-analysis of discovery and replication cohorts. Our results from GWASs and expression analysis also strongly implicate CAB39L in coffee drinking. Pathway analysis of differentially expressed genes revealed significantly enriched ubiquitin proteasome (P-value=2.2 × 10−05) and Parkinson's disease pathways (P-value=3.6 × 10−05). PMID:21876539

  20. Genetic Control of a Central Pattern Generator: Rhythmic Oromotor Movement in Mice Is Controlled by a Major Locus near Atp1a2

    PubMed Central

    Boughter, John D.; Mulligan, Megan K.; St. John, Steven J.; Tokita, Kenichi; Lu, Lu; Heck, Detlef H.; Williams, Robert W.

    2012-01-01

    Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h2≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F1 hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny st