Science.gov

Sample records for 1a2 2a6 2b6

  1. Functional characterization of single nucleotide polymorphisms with amino acid substitution in CYP1A2, CYP2A6, and CYP2B6 found in the Japanese population.

    PubMed

    Iwasaki, Masahiko; Yoshimura, Yoshinobu; Asahi, Satoru; Saito, Kimitoshi; Sakai, Shuichi; Morita, Shigemichi; Takenaka, Osamu; Inoda, Toshio; Kashiyama, Eiji; Aoyama, Akinori; Nakabayashi, Takeshi; Omori, Satoshi; Kuwabara, Takashi; Izumi, Takashi; Nakamura, Kouichi; Takanaka, Kaoru; Nakayama, Yukiharu; Takeuchi, Mitsuaki; Nakamura, Hideki; Kametani, Shunichi; Terauchi, Yoshiaki; Hashizume, Takanori; Nagayama, Sekio; Kume, Toshiyuki; Achira, Meguru; Kawai, Hiroyuki; Kawashiro, Takashi; Nakamura, Akio; Nakai, Yasuhiro; Kagayama, Akira; Shiraga, Toshifumi; Niwa, Takuro; Yoshimura, Takuya; Morita, Jun; Ohsawa, Fukuichi; Tani, Masato; Osawa, Nobuo; Ida, Keiichi; Noguchi, Kiyoshi

    2004-12-01

    As a part of the studies conducted by the Pharma SNPs Consortium (PSC), the enzyme activities of CYP1A2, CYP2A6 and CYP2B6 variants with altered amino acids as a result of single nucleotide polymorphisms (SNPs) found among the Japanese population were analyzed under a unified protocol using the same lots of reagents by the laboratories participating in the PSC. Mutations in CYP1A2, CYP2A6 and CYP2B6 were introduced by site-directed mutagenesis and the wild type and mutated CYP molecules were expressed in Escherichia coli. The expressed cytochrome P450s were purified and the enzyme activities were measured in reconstitution systems. CYP1A2 and CYP1A2Gln478His did not show any differences in 7-ethoxyresorufin O-deethylase activity. CYP2A6 and CYP2A6Glu419Asp metabolized coumarin to form 7-hydroxycoumarin in a similar manner, whereas CYP2A6Ile471Thr showed low activity compared to the wild-type CYP2A6. CYP2B6, CYP2B6Pro167Ala and CYP2B6Arg487Cys showed the same activity for 7-ethoxy-4-triflouromethyl-coumarin O-deethylation. However, CYP2B6Gln172His was roughly twice as active as CYP2B6 and the other CYP2B6 variants for 7-ethoxy-4-triflouromethylcoumarin O-deethylation activity. Although higher inter- and intra-laboratory variations were observed for the calculated Km and V(max) values because the studies were conducted in several different laboratories, the degree of variations was reduced by the increased number of analyses and the adoption of a simple analysis system. PMID:15681899

  2. Pharmacogenetics of CYP2B6, CYP2A6 and UGT2B7 in HIV treatment in African populations: focus on efavirenz and nevirapine.

    PubMed

    Čolić, Antoinette; Alessandrini, Marco; Pepper, Michael S

    2015-05-01

    The CYP450 and UGT enzymes are involved in phase I and phase II metabolism of the majority of clinically prescribed drugs, including the non-nucleoside reverse transcriptase inhibitors, efavirenz and nevirapine, used in the treatment of HIV/AIDS. Variations in the activity of these enzymes due to gene polymorphisms can affect an individual's drug response or may lead to adverse drug reactions. There is an inter-ethnic distribution in the frequency of these polymorphisms, with African populations exhibiting higher genetic diversity compared to other populations. African specific alleles with clinical relevance have also emerged. Given the high prevalence of HIV/AIDS in sub-Saharan Africa, understanding the frequency of pharmacogenetically relevant alleles in populations of African origin, and their impact on efavirenz and nevirapine metabolism, is becoming increasingly critical. This review aims to investigate ethnic variation of CYP2B6, CYP2A6 and UGT2B7, and to understand the pharmacogenetic relevance when comparing frequencies in African populations to other populations worldwide. PMID:25391641

  3. Effect of Cytochrome b5 Content on the Activity of Polymorphic CYP1A2, 2B6, and 2E1 in Human Liver Microsomes

    PubMed Central

    Zhang, Haifeng; Gao, Na; Liu, Tingting; Fang, Yan; Qi, Bing; Wen, Qiang; Zhou, Jun; Jia, Linjing; Qiao, Hailing

    2015-01-01

    Human cytochrome b5 (Cyt b5) plays important roles in cytochrome P450 (CYP)-mediated drug metabolism. However, the expression level of Cyt b5 in normal human liver remains largely unknown. The effect of Cyt b5 on overall CYP activity in human liver microsomes (HLM) has rarely been reported and the relationship between Cyt b5 and the activity of polymorphic CYP has not been systematically investigated. In this study, we found that the median value of Cyt b5 protein was 270.01 pmol/mg from 123 HLM samples, and 12- and 19-fold individual variation was observed in Cyt b5 mRNA and protein levels, respectively. Gender and smoking clearly influenced Cyt b5 content. In addition, we found that Cyt b5 protein levels significantly correlated with the overall activity of CYP1A2, 2B6, and 2E1 in HLM. However, when the CYP activities were sorted by single nucleotide polymorphisms (SNP), the effect of Cyt b5 protein on the kinetic parameters varied greatly. There were significant correlations between Cyt b5 content and Vmax and CLint of CYP1A2 wild-types (3860GG, 2159GG, and 5347CC) as well as homozygous mutants (163AA and 3113GG). In contrast to Vmax and CLint, the Km of CYP2B6 516GG and 785AA genotypes was inversely associated with Cyt b5 content. Correlations between Cyt b5 content and Vmax and CLint of CYP2E1 -1293GG, -1293GC, 7632TT, 7632TA, -333TT, and -352AA genotypes were also observed. In conclusion, Cyt b5 expression levels varied considerably in the Chinese cohort from this study. Cyt b5 had significant impact on the overall activity of CYP1A2, 2B6, and 2E1 in HLM and the effects of Cyt b5 protein on polymorphic CYP1A2, 2B6, and 2E1 activity were SNP-dependent. These findings suggest that Cyt b5 plays an important role in CYP-mediated activities in HLM and may possibly be a contributing factor for the individual variation observed in CYP enzyme activities. PMID:26046844

  4. Preliminary Investigation of the Contribution of CYP2A6, CYP2B6, and UGT1A9 Polymorphisms on Artesunate-Mefloquine Treatment Response in Burmese Patients with Plasmodium falciparum Malaria

    PubMed Central

    Phompradit, Papichaya; Muhamad, Poonuch; Cheoymang, Anurak; Na-Bangchang, Kesara

    2014-01-01

    CYP2A6, CYP2B6, and UGT1A9 genetic polymorphisms and treatment response after a three-day course of artesunate-mefloquine was investigated in 71 Burmese patients with uncomplicated Plasmodium falciparum malaria. Results provide evidence for the possible link between CYP2A6 and CYP2B6 polymorphisms and plasma concentrations of artesunate/dihydroartemisinin and treatment response. In one patient who had the CYP2A6*1A/*4C genotype (decreased enzyme activity), plasma concentration of artesunate at one hour appeared to be higher, and the concentration of dihydroartemisinin was lower than for those carrying other genotypes (415 versus 320 ng/mL). The proportion of patients with adequate clinical and parasitologic response who had the CYP2B6*9/*9 genotype (mutant genotype) was significantly lower compared with those with late parasitologic failure (14.0% versus 19.0%). Confirmation through a larger study in various malaria-endemic areas is required before a definite conclusion on the role of genetic polymorphisms of these drug-metabolizing enzymes on treatment response after artesunate-based combination therapy can be made. PMID:24891466

  5. Effects of CYP2B6 and CYP1A2 Genetic Variation on Nevirapine Plasma Concentration and Pharmacodynamics as Measured by CD4 Cell Count in Zimbabwean HIV-Infected Patients

    PubMed Central

    Mhandire, Doreen; Lacerda, Miguel; Castel, Sandra; Mhandire, Kudakwashe; Zhou, Danai; Swart, Marelize; Shamu, Tinei; Smith, Peter; Musingwini, Tutsirai; Wiesner, Lubbe; Stray-Pedersen, Babill

    2015-01-01

    Abstract The extremely high prevalence of HIV/AIDS in sub-Saharan Africa and limitations of current antiretroviral medicines demand new tools to optimize therapy such as pharmacogenomics for person-to-person variations. African populations exhibit greater genetic diversity than other world populations, thus making it difficult to extrapolate findings from one population to another. Nevirapine, an antiretroviral medicine, displays large plasma concentration variability which adversely impacts therapeutic virological response. This study, therefore, aimed to identify sources of variability in nevirapine pharmacokinetics and pharmacodynamics, focusing on genetic variation in CYP2B6 and CYP1A2. Using a cross-sectional study design, 118 HIV-infected adult Zimbabwean patients on nevirapine-containing highly active antiretroviral therapy (HAART) were characterized for three key functional single nucleotide polymorphisms (SNPs), CYP2B6 c.516G>T (rs3745274), CYP2B6 c.983T>C (rs28399499), and CYP1A2 g.-163C>A (rs762551). We investigated whether genotypes at these loci were associated with nevirapine plasma concentration, a therapeutic biomarker, and CD4 cell count, a biomarker of disease progression. CYP2B6 and CYP1A2 were chosen as the candidate genes based on reports in literature, as well as their prominence in the metabolism of efavirenz, a drug in the same class with nevirapine. Nevirapine plasma concentration was determined using LC-MS/MS. The mean nevirapine concentration for CYP2B6 c.516T/T genotype differed significantly from that of 516G/G (p < 0.001) and 516G/T (p < 0.01) genotypes, respectively. There were also significant differences in mean nevirapine concentration between CYP2B6 c.983T > C genotypes (p = 0.04). Importantly, the CYP1A2 g.-163C>A SNP was significantly associated with the pharmacodynamics endpoint, the CD4 cell count (p = 0.012). Variant allele frequencies for the three SNPs observed in this Zimbabwean group were similar to

  6. Complex Drug Interactions of HIV Protease Inhibitors 2: In Vivo Induction and In Vitro to In Vivo Correlation of Induction of Cytochrome P450 1A2, 2B6, and 2C9 by Ritonavir or Nelfinavir

    PubMed Central

    Kirby, Brian J.; Collier, Ann C.; Kharasch, Evan D.; Dixit, Vaishali; Desai, Pankaj; Whittington, Dale; Thummel, Kenneth E.

    2011-01-01

    Drug-drug interactions (DDIs) with the HIV protease inhibitors (PIs) are complex, paradoxical (e.g., ritonavir/alprazolam), and involve multiple mechanisms. As part of a larger study to better understand these DDIs and to devise a framework for in vitro to in vivo prediction of these DDIs, we determined the inductive effect of ∼2 weeks of administration of two prototypic PIs, nelfinavir (NFV), ritonavir (RTV), and rifampin (RIF; induction positive control) on the cytochrome P450 enzymes CYP1A2, CYP2B6, CYP2C9, and CYP2D6 and the inductive or inductive plus inhibitory effect of NFV, RTV, or RIF on CYP3A and P-glycoprotein in healthy human volunteers. Statistically significant induction of CYP1A2 (2.1-, 2.9-, and 2.2-fold), CYP2B6 (1.8-, 2.4-, and 4-fold), and CYP2C9 (1.3-, 1.8-, and 2.6-fold) was observed after NFV, RTV, or RIF treatment, respectively (as expected, CYP2D6 was not induced). Moreover, we accurately predicted the in vivo induction of these enzymes by quantifying their induction by the PIs in human hepatocytes and by using RIF as an in vitro to in vivo scalar. On the basis of the modest in vivo induction of CYP1A2, CYP2B6, or CYP2C9, the in vivo paradoxical DDIs with the PIs are likely explained by mechanisms other than induction of these enzymes such as induction of other metabolic enzymes, transporters, or both. PMID:21930825

  7. Genetic variation in the 3′-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7: potential effects on regulation by microRNA and pharmacogenomics relevance

    PubMed Central

    Swart, Marelize; Dandara, Collet

    2014-01-01

    Introduction: Pharmacogenomics research has concentrated on variation in genes coding for drug metabolizing enzymes, transporters and nuclear receptors. However, variation affecting microRNA could also play a role in drug response. This project set out to investigate potential microRNA target sites in 11 genes and the extent of variation in the 3′-UTR of six selected genes; CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7. Methods: Fifteen microRNA target prediction algorithms were used to identify microRNAs predicted to regulate 11 genes. The 3′-UTR of the 6 genes which topped the list of potential microRNA targets was sequenced in 30 black South Africans. In addition, genetic variants within these genes were investigated for interference with mRNA-microRNA interactions. Potential effects of observed variants were determined using in silico prediction tools. Results: The 11 genes coding for DMEs, transporters and nuclear receptors were predicted to be targets of microRNAs with CYP2B6, NR1I2 (PXR), CYP3A4, and CYP1A2, interacting with the most microRNAs. The majority of identified genetic variants were predicted to interfere with microRNA regulation. For example, the variant, rs1054190C in NR1I2 was predicted to result in the presence of a binding site for the microRNA miR-1250-5p, while the variant rs1054191G was predicted to result in the absence of a recognition site for miR-371b-3p, miR-4258 and miR-4707-3p. Fifteen of the seventeen, novel variants occurred within microRNA target sequences. Conclusion: The 3′-UTR harbors variation that is likely to influence regulation of specific genes by microRNA. In silico prediction followed by functional validation could aid in decoding the contribution of variation in the 3′-UTR, to some unexplained heritability that affects drug response. Understanding the specific role of each microRNA may lead to identification of markers for targeted therapy and therefore improve personalized drug treatment. PMID:24926315

  8. Biotransformation of BDE-47 to Potentially Toxic Metabolites Is Predominantly Mediated by Human CYP2B6

    PubMed Central

    Feo, Maria Luisa; Gross, Michael S.; McGarrigle, Barbara P.; Eljarrat, Ethel; Barceló, Damià; Olson, James R.

    2012-01-01

    Background: Previous studies have indicated that cytochrome P450s (CYPs) are involved in the metabolism of polybrominated diphenyl ether (PBDE) flame retardants in humans, resulting in the formation of hydroxylated PBDEs (OH-PBDEs) that are potentially more toxic than the parent PBDEs. However, the specific enzymes responsible for the formation of OH-PBDEs are unknown. Objectives: The purposes of this study were to characterize the in vitro metabolism of 2,2´,4,4´-tetrabromodiphenyl ether (BDE-47) by human liver microsomes (HLM) and recombinant human CYPs, and to identify the CYP(s) that are active in the oxidative metabolism of BDE-47. Methods: Recombinant human CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) were incubated with BDE-47 (20 µM), and the metabolites were measured and characterized using gas chromatography with tandem mass spectrometry (GC-MS/MS). For kinetic studies, CYP2B6 and pooled human liver microsomes (HLMs) were incubated with BDE-47 (0–60 µM). Results: CYP2B6 was the predominant CYP capable of forming six OH-BDEs, including 3-OH-BDE-47, 5-OH-BDE-47, 6-OH-BDE-47, 4-OH-BDE-42, 4´-OH-BDE-49, and a metabolite tentatively identified as 2´-OH-BDE-66. On the basis of full-scan GC-MS analysis, we hypothesized the formation of two other metabolites: di-OH-tetra-BDE and di-OH-tetrabrominated dioxin. In kinetic studies of BDE-47 metabolism by CYP2B6 and pooled HLMs, we found Km values ranging from 3.8 to 6.4 µM and 7.0 to 11.4 µM, respectively, indicating the high affinity toward the formation of OH-BDEs. Conclusion: Our findings support a predominant role of CYP2B6 in the metabolism of BDE-47 to potentially toxic metabolites, including a hypothesized di-OH-tetrabrominated dioxin metabolite. These results will assist future epidemiological studies investigating the potential of PBDEs and their metabolites to produce neurobehavioral/neurodevelopmental disorders. PMID:23249762

  9. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance

    PubMed Central

    Zanger, Ulrich M.; Klein, Kathrin

    2013-01-01

    Cytochrome P450 2B6 (CYP2B6) belongs to the minor drug metabolizing P450s in human liver. Expression is highly variable both between individuals and within individuals, owing to non-genetic factors, genetic polymorphisms, inducibility, and irreversible inhibition by many compounds. Drugs metabolized mainly by CYP2B6 include artemisinin, bupropion, cyclophosphamide, efavirenz, ketamine, and methadone. CYP2B6 is one of the most polymorphic CYP genes in humans and variants have been shown to affect transcriptional regulation, splicing, mRNA and protein expression, and catalytic activity. Some variants appear to affect several functional levels simultaneously, thus, combined in haplotypes, leading to complex interactions between substrate-dependent and -independent mechanisms. The most common functionally deficient allele is CYP2B6*6 [Q172H, K262R], which occurs at frequencies of 15 to over 60% in different populations. The allele leads to lower expression in liver due to erroneous splicing. Recent investigations suggest that the amino acid changes contribute complex substrate-dependent effects at the activity level, although data from recombinant systems used by different researchers are not well in agreement with each other. Another important variant, CYP2B6*18 [I328T], occurs predominantly in Africans (4–12%) and does not express functional protein. A large number of uncharacterized variants are currently emerging from different ethnicities in the course of the 1000 Genomes Project. The CYP2B6 polymorphism is clinically relevant for HIV-infected patients treated with the reverse transcriptase inhibitor efavirenz, but it is increasingly being recognized for other drug substrates. This review summarizes recent advances on the functional and clinical significance of CYP2B6 and its genetic polymorphism, with particular emphasis on the comparison of kinetic data obtained with different substrates for variants expressed in different recombinant expression systems. PMID

  10. MOLECULAR CHARACTERIZATION OF CYP2B6 SUBSTRATES

    PubMed Central

    Ekins, Sean; Iyer, Manisha; Krasowski, Matthew D.; Kharasch, Evan D.

    2008-01-01

    CYP2B6 has not been as fully characterized at the molecular level as other members of the human cytochrome P450 family. As more widely used in vitro probes for characterizing the involvement of this enzyme in the metabolism of xenobiotics have become available, the number of molecules identified as CYP2B6 substrates has increased. In this study we have analyzed the available kinetic data generated by multiple laboratories with human recombinant expressed CYP2B6 and along with calculated molecular properties derived from the ChemSpider database, we have determined the molecular features that appear to be important for CYP2B6 substrates. In addition we have applied 2D and 3D QSAR methods to generate predictive pharmacophore and 2D models. For 28 molecules with Km data, the molecular weight (mean ± SD) is 253.78±74.03, ACD/logP is 2.68±1.51, LogDpH 5.5 is 1.51±1.43, LogDpH 7.4 is 2.02±1.25, hydrogen bond donor (HBD) count is 0.57 ±0.57, hydrogen bond acceptor (HBA) count is 2.57±1.37, rotatable bonds is 3.50±2.71 and total polar surface area (TPSA) is 27.63±19.42. A second set of 15 molecules without Km data possessed similar mean molecular property values. These properties are comparable to those of a set of 21 molecules used in a previous pharmacophore modeling study (Ekins et al., J Pharmacol Exp Ther 288 (1), 21–29, 1999). Only the LogD and HBD values were statistically significantly different between these different datasets. We have shown that CYP2B6 substrates are generally small hydrophobic molecules that are frequently central nervous system active, which may be important for drug discovery research. PMID:18537573

  11. Enantioselective inhibition of Cytochrome P450-mediated drug metabolism by a novel antithrombotic agent, S002-333: Major effect on CYP2B6.

    PubMed

    Bhateria, Manisha; Ramakrishna, Rachumallu; Puttrevu, Santosh Kumar; Saxena, Anil K; Bhatta, Rabi Sankar

    2016-08-25

    A significant number of new chemical entities (NCEs) fail in drug discovery due to inhibition of Cytochrome P450 (CYP) enzymes. Therefore, to avert costly drug failure at the clinical phase it becomes indispensable to evaluate the CYP inhibition profile of NCEs early in drug discovery. In light of these concerns, we envisioned to investigate the inhibitory effects of S002-333 [2-(4-methoxy-benzenesulfonyl)-2,3,4,9-tetrahydro-1H-b-carboxylic acid amide], a novel and potent antithrombotic agent, on nine major CYP enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4) of human liver microsomes (HLM). S002-333 exists as racemic mixture of S004-1032 (R-isomer) and S007-1558 (S-isomer), consequently, we further examined the enantioselective differences of S002-333 in the inhibition of human CYP enzymes. Of the CYP enzymes tested, CYP2B6-catalyzed bupropion 6-hydroxylation was inhibited by S002-333 (IC50 ∼ 9.25 ± 2.46 μM) in a stereoselective manner with (S)-isomer showing potent inhibition (IC50 ∼ 5.28 ± 1.25 μM) in contrast to (R)-isomer which showed negligible inhibition on CYP2B6 activity (IC50 > 50 μM). S002-333 and its (S)-isomer inhibited CYP2B6 activity in a non-competitive fashion with estimated Ki values of 10.1 ± 3.4 μM and 5.09 ± 1.05 μM, respectively. No shift in the IC50 value was observed for S002-333 and its isomers when preincubated for 30 min in the presence of NADPH suggesting that neither S002-333 nor its enantiomers are time-dependent inhibitors. Thus, the present findings signified that S002-333 is a potent stereoselective inhibitor of CYP2B6, whereas, inhibition for other CYPs was substantially negligible. These in vitro findings would be useful in deciding the development of S002-333 as a single-enantiomer or as a racemic mixture. PMID:27387538

  12. Mechanism-Based Inactivation of Human Cytochrome P450 2B6 by Chlorpyrifos.

    PubMed

    D'Agostino, Jaime; Zhang, Haoming; Kenaan, Cesar; Hollenberg, Paul F

    2015-07-20

    Chlorpyrifos (CPS) is a commonly used pesticide which is metabolized by P450s into the toxic metabolite chlorpyrifos-oxon (CPO). Metabolism also results in the release of sulfur, which has been suggested to be involved in mechanism-based inactivation (MBI) of P450s. CYP2B6 was previously determined to have the greatest catalytic efficiency for CPO formation in vitro. Therefore, we characterized the MBI of CYP2B6 by CPS. CPS inactivated CYP2B6 in a time- and concentration-dependent manner with a kinact of 1.97 min(-1), a KI of 0.47 μM, and a partition ratio of 17.7. We further evaluated the ability of other organophosphate pesticides including chorpyrifos-methyl, diazinon, parathion-methyl, and azinophos-methyl to inactivate CYP2B6. These organophosphate pesticides were also potent MBIs of CYP2B6 characterized by similar kinact and KI values. The inactivation of CYP2B6 by CPS was accompanied by the loss of P450 detectable in the CO reduced spectrum and loss of detectable heme. High molecular weight aggregates were observed when inactivated CYP2B6 was run on SDS-PAGE gels indicating protein aggregation. Interestingly, we found that the rat homologue of CYP2B6, CYP2B1, was not inactivated by CPS despite forming CPO to a similar extent. On the basis of the locations of the Cys residues in the two proteins which could react with released sulfur during the metabolism of CPS, we investigated whether the C475 in CYP2B6, which is not conserved in CYP2B1, was the critical residue for inactivation by mutating it to a Ser. CYP2B6 C475S was inactivated to a similar extent as wild type CYP2B6 indicating that C475 is not likely the key difference between CYP2B1 and CYP2B6 with respect to inactivation. These results indicate that CPS and other organophosphate pesticides are potent MBIs of CYP2B6 which may have implications for the toxicity of these pesticides as well as the potential for pesticide-drug interactions. PMID:26075493

  13. Characterization of inhibitory effects of perfluorooctane sulfonate on human hepatic cytochrome P450 isoenzymes: focusing on CYP2A6.

    PubMed

    Narimatsu, Shizuo; Nakanishi, Ryoko; Hanioka, Nobumitsu; Saito, Keita; Kataoka, Hiroyuki

    2011-11-15

    Perfluorooctane sulfonate (PFOS) is a chemically stable compound extensively used as oil and water repellent, surface active agents in our daily life. Accumulative research evidence gradually appears the toxicity of PFOS against mammals, but the whole figure remains to be elucidated. The present study was conducted to know the effects of PFOS on human hepatic drug metabolizing-type cytochrome P450 (CYP) isoenzymes such as CYP1A2 (7-ethoxyresorufin as a substrate), CYP2A6 (coumarin), CYP2B6 (7-ethoxy-4-trifluoromethylcoumarin), CYP2C8 (paclitaxel), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin), CYP2D6 (bufuralol), CYP2E1 (chlorzoxazone) and CYP3A4 (testosterone) in human livers employing their typical substrates. Although all of the oxidation reactions tested were more or less inhibited by PFOS, diclofenac 4'-hydroxylation mediated mainly by CYP2C9 was most strongly inhibited (K(i) value of 40 nM), followed by paclitaxel 6α-hydroxylation mediated mainly by CYP2C8 (K(i) value of 4 μM). The substrate oxidation reactions catalyzed by CYP2A6, CYP2B6, CYP2C19 and CYP3A4 were moderately (K(i) values of 35 to 45 μM), and those by CYP1A2, CYP2D6 and CYP2E1 were weakly inhibited by PFOS (K(i) values of 190-300 μM). The inhibition by PFOS for coumarin 7-hydroxylation mainly catalyzed by human liver microsomal CYP2A6 as well as by the recombinant enzyme was found to be enhanced by the preincubation of PFOS with human liver microsomes and NADPH as compared to the case without preincubation. The inhibition of the human liver microsomal cumarin 7-hydroxylation was PFOS concentration-dependent, and exhibited pseudo-first-order kinetics with respect to preincubation time, yielding K(inact) and K(I) values of 0.06 min(-1) and 23 μM, respectively. These results suggest that the metabolism of medicines which are substrates for CYP2C9 may be altered by PFOS in human bodies, and that PFOS is a mechanism-based inhibitor of CYP2A6. PMID:21964418

  14. Measurements of the Urbach tail for A2B6 mixed crystals by the photothermal method

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.; Malinski, M.; Strzałkowski, K.; Firszt, F.; Łęgowski, S.; Męczyńska, H.

    2010-03-01

    This paper presents the influence of the composition of several mixed A2B6 crystals on the broadening of the optical absorption coefficient spectra. This broadening is observed as the change of the piezoelectric spectra associated with the change oft he Urbach tail. This effect is interpreted as a result of the increase of the compositional disorder of the crystal lattice.

  15. CYP2B6*6 and CYP2B6*18 Predict Long-Term Efavirenz Exposure Measured in Hair Samples in HIV-Positive South African Women.

    PubMed

    Röhrich, Carola R; Drögemöller, Britt I; Ikediobi, Ogechi; van der Merwe, Lize; Grobbelaar, Nelis; Wright, Galen E B; McGregor, Nathaniel; Warnich, Louise

    2016-06-01

    Long-term exposure to efavirenz (EFV) measured in hair samples may predict response to antiretroviral treatment (ART). Polymorphisms in CYP2B6 are known to alter EFV levels. The aim of this study was to assess the relationship between CYP2B6 genotype, EFV levels measured in hair, and virological outcomes on ART in a real-world setting. We measured EFV levels in hair from HIV-positive South African females who had been receiving EFV-based treatment for at least 3 months from the South African Black (SAB) (n = 81) and Cape Mixed Ancestry (CMA) (n = 53) populations. Common genetic variation in CYP2B6 was determined in 15 individuals from each population using bidirectional Sanger sequencing. Prioritized variants (n = 16) were subsequently genotyped in the entire patient cohort (n = 134). The predictive value of EFV levels in hair and selected variants in CYP2B6 on virological treatment outcomes was assessed. Previously described alleles (CYP2B6*2, CYP2B6*5, CYP2B6*6, CYP2B6*17, and CYP2B6*18), as well as two novel alleles (CYP2B6*31 and CYP2B6*32), were detected in this study. Compared to noncarriers, individuals homozygous for CYP2B6*6 had ∼109% increased EFV levels in hair (p = .016) and CYP2B6*18 heterozygotes demonstrated 82% higher EFV hair levels (p = .0006). This study confirmed that alleles affecting CYP2B6 metabolism and subsequent EFV exposure are present at significant frequencies in both the SAB and CMA populations. Furthermore, this study demonstrated that the use of hair samples for testing EFV concentrations may be a useful tool in determining long-term drug exposure in resource-limited countries. PMID:26655325

  16. Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6.

    PubMed

    Sridar, Chitra; Kent, Ute M; Notley, Lisa M; Gillam, Elizabeth M J; Hollenberg, Paul F

    2002-06-01

    Tamoxifen is primarily used in the treatment of breast cancer. It has been approved as a chemopreventive agent for individuals at high risk for this disease. Tamoxifen is metabolized to a number of different products by cytochrome P450 enzymes. The effect of tamoxifen on the enzymatic activity of bacterially expressed human cytochrome CYP2B6 in a reconstituted system has been investigated. The 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity of purified CYP2B6 was inactivated by tamoxifen in a time- and concentration-dependent manner. Enzymatic activity was lost only in samples that were incubated with both tamoxifen and NADPH. The inactivation was characterized by a K(I) of 0.9 microM, a k(inact) of 0.02 min(-1), and a t(1/2) of 34 min. The loss in the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity did not result in a similar percentage loss in the reduced carbon monoxide spectrum, suggesting that the heme moiety was not the major site of modification. The activity of CYP2B6 was not recovered after removal of free tamoxifen using spin column gel filtration. The loss in activity seemed to be due to a modification of the CYP2B6 and not reductase because adding fresh reductase back to the inactivated samples did not restore enzymatic activity. A reconstituted system containing purified CYP2B6, NADPH-reductase, and NADPH-generating system was found to catalyze tamoxifen metabolism to 4-OH-tamoxifen, 4'-OH-tamoxifen, and N-desmethyl-tamoxifen as analyzed by high-performance liquid chromatography analysis. Preliminary studies showed that tamoxifen had no effect on the activities of CYP1B1 and CYP3A4, whereas CYP2D6 and CYP2C9 exhibited a 25% loss in enzymatic activity. PMID:12023523

  17. Equine cytochrome P450 2B6 — Genomic identification, expression and functional characterization with ketamine

    SciTech Connect

    Peters, L.M.; Demmel, S.; Pusch, G.; Buters, J.T.M.; Zielinski, J.; Leeb, T.; Mevissen, M.; Schmitz, A.

    2013-01-01

    Ketamine is an anesthetic and analgesic regularly used in veterinary patients. As ketamine is almost always administered in combination with other drugs, interactions between ketamine and other drugs bear the risk of either adverse effects or diminished efficacy. Since cytochrome P450 enzymes (CYPs) play a pivotal role in the phase I metabolism of the majority of all marketed drugs, drug–drug interactions often occur at the active site of these enzymes. CYPs have been thoroughly examined in humans and laboratory animals, but little is known about equine CYPs. The characterization of equine CYPs is essential for a better understanding of drug metabolism in horses. We report annotation, cloning and heterologous expression of the equine CYP2B6 in V79 Chinese hamster fibroblasts. After computational annotation of all CYP2B genes, the coding sequence (CDS) of equine CYP2B6 was amplified by RT-PCR from horse liver total RNA and revealed an amino acid sequence identity of 77% and a similarity of 93.7% to its human ortholog. A non-synonymous variant c.226G>A in exon 2 of the equine CYP2B6 was detected in 97 horses. The mutant A-allele showed an allele frequency of 82%. Two further variants in exon 3 were detected in one and two horses of this group, respectively. Transfected V79 cells were incubated with racemic ketamine and norketamine as probe substrates to determine metabolic activity. The recombinant equine CYP2B6 N-demethylated ketamine to norketamine and produced metabolites of norketamine, such as hydroxylated norketamines and 5,6-dehydronorketamine. V{sub max} for S-/and R-norketamine formation was 0.49 and 0.45 nmol/h/mg cellular protein and K{sub m} was 3.41 and 2.66 μM, respectively. The N-demethylation of S-/R-ketamine was inhibited concentration-dependently with clopidogrel showing an IC{sub 50} of 5.63 and 6.26 μM, respectively. The functional importance of the recorded genetic variants remains to be explored. Equine CYP2B6 was determined to be a CYP

  18. Influence of Surface Preparation for Different Groups of A2B6 Mixed Crystals

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.; Maliński, M.; Strzałkowski, K.; Firszt, F.; Łęgowski, S.; Męczyńska, H.

    2010-01-01

    Piezoelectric photothermal spectroscopy has been used for measurements of the optical and thermal parameters of semiconductors. The investigated crystals were grown by the high-pressure Bridgman method under argon overpressure. The obtained photoacoustic (PA) spectra show the complexity of the effects observed for the different groups of selected A2B6 crystals. These effects comprise ideal samples and samples with damaged surfaces. The spectra show the influence of the surface treatment on the PA amplitude and phase spectra.

  19. Cytochrome P450 Oxidoreductase Influences CYP2B6 Activity in Cyclophosphamide Bioactivation

    PubMed Central

    El-Serafi, Ibrahim; Afsharian, Parvaneh; Moshfegh, Ali; Hassan, Moustapha; Terelius, Ylva

    2015-01-01

    Introduction Cyclophosphamide is commonly used as an important component in conditioning prior to hematopoietic stem cell transplantation, a curative treatment for several hematological diseases. Cyclophosphamide is a prodrug activated mainly by cytochrome P450 2B6 (CYP2B6) in the liver. A high degree of inter- and intra-individual variation in cyclophosphamide kinetics has been reported in several studies. Materials and Methods Hydroxylation of cyclophosphamide was investigated in vitro using three microsomal batches of CYP2B6*1 with different ratios of POR/CYP expression levels. Twenty patients undergoing hematopoietic stem cell transplantation were also included in the study. All patients received an i.v. infusion of cyclophosphamide (60 mg/kg/day, for two days) as a part of their conditioning. Blood samples were collected from each patient before cyclophosphamide infusion, 6 h after the first dose and before and 6 h after the second dose. POR gene expression was measured by mRNA analysis and the pharmacokinetics of cyclophosphamide and its active metabolite were determined. Results A strong correlation between the in vitro intrinsic clearance of cyclophosphamide and the POR/CYP ratio was found. The apparent Km for CYP2B6.1 was almost constant (3-4 mM), while the CLint values were proportional to the POR/CYP ratio (3-34 μL/min/nmol CYP). In patients, the average expression of the POR gene in blood was significantly (P <0.001) up-regulated after cyclophosphamide infusion, with high inter-individual variations and significant correlation with the concentration ratio of the active metabolite 4-hydroxy-cyclophosphamide/cyclophosphamide. Nine patients were carriers for POR*28; four patients had relatively high POR expression. Conclusions This investigation shows for the first time that POR besides CYP2B6 can influence cyclophosphamide metabolism. Our results indicate that not only CYPs are important, but also POR expression and/or activity may influence

  20. Oxidative metabolism of BDE-99 by human liver microsomes: predominant role of CYP2B6.

    PubMed

    Erratico, Claudio A; Szeitz, András; Bandiera, Stelvio M

    2012-10-01

    Hydroxylated polybrominated diphenyl ethers (PBDEs) have been found in human serum, suggesting that they are formed by in vivo oxidative metabolism of PBDEs. However, the biotransformation of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), a major PBDE detected in human tissue and environmental samples, is poorly understood. In the present study, the oxidative metabolism of BDE-99 was assessed using pooled and single-donor human liver microsomes, a panel of human recombinant cytochrome P450 (CYP) enzymes, and CYP-specific antibodies. Hydroxylated metabolites were quantified using a liquid chromatography/tandem mass spectrometry-based method. In total, 10 hydroxylated metabolites of BDE-99 were produced by human liver microsomes. Six metabolites were identified as 2,4,5-tribromophenol (2,4,5-TBP), 4-OH-BDE-90, 5'-OH-BDE-99, 6'-OH-BDE-99, 4'-OH-BDE-101, and 2-OH-BDE-123 using authentic standards. Three monohydroxy- and one dihydroxy-pentabrominated metabolites were unidentified. Rates of formation of the three major metabolites (2,4,5-TBP, 5'-OH-BDE-99, and 4'-OH-BDE-101) by human liver microsomes ranged from 24.4 to 44.8 pmol/min/mg protein. Additional experiments demonstrated that the dihydroxylated metabolite was a primary metabolite of BDE-99 and was not produced by hydroxylation of a monohydroxy metabolite. Among the panel of recombinant CYP enzymes tested, formation of all 10 hydroxylated metabolites was catalyzed solely by CYP2B6. A combined approach using antibodies to CYP2B6 and single-donor liver microsomes expressing a wide range of CYP2B6 levels confirmed that CYP2B6 was responsible for the biotransformation of BDE-99. Collectively, the results show that the oxidative metabolism of BDE-99 by human liver microsomes is catalyzed solely by CYP2B6 and is an important determinant of the toxicity and bioaccumulation of BDE-99 in humans. PMID:22738989

  1. Photoelectron Spectroscopy Study of [Ta2B6]-: a Hexagonal Bipyramdial Cluster

    NASA Astrophysics Data System (ADS)

    Jian, Tian; Li, Weili; Romanescu, Constantin; Wang, Lai-Sheng

    2014-06-01

    It has been a long-sought goal in cluster science to discover stable atomic clusters as building blocks for cluster-assembled nanomaterials, as exemplified by the fullerenes and their subsequent bulk syntheses.[1,2] Clusters have also been considered as models to understand bulk properties, providing a bridge between molecular and solid-state chemistry.[3] Herein we report a joint photoelectron spectroscopy and theoretical study on the [Ta2B6]- and [Ta2B6] clusters.[4] The photoelectron spectrum of [Ta2B6]- displays a simple spectral pattern and a large HOMO-LUMO gap, suggesting its high symmetry. Theoretical calculations show that both the neutral and anion are D6h pyramidal. The chemical bonding analyses for [Ta2B6] revealed the nature of the B6 and Ta interactions and uncovered strong covalent bonding between B6 and Ta. The D6h-[TaB6Ta] gaseous cluster is reminiscent of the structural pattern in the ReB6X6Re core in the [(Cp*Re)2B6H4Cl2] and the TiB6Ti motif in the newly synthesized Ti7Rh4Ir2B8 solid-state compound.[5,6] The current work provides an intrinsic link between a gaseous cluster and motifs for solid materials. Continued investigations of the transition-metal boron clusters may lead to the discovery of new structural motifs involving pure boron clusters for the design of novel boride materials. Reference [1] H.W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162 - 163. [2] W. Krtschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 1990, 347, 354 - 358. [3] T. P. Fehlner, J.-F. Halet, J.-Y. Saillard, Molecular Clusters: A Bridge to Solid-State Chemitry, Cambridge University Press, UK, 2007. [4] W. L. Li, L. Xie, T. Jian, C. Romanescu, X. Huang, L.-S. Wang, Angew. Chem. Int. Ed. 2014, 126, 1312 - 1316. [5] B. Le Guennic, H. Jiao, S. Kahlal, J.-Y. Saillard, J.-F. Halet, S. Ghosh, M. Shang, A. M. Beatty, A. L. Rheingold, T. P. Fehlner, J. Am. Chem. Soc. 2004, 126, 3203 - 3217. [6] B. P. T. Fokwa, M. Hermus, Angew

  2. In vitro inhibition and induction of human liver cytochrome P450 enzymes by gentiopicroside: potent effect on CYP2A6.

    PubMed

    Deng, Yating; Wang, Lu; Yang, Yong; Sun, Wenji; Xie, Renming; Liu, Xueying; Wang, Qingwei

    2013-01-01

    Gentiopicroside (GE), a naturally occurring iridoid glycoside, has been developed into a Novel Traditional Chinese Drug named gentiopicroside injection, and it was approved for the treatment of acute jaundice and chronic active hepatitis by SFDA. However, the inhibitory and inducible effects of GE on the activity of cytochrome P450 (CYP450) are unclear. The purpose of this study was to evaluate the ability of GE to inhibit and induce human cytochrome P450 enzymes in vitro. In human liver microsomes, GE inhibited CYP2A6 and CYP2E1 in a concentration-dependent manner, with IC₅₀ values of 21.8 µg/ml and 594 µg/ml, respectively, and the IC₅₀ of CYP2A6 was close to the C(max) value observed clinically. GE was a non-competitive inhibitor of CYP2A6 at lower concentrations and a competitive inhibitor at higher concentrations. GE did not produce inhibition of CYP2C9, CYP2D6, CYP1A2 or CYP3A4 activities. However, a significant increase of CYP1A2 and CYP3A4 activity was observed at high concentrations. In cultured human hepatocytes no significant induction of CYP1A2, CYP3A4 or CYP2B6 was observed. Given these results, the in vivo potential inhibition of GE on CYP2A6 deserves further investigation, and it seems that the hepatoprotective effect of GE is irrelevant to its effect on P450s. PMID:23419353

  3. Dehydroepiandrosterone Induces Human CYP2B6 through the Constitutive Androstane Receptor

    PubMed Central

    Kőhalmy, Krisztina; Tamási, Viola; Kóbori, László; Sárváry, Enikő; Pascussi, Jean-Marc; Porrogi, Pálma; Rozman, Damjana; Prough, Russell A.; Meyer, Urs A.; Monostory, Katalin

    2008-01-01

    Dehydroepiandrosterone (DHEA), the major precursor of androgens and estrogens, has several beneficial effects on the immune system, on memory function, and in modulating the effects of diabetes, obesity, and chemical carcinogenesis. Treatment of rats with DHEA influences expression of cytochrome P450 (P450) genes, including peroxisome proliferator-activated receptor α (PPARα)- and pregnane X receptor (PXR)-mediated induction of CYP4As and CYP3A23, and suppression of CYP2C11. DHEA treatment elevated the expression and activities of CYP3A4, CYP2C9, CYP2C19, and CYP2B6 in primary cultures of human hepatocytes. Induction of CYP3A4 in human hepatocytes was consistent with studies in rats, but induction of CYP2Cs was unexpected. The role of PXR in this response was studied in transient transfection assays. DHEA activated hPXR in a concentration-dependent manner. Because CYP2B6 induction by DHEA in human hepatocytes might involve either PXR or constitutive androstane receptor (CAR) activation, we performed experiments in primary hepatocytes from CAR knockout mice and observed that CAR was required for maximal induction of Cyp2b10 by DHEA. Furthermore, CAR-mediated Cyp2b10 induction by DHEA was inhibited by the inverse agonist of CAR, androstanol (5α-androstan-3α-ol). Further evidence for CAR activation was provided by cytoplasmic/nuclear transfer of CAR upon DHEA treatment. Elucidation of CAR activation and subsequent induction of CYP2B6 by DHEA presented an additional mechanism by which the sterol can modify the expression of P450s. The effect of DHEA on the activation of the xenosensors PPARα, PXR, and CAR, and the consequent potential for adverse drug/toxicant interactions should be considered in humans treated with this nutriceutical agent. PMID:17591676

  4. Transcriptional Regulation of CYP2B6 Expression by Hepatocyte Nuclear Factor 3β in Human Liver Cells

    PubMed Central

    Li, Linhao; Li, Daochuan; Heyward, Scott; Wang, Hongbing

    2016-01-01

    CYP2B6 plays an increasingly important role in xenobiotic metabolism and detoxification. The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) have been established as predominant regulators for the inductive expression of CYP2B6 gene in human liver. However, there are dramatic interindividual variabilities in CYP2B6 expression that cannot be fully explained by the CAR/PXR-based modulation alone. Here, we show that expression level of CYP2B6 was correlated with that of hepatocyte nuclear factor 3β (HNF3β) in human primary hepatocytes prepared from 35 liver donors. Utilizing recombinant virus-mediated overexpression or knockdown of HNF3β in HepG2 cells, as well as constructs containing serial deletion and site-directed mutation of HNF3β binding motifs in CYP2B6 luciferase reporter assays, we demonstrated that the presence or lack of HNF3β expression markedly correlated with CYP2B6 gene expression and its promoter activity. Novel enhancer modules of HNF3β located upstream of the CYP2B6 gene transcription start site were identified and functionally validated as key elements governing HNF3β-mediated CYP2B6 expression. Chromatin immunoprecipitation assays in human primary hepatocytes and surface plasmon resonance binding affinity experiments confirmed the essential role of these enhancers in the recruitment of HNF3β to the promoter of CYP2B6 gene. Overall, these findings indicate that HNF3β represents a new liver enriched transcription factor that is involved in the transcription of CYP2B6 gene and contributes to the large interindividual variations of CYP2B6 expression in human population. PMID:26930610

  5. Photothermal Investigation of Surface Defects of Pure Semiconducting A2B6 Materials

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.; Maliński, M.; Strzałkowski, K.; Madaj, D.; Firszt, F.; Łęgowski, S.; Męczyńska, H.

    2012-04-01

    Photoacoustic spectroscopy is a sensitive and useful method to investigate the quality of semiconducting A2B6 crystals. An imperfection of surface quality can strongly influence photoacoustic spectra but it shows the different character for the different kinds of semiconducting materials. To properly interpret the amplitude and phase spectra, the temperature distribution and its modifications, due to the surface defects, are needed. The Blonskij model of the temperature distribution was used to investigate the influence of the defect on the amplitude and phase spectra.

  6. Characterization of CYP2B6 in a CYP2B6-Humanized Mouse Model: Inducibility in the Liver by Phenobarbital and Dexamethasone and Role in Nicotine Metabolism In Vivo

    PubMed Central

    Liu, Zhihua; Li, Lei; Wu, Hong; Hu, Jing; Ma, Jun; Zhang, Qing-Yu

    2015-01-01

    The aim of this study was to further characterize the expression and function of human CYP2B6 in a recently generated CYP2A13/2B6/2F1-transgenic (TG) mouse model, in which CYP2B6 is expressed selectively in the liver. The inducibility of CYP2B6 by phenobarbital (PB) and dexamethasone (DEX), known inducers of CYP2B6 in human liver, was examined in the TG mice, as well as in TG/Cyp2abfgs-null (or “CYP2B6-humanized”) mice. Hepatic expression of CYP2B6 mRNA and protein was greatly induced by PB or DEX treatment in both TG and TG/Cyp2abfgs-null mice. Function of the transgenic CYP2B6 was first studied using bupropion as a probe substrate. In PB-treated mice, the rates of hepatic microsomal hydroxybupropion formation (at 50 μM bupropion) were >4-fold higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice (for both male and female mice); the rate difference was accompanied by a 5-fold higher catalytic efficiency in the TG/Cyp2abfgs-null mice and was abolished by an antibody to CYP2B6. The ability of CYP2B6 to metabolize nicotine was then examined, both in vitro and in vivo. The rates of hepatic microsomal cotinine formation from nicotine were significantly higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice, pretreated with PB or DEX. Furthermore, systemic nicotine metabolism was faster in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice. Thus, the transgenic CYP2B6 was inducible and functional, and, in the absence of mouse CYP2A and CYP2B enzymes, it contributed to nicotine metabolism in vivo. The CYP2B6-humanized mouse will be valuable for studies on in vivo roles of hepatic CYP2B6 in xenobiotic metabolism and toxicity. PMID:25409894

  7. High-temperature Raman spectroscopic study of vanadoborate Na3VO2B6O11

    NASA Astrophysics Data System (ADS)

    Ji, Zhang; De-Ming, Zhang; Qing-Li, Zhang; Shao-Tang, Yin

    2016-03-01

    Raman spectra of a vanadoborate (Na3VO2B6O11) crystal from room temperature up to the melting point have been recorded. The main internal vibrational modes of the crystal have been assigned. It was found that all the Raman bands exhibit decreases in frequency and the widths of the Raman bands increase with the increase of temperature. However, no phase transition was observed under 525 °C. The micro-structure of its melt was studied by quantum chemistry ab initio calculation. The continuous three-dimensional network of the crystal collapsed and transformed into VO4 and VBO6 clusters during the melting process with an isomerization reaction from four-coordinated boron to a three-coordinated species. Project supported by the National Natural Science Foundation of China (Grant Nos. 51302268 and 51102239) and the Natural Science Foundation of Anhui Province, China (Grant No. KJ2015A339).

  8. Rifampin enhances cytochrome P450 (CYP) 2B6-mediated efavirenz 8-hydroxylation in healthy volunteers

    PubMed Central

    Cho, Doo-Yeoun; Shen, Joan H.Q.; Lemler, Suzanne M.; Skaar, Todd C; Li, Lang; Blievernicht, Julia; Zanger, Ulrich M.; Kim, Kwon-Bok; Shin, Jae-Gook; Flockhart, David A.; Desta, Zeruesenay

    2016-01-01

    The effect of rifampin on the in vivo metabolism of the antiretroviral drug efavirenz was evaluated in healthy volunteers. In a cross-over placebo control trial, healthy subjects (n = 20) were administered a single 600 mg oral dose of efavirenz after pretreatment with placebo or rifampin (600 mg/day for 10 days). Plasma and urine concentrations of efavirenz, 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz were measured by LC–MS/MS. Compared to placebo treatment, rifampin increased the oral clearance (by ~2.5-fold) and decreased maximum plasma concentration (Cmax) and area under the plasma concentration–time curve (AUC0–∞) of efavirenz (by ~1.6- and ~2.5-fold respectively) (p < 0.001). Rifampin treatment substantially increased the Cmax and AUC0–12h of 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz, metabolic ratio (AUC0–72h of metabolites to AUC0–72h efavirenz) and the amount of metabolites excreted in urine (Ae0–12hr) (all, p < 0.01). Female subjects had longer elimination half-life (1.6–2.2-fold) and larger weight-adjusted distribution volume (1.6– 1.9-fold) of efavirenz than male subjects (p < 0.05) in placebo and rifampin treated groups respectively. In conclusion, rifampin enhances CYP2B6-mediated efavirenz 8-hydroxylation in vivo. The metabolism of a single oral dose of efavirenz may be a suitable in vivo marker of CYP2B6 activity to evaluate induction drug interactions involving this enzyme. PMID:27053325

  9. Cost–effectiveness of CYP2B6 genotyping to optimize efavirenz dosing in HIV clinical practice

    PubMed Central

    Schackman, Bruce R; Haas, David W; Park, Sanghee S; Li, X Cynthia; Freedberg, Kenneth A

    2016-01-01

    Aims To assess the cost–effectiveness of CYP2B6 genotyping to guide efavirenz dosing for initial HIV therapy in the USA. Methods We used the Cost–Effectiveness of Preventing AIDS Complications (CEPAC) microsimulation model to project quality-adjusted life expectancy and lifetime costs (2014 US dollars) for efavirenz-based HIV therapy with or without CYP2B6 genotyping. We assumed that with genotyping 60% of patients would be eligible to receive lower doses. Results Current care without CYP2B6 genotyping has an incremental cost–effectiveness ratio >$100,000/QALY compared with genotype-guided dosing, even if lower dosing reduces efficacy. When we assumed generic efavirenz availability, conclusions were similar unless lower dosing reduces efficacy by 6% or more. Conclusion CYP2B6 genotyping can inform efavirenz dosing and decrease HIV therapy cost. PMID:26607811

  10. CYP2B6rs2279343 Is Associated with Improved Survival of Pediatric Rhabdomyosarcoma Treated with Cyclophosphamide

    PubMed Central

    A. Abdelrahim, Mohamed E.; Elnadi, Enas; Hesham, Reem M.; Yassin, Dina

    2016-01-01

    Background Rhabdomyosarcoma (RMS) is a small round blue cell malignant tumor, representing 7% of childhood malignancies, and over 50% of all soft tissue sarcomas. Cyclophosphamide (CPA) is a prodrug and is the mainstay of RMS treatment. CYP2B6 is a highly polymorphic drug metabolizing enzyme involved in CPA bioactivation. The influence of CYP2B6 single nucleotide polymorphisms (SNPs) on the survival of RMS is still unknown. Methods We genotyped CYP2B6SNPs rs2279343, rs3745274, and rs3211371 by restriction fragment polymorphism (RFLP) after PCR amplification in a cohort of 73 pediatric RMS patients treated with CPA-based first line treatment. We then analyzed the association between those genotypes and survival outcome of RMS. Results The frequencies of CYP2B6 rs2279343, rs3745274, and rs3211371 were 63%, 45.2%, and 5.5%, respectively. There was no association between rs3745274, rs3211371 genotypes and survival outcomes of RMS. However, the carriers of at least one mutant allele CYP2B6rs2279343 had significantly longer event-free survival (p-value = 0.03). Conclusion Our results demonstrated that CYP2B6 rs2279343 may predict EFS in RMS patients and warrants future studies to clarify the pharmacogenetics of CPA in pediatrics. If validated, integration of genetic factors with clinical and molecular characteristics could be used for a composite algorithm to better stratify risk prior to treatment. PMID:27388155

  11. Influence of CYP2B6 and CYP2C19 polymorphisms on sertraline metabolism in major depression patients.

    PubMed

    Yuce-Artun, Nazan; Baskak, Bora; Ozel-Kizil, Erguvan Tugba; Ozdemir, Hatice; Uckun, Zuhal; Devrimci-Ozguven, Halise; Suzen, Halit Sinan

    2016-04-01

    Background Genetic polymorphisms in CYP2B6 and CYP2C19 may cause variability in the metabolism of sertraline, a widely used antidepressant in major depressive disorder treatment. Objective This study investigates the impact of CYP2B6*4 (785A > G), CYP2B6*9 (516G > T), CYP2B6*6 (516G > T + 685G > A) CYP2C19*2 (685G > A), CYP2C19*17 (-3402C > T) polymorphisms on plasma concentrations of sertraline and N-desmethyl sertraline in major depression patients treated with sertraline [n = 50]. Setting Participants were patients who admitted to an adult psychiatry outpatient unit at a university hospital. These were DSM-IV major depression diagnosed patients with a stable sertraline medication regimen [for at least one month]. Methods CYP2B6*4 (rs 2279343; 785A > G), CYP2B6*9 (516G > T; rs 3745274), CYP2B6*6 (516G > T + 685G > A) CYP2C19*2 (rs 4244285; 685G > A), CYP2C19*17 (rs 11188072; -3402C > T), polymorphisms were analyzed by polymerase chain reaction and restriction fragment length polymorphism. Plasma concentrations were measured by high-performance liquid chromatography in patients treated with SERT. Main outcome measure The distribution of CYP2B6*4, *6, *9 and CYP2C19*2, *17 among patient group and the association between genotype and sertraline metabolism. Results Sertraline, N-desmethyl sertraline, N-desmethyl sertraline/sertraline and dose-adjusted plasma concentrations were statistically compared between individuals with wild-type and variant alleles both for CYP2B6 and CYP2C19 enzymes. The mean N-desmethyl sertraline/sertraline value, was significantly lower in all subgroups with *6 and *9 variant alleles (p < 0.05). Sertraline/C values were significantly higher (p <  0.05) and N-desmethyl sertraline/C values were lower in all subgroups with *6 and *9 variant alleles compared to wild-type subgroup. Conclusion CYP2B6*6 and *9 variant alleles had a significant decreasing effect on sertraline metabolism in major depression

  12. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor.

    PubMed

    Casabar, Richard C T; Das, Parikshit C; Dekrey, Gregory K; Gardiner, Catherine S; Cao, Yan; Rose, Randy L; Wallace, Andrew D

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 microM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 microM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 microM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 microM and 10 microM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates. PMID:20361990

  13. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    SciTech Connect

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.; Gardiner, Catherine S.; Cao Yan; Rose, Randy L.; Wallace, Andrew D.

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 {mu}M. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 {mu}M. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 {mu}M, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 {mu}M and 10 {mu}M, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.

  14. Mechanisms of interaction between persistent organic pollutants (POPs) and CYP2B6: An in silico approach.

    PubMed

    Maldonado-Rojas, Wilson; Rivera-Julio, Karen; Olivero-Verbel, Jesus; Aga, Diana S

    2016-09-01

    Human Cytochrome P450s (CYP450) are a group of heme-containing metalloenzymes responsible for recognition and metabolism of numerous xenobiotics, including drugs and environmental contaminants. CYP2B6, a member of CYP450, is well known for being a highly inducible and polymorphic enzyme and for its important role in the oxidative metabolism of environmental pollutants, such as the Polybrominated Diphenyl Ethers (PBDEs) and Polychlorinated Biphenyls (PCBs). However the mechanisms of interaction of PBDEs and PCBs with CYP2B6 is not entirely known. In this work, a computational approach was carried out to study the interactions of 41 POPs (17 PBDEs, 17 PCBs, and 7 Dioxins) with four CYP2B6 protein structures downloaded from PDB data base (PDB: 3UA5, 3QOA, 3QU8 and 4I91) using molecular docking protocols with AutoDock Vina. The best binding affinity values (kcal/mol) were obtained for PBDE-99 (-8.5), PCB-187 (-9.6), and octachloro-dibenzo-dioxin (-9.8) that can be attributed to the hydrophobic interactions with important residues, such as Phe-363, in the catalytic site of CYP2B6. Molecular docking validation revealed the best values for PDB: 3UA5 (R = 0.622, p = 0.001) demonstrating the reliability of molecular docking predictions. The information obtained in this work can be useful in evaluating the modes of interaction of xenobiotic compounds with the catalytic site of CYP2B6 and provide insights on the important role of these enzymes in the metabolism of potentially toxic compounds in humans. PMID:27281544

  15. Underlying genetic structure impacts the association between CYP2B6 polymorphisms and response to efavirenz and nevirapine

    PubMed Central

    Frasco, Melissa A.; Mack, Wendy J.; Van Den Berg, David; Aouizerat, Bradley E.; Anastos, Kathryn; Cohen, Mardge; Dehovitz, Jack; Golub, Elizabeth T.; Greenblatt, Ruth M.; Liu, Chenglong; Conti, David V.; Pearce, Celeste Leigh

    2014-01-01

    Objective CYP2B6 variation predicts pharmacokinetic characteristics of its substrates. Consideration for underlying genetic structure is critical to protect against spurious associations with the highly polymorphic CYP2B6 gene. Design The effect of CYP2B6 variation on response to its substrates, nonnucleoside reverse transcriptase inhibitors (NNRTIs), was explored in the Women's Interagency HIV Study. Methods Five putative functional polymorphisms were tested for associations with virologic suppression within one year after NNRTI initiation in women naïve to antiretroviral agents (n=91). Principal components (PCs) were generated to control for population substructure. Logistic regression was used to test the joint effect of rs3745274 and rs28399499, which together indicate slow, intermediate, and extensive metabolizers. Results Rs3745274 was significantly associated with virologic suppression (OR=3.61, 95% CI 1.16-11.22, p trend=0.03); the remaining polymorphisms tested were not significantly associated with response. Women classified as intermediate and slow metabolizers were 2.90 (95% CI 0.79-12.28) and 13.44 (95% CI 1.66-infinity) times as likely to achieve virologic suppression compared to extensive metabolizers after adjustment for PCs (p trend=0.005). Failure to control for genetic ancestry resulted in substantial confounding of the relationship between the metabolizer phenotype and treatment response. Conclusion The CYP2B6 metabolizer phenotype was significantly associated with virologic response to NNRTIs; this relationship would have been masked by simple adjustment for self-reported ethnicity. Given the appreciable genetic heterogeneity that exists within self-reported ethnicity, these results exemplify the importance of characterizing underlying genetic structure in pharmacogenetic studies. Further follow-up of the CYP2B6 metabolizer phenotype is warranted given the potential clinical importance of this finding. PMID:22951632

  16. Developmental Expression of CYP2B6: A Comprehensive Analysis of mRNA Expression, Protein Content and Bupropion Hydroxylase Activity and the Impact of Genetic Variation.

    PubMed

    Pearce, Robin E; Gaedigk, Roger; Twist, Greyson P; Dai, Hongying; Riffel, Amanda K; Leeder, J Steven; Gaedigk, Andrea

    2016-07-01

    Although CYP2B6 catalyzes the biotransformation of many drugs used clinically for children and adults, information regarding the effects of development on CYP2B6 expression and activity are scarce. Utilizing a large panel of human liver samples (201 donors: 24 fetal, 141 pediatric, and 36 adult), we quantified CYP2B6 mRNA and protein expression levels, characterized CYP2B6 (bupropion hydroxylase) activity in human liver microsomes (HLMs), and performed an extensive genotype analysis to differentiate CYP2B6 haplotypes such that the impact of genetic variation on these parameters could be assessed. Fetal livers contained extremely low levels of CYP2B6 mRNA relative to postnatal samples and fetal HLMs did not appear to catalyze bupropion hydroxylation; however, fetal CYP2B6 protein levels were not significantly different from postnatal levels. Considerable interindividual variation in CYP2B6 mRNA expression, protein levels, and activity was observed in postnatal HLMs (mRNA, ∼40,000-fold; protein, ∼300-fold; activity, ∼600-fold). The extremely wide range of interindividual variability in CYP2B6 expression and activity was significantly associated with age (P < 0.01) following log transformation of the data. Our data suggest that CYP2B6 activity appears as early as the first day of life, increases through infancy, and by 1 year of age, CYP2B6 levels and activity may approach those of adults. Surprisingly, CYP2B6 interindividual variability was not significantly associated with genetic variation in CYP2B6, nor was it associated with differences in gender or ethnicity, suggesting that factors other than these are largely responsible for the wide range of variability in CYP2B6 expression and activity observed among a large group of individuals/samples. PMID:26608082

  17. The Effect of Ritonavir on Human CYP2B6 Catalytic Activity: Heme Modification Contributes to the Mechanism-Based Inactivation of CYP2B6 and CYP3A4 by Ritonavir

    PubMed Central

    Lin, Hsia-lien; D’Agostino, Jaime; Kenaan, Cesar; Calinski, Diane

    2013-01-01

    The mechanism-based inactivation of human CYP2B6 by ritonavir (RTV) in a reconstituted system was investigated. The inactivation is time, concentration, and NADPH dependent and exhibits a KI of 0.9 μM, a kinact of 0.05 min−1, and a partition ratio of approximately 3. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis showed that the protonated molecular ion of RTV exhibits an m/z at 721 and its two major metabolites are an oxidation product with MH+ at m/z 737 and a deacylated product with MH+ at m/z 580. Inactivation of CYP2B6 by incubation with 10 μM RTV for 10 min resulted in an approximately 50% loss of catalytic activity and native heme, but no modification of the apoprotein was observed. RTV was found to be a potent mixed-type reversible inhibitor (Ki = 0.33 μM) and a type II ligand (spectral dissociation constant-Ks = 0.85 μM) of CYP2B6. Although previous studies have demonstrated that RTV is a potent mechanism-based inactivator of CYP3A4, the molecular mechanism responsible for the inactivation has not been determined. Here, we provide evidence that RTV inactivation of CYP3A4 is due to heme destruction with the formation of a heme-protein adduct. Similar to CYP2B6, there is no significant modification of the apoprotein. Furthermore, LC-MS/MS analysis revealed that both CYP3A4 and human liver microsomes form an RTV-glutathione conjugate having a MH+ at m/z 858 during metabolism of RTV, suggesting the formation of an isocyanate intermediate leading to formation of the conjugate. PMID:23886699

  18. Inactivation of CYP2A6 by the Dietary Phenylpropanoid trans-Cinnamic Aldehyde (Cinnamaldehyde) and Estimation of Interactions with Nicotine and Letrozole.

    PubMed

    Chan, Jeannine; Oshiro, Tyler; Thomas, Sarah; Higa, Allyson; Black, Stephen; Todorovic, Aleksandar; Elbarbry, Fawzy; Harrelson, John P

    2016-04-01

    Human exposure to trans-cinnamic aldehyde [t-CA; cinnamaldehyde; cinnamal; (E)-3-phenylprop-2-enal] is common through diet and through the use of cinnamon powder for diabetes and to provide flavor and scent in commercial products. We evaluated the likelihood of t-CA to influence metabolism by inhibition of P450 enzymes. IC50 values from recombinant enzymes indicated that an interaction is most probable for CYP2A6 (IC50 = 6.1 µM). t-CA was 10.5-fold more selective for human CYP2A6 than for CYP2E1; IC50 values for P450s 1A2, 2B6, 2C9, 2C19, 2D6, and 3A4 were 15.8-fold higher or more. t-CA is a type I ligand for CYP2A6 (KS = 14.9 µM). Inhibition of CYP2A6 by t-CA was metabolism-dependent; inhibition required NADPH and increased with time. Glutathione lessened the extent of inhibition modestly and statistically significantly. The carbon monoxide binding spectrum was dramatically diminished after exposure to NADPH and t-CA, suggesting degradation of the heme or CYP2A6 apoprotein. Using a static model and mechanism-based inhibition parameters (K(I) = 18.0 µM; k(inact) = 0.056 minute(-1)), changes in the area under the concentration-time curve (AUC) for nicotine and letrozole were predicted in the presence of t-CA (0.1 and 1 µM). The AUC fold-change ranged from 1.1 to 3.6. In summary, t-CA is a potential source of pharmacokinetic variability for CYP2A6 substrates due to metabolism-dependent inhibition, especially in scenarios when exposure to t-CA is elevated due to high dietary exposure, or when cinnamon is used as a treatment of specific disease states (e.g., diabetes). PMID:26851241

  19. Direct retroviral delivery of human cytochrome P450 2B6 for gene-directed enzyme prodrug therapy of cancer.

    PubMed

    Kan, O; Griffiths, L; Baban, D; Iqball, S; Uden, M; Spearman, H; Slingsby, J; Price, T; Esapa, M; Kingsman, S; Kingsman, A; Slade, A; Naylor, S

    2001-07-01

    Human cytochrome P450 2B6 (CYP2B6) metabolizes the prodrug cyclophosphamide (CPA) to produce phosphoramide mustard that cross-links DNA leading to cell death. We have constructed a novel retroviral vector encoding CYP2B6 (designated "MetXia-P450") and used it to transduce the human tumor cell lines HT29 and T47D. MetXia-P450 transduction sensitised these cells to the cytotoxic effects of the prodrug CPA. Results from in vitro experiments demonstrated adverse effects on the clonogenic survival of cyclophosphamide-treated cells transduced with MetXia-P450. Cytotoxic activity accompanied by bystander effect was particularly evident in 3-D multicellular spheroid models suggesting that this in vitro system may be a more appropriate model for assessing the efficacy of gene directed-enzyme prodrug therapy (GDEPT). We have applied this approach in a clinically relevant gene therapy protocol on established subcutaneous tumor xenografts. These studies show for the first time the efficacy of a P450-based GDEPT strategy mediated by a direct retroviral gene transfer in vivo. PMID:11498768

  20. Decreased susceptibility of the cytochrome P450 2B6 variant K262R to inhibition by several clinically important drugs.

    PubMed

    Talakad, Jyothi C; Kumar, Santosh; Halpert, James R

    2009-03-01

    Cytochrome P450 (P450) 2B6 metabolizes a number of clinically relevant drugs and is one of the most highly polymorphic human P450 enzymes, with the Lys(262)-->Arg substitution being especially common in several genetic variants. Therefore, K262R (2B6*4) was created in the CYP2B6dH background (N-terminal-modified and C-terminal His-tagged) and expressed in Escherichia coli. The recombinant CYP2B6dH and K262R were purified and studied to investigate the effect of the Lys(262)-->Arg substitution with six of the most potent drug inhibitors of CYP2B6, namely, clopidogrel, clotrimazole, itraconazole, raloxifene, sertraline, and ticlopidine. K262R showed a >3-fold increase in the K(i) values with clopidogrel, itraconazole, and raloxifene and approximately 6-fold increase in K(i) with sertraline compared with CYP2B6dH. Likewise, K262R showed 2-, 4-, and >20-fold higher K(s) values than CYP2B6dH with clopidogrel, sertraline, and itraconazole, respectively. In contrast, when tested with several known type II inhibitors of CYP2B enzymes, K262R showed a 10-fold lower IC(50) with 4-(phenyl)pyridine and approximately 2-fold lower IC(50) with 4-(4-nitrobenzyl)pyridine or 1-(4-phenyl)benzylimidazole than CYP2B6dH. Subsequent analysis predicted possible in vivo drug-drug interactions between the CYP2B6 substrate efavirenz and drug inhibitors clopidogrel, clotrimazole, itraconazole, sertraline, and ticlopidine. Furthermore, Q172H/K262R (2B6*6), which is the most common genetic variant of CYP2B6 harboring K262R, was created in CYP2B6dH, expressed, purified, and characterized for inhibition. Q172H/K262R showed a >6-fold increase in K(i) with sertraline and clopidogrel compared with CYP2B6dH. The results suggest that individuals, especially homozygotes, with the 2B6*4 or 2B6*6 allele might be less susceptible to drug interactions resulting from P450 inhibition. PMID:19074527

  1. MicroRNA hsa-miR-25-3p suppresses the expression and drug induction of CYP2B6 in human hepatocytes.

    PubMed

    Jin, Yaqiong; Yu, Dianke; Tolleson, William H; Knox, Bridgett; Wang, Yong; Chen, Si; Ren, Zhen; Deng, Helen; Guo, Yongli; Ning, Baitang

    2016-08-01

    Cytochrome P450 2B6 (CYP2B6), mainly expressed in the liver and brain, is important for processing a number of widely used drugs. Variations in CYP2B6 expression are associated with decreased drug efficacy or adverse effects in some patients. Although CYP2B6 genetic variants are associated with its differential expression, epigenetic mechanisms affecting CYP2B6 gene regulation have not been established. Sequence analysis identified 29 domains in the CYP2B6 mRNA transcript that could be subject to regulation by microRNAs. Inverse correlations were found in human hepatocytes for the levels of the microRNAs hsa-miR-504-5p and hsa-miR-25-3p compared with CYP2B6 mRNA. Reporter gene assays showed that hsa-miR-25-3p suppresses CYP2B6 expression by targeting a specific sequence in the 3'-untranslated region of the mRNA transcript. Electrophoretic mobility shift assays confirmed that hsa-miR-25-3p forms stable complexes with its cognate mRNA sequence and that it recruits cellular factors, including Ago-4. Transfection of HepaRG cells with hsa-miR-25-3p mimics inhibited expression of the endogenous CYP2B6 gene and it also decreased rifampicin-dependent induction of CYP2B6 at the mRNA and protein levels. In summary, in silico and in vitro analyses show that hsa-miR-25-3p suppresses CYP2B6 expression in human liver cells via an epigenetic mechanism. PMID:27311985

  2. Generation and Characterization of a CYP2A13/2B6/2F1-Transgenic Mouse Model

    PubMed Central

    Wei, Yuan; Wu, Hong; Li, Lei; Liu, Zhihua; Zhou, Xin; Zhang, Qing-Yu; Weng, Yan; D'Agostino, Jaime; Ling, Guoyu; Zhang, Xiuling; Kluetzman, Kerri; Yao, Yunyi

    2012-01-01

    CYP2A13, CYP2B6, and CYP2F1, which are encoded by neighboring cytochrome P450 genes on human chromosome 19, are active in the metabolic activation of many drugs, respiratory toxicants, and chemical carcinogens. To facilitate studies on the regulation and function of these human genes, we have generated a CYP2A13/2B6/2F1-transgenic (TG) mouse model (all *1 alleles). Homozygous transgenic mice are normal with respect to gross morphological features, development, and fertility. The tissue distribution of transgenic mRNA expression agreed well with the known respiratory tract-selective expression of CYP2A13 and CYP2F1 and hepatic expression of CYP2B6 in humans. CYP2A13 protein was detected through immunoblot analyses in the nasal mucosa (NM) (∼100 pmol/mg of microsomal protein; similar to the level of mouse CYP2A5) and the lung (∼0.2 pmol/mg of microsomal protein) but not in the liver of the TG mice. CYP2F1 protein, which could not be separated from mouse CYP2F2 in immunoblot analyses, was readily detected in the NM and lung but not the liver of TG/Cyp2f2-null mice, at levels 10- and 40-fold, respectively, lower than that of mouse CYP2F2 in the TG mice. CYP2B6 protein was detected in the liver (∼0.2 pmol/mg of microsomal protein) but not the NM or lung (with a detection limit of 0.04 pmol/mg of microsomal protein) of the TG mice. At least one transgenic protein (CYP2A13) seems to be active, because the NM of the TG mice had greater in vitro and in vivo activities in bioactivation of a CYP2A13 substrate, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (a lung carcinogen), than did the NM of wild-type mice. PMID:22397853

  3. Dimetallaborane analogues of the octaboranes of the type Cp2M2B6H10: structural variations with changes in the skeletal electron count.

    PubMed

    Brânzanic, Adrian M V; Lupan, Alexandru; King, R Bruce

    2016-05-31

    The structures and energetics of the complete series of hydrogen-rich dimetallaboranes Cp2M2B6H10 and Cp*2M2B6H10 (Cp = η(5)-C5H5; Cp* = η(5)-Me5C5; M = Pd, Pt; Rh, Ir; Ru, Os; Re; Mo, W; Ta), including the experimentally known Cp*2Rh2B6H10 and Cp*2W2B6H10 (Cp* = η(5)-Me5C5), have been investigated by density functional theory. The lowest energy structures of the hyperelectronic Cp2M2B6H10 (M = Pd, Pt; Rh, Ir) systems have central M2B6 frameworks with a hexagonal open face similar to the B8 networks in arachno-B8H14 and nido-B8H12. The two lowest energy structures for Cp2Rh2B6H10 and Cp*2Rh2B6H10, lying within 1 kcal mol(-1) of energy, differ only in the locations of the bridging hydrogen atoms around the hexagonal hole consistent with the experimentally observed fluxionality of the hydrogen atoms in Cp*2Rh2B6H10. Most of the lowest energy Cp2M2B6H10 (M = Ru, Os) structures also have a central M2B6 framework similar to B8H12, typically with such additional features as an additional metal-metal bond or a formal metal-metal double bond. A common motif for the low-energy structures of the hypoelectronic Cp2M2B6H10 (M = Re; Mo, W; Ta) systems, including the experimentally known Cp*2W2B6H10, is a central M2B4 octahedron with its two M2B faces capped by the remaining boron atoms and with four M-B edges bridged by hydrogen atoms. Such structures can also be considered as oblatonido structures derived from the experimentally known 9-vertex oblatocloso Cp*2Re2B7H7 structure by removal of the unique degree 4 vertex atom. PMID:27186632

  4. Potential Contribution of Cytochrome P450 2B6 to Hepatic 4-Hydroxycyclophosphamide Formation In Vitro and In VivoS⃞

    PubMed Central

    Raccor, Brianne S.; Claessens, Adam J.; Dinh, Jean C.; Park, Julie R.; Hawkins, Douglas S.; Thomas, Sushma S.; Makar, Karen W.; McCune, Jeannine S.

    2012-01-01

    Results from retrospective studies on the relationship between cytochrome P450 (P450) 2B6 (CYP2B6) genotype and cyclophosphamide (CY) efficacy and toxicity in adult cancer patients have been conflicting. We evaluated this relationship in children, who have faster CY clearance and receive different CY-based regimens than adults. These factors may influence the P450s metabolizing CY to 4-hydroxycyclophosphamide (4HCY), the principal precursor to CY's cytotoxic metabolite. Therefore, we sought to characterize the in vitro and in vivo roles of hepatic CYP2B6 and its main allelic variants in 4HCY formation. CYP2B6 is the major isozyme responsible for 4HCY formation in recombinant P450 Supersomes. In human liver microsomes (HLM), 4HCY formation correlated with known phenotypic markers of CYP2B6 activity, specifically formation of (S)-2-ethyl-1,5-dimethyl-3,3-diphenyl pyrrolidine and hydroxybupropion. However, in HLM, CYP3A4/5 also contributes to 4HCY formation at the CY concentrations similar to plasma concentrations achieved in children (0.1 mM). 4HCY formation was not associated with CYP2B6 genotype at low (0.1 mM) or high (1 mM) CY concentrations potentially because CYP3A4/5 and other isozymes also form 4HCY. To remove this confounder, 4HCY formation was evaluated in recombinant CYP2B6 enzymes, which demonstrated that 4HCY formation was lower for CYP2B6.4 and CYP2B6.5 compared with CYP2B6.1. In vivo, CYP2B6 genotype was not directly related to CY clearance or ratio of 4HCY/CY areas under the curve in 51 children receiving CY-based regimens. Concomitant chemotherapy agents did not influence 4HCY formation in vitro. We conclude that CYP2B6 genotype is not consistently related to 4HCY formation in vitro or in vivo. PMID:21976622

  5. Establishment of In Silico Prediction Models for CYP3A4 and CYP2B6 Induction in Human Hepatocytes by Multiple Regression Analysis Using Azole Compounds.

    PubMed

    Nagai, Mika; Konno, Yoshihiro; Satsukawa, Masahiro; Yamashita, Shinji; Yoshinari, Kouichi

    2016-08-01

    Drug-drug interactions (DDIs) via cytochrome P450 (P450) induction are one clinical problem leading to increased risk of adverse effects and the need for dosage adjustments and additional therapeutic monitoring. In silico models for predicting P450 induction are useful for avoiding DDI risk. In this study, we have established regression models for CYP3A4 and CYP2B6 induction in human hepatocytes using several physicochemical parameters for a set of azole compounds with different P450 induction as characteristics as model compounds. To obtain a well-correlated regression model, the compounds for CYP3A4 or CYP2B6 induction were independently selected from the tested azole compounds using principal component analysis with fold-induction data. Both of the multiple linear regression models obtained for CYP3A4 and CYP2B6 induction are represented by different sets of physicochemical parameters. The adjusted coefficients of determination for these models were of 0.8 and 0.9, respectively. The fold-induction of the validation compounds, another set of 12 azole-containing compounds, were predicted within twofold limits for both CYP3A4 and CYP2B6. The concordance for the prediction of CYP3A4 induction was 87% with another validation set, 23 marketed drugs. However, the prediction of CYP2B6 induction tended to be overestimated for these marketed drugs. The regression models show that lipophilicity mostly contributes to CYP3A4 induction, whereas not only the lipophilicity but also the molecular polarity is important for CYP2B6 induction. Our regression models, especially that for CYP3A4 induction, might provide useful methods to avoid potent CYP3A4 or CYP2B6 inducers during the lead optimization stage without performing induction assays in human hepatocytes. PMID:27208383

  6. Structure, Raman and infrared spectroscopic properties of new nonlinear optical material Na3VO2B6O11

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Dou, Renqin; Zhang, Deming; Zhang, Qingli; Yin, Shaotang

    2016-08-01

    In this paper we report on the structure of Na3VO2B6O11 (NVBO) single crystals which were investigated by XRD, polarized Raman spectra in the range from 10 to 1600 cm-1 and infrared spectrum (IR) in the range from 100 to 1600 cm-1. Factor group analysis has been used to study the full vibrational representation of the crystal. More than 120 phonon modes have been obtained, which are related to Bsbnd O and Vsbnd O vibration in the trigonal planar BO3 triangle groups and tetrahedral BO4/VO4 groups. The high frequency bands located at 1300-1415 cm-1 are assigned to stretching modes of the trigonal planar BO3 groups. Moreover, intense Raman modes located at 631 cm-1 is related to BO3 bending vibration as well. The weak band at 1158 cm-1 (A1 mode) and strong band at 431 cm-1 (A1 mode) are attributed to asymmetric stretching and bending vibration mode of tetrahedral BO4 groups respectively. The vibrational band at 765-738 cm-1 in the Raman spectra of NVBO crystal maybe related to the breathing vibration of the boroxol ring consisting of two BO4 tetrahedra. In addition, we assigned the intense band 900 (A1 mode) and 831 cm-1 (B2 mode) are relative to the v1 symmetric stretching vibration of VO4 tetrahedra. And the middle intense band at 382 (A1 mode) and 385 (A2 mode) are due to Osbnd Vsbnd O vibration in VO4 tetrahedra.

  7. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior

    PubMed Central

    Thorgeirsson, Thorgeir E.; Gudbjartsson, Daniel F.; Surakka, Ida; Vink, Jacqueline M.; Amin, Najaf; Geller, Frank; Sulem, Patrick; Rafnar, Thorunn; Esko, Tõnu; Walter, Stefan; Gieger, Christian; Rawal, Rajesh; Mangino, Massimo; Prokopenko, Inga; Mägi, Reedik; Keskitalo, Kaisu; Gudjonsdottir, Iris H.; Gretarsdottir, Solveig; Stefansson, Hreinn; Thompson, John R.; Aulchenko, Yurii S.; Nelis, Mari; Aben, Katja K.; den Heijer, Martin; Dirksen, Asger; Ashraf, Haseem; Soranzo, Nicole; Valdes, Ana M; Steves, Claire; Uitterlinden, André G; Hofman, Albert; Tönjes, Anke; Kovacs, Peter; Hottenga, Jouke Jan; Willemsen, Gonneke; Vogelzangs, Nicole; Döring, Angela; Dahmen, Norbert; Nitz, Barbara; Pergadia, Michele L.; Saez, Berta; De Diego, Veronica; Lezcano, Victoria; Garcia-Prats, Maria D.; Ripatti, Samuli; Perola, Markus; Kettunen, Johannes; Hartikainen, Anna-Liisa; Pouta, Anneli; Laitinen, Jaana; Isohanni, Matti; Huei-Yi, Shen; Allen, Maxine; Krestyaninova, Maria; Hall, Alistair S; Jones, Gregory T.; van Rij, Andre M.; Mueller, Thomas; Dieplinger, Benjamin; Haltmayer, Meinhard; Jonsson, Steinn; Matthiasson, Stefan E.; Oskarsson, Hogni; Tyrfingsson, Thorarinn; Kiemeney, Lambertus A.; Mayordomo, Jose I.; Lindholt, Jes S; Pedersen, Jesper Holst; Franklin, Wilbur A.; Wolf, Holly; Montgomery, Grant W.; Heath, Andrew C.; Martin, Nicholas G.; Madden, Pamela A.F.; Giegling, Ina; Rujescu, Dan; Järvelin, Marjo-Riitta; Salomaa, Veikko; Stumvoll, Michael; Spector, Tim D; Wichmann, H-Erich; Metspalu, Andres; Samani, Nilesh J.; Penninx, Brenda W.; Oostra, Ben A.; Boomsma, Dorret I.; Tiemeier, Henning; van Duijn, Cornelia M.; Kaprio, Jaakko; Gulcher, Jeffrey R.; McCarthy, Mark I.; Peltonen, Leena; Thorsteinsdottir, Unnur; Stefansson, Kari

    2011-01-01

    Smoking is a risk factor for most of the diseases leading in mortality1. We conducted genome-wide association (GWA) meta-analyses of smoking data within the ENGAGE consortium to search for common alleles associating with the number of cigarettes smoked per day (CPD) in smokers (N=31,266) and smoking initiation (N=46,481). We tested selected SNPs in a second stage (N=45,691 smokers), and assessed some in a third sample (N=9,040). Variants in three genomic regions associated with CPD (P< 5·10−8), including previously identified SNPs at 15q25 represented by rs1051730-A (0.80 CPD,P=2.4·10−69), and SNPs at 19q13 and 8p11, represented by rs4105144-C (0.39 CPD, P=2.2·10−12) and rs6474412-T (0.29 CPD,P= 1.4·10−8), respectively. Among the genes at the two novel loci, are genes encoding nicotine-metabolizing enzymes (CYP2A6 and CYP2B6), and nicotinic acetylcholine receptor subunits (CHRNB3 and CHRNA6) highlighted in previous studies of nicotine dependence2-3. Nominal associations with lung cancer were observed at both 8p11 (rs6474412-T,OR=1.09,P=0.04) and 19q13 (rs4105144-C,OR=1.12,P=0.0006). PMID:20418888

  8. Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by human liver microsomes: identification of cytochrome P450 2B6 as the major enzyme involved.

    PubMed

    Erratico, Claudio A; Szeitz, András; Bandiera, Stelvio M

    2013-05-20

    Polybrominated diphenyl ethers (PBDEs) were widely used flame retardants that have become persistent environmental pollutants. In the present study, we investigated the in vitro oxidative metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a major PBDE detected in human tissue and environmental samples. Biotransformation of BDE-47 by pooled and individual human liver microsomes and by human recombinant cytochrome P450 (P450) enzymes was assessed using a liquid chromatography/tandem mass spectrometry-based method. Of the nine hydroxylated metabolites of BDE-47 produced by human liver microsomes, seven metabolites were identified using authentic standards. A monohydroxy-tetrabrominated and a dihydroxy-tetrabrominated metabolite remain unidentified. Kinetic analysis of the rates of metabolite formation revealed that the major metabolites were 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE-47), 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47), and possibly the unidentified monohydroxy-tetrabrominated metabolite. Among the human recombinant P450 enzymes tested, P450 2B6 was the most active enzyme in the formation of the hydroxylated metabolites of BDE-47. Moreover, the formation of all metabolites of BDE-47 by pooled human liver microsomes was inhibited by a P450 2B6-specific antibody and was highly correlated with P450 2B6-mediated activity in single donor liver microsomes indicating that P450 2B6 was the major P450 responsible for the biotransformation of BDE-47. Additional experiments involving the incubation of liver microsomes with individual monohydroxy-tetrabrominated metabolites in place of BDE-47 demonstrated that 2,4-dibromophenol was a product of BDE-47 and several primary metabolites, but the dihydroxy-tetrabrominated metabolite was not formed by sequential hydroxylation of any of the monohydroxy-tetrabrominated metabolites tested. The present study provides a comprehensive characterization of the oxidative metabolism of BDE-47 by

  9. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19

    PubMed Central

    Ke, Alice Ban; Nallani, Srikanth C; Zhao, Ping; Rostami-Hodjegan, Amin; Unadkat, Jashvant D

    2014-01-01

    Aim Conducting PK studies in pregnant women is challenging. Therefore, we asked if a physiologically-based pharmacokinetic (PBPK) model could be used to predict the disposition in pregnant women of drugs cleared by multiple CYP enzymes. Methods We expanded and verified our previously published pregnancy PBPK model by incorporating hepatic CYP2B6 induction (based on in vitro data), CYP2C9 induction (based on phenytoin PK) and CYP2C19 suppression (based on proguanil PK), into the model. This model accounted for gestational age-dependent changes in maternal physiology and hepatic CYP3A, CYP1A2 and CYP2D6 activity. For verification, the pregnancy-related changes in the disposition of methadone (cleared by CYP2B6, 3A and 2C19) and glyburide (cleared by CYP3A, 2C9 and 2C19) were predicted. Results Predicted mean post-partum to second trimester (PP : T2) ratios of methadone AUC, Cmax and Cmin were 1.9, 1.7 and 2.0, vs. observed values 2.0, 2.0 and 2.6, respectively. Predicted mean post-partum to third trimester (PP : T3) ratios of methadone AUC, Cmax and Cmin were 2.1, 2.0 and 2.4, vs. observed values 1.7, 1.7 and 1.8, respectively. Predicted PP : T3 ratios of glyburide AUC, Cmax and Cmin were 2.6, 2.2 and 7.0 vs. observed values 2.1, 2.2 and 3.2, respectively. Conclusions Our PBPK model integrating prior physiological knowledge, in vitro and in vivo data, allowed successful prediction of methadone and glyburide disposition during pregnancy. We propose this expanded PBPK model can be used to evaluate different dosing scenarios, during pregnancy, of drugs cleared by single or multiple CYP enzymes. PMID:23834474

  10. CYP2B6*6 is an independent determinant of inferior response to fludarabine plus cyclophosphamide in chronic lymphocytic leukemia.

    PubMed

    Johnson, Gillian G; Lin, Ke; Cox, Trevor F; Oates, Melanie; Sibson, David R; Eccles, Richard; Lloyd, Bryony; Gardiner, Laura-Jayne; Carr, Daniel F; Pirmohamed, Munir; Strefford, Jonathan C; Oscier, David G; Gonzalez de Castro, David; Else, Monica; Catovsky, Daniel; Pettitt, Andrew R

    2013-12-19

    Fludarabine plus cyclophosphamide (FC) is the chemotherapy backbone of modern chronic lymphocytic leukemia (CLL) treatment. CYP2B6 is a polymorphic cytochrome P450 isoform that converts cyclophosphamide to its active form. This study investigated the possible impact of genetic variation in CYP2B6 on response to FC chemotherapy in CLL. Available DNA samples from the LRF CLL4 trial, which compared chlorambucil, fludarabine, and FC, were screened by TaqMan real-time polymerase chain reaction assays for CYP2B6 SNPs c.516G>T and c.785A>G, which define the most common variant allele (*6). Among the 455 samples successfully genotyped, 265 (58.2%), 134 (29.5%), and 29 (6.4%) were classified as *1/*1, *1/*6, and *6/*6, respectively. Patients expressing at least one *6 allele were significantly less likely to achieve a complete response (CR) after FC (odds ratio 0.27; P = .004) but not chlorambucil or fludarabine. Analysis of individual response indicators confirmed that this inferior response resulted from impaired cytoreduction rather than delayed hemopoietic recovery. Multivariate analysis controlling for age, gender, stage, IGHV mutational status, 11q deletion, and TP53 deletion/mutation identified CYP2B6*6 and TP53 mutation/deletion as the only independent determinants of CR attainment after FC. Our study provides the first demonstration that host pharmacogenetics can influence therapeutic response in CLL. This trial is registered as an International Standard Randomised Control Trial, number NCT 58585610 at www.clinicaltrials.gov. PMID:24128861

  11. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    PubMed

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation. PMID:24832206

  12. Transcriptional Regulation of CYP3A4/2B6/2C9 Mediated via Nuclear Receptor PXR by Helicid and Its Metabolites

    PubMed Central

    Chen, Qun; Xie, Hai-tang; Li, Yan; Wang, Guo; Xu, Zhe; Pu, Zhi-chen; Hu, Hua

    2015-01-01

    Objective. This study aims at establishing and validating an in vitro system to screen drug inducers of CYPs mediated via hPXR, as well as studying transcriptional regulation of CYPs mediated via hPXR by helicid and its two metabolites. Methods. Cloning the nuclear receptor hPXR and the promoters of CYP3A4, CYP2B6, CYP2C9, and inserting the trans-element to the upstream of firefly luciferase reporter gene of the pGL4.17 vectors, then cotransfecting the report vectors and hPXR expression plasmid to HepG2 cell line. After 24 hours, the transfected cells were treated with helicid (0.004, 0.04, and 0.4 μmol/L) and its metabolite I and metabolite II (0.0004, 0.004, and 0.04 μmol/L) for 48 h, while rifampin (10 μmol/L) was included as the positive control and 0.1% DMSO as the negative control group. Cells were lysized and luciferase activity was determined using a dual luciferase reporter assay kit. Results. Helicid and its metabolites did not significantly increase promoter activities of CYP3A4, CYP2B6, and CYP2C9 in HepG2 cells transfected with PXR expression plasmid (P > 0.05). Conclusion. PXR-expressed CYP3A4, CYP2B6, and CYP2C9 dual luciferase reporter gene platforms were successfully established, and helicid and its metabolites I, II do not significantly induce the transcription of CYP3A4, CYP2B6, and CYP2C9. PMID:25977700

  13. Synthesis and optical characterization of LiKB4O7, Li2B6O10, and LiCsB6O10 glasses

    SciTech Connect

    Adamiv, V.; Teslyuk, I.; Dyachok, Ya.; Romanyuk, G.; Krupych, O.; Mys, O.; Martynyuk-Lototska, I.; Burak, Ya.; Vlokh, R.

    2010-10-01

    In the current work we report on the synthesis of LiKB4O7, Li2B6O10, and LiCsB6O10 borate glasses. The results for their piezo-optic, acousto-optic, acoustic, elastic, refractive, optical transmission, and optical resistance properties are also presented. It is shown that some of these glasses represent efficient acousto-optic materials that are transparent down to the vacuum ultraviolet range and highly resistant to laser radiation.

  14. Genome-wide association study of plasma levels of polychlorinated biphenyls disclose an association with the CYP2B6 gene in a population-based sample

    PubMed Central

    Ng, Esther; Salihovic, Samira; Monica Lind, P.; Mahajan, Anubha; Syvänen, Anne-Christine; Axelsson, Tomas; Ingelsson, Erik; Lindgren, Cecilia M.; van Bavel, Bert; Morris, Andrew P.; Lind, Lars

    2015-01-01

    Background Polychlorinated biphenyls (PCBs) are a group of man-made environmental pollutants which accumulate in humans with adverse health effects. To date, very little effort has been devoted to the study of the metabolism of PCBs on a genome-wide level. Objectives Here, we conducted a genome-wide association study (GWAS) to identify genomic regions involved in the metabolism of PCBs. Methods Plasma levels of 16 PCBs ascertained in a cohort of elderly individuals from Sweden (n=1016) were measured using gas chromatography–high resolution mass spectrophotometry (GC-HRMS). DNA samples were genotyped on the Infinium Omni Express bead microarray, and imputed up to reference panels from the 1000 Genomes Project. Association testing was performed in a linear regression framework under an additive model. Results Plasma levels of PCB-99 demonstrated genome-wide significant association with single nucleotide polymorphisms (SNPs) mapping to chromosome 19q13.2. The SNP with the strongest association was rs8109848 (p=3.7×10−13), mapping to an intronic region of CYP2B6. Moreover, when all PCBs were conditioned on PCB-99, further signals were revealed for PCBs -74, -105 and -118, mapping to the same genomic region. The lead SNPs were rs8109848 (p=3.8×10−12) for PCB-118, rs4802104 (p=1.4×10−9) for PCB-74 and rs4803413 (p=2.5×10−9) for PCB-105, all of which map to CYP2B6. Conclusions In our study, we found plasma levels of four lower-chlorinated PCBs to be significantly associated with the genetic region mapping to the CYP2B6 locus. These findings show that CYP2B6 is of importance for the metabolism of PCBs in humans, and may help to identify individuals who may be susceptible to PCB toxicity. PMID:25839716

  15. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior.

    PubMed

    Thorgeirsson, Thorgeir E; Gudbjartsson, Daniel F; Surakka, Ida; Vink, Jacqueline M; Amin, Najaf; Geller, Frank; Sulem, Patrick; Rafnar, Thorunn; Esko, Tõnu; Walter, Stefan; Gieger, Christian; Rawal, Rajesh; Mangino, Massimo; Prokopenko, Inga; Mägi, Reedik; Keskitalo, Kaisu; Gudjonsdottir, Iris H; Gretarsdottir, Solveig; Stefansson, Hreinn; Thompson, John R; Aulchenko, Yurii S; Nelis, Mari; Aben, Katja K; den Heijer, Martin; Dirksen, Asger; Ashraf, Haseem; Soranzo, Nicole; Valdes, Ana M; Steves, Claire; Uitterlinden, André G; Hofman, Albert; Tönjes, Anke; Kovacs, Peter; Hottenga, Jouke Jan; Willemsen, Gonneke; Vogelzangs, Nicole; Döring, Angela; Dahmen, Norbert; Nitz, Barbara; Pergadia, Michele L; Saez, Berta; De Diego, Veronica; Lezcano, Victoria; Garcia-Prats, Maria D; Ripatti, Samuli; Perola, Markus; Kettunen, Johannes; Hartikainen, Anna-Liisa; Pouta, Anneli; Laitinen, Jaana; Isohanni, Matti; Huei-Yi, Shen; Allen, Maxine; Krestyaninova, Maria; Hall, Alistair S; Jones, Gregory T; van Rij, Andre M; Mueller, Thomas; Dieplinger, Benjamin; Haltmayer, Meinhard; Jonsson, Steinn; Matthiasson, Stefan E; Oskarsson, Hogni; Tyrfingsson, Thorarinn; Kiemeney, Lambertus A; Mayordomo, Jose I; Lindholt, Jes S; Pedersen, Jesper Holst; Franklin, Wilbur A; Wolf, Holly; Montgomery, Grant W; Heath, Andrew C; Martin, Nicholas G; Madden, Pamela A F; Giegling, Ina; Rujescu, Dan; Järvelin, Marjo-Riitta; Salomaa, Veikko; Stumvoll, Michael; Spector, Tim D; Wichmann, H-Erich; Metspalu, Andres; Samani, Nilesh J; Penninx, Brenda W; Oostra, Ben A; Boomsma, Dorret I; Tiemeier, Henning; van Duijn, Cornelia M; Kaprio, Jaakko; Gulcher, Jeffrey R; McCarthy, Mark I; Peltonen, Leena; Thorsteinsdottir, Unnur; Stefansson, Kari

    2010-05-01

    Smoking is a common risk factor for many diseases. We conducted genome-wide association meta-analyses for the number of cigarettes smoked per day (CPD) in smokers (n = 31,266) and smoking initiation (n = 46,481) using samples from the ENGAGE Consortium. In a second stage, we tested selected SNPs with in silico replication in the Tobacco and Genetics (TAG) and Glaxo Smith Kline (Ox-GSK) consortia cohorts (n = 45,691 smokers) and assessed some of those in a third sample of European ancestry (n = 9,040). Variants in three genomic regions associated with CPD (P < 5 x 10(-8)), including previously identified SNPs at 15q25 represented by rs1051730[A] (effect size = 0.80 CPD, P = 2.4 x 10(-69)), and SNPs at 19q13 and 8p11, represented by rs4105144[C] (effect size = 0.39 CPD, P = 2.2 x 10(-12)) and rs6474412-T (effect size = 0.29 CPD, P = 1.4 x 10(-8)), respectively. Among the genes at the two newly associated loci are genes encoding nicotine-metabolizing enzymes (CYP2A6 and CYP2B6) and nicotinic acetylcholine receptor subunits (CHRNB3 and CHRNA6), all of which have been highlighted in previous studies of smoking and nicotine dependence. Nominal associations with lung cancer were observed at both 8p11 (rs6474412[T], odds ratio (OR) = 1.09, P = 0.04) and 19q13 (rs4105144[C], OR = 1.12, P = 0.0006). PMID:20418888

  16. 7 CFR 1a.2 - Authorization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Authorization. 1a.2 Section 1a.2 Agriculture Office of the Secretary of Agriculture LAW ENFORCEMENT AUTHORITIES § 1a.2 Authorization. Any official of the Office of Inspector General who is designated by the Inspector General according to §§ 1a.3 and 1a.5...

  17. Different effects of proton pump inhibitors and famotidine on the clopidogrel metabolic activation by recombinant CYP2B6, CYP2C19 and CYP3A4.

    PubMed

    Ohbuchi, Masato; Noguchi, Kiyoshi; Kawamura, Akio; Usui, Takashi

    2012-07-01

    Inhibitory potential of proton pump inhibitors (PPIs) and famotidine, an H(2) receptor antagonist, on the metabolic activation of clopidogrel was evaluated using recombinant CYP2B6, CYP2C19 and CYP3A4. Formation of the active metabolite from an intermediate metabolite, 2-oxo-clopidogrel, was investigated by liquid chromatography-tandem mass spectrometry and three peaks corresponding to the pharmacologically active metabolite and its stereoisomers were detected. Omeprazole potently inhibited clopidogrel activation by CYP2C19 with an IC(50) of 12.8 μmol/L and more weakly inhibited that by CYP2B6 and CYP3A4. IC(50) of omeprazole for CYP2C19 and CYP3A4 was decreased about two- and three-fold, respectively, by 30-min preincubation with NADPH. Lansoprazole, esomeprazole, pantoprazole, rabeprazole and rabeprazole thioether, a major metabolite, also inhibited metabolic activation by CYP2C19, with an IC(50) of 4.3, 8.9, 48.3, 36.2 and 30.5 μmol/L, respectively. In contrast, famotidine showed no more than 20% inhibition of clopidogrel activation by CYP2B6, CYP2C19 and CYP3A4 at up to 100 μmol/L and had no time-dependent CYP2C19 and CYP3A4 inhibition. These results provide direct evidence that PPIs inhibit clopidogrel metabolic activation and suggest that CYP2C19 inhibition is the main cause of drug-drug interaction between clopidogrel and omeprazole. Famotidine is considered as a safe anti-acid agent for patients taking clopidogrel. PMID:22313038

  18. Synthesis and optical characterization of LiKB4O7, Li2B6O10, and LiCsB6O10 glasses.

    PubMed

    Adamiv, V; Teslyuk, I; Dyachok, Ya; Romanyuk, G; Krupych, O; Mys, O; Martynyuk-Lototska, I; Burak, Ya; Vlokh, R

    2010-10-01

    In the current work we report on the synthesis of LiKB(4)O(7), Li(2)B(6)O(10), and LiCsB(6)O(10) borate glasses. The results for their piezo-optic, acousto-optic, acoustic, elastic, refractive, optical transmission, and optical resistance properties are also presented. It is shown that some of these glasses represent efficient acousto-optic materials that are transparent down to the vacuum ultraviolet range and highly resistant to laser radiation. PMID:20885472

  19. Simultaneous determination of vitamins B1, B2, B6, and niacinamide in multivitamin pharmaceutical preparations by paired-ion reversed-phase high-pressure liquid chromatography.

    PubMed

    Kwok, R P; Rose, W P; Tabor, R; Pattison, T S

    1981-09-01

    A high-pressure liquid chromatographic procedure for the simultaneous determination of vitamins B1, B2, B6, and niacinamide in multivitamin pharmaceutical preparations was developed and evaluated. The method uses paired-ion reversed-phase partition chromatography for baseline separation of the four water-soluble vitamins. This method was applied to the analysis of a multivitamin and multivitamin-multimineral tablets, and a technique was developed to reduce vitamin adsorption by the minerals. The results obtained by this method were compared with those obtained by the official methods. It was concluded that this method is fast, accurate, specific, and suitable for routine quality control use. PMID:6101144

  20. Towards a Best Practice Approach in PBPK Modeling: Case Example of Developing a Unified Efavirenz Model Accounting for Induction of CYPs 3A4 and 2B6.

    PubMed

    Ke, A; Barter, Z; Rowland-Yeo, K; Almond, L

    2016-07-01

    In this study, we present efavirenz physiologically based pharmacokinetic (PBPK) model development as an example of our best practice approach that uses a stepwise approach to verify the different components of the model. First, a PBPK model for efavirenz incorporating in vitro and clinical pharmacokinetic (PK) data was developed to predict exposure following multiple dosing (600 mg q.d.). Alfentanil i.v. and p.o. drug-drug interaction (DDI) studies were utilized to evaluate and refine the CYP3A4 induction component in the liver and gut. Next, independent DDI studies with substrates of CYP3A4 (maraviroc, atazanavir, and clarithromycin) and CYP2B6 (bupropion) verified the induction components of the model (area under the curve [AUC] ratios within 1.0-1.7-fold of observed). Finally, the model was refined to incorporate the fractional contribution of enzymes, including CYP2B6, propagating autoinduction into the model (Racc 1.7 vs. 1.7 observed). This validated mechanistic model can now be applied in clinical pharmacology studies to prospectively assess both the victim and perpetrator DDI potential of efavirenz. PMID:27435752

  1. Towards a Best Practice Approach in PBPK Modeling: Case Example of Developing a Unified Efavirenz Model Accounting for Induction of CYPs 3A4 and 2B6

    PubMed Central

    Ke, A; Barter, Z; Rowland‐Yeo, K

    2016-01-01

    In this study, we present efavirenz physiologically based pharmacokinetic (PBPK) model development as an example of our best practice approach that uses a stepwise approach to verify the different components of the model. First, a PBPK model for efavirenz incorporating in vitro and clinical pharmacokinetic (PK) data was developed to predict exposure following multiple dosing (600 mg q.d.). Alfentanil i.v. and p.o. drug‐drug interaction (DDI) studies were utilized to evaluate and refine the CYP3A4 induction component in the liver and gut. Next, independent DDI studies with substrates of CYP3A4 (maraviroc, atazanavir, and clarithromycin) and CYP2B6 (bupropion) verified the induction components of the model (area under the curve [AUC] ratios within 1.0–1.7‐fold of observed). Finally, the model was refined to incorporate the fractional contribution of enzymes, including CYP2B6, propagating autoinduction into the model (Racc 1.7 vs. 1.7 observed). This validated mechanistic model can now be applied in clinical pharmacology studies to prospectively assess both the victim and perpetrator DDI potential of efavirenz. PMID:27435752

  2. Evidence of "new hot spots" from determining the nonlinear optical behavior of materials: mechanistic studies of the vanadium borate crystal, Na3VO2B6O11.

    PubMed

    Su, Xin; Yang, Zhihua; Lee, Ming-Hsien; Pan, Shilie; Wang, Ying; Fan, Xiaoyun; Huang, Zhenjun; Zhang, Bingbing

    2015-02-21

    A novel mechanism for the nonlinear optical (NLO) effects of vanadium borate crystals, Na3VO2B6O11 (NVB), with distorted VO4 groups was investigated. A comprehensive analysis of the structure-property relationship was performed by combining the experimental measurements, the electronic structures calculations, the SHG-weighted electron density and the real-space atom-contribution analysis to yield the linear and nonlinear optical properties. The contribution of a (VO4)(3-) anionic group to the second harmonic generation (SHG) response was more pronounced than that of the (BO3)(3-) anionic group, which plays a virtual role in the SHG effects in NVB. The anionic (BO3)(3-) groups make dominant contributions to the birefringence, whereas the contribution of the V(5+) cations to these linear optical effects is negligible. PMID:25609419

  3. High density H2 associative absorption on Titanium alpha-borozene (Ti2B6H6): An ab-initio case study

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Alireza; Tymzcak, C. J.

    2011-03-01

    Hydrogen is considered as a clean energy carrier that could be a future replacement for our addiction to fossil fuels. However, in order to have hydrogen economy at its highest efficiently we need to store hydrogen at high volumetric and gravimetric density. Using the all electron hybrid density functional theory, we have designed a benzene-like-molecule, Ti2B6H6, which has the promise of achieving this goal. Our results show that the molecule can associatively absorb the hydrogen up to ten percent by weight of hydrogen, which exceeds the 2015 US department of energy target. In this presentation we will discuss the mechanisms of H2 absorption and possible applications of this novel molecule. This research is funded by the Welch Foundation under Grant J. 1675 and the Texas Southern University High Performance Computing Center.

  4. Efavirenz and Metabolites in Cerebrospinal Fluid: Relationship with CYP2B6 c.516G→T Genotype and Perturbed Blood-Brain Barrier Due to Tuberculous Meningitis

    PubMed Central

    Chau, Tran Thi Hong; Fisher, Martin; Nelson, Mark; Winston, Alan; Else, Laura; Carr, Daniel F.; Taylor, Steven; Ustianowski, Andrew; Back, David; Pirmohamed, Munir; Solomon, Tom; Farrar, Jeremy; Törok, M. Estée; Khoo, Saye

    2016-01-01

    Efavirenz (EFZ) has been associated with neuropsychiatric side effects. Recently, the 8-hydroxy-EFZ (8OH-EFZ) metabolite has been shown to be a potent neurotoxin in vitro, inducing neuronal damage at concentrations of 3.3 ng/ml. EFZ induced similar neuronal damage at concentrations of 31.6 ng/ml. We investigated the effect of genotype and blood-brain barrier integrity on EFZ metabolite concentrations in cerebrospinal fluid (CSF). We measured CSF drug concentrations in subjects from two separate study populations: 47 subjects with tuberculous meningitis (TBM) coinfection in Vietnam receiving 800 mg EFZ with standard antituberculous treatment and 25 subjects from the PARTITION study in the United Kingdom without central nervous system infection receiving 600 mg EFZ. EFZ and metabolite concentrations in CSF and plasma were measured and compared with estimates of effectiveness and neurotoxicity from available published in vitro and in vivo data. The effect of the CYP2B6 c.516G→T genotype (GG genotype, fast EFV metabolizer status; GT genotype, intermediate EFV metabolizer status; TT genotype, slow EFV metabolizer status) was examined. The mean CSF concentrations of EFZ and 8OH-EFZ in the TBM group were 60.3 and 39.3 ng/ml, respectively, and those in the no-TBM group were 15.0 and 5.9 ng/ml, respectively. Plasma EFZ and 8OH-EFZ concentrations were similar between the two groups. CSF EFZ concentrations were above the in vitro toxic concentration in 76% of samples (GG genotype, 61%; GT genotype, 90%; TT genotype, 100%) in the TBM group and 13% of samples (GG genotype, 0%; GT genotype, 18%; TT genotype, 50%) in the no-TBM group. CSF 8OH-EFZ concentrations were above the in vitro toxic concentration in 98% of the TBM group and 87% of the no-TBM group; levels were independent of genotype but correlated with the CSF/plasma albumin ratio. Potentially neurotoxic concentrations of 8OH-EFZ are frequently observed in CSF independently of the CYP2B6 genotype, particularly in those

  5. Primary role of cytochrome P450 2B6 in the oxidative metabolism of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100) to hydroxylated BDEs.

    PubMed

    Gross, Michael S; Butryn, Deena M; McGarrigle, Barbara P; Aga, Diana S; Olson, James R

    2015-04-20

    Human exposure to polybrominated diphenyl ethers (PBDEs) through various routes poses deleterious health effects. PBDEs are biotransformed into hydroxylated metabolites (OH-BDEs) via cytochrome P450s (P450s), which may add to their neurotoxic effects. This study characterizes the in vitro metabolism of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100), one of the most abundant PBDE congeners found in humans, by recombinant human P450s and pooled human liver microsomes (HLMs). Ten recombinant P450s were individually incubated with BDE-100 to monitor P450-specific metabolism. P450 2B6 was found to be the predominant enzyme responsible for nearly all formation of six mono-OH-pentaBDE and two di-OH-pentaBDE metabolites. Four metabolites were identified as 3-hydroxy-2,2',4,4',6-pentabromodiphenyl ether (3-OH-BDE-100), 5'-hydroxy-2,2',4,4',6-pentabromodiphenyl ether (5'-OH-BDE-100), 6'-hydroxy-2,2',4,4',6-pentabromodiphenyl ether (6'-OH-BDE-100), and 4'-hydroxy-2,2',4,5',6-pentabromodiphenyl ether (4'-OH-BDE-103) through use of reference standards. The two remaining mono-OH-pentaBDE metabolites were hypothesized using mass spectral fragmentation characteristics of derivatized OH-BDEs, which allowed prediction of an ortho-OH-pentaBDE and a para-OH-pentaBDE positional isomer. Additional information based on theoretical boiling point calculations using COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) and experimental chromatographic retention times were used to identify the hypothesized metabolites as 2'-hydroxy-2,3',4,4',6-pentabromodiphenyl ether (2'-OH-BDE-119) and 4-hydroxy-2,2',4',5,6-pentabromodiphenyl ether (4-OH-BDE-91), respectively. Kinetic studies of BDE-100 metabolism using P450 2B6 and HLMs revealed Km values ranging from 4.9 to 7.0 μM and 6-10 μM, respectively, suggesting a high affinity toward the formation of OH-BDEs. Compared to the metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99

  6. Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19.

    PubMed

    Kawahigashi, Hiroyuki; Hirose, Sakiko; Ohkawa, Hideo; Ohkawa, Yasunobu

    2006-04-19

    This study evaluated the expression of human cytochrome P450 genes CYP1A1, CYP2B6, and CYP2C19 in rice plants (Oryza sativa cv. Nipponbare) introduced using the plasmid pIKBACH. The transgenic rice plants (pIKBACH rice plants) became more tolerant toward various herbicides than nontransgenic Nipponbare rice plants. Rice plants expressing pIKBACH grown in soil showed tolerance to the herbicides atrazine, metolachlor, and norflurazon and to a mixture of the three herbicides. The degradation of atrazine and metolachlor by pIKBACH rice plants was evaluated to confirm the metabolic activity of the introduced P450s. Although both pIKBACH and nontransgenic Nipponbare rice plants could decrease the amounts of the herbicides in plant tissue and culture medium, pIKBACH rice plants removed greater amounts in greenhouse experiments. The ability of pIKBACH rice plants to remove atrazine and metolachlor from soil was confirmed in large-scale experiments. The metabolism of herbicides by pIKBACH rice plants was enhanced by the introduced P450 species. Assuming that public and commercial acceptance is forthcoming, pIKBACH rice plants may become useful tools for the breeding of herbicide-tolerant crops and for phytoremediation of environmental pollution by organic chemicals. PMID:16608219

  7. Crystal structure of a cytochrome P450 2B6 genetic variant in complex with the inhibitor 4-(4-chlorophenyl)imidazole at 2.0-A resolution.

    PubMed

    Gay, Sean C; Shah, Manish B; Talakad, Jyothi C; Maekawa, Keiko; Roberts, Arthur G; Wilderman, P Ross; Sun, Ling; Yang, Jane Y; Huelga, Stephanie C; Hong, Wen-Xu; Zhang, Qinghai; Stout, C David; Halpert, James R

    2010-04-01

    The structure of the K262R genetic variant of human cytochrome P450 2B6 in complex with the inhibitor 4-(4-chlorophenyl)imidazole (4-CPI) has been determined using X-ray crystallography to 2.0-A resolution. Production of diffraction quality crystals was enabled through a combination of protein engineering, chaperone coexpression, modifications to the purification protocol, and the use of unique facial amphiphiles during crystallization. The 2B6-4-CPI complex is virtually identical to the rabbit 2B4 structure bound to the same inhibitor with respect to the arrangement of secondary structural elements and the placement of active site residues. The structure supports prior P450 2B6 homology models based on other mammalian cytochromes P450 and is consistent with the limited site-directed mutagenesis studies on 2B6 and extensive studies on P450 2B4 and 2B1. Although the K262R genetic variant shows unaltered binding of 4-CPI, altered binding affinity, kinetics, and/or product profiles have been previously shown with several other ligands. On the basis of new P450 2B6 crystal structure and previous 2B4 structures, substitutions at residue 262 affect a hydrogen-bonding network connecting the G and H helices, where subtle differences could be transduced to the active site. Docking experiments indicate that the closed protein conformation allows smaller ligands such as ticlopidine to bind to the 2B6 active site in the expected orientation. However, it is unknown whether 2B6 undergoes structural reorganization to accommodate bulkier molecules, as previously inferred from multiple P450 2B4 crystal structures. PMID:20061448

  8. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  9. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  10. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  11. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  12. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  13. Structures of cytochrome P450 2B6 bound to 4-benzylpyridine and 4-(4-nitrobenzyl)pyridine: insight into inhibitor binding and rearrangement of active site side chains.

    PubMed

    Shah, Manish B; Pascual, Jaime; Zhang, Qinghai; Stout, C David; Halpert, James R

    2011-12-01

    The biochemical, biophysical, and structural analysis of the cytochrome P450 2B subfamily of enzymes has provided a wealth of information regarding conformational plasticity and substrate recognition. The recent X-ray crystal structure of the drug-metabolizing P450 2B6 in complex with 4-(4-chlorophenyl)imidazole (4-CPI) yielded the first atomic view of this human enzyme. However, knowledge of the structural basis of P450 2B6 specificity and inhibition has remained limited. In this study, structures of P450 2B6 were determined in complex with the potent inhibitors 4-benzylpyridine (4-BP) and 4-(4-nitrobenzyl)pyridine (4-NBP). Comparison of the present structures with the previous P450 2B6-4-CPI complex showed that reorientation of side chains of the active site residue Phe206 on the F-helix and Phe297 on the I-helix was necessary to accommodate the inhibitors. However, P450 2B6 does not require any major side chain rearrangement to bind 4-NBP compared with 4-BP, and the enzyme provides no hydrogen-bonding partners for the polar nitro group of 4-NBP within the hydrophobic active site. In addition, on the basis of these new structures, substitution of residue 172 with histidine as observed in the single nucleotide polymorphism Q172H and in P450 2B4 may contribute to a hydrogen bonding network connecting the E- and I-helices, thereby stabilizing active site residues on the I-helix. These results provide insight into the role of active site side chains upon inhibitor binding and indicate that the recognition of the benzylpyridines in the closed conformation structure of P450 2B6 is based solely on hydrophobicity, size, and shape. PMID:21875942

  14. Evaluation of metabolism dependent inhibition of CYP2B6 mediated bupropion hydroxylation in human liver microsomes by monoamine oxidase inhibitors and prediction of potential as perpetrators of drug interaction.

    PubMed

    Nirogi, Ramakrishna; Palacharla, Raghava Choudary; Mohammed, Abdul Rasheed; Manoharan, Arunkumar; Ponnamaneni, Ranjith Kumar; Bhyrapuneni, Gopinadh

    2015-03-25

    The objective of the study was to evaluate the metabolism dependent inhibition of CYP2B6 catalyzed bupropion hydroxylation in human liver microsomes by monoamine oxidase (MAO) inhibitors and to predict the drug-drug interaction potential of monoamine oxidase inhibitors as perpetrators of drug interaction. Human liver microsomal CYP2B6 activities were investigated using bupropion hydroxylation as probe substrate marker. The results from single point time dependent inhibition and shift assays suggest that clorgyline, pargyline, phenelzine, and selegiline were metabolism based inhibitors of CYP2B6. In IC50 shift assays, clorgyline, pargyline, phenelzine and selegiline are metabolism based inhibitors of CYP2B6 with fold shit of 3.0-, 3.7-, 2.9-, and 11.4-fold respectively. The inactivation of clorgyline was characterized by KI value of 2.5 ± 0.3 and k(inact) value of 0.045 ± 0.001 min(-1). Phenelzine inactivated CYP2B6 with KI and k(inact) values of 44.9 ± 6.9 μM and 0.085 ± 0.003 min(-1) respectively. Inactivation of selegiline was characterized with KI and k(inact) values of 22.0 ± 3.3 and 0.074 ± 0.002 min(-1) respectively. The inactivation caused by these inhibitors was not reversed by dialysis indicating irreversible inhibition. Based on the mechanistic static model, selegiline showed an increase in the area under the curve (AUC) of efavirenz and bupropion by 1.01-fold. Phenelzine predicted to cause an increase in the AUC of efavirenz and bupropion by 9.4- and 2.4-fold respectively considering unbound hepatic inlet concentrations of phenelzine. In conclusion, the results from this study demonstrated that MAO inhibitors can inactivate human liver microsomal CYP2B6. The likelihood of drug interaction when selegiline co-administered with CYP2B6 substrates is remote. Caution is required while co-administering phenelzine with substrates that are exclusively metabolized by CYP2B6 enzyme and substrates that have narrow therapeutic index. PMID:25656918

  15. High CYP2A6 Enzyme Activity as Measured by a Caffeine Test and Unique Distribution of CYP2A6 Variant Alleles in Ethiopian Population

    PubMed Central

    Djordjevic, Natasa; Carrillo, Juan Antonio; Makonnen, Eyasu; Bertilsson, Leif; Ingelman-Sundberg, Magnus

    2014-01-01

    Abstract CYP2A6 metabolizes clinically relevant drugs, including antiretroviral and antimalarial drugs of major public health importance for the African populations. CYP2A6 genotype–phenotype relationship in African populations, and implications of geographic differences on enzyme activity, remain to be investigated. We evaluated the influence of CYP2A6 genotype, geographical differences, gender, and cigarette smoking on enzyme activity, using caffeine as a probe in 100 healthy unrelated Ethiopians living in Ethiopia, and 72 living in Sweden. CYP2A6 phenotype was estimated by urinary 1,7-dimethyluric acid (17U)/1,7-dimethylxanthine or paraxanthine (17X) ratio. The frequencies of CYP2A6*1B, *1D, *2, *4, *9, and *1x2 in Ethiopians were 31.3, 29.4, 0.6, 0.6, 2.8, and 0.3%, respectively. The overall mean±SD for log 17U/17X was 0.12±0.24 and coefficient of variation 199%. No significant difference in the mean log 17U/17X ratio between Ethiopians living in Sweden versus Ethiopia was observed. Analysis of variance revealed CYP2A6 genotype (p=0.04, F=2.01) but not geographical differences, sex, or cigarette smoking as predictors of CYP2A6 activity. Importantly, the median (interquartile range) of 17U/17X ratio in Ethiopians 1.35 (0.99 to 1.84) was 3- and 11-fold higher than the previously reported value in Swedes 0.52 (0.27 to 1.00) and Koreans 0.13 (0.0 to 0.35), respectively (Djordjevic et al., 2013). Taken together, we report here the relevance of CYP2A6 genotype for enzyme activity in this Ethiopian sample, as well as high CYP2A6 activity and unique distribution of the CYP2A6 variant alleles in Ethiopians as compared other populations described hitherto. Because Omics biomarker research is rapidly accelerating in Africa, CYP2A6 pharmacogenetics and clinical pharmacology observations reported herein for the Ethiopian populations have clinical and biological importance to plan for future rational therapeutics efforts in the African continent as well as therapeutics

  16. Inhibition of CYP2B6 by Medicinal Plant Extracts: Implication for Use of Efavirenz and Nevirapine-Based Highly Active Anti-Retroviral Therapy (HAART) in Resource-Limited Settings.

    PubMed

    Thomford, Nicholas E; Awortwe, Charles; Dzobo, Kevin; Adu, Faustina; Chopera, Denis; Wonkam, Ambroise; Skelton, Michelle; Blackhurst, Dee; Dandara, Collet

    2016-01-01

    Highly active antiretroviral therapy (HAART) has greatly improved health parameters of HIV infected individuals. However, there are several challenges associated with the chronic nature of HAART administration. For populations in health transition, dual use of medicinal plant extracts and conventional medicine poses a significant challenge. There is need to evaluate interactions between commonly used medicinal plant extracts and antiretroviral drugs used against HIV/AIDS. Efavirenz (EFV) and nevirapine (NVP) are the major components of HAART both metabolized by CYP2B6, an enzyme that can potentially be inhibited or induced by compounds found in medicinal plant extracts. The purpose of this study was to evaluate the effects of extracts of selected commonly used medicinal plants on CYP2B6 enzyme activity. Recombinant human CYP2B6 was used to evaluate inhibition, allowing the assessment of herb-drug interactions (HDI) of medicinal plants Hyptis suaveolens, Myrothamnus flabellifolius, Launaea taraxacifolia, Boerhavia diffusa and Newbouldia laevis. The potential of these medicinal extracts to cause HDI was ranked accordingly for reversible inhibition and also classified as potential time-dependent inhibitor (TDI) candidates. The most potent inhibitor for CYP2B6 was Hyptis suaveolens extract (IC50 = 19.09 ± 1.16 µg/mL), followed by Myrothamnus flabellifolius extract (IC50 = 23.66 ± 4.86 µg/mL), Launaea taraxacifolia extract (IC50 = 33.87 ± 1.54 µg/mL), and Boerhavia diffusa extract (IC50 = 34.93 ± 1.06 µg/mL). Newbouldia laevis extract, however, exhibited weak inhibitory effects (IC50 = 100 ± 8.71 µg/mL) on CYP2B6. Launaea taraxacifolia exhibited a TDI (3.17) effect on CYP2B6 and showed a high concentration of known CYP450 inhibitory phenolic compounds, chlorogenic acid and caffeic acid. The implication for these observations is that drugs that are metabolized by CYP2B6 when co-administered with these herbal medicines and when adequate amounts of the extracts

  17. Scutellarin inhibits cytochrome P450 isoenzyme 1A2 (CYP1A2) in rats.

    PubMed

    Jian, Tun-Yu; He, Jian-Chang; He, Gong-Hao; Feng, En-Fu; Li, Hong-Liang; Bai, Min; Xu, Gui-Li

    2012-08-01

    Scutellarin is the most important flavone glycoside in the herbal drug Erigeron breviscapus (Vant.) Hand.-Mazz. It is used frequently in the clinic to treat ischemic vascular diseases in China. However, the direct relationship between scutellarin and cytochrome P450 (CYP450) is unclear. The present study investigated the in vitro and in vivo effects of scutellarin on cytochrome P450 1A2 (CYP 1A2) metabolism. According to in vitro experiments, scutellarin (10-250 µM) decreased the formation of 4-acetamidophenol in a concentration-dependent manner, with an IC₅₀ value of 108.20 ± 0.657 µM. Furthermore, scutellarin exhibited a weak mixed-type inhibition against the activity of CYP1A2 in rat liver microsomes, with a K(i) value of 95.2 µM. Whereas in whole animal studies, scutellarin treatment for 7 days (at 5, 15, 30 mg/kg, i.p.) decreased the clearance (CL), and increased the T(1/2) (at 15, 30 mg/kg, i.p.), it did not affect the V(d) of phenacetin. Scutellarin treatment (at 5, 15, 30 mg/kg, i.p.) increased the AUC(0-∞) by 14.3%, 67.3% and 159.2%, respectively. Scutellarin at 30 mg/kg also weakly inhibited CYP1A2 activity, in accordance with our in vitro study. Thus, the results indicate that CYP1A2 is inhibited directly, but weakly, by scutellarin in vivo, and provide useful information on the safe and effective use of scutellarin in clinical practice. PMID:22228482

  18. Metabolism of bilirubin by human cytochrome P450 2A6

    SciTech Connect

    Abu-Bakar, A'edah; Arthur, Dionne M.; Wikman, Anna S.; Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu; Ng, Jack C.; Lang, Matti A.

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic CYP2

  19. CYP2A6 Polymorphisms May Strengthen Individualized Treatment for Nicotine Dependence

    PubMed Central

    Akrodou, Yawo Mawuli

    2015-01-01

    Each CYP2A6 gene variant metabolizes nicotine differently depending on its enzymatic activities. The normal nicotine metabolizer CYP2A6*1A is associated with high scores of nicotine dependence (5–10) on the Fagerström Test for Nicotine Dependence (FTND) scale because it encodes for enzymes that catalyze nicotine 100%. Slow nicotine metabolizers (i.e., CYP2A6*1H, CYP2A6*4A, CYP2A6*9, and CYP2A6*12A) are associated with underrated nicotine metabolizing activity (50%–75%), linking them to low scores for nicotine dependence (0–4) on the FTND scale. In a clinical trial involving the use of bupropion, people who were carriers of slow nicotine metabolizers were found to have a tendency to maintain abstinence 1.7 times longer than people with normal nicotine metabolizers. An overview of CYP2A6 polymorphism enzymatic activities in nicotine dependence etiology and treatment revealed that slow nicotine metabolizers may strengthen the individualized treatment of nicotine dependence. PMID:26060595

  20. CYP2B6*6 genotype and high efavirenz plasma concentration but not nevirapine are associated with low lumefantrine plasma exposure and poor treatment response in HIV-malaria-coinfected patients.

    PubMed

    Maganda, B A; Minzi, O M S; Ngaimisi, E; Kamuhabwa, A A R; Aklillu, E

    2016-02-01

    We investigated the influence of efavirenz (EFV)- or nevirapine (NVP)-based antiretroviral therapy (ART) on lumefantrine plasma exposure in HIV-malaria-coinfected patients and implication of pharmacogenetic variations. A total of 269 HIV patients with uncomplicated falciparum malaria on NVP-based ART (NVP-arm), EFV-based ART (EFV-arm) or not receiving ART (control-arm) were enrolled and treated with artemether-lumefantrine. Day-7 lumefantrine, baseline EFV and NVP plasma concentrations, and CYP2B6*6,*18, CYP3A4*1B, CYP3A5*3,*6,*7, ABCB1 c.3435C>T and ABCB1 c.4036A>G genotypes were determined. The median day-7 lumefantrine plasma concentration was significantly lower in the EFV-arm compared with that in NVP- and control-arm. High EFV plasma concentrations and CYP2B6*6/*6 genotype significantly correlated with low lumefantrine plasma concentrations and high rate of recurrent parasitemia. No significant effect of NVP-based ART on lumefantrine exposure was observed. In conclusion, owing to long-term CYP3A induction, EFV-based ART cotreatment significantly reduces lumefantrine plasma exposure leading to poor malaria treatment response, which is more pronounced in CYP2B6 slow metabolizers. PMID:25963334

  1. Structure-Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6.

    PubMed

    Shimada, Tsutomu; Takenaka, Shigeo; Kakimoto, Kensaku; Murayama, Norie; Lim, Young-Ran; Kim, Donghak; Foroozesh, Maryam K; Yamazaki, Hiroshi; Guengerich, F Peter; Komori, Masayuki

    2016-06-20

    Naphthalene, phenanthrene, biphenyl, and their derivatives having different ethynyl, propynyl, butynyl, and propargyl ether substitutions were examined for their interaction with and oxidation by cytochromes P450 (P450) 2A13 and 2A6. Spectral interaction studies suggested that most of these chemicals interacted with P450 2A13 to induce Type I binding spectra more readily than with P450 2A6. Among the various substituted derivatives examined, 2-ethynylnaphthalene, 2-naphthalene propargyl ether, 3-ethynylphenanthrene, and 4-biphenyl propargyl ether had larger ΔAmax/Ks values in inducing Type I binding spectra with P450 2A13 than their parent compounds. P450 2A13 was found to oxidize naphthalene, phenanthrene, and biphenyl to 1-naphthol, 9-hydroxyphenanthrene, and 2- and/or 4-hydroxybiphenyl, respectively, at much higher rates than P450 2A6. Other human P450 enzymes including P450s 1A1, 1A2, 1B1, 2C9, and 3A4 had lower rates of oxidation of naphthalene, phenanthrene, and biphenyl than P450s 2A13 and 2A6. Those alkynylated derivatives that strongly induced Type I binding spectra with P450s 2A13 and 2A6 were extensively oxidized by these enzymes upon analysis with HPLC. Molecular docking studies supported the hypothesis that ligand-interaction energies (U values) obtained with reported crystal structures of P450 2A13 and 2A6 bound to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, indole, pilocarpine, nicotine, and coumarin are of use in understanding the basis of possible molecular interactions of these xenobiotic chemicals with the active sites of P450 2A13 and 2A6 enzymes. In fact, the ligand-interaction energies with P450 2A13 4EJG bound to these chemicals were found to relate to their induction of Type I binding spectra. PMID:27137136

  2. In vitro metabolism of (-)-camphor using human liver microsomes and CYP2A6.

    PubMed

    Gyoubu, Kunihiko; Miyazawa, Mitsuo

    2007-02-01

    The in vitro metabolism of (-)-camphor was examined in human liver microsomes and recombinant enzymes. Biotransformation of (-)-camphor was investigated by gas chromatography-mass spectrometry (GC-MS). (-)-Camphor was oxidized to 5-exo-hydroxyfenchone by human liver microsomal cytochrome (P450) enzymes. The formation of metabolites of (-)-camphor was determined by the relative abundance of mass fragments and retention time on gas chromatography (GC). CYP2A6 was the major enzyme involved in the hydroxylation of (-)-camphor by human liver microsomes, based on the following lines of evidence. First, of eleven recombinant human P450 enzymes tested, CYP2A6 catalyzed the oxidation of (-)-camphor. Second, oxidation of (-)-camphor was inhibited by (+)-menthofuran and anti-CYP2A6 antibody. Finally, there was a good correlation between CYP2A6 contents and (-)-camphor hydroxylation activities in liver microsomes of 9 human samples. PMID:17268056

  3. Pharmacogenetics of the organic anion transporting polypeptide 1A2

    PubMed Central

    Franke, Ryan M; Scherkenbach, Lisa A; Sparreboom, Alex

    2016-01-01

    The solute carrier, human organic anion transporting polypeptide 1A2 (OATP1A2, OATP-A, OATP1 and OATP) is highly expressed in the intestine, kidney, cholangiocytes and the blood–brain barrier. This localization suggests that OATP1A2 may be vitally important in the absorption, distribution and excretion of a broad array of clinically important drugs. Several nonsynonymous polymorphisms have been identified in the gene encoding OATP1A2, SLCO1A2 (SLC21A3), with some of these variants demonstrating functional changes in the transport of OATP1A2 substrates. PMID:19290786

  4. Associations of CYP2A6 genotype with smoking behaviors in southern China

    PubMed Central

    Liu, Tao; David, Sean P.; Tyndale, Rachel F.; Wang, Hui; Zhou, Qian; Ding, Peng; He, Yan-Hui; Yu, Xue-Qing; Chen, Wei; Crump, Casey; Wen, Xiao-Zhong; Chen, Wei-Qing

    2011-01-01

    Aims To investigate the association of CYP2A6 genetic polymorphisms with smoking-related phenotypes in Chinese smokers. Design Case-only genetic association study. Setting Southern China Participants A total of 1,328 Han Chinese smokers who participated in a community-based chronic disease screening project in Guangzhou and Zhuhai from 2006 to 2007. Measurements All participants were answered a structured questionnaire about socio-demographic status and smoking behaviors and informative alleles for the cytochrome P450 2A6 (CYP2A6) gene (CYP2A6 *4, *5, *7, *9 and *10) were genotyped. Findings The frequencies of CYP2A6 *4, *5, *7, *9 and *10 alleles were 8.5%, 1.2%, 6.3%, 13.5% and 2.4%, which corresponded to 48.9%, 15.4%, 24.2% and 11.5% of participants being classified as normal, intermediate, slow and poor metabolizers, respectively. Multivariate analyses demonstrated that compared with normal metabolizers, poor metabolizers reported smoking fewer cigarettes per day (adjusted OR = 0.49; 95% CI: 0.32–0.76), started smoking regularly later in life (adjusted OR = 1.55; 95% CI: 1.06–2.26) and, amongst former smokers, reported smoking for a shorter duration prior to quitting (adjusted OR = 0.33; 95% CI: 0.12–0.94). However, poor metabolizers were less likely to quit smoking and remain abstinent than normal metabolizers (OR = 0.54; 95% CI: 0.34–0.86). Conclusions Reduced metabolism function of CYP2A6 in smokers appears to be associated with fewer cigarettes smoked, later initiation of smoking regularly, shorter smoking duration and lower likelihood of smoking cessation. PMID:21205058

  5. Structural Insight Into the Altered Substrate Specificity of Human Cytochrome P450 2a6 Mutants

    SciTech Connect

    Sansen, S.; Hsu, M.-H.; Stout, C.David.; Johnson, E.F.

    2007-07-12

    Human P450 2A6 displays a small active site that is well adapted for the oxidation of small planar substrates. Mutagenesis of CYP2A6 resulted in an increased catalytic efficiency for indole biotransformation to pigments and conferred a capacity to oxidize substituted indoles (Wu, Z.-L., Podust, L.M., Guengerich, F.P. J. Biol. Chem. 49 (2005) 41090-41100.). Here, we describe the structural basis that underlies the altered metabolic profile of three mutant enzymes, P450 2A6 N297Q, L240C/N297Q and N297Q/I300V. The Asn297 substitution abolishes a potential hydrogen bonding interaction with substrates in the active site, and replaces a structural water molecule between the helix B-C region and helix I while maintaining structural hydrogen bonding interactions. The structures of the P450 2A6 N297Q/L240C and N297Q/I300V mutants provide clues as to how the protein can adapt to fit the larger substituted indoles in the active site, and enable a comparison with other P450 family 2 enzymes for which the residue at the equivalent position was seen to function in isozyme specificity, structural integrity and protein flexibility.

  6. Metabolism of (+)- and (-)-menthols by CYP2A6 in human liver microsomes.

    PubMed

    Miyazawa, Mitsuo; Marumoto, Shinsuke; Takahashi, Toshiyuki; Nakahashi, Hiroshi; Haigou, Risa; Nakanishi, Kyousuke

    2011-01-01

    The in vitro metabolism of (+)-(1S,3S,4R) and (-)-(1R,3R,4S)-menthol enantiomers was examined by incubation with human liver microsomes, and the oxidative metabolites thus formed were analyzed using gas chromatography-mass spectrometry (GC-MS). The (+)- and (-)-menthols were found to be oxidized to the respective (+)-(1S,3S,4S)- and (-)-(1R,3R,4R)-trans-p-menthane-3,8-diol derivatives by human liver microsomal P450 enzymes. Cytochrome P450 (CYP) 2A6 was determined to be the major enzyme involved in the hydroxylation of (+)- and (-)-menthols by human liver microsomes on the basis of the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 catalyzed the oxidation of (+)- and (-)-menthols. Second, oxidation of (+)- and (-)-menthols was inhibited by (+)-menthofuran and anti-CYP2A6 antibody. Finally, (+)- and (-)-menthol activities were found to correlate with contents of CYP2A6 in liver microsomes of 9 human samples. PMID:21343660

  7. Biotransformation of methyl tert-butyl ether by human cytochrome P450 2A6.

    PubMed

    Shamsipur, Mojtaba; Miran Beigi, Ali Akbar; Teymouri, Mohammad; Poursaberi, Tahereh; Mostafavi, S Mojtaba; Soleimani, Parviz; Chitsazian, Fereshteh; Tash, Shahram Abolhassan

    2012-04-01

    Methyl tert-butyl ether (MTBE) is widely used as gasoline oxygenate and octane number enhancer for more complete combustion in order to reduce the air pollution caused by motor vehicle exhaust. The possible adverse effects of MTBE on human health are of major public concern. However, information on the metabolism of MTBE in human tissues is scarce. The present study demonstrates that human cytochrome P450 2A6 is able to metabolize MTBE to tert-butyl alcohol (TBA), a major circulating metabolite and marker for exposure to MTBE. As CYP2A6 is known to be constitutively expressed in human livers, we infer that it may play a significant role in metabolism of gasoline ethers in liver tissue. PMID:21915685

  8. Electrochemical detection of human cytochrome P450 2A6 inhibition: a step toward reducing dependence on smoking.

    PubMed

    Castrignanò, Silvia; Ortolani, Alex; Sadeghi, Sheila J; Di Nardo, Giovanna; Allegra, Paola; Gilardi, Gianfranco

    2014-03-01

    Inhibition of human cytochrome P450 2A6 has been demonstrated to play an important role in nicotine metabolism and consequent smoking habits. Here, the "molecular Lego" approach was used to achieve the first reported electrochemical signal of human CYP2A6 and to improve its catalytic efficiency on electrode surfaces. The enzyme was fused at the genetic level to flavodoxin from Desulfovibrio vulgaris (FLD) to create the chimeric CYP2A6-FLD. Electrochemical characterization by cyclic voltammetry shows clearly defined redox transitions of the haem domain in both CYP2A6 and CYP2A6-FLD. Electrocatalysis experiments using coumarin as substrate followed by fluorimetric quantification of the product were performed with immobilized CYP2A6 and CYP2A6-FLD. Comparison of the kinetic parameters showed that coumarin catalysis was carried out with a higher efficiency by the immobilized CYP2A6-FLD, with a calculated kcat value significantly higher (P < 0.005) than that of CYP2A6, whereas the affinity for the substrate (KM) remained unaltered. The chimeric system was also successfully used to demonstrate the inhibition of the electrochemical activity of the immobilized CYP2A6-FLD, toward both coumarin and nicotine substrates, by tranylcypromine, a potent and selective CYP2A6 inhibitor. This work shows that CYP2A6 turnover efficiency is improved when the protein is linked to the FLD redox module, and this strategy can be utilized for the development of new clinically relevant biotechnological approaches suitable for deciphering the metabolic implications of CYP2A6 polymorphism and for the screening of CYP2A6 substrates and inhibitors. PMID:24527722

  9. A comparison of substrate dynamics in human CYP2E1 and CYP2A6

    SciTech Connect

    Harrelson, John P. . E-mail: harrelsonj@pacificu.edu; Henne, Kirk R.; Alonso, Darwin O.V.; Nelson, Sidney D.

    2007-01-26

    Considering the dynamic nature of CYPs, methods that reveal information about substrate and enzyme dynamics are necessary to generate predictive models. To compare substrate dynamics in CYP2E1 and CYP2A6, intramolecular isotope effect experiments were conducted, using deuterium labeled substrates: o-xylene, m-xylene, p-xylene, 2,6-dimethylnaphthalene, and 4,4'-dimethylbiphenyl. Competitive intermolecular experiments were also conducted using d{sub 0}- and d{sub 6}-labeled p-xylene. Both CYP2E1 and CYP2A6 displayed full isotope effect expression for o-xylene oxidation and almost complete suppression for dimethylbiphenyl. Interestingly (k {sub H}/k {sub D}){sub obs} for d{sub 3}-p-xylene oxidation ((k {sub H}/k {sub D}){sub obs} = 6.04 and (k {sub H}/k {sub D}){sub obs} = 5.53 for CYP2E1 and CYP2A6, respectively) was only slightly higher than (k {sub H}/k {sub D}){sub obs} for d{sub 3}-dimethylnaphthalene ((k {sub H}/k {sub D}){sub obs} = 5.50 and (k {sub H}/k {sub D}){sub obs} = 4.96, respectively). One explanation is that in some instances (k {sub H}/k {sub D}){sub obs} values are generated by the presence of two substrates-bound simultaneously to the CYP. Speculatively, if this explanation is valid, then intramolecular isotope effect experiments should be useful in the mechanistic investigation of P450 cooperativity.

  10. Genetic Polymorphisms of CYP2A6 in a Case-Control Study on Bladder Cancer in Japanese Smokers.

    PubMed

    Kumondai, Masaki; Hosono, Hiroki; Orikasa, Kazuhiko; Arai, Yoichi; Arai, Tomio; Sugimura, Haruhiko; Ozono, Seiichiro; Sugiyama, Takayuki; Takayama, Tatsuya; Sasaki, Takamitsu; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2016-01-01

    Several of the procarcinogens inhaled in tobacco smoke, the primary risk factor for bladder cancer, are activated by CYP2A6. The association between the whole-gene deletion of CYP2A6 (CYP2A6*4) and a reduced risk of bladder cancer was suggested in Chinese Han smokers. However, there is no evidence for association between the risk of bladder cancer and CYP2A6 genotypes in the Japanese population. Using genomic DNA from smokers of the Japanese population (163 bladder cancer patients and 116 controls), we conducted a case-control study to assess the association between CYP2A6 polymorphisms and the risk of bladder cancer. Determination of CYP2A6 genotypes was carried out by amplifying each exon of CYP2A6 using polymerase chain reaction (PCR) and Sanger sequencing. The CYP2A6*4 allele was identified by an allele-specific PCR assay. Bladder cancer risk was evaluated using the activity score (AS) system based on CYP2A6 genotypes. The odds ratios (95% confidence interval) for the AS 0, AS 0.5, AS 1.0, and AS 1.5 groups were 0.46 (0.12-1.83), 0.43 (0.15-1.25), 0.86 (0.40-1.86), and 1.36 (0.60-3.06), respectively. In conclusion, although decreased CYP2A6 AS tended to reduce the risk of bladder cancer in Japanese smokers, no significant association was recognized in this population. However, given the relatively small size of the sample, further study is required to conclude the lack of a statistically significant association between CYP2A6 genotypes and the risk of bladder cancer. PMID:26725431

  11. Parkinson's disease and CYP1A2 activity

    PubMed Central

    Forsyth, J T; Grünewald, R A; Rostami-Hodjegan, A; Lennard, M S; Sagar, H J; Tucker, G T

    2000-01-01

    Aims MPTP, a neurotoxin which induces parkinsonism is partially metabolized by the enzyme CYP1A2. Smoking appears to protect against Parkinson's disease (PD) and cigarette smoke induces CYP1A2 activity. Thus, we investigated the hypothesis that idiopathic PD is associated with lower CYP1A2 activity using caffeine as a probe compound. Methods CYP1A2 activity was assessed using saliva paraxanthine (PX) to caffeine (CA) ratios. Caffeine half-life was also estimated from salivary concentrations of caffeine at 2 and 5 h post dose. 117 treated and 40 untreated patients with PD and 105 healthy control subjects were studied. Results PX/CA ratios were 0.57, 0.93 and 0.77 in treated patients, untreated patients and healthy control subjects, respectively, with no significant differences between study groups (95% CI: treated patients vs controls −0.24, 0.57; untreated patients vs controls −0.75, 0.35). However, patients with PD (treated or untreated) had caffeine half-lives shorter than that in controls (treated patients: 262 min, untreated patients: 244 min, controls: 345 min; 95% CI: controls vs treated patients 23, 143 (P = 0.003); controls vs untreated patients 19, 184 (P = 0.011)). Amongst the patients with PD, caffeine half-life was also inversely related to the age of onset of disease (P = 0.012); gender and concomitant drugs did not influence this significantly. Conclusions Based on PX/CA ratio, there was no evidence of decreased CYP1A2 activity in patients compared with control subjects. The observed decrease in the elimination half-life of caffeine in PD may be caused by increased CYP2E1 activity, an enzyme that also contributes to the metabolism of caffeine. The latter warrants further investigation. PMID:11012552

  12. Affine Kac-Moody symmetric spaces related with A1^{(1)}, A2^{(1)},} A2^{(2)}

    NASA Astrophysics Data System (ADS)

    Nayak, Saudamini; Pati, K. C.

    2014-08-01

    Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A1^{(1)}, A2^{(1)}, A2^{(2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.

  13. The effect of the CYP1A2 *1F mutation on CYP1A2 inducibility in pregnant women

    PubMed Central

    Nordmark, Anna; Lundgren, Stefan; Ask, Birgitta; Granath, Fredrik; Rane, Anders

    2002-01-01

    Aims To investigate the influence of the CYP1A2*1F mutation on CYP1A2 activity in smoking and nonsmoking pregnant women. Methods Pregnant women (n = 904) who served as control subjects in a case-control study of early fetal loss were investigated. They were phenotyped for CYP1A2 using dietary caffeine and the urinary ratio AFMU + 1X + 1 U/1,7 U. An assay for CYP1A2*1F using 5′-nuclease assay (Taqman) was developed to genotype the population. Results The frequencies of *1 A and *1F alleles among Swedish women were 0.29 and 0.71, respectively. There was no statistically significant difference in CYP1A2 activity between the genotypes, although a trend towards enhanced activity was observed in *1F/*1F (log MRc 0.77) and *1F/*1 A (log MRc 0.82) genotypes compared with the *1 A/*1 A genotype (log MRc 0.71) (anovaP = 0.07). The mean difference between the *1 A homozygotes and the heterozygotes was 0.11 [95% confidence interval of the difference: (−0.21, −0.01)] and that between the *1 A and *1F homozygotes was 0.05 [95% confidence interval of the difference: (−0.13, 0.03)]. No significant effect (P = 0.22) of the *1F on CYP1A2 activity was observed in smokers, tested using an interaction term (smoking * genotype) in the anova model (*1F/*1F log MRc 0.79, *1F/*1 A log MRc 0.86, and *1 A/*1 A log MRc 0.73). In smokers, there was no difference in ratio between homozygotes for the *1 A and *1F alleles [mean difference −0.06; 95% confidence interval of the difference: −0.22, 0.11] or between *1 A/*1 A and *1 A/*1F genotypes [mean difference −0.13; 95% confidence interval of the difference: −0.29, 0.04]. Conclusions The effect of the CYP1A2*1F mutation on CYP1A2 activity in smoking pregnant women could not be confirmed. PMID:12445029

  14. The effects of H2S on the activities of CYP2B6, CYP2D6, CYP3A4, CYP2C19 and CYP2C9 in vivo in rat.

    PubMed

    Wang, Xianqin; Han, Anyue; Wen, Congcong; Chen, Mengchun; Chen, Xinxin; Yang, Xuezhi; Ma, Jianshe; Lin, Guanyang

    2013-01-01

    Hydrogen sulfide (H2S) is a colorless, flammable, extremely hazardous gas with a "rotten egg" smell. The human body produces small amounts of H2S and uses it as a signaling molecule. The cocktail method was used to evaluate the influence of H2S on the activities of CYP450 in rats, which were reflected by the changes of pharmacokinetic parameters of five specific probe drugs: bupropion, metroprolol, midazolam, omeprazole and tolbutamide, respectively. The rats were randomly divided into two groups, control group and H2S group. The H2S group rats were given 5 mg/kg NaHS by oral administration once a day for seven days. The mixture of five probes was given to rats through oral administration and the blood samples were obtained at a series of time-points through the caudal vein. The concentrations of probe drugs in rat plasma were measured by LC-MS. In comparing the H2S group with the control group, there was a statistically pharmacokinetics difference for midazolam and tolbutamide; the area under the plasma concentration-time curve (AUC) was decreased for midazolam (p < 0.05) and increased for tolbutamide (p < 0.05); while there was no statistical pharmacokinetics difference for bupropion, metroprolol and omeprazole. H2S could not influence the activities of CYP2B6, CYP2D6 and CYP2C19 in rats, while H2S could induce the activity of CYP3A4 and inhibit the activity of CYP2C9 in rats. PMID:24336065

  15. The Effects of H2S on the Activities of CYP2B6, CYP2D6, CYP3A4, CYP2C19 and CYP2C9 in Vivo in Rat

    PubMed Central

    Wang, Xianqin; Han, Anyue; Wen, Congcong; Chen, Mengchun; Chen, Xinxin; Yang, Xuezhi; Ma, Jianshe; Lin, Guanyang

    2013-01-01

    Hydrogen sulfide (H2S) is a colorless, flammable, extremely hazardous gas with a “rotten egg” smell. The human body produces small amounts of H2S and uses it as a signaling molecule. The cocktail method was used to evaluate the influence of H2S on the activities of CYP450 in rats, which were reflected by the changes of pharmacokinetic parameters of five specific probe drugs: bupropion, metroprolol, midazolam, omeprazole and tolbutamide, respectively. The rats were randomly divided into two groups, control group and H2S group. The H2S group rats were given 5 mg/kg NaHS by oral administration once a day for seven days. The mixture of five probes was given to rats through oral administration and the blood samples were obtained at a series of time-points through the caudal vein. The concentrations of probe drugs in rat plasma were measured by LC-MS. In comparing the H2S group with the control group, there was a statistically pharmacokinetics difference for midazolam and tolbutamide; the area under the plasma concentration-time curve (AUC) was decreased for midazolam (p < 0.05) and increased for tolbutamide (p < 0.05); while there was no statistical pharmacokinetics difference for bupropion, metroprolol and omeprazole. H2S could not influence the activities of CYP2B6, CYP2D6 and CYP2C19 in rats, while H2S could induce the activity of CYP3A4 and inhibit the activity of CYP2C9 in rats. PMID:24336065

  16. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6.

    PubMed

    Hu, Hao; Yu, Ting; Arpiainen, Satu; Lang, Matti A; Hakkola, Jukka; Abu-Bakar, A'edah

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5'-Luc constructs--down to -160bp from the TSS--showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from -160 to -74bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene--a well-known p53 activator--increased the expression of the p53 responsive positive control and the CYP2A6-5'-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5'-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. PMID:26343999

  17. Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development.

    PubMed

    Wang, Bo; Zhou, Shu-Feng

    2009-01-01

    Human cytochrome P450 1A2 (CYP1A2) is one of the major CYPs in the liver ( approximately 13%) and metabolizes about 20% of clinically used drugs. CYP1A2 is a 515-residue protein with a molecular mass of 58,294 Dal. The recently published crystal structure of CYP1A2 in complex with alpha-naphthoflavone has showed a rather compact active site with a relatively small volume of the cavity of 375 A(3), which is 44.2% and 49.3% larger than that of CYP2A6 (260 A(3)) and CYP2E1 (190 A(3)), respectively. A series of residues in the substrate recognition regions of CYP1A2 (e.g. Arg108, Thr124, Thr223, Glu225, Phe226, Lys250, Arg251, Lys253, Asn312, Asp313, Glu318, Thr319, Asp320, Thr321, Val322, Leu382, Thr385, and Ile386) have been shown to play important roles in ligand-enzyme binding based on site-directed mutagenesis and homology modeling studies. Typical CYP1A2 substrates generally contain planar ring that can fit the narrow and planar active site of the enzyme, such as propranolol, clozapine, guanabenz, flutamide, imatinib, thalidomide, carbamazepine, lidocaine, theophylline, tacrine, tizanidine, zolpidem, riluzole, zileuton, and leflunomide. CYP1A2 is one of the major enzymes that bioactivate a number of procarcinogens including polycyclic aromatic hydrocarbons (e.g., benzo[a]pyrene), heterocyclic aromatic amines/amides (e.g. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), mycotoxins (e.g. aflatoxin B(1)) and some natural compounds such as aristolochic acids present in several Chinese herbal medicines. This enzyme also metabolizes several important endogenous compounds including retinols, melatonin, steroids, uroporphyrinogen and arachidonic acids. Like many of other CYPs, CYP1A2 is subject to induction and inhibition by a number of compounds. In particular, several therapeutic drugs including antofloxacin, carbamazepine, dihydralazine, furafylline, isoniazid, rofecoxib, clorgyline, thiabendazole, and zileuton are mechanism-based inhibitors of CYP1A2. Reversible and

  18. Tritium analyses of COBRA-1A2 beryllium pebbles

    SciTech Connect

    Baldwin, D.L.

    1998-03-01

    Selected tritium measurements have been completed for the COBRA-1A2 experiment C03 and D03 beryllium pebbles. The completed results, shown in Tables 1, 2, and 3, include the tritium assay results for the 1-mm and 3-mm C03 pebbles, and the 1-mm D03 pebbles, stepped anneal test results for both types of 1-mm pebbles, and the residual analyses for the stepped-anneal specimens. All results have been reported with date-of-count and are not corrected for decay. Stepped-anneal tritium release response is provided in addenda.

  19. Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine

    SciTech Connect

    DeVore, Natasha M.; Meneely, Kathleen M.; Bart, Aaron G.; Stephens, Eva S.; Battaile, Kevin P.; Scott, Emily E.

    2013-11-20

    Human xenobiotic-metabolizing cytochrome P450 (CYP) enzymes can each bind and monooxygenate a diverse set of substrates, including drugs, often producing a variety of metabolites. Additionally, a single ligand can interact with multiple CYP enzymes, but often the protein structural similarities and differences that mediate such overlapping selectivity are not well understood. Even though the CYP superfamily has a highly canonical global protein fold, there are large variations in the active site size, topology, and conformational flexibility. We have determined how a related set of three human CYP enzymes bind and interact with a common inhibitor, the muscarinic receptor agonist drug pilocarpine. Pilocarpine binds and inhibits the hepatic CYP2A6 and respiratory CYP2A13 enzymes much more efficiently than the hepatic CYP2E1 enzyme. To elucidate key residues involved in pilocarpine binding, crystal structures of CYP2A6 (2.4 {angstrom}), CYP2A13 (3.0 {angstrom}), CYP2E1 (2.35 {angstrom}), and the CYP2A6 mutant enzyme, CYP2A6 I208S/I300F/G301A/S369G (2.1 {angstrom}) have been determined with pilocarpine in the active site. In all four structures, pilocarpine coordinates to the heme iron, but comparisons reveal how individual residues lining the active sites of these three distinct human enzymes interact differently with the inhibitor pilocarpine.

  20. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    PubMed

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-01

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated. PMID:26580496

  1. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes.

    PubMed

    Turpeinen, Miia; Hofmann, Ute; Klein, Kathrin; Mürdter, Thomas; Schwab, Matthias; Zanger, Ulrich M

    2009-05-01

    Nabumetone, a widely used nonsteroidal anti-inflammatory drug, requires biotransformation into 6-methoxy-2-naphthylacetic acid (6-MNA), a close structural analog to naproxen, to achieve its analgesic and anti-inflammatory effects. Despite its wide use, the enzymes involved in metabolism have not been identified. In the present study, several in vitro approaches were used to identify the cytochrome P450 (P450) enzyme(s) responsible for 6-MNA formation. In human liver microsomes (HLMs) 6-MNA formation displayed monophasic Michaelis-Menten kinetics with apparent K(m) and V(max) values (mean +/- S.D.) of 75.1 +/- 15.3 microM and 1304 +/- 226 pmol/min/mg protein, respectively, and formation rate of 6-MNA varied approximately 5.5-fold (179-983 pmol/min/mg protein). 6-MNA activity correlated strongly with both CYP1A2-mediated phenacetin O-deethylation activity and CYP1A2 protein content (r = 0.85 and 0.74, respectively; p < 0.0001 for both). Additional correlations were found with model activities of CYP2C19 and CYP3A4. Of 11 cDNA-expressed recombinant P450s used, recombinant CYP1A2 was the major form catalyzing the 6-MNA formation with an apparent K(m) of 45 microM and V(max) of 8.7 pmol/min/pmol P450. Minor fractions were catalyzed by recombinant P450s CYP1A1, CYP2B6, CYP2C19, CYP2D6, and CYP2E1. Experiments with P450-selective chemical inhibitors and monoclonal anti-P450 antibodies showed that furafylline, a mechanism-based inhibitor CYP1A2, and anti-CYP1A2 antibody markedly inhibited 6-MNA formation, whereas inhibitors for other P450s did not show significant inhibitory effects. Taken together, these studies indicate that the formation of the active metabolite of nabumetone, 6-MNA, is predominantly catalyzed by CYP1A2 in HLMs with only minor contribution of other P450s. PMID:19204080

  2. CYP1A2, GSTM1, and GSTT1 polymorphisms and diet effects on CYP1A2 activity in a crossover feeding trial*

    PubMed Central

    Peterson, Sabrina; Schwarz, Yvonne; Li, Shuying S.; Li, Lin; King, Irena B.; Chen, Chu; Eaton, David L.; Potter, John D.; Lampe, Johanna W.

    2009-01-01

    Cytochrome P-450 1A2 (CYP1A2) is a biotransformation enzyme that activates several procarcinogens. CYP1A2 is induced by cruciferous and inhibited by apiaceous vegetable intake. Using a randomized, cross-over feeding trial in humans, we investigated dose effects of cruciferous vegetables and effects of any interaction between cruciferous and apiaceous vegetables on CYP1A2 activity. We also investigated whether response varied by CYP1A2*1F, GSTM1, and GSTT1 genotypes (glutathione S-transferases that metabolize crucifer constituents) and whether CYP1A2 activity rebounds after apiaceous vegetables are removed from the diet. Participants (N = 73), recruited based on genotypes, consumed four diets for two weeks each: low-phytochemical diet (basal), basal plus single dose of cruciferous (1C), basal plus double dose of cruciferous (2C), and basal plus single dose of cruciferous and apiaceous vegetables (1C+A). CYP1A2 activity was determined by urine caffeine tests administered at baseline and the end of each feeding period. Compared with basal diet, the 1C diet increased CYP1A2 activity (P < 0.0001) and the 2C diet resulted in further increases (P < 0.0001) with men experiencing greater dose-response than women. The 1C+A diet decreased CYP1A2 activity compared to the 1C and 2C diets (P < 0.0001 for both). Although there was no overall effect of CYP1A2*1F or GSTM1-null/GSTT1-null genotypes or genotype-by-diet interactions, there were significant diet response differences within each genotype. Additionally, CYP1A2 activity recovered modestly one day after the removal of apiaceous vegetables. These results suggest complex interactions among dietary patterns, genetic variation, and modulation of biotransformation that may not be apparent in observational studies. PMID:19843669

  3. Inhibition of human Cytochrome P450 2E1 and 2A6 by aldehydes: Structure and activity relationships

    PubMed Central

    Kandagatla, Suneel K.; Mack, Todd; Simpson, Sean; Sollenberger, Jill; Helton, Eric; Raner, Gregory M.

    2014-01-01

    The purpose of this study was to probe active site structure and dynamics of human cytochrome P4502E1 and P4502A6 using a series of related short chain fatty aldehydes. Binding efficiency of the aldehydes was monitored via their ability to inhibit the binding and activation of the probe substrates p-nitrophenol (2E1) and coumarin (2A6). Oxidation of the aldehydes was observed in reactions with individually expressed 2E1, but not 2A6, suggesting alternate binding modes. For saturated aldehydes the optimum chain length for inhibition of 2E1 was 9 carbons (KI=7.8 ±0.3 μM), whereas for 2A6 heptanal was most potent (KI=15.8 ±1.1 μM). A double bond in the 2-position of the aldehyde significantly decreased the observed KI relative to the corresponding saturated compound in most cases. A clear difference in the effect of the double bond was observed between the two isoforms. With 2E1, the double bond appeared to remove steric constraints on aldehyde binding with KI values for the 5–12 carbon compounds ranging between 2.6 ± 0.1 μM and 12.8± 0.5 μM, whereas steric effects remained the dominant factor in the binding of the unsaturated aldehydes to 2A6 (observed KI values between 7.0± 0.5 μM and >1000 μM). The aldehyde function was essential for effective inhibition, as the corresponding carboxylic acids had very little effect on enzyme activity over the same range of concentrations, and branching at the 3-position of the aldehydes increased the corresponding KI value in all cases examined. The results suggest that a conjugated π-system may be a key structural determinant in the binding of these compounds to both enzymes, and may also be an important feature for the expansion of the active site volume in 2E1. PMID:24924949

  4. 2,3,7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)-MEDIATED OXIDATIVE STRESS IN FEMALE CYP1A-2 KNOCKOUT (CYP1A2-/-) MICE

    EPA Science Inventory

    2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD)-Mediated Oxidative Stress in Female CYP1A2 Knockout (CYP1A2-/-) Mice

    Deborah Burgin1, Janet Diliberto2, Linda Birnbaum2
    1UNC Toxicology; 2USEPA/ORD/NHEERL, RTP, NC

    Most of the effects due to TCDD exposure are mediated via...

  5. Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study

    PubMed Central

    Hong, Chi-Chen; Tang, Bing-Kou; Hammond, Geoffrey L; Tritchler, David; Yaffe, Martin; Boyd, Norman F

    2004-01-01

    Introduction Breast cancer risk may be determined by various genetic, metabolic, and lifestyle factors that alter sex hormone metabolism. Cytochrome P450 1A2 (CYP1A2) is responsible for the metabolism of estrogens and many exogenous compounds, including caffeine. Methods In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity and known or suspected risk factors for breast cancer. Blood levels of sex hormones, lipids, and growth factors were measured. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Stepwise and maximum R regression analyses were used to identify covariates related to CYP1A2 activity after adjustment for ethnicity. Results In both menopausal groups CYP1A2 activity was positively related to smoking and levels of sex hormone binding globulin. In premenopausal women, CYP1A2 activity was also positively related to insulin levels, caffeine intake, age, and plasma triglyceride levels, and negatively related with total cholesterol levels and body mass index. In postmenopausal women CYP1A2 activity was positively associated with insulin-like growth factor-1, and negatively associated with plasma triglyceride, high-density lipoprotein cholesterol, and age at menarche. Conclusion These results suggest that CYP1A2 activity is correlated with hormones, blood lipids, and lifestyle factors associated with breast cancer risk, although some of the observed associations were contrary to hypothesized directions and suggest that increased CYP1A2 function may be associated with increased risk for breast cancer. PMID:15217502

  6. Binding free energies for nicotine analogs inhibiting cytochrome P450 2A6 by a combined use of molecular dynamics simulations and QM/MM-PBSA calculations.

    PubMed

    Lu, Haiting; Huang, Xiaoqin; AbdulHameed, Mohamed Diwan M; Zhan, Chang-Guo

    2014-04-01

    Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations have been performed to explore the dynamic behaviors of cytochrome P450 2A6 (CYP2A6) binding with nicotine analogs (that are typical inhibitors) and to calculate their binding free energies in combination with Poisson-Boltzmann surface area (PBSA) calculations. The combined MD simulations and QM/MM-PBSA calculations reveal that the most important structural parameters affecting the CYP2A6-inhibitor binding affinity are two crucial internuclear distances, that is, the distance between the heme iron atom of CYP2A6 and the coordinating atom of the inhibitor, and the hydrogen-bonding distance between the N297 side chain of CYP2A6 and the pyridine nitrogen of the inhibitor. The combined MD simulations and QM/MM-PBSA calculations have led to dynamic CYP2A6-inhibitor binding structures that are consistent with the observed dynamic behaviors and structural features of CYP2A6-inhibitor binding, and led to the binding free energies that are in good agreement with the experimentally-derived binding free energies. The agreement between the calculated binding free energies and the experimentally-derived binding free energies suggests that the combined MD and QM/MM-PBSA approach may be used as a valuable tool to accurately predict the CYP2A6-inhibitor binding affinities in future computational design of new, potent and selective CYP2A6 inhibitors. PMID:24631364

  7. PDZK1 and NHERF1 Regulate the Function of Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) by Modulating Its Subcellular Trafficking and Stability

    PubMed Central

    Zheng, Jian; Chan, Ting; Cheung, Florence Shin Gee; Zhu, Ling; Murray, Michael; Zhou, Fanfan

    2014-01-01

    The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins, especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This study investigated the role of PDZK1 and NHERF1 in the regulation of OATP1A2 in an in vitro cell model. Transporter function and protein expression were assessed in OATP1A2-transfected HEK-293 cells that co-expressed PDZK1 or NHERF1. Substrate (estrone-3-sulfate) uptake by OATP1A2 was significantly increased to ∼1.6- (PDZK1) and ∼1.8- (NHERF1) fold of control; this was dependent on the putative PDZ-binding domain within the C-terminus of OATP1A2. The functional increase of OATP1A2 following PDZK1 or NHERF1 over-expression was associated with increased transporter expression at the plasma membrane and in the whole cell, and was reflected by an increase in the apparent maximal velocity of estrone-3-sulfate uptake (Vmax: 138.9±4.1 (PDZK1) and 181.4±16.7 (NHERF1) versus 55.5±3.2 pmol*(µg*4 min)−1 in control; P<0.01). Co-immunoprecipitation analysis indicated that the regulatory actions of PDZK1 and NHERF1 were mediated by direct interaction with OATP1A2 protein. In further experiments PDZK1 and NHERF1 modulated OATP1A2 expression by decreasing its internalization in a clathrin-dependent (but caveolin-independent) manner. Additionally, PDZK1 and NHERF1 enhanced the stability of OATP1A2 protein in HEK-293 cells. The present findings indicated that PDZK1 and NHERF1 regulate the transport function of OATP1A2 by modulating protein internalization via a clathrin-dependent pathway and by enhancing protein stability. PMID:24728453

  8. Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study

    PubMed Central

    Hong, Chi-Chen; Tang, Bing-Kou; Rao, Venketeshwer; Agarwal, Sanjiv; Martin, Lisa; Tritchler, David; Yaffe, Martin; Boyd, Norman F

    2004-01-01

    Introduction Mammographically dense breast tissue is a strong predictor of breast cancer risk, and is influenced by both mitogens and mutagens. One enzyme that is able to affect both the mitogenic and mutagenic characteristics of estrogens is cytochrome P450 1A2 (CYP1A2), which is principally responsible for the metabolism of 17β-estradiol. Methods In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity, malondialdehyde (MDA) levels, and mammographic density. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Levels of serum and urinary MDA, and MDA–deoxyguanosine adducts in DNA were measured. Mammograms were digitized and measured using a computer-assisted method. Results CYP1A2 activity in postmenopausal women, but not in premenopausal women, was positively associated with mammographic density, suggesting that increased CYP1A2 activity after the menopause is a risk factor for breast cancer. In premenopausal women, but not in postmenopausal women, CYP1A2 activity was positively associated with serum and urinary MDA levels; there was also some evidence that CYP1A2 activity was more positively associated with percentage breast density when MDA levels were high, and more negatively associated with percentage breast density when MDA levels were low. Conclusion These findings provide further evidence that variation in the activity level of enzymes involved in estrogen metabolism is related to levels of mammographic density and potentially to breast cancer risk. PMID:15217501

  9. Genetic determinants of CYP2A6 activity across racial/ethnic groups with different risks of lung cancer and effect on their smoking intensity.

    PubMed

    Park, Sungshim L; Tiirikainen, Maarit I; Patel, Yesha M; Wilkens, Lynne R; Stram, Daniel O; Le Marchand, Loic; Murphy, Sharon E

    2016-03-01

    Genetic variation in cytochrome P450 2A6 (CYP2A6) gene is the primary contributor to the intraindividual and interindividual differences in nicotine metabolism and has been found to influence smoking intensity. However, no study has evaluated the relationship between CYP2A6 genetic variants and the CYP2A6 activity ratio (total 3-hydroxycotinine/cotinine) and their influence on smoking intensity [total nicotine equivalents (TNE)], across five racial/ethnic groups found to have disparate rates of lung cancer. This study genotyped 10 known functional CYP2A6 genetic or copy number variants in 2115 current smokers from the multiethnic cohort study [African Americans (AA) = 350, Native Hawaiians (NH) = 288, Whites = 413, Latinos (LA) = 437 and Japanese Americans (JA) = 627] to conduct such an investigation. Here, we found that LA had the highest CYP2A6 activity followed by Whites, AA, NH and JA, who had the lowest levels. Adjusting for age, sex, race/ethnicity and body mass index, we found that CYP2A6 diplotypes were predictive of TNE levels, particularly in AA and JA (P trend < 0.0001). However, only in JA did the association remain after accounting for cigarettes per day. Also, it is only in this population that the lower activity ratio supports lower TNE levels, carcinogen exposure and thereby lower risk of lung cancer. Despite the association between nicotine metabolism (CYP2A6 activity phenotype and diplotypes) and smoking intensity (TNE), CYP2A6 levels did not correlate with the higher TNE levels found in AA nor the lower TNE levels found in LA, suggesting that other factors may influence smoking dose in these populations. Therefore, further study in these populations is recommended. PMID:26818358

  10. A Global Health Diagnostic for Personalized Medicine in Resource-Constrained World Settings: A Simple PCR-RFLP Method for Genotyping CYP2B6 g.15582C>T and Science and Policy Relevance for Optimal Use of Antiretroviral Drug Efavirenz.

    PubMed

    Evans, Jonathan; Swart, Marelize; Soko, Nyarai; Wonkam, Ambroise; Huzair, Farah; Dandara, Collet

    2015-06-01

    The use of pharmacogenomics (PGx) knowledge in treatment of individual patients is becoming a common phenomenon in the developed world. However, poorly resourced countries have thus far been constrained for three main reasons. First, the cost of whole genome sequencing is still considerably high in comparison to other (non-genomics) diagnostics in the developing world where both science and social dynamics create a dynamic and fragile healthcare ecosystem. Second, studies correlating genomic differences with drug pharmacokinetics and pharmacodynamics have not been consistent, and more importantly, often not indexed to impact on societal end-points, beyond clinical practice. Third, ethics regulatory frames over PGx testing require improvements based on nested accountability systems and in ways that address the user community needs. Thus, CYP2B6 is a crucial enzyme in the metabolism of antiretroviral drugs, efavirenz and nevirapine. More than 40 genetic variants have been reported, but only a few contribute to differences in plasma EFV and NVP concentrations. The most widely reported CYP2B6 variants affecting plasma drug levels include c.516G>T, c.983T>C, and to a lesser extent, g.15582C>T, which should be considered in future PGx tests. While the first two variants are easily characterized, the g.15582C>T detection has been performed primarily by sequencing, which is costly, labor intensive, and requires access to barely available expertise in the developing world. We report here on a simple, practical PCR-RFLP method with vast potentials for use in resource-constrained world regions to detect the g.15582C>T variation among South African and Cameroonian persons. The effects of CYP2B6 g.15582C>T on plasma EFV concentration were further evaluated among HIV/AIDS patients. We report no differences in the frequency of the g.15582T variant between the South African (0.08) and Cameroonian (0.06) groups, which are significantly lower than reported in Asians (0.39) and

  11. A Global Health Diagnostic for Personalized Medicine in Resource-Constrained World Settings: A Simple PCR-RFLP Method for Genotyping CYP2B6 g.15582C>T and Science and Policy Relevance for Optimal Use of Antiretroviral Drug Efavirenz

    PubMed Central

    Evans, Jonathan; Swart, Marelize; Soko, Nyarai; Wonkam, Ambroise; Huzair, Farah

    2015-01-01

    Abstract The use of pharmacogenomics (PGx) knowledge in treatment of individual patients is becoming a common phenomenon in the developed world. However, poorly resourced countries have thus far been constrained for three main reasons. First, the cost of whole genome sequencing is still considerably high in comparison to other (non-genomics) diagnostics in the developing world where both science and social dynamics create a dynamic and fragile healthcare ecosystem. Second, studies correlating genomic differences with drug pharmacokinetics and pharmacodynamics have not been consistent, and more importantly, often not indexed to impact on societal end-points, beyond clinical practice. Third, ethics regulatory frames over PGx testing require improvements based on nested accountability systems and in ways that address the user community needs. Thus, CYP2B6 is a crucial enzyme in the metabolism of antiretroviral drugs, efavirenz and nevirapine. More than 40 genetic variants have been reported, but only a few contribute to differences in plasma EFV and NVP concentrations. The most widely reported CYP2B6 variants affecting plasma drug levels include c.516G>T, c.983T>C, and to a lesser extent, g.15582C>T, which should be considered in future PGx tests. While the first two variants are easily characterized, the g.15582C>T detection has been performed primarily by sequencing, which is costly, labor intensive, and requires access to barely available expertise in the developing world. We report here on a simple, practical PCR-RFLP method with vast potentials for use in resource-constrained world regions to detect the g.15582C>T variation among South African and Cameroonian persons. The effects of CYP2B6 g.15582C>T on plasma EFV concentration were further evaluated among HIV/AIDS patients. We report no differences in the frequency of the g.15582T variant between the South African (0.08) and Cameroonian (0.06) groups, which are significantly lower than reported in Asians (0

  12. CYP1A2 polymorphism in Chinese patients with acute liver injury induced by Polygonum multiflorum.

    PubMed

    Ma, K F; Zhang, X G; Jia, H Y

    2014-01-01

    The objective of this study was to evaluate the genotype and allelic frequencies of CYP1A2 in Chinese patients with acute liver injury induced by Polygonum multiflorum. We examined the clinical mechanism of acute liver injury induced by P. multiflorum. According to the diagnostic criteria for drug-induced liver injury (DILI), 43 cases of P. multiflorum-induced liver injury admitted to the First Affiliated Hospital, Zhejiang University were identified between January 2008 and December 2012. An additional 43 control subjects were also chosen. Several alleles, including 1C, 1F, 2, 7, 9, and 11 of CYP1A2 were amplified from genomic DNA and sequenced. We used the chi-square test to determine whether CYP1A2 allele polymorphisms are associated with acute liver injury induced by P. multiflorum. The frequency of the CYP1A2 1C allele was 46.5% in P. multiflorum-induced DILI patients, which was significantly different from the frequency of 27.9% observed in healthy subjects. The frequency of the CYP1A2 1F allele was 63.9% in P. multiflorum-induced DILI patients, compared to 57.0% in healthy controls; the difference was not significant. The allelic frequencies of CYP1A2 2, CYP1A2 7, CYP1A2 9, and CYP1A2 11 were too low to be detected. The frequency of the CYP1A2 1C mutation in Chinese patients with P. multiflorum-induced acute liver injury differed from that in healthy Chinese people, indicating that CYP1A2 1C is probably related to metabolism of P. multiflorum, which is followed by acute liver injury. PMID:25117321

  13. INHIBITION OF HUMAN AND RAT CYP1A2 BY TCDD AND DIOXIN-LIKE CHEMICALS

    EPA Science Inventory

    Dioxins have been shown to bind and induce rodent CYP1A2, producing a dose-dependent hepatic sequestration in vivo. The induction of CYP1A2 activity has been used as a noninvasive biomarker for human exposure to dioxins; while there is a consistent relationship between exposure ...

  14. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... communication (See also § 1917.1(a)(2)(vi))....

  15. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... communication (See also § 1917.1(a)(2)(vi))....

  16. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... communication (See also § 1917.1(a)(2)(vi))....

  17. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... communication (See also § 1917.1(a)(2)(vi))....

  18. Genetic effects of ATP1A2 in familial hemiplegic migraine type II and animal models

    PubMed Central

    2013-01-01

    Na+/K+-ATPase alpha 2 (Atp1a2) is an integral plasma membrane protein belonging to the P-type ATPase family that is responsible for maintaining the sodium (Na+) and potassium (K+) gradients across cellular membranes with hydrolysis of ATP. Atp1a2 contains two subunits, alpha and beta, with each having various isoforms and differential tissue distribution. In humans, mutations in ATP1A2 are associated with a rare form of hereditary migraines with aura known as familial hemiplegic migraine type II. Genetic studies in mice have revealed other neurological effects of Atp1a2 in mice including anxiety, fear, and learning and motor function disorders. This paper reviews the recent findings in the literature concerning Atp1a2. PMID:23561701

  19. Single tube genotyping of CYP2A6 gene deletion based on copy number determination by quantitative real-time PCR.

    PubMed

    Liu, Jin-hui; Xun, Xiao-jie; Pang, Cong; Ma, Jun; Zou, Hui; Chen, Chao; Dai, Peng-gao

    2014-12-01

    The CYP2A6*4 allele, characterized as the whole deletion of this gene, is closely associated with nicotine dependence, cancer susceptibility, and drug responsiveness. It has long been a significant challenge for pharmacogenetics scientists to develop a reliable method to detect this molecular variant due to its high homology with its homologous genes CYP2A6 and CYP2A3 in the clinical setting. Here, we introduce a quantitative real-time PCR assay that specifically amplifies CYP2A6 by designing a specific set of primers and the probe, which effectively prevent the amplification of the CYP2A7 and CYP2A13 alleles. CYP2A6 gene copy numbers were normalized to albumin (ALB) which was co-amplified simultaneously in a single-tube duplex reaction and at a setting as the internal reference gene. The established assay was validated with a selection of previously genotyped DNA samples, which harbored none, one or two CYP2A6 gene copies. The results were in complete concordance with previously published data and no overlap between the three groups was observed. Further analysis of a cohort of 120 samples revealed high specificity and sensitivity of this assay as demonstrated by the agreement of determined gene copy numbers in all of the cases. In conclusion, this novel assay allows reliable and sensitive detection of the CYP2A6 gene deletion, which will be useful for pharmacogenetics studies and routine clinical settings. PMID:25446842

  20. Cytochrome P450 1A2 Metabolizes 17β-Estradiol to Suppress Hepatocellular Carcinoma

    PubMed Central

    Ren, Jianwai; Chen, George G.; Liu, Yi; Su, Xianwei; Hu, Baoguang; Leung, Billy C. S.; Wang, Y.; Ho, Rocky L. K.; Yang, Shengli; Lu, Gang; Lee, C. G.; Lai, Paul B. S.

    2016-01-01

    Hepatocellular carcinoma (HCC) occurs more frequently in men than in women. It is commonly agreed that estrogen plays important roles in suppressing HCC development, however, the underlying mechanism remains largely unknown. Since estrogen is mainly metabolized in liver and its metabolites affect cell proliferation, we sought to investigate if the liver-specific cytochrome P450 1A2 (CYP1A2) mediated the inhibitory effect of estrogen on HCC. In this study, the expression of estrogen-metabolizing enzyme CYP1A2 was determined in HCC tissues and cell lines. Cell proliferation and apoptosis were assessed in cells with or without CYP1A2 overexpression. The levels of 17β-estradiol (E2) and its metabolite 2-methoxyestradiol (2-ME) were determined. A xenograft tumor model in mice was established to confirm the findings. It was found that CYP1A2 expression was greatly repressed in HCC. E2 suppressed HCC cell proliferation and xenograft tumor development by inducing apoptosis. The inhibitory effect was significantly enhanced in cells with CYP1A2 overexpression, which effectively conversed E2 to the cytotoxic 2-ME. E2 in combination with sorafenib showed an additive effect on HCC. The anti-HCC effect of E2 was not associated with estrogen receptors ERα and ERβ as well as tumor suppressor P53 but enhanced by the approved anti-HCC drug sorafenib. In addition, HDAC inhibitors greatly induced CYP1A2 promoter activities in cancer cells, especially liver cancer cells, but not in non-tumorigenic cells. Collectively, CYP1A2 metabolizes E2 to generate the potent anti-tumor agent 2-ME in HCC. The reduction of CYP1A2 significantly disrupts this metabolic pathway, contributing the progression and growth of HCC and the gender disparity of this malignancy. PMID:27093553

  1. Cytochrome P450 1A2 Metabolizes 17β-Estradiol to Suppress Hepatocellular Carcinoma.

    PubMed

    Ren, Jianwai; Chen, George G; Liu, Yi; Su, Xianwei; Hu, Baoguang; Leung, Billy C S; Wang, Y; Ho, Rocky L K; Yang, Shengli; Lu, Gang; Lee, C G; Lai, Paul B S

    2016-01-01

    Hepatocellular carcinoma (HCC) occurs more frequently in men than in women. It is commonly agreed that estrogen plays important roles in suppressing HCC development, however, the underlying mechanism remains largely unknown. Since estrogen is mainly metabolized in liver and its metabolites affect cell proliferation, we sought to investigate if the liver-specific cytochrome P450 1A2 (CYP1A2) mediated the inhibitory effect of estrogen on HCC. In this study, the expression of estrogen-metabolizing enzyme CYP1A2 was determined in HCC tissues and cell lines. Cell proliferation and apoptosis were assessed in cells with or without CYP1A2 overexpression. The levels of 17β-estradiol (E2) and its metabolite 2-methoxyestradiol (2-ME) were determined. A xenograft tumor model in mice was established to confirm the findings. It was found that CYP1A2 expression was greatly repressed in HCC. E2 suppressed HCC cell proliferation and xenograft tumor development by inducing apoptosis. The inhibitory effect was significantly enhanced in cells with CYP1A2 overexpression, which effectively conversed E2 to the cytotoxic 2-ME. E2 in combination with sorafenib showed an additive effect on HCC. The anti-HCC effect of E2 was not associated with estrogen receptors ERα and ERβ as well as tumor suppressor P53 but enhanced by the approved anti-HCC drug sorafenib. In addition, HDAC inhibitors greatly induced CYP1A2 promoter activities in cancer cells, especially liver cancer cells, but not in non-tumorigenic cells. Collectively, CYP1A2 metabolizes E2 to generate the potent anti-tumor agent 2-ME in HCC. The reduction of CYP1A2 significantly disrupts this metabolic pathway, contributing the progression and growth of HCC and the gender disparity of this malignancy. PMID:27093553

  2. Comparison of CYP1A2 and NAT2 Phenotypes between Black and White Smokers

    PubMed Central

    Muscat, Joshua E.; Pittman, Brian; Kleinman, Wayne; Lazarus, Philip; Stellman, Steven D.; Richie, John P.

    2008-01-01

    The lower incidence rate of transitional cell carcinoma of the urinary bladder in blacks than in whites may be due to racial differences in the catalytic activity of enzymes that metabolize carcinogenic arylamines in tobacco smoke. To examine this, we compared cytochrome P4501A2 (CYP1A2) and N-acetyltransferase-2 activities (NAT2) in black and white smokers using urinary caffeine metabolites as a probe for enzyme activity in a community-based study of 165 black and 183 white cigarette smokers. The paraxanthine (1,7-dimethylxanthine, 17X)/caffeine (trimethylxanthine, 137X) ratio or [17X + 1,7-dimethyluric acid (17U)]/137X ratio was used as an indicator of CYP1A2 activity. The 5-acetyl-amino-6-formylamino-3-methyluracil (AFMU)/1-methylxanthine (1X) ratio indicated NAT2 activity. The odds ratio for the slow NAT2 phenotype associated with black race was 0.4; 95% confidence intervals 0.2–0.7. The putative combined low risk phenotype (slow CYP1A2/rapid NAT2) was more common in blacks than in whites (25% vs. 15%, P<0.02). There were no significant racial differences in slow and rapid CYP1A2 phenotypes, and in the combined slow NAT2/rapid CYP1A2 phenotype. Age, education, cigarette smoking amount, body mass index, GSTM1 and GSTM3 genotypes were unrelated to CYP1A2 and NAT2 activity. Intake of cruciferous vegetables (primarily broccoli), red meat, carrots, grapefruit and onions predicted CYP1A2 activity either for all subjects or in race-specific analyses. Carrot and grapefruit consumption was related to NAT2 activity. Collectively, these results indicated that phenotypic differences in NAT2 alone or in combination with CYP1A2 might help explain the higher incidence rates of transitional cell bladder cancer in whites. PMID:18703023

  3. Comparison of CYP1A2 and NAT2 phenotypes between black and white smokers.

    PubMed

    Muscat, Joshua E; Pittman, Brian; Kleinman, Wayne; Lazarus, Philip; Stellman, Steven D; Richie, John P

    2008-10-01

    The lower incidence rate of transitional cell carcinoma of the urinary bladder in blacks than in whites may be due to racial differences in the catalytic activity of enzymes that metabolize carcinogenic arylamines in tobacco smoke. To examine this, we compared cytochrome P4501A2 (CYP1A2) and N-acetyltransferase-2 activities (NAT2) in black and white smokers using urinary caffeine metabolites as a probe for enzyme activity in a community-based study of 165 black and 183 white cigarette smokers. The paraxanthine (1,7-dimethylxanthine, 17X)/caffeine (trimethylxanthine, 137X) ratio or [17X+1,7-dimethyluric acid (17U)]/137X ratio was used as an indicator of CYP1A2 activity. The 5-acetyl-amino-6-formylamino-3-methyluracil (AFMU)/1-methylxanthine (1X) ratio indicated NAT2 activity. The odds ratio for the slow NAT2 phenotype associated with black race was 0.4; 95% confidence intervals 0.2-0.7. The putative combined low risk phenotype (slow CYP1A2/rapid NAT2) was more common in blacks than in whites (25% vs. 15%, P<0.02). There were no significant racial differences in slow and rapid CYP1A2 phenotypes, and in the combined slow NAT2/rapid CYP1A2 phenotype. Age, education, cigarette smoking amount, body mass index, GSTM1 and GSTM3 genotypes were unrelated to CYP1A2 and NAT2 activity. Intake of cruciferous vegetables (primarily broccoli), red meat, carrots, grapefruit and onions predicted CYP1A2 activity either for all subjects or in race-specific analyses. Carrot and grapefruit consumption was related to NAT2 activity. Collectively, these results indicated that phenotypic differences in NAT2 alone or in combination with CYP1A2 might help explain the higher incidence rates of transitional cell bladder cancer in whites. PMID:18703023

  4. Hexachlorobenzene stimulates uroporphyria in low affinity AHR mice without increasing CYP1A2

    SciTech Connect

    Gorman, Nadia; Trask, Heidi S.; Robinson, Susan W.; Sinclair, Jacqueline F.; Smith, Andrew G.; Sinclair, Peter R. . E-mail: psinc@dartmouth.edu

    2007-06-01

    Hexachlorobenzene (HCB), a weak ligand of the aryl hydrocarbon receptor (AHR), causes hepatic uroporphyrin (URO) accumulation (uroporphyria) in humans and animals. CYP1A2 has been shown to be necessary in the development of uroporphyria in mice. Using mice expressing the low affinity form of the AH receptor (AHRd), we investigated whether the enhancement of uroporphyria by HCB involves an obligatory increase in CYP1A2 as measured by specific enzyme assays and immunoblotting. We compared the ability of HCB, in combination with iron dextran and the porphyrin precursor, 5-aminolevulinate (ALA), to cause uroporphyria in a strain of mice (C57BL/6) which expresses the high affinity form of the receptor (AHRb{sub 1}), with three strains of mice (SWR and two 129 sublines) expressing the low affinity AHRd. In C57BL/6 mice, HCB-enhanced uroporphyria was associated with a doubling of CYP1A2. HCB treatment produced uroporphyria in iron-loaded mice expressing AHRd, even though there was little or no increase in CYP1A2. Cyp1a2(-/-) mice in a 129 background were completely resistant to HCB-induced uroporphyria, and female Hfe(-/-) 129 mice, in which the levels of hepatic CYP1A2 were half of those of the male levels, responded poorly. The effect of exogenous iron, administered in the form of iron dextran, on HCB enhancement of uroporphryia could be replicated utilizing the endogenous hepatic iron accumulated in 129 Hfe(-/-) mice. In conclusion, some minimal basal expression of CYP1A2 is essential for HCB-mediated enhancement of uroporphyria, but increases in CYP1A2 above that level are not essential.

  5. Chloroquine and Hydroxychloroquine Are Novel Inhibitors of Human Organic Anion Transporting Polypeptide 1A2.

    PubMed

    Xu, Chenghao; Zhu, Ling; Chan, Ting; Lu, Xiaoxi; Shen, Weiyong; Madigan, Michele C; Gillies, Mark C; Zhou, Fanfan

    2016-02-01

    Chloroquine (CQ) and hydroxychloroquine (HCQ) are widely used to treat malaria and inflammatory diseases, long-term usage of which often causes severe side effects, especially retinopathy. Solute carrier transporters (SLCs) are important proteins responsible for the cellular uptake of endogenous and exogenous substances. Inhibitors competing with transporter substrates for SLCs often results in unfavorable toxicities and unsatisfactory therapeutic outcomes. We investigated the inhibitory effect of CQ and HCQ on substrate uptake mediated through a range of important SLC transporters in overexpressing human embryonic kidney (HEK293) cells. Our data revealed that both CQ and HCQ potently inhibit the uptake activity of organic anion transporting polypeptide 1A2 (OATP1A2). We recently reported OATP1A2 to be expressed in human retinal pigment epithelium (RPE), where it mediates cellular uptake of all-trans-retinol (atROL), a key step in the classical visual cycle. In this study, we demonstrate that CQ and HCQ could markedly impair atROL uptake in OATP1A2-expressing HEK293 cells and more importantly, in primary human RPE cells. Our study shows that CQ and HCQ are novel inhibitors of OATP1A2 and significantly impair OATP1A2-mediated substrate uptake, particularly transport of atROL into the RPE. This effect may compromise the function of the classic visual cycle leading to vision impairment and contribute to the retinopathy observed clinically in patients using CQ or HCQ. PMID:26429523

  6. Genome-Wide Pharmacogenomic Study on Methadone Maintenance Treatment Identifies SNP rs17180299 and Multiple Haplotypes on CYP2B6, SPON1, and GSG1L Associated with Plasma Concentrations of Methadone R- and S-enantiomers in Heroin-Dependent Patients

    PubMed Central

    Yang, Hsin-Chou; Chu, Shih-Kai; Huang, Chieh-Liang; Kuo, Hsiang-Wei; Wang, Sheng-Chang; Liu, Sheng-Wen; Ho, Ing-Kang; Liu, Yu-Li

    2016-01-01

    Methadone maintenance treatment (MMT) is commonly used for controlling opioid dependence, preventing withdrawal symptoms, and improving the quality of life of heroin-dependent patients. A steady-state plasma concentration of methadone enantiomers, a measure of methadone metabolism, is an index of treatment response and efficacy of MMT. Although the methadone metabolism pathway has been partially revealed, no genome-wide pharmacogenomic study has been performed to identify genetic determinants and characterize genetic mechanisms for the plasma concentrations of methadone R- and S-enantiomers. This study was the first genome-wide pharmacogenomic study to identify genes associated with the plasma concentrations of methadone R- and S-enantiomers and their respective metabolites in a methadone maintenance cohort. After data quality control was ensured, a dataset of 344 heroin-dependent patients in the Han Chinese population of Taiwan who underwent MMT was analyzed. Genome-wide single-locus and haplotype-based association tests were performed to analyze four quantitative traits: the plasma concentrations of methadone R- and S-enantiomers and their respective metabolites. A significant single nucleotide polymorphism (SNP), rs17180299 (raw p = 2.24 × 10−8), was identified, accounting for 9.541% of the variation in the plasma concentration of the methadone R-enantiomer. In addition, 17 haplotypes were identified on SPON1, GSG1L, and CYP450 genes associated with the plasma concentration of methadone S-enantiomer. These haplotypes accounted for approximately one-fourth of the variation of the overall S-methadone plasma concentration. The association between the S-methadone plasma concentration and CYP2B6, SPON1, and GSG1L were replicated in another independent study. A gene expression experiment revealed that CYP2B6, SPON1, and GSG1L can be activated concomitantly through a constitutive androstane receptor (CAR) activation pathway. In conclusion, this study revealed new

  7. Genome-Wide Pharmacogenomic Study on Methadone Maintenance Treatment Identifies SNP rs17180299 and Multiple Haplotypes on CYP2B6, SPON1, and GSG1L Associated with Plasma Concentrations of Methadone R- and S-enantiomers in Heroin-Dependent Patients.

    PubMed

    Yang, Hsin-Chou; Chu, Shih-Kai; Huang, Chieh-Liang; Kuo, Hsiang-Wei; Wang, Sheng-Chang; Liu, Sheng-Wen; Ho, Ing-Kang; Liu, Yu-Li

    2016-03-01

    Methadone maintenance treatment (MMT) is commonly used for controlling opioid dependence, preventing withdrawal symptoms, and improving the quality of life of heroin-dependent patients. A steady-state plasma concentration of methadone enantiomers, a measure of methadone metabolism, is an index of treatment response and efficacy of MMT. Although the methadone metabolism pathway has been partially revealed, no genome-wide pharmacogenomic study has been performed to identify genetic determinants and characterize genetic mechanisms for the plasma concentrations of methadone R- and S-enantiomers. This study was the first genome-wide pharmacogenomic study to identify genes associated with the plasma concentrations of methadone R- and S-enantiomers and their respective metabolites in a methadone maintenance cohort. After data quality control was ensured, a dataset of 344 heroin-dependent patients in the Han Chinese population of Taiwan who underwent MMT was analyzed. Genome-wide single-locus and haplotype-based association tests were performed to analyze four quantitative traits: the plasma concentrations of methadone R- and S-enantiomers and their respective metabolites. A significant single nucleotide polymorphism (SNP), rs17180299 (raw p = 2.24 × 10(-8)), was identified, accounting for 9.541% of the variation in the plasma concentration of the methadone R-enantiomer. In addition, 17 haplotypes were identified on SPON1, GSG1L, and CYP450 genes associated with the plasma concentration of methadone S-enantiomer. These haplotypes accounted for approximately one-fourth of the variation of the overall S-methadone plasma concentration. The association between the S-methadone plasma concentration and CYP2B6, SPON1, and GSG1L were replicated in another independent study. A gene expression experiment revealed that CYP2B6, SPON1, and GSG1L can be activated concomitantly through a constitutive androstane receptor (CAR) activation pathway. In conclusion, this study revealed new

  8. Identification of amino acid residues involved in 4-chloroindole 3-hydroxylation by cytochrome P450 2A6 using screening of random libraries

    PubMed Central

    Zhang, Zhi-Gang; Liu, Yan; Guengerich, F. Peter; Matse, Johannes H.; Chen, Jun; Wu, Zhong-Liu

    2016-01-01

    Cytochrome P450 (P450) 2A6 is able to catalyze indole hydroxylation to form the blue dye indigo. The wild type P450 2A6 enzyme was randomly mutated throughout the whole open reading frame and screened using 4-chloroindole hydroxylation, a substituted indole selected from 30 indole compounds for enhanced color development. Mutants with up to 5-fold increases of catalytic efficiency (kcat/Km) and 2-fold increases in kcat were selected after two rounds of screening. Important residues located both in (e.g., Thr305) and outside the active site (e.g., Ser224) were identified. The study utilized a better substrate for "indigo assay" to obtain new information on the structure-functional relationship of P450 2A6 that was not revealed by previous mutagenesis studies with this enzyme. PMID:18984015

  9. Development of Flavone Propargyl Ethers as Potent and Selective Inhibitors of Cytochrome P450 Enzymes 1A1 and 1A2

    PubMed Central

    Sridhar, Jayalakshmi; Ellis, Jamie; Dupart, Patrick; Liu, Jiawang; Stevens, Cheryl L.; Foroozesh, Maryam

    2014-01-01

    Naturally occurring flavonoids are known to be metabolized by several cytochrome P450 enzymes including P450s 1A1, 1A2, 1B1, 2C9, 3A4, and 3A5. In general flavonoids can act as substrates, inducers, and/or inhibitors of P450 enzymes. The position of the substituents on the flavone backbone has been shown to impact the biological activity against P450 enzymes. To explore the effect of a propargyl ether substitution on flavones and flavanones, 2′-flavone propargyl ether (2′-PF), 3′-flavone propargyl ether (3′-PF), 4′-flavone propargyl ether (4′-PF), 5-flavone propargyl ether (5-PF), 6-flavone propargyl ether (6-PF), 7-flavone propargyl ether (7-PF), 6-flavanone propargyl ether (6-PFN), and 7-flavanone propargyl ether (7-PFN) were synthesized. All of the newly synthesized compounds and the parent hydroxy flavones were tested for both direct inhibition and mechanism-based inhibition of cytochrome P450 enzymes 1A1, 1A2, 2A6, and 2B1. The flavone propargyl ether derivatives were found to be more potent inhibitors of P450s 1A1 and 1A2. None of the flavones and flavanones in our study showed any inhibition of P450 2A6. Only 2′-PF and 6-PFN inhibited P450 2B1. 3′-PF showed direct inhibition of P450 1A1 with the highest observed potency of 0.02 μM, in addition to its ability to cause mechanism-based inhibition with KI and kinactivation values of 0.24 μM and 0.09 min−1 for this enzyme. 7-Hydroxy flavone also exhibited mechanism-based inhibition of P450 1A1 with KI and kinactivation values of 2.43 μM and 0.115 min−1. Docking studies and QSAR studies on P450 enzymes 1A1 and 1A2 were performed which revealed important insights into the nature of binding of these molecules and provided us with good QSAR models that can be used to design new flavone derivatives. PMID:23506553

  10. Induction of cytochrome P-450 1A2 by oxidized tryptophan in Hepa lclc7 cells.

    PubMed

    Sindhu, R K; Mitsuhashi, M; Kikkawa, Y

    2000-03-01

    Recent studies from this laboratory have demonstrated that L-tryptophan, after oxidation either by UV-irradiation or ozone, induces aryl hydrocarbon receptor (AhR) activation and binding of the liganded AhR complex to its specific DNA recognition site, thereby initiating transcription of the cytochrome P-450 1a1 (Cyp1a1) gene with concomitant increase of CYP1A1 protein and 7-ethoxyresorufin O-deethylase activity in wild-type mouse hepatoma cells, Hepa lclc7 (Hepa-1), in culture. Temporary inhibition of protein synthesis by cycloheximide resulted in superinduction of oxidized tryptophan-inducible CYP1A1 mRNA, protein, and 7-ethoxyresorufin O-deethylase activity in Hepa-1 cells. In the present communication, the results obtained by immunoblot analyses with monoclonal CYP1A1/1A2 antibody (NIH 1-7-1) demonstrate that both UV- or ozone-oxidized tryptophan also induce CYP1A2 protein in Hepa-1 cells. CYP1A2 mRNA, detected by reverse transcription-polymerase chain reaction, was markedly induced in the UV- or ozone-oxidized tryptophan-treated cells. Temporary inhibition of protein synthesis by cycloheximide further induced oxidized tryptophan-inducible CYP1A2 mRNA as well as the protein in Hepa-1 cells. This is the first report demonstrating the induction of CYP1A2 mRNA and protein in Hepa-1 cells. PMID:10688617

  11. Allele dependent silencing of COL1A2 using small interfering RNAs

    PubMed Central

    Lindahl, Katarina; Rubin, Carl-Johan; Kindmark, Andreas; Ljunggren, Östen

    2008-01-01

    Osteogenesis imperfecta (OI) is generally caused by a dominant mutation in Collagen I, encoded by the genes COL1A1 and COL1A2. To date there is no satisfactory therapy for OI, but inactivation of the mutant allele through small interfering RNAs (siRNA) is a promising approach, as siRNAs targeting each allele of a polymorphism could be used for allele-specific silencing irrespective of the location of the actual mutations. In this study we examined the allele dependent effects of several tiled siRNAs targeting a region surrounding an exonic COL1A2 T/C polymorphism (rs1800222) in heterozygous primary human bone cells. Relative abundances of COL1A2 alleles were determined by cDNA sequencing and overall COL1A2 abundance was analyzed by quantitative PCR. One of the siRNAs decreased overall COL1A2 abundance by 71% of which 75% was due to silencing of the targeted T-allele. In conclusion, allele-preferential silencing of Collagen type I genes may be a future therapeutic approach for OI. PMID:19015742

  12. Data package addendum for COBRA-1A2 life extension to 400 EFPD

    SciTech Connect

    Hecht, S.L.; Ermi, A.M.

    1994-08-29

    The COBRA-1A experiment was originally designed for irradiations up to 350 effective full power days (EFPD) in EBR-II. Three of the seven B7A test capsules were discharged after 88.6 EFPD (COBRA-1A1; EBR-II designation X516), while the remaining four capsules continued to be irradiated to a goal exposure of 300 EFPD (COBRA-1A2; EBR-II designation X516A). However, it was recently decided that COBRA-1A2 was to remain in the reactor during Run 170, giving and nominal end-of-life (EOL) exposure of 375 EFPD. Since the revised test exposure exceeds the design basis given in supporting analyses, amended analyses are provided herein, giving the technical bases for the extended irradiation. This report describes the safety analysis for the extension of the COBRA-1A2 test (X516A) to 400 effective full power days in FBR-II.

  13. PCB Exposure and in Vivo CYP1A2 Activity among Native Americans

    PubMed Central

    Fitzgerald, Edward F.; Hwang, Syni-An; Lambert, George; Gomez, Marta; Tarbell, Alice

    2005-01-01

    Cytochrome P-450 1A2 (CYP1A2) is an enzyme involved in the metabolic activation of some carcinogens and is believed to be induced by xenobiotics. Very few studies, however, have investigated the association between environmental exposures and in vivo CYP1A2 activity in humans. To address this issue, a study was conducted of CYP1A2 activity among Native Americans exposed to polychlorinated biphenyls (PCBs) from the consumption of fish from the St. Lawrence River. At the Mohawk Nation at Akwesasne (in New York and in Ontario and Quebec, Canada), 103 adults were interviewed, and they donated blood for serum PCB analysis and underwent the caffeine breath test (CBT), a safe and noninvasive procedure that uses caffeine as a probe for CYP1A2 activity in vivo. The results supported the findings of other studies that CBT values are higher among smokers and men and lower among women who use oral contraceptives. Despite a relatively low average total PCB body burden in this population, the sum of serum levels for nine mono- or di-ortho-substituted PCB congeners showed positive associations with CBT values (p = 0.052 wet weight and p = 0.029 lipid adjusted), as did toxic equivalent quantities (TEQs; p = 0.091 for wet weight and 0.048 for lipid adjusted). Regarding individual congeners, serum levels of PCB-153, PCB-170, and PCB-180 were significantly correlated with CBT values. The results support the notion that CYP1A2 activity may be a marker of an early biological effect of exposure to PCBs in humans and that the CBT may be a useful tool to monitor such effects. PMID:15743714

  14. EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2

    EPA Science Inventory

    EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2. T M Ross1, B P Anderson1, G Zhao2, R A Pegram1 and J W Allis1. 1U.S. EPA, ORD, NHEERL, Research Triangle Park, NC; 2University of North Carolina, Chapel Hill, NC.
    Sponsor: H Barton

    Bromodichlorometh...

  15. Thermal ramp tritium release in COBRA-1A2 C03 beryllium pebbles

    SciTech Connect

    Baldwin, D.L.

    1998-03-01

    Tritium release kinetics, using the method of thermal ramp heating at three linear ramp rates, were measured on the COBRA-1A2 C03 1-mm beryllium pebbles. This report includes a brief discussion of the test, and the test data in graph format.

  16. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Marine Terminal Operations § 1917.28...

  17. COMPARING ENVIRONMENTALLY RELEVANT PCBS TO TCDD IN CYP1A2 NULL AND WILDTYPE MICE

    EPA Science Inventory


    The role of CYP1A2 on the interactions of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin, dioxin), dioxin-like (DL) and non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) was compared in multiple responses of different laboratory-defined mixtures, based on mass ratios found in...

  18. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk.

    PubMed

    Wassenaar, Catherine A; Dong, Qiong; Wei, Qingyi; Amos, Christopher I; Spitz, Margaret R; Tyndale, Rachel F

    2011-09-01

    Genetic variations in the CYP2A6 nicotine metabolic gene and the CHRNA5-CHRNA3-CHRNB4 (CHRNA5-A3-B4) nicotinic gene cluster have been independently associated with lung cancer. With genotype data from ever-smokers of European ancestry (417 lung cancer patients and 443 control subjects), we investigated the relative and combined associations of polymorphisms in these two genes with smoking behavior and lung cancer risk. Kruskal-Wallis tests were used to compare smoking variables among the different genotype groups, and odds ratios (ORs) for cancer risk were estimated using logistic regression analysis. All statistical tests were two-sided. Cigarette consumption (P < .001) and nicotine dependence (P = .036) were the highest in the combined CYP2A6 normal metabolizers and CHRNA5-A3-B4 AA (tag single-nucleotide polymorphism rs1051730 G>A) risk group. The combined risk group also exhibited the greatest lung cancer risk (OR = 2.03; 95% confidence interval [CI] = 1.21 to 3.40), which was even higher among those who smoked 20 or fewer cigarettes per day (OR = 3.03; 95% CI = 1.38 to 6.66). Variation in CYP2A6 and CHRNA5-A3-B4 was independently and additively associated with increased cigarette consumption, nicotine dependence, and lung cancer risk. CYP2A6 and CHRNA5-A3-B4 appear to be more strongly associated with smoking behaviors and lung cancer risk, respectively. PMID:21747048

  19. Production of {sup 4}He and tritium from Be in the COBRA-1A2 irradiation

    SciTech Connect

    Greenwood, L.R.

    1998-03-01

    The production of {sup 4}He and tritium has been calculated for beryllium irradiated in the COBRA-1A2 experiment in the Experimental Breeder Reactor II. Reaction rates were based on adjusted neutron spectra determined from reactor dosimetry measurements at three different elevations in the region of the beryllium capsules. Equations are given so that gas production can be calculated for any specific capsule elevation.

  20. A Function for the hnRNP A1/A2 Proteins in Transcription Elongation

    PubMed Central

    Lemieux, Bruno; Blanchette, Marco; Monette, Anne; Mouland, Andrew J.; Wellinger, Raymund J.; Chabot, Benoit

    2015-01-01

    The hnRNP A1 and A2 proteins regulate processes such as alternative pre-mRNA splicing and mRNA stability. Here, we report that a reduction in the levels of hnRNP A1 and A2 by RNA interference or their cytoplasmic retention by osmotic stress drastically increases the transcription of a reporter gene. Based on previous work, we propose that this effect may be linked to a decrease in the activity of the transcription elongation factor P-TEFb. Consistent with this hypothesis, the transcription of the reporter gene was stimulated when the catalytic component of P-TEFb, CDK9, was inhibited with DRB. While low levels of A1/A2 stimulated the association of RNA polymerase II with the reporter gene, they also increased the association of CDK9 with the repressor 7SK RNA, and compromised the recovery of promoter-distal transcription on the Kitlg gene after the release of pausing. Transcriptome analysis revealed that more than 50% of the genes whose expression was affected by the siRNA-mediated depletion of A1/A2 were also affected by DRB. RNA polymerase II-chromatin immunoprecipitation assays on DRB-treated and A1/A2-depleted cells identified a common set of repressed genes displaying increased occupancy of polymerases at promoter-proximal locations, consistent with pausing. Overall, our results suggest that lowering the levels of hnRNP A1/A2 elicits defective transcription elongation on a fraction of P-TEFb-dependent genes, hence favoring the transcription of P-TEFb-independent genes. PMID:26011126

  1. Novel action of FOXL2 as mediator of Col1a2 gene autoregulation.

    PubMed

    Marongiu, Mara; Deiana, Manila; Marcia, Loredana; Sbardellati, Andrea; Asunis, Isadora; Meloni, Alessandra; Angius, Andrea; Cusano, Roberto; Loi, Angela; Crobu, Francesca; Fotia, Giorgio; Cucca, Francesco; Schlessinger, David; Crisponi, Laura

    2016-08-01

    FOXL2 belongs to the evolutionarily conserved forkhead box (FOX) superfamily and is a master transcription factor in a spectrum of developmental pathways, including ovarian and eyelid development and bone, cartilage and uterine maturation. To analyse its action, we searched for proteins that interact with FOXL2. We found that FOXL2 interacts with specific C-terminal propeptides of several fibrillary collagens. Because these propeptides can participate in feedback regulation of collagen biosynthesis, we inferred that FOXL2 could thereby affect the transcription of the cognate collagen genes. Focusing on COL1A2, we found that FOXL2 indeed affects collagen synthesis, by binding to a DNA response element located about 65Kb upstream of this gene. According to our hypothesis we found that in Foxl2(-/-) mouse ovaries, Col1a2 was elevated from birth to adulthood. The extracellular matrix (ECM) compartmentalizes the ovary during folliculogenesis, (with type I, type III and type IV collagens as primary components), and ECM composition changes during the reproductive lifespan. In Foxl2(-/-) mouse ovaries, in addition to up-regulation of Col1a2, Col3a1, Col4a1 and fibronectin were also upregulated, while laminin expression was reduced. Thus, by regulating levels of extracellular matrix components, FOXL2 may contribute to both ovarian histogenesis and the fibrosis attendant on depletion of the follicle reserve during reproductive aging and menopause. PMID:27212026

  2. Novel de novo EEF1A2 missense mutations causing epilepsy and intellectual disability

    PubMed Central

    Lam, Wayne W.K.; Millichap, John J.; Soares, Dinesh C.; Chin, Richard; McLellan, Ailsa; FitzPatrick, David R.; Elmslie, Frances; Lees, Melissa M.; Schaefer, G. Bradley

    2016-01-01

    Background Exome sequencing has led to the discovery of mutations in novel causative genes for epilepsy. One such gene is EEF1A2, encoding a neuromuscular specific translation elongation factor, which has been found to be mutated de novo in five cases of severe epilepsy. We now report on a further seven cases, each with a different mutation, of which five are newly described. Methods New cases were identified and sequenced through the Deciphering Developmental Disabilities project, via direct contact with neurologists or geneticists, or recruited via our website. Results All the mutations cause epilepsy and intellectual disability, but with a much wider range of severity than previously identified. All new cases share specific subtle facial dysmorphic features. Each mutation occurs at an evolutionarily highly conserved amino acid position indicating strong structural or functional selective pressure. Conclusions EEF1A2 should be considered as a causative gene not only in cases of epileptic encephalopathy but also in children with less severe epilepsy and intellectual disability. The emergence of a possible discernible phenotype, a broad nasal bridge, tented upper lip, everted lower lip and downturned corners of the mouth may help in identifying patients with mutations in EEF1A2. PMID:27441201

  3. Overexpression of MMP-7 increases collagen 1A2 in the aging kidney

    PubMed Central

    Ślusarz, Anna; Nichols, LaNita A; Grunz-Borgmann, Elizabeth A; Chen, Gang; Akintola, Adebayo D; Catania, Jeffery M; Burghardt, Robert C; Trzeciakowski, Jerome P; Parrish, Alan R

    2013-01-01

    The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis that leads to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however, it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, with over a 500-fold upregulation in 2-year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of protein kinase A (PKA), src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 upregulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src, and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD. PMID:24273653

  4. Overexpression of MMP-7 Increases Collagen 1A2 in the Aging Kidney.

    PubMed

    Oelusarz, Anna; Nichols, Lanita A; Grunz-Borgmann, Elizabeth A; Chen, Gang; Akintola, Adebayo D; Catania, Jeffery M; Burghardt, Robert C; Trzeciakowski, Jerome P; Parrish, Alan R

    2013-10-01

    The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis, that lead to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, and over a 500 fold up-regulation in 2 year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of PKA, src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 up-regulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD. PMID:24273653

  5. Oxidation of N-Nitrosoalkylamines by human cytochrome P450 2A6: sequential oxidation to aldehydes and carboxylic acids and analysis of reaction steps.

    PubMed

    Chowdhury, Goutam; Calcutt, M Wade; Guengerich, F Peter

    2010-03-12

    Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH(3)CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect ((D)k(app) approximately 10), which was highly expressed in a variety of competitive and non-competitive experiments. The (D)k(app) for DEN was approximately 3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO(2)H and CH(3)CO(2)H, respectively. In neither case was a lag observed, which was unexpected considering the k(cat) and K(m) parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde). PMID:20061389

  6. [Evaluation of pharmacokinetic interaction of aphobazole with CYP1A2 drug-substrate in experiments].

    PubMed

    Novitskaia, Ia G; Litvin, A A; Viglinskaia, A O; Zherdev, V P

    2013-01-01

    The effect of aphobazole on CYP1A2 (drug-marker caffeine) was studied in rats. Aphobazole was administered orally at doses 5 and 25 mg/kg, caffeine 50 mg/kg. The metabolic ratios (MR) for the caffeine metabolites (theobromine and paraxanthine) were accounted. After aphobazole administration at the effective, anxiolytic dose (5 mg/kg) for 4 days (3 times per day every 3 hours) neither the inhibiting nor the inducing effects on NOD1A2 was revealed. Increasing the aphobazole dose up to 25 mg/kg after 2 days repeated administrations of the drug made it possible to reveal a moderate inducing effect. Longer aphobazole administration (4 days), the inducing effect is amplified. Since the MR values on theobromine and paraxanthine after 2-day administration aphobazole exceed similar values in the control of 2.5 and 3.3 times, respectively. MR values after the 4-days aphobazole administration in dose 25 mg/kg exceed similar values in the control of 4.2 times for theobromine and in 6.1 times for paraxanthine. PMID:24003488

  7. USE OF CYP1A2(-/-) KNOCKOUT AND CYP1A2(+/+) C57BL/6N PARENTAL STRAINS OF MICE TO COMPARE METABOLISM OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)

    EPA Science Inventory

    USE OF CYP1A2 (-/-) KNOCKOUT AND CYP1A2 (+/+) C57BL/6N PARENTAL STRAINS OF MICE TO COMPARE METABOLISM OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD). J J Diliberto1 and H Hakk2. 1USEPA ORD, NHEERL, ETD, PKB, Research Triangle Park, NC, USA; 2USDA-ARS, BRL, Fargo, ND, USA. Spons...

  8. Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism

    PubMed Central

    Sachse, Christoph; Bhambra, Upinder; Smith, Gillian; Lightfoot, Tracy J; Barrett, Jennifer H; Scollay, Jenna; Garner, R Colin; Boobis, Alan R; Wolf, C Roland; Gooderham, Nigel J

    2003-01-01

    Aim Several single nucleotide polymorphisms (SNPs) of the cytochrome P450 enzyme 1A2 gene (CYP1A2) have been reported. Here, frequencies, linkage disequilibrium and phenotypic consequences of six SNPs are described. Methods From genomic DNA, 114 British Caucasians (49 colorectal cancer cases and 65 controls) were genotyped for the CYP1A2 polymorphisms −3858G→A (allele CYP1A2*1C), −2464T→delT (CYP1A2*1D), −740T→G (CYP1A2*1E and *1G), −164A→C (CYP1A2*1F), 63C→G (CYP1A2*2), and 1545T→C (alleles CYP1A2*1B, *1G, *1H and *3), using polymerase chain reaction–restriction fragment length polymorphism assays. All patients and controls were phenotyped for CYP1A2 by h.p.l.c. analysis of urinary caffeine metabolites. Results In 114 samples, the most frequent CYP1A2 SNPs were 1545T→C (38.2% of tested chromosomes), −164A→C (CYP1A2*1F, 33.3%) and −2464T→delT (CYP1A2*1D, 4.82%). The SNPs were in linkage disequilibrium: the most frequent constellations were found to be −3858G/−2464T/−740T/−164A/63C/1545T (61.8%), −3858G/−2464T/−740T/−164C/63C/1545C (33.3%), and −3858G/−2464delT/−740T/−164A/63C/1545C (3.51%), with no significant frequency differences between cases and controls. In the phenotype analysis, lower caffeine metabolic ratios were detected in cases than in controls. This was significant in smokers (n = 14, P = 0.020), and in a subgroup of 15 matched case-control pairs (P = 0.007), but it was not significant in nonsmokers (n = 100, P = 0.39). There was no detectable association between CYP1A2 genotype and caffeine phenotype. Conclusions (i) CYP1A2 polymorphisms are in linkage disequilibrium. Therefore, only −164A→C (CYP1A2*1F) and −2464T→delT (CYP1A2*1D) need to be analysed in the routine assessment of CYP1A2 genotype; (ii) in vivo CYP1A2 activity is lower in colorectal cancer patients than in controls, and (iii) CYP1A2 genotype had no effect on phenotype (based on the caffeine metabolite ratio). However, this

  9. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1091 Ship radio equipment—Sea areas A1, A2, and A3....

  10. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1091 Ship radio equipment—Sea areas A1, A2, and A3....

  11. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1091 Ship radio equipment—Sea areas A1, A2, and A3....

  12. AhrdCyp1a2(−/−) mice show increased susceptibility to PCB-induced developmental neurotoxicity

    PubMed Central

    Curran, Christine Perdan; Altenhofen, Emily; Ashworth, Amy; Brown, Austin; Kamau-Cheggeh, Cellestine; Curran, Melinda; Evans, Amber; Floyd, Rikki; Fowler, Jocelyn; Garber, Helen; Hays, Breann; Kraemer, Sarah; Lang, Anna; Mynhier, Andrea; Samuels, Ashton; Strohmaier, Carly

    2012-01-01

    Polychlorinated biphenyls (PCBs) are developmental neurotoxicants that produce cognitive and behavioral changes in children exposed during gestation and lactation. Coplanar PCBs bind the aryl hydrocarbon receptor (AHR) and can be sequestered in liver by cytochrome P450 1A2 (CYP1A2). The AHR is a ligand-activated transcription factor which increases expression of the CYP1 family, including CYP1A2. Our previous work examining genetic susceptibility to developmental PCB neurotoxicity showed that AhrbCyp1a2(−/−) mice with the high-affinity Ahrb allele and lacking CYP1A2 were most susceptible while AhrbCyp1a2(+/+) and poor-affinity AhrdCyp1a2(+/+) mice were resistant. To follow up, a fourth line of mice was generated with the AhrdCyp1a2(−/−) genotype and compared with the background strain AhrbCyp1a2(+/+). Dams received a PCB mixture or the corn oil vehicle at gestational day 10 (GD10) and postnatal day 5 (PND5). Offspring were tested at PND60 in open field locomotor, acoustic startle with pre-pulse inhibition (PPI), novel object recognition and Morris water maze. Locomotor activity was increased in PCB-treated AhrbCyp1a2(+/+) mice, but no differences were seen in control v. PCB-treated AhrdCyp1a2(−/−) mice. PCB-treated AhrdCyp1a2(−/−) mice had a higher baseline startle response and significantly reduced pre-pulse inhibition at the 74dB level compared with corn oil-treated controls (P<0.05). PCB-treated AhrdCyp1a2(−/−) mice had impairments in novel objective recognition (P<0.05) and during all three hidden platform phases of Morris water maze (P<0.01). Combined with our previous findings, these results indicate Cyp1a2 genotype is more important in susceptibility to PCB-induced deficits in learning and memory, but Ahr genotype appears more important when assessing acoustic startle-PPI and locomotor activity. PMID:22935098

  13. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer

    SciTech Connect

    Sun, Yue; Du, Chengli; Wang, Bo; Zhang, Yanling; Liu, Xiaoyan; Ren, Guoping

    2014-07-18

    Highlights: • The expression of eEF1A2 is up-regulated in prostate cancer tissues. • Suppression of eEF1A2 inhibits the proliferation and promotes apoptosis. • Inhibition of eEF1A2 enhances the expression of apoptotic relevant proteins. • The expressions of eEF1A2 and cleavage-caspase3 are inversely correlated. - Abstract: Background: eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. Methods: We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Results: Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Conclusion: Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.

  14. Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation-A mammalian cell-based mutagenesis approach

    SciTech Connect

    Chiang, Huai-chih; Wang, Chin-Ying; Lee, Hui-Ling; Tsou, Tsui-Chun

    2011-06-01

    Both cytochrome P450 2A6 (CYP2A6) and cytochrome P450 2A13 (CYP2A13) are involved in metabolic activation of tobacco-specific nitrosamines and may play important roles in cigarette smoking-induced lung cancer. Unlike CYP2A6, effects of CYP2A13 on the tobacco-specific nitrosamine-induced mutagenesis in lung cells remain unclear. This study uses a supF mutagenesis assay to examine the relative effects of CYP2A6 and CYP2A13 on metabolic activation of a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and its resulting mutagenesis in human lung cells. A recombinant adenovirus-mediated CYP2A6/CYP2A13 expression system was established to specifically address the relative effects of these two CYPs. Mutagenesis results revealed that both CYP2A6 and CYP2A13 significantly enhanced the NNK-induced supF mutation and that the mutagenic effect of CYP2A13 was markedly higher than that of CYP2A6. Analysis of NNK metabolism indicated that {>=} 70% of NNK was detoxified to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), either with or without CYP2A6/CYP2A13 expression. Both CYP2A6 and CYP2A13 significantly enhanced the {alpha}-hydroxylation of NNK; and the {alpha}-hydroxylation activity of CYP2A13 was significantly higher than that of CYP2A6. Analysis of the NNK-related DNA adduct formation indicated that, in the presence of CYP2A13, NNK treatments caused marked increases in O{sup 6}-methylguanine (O{sup 6}-MeG). The present results provide the first direct in vitro evidence demonstrating the predominant roles of CYP2A13 in NNK-induced mutagenesis, possibly via metabolic activation of NNK {alpha}-hydroxylation.

  15. Quantitative Assessment of the Influence of Cytochrome P450 1A2 Gene Polymorphism and Colorectal Cancer Risk

    PubMed Central

    Rewuti, Abudouaini; Ma, Yu-Shui; Wang, Xiao-Feng; Xia, Qing; Fu, Da; Han, Yu-Song

    2013-01-01

    Cytochrome P450 1A2 (CYP1A2) encodes a member of the cytochrome P450 superfamily of enzymes, which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of colorectal cancer (CRC). The CYP1A2*C (rs2069514) and CYP1A2*F (rs762551) polymorphism are two of the most commonly studied polymorphisms of the gene for their association with risk of CRC, but the results are conflicting. To derive a more precise estimation of the relationship between CYP1A2 and genetic risk of CRC, we performed a comprehensive meta-analysis which included 7088 cases and 7568 controls from 12 published case-control studies. In a combined analysis, the summary per-allele odds ratio for CRC was 0.91 (95% CI: 0.83–1.00, P = 0.04), and 0.91 (95% CI: 0.68–1.22, P = 0.53), for CYP1A2 *F and *C allele, respectively. In the subgroup analysis by ethnicity, significant associations were found in Asians for CYP1A2*F and CYP1A2*C, while no significant associations were detected among Caucasian populations. Similar results were also observed using dominant genetic model. Potential sources of heterogeneity were explored by subgroup analysis and meta-regression. No significant heterogeneity was detected in most of comparisons. This meta-analysis suggests that the CYP1A2 *F and *C polymorphism is a protective factor against CRC among Asians. PMID:23951174

  16. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta.

    PubMed

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Huang, Yihe; Ma, Yan; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-06-01

    The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7μm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution

  17. Effects of heme precursors on CYP1A2 and POR expression in the baculovirus/Spodoptera frugiperda system☆

    PubMed Central

    Lu, Huiyuan; Ma, Jun; Liu, Nian; Wang, Shoulin

    2010-01-01

    Objective CYP1A2 and NADPH-CYP450 oxidoreductase (POR) were expressed in the baculovirus/Spodoptera frugiperda (sf9) system. The aim of this study was to investigate the effects of heme precursors on the expression of CYP1A2 and POR. Methods The heme precursors [δ-Aminolaevulinic Acid (5-ALA), Fe3+ and hemin] were introduced into the system to evaluate their effects on the expression of CYP1A2, POR and their co-expression. All the proteins were identified using immunoblotting, CO-difference spectroscopy, or cytochrome c assay. Results In the present study, functional CYP1A2 and POR were successfully expressed in the baculovirus/sf9 system, and both of them showed high activities. Co-addition of 5-ALA and Fe3+ significantly improved expression of CYP1A2 by about 50% compared with the addition of 5-ALA, Fe3+ or hemin alone. Either co-addition of 5-ALA and Fe3+ or addition of 5-ALA or Fe3+ alone improved the POR expression level 2 fold and its activity 7-10 fold compared with control (no addition). However, unlike CYP1A2, there was no difference between the co-addition and addition of these heme precursors alone. Different ratios of BvCYP1A2 to BvPOR also affected the co-expression of CYP1A2 and POR, with a 3:1 ratio of BvCYP1A2 / BvPOR significantly increasing their co-expression. Surprisingly, the addition of 0.1 mM 5-ALA or Fe3+ alone, but not their co-addition, could significantly improve the CYP1A2 and POR co-expression (P < 0.05). Conclusion 5-ALA and Fe3+ increased the expression of CYP1A2 and POR in a baculovirus/sf9 system, but the pattern of their expression was different between their expression alone and co-expression. PMID:23554636

  18. CYP1A2 rs762551 polymorphism contributes to risk of lung cancer: a meta-analysis.

    PubMed

    Ma, Zheng; Guo, Wei; Gong, Taiqian; Niu, Hui-Jun; Wang, Ru-Wen; Jiang, Yao-Guang

    2014-03-01

    Previous studies proposed that CYP1A2 rs762551 polymorphism might be associated with risk of lung cancer by influencing the function of CYP1A2. However, previous studies on the association between CYP1A2 rs762551 polymorphism and risk of lung cancer reported inconsistent findings. We performed a meta-analysis of the published case-control studies to assess the association between CYP1A2 rs762551 polymorphism and risk of lung cancer. PubMed and Embase were searched to identify relevant studies on the association between CYP1A2 rs762551 polymorphism and risk of lung cancer, and seven studies with a total of 3,320 subjects were finally included into the meta-analysis. The pooled odds ratio (OR) and 95 % confidence interval (95%CI) was calculated to evaluate the association. Meta-analysis of total studies showed that CYP1A2 rs762551 polymorphism contributed to risk of lung cancer under all four genetic models (C versus A: OR = 1.26, 95%CI 1.13 to 1.40, P < 0.001; CC versus AA: OR = 1.61, 95%CI 1.28 to 2.04, P < 0.001; CC versus AA/AC: OR = 1.52, 95%CI 1.11 to 2.09, P = 0.009; CC/AC versus AA: OR = 1.28, 95%CI 1.10 to 1.48, P = 0.001). Subgroup analysis based on ethnicity further suggested that CYP1A2 rs762551 polymorphism was associated with risk of lung cancer in Caucasians. These results from the meta-analysis suggest that CYP1A2 rs762551 polymorphism contributes to risk of lung cancer. PMID:24293373

  19. Expression of Organic Anion Transporting Polypeptide 1A2 in Red Blood Cells and Its Potential Impact on Antimalarial Therapy.

    PubMed

    Hubeny, Andrea; Keiser, Markus; Oswald, Stefan; Jedlitschky, Gabriele; Kroemer, Heyo K; Siegmund, Werner; Grube, Markus

    2016-10-01

    Important antimalarial drugs, including quinolines, act against blood schizonts by interfering with hemoglobin metabolism. To reach their site of action, these compounds have to cross the plasma membrane of red blood cells (RBCs). Organic cation transporters (OCTs) and organic anion transporting polypeptides (OATPs) are important uptake transporters and interesting candidates for local drug transport. We therefore studied their interaction with antimalarial compounds (quinine, chloroquine, mefloquine, pyrimethamine, artemisinin, and artesunate) and characterized the expression of OATP1A2 and OATP2B1 in RBCs. Competition assays using transporter-overexpressing Madin-Darby canine kidney (MDCKII) cells and the model substrate estrone-3-sulfate identified quinine and chloroquine as potent inhibitors of OATP1A2 function (IC50 quinine: 0.7 ± 1.2 µM; chloroquine: 1.0 ± 1.5 µM), but no or only moderate effects were observed for OATP2B1. Subsequently, quinine was identified as a substrate of OATP1A2 (Km 23.4 µM). The OATP1A2-mediated uptake was sensitive to the OATP1A2-specific inhibitor naringin. Both OATPs were expressed in human RBCs, and ex vivo transport studies demonstrated naringin-sensitive accumulation of quinine in these cells (60 pmol versus 38 pmol/5 × 10(5) RBCs). Additional transport studies using OCT1-3 and organic cation transporter novel type 1 (OCTN1) indicated only significant quinine uptake by OCT1, which was not detected in RBCs. In conclusion, our data demonstrate expression of OATP2B1 and OATP1A2 in RBCs as well as OATP1A2-mediated uptake of quinine. Therefore, modulation of OATP1A2 function may affect quinine uptake into erythrocytes. PMID:27504015

  20. NblA1/A2-Dependent Homeostasis of Amino Acid Pools during Nitrogen Starvation in Synechocystis sp. PCC 6803

    PubMed Central

    Kiyota, Hiroshi; Hirai, Masami Yokota; Ikeuchi, Masahiko

    2014-01-01

    Nutrient balance is important for photosynthetic growth and biomass production in microalgae. Here, we investigated and compared metabolic responses of amino acid pools to nitrogen and sulfur starvation in a unicellular model cyanobacterium, Synechocystis sp. PCC 6803, and its mutant nblA1/A2. It is known that NblA1/A2-dependent and -independent breakdown of abundant photosynthetic phycobiliproteins and other cellular proteins supply nutrients to the organism. However, the contribution of the NblA1/A2-dependent nutrient supply to amino acid pool homeostasis has not been studied. Our study demonstrates that changes in the pool size of many amino acids during nitrogen starvation can be categorized as NblA1/A2-dependent (Gln, Glu, glutathione, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Tyr and Val) and NblA1/A2-independent (Ala, Asn, Lys, and Trp). We also report unique changes in amino acid pool sizes during sulfur starvation in wild type and the mutant and found a generally marked increase in the Lys pool in cyanobacteria during nutrient starvation. In conclusion, the NblA1/A2-dependent protein turnover contributes to the maintenance of many amino acid pools during nitrogen starvation. PMID:24983765

  1. Identification of inhibitory component in cinnamon--O-methoxycinnamaldehyde inhibits CYP1A2 and CYP2E1-.

    PubMed

    Hasegawa, Atsushi; Yoshino, Masaki; Nakamura, Hiroyoshi; Ishii, Itsuko; Watanabe, Toshiko; Kiuchi, Masahiro; Ishikawa, Tsutomu; Ohmori, Shigeru; Kitada, Mitsukazu

    2002-01-01

    The Cinnamomi Cortex and Ephedra Herba were found to more strongly inhibit aminopyrine N-demethylation in rat liver microsomes compared to other constituents included in Sho-seiryu-to. The component inhibiting drug oxidations catalyzed by CYP1A2 and CYP2E1 was isolated from Cinnamomi Cortex, and was identified as o-methoxycinnamaldehyde (OMCA). When phenacetin and 4-nitrophenol were used as probe substrates for CYP1A2 and CYP2E1, respectively, the OMCA was shown to be a competitive inhibitor against CYP1A2 while it was a mixed type inhibitor against CYP2E1. The inhibitory effect of OMCA on 4-nitrophenol 2-hydroxylation (K(i)=6.3 microM) was somewhat potent compared to that observed on phenacetin O-deethylation (K(i)=13.7 microM) in rat liver microsomes. PMID:15618674

  2. Meta-analysis of correlation between the CYP1A2 -3860 G > A polymorphism and lung cancer risk.

    PubMed

    Ren, J; He, B Z; Zhang, T S; Lu, S P; Yan, T

    2016-01-01

    The aim of this meta-analysis was to assess the association between a polymorphism (-3860 G > A) in the cytochrome P450 1A2 (CYP1A2) gene and lung cancer susceptibility. Relevant studies were retrieved from the PubMed and EMBase databases, and additionally evaluated for conformance with the inclusion criteria. The odds ratios (ORs) and their 95% confidence intervals (95%CIs) in all selected studies were used to assess the relationship between the CYP1A2 -3860 G > A polymorphism and lung cancer risk. The data was pooled using Stata v.11. Six studies, comprising 1168 lung cancer patients and 1598 controls, were included in this meta-analysis. We found no correlation between the CYP1A2 -3860 G > A polymorphism and lung cancer risk in any of the models (AA vs GG: OR = 4.79, 95%CI = 0.03-702.67; GA vs GG: OR = 1.33, 95%CI = 0.74-2.39; dominant model: OR = 1.41, 95%CI = 0.69-2.90; recessive model: OR = 4.07, 95%CI = 0.04-368.35). Moreover, we observed no statistically significant association between CYP1A2 -3860 G > A and lung cancer susceptibility when stratified by the ethnicity of the sample populations, sample size, and study quality, except in a low-quality study. Our findings indicated that the -3860 G > A polymorphism in CYP1A2 might not be a risk factor for lung cancer. PMID:27323197

  3. Variable inhibitory effect of herbal supplements of different brands on human P450 CYP1A2

    PubMed Central

    Wanwimolruk, Sompon; Prachayasittikul, Virapong

    2012-01-01

    Herbal supplements are not governed by the same regulations as prescription drugs, we hypothesize that the content of their active ingredients may vary largely among different manufacturers. This may produce variable therapeutic outcomes. This study aims to examine this hypothesis on commonly used herbal supplements among cancer patients. CYP1A2 has been implicated in the activation of many carcinogens and alteration in its activity may be a mechanism associated with the protective effect of herbal products. Activity of human CYP1A2 was used to determine the effect of four herbal supplements of different brands, namely, black cohosh (BC), ginseng, grape seed extract (GSE) and green tea extract (GTE). The herbal content was extracted with methanol, and extract aliquots were used to determine their effect on CYP1A2. Human liver microsomes, the CYP1A2 probe (7-ethoxyresorufin) and NADPH in buffer were incubated with and without herbal extract. Metabolite (resorufin) formation was monitored by HPLC. Seven BC products caused a mild inhibition of CYP1A2, ranging from 2.4 % by GNC Plus to 21.9 % by Nature's Resource. Among nine ginseng products tested, the inhibitory effect varied from 4.2 % by Imperial to 44.6 % by Solarays. The effect of nine GSE brands also varied, ranging from 1.7 % (Country Life) to 26.5 % (Veg Life). Of twelve GTE products, the inhibitory effect varied from 2.9 % by Henry's to 46.6 % by GNC Plus. It appears that the inhibition of selected herbal supplements on CYP1A2 activity varies considerably among different brands of the products. This may be due to variations in the herbal products' active ingredients content. PMID:27298605

  4. Screening of CACNA1A and ATP1A2 genes in hemiplegic migraine: clinical, genetic, and functional studies.

    PubMed

    Carreño, Oriel; Corominas, Roser; Serra, Selma Angèlica; Sintas, Cèlia; Fernández-Castillo, Noèlia; Vila-Pueyo, Marta; Toma, Claudio; Gené, Gemma G; Pons, Roser; Llaneza, Miguel; Sobrido, María-Jesús; Grinberg, Daniel; Valverde, Miguel Ángel; Fernández-Fernández, José Manuel; Macaya, Alfons; Cormand, Bru

    2013-11-01

    Hemiplegic migraine (HM) is a rare and severe subtype of autosomal dominant migraine, characterized by a complex aura including some degree of motor weakness. Mutations in four genes (CACNA1A, ATP1A2, SCN1A and PRRT2) have been detected in familial and in sporadic cases. This genetically and clinically heterogeneous disorder is often accompanied by permanent ataxia, epileptic seizures, mental retardation, and chronic progressive cerebellar atrophy. Here we report a mutation screening in the CACNA1A and ATP1A2 genes in 18 patients with HM. Furthermore, intragenic copy number variant (CNV) analysis was performed in CACNA1A using quantitative approaches. We identified four previously described missense CACNA1A mutations (p.Ser218Leu, p.Thr501Met, p.Arg583Gln, and p.Thr666Met) and two missense changes in the ATP1A2 gene, the previously described p.Ala606Thr and the novel variant p.Glu825Lys. No structural variants were found. This genetic screening allowed the identification of more than 30% of the disease alleles, all present in a heterozygous state. Functional consequences of the CACNA1A-p.Thr501Met mutation, previously described only in association with episodic ataxia, and ATP1A2-p.Glu825Lys, were investigated by means of electrophysiological studies, cell viability assays or Western blot analysis. Our data suggest that both these variants are disease-causing. PMID:24498617

  5. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    PubMed

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-07-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants. PMID:26771455

  6. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of these standards can be inspected at the Federal... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System...

  7. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  8. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  9. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  10. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  11. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of these standards can be inspected at the Federal... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System...

  12. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  13. Screening of CACNA1A and ATP1A2 genes in hemiplegic migraine: clinical, genetic, and functional studies

    PubMed Central

    Carreño, Oriel; Corominas, Roser; Serra, Selma Angèlica; Sintas, Cèlia; Fernández-Castillo, Noèlia; Vila-Pueyo, Marta; Toma, Claudio; Gené, Gemma G; Pons, Roser; Llaneza, Miguel; Sobrido, María-Jesús; Grinberg, Daniel; Valverde, Miguel Ángel; Fernández-Fernández, José Manuel; Macaya, Alfons; Cormand, Bru

    2013-01-01

    Hemiplegic migraine (HM) is a rare and severe subtype of autosomal dominant migraine, characterized by a complex aura including some degree of motor weakness. Mutations in four genes (CACNA1A, ATP1A2, SCN1A and PRRT2) have been detected in familial and in sporadic cases. This genetically and clinically heterogeneous disorder is often accompanied by permanent ataxia, epileptic seizures, mental retardation, and chronic progressive cerebellar atrophy. Here we report a mutation screening in the CACNA1A and ATP1A2 genes in 18 patients with HM. Furthermore, intragenic copy number variant (CNV) analysis was performed in CACNA1A using quantitative approaches. We identified four previously described missense CACNA1A mutations (p.Ser218Leu, p.Thr501Met, p.Arg583Gln, and p.Thr666Met) and two missense changes in the ATP1A2 gene, the previously described p.Ala606Thr and the novel variant p.Glu825Lys. No structural variants were found. This genetic screening allowed the identification of more than 30% of the disease alleles, all present in a heterozygous state. Functional consequences of the CACNA1A-p.Thr501Met mutation, previously described only in association with episodic ataxia, and ATP1A2-p.Glu825Lys, were investigated by means of electrophysiological studies, cell viability assays or Western blot analysis. Our data suggest that both these variants are disease-causing. PMID:24498617

  14. Suppression of Hepatic Cyp1a2 by Total Ginsenosides in Lipopolysaccharide-Treated Mice and Primary Mouse Hepatocytes.

    PubMed

    Sun, Haiyan; Yan, Yijing; Xu, Chenshu; Wan, Hongxia; Liu, Dong

    2016-03-23

    The roots of Panax ginseng (ginseng) have been extensively used in traditional Chinese medicine. However, herb-drug interactions between ginseng and other co-administered drugs are not fully understood concerning the effect of ginseng on drug metabolism and clearance. The current study aimed to elucidate the effect of total ginsenosides, a typical ginseng extract, on the regulation of Cyp1a2, a key enzyme to regulate drug metabolism under the normal and inflammatory conditions in mice. Female C57BL/6J mice treated with vehicle and lipopolysaccharide (LPS) were intragastrically administered ginseng extract for 7 days before hepatic P450 expression was analyzed. Primary mouse hepatocytes were also employed to further explore the effects of total ginsenosides on Cyp1a2 expression. The results showed that total ginsenosides in P. ginseng extract exhibited a concentration-dependent suppression on Cyp1a2 mRNA and protein level in both mice and primary mouse hepatocytes. Notably, the inhibitory effects of total ginsenosides on Cyp1a2 mRNA and protein expression were further enhanced following LPS treatment. Therefore, future research is warranted to investigate the role of ginsenosides in the regulation of hepatic CYP450s. Moreover, consumption of ginseng as food or supplement should be monitored for patients on combinational therapy, especially those with inflammatory diseases. PMID:26923348

  15. Genetic determinants of cytochrome P450 2A6 activity and biomarkers of tobacco smoke exposure in relation to risk of lung cancer development in the Shanghai cohort study.

    PubMed

    Yuan, Jian-Min; Nelson, Heather H; Butler, Lesley M; Carmella, Steven G; Wang, Renwei; Kuriger-Laber, Jacquelyn K; Adams-Haduch, Jennifer; Hecht, Stephen S; Gao, Yu-Tang; Murphy, Sharon E

    2016-05-01

    Cytochrome P450 2A6 (CYP2A6) catalyzes nicotine metabolism and contributes to the metabolism of the tobacco-specific lung carcinogen, NNK. Genetic variation in CYP2A6 may affect smoking behavior and contribute to lung cancer risk. A nested case-control study of 325 lung cancer cases and 356 controls was conducted within a prospective cohort of 18,244 Chinese men in Shanghai, China. Quantified were 4 allelic variants of CYP2A6 [*1(+51A), *4, *7, and *9] and urinary total nicotine, total cotinine, total trans-3'-hydroxycotinine (3HC) and total NNAL (an NNK metabolite). Calculated were total nicotine equivalents (TNE), the sum of total nicotine, total cotinine and total 3HC and the total 3HC:total cotinine ratio as a measure of CYP2A6 activity. The nicotine metabolizer status (normal, intermediate, slow and poor) was determined by CYP2A6 genotypes. The smoking-adjusted odds ratios (95% confidence intervals) of lung cancer for the highest vs lowest quartile of total nicotine, total cotinine, total 3HC, TNE and total NNAL were 3.03 (1.80-5.10), 4.70 (2.61-8.46), 4.26 (2.37-7.68), 4.71 (2.61-8.52), and 3.15 (1.86-5.33) (all Ptrend  < 0.001), respectively. Among controls CYP2A6 poor metabolizers had a 78% lower total 3HC:total cotinine ratio and 72% higher total nicotine (Ptrend ≤ 0.002). Poor metabolizers had an odds ratio of 0.64 (95% confidence interval = 0.43-0.97) for lung cancer, which was statistically nonsignificant (odds ratio = 0.74, 95% confidence interval = 0.48-1.15) after adjustment for urinary TNE and smoking intensity and duration. The lower lung cancer risk observed in CYP2A6 poor metabolizers is partially explained by the strong influence of CYP2A6 genetic polymorphisms on nicotine uptake and metabolism. PMID:26662855

  16. Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients.

    PubMed

    Fernández-Santander, Ana; Gaibar, María; Novillo, Apolonia; Romero-Lorca, Alicia; Rubio, Margarita; Chicharro, Luis Miguel; Tejerina, Armando; Bandrés, Fernando

    2013-01-01

    Tamoxifen is a pro-drug widely used in breast cancer patients to prevent tumor recurrence. Prior work has revealed a role of cytochrome and sulfotransferase enzymes in tamoxifen metabolism. In this descriptive study, correlations were examined between concentrations of tamoxifen metabolites and genotypes for CYP2D6, CYP3A4, CYP3A5, SULT1A1, SULT1A2 and SULT1E1 in 135 patients with estrogen receptor-positive breast cancer. Patients were genotyped using the Roche-AmpliChip® CYP450 Test, and Real-Time and conventional PCR-RFLP. Plasma tamoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen, endoxifen and tamoxifen-N-oxide were isolated and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Significantly higher endoxifen levels were detected in patients with the wt/wt CYP2D6 compared to the v/v CYP2D6 genotype (p<0.001). No differences were detected in the remaining tamoxifen metabolites among CYP2D6 genotypes. Patients featuring the SULT1A2*2 and SULT1A2*3 alleles showed significantly higher plasma levels of 4-hydroxy-tamoxifen and endoxifen (p = 0.025 and p = 0.006, respectively), as likely substrates of the SULT1A2 enzyme. Our observations indicate that besides the CYP2D6 genotype leading to tamoxifen conversion to potent hydroxylated metabolites in a manner consistent with a gene-dose effect, SULT1A2 also seems to play a role in maintaining optimal levels of both 4-hydroxy-tamoxifen and endoxifen. PMID:23922954

  17. Relationship between Genotypes Sult1a2 and Cyp2d6 and Tamoxifen Metabolism in Breast Cancer Patients

    PubMed Central

    Fernández-Santander, Ana; Gaibar, María; Novillo, Apolonia; Romero-Lorca, Alicia; Rubio, Margarita; Chicharro, Luis Miguel; Tejerina, Armando; Bandrés, Fernando

    2013-01-01

    Tamoxifen is a pro-drug widely used in breast cancer patients to prevent tumor recurrence. Prior work has revealed a role of cytochrome and sulfotransferase enzymes in tamoxifen metabolism. In this descriptive study, correlations were examined between concentrations of tamoxifen metabolites and genotypes for CYP2D6, CYP3A4, CYP3A5, SULT1A1, SULT1A2 and SULT1E1 in 135 patients with estrogen receptor-positive breast cancer. Patients were genotyped using the Roche-AmpliChip® CYP450 Test, and Real-Time and conventional PCR-RFLP. Plasma tamoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen, endoxifen and tamoxifen-N-oxide were isolated and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Significantly higher endoxifen levels were detected in patients with the wt/wt CYP2D6 compared to the v/v CYP2D6 genotype (p<0.001). No differences were detected in the remaining tamoxifen metabolites among CYP2D6 genotypes. Patients featuring the SULT1A2*2 and SULT1A2*3 alleles showed significantly higher plasma levels of 4-hydroxy-tamoxifen and endoxifen (p = 0.025 and p = 0.006, respectively), as likely substrates of the SULT1A2 enzyme. Our observations indicate that besides the CYP2D6 genotype leading to tamoxifen conversion to potent hydroxylated metabolites in a manner consistent with a gene-dose effect, SULT1A2 also seems to play a role in maintaining optimal levels of both 4-hydroxy-tamoxifen and endoxifen. PMID:23922954

  18. Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man.

    PubMed

    Kall, M A; Clausen, J

    1995-10-01

    Two studies were performed in order to evaluate cytochrome P450 1A2 mediated caffeine metabolism during different nutritional conditions. 1. In the first study, 23 healthy male non-smokers, mean age 25, changed from a customary mixed diet to a standard diet in 6 days. The 6 day's standard diet was based on bread, potatoes, rice and boiled meat. Thus, broccoli, cabbage and other cruciferous vegetables, spinach, leeks, onion, parsley, grapefruit, toasted bread, fried and charcoal grilled food, smoked fish and meat, ham and sausages were avoided. 2. In the second study, 33 healthy non-smoking subjects, 24 men and nine women mean age 25 years, volunteered. The study was designed to compare a customary home dietary period with the 6 day period of low dietary P450 induction and with a 5 day supplementary dietary period, i.e. ingestion of known dietary inducers. None of the women were using oral contraceptives or were pregnant during the experimental period. In the period of diet supplementation, the volunteers received charcoal grilled hamburger as a supplement to the standard low induction diet for lunch for 5 days. The hamburgers were made with 150 g beef (18-20% fat) and were grilled on charcoal for 10 min on each side until they were 'well done'. In the present study P450 1A2 activity was estimated from the caffeine metabolic ratio, the so-called CYP 1A2 index:(AFMU + 1-MX + 1-MU/ 17 -DMU) of the caffeine metabolites formed after oral ingestion of 200 mg caffeine. Urine was collected 4-8 h after caffeine ingestion in study 1 and 5 h after caffeine ingestion in study 2. In study 1 the CYP 1A2 index decreased from 4.28 +/- 0.98 in the customary home dietary period to 3.87 +/- 0.69 in the standard dietary period corresponding to 10.6% (P < 0.06) decrease in the CYP 1A2 index. In study 2 the CYP 1A2 index decreased from 4.47 +/- 1.76 in the customary home dietary period to 3.90 +/- 1.12 in the standard dietary period corresponding to a 14.6% decrease (P < 0.2) in P450 1A

  19. Identification and characterization of reactive metabolites in myristicin-mediated mechanism-based inhibition of CYP1A2.

    PubMed

    Yang, Ai-Hong; He, Xin; Chen, Jun-Xiu; He, Li-Na; Jin, Chun-Huan; Wang, Li-Li; Zhang, Fang-Liang; An, Li-Jun

    2015-07-25

    Myristicin belongs to the methylenedioxyphenyl or allyl-benzene family of compounds, which are found widely in plants of the Umbelliferae family, such as parsley and carrot. Myristicin is also the major active component in the essential oils of mace and nutmeg. However, this compound can cause adverse reactions, particularly when taken inappropriately or in overdoses. One important source of toxicity of natural products arises from their metabolic biotransformations into reactive metabolites. Myristicin contains a methylenedioxyphenyl substructure, and this specific structural feature may allow compounds to cause a mechanism-based inhibition of cytochrome P450 enzymes and produce reactive metabolites. Therefore, the aim of this work was to identify whether the role of myristicin in CYP enzyme inhibition is mechanism-based inhibition and to gain further information regarding the structure of the resulting reactive metabolites. CYP cocktail assays showed that myristicin most significantly inhibits CYP1A2 among five CYP enzymes (CYP1A2, CYP2D6, CYP2E1, CYP3A4 and CYP2C19) from human liver microsomes. The 3.21-fold IC50 shift value of CYP1A2 indicates that myristicin may be a mechanism-based inhibitor of CYP1A2. Next, reduced glutathione was shown to block the inhibition of CYP1A2, indicating that myristicin utilized a mechanism-based inhibition. Phase I metabolism assays identified two metabolites, 5-allyl-1-methoxy-2,3-dihydroxybenzene (M1) and 1'-hydroxymyristicin or 2',3'-epoxy-myristicin (M2). Reduced glutathione capturing assays captured the glutathione-M1 adduct, and the reactive metabolites were identified using UPLC-MS(2) as a quinone and its tautomer. Thus, it was concluded that myristicin is a mechanism-based inhibitor of CYP1A2, and the reactive metabolites are quinone tautomers. Additionally, the cleavage process of the glutathione-M1 adduct was analyzed in further detail. This study provides additional information on the metabolic mechanism of myristicin

  20. In vitro inhibitory effect of piperlonguminine isolated from Piper longum on human cytochrome P450 1A2.

    PubMed

    Song, Min; Hwang, Jae Yun; Lee, Min Young; Jee, Jun-Goo; Lee, You Mie; Bae, Jong-Sup; Kim, Jeong Ah; Lee, Seung Ho; Lee, Sangkyu

    2014-08-01

    Piperlonguminine (PL), a major alkaloid isolated from Piper longum fruits, shows several biological activities including anti-tumor, anti-hyperlipidemic and anti-inflammatory effects. Although there have been studies of the biological effects of PL, the potential drug-interaction effect of PL following evaluation of inhibitory effects of cytochrome P450 (CYP) activities was not investigated. Here, to investigate the inhibitory effects of PL on the activities of CYP isoforms, CYP inhibition assays were conducted using a cocktail of probe substrates in pooled human liver microsome (HLMs) and human recombinant cDNA-expressed CYP. PL strongly inhibited CYP1A2-mediated phenacetin O-deethylation with an IC50 value of 8.8 μM, as NADPH-independent inhibition, while other CYPs were not significantly inhibited. A Lineweaver-Burk plot resulted in the inhibition mechanism of PL being divided into two different modes, reversible competitive inhibition in a low concentration range of 0-16 μM with a Ki value of 1.39 μM and uncompetitive inhibitory behavior at a high concentration range of 16-40 μM. In addition, PL only decreased CYP 1A2-catalyzed phenacetin O-deethylase activity with IC50 values of 10.0 μM in human recombinant cDNA-expressed 1A2, not 1A1. Overall, this is the first investigation of potential herb-drug interactions associated with PL conducted by identifying the competitive inhibitory effects of PL on CYP1A2 in HLMs. PMID:24194261

  1. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2.

    PubMed

    Reed, James R; dela Cruz, Albert Leo N; Lomnicki, Slawo M; Backes, Wayne L

    2015-12-01

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductase and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2-CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2. PMID:26423927

  2. A1/A2-Diamino-Substituted Pillar[5]arene-Based Acid-Base-Responsive Host-Guest System.

    PubMed

    Hu, Wei-Bo; Hu, Wen-Jing; Zhao, Xiao-Li; Liu, Yahu A; Li, Jiu-Sheng; Jiang, Biao; Wen, Ke

    2016-05-01

    An acid-base-responsive supramolecular host-guest system based on a planarly chiral A1/A2-diamino-substituted pillar[5]arene (1)/imidazolium ion recognition motif was created. The pillar[4]arene[1]diaminobenzene 1 can bring an electron-deficient imidazolium cation into its cylindrically shaped cavity under neutral or basic conditions and release it under acidic conditions. PMID:27088317

  3. The functions of the A1A2A3 domains in von Willebrand factor include multimerin 1 binding.

    PubMed

    Parker, D'Andra N; Tasneem, Subia; Farndale, Richard W; Bihan, Dominique; Sadler, J Evan; Sebastian, Silvie; de Groot, Philip G; Hayward, Catherine P M

    2016-07-01

    Multimerin 1 (MMRN1) is a massive, homopolymeric protein that is stored in platelets and endothelial cells for activation-induced release. In vitro, MMRN1 binds to the outer surfaces of activated platelets and endothelial cells, the extracellular matrix (including collagen) and von Willebrand factor (VWF) to support platelet adhesive functions. VWF associates with MMRN1 at high shear, not static conditions, suggesting that shear exposes cryptic sites within VWF that support MMRN1 binding. Modified ELISA and surface plasmon resonance were used to study the structural features of VWF that support MMRN1 binding, and determine the affinities for VWF-MMRN1 binding. High shear microfluidic platelet adhesion assays determined the functional consequences for VWF-MMRN1 binding. VWF binding to MMRN1 was enhanced by shear exposure and ristocetin, and required VWF A1A2A3 region, specifically the A1 and A3 domains. VWF A1A2A3 bound to MMRN1 with a physiologically relevant binding affinity (KD: 2.0 ± 0.4 nM), whereas the individual VWF A1 (KD: 39.3 ± 7.7 nM) and A3 domains (KD: 229 ± 114 nM) bound to MMRN1 with lower affinities. VWF A1A2A3 was also sufficient to support the adhesion of resting platelets to MMRN1 at high shear, by a mechanism dependent on VWF-GPIbα binding. Our study provides new information on the molecular basis of MMRN1 binding to VWF, and its role in supporting platelet adhesion at high shear. We propose that at sites of vessel injury, MMRN1 that is released following activation of platelets and endothelial cells, binds to VWF A1A2A3 region to support platelet adhesion at arterial shear rates. PMID:27052467

  4. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity

    PubMed Central

    Härtter, Sebastian; Nordmark, Anna; Rose, Dirk-Matthias; Bertilsson, Leif; Tybring, Gunnel; Laine, Kari

    2003-01-01

    Aims The aim of this study was to assess the influence of concomitant caffeine intake on the pharmacokinetics of oral melatonin, a probe drug for CYP1A2 activity. Methods Twelve healthy subjects, six smokers and six nonsmokers, were given melatonin (6 mg) either alone or in combination with caffeine (3 × 200 mg). Blood samples for the analysis of melatonin or caffeine and paraxanthine were taken from 1 h before until 6 h after intake of melatonin. Subjects were genotyped with respect to the CYP1A2*1F (C734A) polymorphism. Results When caffeine was coadministered the Cmax and AUC of melatonin were increased on average by 142% (P = 0.001, confidence interval on the difference 44, 80%) and 120% (P < 0.001, confidence interval on the difference 63, 178%), respectively. The inhibitory effect of caffeine was more pronounced in nonsmokers and in individuals with the *1F/*1F genotype. Conclusion The results of this study revealed a pronounced effect of caffeine on the bioavailability of orally given melatonin, most probably due to inhibition of CYP1A2 activity. PMID:14616429

  5. Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia

    PubMed Central

    Deng, Xiangdong; Shibata, Hiroki; Ninomiya, Hideaki; Tashiro, Nobutada; Iwata, Nakao; Ozaki, Norio; Fukumaki, Yasuyuki

    2004-01-01

    Background The glutamatergic dysfunction hypothesis of schizophrenia suggests that genes involved in glutametergic transmission are candidates for schizophrenic susceptibility genes. We have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. In this study we report an association study of the excitatory amino acid transporter 2 gene, SLC1A2 with schizophrenia. Methods We genotyped 100 Japanese schizophrenics and 100 controls recruited from the Kyushu area for 11 single nucleotide polymorphism (SNP) markers distributed in the SLC1A2 region using the direct sequencing and pyrosequencing methods, and examined allele, genotype and haplotype association with schizophrenia.The positive finding observed in the Kyushu samples was re-examined using 100 Japanese schizophrenics and 100 controls recruited from the Aichi area. Results We found significant differences in genotype and allele frequencies of SNP2 between cases and controls (P = 0.013 and 0.008, respectively). After Bonferroni corrections, the two significant differences disappeared. We tested haplotype associations for all possible combinations of SNP pairs. SNP2 showed significant haplotype associations with the disease (P = 9.4 × 10-5, P = 0.0052 with Bonferroni correction, at the lowest) in 8 combinations. Moreover, the significant haplotype association of SNP2-SNP7 was replicated in the cumulative analysis of our two sample sets. Conclusion We concluded that at least one susceptibility locus for schizophrenia is probably located within or nearby SLC1A2 in the Japanese population. PMID:15296513

  6. Sequence variants at CYP1A1–CYP1A2 and AHR associate with coffee consumption

    PubMed Central

    Sulem, Patrick; Gudbjartsson, Daniel F.; Geller, Frank; Prokopenko, Inga; Feenstra, Bjarke; Aben, Katja K.H.; Franke, Barbara; den Heijer, Martin; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Yanek, Lisa R.; Becker, Lewis C.; Boyd, Heather A.; Stacey, Simon N.; Walters, G. Bragi; Jonasdottir, Adalbjorg; Thorleifsson, Gudmar; Holm, Hilma; Gudjonsson, Sigurjon A.; Rafnar, Thorunn; Björnsdottir, Gyda; Becker, Diane M.; Melbye, Mads; Kong, Augustine; Tönjes, Anke; Thorgeirsson, Thorgeir; Thorsteinsdottir, Unnur; Kiemeney, Lambertus A.; Stefansson, Kari

    2011-01-01

    Coffee is the most commonly used stimulant and caffeine is its main psychoactive ingredient. The heritability of coffee consumption has been estimated at around 50%. We performed a meta-analysis of four genome-wide association studies of coffee consumption among coffee drinkers from Iceland (n = 2680), the Netherlands (n = 2791), the Sorbs Slavonic population isolate in Germany (n = 771) and the USA (n = 369) using both directly genotyped and imputed single nucleotide polymorphisms (SNPs) (2.5 million SNPs). SNPs at the two most significant loci were also genotyped in a sample set from Iceland (n = 2430) and a Danish sample set consisting of pregnant women (n = 1620). Combining all data, two sequence variants significantly associated with increased coffee consumption: rs2472297-T located between CYP1A1 and CYP1A2 at 15q24 (P = 5.4 · 10−14) and rs6968865-T near aryl hydrocarbon receptor (AHR) at 7p21 (P = 2.3 · 10−11). An effect of ∼0.2 cups a day per allele was observed for both SNPs. CYP1A2 is the main caffeine metabolizing enzyme and is also involved in drug metabolism. AHR detects xenobiotics, such as polycyclic aryl hydrocarbons found in roasted coffee, and induces transcription of CYP1A1 and CYP1A2. The association of these SNPs with coffee consumption was present in both smokers and non-smokers. PMID:21357676

  7. N-NITROSODIETHYLAMINE AND 4-(METHYLNITROSAMINO)-1-(3-PYRIDYL)-1-BUTANONE INDUCED MORPHOLOGICAL TRANSFORMATION OF CH3/10T1/2CL8 CELLS EXPRESSING HUMAN CYTOCHROME P450 2A6

    EPA Science Inventory

    Transfection of specific genes into cells capable of expressing chemically-induced morphological cell transformation provides a valuable approach to study the mechanisms of action of carcinogens. uman cytochrome P450 isozyme, CYP2A6, has been successfully expressed from a retrovi...

  8. ATP1A2 Mutations in Migraine: Seeing through the Facets of an Ion Pump onto the Neurobiology of Disease

    PubMed Central

    Friedrich, Thomas; Tavraz, Neslihan N.; Junghans, Cornelia

    2016-01-01

    Mutations in four genes have been identified in familial hemiplegic migraine (FHM), from which CACNA1A (FHM type 1) and SCN1A (FHM type 3) code for neuronal voltage-gated calcium or sodium channels, respectively, while ATP1A2 (FHM type 2) encodes the α2 isoform of the Na+,K+-ATPase's catalytic subunit, thus classifying FHM primarily as an ion channel/ion transporter pathology. FHM type 4 is attributed to mutations in the PRRT2 gene, which encodes a proline-rich transmembrane protein of as yet unknown function. The Na+,K+-ATPase maintains the physiological gradients for Na+ and K+ ions and is, therefore, critical for the activity of ion channels and transporters involved neuronal excitability, neurotransmitter uptake or Ca2+ signaling. Strikingly diverse functional abnormalities have been identified for disease-linked ATP1A2 mutations which frequently lead to changes in the enzyme's voltage-dependent properties, kinetics, or apparent cation affinities, but some mutations are truly deleterious for enzyme function and thus cause full haploinsufficiency. Here, we summarize structural and functional data about the Na+,K+-ATPase available to date and an overview is provided about the particular properties of the α2 isoform that explain its physiological relevance in electrically excitable tissues. In addition, current concepts about the neurobiology of migraine, the correlations between primary brain dysfunction and mechanisms of headache pain generation are described, together with insights gained recently from modeling approaches in computational neuroscience. Then, a survey is given about ATP1A2 mutations implicated in migraine cases as documented in the literature with focus on mutations that were described to completely destroy enzyme function, or lead to misfolded or mistargeted protein in particular model cell lines. We also discuss whether or not there are correlations between these most severe mutational effects and clinical phenotypes. Finally, perspectives

  9. ATP1A2 Mutations in Migraine: Seeing through the Facets of an Ion Pump onto the Neurobiology of Disease.

    PubMed

    Friedrich, Thomas; Tavraz, Neslihan N; Junghans, Cornelia

    2016-01-01

    Mutations in four genes have been identified in familial hemiplegic migraine (FHM), from which CACNA1A (FHM type 1) and SCN1A (FHM type 3) code for neuronal voltage-gated calcium or sodium channels, respectively, while ATP1A2 (FHM type 2) encodes the α2 isoform of the Na(+),K(+)-ATPase's catalytic subunit, thus classifying FHM primarily as an ion channel/ion transporter pathology. FHM type 4 is attributed to mutations in the PRRT2 gene, which encodes a proline-rich transmembrane protein of as yet unknown function. The Na(+),K(+)-ATPase maintains the physiological gradients for Na(+) and K(+) ions and is, therefore, critical for the activity of ion channels and transporters involved neuronal excitability, neurotransmitter uptake or Ca(2+) signaling. Strikingly diverse functional abnormalities have been identified for disease-linked ATP1A2 mutations which frequently lead to changes in the enzyme's voltage-dependent properties, kinetics, or apparent cation affinities, but some mutations are truly deleterious for enzyme function and thus cause full haploinsufficiency. Here, we summarize structural and functional data about the Na(+),K(+)-ATPase available to date and an overview is provided about the particular properties of the α2 isoform that explain its physiological relevance in electrically excitable tissues. In addition, current concepts about the neurobiology of migraine, the correlations between primary brain dysfunction and mechanisms of headache pain generation are described, together with insights gained recently from modeling approaches in computational neuroscience. Then, a survey is given about ATP1A2 mutations implicated in migraine cases as documented in the literature with focus on mutations that were described to completely destroy enzyme function, or lead to misfolded or mistargeted protein in particular model cell lines. We also discuss whether or not there are correlations between these most severe mutational effects and clinical phenotypes

  10. Materials Data on Sr(Ni2B)6 (SG:166) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Adaptations for the Oxidation of Polycyclic Aromatic Hydrocarbons Exhibited By the Structure of Human 450 1a2

    SciTech Connect

    Sansen, S.; Yano, J.K.; Reynald, R.L.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F.

    2007-07-12

    Microsomal cytochrome P450 family 1 enzymes play prominent roles in xenobiotic detoxication and procarcinogen activation. P450 1A2 is the principal cytochrome P450 family 1 enzyme expressed in human liver and participates extensively in drug oxidations. This enzyme is also of great importance in the bioactivation of mutagens, including the N-hydroxylation of arylamines. P450-catalyzed reactions involve a wide range of substrates, and this versatility is reflected in a structural diversity evident in the active sites of available P450 structures. Here, we present the structure of human P450 1A2 in complex with the inhibitor alpha-naphthoflavone, determined to a resolution of 1.95 A. alpha-Naphthoflavone is bound in the active site above the distal surface of the heme prosthetic group. The structure reveals a compact, closed active site cavity that is highly adapted for the positioning and oxidation of relatively large, planar substrates. This unique topology is clearly distinct from known active site architectures of P450 family 2 and 3 enzymes and demonstrates how P450 family 1 enzymes have evolved to catalyze efficiently polycyclic aromatic hydrocarbon oxidation. This report provides the first structure of a microsomal P450 from family 1 and offers a template to study further structure-function relationships of alternative substrates and other cytochrome P450 family 1 members.

  12. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas

    SciTech Connect

    Sun, Yu; Wong, Nicholas; Guan, Yinghui; Salamanca, Clara M.; Cheng, Jung Chien; Lee, Jonathan M.; Gray, Joe W.; Auersperg, Nelly

    2008-04-25

    Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.

  13. Variability of cytochrome P450 1A2 activity over time in young and elderly healthy volunteers

    PubMed Central

    Simon, T; Becquemont, L; Hamon, B; Nouyrigat, E; Chodjania, Y; Poirier, J M; Funck-Brentano, C; Jaillon, P

    2001-01-01

    Aims To assess the age-associated changes over time of plasma paraxanthine/caffeine (PAX/CAF) ratios used as a probe for CYP1A2 activity. Methods Intraindividual and interindividual variabilities in PAX/CAF ratio were compared by phenotyping with caffeine, 16 young and 16 elderly healthy subjects on five occasions. Results PAX/CAF ratio variability was comparable regardless of age (intraindividual CV: 17.6 ± 6% and 16.2 ± 5.9%, interindividual CV: 48.1 ± 2.9% and 42.7 ± 3.6% in young and elderly, respectively). The PAX/CAF ratio was lower in elderly than in young subjects (95% CI for the difference: 0.004, 0.32) but the difference was not significant in nonsmokers compared separately. Conclusions The variability over time of the PAX/CAF ratio is not influenced by age. PMID:11736870

  14. Variable Bone Fragility Associated With an Amish COL1A2 Variant and a Knock-in Mouse Model

    PubMed Central

    Daley, Ethan; Streeten, Elizabeth A; Sorkin, John D; Kuznetsova, Natalia; Shapses, Sue A; Carleton, Stephanie M; Shuldiner, Alan R; Marini, Joan C; Phillips, Charlotte L; Goldstein, Steven A; Leikin, Sergey; McBride, Daniel J

    2010-01-01

    Osteogenesis imperfecta (OI) is a heritable form of bone fragility typically associated with a dominant COL1A1 or COL1A2 mutation. Variable phenotype for OI patients with identical collagen mutations is well established, but phenotype variability is described using the qualitative Sillence classification. Patterning a new OI mouse model on a specific collagen mutation therefore has been hindered by the absence of an appropriate kindred with extensive quantitative phenotype data. We benefited from the large sibships of the Old Order Amish (OOA) to define a wide range of OI phenotypes in 64 individuals with the identical COL1A2 mutation. Stratification of carrier spine (L1–4) areal bone mineral density (aBMD) Z-scores demonstrated that 73% had moderate to severe disease (less than −2), 23% had mild disease (−1 to −2), and 4% were in the unaffected range (greater than −1). A line of knock-in mice was patterned on the OOA mutation. Bone phenotype was evaluated in four F1 lines of knock-in mice that each shared approximately 50% of their genetic background. Consistent with the human pedigree, these mice had reduced body mass, aBMD, and bone strength. Whole-bone fracture susceptibility was influenced by individual genomic factors that were reflected in size, shape, and possibly bone metabolic regulation. The results indicate that the G610C OI (Amish) knock-in mouse is a novel translational model to identify modifying genes that influence phenotype and for testing potential therapies for OI. © 2010 American Society for Bone and Mineral Research PMID:19594296

  15. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation

    PubMed Central

    Capoferri, Luigi; Verkade-Vreeker, Marlies C. A.; Buitenhuis, Danny; Commandeur, Jan N. M.; Pastor, Manuel; Vermeulen, Nico P. E.; Geerke, Daan P.

    2015-01-01

    Prediction of human Cytochrome P450 (CYP) binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD) simulations and Linear Interaction Energy (LIE) theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE) of 4.1 kJ mol-1 and a standard error in prediction (SDEP) in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units). PMID:26551865

  16. Cytochrome P450 expression system for high-throughput real-time detection of genotoxicity: Application to the study of human CYP1A2 variants.

    PubMed

    Palma, Bernardo Brito; Moutinho, Daniela; Urban, Philippe; Rueff, José; Kranendonk, Michel

    2016-08-01

    Individual variations in cytochrome P450-mediated metabolism are believed to contribute to individual susceptibility to chemical carcinogenesis. CYP1A2 is one of the major forms of cytochrome P450 involved in drug metabolism and bioactivation of carcinogens. We have applied a recently developed high-throughput Salmonella typhimurium TA1535 system for detection of DNA damaging agents to the study of CYP1A2 polymorphisms. Non-synonymous variants T83M [CYP1A2*9], S212C [CYP1A2*12], S298R [part of CYP1A2*21], G299S [CYP1A2*13], I314V [no allele designation], I386F [CYP1A2*4], C406Y [CYP1A2*5] and R456H [CYP1A2*8] were examined. The cDNAs for each of these variants and the wild-type were co-expressed with human NADPH cytochrome P450 oxidoreductase in the TA1535-based system. The bioactivation capacity of these CYP1A2 variants was investigated using three CYP1A2-dependent pro-mutagens, 1-aminopyrene (1AP), 2-aminoanthracene (2AA), and 2-amino-3-methylimidazo(4,5-f)quinoline (IQ). All CYP1A2 variants except R456H, T83M, and I386F gave positive responses with all three compounds. Variant R456H generated no detectable holoenzyme and no detectable response for any of the compounds; I386F did not bioactivate IQ; T83M did not bioactivate 1AP. Multivariate analysis indicated variant T83M to be substantially altered in catalytic properties when compared with wild-type CYP1A2; variants G299S and I386F are slightly but significantly different. These results corroborate our previous studies, indicating the effectiveness of this new high-throughput system, not only for examining the effect of CYP1A2 polymorphisms on pro-mutagen bioactivation, but also for obtaining insights on CYP1A2 function at the mechanistic level. PMID:27476332

  17. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism: Mexiletine N-Hydroxylation by Cytochrome P450 1A2.

    PubMed

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik; Harvey, Jeremy N; Mulholland, Adrian J

    2016-06-20

    The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site, but this is not a prerequisite for reaction via either mechanism. Several active site residues play a role in the binding of mexiletine in the active site, including Thr124 and Phe226. This work reveals key details of the N-hydroxylation of mexiletine and further demonstrates that mechanistic studies using QM/MM methods are useful for understanding drug metabolism. PMID:27064685

  18. 13C-methacetin breath test reproducibility study reveals persistent CYP1A2 stimulation on repeat examinations

    PubMed Central

    Kasicka-Jonderko, Anna; Nita, Anna; Jonderko, Krzysztof; Kamińska, Magdalena; Błońska-Fajfrowska, Barbara

    2011-01-01

    AIM: To find the most reproducible quantitative parameter of a standard 13C-methacetin breath test (13C-MBT). METHODS: Twenty healthy volunteers (10 female, 10 male) underwent the 13C-MBT after intake of 75 mg 13C-methacetin p.o. on three occasions. Short- and medium-term reproducibility was assessed with paired examinations taken at an interval of 2 and 18 d (medians), respectively. RESULTS: The reproducibility of the 1-h cumulative 13C recovery (AUC0-60), characterized by a coefficient of variation of 10%, appeared to be considerably better than the reproducibility of the maximum momentary 13C recovery or the time of reaching it. Remarkably, as opposed to the short gap between consecutive examinations, the capacity of the liver to handle 13C-methacetin increased slightly but statistically significantly when a repeat dose was administered after two to three weeks. Regarding the AUC0-60, the magnitude of this fixed bias amounted to 7.5%. Neither the time gap between the repeat examinations nor the gender of the subjects affected the 13C-MBT reproducibility. CONCLUSION: 13C-MBT is most reproducibly quantified by the cumulative 13C recovery, but the exactitude thereof may be modestly affected by persistent stimulation of CYP1A2 on repeat examinations. PMID:22174547

  19. Overexpression of PDZK1IP1, EEF1A2 and RPL41 genes in intrahepatic cholangiocarcinoma.

    PubMed

    Yang, Guanghua; Zong, Huajie

    2016-06-01

    Intrahepatic cholangiocarcinoma (iCCA) is an aggressive malignancy in the liver, which is associated with a poor prognosis. However, the molecular pathogenesis of iCCA remains unclear. RNA-Seq for tumor and para-tumor sample pairs enables the characterization of changes in the gene expression profiles of patients with iCCA. The present study analyzed RNA‑Seq data of seven iCCA para‑tumor and tumor sample pairs. Differential gene expression analysis demonstrated significant upregulation of PDZK1IP1, EEF1A2 and RPL41 (ENSG00000279483) genes in the iCCA samples when compared with the matched para‑tumor samples. Furthermore, genes associated with the immune system, metabolism and metabolic energy were significantly downregulated in the iCCA tumor tissues, indicating that this is involved in the pathogenesis of iCCA. The present study aimed to elucidate the gene expression patterns associated with the tumorigenesis of iCCA by comparing tumor and normal tissues, in order to isolate novel diagnostic factors for iCCA. PMID:27082702

  20. A simple chromatographic method for determining norfloxacin and enoxacin in pharmacokinetic study assessing CYP1A2 inhibition.

    PubMed

    Kobayashi, Toshimi; Homma, Masato; Momo, Kenji; Kobayashi, Daisuke; Kohda, Yukinao

    2011-04-01

    We developed a simple assay method for the determination of serum and urine norfloxacin and enoxacin using reversed-phase high-performance liquid chromatography and perchloric acid precipitation for sample pre-treatment. Optimized conditions can permit detection of norfloxacin and enoxacin in the same chromatogram, so either compound can be used as an internal standard for another determinant. Supernatants of the precipitated samples were analyzed by the octadecylsilyl silica-gel column under ambient temperature and an ultraviolet wavelength of 272  nm. A mobile phase solvent consisting of 20 mm sodium dihydrogenphosphate (pH 3.0) and acetonitrile (85:15, v/v) was pumped at a flow rate of 1.0 mL/min. The calibration curves for norfloxacin and enoxacin at a concentration of 62.5-1000 ng/mL for serum and 250-4000 ng/mL for urine were linear (r > 0.9997). The recoveries of norfloxacin and enoxacin from serum and urine were >94% with the coefficient of variations (CV) <5%. The CVs for intra- and inter-day assay of norfloxacin and enoxacin were <4.2 and <5.5%, respectively. This method can be applied to the pharmacokinetic study of norfloxacin and enoxacin after repeated administration to assess changes in CYP1A2 activity in healthy subjects. PMID:20662110

  1. The first Japanese case of the arthrochalasia type of Ehlers-Danlos syndrome with COL1A2 gene mutation.

    PubMed

    Hatamochi, Atsushi; Hamada, Takahiro; Yoshino, Makoto; Hashimoto, Takashi

    2014-03-15

    This is the first report for a Japanese case of arthrochalasia type of Ehlers-Danlos syndrome (EDS). A 46-year-old woman consulted us for joint hypermobility and skin hyperextensibility that had been present soon after birth. There was no family history of a similar disease. She was diagnosed as having bilateral congenital hip dislocation and bilateral habitual shoulder dislocation at her childhood. Her skin was velvety, doughy and hyperextensible. She showed hypermobility of the joints of the hands and feet and generalized joint laxity, with no evidence of scoliosis. Electrophoretic analysis of collagenous proteins revealed the presence of an additional band in the position of pNα2(I) in the sample from culture medium of the patient fibroblasts. Analysis of the α2 chains of type I collagen gene, COL1A2, showed a heterozygous G to T transition at the +1 position of the exon 6 donor splice site (c.279+1G>T). This mutation resulted in skipping of exon 6, which leads to deficient processing of the amino-terminal end of proα2(I) chains of type I collagen. Based on these findings, we made a diagnosis of the arthrochalasia type of EDS, which corresponds to EDS type VIIB in the former classification. PMID:24440294

  2. Genetic polymorphism analysis of the drug-metabolizing enzyme CYP1A2 in a Uyghur Chinese population: a pilot study.

    PubMed

    Geng, Tingting; Zhang, Xi Yang; Wang, Li; Wang, Huijuan; Shi, Xugang; Kang, Longli; Hou, Peng; Jin, Tianbo

    2016-06-01

    1. CYP1A2 is a highly polymorphic gene and CYP1A2 enzyme results in broad inter-individual variability in response to certain pharmacotherapies, while little is known about the genetic variation of CYP1A2 in Uyghur Chinese population. The aim of the present study was to screen Uyghur volunteers for CYP1A2 genetic polymorphisms. 2. We used DNA sequencing to investigate promoter, exons, introns, and 3' UTR of the CYP1A2 gene in 96 unrelated healthy Uyghur individuals. We also used SIFT (Sorting Intolerant From Tolerant) and PolyPhen-2 (Polymorphism Phenotyping v2) to predict the protein function of the novel non-synonymous mutation in CYP1A2 coding regions. 3. We identified 20 different CYP1A2 polymorphisms in the Uyghur Chinese population, including two novel variants (119A > G and 2410G > A). Variant 119A > G was predicted to be probably damaging on protein function by PolyPhen-2, by contrast, 2410G > A was identified as benign. The allele frequencies of CYP1A2*1A, *1B, *1F, *1G, *1J, *1M, *4, and *9 were 23.4%, 53.1%, 3.7%, 2.6%, 2.6%, 13.5%, 0.5%, and 0.5%, respectively. The frequency of *1F, a putative high inducibility allele, was higher in our sample population compared with that in the Caucasian population (p < 0.05). The most common genotype combinations were *1A/*1B (46.9%) and *1B/*1M (27.1%). 4. Our results provide basic information on CYP1A2 polymorphisms in Uyghur individuals and suggest that the enzymatic activities of CYP1A2 may differ among the diverse ethnic populations of the world. PMID:26383175

  3. Prediction of inter-individual variability on the pharmacokinetics of CYP1A2 substrates in non-smoking healthy volunteers.

    PubMed

    Haraya, Kenta; Kato, Motohiro; Chiba, Koji; Sugiyama, Yuichi

    2016-08-01

    The activity of CYP1A2, a major drug-metabolizing enzyme, is known to be affected by various environmental factors. Our study aimed to predict inter-individual variability of AUC/Dose of CYP1A2 substrates in non-smoking healthy volunteers using the Monte Carlo simulation. Inter-individual variability in hepatic intrinsic clearance of CYP1A2 substrates (CLint,h,1A2) was estimated using dispersion model based on the inter-individual variability (N = 96) of the AUC of caffeine, a major CYP1A2 substrate. The estimated coefficient of variation (CV) of CLint,h,1A2 was 55%, similar to previously reported CLint,h,2D6 (60%) but larger than CLint,h,3A4 (33%). Then, this estimated CV was validated by predicting the CVs of AUC/Dose of tizanidine and phenacetin, which are mainly metabolized by CYP1A2 and have negligible renal clearance. As a result, reported CVs were successfully predicted within 2.5-97.5 percentile range of predicted values. Moreover, CVs for AUC/Dose of the CYP1A2 substrates theophylline and lidocaine, which are affected by other CYPs and renal clearance, were also successfully predicted. The inter-individual variability of AUC/Dose of CYP1A2 substrates was successfully predicted using 55% CV for CLint,h,1A2, and the results, along with those reported by our group for other CYPs, support the prediction of inter-individual variability of pharmacokinetics in the clinical setting. PMID:27318879

  4. In Utero and Lactational Exposure to PCBs in Mice: Adult Offspring Show Altered Learning and Memory Depending on Cyp1a2 and Ahr Genotypes

    PubMed Central

    Curran, Christine P.; Genter, Mary Beth; Patel, Krishna V.; Schaefer, Tori L.; Skelton, Matthew R.; Williams, Michael T.; Vorhees, Charles V.

    2011-01-01

    Background: Both coplanar and noncoplanar polychlorinated biphenyls (PCBs) exhibit neurotoxic effects in animal studies, but individual congeners do not always produce the same effects as PCB mixtures. Humans genetically have > 60-fold differences in hepatic cytochrome P450 1A2 (CYP1A2)-uninduced basal levels and > 12-fold variability in aryl hydrocarbon receptor (AHR)affinity; because CYP1A2 is known to sequester coplanar PCBs and because AHR ligands include coplanar PCBs, both genotypes can affect PCB response. Objectives: We aimed to develop a mouse paradigm with extremes in Cyp1a2 and Ahr genotypes to explore genetic susceptibility to PCB-induced developmental neurotoxicity using an environmentally relevant mixture of PCBs. Methods: We developed a mixture of eight PCBs to simulate human exposures based on their reported concentrations in human tissue, breast milk, and food supply. We previously characterized specific differences in PCB congener pharmacokinetics and toxicity, comparing high-affinity–AHR Cyp1a2 wild-type [Ahrb1_Cyp1a2(+/+)], poor-affinity–AHR Cyp1a2 wild-type [Ahrd_Cyp1a2(+/+)], and high-affinity–AHR Cyp1a2 knockout [Ahrb1_Cyp1a2(–/–)] mouse lines [Curran CP, Vorhees CV, Williams MT, Genter MB, Miller ML, Nebert DW. 2011. In utero and lactational exposure to a complex mixture of polychlorinated biphenyls: toxicity in pups dependent on the Cyp1a2 and Ahr genotypes. Toxicol Sci 119:189–208]. Dams received a mixture of three coplanar and five noncoplanar PCBs on gestational day 10.5 and postnatal day (PND) 5. In the present study we conducted behavioral phenotyping of exposed offspring at PND60, examining multiple measures of learning, memory, and other behaviors. Results: We observed the most significant deficits in response to PCB treatment in Ahrb1_Cyp1a2(–/–) mice, including impaired novel object recognition and increased failure rate in the Morris water maze. However, all PCB-treated genotypes showed significant differences on

  5. A re-consideration of the HEAO-1 A2 Measurements of the Cosmic X-ray Background Surface Brightness

    NASA Astrophysics Data System (ADS)

    Jahoda, K.

    2005-12-01

    The HEAO-1 A2 experiment was designed to make high precision and low systematics measurements of the Cosmic X-ray Background from 0.1 - 60 keV. No subsequent experiment has been capable of similarly clean separation of cosmic and instrumental background. Most more recent measurements of the 2-10 keV surface brightness are 20% higher than values derived from the spectral parameterization of the 3-50 keV spectrum given in the original A2 analysis of Marshall et al. (1980, ApJ 235, 4 (M80)). A recent analysis of archival A2 data by Revnivtsev et al. (astro-ph/0412304 (R05)) finds a surface brightness 15-20% higher than M80, an uncomfortably large discrepancy for data taken from a single experiment. We present a third analysis of the A2 data and identify two effects neglected in the comparison of previous A2 results: (a) the extrapolation of the M80 parameterization below 3 keV fails to describe the data; (b) R05 uses an unabsorbed, and high, value for the flux from the Crab nebula plus pulsar which results in a high value for the inferred count rate to CXB surface brightness conversion. Correcting for these effects, our best estimate of the 2-10 keV surface brightness is 1.84 × 10-11 ergs cm-2 s-1 deg-2 on a flux scale where the (absorbed) 2-10 Crab flux is 2.32 × 10-8 ergs cm-2 s-1. This value is only about 10% below the average compiled by Moretti et al. (2003, ApJ, 588, 696). We discuss how well the X-ray brightness of the Crab, to which this measurement is normalized, is known. This research made use of data from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center.

  6. RFX family proteins differentially interact with HDACs to repress collagen alpha 2(I) gene (COL1A2) expression

    PubMed Central

    Xu, Y.; Sengupta, P.K.; Seto, E.; Smith, B.D.

    2006-01-01

    Our studies indicate that regulatory factor for X-box (RFX) family proteins repress collagen alpha2(I) gene (COL1A2) expression (1,2). In the present investigation, we examine the mechanism(s) underlying the repression of collagen gene by RFX proteins. Two members of the RFX family, RFX1 and RFX5, associate with distinct sets of co-repressors on the collagen transcription start site in vitro. RFX5 specifically interacts with histone deacetylase 2 (HDAC2) and the mammalian transcriptional repressor (mSin3B) whereas RFX1 preferably interacts with HDAC1 and mSin3A. HDAC2 cooperates with RFX5 to down-regulate collagen promoter activity while HDAC1 enhances inhibition of collagen promoter activity by RFX1. IFN-γ promotes the recruitment of RFX5/HDAC2/mSin3B to the collagen transcription start site but decreases the occupancy by RFX1/mSin3A as manifested by chromatin immunoprecipitation (ChIP) assay. RFX1 binds to methylated collagen sequence with much higher affinity than unmethylated sequence, recruiting more HDAC1 and mSin3A. The DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (aza-dC), that inhibits DNA methylation, reduces RFX1/HDAC1 binding to the collagen transcription start site in ChIP assays. Finally, both RFX1 and RFX5 are acetylated in vivo. TSA stimulates the acetylation of RFX proteins and activates the collagen promoter activity. Collectively, our data strongly indicate two separate pathways for RFX proteins to repress collagen gene expression: one for RFX5/HDAC2 in IFN-γ mediated repression, the other for RFX1/HDAC1 in methylation mediated collagen silencing. PMID:16464847

  7. Preferred Binding Orientations of Phenacetin in CYP1A1 and CYP1A2 Are Associated with Isoform-Selective Metabolism

    PubMed Central

    Huang, Qingbiao; Deshmukh, Rahul S.; Ericksen, Spencer S.; Tu, Youbin

    2012-01-01

    Human cytochromes P450 1A1 and 1A2 play important roles in drug metabolism and chemical carcinogenesis. Although these two enzymes share high sequence identity, they display different substrate specificities and inhibitor susceptibilities. In the present studies, we investigated the structural basis for these differences with phenacetin as a probe using a number of complementary approaches, such as enzyme kinetics, stoichiometric assays, NMR, and molecular modeling. Kinetic and stoichiometric analyses revealed that substrate specificity (kcat/Km) of CYP1A2 was approximately 18-fold greater than that of CYP1A1, as expected. Moreover, despite higher H2O2 production, the coupling efficiency of reducing equivalents to acetaminophen formation in CYP1A2 was tighter than that in CYP1A1. CYP1A1, in contrast to CYP1A2, displayed much higher uncoupling, producing more water. The subsequent NMR longitudinal (T1) relaxation studies with the substrate phenacetin and its product acetaminophen showed that both compounds displayed similar binding orientations within the active site of CYP1A1 and CYP1A2. However, the distance between the OCH2 protons of the ethoxy group (site of phenacetin O-deethylation) and the heme iron was 1.5 Å shorter in CYP1A2 than in CYP1A1. The NMR findings are thus consistent with our kinetic and stoichiometric results, providing a likely molecular basis for more efficient metabolism of phenacetin by CYP1A2. PMID:22949628

  8. Engineering the metabolism of the phenylurea herbicide chlortoluron in genetically modified Arabidopsis thaliana plants expressing the mammalian cytochrome P450 enzyme CYP1A2.

    PubMed

    Kebeish, Rashad; Azab, Ehab; Peterhaensel, Christoph; El-Basheer, Radwa

    2014-01-01

    Transgenic Arabidopsis thaliana plants were generated by introduction of the human P450 CYP1A2 gene, which metabolizes a number of herbicides, insecticides and industrial chemicals. Transgenic A. thaliana plants expressing CYP1A2 gene showed remarkable resistance to the phenylurea herbicide chlortoluron (CTU) supplemented either in plant growth medium or sprayed on foliar parts of the plants. HPLC analyses showed a strong reduction in CTU accumulation in planta supporting the tolerance of transgenic lines to high concentrations of CTU. Besides increased herbicide tolerance, expression of CYP1A2 resulted in no other visible phenotype in transgenic plants. Our data indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. Moreover, these transgenic plants appear to be useful for herbicide resistance as well as phytoremediation of environmental contaminants. PMID:24920432

  9. Hyper- and Hypo- Induction of Cytochrome P450 activities with Aroclor 1254 and 3-Methylcholanthrene in Cyp1a2(−/−) mice

    PubMed Central

    Barker, Melissa L.; Hathaway, Laura B.; Arch, Dorinda D.; Westbroek, Mark L.; Kushner, James P.; Phillips, John D.; Franklin, Michael R.

    2009-01-01

    The response of hepatic mono-oxygenase activities to Aroclor 1254 or 3-methylcholanthrene was investigated in wild-type and Cyp1a2(−/−) mice. Cytochrome P450 concentrations were similar in naïve Cyp1a2(−/−) and wild-type mice. There was no difference between naïve wild-type and Cyp1a2(−/−) animals in 7-ethoxyresorufin and 7-ethoxy-4-trifluoromethylcoumarin dealkylase activities, nor was the induction response after 3-methylcholanthrene any different between the two genotypes. However, both activities were induced to a higher extent in Cyp1a2(−/−) mice after Aroclor 1254. In contrast, 7-pentoxyresorufin dealkylation activity was lower in Cyp1a2(−/−) mice and this differential was maintained during induction by both agents. 7-Methoxy- and 7-benzoxyresorufin dealkylation activities were also lower than wild-type in naïve Cyp1a2(−/−) animals and during 3-methylcholanthrene induction, but showed accelerated induction in Cyp1a2(−/−) mice with Aroclor 1254. Bufuralol 1′- and testosterone 6β-hydroxylation activities, and P450 characteristics were evaluated 48 hours after inducer administration. Bufuralol 1′-hydroxylation, a sexual dimorphic activity (female > male) showed no genotype differences in naïve animals. Activity changes varied across gender and genotype, with 3-methylcholanthrene and Aroclor 1254 inducing in male Cyp1a2(−/−), and Aroclor 1254 inducing in female wild-type. Testosterone 6β-hydroxylation activity was 16% higher in Cyp1a2(−/−) mice and neither 3-methylcholanthrene nor Aroclor 1254 elicited induction. After Aroclor 1254, a 24% increase in P450 concentration with a hypsochromic shift in the ferrous-CO maximum characteristic of CYP1A enzymes occurred in wild-type, compared to no change in either parameter in Cyp1a2(−/−) mice. Induction changes with 3-methylcholanthrene were greater in wild-type mice, a 60% increase in concentration and ~2 nm hypsochromic shift versus a 10% increase and ~1 nm hypsochromic

  10. Interplay between the nuclear receptor pregnane X receptor and the uptake transporter organic anion transporter polypeptide 1A2 selectively enhances estrogen effects in breast cancer.

    PubMed

    Meyer zu Schwabedissen, Henriette E; Tirona, Rommel G; Yip, Cindy S; Ho, Richard H; Kim, Richard B

    2008-11-15

    The ligand-activated nuclear receptor pregnane X receptor (PXR) is known to play a role in the regulated expression of drug metabolizing enzymes and transporters. Recent studies suggest a potential clinically relevant role of PXR in breast cancer. However, the relevant pathway or target genes of PXR in breast cancer biology and progression have not yet been fully clarified. In this study, we show that mRNA expression of organic anion transporter polypeptide 1A2 (OATP1A2), a transporter capable of mediating the cellular uptake of estrogen metabolites, is nearly 10-fold greater in breast cancer compared with adjacent healthy breast tissues. Immunohistochemistry revealed exclusive expression of OATP1A2 in breast cancer tissue. Interestingly, treatment of breast cancer cells in vitro with the PXR agonist rifampin induced OATP1A2 expression in a time-dependent and concentration-dependent manner. Consistent with its role as a hormone uptake transporter, induction of OATP1A2 was associated with increased uptake of estrone 3-sulfate. The rifampin response was abrogated after small interfering RNA targeting of PXR. We then identified a PXR response element in the human OATP1A2 promoter, located approximately 5.7 kb upstream of the transcription initiation site. The specificity of PXR-OATP1A2 promoter interaction was confirmed using chromatin immunoprecipitation. Importantly, we used a novel potent and specific antagonist of PXR (A-792611) to show the reversal of the rifampin effect on the cellular uptake of E(1)S. These data provide important new insights into the interplay between a xenobiotic nuclear receptor PXR and OATP1A2 that could contribute to the pathogenesis of breast cancer and may also prove to be heretofore unrecognized targets for breast cancer treatment. PMID:19010908

  11. Genetic polymorphisms and function of the organic anion-transporting polypeptide 1A2 and its clinical relevance in drug disposition.

    PubMed

    Zhou, Yinhui; Yuan, Jingjing; Li, Zhisong; Wang, Zhongyu; Cheng, Dan; Du, Yingying; Li, Wenlu; Kan, Quancheng; Zhang, Wei

    2015-01-01

    The solute carrier organic anion-transporting polypeptides (OATPs) are a family of transporter proteins that have been extensively recognized as key determinants of absorption, distribution, metabolism and excretion of various drugs because of their broad substrate specificity and wide tissue distribution as well as the involvement of drug-drug interaction. Human OATP1A2 is a drug uptake transporter known for its broad substrate specificity, including many drugs in clinical use. OATP1A2 expression has been detected in the intestine, liver, brain and kidney. A considerable number of single nucleotide polymorphisms have been found for the OATP1A2 gene. A number of studies have shown that the cellular uptake and pharmacokinetic behavior of some drugs may be impaired in the case of certain OATP1A2 variants. Interestingly, some studies show that the mRNA expression of OATP1A2 is nearly 10-fold higher in breast cancer compared with adjacent healthy breast tissues. This review is, therefore, focused on the genetic polymorphisms, function and clinical relevance of OATP1A2 as well as on the substrates transported by it. PMID:25924632

  12. RT-PCR detection of CYP1A1, 1A2, and 2E1 mRNAs in rat nasal tissue

    SciTech Connect

    Reddy, S.L.; Kim, S.G.; States, J.C.; Dahl, A.R.; Hotchkiss, J.; Novak, R.F. Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM )

    1991-03-15

    The expression of P450 in nasal tissue is of considerable importance given the exposure of these tissues to xenobiotics and the role of P450s in xenobiotic metabolism. CYP1A1, 1A2 and 2E1 mRNA expression was examined in olfactory tissue of rats exposed to 5 ppm pyridine 6 h daily for 4 d. RT-PCR was performed on poly(A){sup +} RNA using gene specific primers selected from published rat liver 1A1, 1A2 and 2E1 cDNAs. RT-PCR products derived from nasal mRNAs were detected and co-migrated with liver 1A1, 1A2 and 2W1 Rt-PCR products. Identical restriction patterns were obtained from HinfI and HpaII digests of nasal and liver 1A1 RT-PCR products; restriction digest patterns of nasal and liver 1A2 RT-PCR products were also identical. Southern analyses of nasal RT-PCR products, using liver 1A1 and 12 DNA probes, showed a single band suggesting considerable homology between nasal and liver 1A1 and 1A2 fragments. Cloning and sequencing of nasal 1A1, 1A2 and 2E1 RT-PCR products will confirm the identity of these gene products. These results show that 1A1, 1A2 and 2E1 mRNAs are expressed in rat olfactory tissue and suggest that the fragments examined share homology with those expressed in liver.

  13. The structures of the human calcium channel {alpha}{sub 1} subunit (CACNL1A2) and {beta} subunit (CACNLB3) genes

    SciTech Connect

    Yamada, Yuichiro; Masuda, Kazuhiro; Li, Qing

    1995-05-20

    Calcium influx in pancreatic {beta}-cells is regulated mainly by L-type voltage-dependent calcium channels (VDCCs) and triggers insulin secretion. The {alpha}{sub 1} subunit (CACN4) and the {beta} subunit ({beta}{sub 3}) of VDCCs, both of which are expressed in pancreatic islets, are major components for the VDCC activity, and so they may play a critical role in the regulation of insulin secretion. The authors have determined the structures of the human CACN4 (CACNL1A2) and the human {beta}{sub 3} (CACNLB3) genes. The CACNL1A2 gene spans more than 155 kb and has 49 exons. Most of the positions interrupted by introns are well conserved between the CACNL1A2 gene and the previously reported L-type VDCC {alpha}{sub 1} subunit, CACNL1A1, gene. On the other hand, the CACNLB3 gene distributes in {approximately} 8 kb and comprises 13 exons, most of which are located together within {approximately} 5 kb. Comparisons of the genomic sequences of CACNL1A2 with the previously reported cDNA sequences indicate that there are a number of polymorphisms in the human CACNL1A2 gene. In addition, the PCR-SSCP procedure of exon 1 of CACNL1A2 revealed a change from 7 to 8 ATG trinucleotide repeats in a patient with noninsulin-dependent diabetes mellitus (NIDDM), resulting in an addition of methionine at the amino-terminus of CACN4. The determination of the structures of the human CACNL1A2 and CACNLB3 genes should facilitate study of the role of these genes in the development of NIDDM and also other genetic diseases such as long QT syndrome. 39 refs., 3 figs., 3 tabs.

  14. Tumor suppressor p16INK4a inhibits cancer cell growth by downregulating eEF1A2 through a direct interaction

    PubMed Central

    Lee, Mee-Hyun; Choi, Bu Young; Cho, Yong-Yeon; Lee, Sung-Young; Huang, Zunnan; Kundu, Joydeb Kumar; Kim, Myoung Ok; Kim, Dong Joon; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2013-01-01

    Summary The tumor suppressor protein p16INK4a is a member of the INK4 family of cyclin-dependent kinase (Cdk) inhibitors, which are involved in the regulation of the eukaryotic cell cycle. However, the mechanisms underlying the anti-proliferative effects of p16INK4a have not been fully elucidated. Using yeast two-hybrid screening, we identified the eukaryotic elongation factor (eEF)1A2 as a novel interacting partner of p16INK4a. eEF1A2 is thought to function as an oncogene in cancers. The p16INK4a protein interacted with all but the D2 (250–327 aa) domain of eEF1A2. Ectopic expression of p16INK4a decreased the expression of eEF1A2 and inhibited cancer cell growth. Furthermore, suppression of protein synthesis by expression of p16INK4a ex vivo was verified by luciferase reporter activity. Microinjection of p16INK4a mRNA into the cytoplasm of Xenopus embryos suppressed the luciferase mRNA translation, whereas the combination of p16INK4a and morpholino-eEF1A2 resulted in a further reduction in translational activity. We conclude that the interaction of p16INK4a with eEF1A2, and subsequent downregulation of the expression and function of eEF1A2 is a novel mechanism explaining the anti-proliferative effects of p16INK4a. PMID:23444377

  15. The CYP1A2 genotype modifies the association between coffee consumption and breast cancer risk among BRCA1 mutation carriers.

    PubMed

    Kotsopoulos, Joanne; Ghadirian, Parviz; El-Sohemy, Ahmed; Lynch, Henry T; Snyder, Carrie; Daly, Mary; Domchek, Susan; Randall, Susan; Karlan, Beth; Zhang, Phil; Zhang, Shiyu; Sun, Ping; Narod, Steven A

    2007-05-01

    We have recently reported that, among BRCA1 mutation carriers, the consumption of caffeinated coffee was associated with a significant reduction in breast cancer risk. Because the metabolism of caffeine is primarily by CYP1A2, we examined whether or not the CYP1A2 genotype modifies the association between a history of coffee consumption and the risk of breast cancer. A common A to C polymorphism in the CYP1A2 gene is associated with decreased enzyme inducibility and impaired caffeine metabolism. Information regarding coffee consumption habits and the CYP1A2 genotype was available for 411 BRCA1 mutation carriers (170 cases and 241 controls). We estimated the odds ratios (ORs) and 95% confidence intervals (95% CIs) for breast cancer associated with the CYP1A2 genotype and a history of coffee consumption before age 35, adjusting for potential confounders. The CYP1A2 genotype did not affect breast cancer risk. Among women with at least one variant C allele (AC or CC), those who consumed coffee had a 64% reduction in breast cancer risk, compared with women who never consumed coffee (OR, 0.36; 95% CI, 0.18-0.73). A significant protective effect of coffee consumption was not observed among women with the CYP1A2 AA genotype (OR, 0.93; 95% CI, 0.49-1.77). Similar results were obtained when the analysis was restricted to caffeinated coffee. This study suggests that caffeine protects against breast cancer in women with a BRCA1 mutation and illustrates the importance of integrating individual genetic variability when assessing diet-disease associations. PMID:17507615

  16. Interplay between the nuclear receptor PXR and the uptake transporter OATP1A2 selectively enhances estrogen effects in breast cancer

    PubMed Central

    Meyer zu Schwabedissen, Henriette E.; Tirona, Rommel G.; Yip, Cindy S.; Ho, Richard H.; Kim, Richard B.

    2008-01-01

    The ligand-activated nuclear receptor PXR is known to play a role in the regulated expression of drug metabolizing enzymes and transporters. Recent studies suggest a potential clinically relevant role of PXR in breast cancer. However, the relevant pathway or target genes of PXR in breast cancer biology and progression have not yet been fully clarified. In this study, we show that mRNA expression of OATP1A2, a transporter capable of mediating the cellular uptake of estrogen metabolites, is nearly 10-fold greater in breast cancer compared to adjacent healthy breast tissues. Immunohistochemistry revealed exclusive expression of OATP1A2 in breast cancer tissue. Interestingly, treatment of breast cancer cells in vitro with the PXR agonist rifampin induced OATP1A2 expression in a time- and concentration-dependent manner. Consistent with a role as a hormone uptake transporter, induction of OATP1A2 was associated with increased uptake of estrone 3-sulfate. The rifampin response was abrogated after si-RNA targeting of PXR. We then identified a PXR response element in the human OATP1A2 promoter, located approximately 5.7 kb upstream of the transcription initiation site. The specificity of PXR-OATP1A2 promoter interaction was confirmed using chromatin immunoprecipitation. Importantly we utilized a novel potent and specific antagonist of PXR (A-792611) to demonstrate the reversal of the rifampin effect on the cellular uptake of E1S. These data provide important new insights into the interplay between a xenobiotic nuclear receptor PXR and OATP1A2 that could contribute to the pathogenesis of breast cancer and may also prove to be heretofore unrecognized targets for breast cancer treatment. PMID:19010908

  17. Measurement of human CYP1A2 induction by inhalation exposure to benzo(a)pyrene based on in vivo isotope breath method.

    PubMed

    Duan, Xiaoli; Shen, Guofeng; Yang, Hongbiao; Lambert, George; Wei, Fusheng; Zhang, Junfeng Jim

    2016-01-01

    Cytochrome P450 1A2 (CYP1A2) is an enzyme involved in the metabolic activation of certain carcinogens, and inducible by toxic substrates. To date, few studies have investigated in vivo CYP1A2 induction in humans and its relationship to polycylic aromatic hydrocarbons (PAHs) like benzo(a)pyrene (BaP). Non-smoking healthy male coke-oven workers (n = 30) were recruited as 'exposure' group, and non-smoking healthy office workers in the same city (n = 10) were selected as 'control' group, to test whether high inhalation exposure to PAHs can induce CYP1A2 activity in human livers. Significantly higher inhalation exposure of PAHs were found among the exposure group compared to the control. Inhalation BaP exposure concentration in the exposure group was more than 30 times higher than the control group (p < 0.001). However, the exposure group did not exhale significant higher levels of (13)CO2/(12)CO2 in breath samples (p = 0.81), and no significant relationship was found between the inhaled BaP concentration and the (13)CO2/(12)CO2 ratio (p = 0.91). A significant association was found between the (13)CO2/(12)CO2 exhalation and dietary BaP intake level. Hepatic CYP1A2 activity/induction level was not effected by inhaled BaP but was altered by ingestion of BaP. PMID:26552516

  18. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus)

    PubMed Central

    Feng, Ruijuan; Fang, Lingling; Cheng, Yunying; He, Xue; Jiang, Wentao; Dong, Ranran; Shi, Hongjuan; Jiang, Dongneng; Sun, Lina; Wang, Deshou

    2015-01-01

    Meiosis is a process unique to the differentiation of germ cells. Retinoic acid (RA) is the key factor controlling the sex-specific timing of meiotic initiation in tetrapods; however, the role of RA in meiotic initiation in teleosts has remained unclear. In this study, the genes encoding RA synthase aldh1a2, and catabolic enzyme cyp26a1 were isolated from Nile tilapia (Oreochromis niloticus), a species without stra8. The expression of aldh1a2 was up-regulated and expression of cyp26a1 was down-regulated before the meiotic initiation in ovaries and in testes. Treatment with RA synthase inhibitor or disruption of Aldh1a2 by CRISPR/Cas9 resulted in delayed meiotic initiation, with simultaneous down-regulation of cyp26a1 and up-regulation of sycp3. By contrast, treatment with an inhibitor of RA catabolic enzyme and disruption of cyp26a1 resulted in earlier meiotic initiation, with increased expression of aldh1a2 and sycp3. Additionally, treatment of XY fish with estrogen (E2) and XX fish with fadrozole led to sex reversal and reversion of meiotic initiation. These results indicate that RA is indispensable for meiotic initiation in teleosts via a stra8 independent signaling pathway where both aldh1a2 and cyp26a1 are critical. In contrast to mammals, E2 is a major regulator of sex determination and meiotic initiation in teleosts. PMID:25976364

  19. Ephedra water decoction and cough tablets containing ephedra and liquorice induce CYP1A2 but not CYP2E1 hepatic enzymes in rats.

    PubMed

    Tang, Jingling; Ji, Hongyu; Shi, Jing; Wu, Linhua

    2016-01-01

    1. Ephedra water decoction (EWD) and cough tablets containing ephedra and liquorice (maxing cough tablets, MXCT) have been widely used in the treatment of asthma. In the clinic, EWD and MXCT may be prescribed with theophylline, one of the most popular antiasthmatic drugs. CYP1A2 and CYP2E1 are mainly involved in the oxidative metabolism of theophylline in human liver. Drug interactions involving the cytochrome P450 (CYP) isoforms generally are of two types: enzyme induction or enzyme inhibition. Enzyme inhibition reduces metabolism, whereas induction can increase it. 2. To evaluate the pretreatment effect of EWD and MXCT on CYP1A2 and CYP2E1, CYP1A2 and CYP2E1 activity, the protein expression and mRNA expression levels were determined. After pretreatment with EWD or MXCT, the enzyme activity, mRNA expression and protein expression of CYP1A2 were increased significantly (p < 0.05), but enzyme activity of CYP2E1 did not change compared with the control. 3. It was demonstrated that EWD or MXCT pretreatment obviously induced CYP1A2, therefore, in patients taking EWD or MXCT, possible CYP-induced drug interaction should be noted to decrease the risk of therapeutic failure or adverse effects resulting from the use of additional therapeutic agents. PMID:26153439

  20. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation.

    PubMed

    Gagliardi, Rosa; Llambí, Silvia; Arruga, M Victoria

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294

  1. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation

    PubMed Central

    Gagliardi, Rosa; Llambí, Silvia

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294

  2. CYP1A2 and CYP2D6 Gene Polymorphisms in Schizophrenic Patients with Neuroleptic Drug-Induced Side Effects.

    PubMed

    Ivanova, S A; Filipenko, M L; Vyalova, N M; Voronina, E N; Pozhidaev, I V; Osmanova, D Z; Ivanov, M V; Fedorenko, O Yu; Semke, A V; Bokhan, N A

    2016-03-01

    Polymorphic variants of CYP1A2 and CYP2D6 genes of the cytochrome P450 system were studied in patients with schizophrenia with drug-induced motor disorders and hyperprolactinemia against the background of long-term neuroleptic therapy. We revealed an association of polymorphic variant C-163A CYP1A2*1F of CYP1A2 gene with tardive dyskinesia and association of polymorphic variant 1846G>A CY2D6*4 and genotype A/A of CYP2D6 gene (responsible for debrisoquin-4-hydroxylase synthesis) with limbotruncal tardive dyskinesia in patients with schizophrenia receiving neuroleptics for a long time. PMID:27021090

  3. In vitro inhibition of CYP1A2 by model inhibitors, anti-inflammatory analgesics and female sex steroids: predictability of in vivo interactions.

    PubMed

    Karjalainen, Marjo J; Neuvonen, Pertti J; Backman, Janne T

    2008-08-01

    The cytochrome P450 enzyme CYP1A2 is crucial for the metabolism of many drugs, for example, tizanidine. As the effects of several non-steroidal anti-inflammatory drugs (NSAID) and female sex steroids on CYP1A2 activity in vitro are unknown, their effects on phenacetin O-deethylation were studied and compared with the effects of model inhibitors in human liver microsomes, followed by prediction of their interaction potential with tizanidine in vivo. In vitro, fluvoxamine, tolfenamic acid, mefenamic acid and rofecoxib potently inhibited CYP1A2 [the 50% inhibitory concentration (IC(50)) < 10 microM]. Ethinyloestradiol, celecoxib, desogestrel and zolmitriptan were moderate (IC(50) 20-200 microM), and etodolac, ciprofloxacin, etoricoxib and gestodene weak inhibitors of CYP1A2 (IC(50) > 200 microM). At 100 microM, the other tested NSAIDs and steroids inhibited CYP1A2 less than 35%. Pre-incubation increased the inhibitory effects of rofecoxib, progesterone and desogestrel. Using the free portal plasma inhibitor concentration and the competitive inhibition model, the effect of fluvoxamine and the lack of effects of tolfenamic acid and celecoxib on tizanidine pharmacokinetics in human beings were well predicted. However, the effects of ciprofloxacin, rofecoxib and oral contraceptives were greatly underestimated even when the predictions were based on their total portal plasma concentration. Besides rofecoxib, and possibly mefenamic acid, other NSAIDs were predicted not to significantly inhibit CYP1A2 in human beings. The type of enzyme inhibition, particularly metabolism-dependent inhibition, free inhibitor concentration and accumulation of the inhibitor into the hepatocytes should be considered in extrapolations of in vitro results to human beings. PMID:18816299

  4. Functional Interactions between Cytochromes P450 1A2 and 2B4 Require Both Enzymes to Reside in the Same Phospholipid Vesicle

    PubMed Central

    Reed, James R.; Eyer, Marilyn; Backes, Wayne L.

    2010-01-01

    Previous studies have shown that the combined presence of two cytochrome P450 enzymes (P450s) can affect the function of both enzymes, results that are consistent with the formation of heteromeric P450·P450 complexes. The goal of this study was to provide direct evidence for a physical interaction between P450 1A2 (CYP1A2) and P450 2B4 (CYP2B4), by determining if the interactions required both enzymes to reside in the same lipid vesicles. When NADPH-cytochrome P450 reductase (CPR) and a single P450 were incorporated into separate vesicles, extremely slow reduction rates were observed, demonstrating that the enzymes were anchored in the vesicles. Next, several reconstituted systems were prepared: 1) CPR·CYP1A2, 2) CPR·CYP2B4, 3) a mixture of CPR·CYP1A2 vesicles with CPR·CYP2B4 vesicles, and 4) CPR·CYP1A2·CYP2B4 in the same vesicles (ternary system). When in the ternary system, CYP2B4-mediated metabolism was significantly inhibited, and CYP1A2 activities were stimulated by the presence of the alternate P450. In contrast, P450s in separate vesicles were unable to interact. These data demonstrate that P450s must be in the same vesicles to alter metabolism. Additional evidence for a physical interaction among CPR, CYP1A2, and CYP2B4 was provided by cross-linking with bis(sulfosuccinimidyl) suberate. The results showed that after cross-linking, antibody to CYP1A2 was able to co-immunoprecipitate CYP2B4 but only when both proteins were in the same phospholipid vesicles. These results clearly demonstrate that the alterations in P450 function require both P450s to be present in the same vesicles and support a mechanism whereby P450s form a physical complex in the membrane. PMID:20071338

  5. Solute Carrier Family of the Organic Anion-Transporting Polypeptides 1A2- Madin-Darby Canine Kidney II: A Promising In Vitro System to Understand the Role of Organic Anion-Transporting Polypeptide 1A2 in Blood-Brain Barrier Drug Penetration.

    PubMed

    Liu, Houfu; Yu, Na; Lu, Sijie; Ito, Sumito; Zhang, Xuan; Prasad, Bhagwat; He, Enuo; Lu, Xinyan; Li, Yang; Wang, Fei; Xu, Han; An, Gang; Unadkat, Jashvant D; Kusuhara, Hiroyuki; Sugiyama, Yuichi; Sahi, Jasminder

    2015-07-01

    Organic anion-transporting polypeptide (OATP) 1A2 has the potential to be a target for central nervous system drug delivery due to its luminal localization at the human blood-brain barrier and broad substrate specificity. We found OATP1A2 mRNA expression in the human brain to be comparable to breast cancer resistance protein and OATP2B1 and much higher than P-glycoprotein (P-gp), and confirmed greater expression in the brain relative to other tissues. The goal of this study was to establish a model system to explore OATP1A2-mediated transcellular transport of substrate drugs and the interplay with P-gp. In vitro (human embryonic kidney 293 cells stably expressing Oatp1a4, the closest murine isoform) and in vivo (naïve and Oatp1a4 knock-out mice) studies with OATP1A2 substrate triptan drugs demonstrated that these drugs were not Oatp1a4 substrates. This species difference demonstrates that the rodent is not a good model to investigate the active brain uptake of potential OATP1A2 substrates. Thus, we constructed a novel OATP1A2 expressing Madin-Darby canine kidney (MDCK) II wild type and an MDCKII-multidrug resistance protein 1 (MDR1) system using BacMam virus transduction. The spatial expression pattern of OATP1A2 after transduction in MDCKII-MDR1 cells was superimposed to P-gp, confirming apical membrane localization. OATP1A2-mediated uptake of zolmitriptan, rosuvastatin, and fexofenadine across monolayers increased with increasing OATP1A2 protein expression. OATP1A2 counteracted P-gp efflux for cosubstrates zolmitriptan and fexofenadine. A three-compartment model incorporating OATP1A2-mediated influx was used to quantitatively describe the time- and concentration-dependent apical-to-basolateral transcellular transport of rosuvastatin across OATP1A2 expressing the MDCKII monolayer. This novel, simple and versatile experimental system is useful for understanding the contribution of OATP1A2-mediated transcellular transport across barriers, such as the blood

  6. The Caffeine Cytochrome P450 1A2 Metabolic Phenotype Does Not Predict the Metabolism of Heterocyclic Aromatic Amines in Humans

    PubMed Central

    Turesky, Robert J.; White, Kami K.; Wilkens, Lynne R.; Marchand, Loïc Le

    2015-01-01

    2-Amino-1-methylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are carcinogenic heterocyclic aromatic amines (HAAs) formed in well-done cooked meats. Chemicals that induce cytochrome P450 (P450) 1A2, a major enzyme involved in the bioactivation of HAAs, also form in cooked meat. Therefore, well-done cooked meat may pose an increase in cancer risk because it contains both inducers of P450 1A2 and procarcinogenic HAAs. We examined the influence of components in meat to modulate P450 1A2 activity and the metabolism of PhIP and MeIQx in volunteers during a 4 week feeding study of well-done cooked beef. The mean P450 1A2 activity, assessed by caffeine metabolic phenotyping, ranged from 6.3 to 7.1 before the feeding study commenced and from 9.6 to 10.4 during the meat feeding period: the difference in means was significant (P < 0.001). Unaltered PhIP, MeIQx, and their P450 1A2 metabolites, N2-(β-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (HON-PhIP-N2-Gl); N3-(β-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (HON-PhIP-N3-Gl); 2-amino-3-methylimidazo-[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH); and 2-amino-8-(hydroxymethyl)-3-methylimidazo[4,5-f]quinoxaline (8-CH2OH-IQx) were measured in urine during days 2, 14, and 28 days of the meat diet. Significant correlations were observed on these days between the levels of the unaltered HAAs and their oxidized metabolites, when expressed as percent of dose ingested or as metabolic ratios. However, there was no statistically significant correlation between the caffeine P450 1A2 phenotype and any urinary HAA biomarker. Although the P450 1A2 activity varied by greater than 20-fold among the subjects, there was a large intra-individual variation of the P450 1A2 phenotype and inconsistent responses to inducers of P450 1A2. The coefficient of variation of the P450 1A2 phenotype within-individual ranged between 1 to 112% (median=40

  7. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway

    PubMed Central

    Awortwe, Charles; Manda, Vamshi K.; Avonto, Cristina; Khan, Shabana I.; Khan, Ikhlas A.; Walker, Larry A.; Bouic, Patrick J.; Rosenkranz, Bernd

    2015-01-01

    This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. Thus E. purpurea preparations cause herb–drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation. PMID:25377539

  8. A missense variant of the ATP1A2 gene is associated with a novel phenotype of progressive sensorineural hearing loss associated with migraine.

    PubMed

    Oh, Se-Kyung; Baek, Jeong-In; Weigand, Karl M; Venselaar, Hanka; Swarts, Herman G P; Park, Seong-Hyun; Hashim Raza, Muhammad; Jung, Da Jung; Choi, Soo-Young; Lee, Sang-Heun; Friedrich, Thomas; Vriend, Gert; Koenderink, Jan B; Kim, Un-Kyung; Lee, Kyu-Yup

    2015-05-01

    Hereditary sensorineural hearing loss is an extremely clinical and genetic heterogeneous disorder in humans. Especially, syndromic hearing loss is subdivided by combinations of various phenotypes, and each subtype is related to different genes. We present a new form of progressive hearing loss with migraine found to be associated with a variant in the ATP1A2 gene. The ATP1A2 gene has been reported as the major genetic cause of familial migraine by several previous studies. A Korean family presenting progressive hearing loss with migraine was ascertained. The affected members did not show any aura or other neurologic symptoms during migraine attacks, indicating on a novel phenotype of syndromic hearing loss. To identify the causative gene, linkage analysis and whole-exome sequencing were performed. A novel missense variant, c.571G>A (p.(Val191Met)), was identified in the ATP1A2 gene that showed co-segregation with the phenotype in the family. In silico studies suggest that this variant causes a change in hydrophobic interactions and thereby slightly destabilize the A-domain of Na(+)/K(+)-ATPase. However, functional studies failed to show any effect of the p.(Val191Met) substitution on the catalytic rate of this enzyme. We describe a new phenotype of progressive hearing loss with migraine associated with a variant in the ATP1A2 gene. This study suggests that a variant in Na(+)/K(+)-ATPase can be involved in both migraine and hearing loss. PMID:25138102

  9. CYP1A2 DOES NOT PLAY A CRITICAL ROLE IN 2, 3 7, 8-TETRACHLORODIBENZO-P-DIOXIN-INDUCED IMMUNOSUPRESSION

    EPA Science Inventory

    CYP1A2 IS NOT REQUIRED FOR 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN-INDUCED IMMUNOSUPPRESSION Smialowicz, Ralph J1; Burgin, Deborah E2; Williams, Wanda C1; Diliberto, Janet J1; Birnbaum, Linda S1
    1 Experimental Toxicology Division, US EPA, RTP, NC, USA; 2Curriculum in Toxicology, U...

  10. High coffee intake, but not caffeine, is associated with reduced estrogen receptor negative and postmenopausal breast cancer risk with no effect modification by CYP1A2 genotype.

    PubMed

    Lowcock, Elizabeth C; Cotterchio, Michelle; Anderson, Laura N; Boucher, Beatrice A; El-Sohemy, Ahmed

    2013-01-01

    Associations between caffeine and coffee consumption and breast cancer risk are uncertain, with studies suggesting inverse and null associations. Variation in cytochrome P450 1A2 (CYP1A2), a gene responsible for caffeine metabolism, may modify these associations. Cases (n = 3,062) were recruited through the Ontario Cancer Registry and controls (n = 3,427) through random digit dialing. Logistic regression was used to evaluate associations between breast cancer risk and intakes of 7 caffeine-containing items and total caffeine, and examine whether a genetic variant in CYP1A2 (rs762551) modified these associations. Analyses were stratified by estrogen receptor (ER), menopausal, and smoking status. Generally, coffee and caffeine were not associated with breast cancer risk; however, a significant reduction in risk was observed with the highest category of coffee consumption [≥5 cups per day vs. never, multivariate-adjusted odds ratio (MVOR) = 0.71, 95% confidence interval (CI): 0.51, 0.98]. Variant rs762551 did not modify associations. In stratified analyses, high coffee intake was associated with reduced risk of ER- (MVOR = 0.41, 95% CI: 0.19, 0.92) and postmenopausal breast cancer (MVOR = 0.63, 95% CI: 0.43, 0.94). High coffee consumption, but not total caffeine, may be associated with reduced risk of ER- and postmenopausal breast cancers, independent of CYP1A2 genotype. Further studies are needed to replicate these findings. PMID:23530639

  11. Differential expression of CYP1A1 and CYP1A2 genes in H4IIE rat hepatoma cells exposed to TCDD and PAHs.

    PubMed

    Kaisarevic, Sonja; Dakic, Vanja; Hrubik, Jelena; Glisic, Branka; Lübcke-von Varel, Urte; Pogrmic-Majkic, Kristina; Fa, Svetlana; Teodorovic, Ivana; Brack, Werner; Kovacevic, Radmila

    2015-01-01

    Rat hepatoma cells H4IIE were treated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons (PAHs) (dibenz(a,h)anthracene, benzo(a)pyrene, benz(a)anthracene, chrysene), low-concentration mixtures of PAHs and TCDD, and environmental mixtures contaminated by PAHs and their derivatives. Expression of the gene battery comprising cytochrome P450 Cyp1a1, Cyp1a2, Cyp1b1, and glutathione-s-transferase Gsta2 and Gstp was investigated using quantitative real time polymerase chain reaction (qRT-PCR) analysis. The results revealed that TCDD induce Cyp1a1>Cyp1a2>Cyp1b1, while PAHs and PAH-containing environmental mixtures induce Cyp1a2>Cyp1a1>Cyp1b1 gene expression pattern. While low-concentration mixtures elicited a more pronounced response in comparison to single treatments, the typical gene expression patterns were not observed. In all samples, Gsta2 was predominantly expressed relative to Gstp. These findings indicate that differential Cyp1a1 and Cyp1a2 expression in the H4IIE cells might be used for detection of PAHs in highly contaminated environmental mixtures, but not in low-concentration mixtures of these compounds. PMID:25555259

  12. In Silico Docking of Ligands to Drug Oxidation Enzymes Cytochrome P450 3A4 and Cytochrome P450 1A2.

    NASA Astrophysics Data System (ADS)

    Smith, David; Guglielmon, Jonathan; Glenn, Marsch; Peter, Guengerich F.

    2009-03-01

    Cytochrome P450 3A4 (CYP3A4) and Cytochrome P450 1A2 (CYP1A2) oxidize most drugs in humans. Protein modeling toolkits from OpenEye Scientific Software were used to examine the interaction of drug substrates with CYP3A4 and CYP1A2. Conformers and partial atomic charges were generated for each drug molecule. User-defined volumes were defined around CYP3A4 and CYP1A2 active sites. Ligands were docked assuming protein and substrates as rigid bodies. To assess rigid docking accuracy, x-ray diffraction coordinates of CYP3A4-erythromycin and CYP3A4-metyrapone complexes were obtained. Rigid re-docking of erythromycin and metyrapone into CYP3A4 yielded poses similar to the crystal structures. Rigid docking revealed two other energetically-favorable CYP3A4-metyrapone poses. The best poses were obtained by using all the Open Eye scoring functions. Optimization of protein-ligand interactions within 5-10 Angstroms of the docked ligand was then performed using the Merck Molecular Force Field in which the protein was assumed to be flexible and the ligand to be rigid. Nearby protein residues pulled slightly closer to the substrate, reducing the volume of the active site.

  13. Strategy for prenatal diagnosis of osteogenesis imperfecta by linkage analysis to the type I collagen loci COL1A1 and COL1A2.

    PubMed

    Benušienė, E; Kučinskas, V

    2000-01-01

    To improve prenatal diagnosis of osteogenesis imperfecta (OI) in Lithuania, possibilities of indirect molecular genetic diagnosis were investigated in 11 families with dominant OI. Segregation of polymorphic DNA markers closely linked to COL1A1 and COL1A2 genes with OI phenotype was investigated. Polymorphic DNA markers applied were individual haplotypes constructed using a set of restriction enzyme sites within or close to the genes. Comparison of phenotypic features with the concordant collagen locus showed that in four pedigrees with OI Sillence type I segregated with COL1A1, while two pedigrees with OI Sillence type I and OI type IV segregated with COL1A2. Out of six remaining pedigrees with OI Sillence type I, three were concordant at both loci, two pedigrees were discordant at the locus COL1A2 and non-informative at the locus COL1A1 and one pedigree was concordant at the locus COL1A1 and non-informative at the locus COL1A2. Informativity of DNA markers applied was also investigated in the Lithuanian OI families. The frequencies of six restriction enzyme site dimorphisms in type I collagen loci were estimated and polymorphism information content (PIC) values were calculated for each restriction site and for a combination of three sites. COL1A1 locus dimorphisms A/MspI, B/RsaI and F/MnlI, showed PIC values of 0.327, 0.191 and 0.366, respectively, giving a combined PIC of 0.656 at the locus, while COL1A2 locus dimorphisms C/EcoRI, D/MspI and E/RsaI RFLPs had PIC values of 0.357, 0.168 and 0.331, respectively, giving a combined PIC of 0.655 at the locus. PMID:11208313

  14. Vavilosides A1/A2-B1/B2, new furostane glycosides from the bulbs of Allium vavilovii with cytotoxic activity.

    PubMed

    Zolfaghari, Behzad; Sadeghi, Masoud; Troiano, Raffaele; Lanzotti, Virginia

    2013-04-01

    A phytochemical analysis of the bulbs of Allium vavilovii M. Pop. & Vved. was attained for the first time extensively, affording to the isolation of four new furostanol saponins, named vavilosides A1/A2-B1/B2 (1a/b-2a/2b), as two couple of isomers in equilibrium, together with ascalonicoside A1/A2 (3a/3b) and 22-O-methyl ascalonicoside A1/A2 (4a/4b), previously isolated from shallot, Allium ascalonicum. High concentrations of kaempferol, kaempferide, and kaempferol 4(I)-glucoside were also isolated. The chemical structures of the new compounds, established through a combination of extensive nuclear magnetic resonance, mass spectrometry and chemical analyses, were identified as (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-galactopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside A1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-galactopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside A2), (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-xylopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside B1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-d-xylopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside B2). The isolated saponins showed cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma, cell lines with the following rank: vaviloside B1/B2>ascalonicoside A1/A2>vaviloside A1/A2. PMID:23415085

  15. Loss of translation elongation factor (eEF1A2) expression in vivo differentiates between Wallerian degeneration and dying-back neuronal pathology

    PubMed Central

    Murray, Lyndsay M; Thomson, Derek; Conklin, Annalijn; Wishart, Thomas M; Gillingwater, Thomas H

    2008-01-01

    Wallerian degeneration and dying-back pathology are two well-known cellular pathways capable of regulating the breakdown and loss of axonal and synaptic compartments of neurons in vivo. However, the underlying mechanisms and molecular triggers of these pathways remain elusive. Here, we show that loss of translation elongation factor eEF1A2 expression in lower motor neurons and skeletal muscle fibres in homozygous Wasted mice triggered a dying-back neuropathy. Synaptic loss at the neuromuscular junction occurred in advance of axonal pathology and by a mechanism morphologically distinct from Wallerian degeneration. Dying-back pathology in Wasted mice was accompanied by reduced expression levels of the zinc finger protein ZPR1, as found in other dying-back neuropathies such as spinal muscular atrophy. Surprisingly, experimental nerve lesion revealed that Wallerian degeneration was significantly delayed in homozygous Wasted mice; morphological assessment revealed that ∼80% of neuromuscular junctions in deep lumbrical muscles at 24 h and ∼50% at 48 h had retained motor nerve terminals following tibial nerve lesion. This was in contrast to wild-type and heterozygous Wasted mice where < 5% of neuromuscular junctions had retained motor nerve terminals at 24 h post-lesion. These data show that eEF1A2 expression is required to prevent the initiation of dying-back pathology at the neuromuscular junction in vivo. In contrast, loss of eEF1A2 expression significantly inhibited the initiation and progression of Wallerian degeneration in vivo. We conclude that loss of eEF1A2 expression distinguishes mechanisms underlying dying-back pathology from those responsible for Wallerian degeneration in vivo and suggest that eEF1A2-dependent cascades may provide novel molecular targets to manipulate neurodegenerative pathways in lower motor neurons. PMID:19094180

  16. MLIF Alleviates SH-SY5Y Neuroblastoma Injury Induced by Oxygen-Glucose Deprivation by Targeting Eukaryotic Translation Elongation Factor 1A2

    PubMed Central

    Liu, Yulan; Cheng, Hao; Wang, Jing; Zhang, Yue; Rui, Yaocheng; Li, Tiejun

    2016-01-01

    Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide, has been shown to exert potent anti-inflammatory effects in ischemic brain injury. In this study, we investigated the neuroprotective action of MLIF against oxygen-glucose deprivation (OGD)-induced injury in human neuroblastoma SH-SY5Y cells. MTT assay was used to assess cell viability, and flow cytometry assay and Hoechst staining were used to evaluate apoptosis. LDH assay was used to exam necrosis. The release of inflammatory cytokines was detected by ELISA. Levels of the apoptosis associated proteins were measured by western blot analysis. To identify the protein target of MLIF, pull-down assay and mass spectrometry were performed. We observed that MLIF enhanced cell survival and inhibited apoptosis and necrosis by inhibiting p-JNK, p53, c-caspase9 and c-caspase3 expression. In the microglia, OGD-induced secretion of inflammatory cytokines was markedly reduced in the presence of MLIF. Furthermore, we found that eukaryotic translation elongation factor 1A2 (eEF1A2) is a downstream target of MLIF. Knockdown eEF1A2 using short interfering RNA (siRNA) almost completely abrogated the anti-apoptotic effect of MLIF in SH-SY5Y cells subjected to OGD, with an associated decrease in cell survival and an increase in expression of p-JNK and p53. These results indicate that MLIF ameliorates OGD-induced SH-SY5Y neuroblastoma injury by inhibiting the p-JNK/p53 apoptotic signaling pathway via eEF1A2. Our findings suggest that eEF1A2 may be a new therapeutic target for ischemic brain injury. PMID:26918757

  17. Extramedullary blast crisis as initial presentation in chronic myeloid leukemia with the e1a2 BCR-ABL1 transcript: A case report

    PubMed Central

    AI, DI; LIU, WEI; LU, GARY; PATEL, KEYUR PRAVINCHANDRA; CHEN, ZI

    2015-01-01

    A 23-year-old woman presented with enlarged right inguinal lymph nodes. The pathological examination of the nodes revealed infiltration by myeloid sarcoma. A bone marrow smear and biopsy revealed cytogenetic abnormalities, with 46,XX,t(9;22) and chronic myeloid leukemia (CML) was diagnosed. The e1a2 BCR-ABL1 fusion transcript was detected. The patient received imatinib-based combined chemotherapy, allogeneic hematopoietic stem cell transplantation, donor lymphocyte infusions and dasatinib treatment. The patient achieved complete response and has remained leukemia-free for >48 months. To the best of our knowledge, this is the first case report of CML with the e1a2 BCR-ABL1 transcript, with extramedullary blast crisis as the initial presentation. The aim of the present study was to discuss this special case with reference to the literature. PMID:26807241

  18. Discovery of Western European R1b1a2 Y Chromosome Variants in 1000 Genomes Project Data: An Online Community Approach

    PubMed Central

    Rocca, Richard A.; Magoon, Gregory; Reynolds, David F.; Krahn, Thomas; Tilroe, Vincent O.; Op den Velde Boots, Peter M.; Grierson, Andrew J.

    2012-01-01

    The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data. PMID:22911832

  19. Discovery of Western European R1b1a2 Y chromosome variants in 1000 genomes project data: an online community approach.

    PubMed

    Rocca, Richard A; Magoon, Gregory; Reynolds, David F; Krahn, Thomas; Tilroe, Vincent O; Op den Velde Boots, Peter M; Grierson, Andrew J

    2012-01-01

    The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data. PMID:22911832

  20. Potent inhibition of CYP1A2 by Frutinone A, an active ingredient of the broad spectrum antimicrobial herbal extract from P. fruticosa.

    PubMed

    Thelingwani, Roslyn S; Dhansay, Kariema; Smith, Peter; Chibale, Kelly; Masimirembwa, Collen M

    2012-10-01

    1. Frutinone is an active ingredient extracted from the lipophilic fraction of the Polygala Fruticosa demonstrating various antibacterial and fungal properties. The aim of this study was to characterize its metabolism in an effort to understand metabolism based drug-herb interactions. 2. In vitro metabolic clearance and metabolite identification studies were done using cryopreserved hepatocytes. Reaction phenotyping and inhibition studies were done using human liver microsomes and recombinant cytochrome P450s (CYPs). Frutinone A-CYP1A2 interactions were rationalized using docking simulations. 3. Hepatic clearance was predicted to be low (7.17 mL/min/kg), with reaction phenotyping studies indicating no clearance by the enzymes tested. Frutinone was identified as a potent inhibitor of CYP1A2 with moderate effects on CYP2C19, 2C9, 2D6 and 3A4. CYP1A2 inhibition was reversible and characterised by an IC(50) of 0.56 µM. Inhibition was differential showing mixed (K(i) = 0.48 µM) and competitive (K(i) = 0.31 µM) inhibition with 3-cyano-7-ethoxycoumarin and ethoxyresorufin, respectively. Two binding sites, one for inhibitors and the other for substrates were identified in silico. 4. The potent CYP1A2 inhibition by Frutinone A could be predictive of the potential drug-herb interaction risk in the use of herbal extracts from P. fruticosa. The data suggest future pharmacological research on this chromocoumarin should take metabolic properties into account. PMID:22533317

  1. Consistent linkage of dominantly inherited osteogenesis imperfecta to the type I collagen loci: COL1A1 and COL1A2.

    PubMed

    Sykes, B; Ogilvie, D; Wordsworth, P; Wallis, G; Mathew, C; Beighton, P; Nicholls, A; Pope, F M; Thompson, E; Tsipouras, P

    1990-02-01

    The segregation of COL1A1 and COL1A2, the two genes which encode the chains of type I collagen, was analyzed in 38 dominant osteogenesis imperfecta (OI) pedigrees by using polymorphic markers within or close to the genes. This was done in order to estimate the consistency of linkage of OI genes to these two loci. None of the 38 pedigrees showed evidence of recombination between the OI gene and both collagen loci, suggesting that the frequency of unlinked loci in the population must be low. From these results, approximate 95% confidence limits for the proportion of families linked to the type I collagen genes can be set between .91 and 1.00. This is high enough to base prenatal diagnosis of dominantly inherited OI on linkage to these genes even in families which are too small for the linkage to be independently confirmed to high levels of significance. When phenotypic features were compared with the concordant collagen locus, all eight pedigrees with Sillence OI type IV segregated with COL1A2. On the other hand, Sillence OI type I segregated with both COL1A1 (17 pedigrees) and COL1A2 (7 pedigrees). The concordant locus was uncertain in the remaining six OI type I pedigrees. Of several other features, the presence or absence of presenile hearing loss was the best predictor of the mutant locus in OI type I families, with 13 of the 17 COL1A1 segregants and none of the 7 COL1A2 segregants showing this feature. PMID:1967900

  2. Dual A1/A2B Receptor Blockade Improves Cardiac and Renal Outcomes in a Rat Model of Heart Failure with Preserved Ejection Fraction.

    PubMed

    Tofovic, Stevan P; Salah, Eman M; Smits, Glenn J; Whalley, Eric T; Ticho, Barry; Deykin, Aaron; Jackson, Edwin K

    2016-02-01

    Heart failure with preserved ejection fraction (HFpEF) is prevalent and often accompanied by metabolic syndrome. Current treatment options are limited. Here, we test the hypothesis that combined A1/A2B adenosine receptor blockade is beneficial in obese ZSF1 rats, an animal model of HFpEF with metabolic syndrome. The combined A1/A2B receptor antagonist 3-[4-(2,6-dioxo-1,3-dipropyl-7H-purin-8-yl)-1-bicyclo[2.2.2]octanyl]propanoic acid (BG9928) was administered orally (10 mg/kg/day) to obese ZSF1 rats (n = 10) for 24 weeks (from 20 to 44 weeks of age). Untreated ZSF1 rats (n = 9) served as controls. After 24 weeks of administration, BG9928 significantly lowered plasma triglycerides (in mg/dl: control group, 4351 ± 550; BG9928 group, 2900 ± 551) without adversely affecting plasma cholesterol or activating renin release. BG9928 significantly decreased 24-hour urinary glucose excretion (in mg/kg/day: control group, 823 ± 179; BG9928 group, 196 ± 80) and improved oral glucose tolerance, polydipsia, and polyuria. BG9928 significantly augmented left ventricular diastolic function in association with a reduction in cardiac vasculitis and cardiac necrosis. BG9928 significantly reduced 24-hour urinary protein excretion (in mg/kg/day: control group, 1702 ± 263; BG9928 group, 1076 ± 238), and this was associated with a reduction in focal segmental glomerulosclerosis, tubular atrophy, tubular dilation, and deposition of proteinaceous material in the tubules. These findings show that, in a model of HFpEF with metabolic syndrome, A1/A2B receptor inhibition improves hyperlipidemia, exerts antidiabetic actions, reduces HFpEF, improves cardiac histopathology, and affords renal protection. We conclude that chronic administration of combined A1/A2B receptor antagonists could be beneficial in patients with HFpEF, in particular those with comorbidities such as obesity, diabetes, and dyslipidemias. PMID:26585572

  3. COMPARISON OF OVERALL METABOLISM OF 1, 2, 7, 8-PECDD IN CYP1A2(-L-) KNOCKOUT AND C57BL/6N PARENTAL STRAINS OF MICE

    EPA Science Inventory

    COMPARISON OF OVERALL METABOLISM OF 1,2,3,7,8-PeCDD
    IN CYP1A2 (-/-) KNOCKOUT AND C57BL/6N PARENTAL
    STRAINS OF MICE

    Heldur Hakk1 and Janet J. Diliberto2

    1 USDA-ARS, Biosciences Research Laboratory, P.O. Box 5674, Fargo, ND, USA
    2 US EPA, ORD, National Heal...

  4. A Novel DHPLC-Based Procedure for the Analysis of COL1A1 and COL1A2 Mutations in Osteogenesis Imperfecta

    PubMed Central

    Fuccio, Antonella; Iorio, Mariangela; Amato, Felice; Elce, Ausilia; Ingino, Rosaria; Filocamo, Mirella; Castaldo, Giuseppe; Salvatore, Francesco; Tomaiuolo, Rossella

    2011-01-01

    Approximately 90% of patients with osteogenesis imperfecta (OI) exhibit dominant COL1A1 or COL1A2 mutations; however, molecular analysis is difficult because these genes span 51 and 52 exons, respectively. We devised a PCR-denaturing high-performance liquid chromatography (DHPLC) procedure to analyze the COL1A1 or COL1A2 coding regions and validated it using 130 DNA samples from individuals without OI, 25 DNA samples from two cells to investigate the procedure's potential for preimplantation diagnosis, and DNA samples from 10 patients with OI. Three novel intronic variants in vitro were expressed using a minigene assay to assess their effects on splicing. The procedure is rapid, inexpensive, and reproducible. Analysis of samples from individuals without OI revealed six novel and some known polymorphisms useful for linkage diagnosis because of high heterozygosity. Analysis of two-cell samples confirmed the known genotype in 24 of 25 experiments; DNA failed to amplify in only one case. No incidence of allele dropout was recorded. DHPLC revealed six novel mutations, three of which were intronic, in all patients with OI, and these results were confirmed by means of COL1A1 and COL1A2 direct sequencing. Expression of intronic mutations demonstrated that variant 804 + 2_804 + 3delTG in intron 11 disrupts normal splicing, thereby leading to formation of two alternative products. Variants c.3046-4_3046-5dupCT (COL1A1) and c.891 + 77A>T (COL1A2) did not affect splicing. The described DHPLC protocol combined with the minigene assay may contribute to molecular diagnosis in OI. Moreover, this protocol will aid in counseling about prenatal and preimplantation diagnosis. PMID:21884818

  5. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk-results from the EPIC cohort study.

    PubMed

    Dik, Vincent K; Bueno-de-Mesquita, H B As; Van Oijen, Martijn G H; Siersema, Peter D; Uiterwaal, Cuno S P M; Van Gils, Carla H; Van Duijnhoven, Fränzel J B; Cauchi, Stéphane; Yengo, Loic; Froguel, Philippe; Overvad, Kim; Bech, Bodil H; Tjønneland, Anne; Olsen, Anja; Boutron-Ruault, Marie-Christine; Racine, Antoine; Fagherazzi, Guy; Kühn, Tilman; Campa, Daniele; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Peppa, Eleni; Oikonomou, Eleni; Palli, Domenico; Grioni, Sara; Vineis, Paolo; Tumino, Rosaria; Panico, Salvatore; Peeters, Petra H M; Weiderpass, Elisabete; Engeset, Dagrun; Braaten, Tonje; Dorronsoro, Miren; Chirlaque, María-Dolores; Sánchez, María-José; Barricarte, Aurelio; Zamora-Ros, Raul; Argüelles, Marcial; Jirström, Karin; Wallström, Peter; Nilsson, Lena M; Ljuslinder, Ingrid; Travis, Ruth C; Khaw, Kay-Tee; Wareham, Nick; Freisling, Heinz; Licaj, Idlir; Jenab, Mazda; Gunter, Marc J; Murphy, Neil; Romaguera-Bosch, Dora; Riboli, Elio

    2014-07-15

    Coffee and tea contain numerous antimutagenic and antioxidant components and high levels of caffeine that may protect against colorectal cancer (CRC). We investigated the association between coffee and tea consumption and CRC risk and studied potential effect modification by CYP1A2 and NAT2 genotypes, enzymes involved in the metabolization of caffeine. Data from 477,071 participants (70.2% female) of the European Investigation into Cancer and Nutrition (EPIC) cohort study were analyzed. At baseline (1992-2000) habitual (total, caffeinated and decaffeinated) coffee and tea consumption was assessed with dietary questionnaires. Cox proportional hazards models were used to estimate adjusted hazard ratio's (HR) and 95% confidence intervals (95% CI). Potential effect modification by genotype-based CYP1A2 and NAT2 activity was studied in a nested case-control set of 1,252 cases and 2,175 controls. After a median follow-up of 11.6 years, 4,234 participants developed CRC (mean age 64.7 ± 8.3 years). Total coffee consumption (high vs. non/low) was not associated with CRC risk (HR 1.06, 95% CI 0.95-1.18) or subsite cancers, and no significant associations were found for caffeinated (HR 1.10, 95% CI 0.97-1.26) and decaffeinated coffee (HR 0.96, 95% CI 0.84-1.11) and tea (HR 0.97, 95% CI 0.86-1.09). High coffee and tea consuming subjects with slow CYP1A2 or NAT2 activity had a similar CRC risk compared to non/low coffee and tea consuming subjects with a fast CYP1A2 or NAT2 activity, which suggests that caffeine metabolism does not affect the link between coffee and tea consumption and CRC risk. This study shows that coffee and tea consumption is not likely to be associated with overall CRC. PMID:24318358

  6. Development and validation of a reversed-phase HPLC method for CYP1A2 phenotyping by use of a caffeine metabolite ratio in saliva.

    PubMed

    Begas, Elias; Kouvaras, Evangelos; Tsakalof, Andreas K; Bounitsi, Maria; Asprodini, Eftihia Konstadinos

    2015-11-01

    CYP1A2 is important for metabolizing various clinically used drugs. Phenotyping of CYP1A2 may prove helpful for drug individualization therapy. Several HPLC methods have been developed for quantification of caffeine metabolites in plasma and urine. Aim of the present study was to develop a valid and simple HPLC method for evaluating CYP1A2 activity during exposure in xenobiotics by the use of human saliva. Caffeine and paraxanthine were isolated from saliva by liquid-liquid extraction (chlorophorm/isopropanol 85/15v/v). Extracts were analyzed by reversed-phase HPLC on a C18 column with mobile phase 0.1% acetic acid/methanol/acetonitrile (80/20/2 v/v) and detected at 273nm. Caffeine and paraxanthine elution times were <13min with no interferences from impurities or caffeine metabolites. Detector response was linear (0.10-8.00µg/ml, R(2) >0.99), recovery was >93% and bias <4.47%. Intra- and inter-day precision was <5.14% (n=6). The limit of quantitation was 0.10µg/ml and the limit of detection was 0.018±0.002µg/mL for paraxanthine and 0.032±0.002µg/ml for caffeine. Paraxanthine/caffeine ratio of 34 healthy volunteers was significantly higher in smokers (p<0.001). Saliva paraxanthine/caffeine ratios and urine metabolite ratios were highly correlated (r=0.85, p<0.001). The method can be used for the monitoring of CYP1A2 activity in clinical practice and in studies relevant to exposure to environmental and pharmacological xenobiotics. PMID:25891161

  7. Downregulation of let‑7b promotes COL1A1 and COL1A2 expression in dermis and skin fibroblasts during heat wound repair.

    PubMed

    Liu, Jinyan; Luo, Chengqun; Yin, Zhaoqi; Li, Ping; Wang, Shaohua; Chen, Jia; He, Quanyong; Zhou, Jianda

    2016-03-01

    MicroRNAs (miRs), a class of non‑coding RNAs 18‑25 nucleotides in length, generally serve suppressive role in the regulation of gene expression via directly binding to the 3'‑untranslated region (UTR) of their target mRNA. Previous studies have identified several miRs to be involved in thermal injury repair. However, the role of miR let‑7b during the recovery of thermal injury, in addition to the underlying mechanisms, has not previously been studied. In the present study, the expression of let‑7b was observed to be significantly increased in skin tissue shortly following thermal injury, however, gradually reduced during the recovery of thermal injury. Notably, similar findings were observed in heat‑denatured skin fibroblasts. Furthermore, collagen, type I, alpha 1 (COL1A1) and collagen, type I, alpha 2 (COL1A2), which are associated with the synthesis of type I collagen, were identified as two targets of let‑7b in skin fibroblasts. The overexpression of let‑7b was observed to upregulate the protein expression levels of COL1A1 and COL1A2, while knockdown of let‑7b reduced the levels of COL1A1 and COL1A2 in skin fibroblasts. Furthermore, COL1A1 and COL1A2 were significantly downregulated shortly following thermal injury, while gradually upregulated during healing, in heat‑damaged skin tissue and skin fibroblasts, with the expression profiles opposite to that of let‑7b. Taken together, this suggests that the downregulation of let‑7b in heat‑damaged dermis promotes the synthesis of type I collagen and thus aids in burn wound repair. PMID:26861712

  8. In vitro inhibition of human CYP1A2, CYP2D6, and CYP3A4 by six herbs commonly used in pregnancy.

    PubMed

    Langhammer, Astrid Jordet; Nilsen, Odd Georg

    2014-04-01

    Black elderberry, cranberry, fennel, ginger, horsetail, and raspberry leaf, herbs frequently used in pregnancy, were investigated for their in vitro CYP1A2, 2D6, and 3A4 inhibitory potential. Aqueous or ethanolic extracts were made from commercially available herbal products, and incubations were performed with recombinant cDNA-expressed human CYP enzymes in the presence of positive inhibitory controls. Metabolite formation was determined by validated LCMS/MS or HPLC methodologies. IC50 inhibition constants were estimated from CYP activity inhibition plots using non-linear regression. The most potent inhibition was shown for fennel towards CYP2D6 and 3A4 with respective IC50 constants of 23 ± 2 and 40 ± 4 µg/ml, horsetail towards CYP1A2 with an IC50 constant of 27 ± 1 µg/ml, and raspberry leaf towards CYP1A2, 2D6, and 3A4 with IC50 constants of 44 ± 2, 47 ± 8, and 81 ± 11 µg/ml, respectively. Based on the recommended dosing of the different commercial herbal products, clinically relevant systemic CYP inhibitions could be possible for fennel, horsetail, and raspberry leaf. In addition, fennel and raspberry leaf might cause a clinically relevant inhibition of intestinal CYP3A4. The in vivo inhibitory potential of these herbs towards specific CYP enzymes should be further investigated. PMID:23843424

  9. Functional and pharmacological characterization of two different ASIC1a/2a heteromers reveals their sensitivity to the spider toxin PcTx1.

    PubMed

    Joeres, Niko; Augustinowski, Katrin; Neuhof, Andreas; Assmann, Marc; Gründer, Stefan

    2016-01-01

    Acid Sensing Ion Channels (ASICs) detect extracellular proton signals and are involved in synaptic transmission and pain sensation. ASIC subunits assemble into homo- and heteromeric channels composed of three subunits. Single molecule imaging revealed that heteromers composed of ASIC1a and ASIC2a, which are widely expressed in the central nervous system, have a flexible 2:1/1:2 stoichiometry. It was hitherto not possible, however, to functionally differentiate these two heteromers. To have a homogenous population of ASIC1a/2a heteromers with either 2:1 or 1:2 stoichiometry, we covalently linked subunits in the desired configuration and characterized their functional properties in Xenopus oocytes. We show that the two heteromers have slightly different proton affinity, with an additional ASIC1a subunit increasing apparent affinity. Moreover, we found that zinc, which potentiates ASIC2a-containing ASICs but not homomeric ASIC1a, potentiates both heteromers. Finally, we show that PcTx1, which binds at subunit-subunit interfaces of homomeric ASIC1a, inhibits both heteromers suggesting that ASIC2a can also contribute to a PcTx1 binding site. Using this functional fingerprint, we show that rat cortical neurons predominantly express the ASIC1a/2a heteromer with a 2:1 stoichiometry. Collectively, our results reveal the contribution of individual subunits to the functional properties of ASIC1a/2a heteromers. PMID:27277303

  10. Functional and pharmacological characterization of two different ASIC1a/2a heteromers reveals their sensitivity to the spider toxin PcTx1

    PubMed Central

    Joeres, Niko; Augustinowski, Katrin; Neuhof, Andreas; Assmann, Marc; Gründer, Stefan

    2016-01-01

    Acid Sensing Ion Channels (ASICs) detect extracellular proton signals and are involved in synaptic transmission and pain sensation. ASIC subunits assemble into homo- and heteromeric channels composed of three subunits. Single molecule imaging revealed that heteromers composed of ASIC1a and ASIC2a, which are widely expressed in the central nervous system, have a flexible 2:1/1:2 stoichiometry. It was hitherto not possible, however, to functionally differentiate these two heteromers. To have a homogenous population of ASIC1a/2a heteromers with either 2:1 or 1:2 stoichiometry, we covalently linked subunits in the desired configuration and characterized their functional properties in Xenopus oocytes. We show that the two heteromers have slightly different proton affinity, with an additional ASIC1a subunit increasing apparent affinity. Moreover, we found that zinc, which potentiates ASIC2a-containing ASICs but not homomeric ASIC1a, potentiates both heteromers. Finally, we show that PcTx1, which binds at subunit-subunit interfaces of homomeric ASIC1a, inhibits both heteromers suggesting that ASIC2a can also contribute to a PcTx1 binding site. Using this functional fingerprint, we show that rat cortical neurons predominantly express the ASIC1a/2a heteromer with a 2:1 stoichiometry. Collectively, our results reveal the contribution of individual subunits to the functional properties of ASIC1a/2a heteromers. PMID:27277303

  11. Ischaemia and reperfusion injury of rat liver increases expression of glutathione S-transferase A1/A2 in zone 3 of the hepatic lobule.

    PubMed Central

    Branum, G D; Selim, N; Liu, X; Whalen, R; Boyer, T D

    1998-01-01

    Effects of ischaemia-reperfusion injury (I/R) of liver on expression of rat glutathione S-transferase (rGST) isoenzymes that metabolize products of oxidative stress were examined. Rats underwent lobar liver ischaemia for 30 min followed by reperfusion. In ischaemic lobes, rGSTA1/A2 transcript levels increased significantly 12 h after I/R (2.94-fold) and protein levels increased significantly at 24 h (1.45-fold); increased transcript levels were also observed in nonischaemic lobes (1.78-fold). Superoxide dismutase prevented I/R and the increases in transcript and protein levels in ischaemic and non-ischaemic lobes. By in-situ hybridization, increases in transcript levels at 6 h were present in zones 2 and 3 of the ischaemic lobes and peaked at 12 h (2.5-fold zone 2, 4.5-fold zone 3). Significant increases in transcript levels also were observed at 24 h in zones 2 (2.0-fold) and 3 (2.9-fold) of non-ischaemic lobes. Nuclear run-off assays showed a 1.8-fold increase in rGSTA1/A2 transcription rates in ischaemic lobes at 3 h. We conclude that I/R causes increased rGSTA1/A2 expression in the zone of the hepatic lobule most susceptible to oxidative injury and that this expression may be an important defence against injury. PMID:9461493

  12. Analysis of caffeine and paraxanthine in human saliva with ultra-high-performance liquid chromatography for CYP1A2 phenotyping.

    PubMed

    Jordan, Nan Yeun; Mimpen, Jolet Y; van den Bogaard, Willie J M; Flesch, Frits M; van de Meent, Michiel H M; Torano, Javier Sastre

    2015-07-15

    Cytochrome P450 1A2 (CYP1A2) plays an important role in drug metabolism. Caffeine (CAF) is converted into paraxanthine (PX) by this enzyme and is used as a xenobiotic substrate to determine the CYP1A2 phenotype in humans. A method for the quantification of CAF and PX in saliva was developed using liquid-liquid extraction with ethyl acetate and analysis with ultra-high-performance liquid chromatography. Peaks from CAF, PX and internal standard were resolved within 6min. The method was validated from 0.05 to 5μgmL(-1) CAF and 0.025-2.5μgmL(-1) PX. Inter- and intra-day accuracies ranged from 91.2 to 107.2% with precisions <13.5%. The limits of detection were 0.16 and 0.63 ngmL(-1) for PX and CAF, respectively. PX/CAF concentration ratios from volunteers were 0.26-1.09 with mean ratios of 0.78±0.26 and 0.38±0.10 for regular and light/non-coffee drinkers, respectively. PMID:26038236

  13. Isolation of two cytochrome P450 cDNAs, CYP1A1 and CYP1A2, from harp seal (Phoca groenlandica) and grey seal (Halichoerus grypus).

    PubMed

    Tilley, Rachel E; Kemp, Graham D; Teramitsu, Ikuko; Hall, Ailsa J

    2002-06-01

    Two cytochrome P450 (CYP), CYP1A1 and CYP1A2, cDNA sequences have been isolated and cloned from harp seal (Phoca groenlandica) and grey seal (Halichoerus grypus). EROD, a model substrate for CYP1A, and heterologous antibodies have been employed as a biomarker in marine mammals, however the CYP1A sequences have not been characterised in these two seal species. mRNA was used as the template in RT-PCR, rather than DNA as this indicates transcription of the CYP1A gene in these seal species exposed to environmental contaminants. Harp and grey seal CYP1A1 amino acid sequences exhibited >99% identity and the CYP1A2 sequences were >98% identical. Phylogenetic analyses of the two seal species with other mammalian, and avian CYP1A sequences, showed the CYP1A1 and CYP1A2 sequences clustered with corresponding sequences in other mammalian species. The closest sequences to the seal CYP1As was dog CYP1A. The CYP1A sequence information presented in this study has provided the necessary data for the future production of species-specific probes for the use as biomarkers of environmental contaminant exposure. PMID:12106895

  14. CYP1A1 and CYP1A2 expression: comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines.

    PubMed

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how "human-like" can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs. PMID:19285097

  15. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    SciTech Connect

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  16. SIRT1 deacetylates RFX5 and antagonizes repression of collagen type I (COL1A2) transcription in smooth muscle cells

    SciTech Connect

    Xia, Jun; Wu, Xiaoyan; Yang, Yuyu; Zhao, Yuhao; Fang, Mingming; Xie, Weiping; Wang, Hong; Xu, Yong

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer SIRT1 interacts with and deacetylates RFX5. Black-Right-Pointing-Pointer SIRT1 activation attenuates whereas SIRT1 inhibition enhances collagen repression by RFX5 in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 promotes cytoplasmic localization and proteasomal degradation of RFX5 and cripples promoter recruitment of RFX5. Black-Right-Pointing-Pointer IFN-{gamma} represses SIRT1 expression in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 agonist alleviates collagen repression by IFN-{gamma} in vascular smooth muscle cells. -- Abstract: Decreased expression of collagen by vascular smooth muscle cells (SMCs) within the atherosclerotic plaque contributes to the thinning of the fibrous cap and poses a great threat to plaque rupture. Elucidation of the mechanism underlying repressed collagen type I (COL1A2) gene would potentially provide novel solutions that can prevent rupture-induced complications. We have previously shown that regulatory factor for X-box (RFX5) binds to the COL1A2 transcription start site and represses its transcription. Here we report that SIRT1, an NAD-dependent, class III deacetylase, forms a complex with RFX5. Over-expression of SIRT1 or NAMPT, which synthesizes NAD+ to activate SIRT1, or treatment with the SIRT1 agonist resveratrol decreases RFX5 acetylation and disrupts repression of the COL1A2 promoter activity by RFX5. On the contrary, knockdown of SIRT1 or treatment with SIRT1 inhibitors induces RFX5 acetylation and enhances the repression of collagen transcription. SIRT1 antagonizes RFX5 activity by promoting its nuclear expulsion and proteasomal degradation hence dampening its binding to the COL1A2 promoter. The pro-inflammatory cytokine IFN-{gamma} represses COL1A2 transcription by down-regulating SIRT1 expression in SMCs. Therefore, our data have identified as novel pathway whereby SIRT1 maintains collagen synthesis in SMCs by modulating RFX5 activity.

  17. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    SciTech Connect

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2012-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  18. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    SciTech Connect

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  19. Arginine vasotocin V1a2 receptor and GnRH-I co-localize in preoptic neurons of the sex changing grouper, Epinephelus adscensionis.

    PubMed

    Kline, Richard J; Holt, G Joan; Khan, Izhar A

    2016-01-01

    The arginine vasotocin/vasopressin (AVT/AVP) and gonadotropin releasing hormone (GnRH) systems are known to control sexual behaviors and reproduction, respectively, in different vertebrate groups. However, a direct functional connection between these two neuroendocrine systems has not been demonstrated for any vertebrate species. Therefore, the objective of this research was to test the hypothesis that AVT acts on the GnRH system via an AVT V1a receptor in a sex changing grouper species, the rock hind, Epinephelus adscensionis. AVT V1a2 receptors were co-localized with GnRH-I on neurons in the preoptic anterior hypothalamus identifying a structural linkage between the AVT system and GnRH-I. Transcripts for avt, gnrh-I, and two AVT receptor subtypes (v1a1 and v1a2) were isolated and characterized for E. adscensionis and their expression was measured in males and females by q-RT-PCR. Translation of V1a-type cDNA sequences revealed two distinct forms of the AVT V1a receptor in E. adscensionis brain similar to those reported for other species. The observation of significantly higher gnrh-I mRNA in the POA+H of rock hind males as compared to females suggests differential regulation of the gnrh-I transcripts in the two sexes of this protogynous species. In male E. adscensionis, but not in females, a negative relationship was seen between plasma 11-ketotestosterone (11-KT) and the v1a1 receptor mRNA levels in the POA+H, while a positive trend was observed between 11-KT and v1a2 receptor mRNA levels, indicating that these receptor forms may be differentially regulated. PMID:26361870

  20. A Physiologically Based Pharmacokinetic Model to Predict Disposition of CYP2D6 and CYP1A2 Metabolized Drugs in Pregnant Women

    PubMed Central

    Ke, Alice Ban; Nallani, Srikanth C.; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina

    2013-01-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age–dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2–metabolized drug theophylline (THEO) and CYP2D6–metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  1. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women.

    PubMed

    Ke, Alice Ban; Nallani, Srikanth C; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina; Unadkat, Jashvant D

    2013-04-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age-dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2-metabolized drug theophylline (THEO) and CYP2D6-metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  2. Targeting the annulus fibrosus of the intervertebral disc: Col1a2-Cre(ER)T mice show specific activity of Cre recombinase in the outer annulus fibrosus.

    PubMed

    Bedore, Jake; Quesnel, Katherine; Quinonez, Diana; Séguin, Cheryle A; Leask, Andrew

    2016-06-01

    Degeneration of the intervertebral disc (IVD) is a major underlying contributor to back pain-the single leading cause of disability worldwide. However, we possess a limited understanding of the etiology underlying IVD degeneration. To date, there are a limited number of mouse models that have been used to target proteins in specific compartments of the IVD to explore their functions in disc development, homeostasis and disease. Furthermore, the majority of reports exploring the composition and function of the outer encapsulating annulus fibrosus (AF) of the IVD have considered it as one tissue, without considering the numerous structural and functional differences existing between the inner and outer AF. In addition, no mouse models have yet been reported that enable specific targeting of genes within the outer AF. In the current report, we discuss these issues and demonstrate the localized activity of Cre recombinase in the IVD of Col1a2-Cre(ER)T;ROSA26mTmG mice possessing a tamoxifen-dependent Cre recombinase driven by a Cola2 promoter and distal enhancer and the mTmG fluorescent reporter. Following tamoxifen injection of 3-week-old Col1a2-Cre(ER)T;ROSA26mTmG mice, we show Cre activity specifically in the outer AF of the IVD, as indicated by expression of the GFP reporter. Thus, Col1a2-Cre(ER)T;ROSA26mTmG mice may prove to be a valuable tool in delineating the function of proteins in this unique compartment of the IVD, and in further exploring the compositional differences between the inner and outer AF in disc homeostasis, aging and disease. PMID:27173473

  3. Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of Chios mastic gum to male Wistar rats.

    PubMed

    Katsanou, Efrosini S; Kyriakopoulou, Katerina; Emmanouil, Christina; Fokialakis, Nikolas; Skaltsounis, Alexios-Leandros; Machera, Kyriaki

    2014-01-01

    Chios mastic gum (CMG), a resin derived from Pistacia lentiscus var. chia, is known since ancient times for its pharmacological activities. CYP1A1 and CYP1A2 enzymes are among the most involved in the biotransformation of chemicals and the metabolic activation of pro-carcinogens. Previous studies referring to the modulation of these enzymes by CMG have revealed findings of unclear biological and toxicological significance. For this purpose, the modulation of CYP1A1 and CYP1A2 enzymes in the liver of male Wistar rats following oral administration of CMG extract (CMGE), at the levels of mRNA and CYP1A1 enzyme activity, was compared to respective enzyme modulation following oral administration of a well-known bioactive natural product, caffeine, as control compound known to involve hepatic enzymes in its metabolism. mRNA levels of Cyp1a1 and Cyp1a2 were measured by reverse transcription real-time polymerase chain reaction and their relative quantification was calculated. CYP1A1 enzyme induction was measured through the activity of ethoxyresorufin-O-deethylase (EROD). The results indicated that administration of CMGE at the recommended pharmaceutical dose does not induce significant transcriptional modulation of Cyp1a1/2 and subsequent enzyme activity induction of CYP1A1 while effects of the same order of magnitude were observed in the same test system following the administration of caffeine at the mean daily consumed levels. The outcome of this study further confirms the lack of any toxicological or biological significance of the specific findings on liver following the administration of CMGE. PMID:24950217

  4. Hypervelocity Impact (HVI). Volume 2; WLE Small-Scale Fiberglass Panel Flat Multi-Layer Targets A-1, A-2, and B-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, A-2, and B-2 was to study hypervelocity impacts through multi-layered panels simulating Whipple shields on spacecraft. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  5. Gene sequences for cytochromes p450 1A1 and 1A2: the need for biomarker development in sea otters (Enhydra lutris).

    PubMed

    Hook, Sharon E; Cobb, Michael E; Oris, James T; Anderson, Jack W

    2008-11-01

    There has been recent public concern regarding the impacts of environmental pollution on populations of otters. Population level impacts have been seen with otter (Lutra lutra) populations in Europe due to polychlorinated biphenyls, and with some segments of the Prince William Sound, AK, sea otter (Enhydra lutris) population following the Exxon Valdez oil spill. Despite public interest in these animals and their ecological significance, there are few tools that allow for the study of otter's response to contaminant exposure. Cytochrome p450 1A (CYP1A) performs the first step in metabolizing many xenobiotics, including many polychlorinated biphenyls and polycyclic aromatic hydrocarbons. CYP1A induction is a frequently used biomarker of exposure to these compounds. Despite the potential importance of this gene in ecological risk assessment, the complete coding sequence has not been published for any otter species. This study's objective was to isolate the gene for CYP1A1 and CYP1A2 in sea otters using a series of PCR-based approaches. The coding sequences from CYP1A1 and CYP1A2 from sea otters were identified and published in GenBank. Both CYP1A sequences are homologous to those obtained from marine mammals and other carnivores. These sequences will be useful as tools for researchers assessing contaminant exposure in mustelid populations. PMID:18761099

  6. Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: Evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta

    SciTech Connect

    Spotila, L.D.; Constantinou, C.D.; Sereda, L.; Ganguly, A.; Prockop, D.J. ); Riggs, B.L. )

    1991-06-15

    Mutations in the two genes for type I collagen (COL1A1 or COL1A2) cause osteogenesis imperfecta (OI), a heritable disease characterized by moderate to extreme brittleness of bone early in life. Here, the authors show that a 52-year-old post menopausal woman with severe osteopenia and a compression fracture of a thoracic vertebra had a mutation in the gene for the {alpha}2(I) chain of type I collagen (COL1A2) similar to mutations that cause OI. cDNA was prepared from the woman's skin fibroblast RNA and assayed for the presence of a mutation by treating DNA heteroduplexes with carbodiimide. The results indicated a sequence variation in the region encoding amino acid residues 660-667 of the {alpha}2(I) chain. Further analysis demonstrated a single-base mutation that caused a serine-for-glycine substitution at position 661 of the {alpha}2(I) triple-helical domain. The substitution produced posttranslational overmodification of the collagen triple helix, as is seen with most glycine substitutions that cause OI. The patient had a history of five previous fractures, slightly blue sclerae, and slight hearing loss. Therefore, the results suggest that there may be phenotypic and genotypic overlap between mild osteogenesis imperfecta and postmenopausal osteoporosis, and that a subset of women with postmenopausal osteoporosis may have mutations in the genes for type I procollagen.

  7. Quantification of caffeine in human saliva by Nuclear Magnetic Resonance as an alternative method for cytochrome CYP1A2 phenotyping.

    PubMed

    Schievano, Elisabetta; Finotello, Claudia; Navarini, Luciano; Mammi, Stefano

    2015-08-01

    The first step in caffeine metabolism is mediated for over 95% by the CYP1A2 isoform of cytochrome P450. Therefore, CYP1A2 activity is most conveniently measured through the determination of caffeine clearance. The HPLC quantification of caffeine is fully validated and is the most widely used method. It can be performed on saliva, which is gaining importance as a diagnostic biofluid and permits easy and low invasive sampling. Here, we present a quantitative (1)H nuclear magnetic resonance (NMR) method to determine caffeine in human saliva. The procedure is simple because it involves only an ultra-filtration step and a direct extraction in a deuterated solvent, yielding a matrix that is then analyzed. The reliability of this NMR method was demonstrated in terms of linearity, accuracy, recovery, and limits of detection (LoD). Good precision (relative standard deviation, RSD <4%), a recovery of >95% and LoD of 6.8·10(-7) mol L(-1) were obtained. The method was applied to samples collected from different volunteers over 24h following a single oral dose of about 100mg of caffeine administered with either coffee beverage or a capsule. PMID:26048820

  8. Modelling the metabolic action of human and rat CYP1A2 and its relationship with the carcinogenicity of heterocyclic amines

    NASA Astrophysics Data System (ADS)

    da Fonseca, Rute; Menziani, Maria Cristina; Melo, André; João Ramos, Maria

    Cytochrome P450 (CYP) is a family of enzymes responsible for organism detoxification. However, some of the members of the CYP1A subfamily also catalyse the activation of heterocyclic amines (HAs), present in cooked meat, to carcinogenic compounds which have been shown to increase the risk of breast, colorectal and lung cancer. In humans, CYP1A2 is the enzyme with the most significant action in HA metabolism but in rodents CYP1A1 is also important in this biotransformation. Understanding the metabolic action of these enzymes is essential to predict the factors that enable the formation of the carcinogenic products. We have built two models of CYP1A2, one for the human enzyme and one for the rat homologue. The templates chosen include the only X-ray structure published to date for a mammal CYP, a quimeric C2A5 from rabbit, as well as CYPs belonging to Bacillus megaterium (CYPBm-3), Pseudomonas putida (CYPcam), Pseudomonas sp. (CYPterp), and Saccharopolyspora erythraea (CYPeryf). Two HAs, MeIQ (2-amino-3,4-dimethylimidazo[4,5-f]quinoline) and MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline), known substrates of human and rat CYPIA2, were docked in the active site of the models, providing information regarding the different catalytic rates associated with the metabolisms in both enzymes. This is important for analysing the behaviour of animal models concerning the testing of anticancer drugs.

  9. CYP1A2 and NAT2 phenotyping and 3-aminobiphenyl and 4-aminobiphenyl hemoglobin adduct levels in smokers and non-smokers

    SciTech Connect

    Sarkar, Mohamadi; Stabbert, Regina; Kinser, Robin D.; Oey, Jan; Rustemeier, Klaus; Holt, Klaus von; Schepers, Georg; Walk, Roger A.; Roethig, Hans J.

    2006-06-15

    Some aromatic amines are considered to be putative bladder carcinogens. Hemoglobin (Hb) adducts of 3-aminobiphenyl (3-ABP) and 4-aminobiphenyl (4-ABP) have been used as biomarkers of exposure to aromatic amines from cigarette smoke. One of the goals of this study was to determine intra- and inter-individual variability in 3-ABP and 4-ABP Hb adducts and to explore the predictability of ABP Hb adduct levels based on caffeine phenotyping. The study was conducted in adult smokers (S, n = 65) and non-smokers (NS, n 65). The subjects were phenotyped for CYP1A2 and NAT2 using urinary caffeine metabolites. Blood samples were collected twice within 6 weeks and adducts measured by GC/MS. The levels of 4-ABP Hb adducts were significantly (p < 0.0001) greater in S (34.5 {+-} 21.06 pg/g Hb) compared to NS (6.3 {+-} 3.02 pg/g Hb). The levels of 3-ABP Hb adducts were below the limit of quantification (BLOQ) in most (82%) of the NS and about 10-fold lower in S (3.6 {+-} 3.29 pg/g Hb) compared to 4-ABP Hb adducts. No differences were observed in the adduct levels between weeks 1 and 6 in the smokers, suggesting that a single sample would be adequate to monitor cigarette smoke exposure. The regression model developed with CYP1A2, NAT2 phenotype and number of cigarettes smoked (NCIG) accounted for 47% of the variability in 3-ABP adducts, whereas 32% variability in 4-ABP adducts was accounted by CYP1A2 and NCIG. The ratio of 4-ABP Hb adducts in adult S:NS was {approx} 5:1, whereas 3-ABP Hb adducts levels were BLOQ in some S, exhibited large interindividual variability ({approx} 91% compared to 57% for 4-ABP Hb) and poor dose response relationship. Therefore, 4-ABP Hb adduct levels may be a more useful biomarker of aminobiphenyl exposure from cigarette smoke.

  10. Understanding the Mechanism of Human P450 CYP1A2 Using Coupled Quantum-Classical Simulations in a Dynamical Environment

    SciTech Connect

    Draeger, E W; Bennion, B; Gygi, F; Lightstone, F

    2006-02-10

    The reaction mechanism of the human P450 CYP1A2 enzyme plays a fundamental role in understanding the effects of environmental carcinogens and mutagens on humans. Despite extensive experimental research on this enzyme system, key questions regarding its catalytic cycle and oxygen activation mechanism remain unanswered. In order to elucidate the reaction mechanism in human P450, new computational methods are needed to accurately represent this system. To enable us to perform computational simulations of unprecedented accuracy on these systems, we developed a dynamic quantum-classical (QM/MM) hybrid method, in which ab initio molecular dynamics are coupled with classical molecular mechanics. This will provide the accuracy needed to address such a complex, large biological system in a fully dynamic environment. We also present detailed calculations of the P450 active site, including the relative charge transfer between iron porphine and tetraphenyl porphyrin.

  11. High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica

    SciTech Connect

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; Reddy, T. B. K.; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Baeshen, Mohammed; Baeshen, Nabih; Kyrpides, Nikos; Reeve, Wayne

    2015-06-14

    Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. Lastly, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.

  12. High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica

    DOE PAGESBeta

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; Reddy, T. B. K.; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Baeshen, Mohammed; Baeshen, Nabih; et al

    2015-06-14

    Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. Lastly, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Rootmore » Nodule Bacteria (GEBA-RNB) project proposal.« less

  13. Comparative ability of various PCBs, PCDFs, and TCDD to induce cytochrome P450 1A1 and 1A2 activity following 4 weeks of treatment (short communication)

    SciTech Connect

    De Vito, M.J.; Maier, W.E.; Diliberto, J.J.; Birnbaum, L.S.

    1993-01-01

    The toxic equivalency factors (TEF) have been proposed for dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls (PCBs). The proposed TEFs, which are presently being evaluated in the authors' laboratory are currently used to estimate the potential health risk associated with exposure to complex mixtures containing these chemicals. Hepatic cytochrome P-450 1A1 and 1A2 activities were determined for all chemicals tested and compared to those from TCDD treated mice. These initial studies indicate that the interim TEFs for the dibenzofurans adequately predict the relative induction potency for these compounds. However, the TEFs proposed for the dioxin-like PCBs overestimate the potency of these compounds by factors of 10-10,000. The present study indicates that more experimental data is required before TEFs for PCBs are used in regulatory decision making.

  14. Higher gene expression of CYP1A2, 2B1 and 2D2 in the brain of female compared with male rats.

    PubMed

    Nagai, K; Fukuno, S; Suzuki, H; Konishi, H

    2016-06-01

    Cytochrome P450 (CYP) in the brain plays an essential role in the local metabolism of various compounds, including clinically used drugs, toxins, and endogenous substances. In the present study, we compared the expression profiles of mRNAs for several CYP subtypes in the brain between male and female rats. The expression of CYP1A2, CYP2B1, and CYP2D2 in females was significantly higher than that in males. On the other hand, the expression level of the other CYP subtypes examined in the male brain was similar to that in the female brain. These results strongly suggest that marked gender differences exist in the expression profiles of some CYP subtypes in rat brain. PMID:27455552

  15. prep1.2 and aldh1a2 participate to a positive loop required for branchial arches development in zebrafish.

    PubMed

    Vaccari, Enrico; Deflorian, Gianluca; Bernardi, Elisa; Pauls, Stefan; Tiso, Natascia; Bortolussi, Marino; Argenton, Francesco

    2010-07-01

    Segmentation is a key step in embryonic development. Acting in all germ layers, it is responsible for the generation of antero-posterior asymmetries. Hox genes, with their diverse expression in individual segments, are fundamental players in the determination of different segmental fates. In vertebrates, Hox gene products gain specificity for DNA sequences by interacting with Pbx, Prep and Meis homeodomain transcription factors. In this work we cloned and analysed prep1.2 in zebrafish. In-situ hybridization experiments show that prep1.2 is maternally and ubiquitously expressed up to early somitogenesis when its expression pattern becomes more restricted to the head and trunk mesenchyme. Experiments of loss of function with prep1.2 morpholinos change the shape of the hyoid and third pharyngeal cartilages while arches 4-7 and pectoral fins are absent, a phenotype strikingly similar to that caused by loss of retinoic acid (RA). In fact, we show that prep1.2 is positively regulated by RA and required for the normal expression of aldh1a2 at later stages, particularly in tissues involved in the development of the branchial arches and pectoral fins. Thus, prep1.2 and aldh1a2 are members of an indirect positive feedback loop required for pharyngeal endoderm and posterior branchial arches development. As the paralogue gene prep1.1 is more important in hindbrain patterning and neural crest chondrogenesis, we provide evidence of a functional specialization of prep genes in zebrafish head segmentation and morphogenesis. PMID:20423710

  16. Membrane-Anchored Cytochrome P450 1A2-Cytochrome b5 Complex Features an X-Shaped Contact between Antiparallel Transmembrane Helices.

    PubMed

    Jeřábek, Petr; Florián, Jan; Martínek, Václav

    2016-04-18

    Eukaryotic cytochromes P450 (P450) are membrane-bound enzymes oxidizing a broad spectrum of hydrophobic substrates, including xenobiotics. Protein-protein interactions play a critical role in this process. In particular, the formation of transient complexes of P450 with another protein of the endoplasmic reticulum membrane, cytochrome b5 (cyt b5), dictates catalytic activities of several P450s. To lay a structural foundation for the investigation of these effects, we constructed a model of the membrane-bound full-length human P450 1A2-cyt b5 complex. The model was assembled from several parts using a multiscale modeling approach covering all-atom and coarse-grained molecular dynamics (MD). For soluble P450 1A2-cyt b5 complexes, these simulations yielded three stable binding modes (sAI, sAII, and sB). The membrane-spanning transmembrane domains were reconstituted with the phospholipid bilayer using self-assembly MD. The predicted full-length membrane-bound complexes (mAI and mB) featured a spontaneously formed X-shaped contact between antiparallel transmembrane domains, whereas the mAII mode was found to be unstable in the membrane environment. The mutual position of soluble domains in binding mode mAI was analogous to the sAI complex. Featuring the largest contact area, the least structural flexibility, the shortest electron transfer distance, and the highest number of interprotein salt bridges, mode mAI is the best candidate for the catalytically relevant full-length complex. PMID:26918755

  17. Caffeine raises the serum melatonin level in healthy subjects: an indication of melatonin metabolism by cytochrome P450(CYP)1A2.

    PubMed

    Ursing, C; Wikner, J; Brismar, K; Röjdmark, S

    2003-05-01

    Caffeine is metabolized in the liver by cytochrome P450(CYP)1A2. Recent findings imply that this enzyme may also be of importance for the metabolism of human melatonin (MT). If caffeine and MT are metabolized by the same enzyme, one may expect to find different serum MT levels after ingestion of coffee compared with placebo. Although coffee is consumed by people all over the world, few studies have focused on whether caffeine actually affects serum MT levels in normal subjects. We decided to study that particular topic. For that purpose 12 healthy individuals were tested on two occasions, one week apart. On one of these occasions they were given a capsule containing 200 mg caffeine in the evening. On the other, they received placebo. The experimental order was randomized. Serum MT levels were determined every second hour between 22:00 h and 08:00 h, and the melatonin areas under the curve (MT-AUCs) were calculated. After caffeine the serum MT level rose from 0.09 +/- 0.03 nmol/l at 22:00 h to 0.48 +/- 0.07 nmol/l at 04:00 h. The corresponding rise after placebo was less prominent (from 0.06 +/- 0.01 to 0.35 +/- 0.06 nmol/l). This was reflected by the MT-AUC which was 32% larger after ingestion of caffeine compared with placebo (MT-AUC(caffeine) 3.16 +/- 0.44 nmol/l x h vs MT-AUC(placebo) 2.39 +/- 0.40 nmol/l x h; p < 0.02). These findings imply that caffeine, ingested in the evening at a dose corresponding to two ordinary cups of coffee, augments the nocturnal serum MT level, which in turn supports the notion that cytochrome P450(CYP)1A2 is involved in the hepatic metabolism of human MT. PMID:12906366

  18. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM

    PubMed Central

    Amin, N; Byrne, E; Johnson, J; Chenevix-Trench, G; Walter, S; Nolte, I M; Vink, J M; Rawal, R; Mangino, M; Teumer, A; Keers, J C; Verwoert, G; Baumeister, S; Biffar, R; Petersmann, A; Dahmen, N; Doering, A; Isaacs, A; Broer, L; Wray, N R; Montgomery, G W; Levy, D; Psaty, B M; Gudnason, V; Chakravarti, A; Sulem, P; Gudbjartsson, D F; Kiemeney, L A; Thorsteinsdottir, U; Stefansson, K; van Rooij, F J A; Aulchenko, Y S; Hottenga, J J; Rivadeneira, F R; Hofman, A; Uitterlinden, A G; Hammond, C J; Shin, S-Y; Ikram, A; Witteman, J C M; Janssens, A C J W; Snieder, H; Tiemeier, H; Wolfenbuttel, B H R; Oostra, B A; Heath, A C; Wichmann, E; Spector, T D; Grabe, H J; Boomsma, D I; Martin, N G; van Duijn, C M

    2012-01-01

    Coffee consumption is a model for addictive behavior. We performed a meta-analysis of genome-wide association studies (GWASs) on coffee intake from 8 Caucasian cohorts (N=18 176) and sought replication of our top findings in a further 7929 individuals. We also performed a gene expression analysis treating different cell lines with caffeine. Genome-wide significant association was observed for two single-nucleotide polymorphisms (SNPs) in the 15q24 region. The two SNPs rs2470893 and rs2472297 (P-values=1.6 × 10−11 and 2.7 × 10−11), which were also in strong linkage disequilibrium (r2=0.7) with each other, lie in the 23-kb long commonly shared 5′ flanking region between CYP1A1 and CYP1A2 genes. CYP1A1 was found to be downregulated in lymphoblastoid cell lines treated with caffeine. CYP1A1 is known to metabolize polycyclic aromatic hydrocarbons, which are important constituents of coffee, whereas CYP1A2 is involved in the primary metabolism of caffeine. Significant evidence of association was also detected at rs382140 (P-value=3.9 × 10−09) near NRCAM—a gene implicated in vulnerability to addiction, and at another independent hit rs6495122 (P-value=7.1 × 10−09)—an SNP associated with blood pressure—in the 15q24 region near the gene ULK3, in the meta-analysis of discovery and replication cohorts. Our results from GWASs and expression analysis also strongly implicate CAB39L in coffee drinking. Pathway analysis of differentially expressed genes revealed significantly enriched ubiquitin proteasome (P-value=2.2 × 10−05) and Parkinson's disease pathways (P-value=3.6 × 10−05). PMID:21876539

  19. Genetic Control of a Central Pattern Generator: Rhythmic Oromotor Movement in Mice Is Controlled by a Major Locus near Atp1a2

    PubMed Central

    Boughter, John D.; Mulligan, Megan K.; St. John, Steven J.; Tokita, Kenichi; Lu, Lu; Heck, Detlef H.; Williams, Robert W.

    2012-01-01

    Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h2≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F1 hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10). Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons. Both this subunit and the entire Na+/K+-ATPase molecule have been implicated in rhythmogenesis for respiration and locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central pattern generator tempo. PMID:22675444

  20. Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line

    SciTech Connect

    Zhang Rong; Sun Jianguo; Ma Liping; Wu Xiaolan; Pan Guoyu; Hao Haiping; Zhou Fang; Jiye, A; Liu Changhui; Ai Hua; Shang Lili; Gao Haiyan; Peng Ying; Wan Ping; Wu Hui; Wang Guangji

    2011-04-01

    Diterpenoid tanshinones including tanshinone IIA (TIIA), cryptotanshinone (CTS), tanshinone I (TI) and dihydrotanshinone I (DHTI) are the major bioactive components from Danshen. The major aim of our present study was to investigate the induction potential of these four main components of tanshinones (TIIA, CTS, TI, and DHTI) on the expression of CYP1A1 and CYP1A2 in HepG2 cells. Our results showed that all of these four tanshinones caused a significant time- and concentration-dependent increase in the amount of CYP1A1/2 expression in HepG2 cells. These induction effects were further characterized through transcriptional regulation: the induction of CYP1A1/2 mRNA level by tanshinones was completely blocked by the transcription inhibitor actinomycin D; the expression of CYP1A1/2 heterogeneous nuclear RNA was induced by tanshinone treatment; and CYP1A1 mRNA stability was not influenced by these tanshinones. Interestingly, tanshinones plus B[a]P produced additive/synergistic effect on CYP1A1/2 induction. In addition, the tanshinone-induced CYP1A1/2 expression was abolished by the aryl hydrocarbon receptor (AhR) antagonist resveratrol, suggesting an AhR dependent transcription mechanism. In the reporter gene assay, while TI and DHTI significantly induced AhR-dependent luciferase activity, TIIA and CTS failed to induce this activity. Collectively, the tanshinones could induce CYP1A1 and CYP1A2 expression through transcriptional activation mechanism and exert differential effects on activating AhR in HepG2 cells. Our findings suggest that rational administration of tanshinones should be considered with respect to their effect on AhR and CYP1A1/2 expression.

  1. Impact of Tetrahydropalmatine on the Pharmacokinetics of Probe Drugs for CYP1A2, 2D6 and 3A Isoenzymes in Beagle Dogs.

    PubMed

    Zhao, Yong; Liang, Aihua; Zhang, Yushi; Li, Chunying; Yi, Yan; Nilsen, Odd Georg

    2016-06-01

    Tetrahydropalmatine (Tet) exhibit multiple pharmacological activities and is used frequently by clinical practitioners. In this study, we evaluate the in vivo effects of single and repeated oral Tet administrations on CYP1A2, 2D6 and 3A activities in six beagle dogs in a randomized, controlled, open-label, crossover study. A cocktail approach, with dosages of the probe drugs caffeine (3.0 mg/kg), metoprolol (2.33 mg/kg) and midazolam (0.45 mg/kg), was used to measure cytochrome P450 (CYP) metabolic activities. The cocktail was administered orally as a single dose (12 mg/kg) 1 day prior to and 4 days after repeated oral Tet administrations (12 mg/kg three times daily). The probe drugs and their metabolites in plasma were quantified simultaneously by a validated HPLC technique, and non-compartmental parameters were used to evaluate metabolic variables for assessment of CYP inhibition or induction. Tet had no or minor impact on the pharmacokinetics and metabolism of the probe drugs caffeine and metoprolol, CYP1A2 and CYP2D6 substrates, respectively. However, Tet increased AUC0-24 h and decreased AUCratio(0-24 h) (1-hydroxymidazolam/midazolam ratio) for midazolam statistically significant, both in single or multiple dosing of Tet, with up to 39 or 57% increase for AUC0-24 h and 29% or 22 decrease for AUCratio(0-24 h), respectively, in line with previous in vitro findings for its CYP3A4 inhibition. The extensive use of Tet and herbal medicines containing Tet makes Tet a candidate for further evaluation of CYP3A-mediated herb-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26990021

  2. Scoliosis in osteogenesis imperfecta caused by COL1A1/COL1A2 mutations - genotype-phenotype correlations and effect of bisphosphonate treatment.

    PubMed

    Sato, Atsuko; Ouellet, Jean; Muneta, Takeshi; Glorieux, Francis H; Rauch, Frank

    2016-05-01

    Bisphosphonates are widely used to treat children with osteogenesis imperfecta (OI), a bone fragility disorder that is most often caused by mutations in COL1A1 or COL1A2. However, it is unclear whether this treatment decreases the risk of developing scoliosis. We retrospectively evaluated spine radiographs and charts of 437 patients (227 female) with OI caused by mutations in COL1A1 or COL1A2 and compared the relationship between scoliosis, genotype and bisphosphonate treatment history. At the last follow-up (mean age 11.9 [SD: 5.9] years), 242 (55%) patients had scoliosis. The prevalence of scoliosis was highest in OI type III (89%), followed by OI type IV (61%) and OI type I (36%). Moderate to severe scoliosis (Cobb angle ≥25°) was rare in individuals with COL1A1 haploinsufficiency mutations but was present in about two fifth of patients with triple helical glycine substitutions or C-propeptide mutations. During the first 2 to 4years of bisphosphonate therapy, patients with OI type III had lower Cobb angle progression rates than before bisphosphonate treatment, whereas in OI types I and IV bisphosphonate treatment was not associated with a change in Cobb angle progression rates. At skeletal maturity, the prevalence of scoliosis (Cobb angle >10°) was similar in patients who had started bisphosphonate treatment early in life (before 5.0years of age) and in patients who had started therapy later (after the age of 10.0years) or had never received bisphosphonate therapy. Bisphosphonate treatment decreased progression rate of scoliosis in OI type III but there was no evidence of a positive effect on scoliosis in OI types I and IV. The prevalence of scoliosis at maturity was not influenced by the bisphosphonate treatment history in any OI type. PMID:26927310

  3. Epidermal Growth Factor Receptor Kinase Inhibitors Synergize with TCDD to Induce CYP1A1/1A2 in Human Breast Epithelial MCF10A Cells.

    PubMed

    Joiakim, Aby; Mathieu, Patricia A; Shelp, Catherine; Boerner, Julie; Reiners, John J

    2016-05-01

    CYP1A1andCYP1A2are transcriptionally activated in the human normal breast epithelial cell line MCF10A following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Shifting MCF10A cultures to medium deficient in serum and epidermal growth factor (EGF) caused rapid reductions in the activated (i.e., phosphorylated) forms of extracellular regulated kinases (ERKs) and the epidermal growth factor receptor (EGFR). Shifting to serum/EGF-deficient medium also enhanced TCDD-mediated induction of cytochrome P450 (CYP)1A1 Treatment of cells cultured in complete medium with the EGFR inhibitors gefitinib (Iressa), AG1478, and CI-1033 resulted in concentration-dependent reductions of active EGFR and ERKs, and increased CYP1A1 mRNA content ∼3- to 18-fold above basal level. EGFR inhibitors synergized with TCDD and resulted in transient CYP1A1 and CYP1A2 mRNA accumulations ∼8-fold greater (maximum at 5 hours) than that achieved with only TCDD. AG1478, gefitinib, and TCDD individually induced small increases (∼1.2- to 2.5-fold) in CYP1A1 protein content but did not cause additive or synergistic accumulations of CYP1A1 protein when used in combination. The mitogen-activated protein kinase kinase inhibitor PD184352 inhibited ERK and EGFR activation in a concentration-dependent fashion without causing CYP1A1 mRNA accumulation. However, cotreatment with PD184352 potentiated TCDD-mediatedCYP1A1induction. TCDD-mediated induction ofCYP1A1in MCF7-TETon-EGFR cells, a MCF7 variant in which EGFR expression can be controlled, was not affected by the activity status of EGFR or ERKs. Hence, EGFR signaling mutes both basal and ligand-induced expression of two aryl hydrocarbon receptor-responsive P450s in MCF10A cultures. However, these effects are cell context-dependent. Furthermore, CYP1A1 mRNA and protein abundance are not closely coupled in MCF10A cultures. PMID:26953171

  4. Design synthesis and evaluation of the inhibitory selectivity of novel trans-resveratrol analogues on human recombinant CYP1A1 CYP1A2 and CYP1B1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of trans-stilbene derivatives containing 4’-thiomethyl substituent were synthesized and evaluated for inhibitory activities on human recombinant cytochrome P450(s): CYP1A1, CYP1A2, and CYP1B1. CYP1A2-related metabolism of stilbene derivatives was estimated by using NADPH oxidation assay. A...

  5. Applications of stable V79-derived cell lines expressing rat cytochromes P4501A1, 1A2, and 2B1.

    PubMed

    Doehmer, J; Wölfel, C; Dogra, S; Doehmer, C; Seidel, A; Platt, K L; Oesch, F; Glatt, H R

    1992-01-01

    1. Chinese hamster V79-derived cell lines, stably expressing cytochromes P4501A1, 1A2, and 2B1 activities, were constructed by genetic engineering in continuation of our work to establish a battery of V79 derived cell lines designed to study the metabolism of xenobiotics. 2. Cell lines XEM1 and XEM2, expressing cytochrome P4501A1, were capable of the O-dealkylation of 7-ethoxycoumarin and the hydroxylation of benzo[a]pyrene. 3. Cell lines XEMd.MZ and XEMd.NH, expressing P4501A2, were shown to hydroxylate 17 beta-estradiol and 2-aminofluorene. 4. Cell line SD1, expressing cytochrome P4502B1, was able to hydroxylate testosterone stereo- and regio-specifically at the 16 alpha and 16 beta positions. 5. Cell lines were validated in mutagenicity, cytotoxicity, and metabolism studies employing benzo[a]pyrene, trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, cyclophosphamide, ifosfamide, and picene. 6. Construction of metabolically-competent V79-derived cell lines be recombinant DNA technology will be a fundamental improvement for the evaluation of the cytotoxic, genotoxic and pharmacological properties of a chemical. PMID:1441600

  6. COL1A1 and COL1A2 sequencing results in cohort of patients undergoing evaluation for potential child abuse.

    PubMed

    Zarate, Yuri A; Clingenpeel, Rachel; Sellars, Elizabeth A; Tang, Xinyu; Kaylor, Julie A; Bosanko, Katherine; Linam, Leann E; Byers, Peter H

    2016-07-01

    Child abuse is a major public health concern that can explain a proportion of fractures in children. Osteogenesis imperfecta (OI) is the most common inherited syndrome that predisposes to skeletal fractures. We conducted a retrospective analysis of data from clinical, laboratory, and radiographic information from children evaluated for child abuse in which molecular testing for COL1A1 and COL1A2 genes was conducted. A total of 43 patients underwent molecular testing for OI. Pathogenic variants predicted to result in a mild form of OI were found in two patients (5%), both clinically suspected to have this diagnosis. None of the cases in whom OI molecular testing was ordered when maltreatment concerns were thought to be more likely (0/35) were identified to have pathogenic variants. After reviewing each individual case, the final diagnosis was child abuse for 34 cases (77%), and additional radiographic and laboratory studies did not identify any with inherited metabolic predisposition to fracture or rickets. We conclude that routine testing for OI in the setting of child abuse when no other suggestive clinical findings are present has a low yield. A careful review of the medical history and a detailed clinical evaluation help identify those at risk for genetic alterations. © 2016 Wiley Periodicals, Inc. PMID:27090748

  7. Shear stress–induced unfolding of VWF accelerates oxidation of key methionine residues in the A1A2A3 region

    PubMed Central

    Chen, Junmei; Gallagher, Ryan; Zheng, Ying; Chung, Dominic W.

    2011-01-01

    VWF is required for platelet adhesion to sites of vessel injury, a process vital for both hemostasis and thrombosis. Enhanced VWF secretion and oxidative stress are both hallmarks of inflammation. We recently showed that the neutrophil oxidant hypochlorous acid (HOCl) inhibits VWF proteolysis by ADAMTS13 by oxidizing VWF methionine 1606 (M1606) in the A2 domain. M1606 was readily oxidized in a substrate peptide, but required urea in multimeric plasma VWF. In the present study, we examined whether shear stress enhances VWF oxidation. With an HOCl-generating system containing myeloperoxidase (MPO) and H2O2, we found that shear stress accelerated M1606 oxidation, with 56% becoming oxidized within 1 hour. Seven other methionine residues in the VWF A1A2A3 region (containing the sites for platelet and collagen binding and ADAMTS13 cleavage) were variably oxidized, one completely. Oxidized methionines accumulated preferentially in the largest VWF multimers. HOCl-oxidized VWF was hyperfunctional, agglutinating platelets at ristocetin concentrations that induced minimal agglutination using unoxidized VWF and binding more of the nanobody AU/VWFa-11, which detects a gain-of-function conformation of the A1 domain. These findings suggest that neutrophil oxidants will both render newly secreted VWF uncleavable and alter the largest plasma VWF forms such that they become hyperfunctional and resistant to proteolysis by ADAMTS13. PMID:21917758

  8. DNA adducts induced by food mutagen PhIP in a mouse model expressing human sulfotransferases 1A1 and 1A2.

    PubMed

    Høie, Anja Hortemo; Monien, Bernhard Hans; Glatt, Hansruedi; Hjertholm, Hege; Husøy, Trine

    2016-04-25

    Food processing contaminant 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) has previously been shown to induce formation of DNA adducts in vivo. In a previous study the adduct levels were found to increase in a mouse model expressing human (h) sulfotransferases (SULTs) 1A1 and 1A2 after PhIP exposure, detected by (32)P-postlabelling. Isotope dilution ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) is emerging as the method of choice for selective and reproducible detection of known DNA adducts. In the present study we investigated the level and distribution of PhIP induced DNA adducts in male FVB mice 9-11 weeks of age with hSULT mice or wild-type mice (wt) using UPLC-MS/MS. Mice received a single administration of 75 mg/kg bw PhIP by oral gavage, and DNA was analysed 3h after exposure. C8-(2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine- N(2)-yl)-2'-deoxyguanosine (C8-PhIP-dG) adduct levels are significantly higher in PhIP exposed hSULT mice compared with PhIP exposed wt mice. The liver was the least affected organ in wild-type mice, whereas it was the most affected organ in hSULT mice with a 14-fold higher adduct level. PMID:26940682

  9. Partial isodisomy for maternal chromosome 7 and short stature in an individual with a mutation at the COL1A2 locus

    SciTech Connect

    Spotila, L.D.; Sereda, L.; Prockop, D.J. )

    1992-12-01

    Uniparental disomy for chromosome 7 has been described previously in two individuals with cystic fibrosis. Here, the authors describe a third case that was discovered because the proband was homozygous for a mutation in the COL1A2 gene for type I procollagen, although his mother was heterozygous and his father did not have the mutation. Phenotypically, the proband was similar to the two previously reported cases with uniparental disomy for chromosome 7, in that he was short in stature and growth retarded. Paternity was assessed with five polymorphic markers. Chromosome 7 inheritance in the proband was analyzed using 12 polymorphic markers distributed along the entire chromosome. Similar analysis of the proband's two brothers established the phase of the alleles at the various loci, assuming minimal recombination. The proband inherited only maternal alleles at five loci and was homozygous at all loci examined, except one. He was heterozygous for an RFLP at the IGBP-1 locus at 7p13-p12. The results suggest that the isodisomy was not complete because of a recombination event involving the proximal short arms of two maternal chromosomes. In addition, the phenotype of proportional dwarfism in the proband suggests imprinting of one or more growth-related genes on chromosome 7. 42 refs., 5 figs., 3 tabs.

  10. Adenosine A(1), A(2a), A(2b), and A(3) receptors in hematopoiesis. 1. Expression of receptor mRNA in four mouse hematopoietic precursor cells.

    PubMed

    Streitová, D; Sefc, L; Savvulidi, F; Pospísil, M; Holá, J; Hofer, M

    2010-01-01

    Four mouse bone marrow or thymus cell populations, namely granulopoietic/monocytopoietic, erythropoietic, B-lymphopoietic, and T-lymphopoietic precursor cells have been assayed by RT-PCR technique for the presence and relative amounts of adenosine A(1), A(2a), A(2b), and A(3) receptor mRNA. It has been found that (i) all four populations studied express all four adenosine receptor subtypes, (ii) the A(1), receptor is the least expressed in all populations studied, (iii) the A(3) receptor is markedly expressed in the populations of granulopoietic/monocytopoietic and erythropoietic cells, (iv) the A(2a) receptor is markedly expressed in the populations of B-lymphopoietic and T-lymphopoietic cells, and v) the A(2b) receptor does not predominate in any of the precursor cells studied. Our data offer a new possibility for the assessment of the readiness of these cells to respond, by receptor-mediated mechanisms, to adenosine or its analogs present in the tissues as a result of endogenous processes and/or following their administration. PMID:19249907

  11. Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo

    PubMed Central

    Dračínská, Helena; Bárta, František; Levová, Kateřina; Hudecová, Alena; Moserová, Michaela; Schmeiser, Heinz H.; Kopka, Klaus; Frei, Eva; Arlt, Volker M.; Stiborová, Marie

    2016-01-01

    Aristolochic acid I (AAI) is a natural plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. One of the most efficient enzymes reductively activating AAI to species forming AAI-DNA adducts is cytosolic NAD(P)H:quinone oxidoreductase 1. AAI is also either reductively activated or oxidatively detoxified to 8-hydroxyaristolochic acid (AAIa) by microsomal cytochrome P450 (CYP) 1A1 and 1A2. Here, we investigated which of these two opposing CYP1A1/2-catalyzed reactions prevails in AAI metabolism in vivo. The formation of AAI-DNA adducts was analyzed in liver, kidney and lung of rats treated with AAI, Sudan I, a potent inducer of CYP1A1/2, or AAI after pretreatment with Sudan I. Compared to rats treated with AAI alone, levels of AAI-DNA adducts determined by the 32P-postlabeling method were lower in liver, kidney and lung of rats treated with AAI after Sudan I. The induction of CYP1A1/2 by Sudan I increased AAI detoxification to its O-demethylated metabolite AAIa, thereby reducing the actual amount of AAI available for reductive activation. This subsequently resulted in lower AAI-DNA adduct levels in the rat in vivo. Our results demonstrate that CYP1A1/2-mediated oxidative detoxification of AAI is the predominant role of these enzymes in rats in vivo, thereby suppressing levels of AAI-DNA adducts. PMID:26845733

  12. Modulation of dopamine-mediated facilitation at the neuromuscular junction of Wistar rats: A role for adenosine A1/A2A receptors and P2 purinoceptors.

    PubMed

    Elnozahi, Neveen A; AlQot, Hadir E; Mohy El-Din, Mahmoud M; Bistawroos, Azza E; Abou Zeit-Har, Mohamed S

    2016-06-21

    This study aims to understand how dopamine and the neuromodulators, adenosine and adenosine triphosphate (ATP) modulate neuromuscular transmission. Adenosine and ATP are well-recognized for their regulatory effects on dopamine in the central nervous system. However, if similar interactions occur at the neuromuscular junction is unknown. We hypothesize that the activation of adenosine A1/A2A and/or P2 purinoceptors may influence the action of dopamine on neuromuscular transmission. Using the rat phrenic nerve hemi-diaphragm, we assessed the influence of dopamine, adenosine and ATP on the height of nerve-evoked muscle twitches. We investigated how the selective blockade of adenosine A1 receptors (2.5nM DPCPX), adenosine A2A receptors (50nM CSC) and P2 purinoceptors (100μM suramin) modified the effects of dopamine. Dopamine alone increased indirect muscle contractions while adenosine and ATP either enhanced or depressed nerve-evoked muscle twitches in a concentration-dependent manner. The facilitatory effects of 256μM dopamine were significantly reduced to 29.62±2.79% or 53.69±5.45% in the presence of DPCPX or CSC, respectively, relative to 70.03±1.57% with dopamine alone. Alternatively, the action of 256μM dopamine was potentiated from 70.03±1.57, in the absence of suramin, to 86.83±4.36%, in the presence of suramin. It can be concluded that the activation of adenosine A1 and A2A receptors and P2 purinoceptors potentially play a central role in the regulation of dopamine effects at the neuromuscular junction. Clinically this study offers new insights for the indirect manipulation of neuromuscular transmission for the treatment of disorders characterized by motor dysfunction. PMID:27060487

  13. Inhibition of Cytochrome P450 by Propolis in Human Liver Microsomes

    PubMed Central

    Ryu, Chang Seon; Oh, Soo Jin; Oh, Jung Min; Lee, Ji-Yoon; Lee, Sang Yoon; Chae, Jung-woo; Kwon, Kwang-il; Kim, Sang Kyum

    2016-01-01

    Although propolis is one of the most popular functional foods for human health, there have been no comprehensive studies of herb-drug interactions through cytochrome P450 (CYP) inhibition. The purpose of this study was to determine the inhibitory effects of propolis on the activities of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 using pooled human liver microsomes (HLMs). Propolis inhibited CYP1A2, CYP2E1 and CYP2C19 with an IC50 value of 6.9, 16.8, and 43.1 μg/mL, respectively, whereas CYP2A6, 2B6, 2C9, 2D6, and 3A4 were unaffected. Based on half-maximal inhibitory concentration shifts between microsomes incubated with and without nicotinamide adenine dinucleotide phosphate, propolis-induced CYP1A2, CYP2C19, and CYP2E1 inhibition was metabolism-independent. To evaluate the interaction potential between propolis and therapeutic drugs, the effects of propolis on metabolism of duloxetine, a serotonin-norepinephrine reuptake inhibitor, were determined in HLMs. CYP1A2 and CYP2D6 are involved in hydroxylation of duloxetine to 4-hydroxy duloxetine, the major metabolite, which was decreased following propolis addition in HLMs. These results raise the possibility of interactions between propolis and therapeutic drugs metabolized by CYP1A2. PMID:27437087

  14. The Localization of Cytochrome P450s CYP1A1 and CYP1A2 into Different Lipid Microdomains Is Governed by Their N-terminal and Internal Protein Regions.

    PubMed

    Park, Ji Won; Reed, James R; Backes, Wayne L

    2015-12-01

    In cellular membranes, different lipid species are heterogeneously distributed forming domains with different characteristics. Ordered domains are tightly packed with cholesterol, sphingomyelin, and saturated fatty acids, whereas disordered domains contain high levels of unsaturated fatty acids. Our laboratory has shown that membrane heterogeneity affects the organization of cytochrome P450s and their cognate redox partner, the cytochrome P450 reductase (CPR). Despite the high degree of sequence similarity, CYP1A1 was found to localize to disordered regions, whereas CYP1A2 resided in ordered domains. We hypothesized that regions of amino acid sequence variability may contain signal motifs that direct CYP1A proteins into ordered or disordered domains. Thus, chimeric constructs of CYP1A1 and CYP1A2 were created, and their localization was tested in HEK293T cells. CYP1A2, containing the N-terminal regions from CYP1A1, no longer localized in ordered domains, whereas the N terminus of CYP1A2 partially directed CYP1A1 into ordered regions. In addition, intact CYP1A2 containing a 206-302-residue peptide segment of CYP1A1 had less affinity to bind to ordered microdomains. After expression, the catalytic activity of CYP1A2 was higher than that of the CYP1A1-CYP1A2 chimera containing the N-terminal end of CYP1A1 with subsaturating CPR concentrations, but it was approximately equal with excess CPR suggesting that the localization of the CYP1A enzyme in ordered domains favored its interaction with CPR. These data demonstrate that both the N-terminal end and an internal region of CYP1A2 play roles in targeting CYP1A2 to ordered domains, and domain localization may influence P450 function under conditions that resemble those found in vivo. PMID:26468279

  15. The effect of glycoprotein IIIa PIA 1/A2 polymorphism on the PFA-100 response to GP IIb IIa receptor inhibitors-the importance of anticoagulants used.

    PubMed

    Aalto-Setälä, Katriina; Karhunen, Pekka J; Mikkelsson, Jussi; Niemelä, Kari

    2005-08-01

    Antithrombotic drugs including glycoprotein (GP) IIb IIIa receptor inhibitors have significantly reduced ischaemic events in coronary disease. Variability in the response to GP receptor inhibitors has been observed both with healthy individuals and in clinical studies. One single nucleotide polymorphism on GP IIIa (PI(A1/A2)) correlates with increased risk for cardiovascular events in many studies. In this study we investigated whether this polymorphism associates with individual differences in the response to GP IIb IIIa receptor inhibitors in healthy individuals. Fresh blood samples were collected randomly from individuals without a history of coronary disease. Blood samples were anticoagulated with either sodium citrate or with PPACK. The ability of different GP IIb IIIa receptor inhibitors (tirofiban, eptifibatide and abciximab) to inhibit platelet aggregation was investigated using a commercial PFA-100 analyser. At baseline, the function of platelets with different PI(A) genotypes did not differ from each other. With sodium citrate anticoagulated samples, tirofiban prolonged the closure time slightly more rapidly when platelets with PI(A 2 A 2) genotype were used than with other genotypes (p<0.05) both on epinephrine-collagen and ADP-collagen coated membranes. With eptifibatide or abciximab no differences were observed. If an anticoagulant not affecting Ca(2+) concentration (PPACK) was used, no differences were observed between different GP IIIa genotypes and the ability of any of the GP IIb IIIa receptor inhibitors to prolong the closure time. The effect of tirofiban and eptifibatide was significantly affected by the anticoagulant used (p<0.001), whereas abciximab functioned equally regardless of the anticoagulant. Glycoprotein IIIa PI(A2) allele has been found in many studies to associate with risk of thrombosis. In healthy controls the function of GP IIb IIIa receptor inhibitors on platelets with different PI(A) genotypes was modified by anticoagulants used

  16. Formation of DNA adducts in wild-type and transgenic mice expressing human sulfotransferases 1A1 and 1A2 after oral exposure to furfuryl alcohol

    PubMed Central

    Høie, Anja Hortemo; Monien, Bernhard Hans; Sakhi, Amrit Kaur; Glatt, Hansruedi; Hjertholm, Hege; Husøy, Trine

    2015-01-01

    Furfuryl alcohol (FFA) is present in many heat-treated foods as a result of its formation via dehydration of pentoses. It is also used legally as a flavouring agent. In an inhalation study conducted in the National Toxicology Program, FFA showed some evidence of carcinogenic activity in rats and mice. FFA was generally negative in conventional genotoxicity assays, which suggests that it may be a non-genotoxic carcinogen. However, it was recently found that FFA is mutagenic in Salmonella strains expressing appropriate sulfotransferases (SULTs), such as human or mouse SULT1A1. The same DNA adducts that were formed by FFA in these strains, mainly N 2-((furan-2-yl)methyl)-2′-deoxyguanosine (N 2-MF-dG), were also detected in tissues of FFA-exposed mice and even in human lung specimens. In the present study, a single oral dose of FFA (250mg/kg body weight) or saline was administered to FVB/N mice and transgenic mice expressing human SULT1A1/1A2 on the FVB/N background. The transgenic mice were used, since human and mouse SULT1A1 substantially differ in substrate specificity and tissue distribution. DNA adducts were studied in liver, kidney, proximal and distal small intestine as well as colon, using isotope-dilution ultra performance liquid chromatography (UPLC–MS/MS). Surprisingly, low levels of adducts that may represent N 2-MF-dG were detected even in tissues of untreated mice. FFA exposure enhanced the adduct levels in colon and liver, but not in the remaining investigated tissues of wild-type (wt) mice. The situation was similar in transgenic mice, except that N 2-MF-dG levels were also strongly enhanced in the proximal small intestine. These different results between wt and transgenic mice may be attributed to the fact that human SULT1A1, but not the orthologous mouse enzyme, is strongly expressed in the small intestine. PMID:25904584

  17. The PlA1/A2 Polymorphism of Glycoprotein IIIa as a Risk Factor for Stroke: A Systematic Review and Meta-Analysis

    PubMed Central

    Floyd, Christopher N.; Ellis, Benjamin H.; Ferro, Albert

    2014-01-01

    Background The PlA1/A2 polymorphism of glycoprotein IIIa (GPIIIa) has been reported to be associated with risk of stroke in some studies, although other studies suggest no such association. This meta-analysis and systematic review was conducted to investigate the hypothesis that carriage of the PlA2 allele is a risk factor for stroke. Methods Electronic databases (MEDLINE and EMBASE) were searched for all articles evaluating carriage of the PlA2 allele and the incidence of stroke. Pooled odds ratios (ORs) were calculated using fixed-effect and random-effect models. Findings A total of 35 articles were eligible for inclusion, of which 25 studies were suitable for statistical analysis. For carriage of the PlA2 allele, OR 1.12 (n = 11,873; 95% CI = 1.03–1.22; p = 0.011) was observed for the incidence of stroke in adults, with subgroup analyses identifying the association driven by stroke of an ischaemic (n = 10,494; OR = 1.15, 95% CI = 1.05–1.27; p = 0.003) but not haemorrhagic aetiology (n = 2,470; OR = 0.90, 95% CI = 0.71–1.14; p = 0.398). This association with ischaemic stroke was strongest in individuals homozygous for the PlA2 allele compared to those homozygous for wild-type PlA1 (n = 5,906; OR = 1.74, 95% CI = 1.34–2.26; p<0.001). Subgroup analysis of ischaemic stroke subtypes revealed an increased association with stroke of cardioembolic (n = 1,271; OR 1.56, 95% CI 1.14–2.12; p = 0.005) and large vessel (n = 1,394; OR = 1.76, 95% CI 1.34–2.31; p<0.001) aetiology, but not those of small vessel origin (n = 1,356; OR = 0.99, 95% CI 0.74–1.33; p = 0.950). Egger's regression test suggested a low probability of publication bias for all analyses (p>0.05). Conclusions The totality of published data supports the hypothesis that carriage of the PlA2 polymorphism of GPIIIa is a risk factor for ischaemic strokes, and specifically those of cardioembolic and large vessel origin

  18. Metabolism-mediated drug interaction potential of HS-23, a new herbal drug for the treatment of sepsis in human hepatocytes and liver microsomes.

    PubMed

    Jeong, Hyeon-Uk; Lee, Ji Young; Kwon, Soon-Sang; Kim, Ju Hyun; Kim, Young-Mok; Hong, Sung-Woon; Yeon, Sung Hum; Lee, Sun-Mee; Cho, Yong-Yeon; Lee, Hye Suk

    2015-02-01

    HS-23, an extract of the dried flower buds of Lonicera japonica, is a new botanical drug currently being evaluated in a phase I clinical study in Korea for the treatment of sepsis. The in vitro induction and inhibition potentials of HS-23 on the drug-metabolizing enzymes using human hepatocytes and liver microsomes were assessed to evaluate herb-drug interaction according to botanical drug guideline and drug interaction guidance of FDA. HS-23 slightly inhibited CYP2A6, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 enzyme activities in human liver microsomes with IC50 values of 80.6, 160.7, 169.5, 85.4, and 76.6 μg/mL, respectively. HS-23 showed negligible inhibition of CYP1A2, CYP2C8, CYP2D6, UGT1A1, UGT1A4, UGT1A9, and UGT2B7 activities in human liver microsomes. Based on these results, HS-23 may not inhibit the metabolism of CYP2A6, CYP2B6, CYP2C9, CYP2C19, and CYP3A4-catalyzed drugs in humans. HS-23 did not affect the mRNA expression of CYP1A2, CYP2B6, and CYP3A4 after 48 h treatment at three concentrations (0.5, 5, and 50 μg/mL) in three independent human hepatocytes, indicating that HS-23 has no effect on herb-drug interactions that up- or down-regulate CYP1A2, CYP2B6, and CYP3A4. These results indicate that the administration of HS-23 in human may not cause clinically relevant inhibition and induction of these cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes and HS-23 may be promising therapeutic agent for treatment of sepsis. PMID:25052959

  19. Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1

    PubMed Central

    Milichovský, Jan; Bárta, František; Schmeiser, Heinz H.; Arlt, Volker M.; Frei, Eva; Stiborová, Marie; Martínek, Václav

    2016-01-01

    Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are NAD(P)H:quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using 32P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast

  20. The effect of dose on 2,3,7,8-TCDD tissue distribution, metabolism and elimination in CYP1A2 (-/-) knockout and C57BL/6N parental strains of mice

    SciTech Connect

    Hakk, Heldur; Diliberto, Janet J.; Birnbaum, Linda S.

    2009-11-15

    Numerous metabolism studies have demonstrated that the toxic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is poorly metabolized. A hallmark feature of TCDD exposure is induction of hepatic CYP1A2 and subsequent sequestration leading to high liver-to-fat concentration ratios. This study was initiated to determine whether TCDD was inherently poorly metabolized or unavailable for metabolism because of sequestration to CYP1A2. [{sup 3}H]TCDD was administered as a single, oral dose (0.1 and 10 mug/kg) to 12 male C57BL/6N mice or 12 CYP1A2 (-/-) mice. At 96 h, less than 5% of the dose was eliminated in the urine of all groups, and TCDD detected in urine was bound to mouse major urinary protein (mMUP). Feces were the major elimination pathway (24-31% of dose), and fecal extracts and non-extractables were quantitated by HPLC for metabolites. No great differences in urinary or fecal elimination (% dose) were observed between the high and low dose treatments. TCDD concentrations were the highest in adipose tissue for CYP1A2 knockout mice but in liver for C57BL/6N mice supporting the role of hepatic CYP1A2 in the sequestration of TCDD. Overall metabolism between parental and knockout strains showed no statistical differences at either the high or low doses. The data suggested that metabolism of TCDD is inherently slow, due principally to CYP1A1, and that hepatic CYP1A2 is not an active participant in the metabolism of TCDD in male mice. Rather, CYP1A2 governs the pharmacokinetics of TCDD by making it unavailable for hepatic CYP1A1 through sequestration and attenuating extrahepatic tissue disposition.

  1. USE OF A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL (PBPK) FOR RATS TO STUDY THE INFLUENCE OF BODY FAT MASS AND INDUCTION OF CYP1A2 ON THE PHARMACOKINETICS OF TCDD

    EPA Science Inventory

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly lipophilic chemical which distributes into adipose tissue, especially at low doses. However, at high doses TCDD sequesters in liver because it induces CYP1A2 that binds TCDD. A physiologically based pharmacokinetic (PBPK) mod...

  2. The effect of dose on 2,3,7,8-TCDD tissue distribution, metabolism and elimination in CYP1A2(-/_) knockout and C57BL/6N parental strains of mice

    EPA Science Inventory

    Numerous metabolism studies have demonstrated that the toxic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is poorly metabolized. A hallmark feature of TCDD exposure is induction of hepatic CYP1A2 and subsequent sequestration leading to high liver-to-fat concentration ra...

  3. A COMPARISON OF THE METABOLISM OF METHOXYRESORUFIN, ACETANILIDE AND CAFFIENE IN RAT AND HUMAN CYP1A2 SUPERSOMES AND THEIR INHIBITION BY 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)

    EPA Science Inventory

    A COMPARISON OF THE METABOLISM OF METHOXYRESORUFIN, ACETANILIDE AND CAFFIENE IN RAT AND HUMAN CYP1A2 SUPERSOMES AND THEIR INHIBITION BY 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD). DF Staskal1, DG Ross2, LS Birnbaum2 and MJ DeVito2 1Curriculum In Toxicology, UNC-CH, Chapel Hill ...

  4. The Effect of Dose on 2,3,7,8-TCDD Tissue Distribution, Metabolism and Elimination in CYP1A2 (-/-) Knockout and C57BL/6N Parental Strains of Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous metabolism studies have demonstrated that the highly toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is poorly metabolized. A hallmark feature of TCDD exposure is induction of hepatic CYP1A2 and subsequent sequestration leading to high liver to fat concentration ratios. This study was in...

  5. COMPARISON OF OVERALL METABOLISM OF 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN IN CYP1A2(-/-) KNOCKOUT AND C57BL/6N PARENTAL STRAINS OF MICE

    EPA Science Inventory

    Comparison of Overall Metabolism of 2,3,7,8-TCDD
    in CYP1A2 (-/-) Knockout and C57BL/6N Parental Strains of Mice

    Heldur Hakk* and Janet J. Diliberto**

    * USDA-ARS Biosciences Research Laboratory, P.O. Box 5674, Fargo, ND, USA
    ** US-EPA ORD, National Health Eff...

  6. CYP1A1 and CYP1A2 expression levels are differentially regulated in three-dimensional spheroids of liver cancer cells compared to two-dimensional monolayer cultures.

    PubMed

    Terashima, Jun; Goto, Shinpei; Hattori, Hiroki; Hoshi, Sawaka; Ushirokawa, Midori; Kudo, Kenzo; Habano, Wataru; Ozawa, Shogo

    2015-12-01

    Compared to two-dimensional (2D) monolayer cultures, three-dimensional (3D) tumor cell culture models are thought to be structurally more similar to the in vivo tumor microenvironment. We investigated the regulation of the expression of genes encoding the drug-metabolizing enzymes CYP1A1 and CYP1A2 in 3D spheroids comprised of cells of the human hepatocellular carcinoma cell JHH1, Huh7, and HepG2. Expression of CYP1A1 and CYP1A2 in the spheroids was higher than that in 2D cultured cells. Expression of CYP1A1 and CYP1A2 is regulated by aryl hydrocarbon receptor (AhR) in 2D cultured cells. Knockdown of AhR in spheroids suppressed CYP1A1 expression; however, CYP1A2 expression levels remained unchanged. Moreover, we found that pregnane X receptor (PXR) likely regulated CYP1A2 expression in JHH1, HepG2, and Huh7 spheroids and that CYP1A1 expression in JHH1 and Huh7 3D spheroids is regulated not only by AhR but also by PXR. It is well known that gene expression levels are different between 3D spheroids and 2D monolayer cultured cells, and our results indicate that the regulation of gene expression also varies between the two culture conditions. Taken together, these results underlie a novel finding regarding the regulation of drug-metabolizing enzyme expression in liver cancer cells growing as 3D spheroids. PMID:26643992

  7. Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds

    SciTech Connect

    Zhang Xiaowei; Moore, Jeremy N.; Newsted, John L.; Hecker, Markus Zwiernik, Matthew J.; Jones, Paul D.; Bursian, Steven J.

    2009-02-01

    As part of an ongoing effort to understand aryl hydrocarbon receptor (AhR) mediated toxicity in mink, cDNAs encoding for CYP1A1 and the CYP1A2 mixed function monooxygenases were cloned and characterized. In addition, the effects of selected dibenzofurans on the expression of these genes and the presence of their respective proteins (P4501A) were investigated, and then correlated with the catalytic activities of these proteins as measured by ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) activities. The predicted protein sequences for CYP1A1 and CYP1A2 comprise 517 and 512 amino acid residues, respectively. The phylogenetic analysis of the mink CYP1As with protein sequences of other mammals revealed high sequence homology with sea otter, seals and the dog, with amino acid identities ranging from 89 to 95% for CYP1A1 and 81 to 93% for CYP1A2. Since exposure to both 2,3,7,8-Tetrachlorodibenzofuran (TCDF) and 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) resulted in dose-dependent increases of CYP1A1 mRNA, CYP1A2 mRNA and CYP1A protein levels an underlying AhR-mediated mechanism is suggested. The up-regulation of CYP1A mRNA in liver was more consistent to the sum adipose TEQ concentration than to the liver TEQ concentration in minks treated with TCDF or PeCDF. The result suggested that the hepatic-sequestered fraction of PeCDF was biologically inactive to the induction of CYP1A1 and CYP1A2.

  8. 78 FR 56921 - South Bay Salt Pond Restoration Project, Phase 2 (Ponds R3, R4, R5, S5, A1, A2W, A8, A8S, A19...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Fish and Wildlife Service South Bay Salt Pond Restoration Project, Phase 2 (Ponds R3, R4, R5, S5, A1... restoration of ponds R3, R4, R5, S5, A1, A2W, A8, A8S, A19, A20, and A21 at the Don Edwards National Wildlife... 2 of the South Bay Salt Pond Restoration Project and consists of restoring and enhancing over...

  9. Regulation of the AbrA1/A2 Two-Component System in Streptomyces coelicolor and the Potential of Its Deletion Strain as a Heterologous Host for Antibiotic Production

    PubMed Central

    Rico, Sergio; Yepes, Ana; Rodríguez, Héctor; Santamaría, Jorge; Antoraz, Sergio; Krause, Eva M.; Díaz, Margarita; Santamaría, Ramón I.

    2014-01-01

    The Two-Component System (TCS) AbrA1/A2 from Streptomyces coelicolor M145 is a negative regulator of antibiotic production and morphological differentiation. In this work we show that it is able to auto-regulate its expression, exerting a positive induction of its own operon promoter, and that its activation is dependent on the presence of iron. The overexpression of the abrA2 response regulator (RR) gene in the mutant ΔabrA1/A2 results in a toxic phenotype. The reason is an excess of phosphorylated AbrA2, as shown by phosphoablative and phosphomimetic AbrA2 mutants. Therefore, non-cognate histidine kinases (HKs) or small phospho-donors may be responsible for AbrA2 phosphorylation in vivo. The results suggest that in the parent strain S. coelicolor M145 the correct amount of phosphorylated AbrA2 is adjusted through the phosphorylation-dephosphorylation activity rate of the HK AbrA1. Furthermore, the ABC transporter system, which is part of the four-gene operon comprising AbrA1/A2, is necessary to de-repress antibiotic production in the TCS null mutant. Finally, in order to test the possible biotechnological applications of the ΔabrA1/A2 strain, we demonstrate that the production of the antitumoral antibiotic oviedomycin is duplicated in this strain as compared with the production obtained in the wild type, showing that this strain is a good host for heterologous antibiotic production. Thus, this genetically modified strain could be interesting for the biotechnology industry. PMID:25303210

  10. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk

    PubMed Central

    Bethke, Lara; Webb, Emily; Sellick, Gabrielle; Rudd, Matthew; Penegar, Stephen; Withey, Laura; Qureshi, Mobshra; Houlston, Richard

    2007-01-01

    Background Cytochrome P450 (CYP) enzymes have the potential to affect colorectal cancer (CRC) risk by determining the genotoxic impact of exogenous carcinogens and levels of sex hormones. Methods To investigate if common variants of CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1 and CYP19A1 influence CRC risk we genotyped 2,575 CRC cases and 2,707 controls for 20 single nucleotide polymorphisms (SNPs) that have not previously been shown to have functional consequence within these genes. Results There was a suggestion of increased risk, albeit insignificant after correction for multiple testing, of CRC for individuals homozygous for CYP1B1 rs162558 and heterozygous for CYP1A2 rs2069522 (odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.03–1.80 and OR = 1.34, 95% CI: 1.00–1.79 respectively). Conclusion This study provides some support for polymorphic variation in CYP1A2 and CYP1B1 playing a role in CRC susceptibility. PMID:17615053

  11. [In vivo evaluation of the metabolic ratio of CYP2C9 and CYP1A2 drug markers after administration of afobazole in comparison to standard inducers and inhibitors of cytochromes].

    PubMed

    Novitskaia, Ia G; Gribakina, O G; Kolyvanov, G B; Zherdev, V P; Smirnov, V V; Seredenin, S B

    2013-01-01

    The effect of subchronic peroral administration in effective doses of afobazole (5 mg/kg), and cytochrome P450 inductors (rifampicin, 13.4 mg/kg; phenytoin, 10.4 mg/kg) and inhibitors (fluconazole, 35.7 mg/kg; ciprofloxacin, 44.0 mg/kg) on the metabolic ratio (MR) of drugs-markers of CYP2C9 and CYP1A2 activity was studied in rats. Afobazole did not change the MR of compounds metabolized by the P450 isoforms studied. After peroral administration of standard P450 inductors and inhibitors, statistically significant bidirectional effects were identified, which demonstrated the expedience of administering a complex of selected compounds, markers, and CYP2C9 and CYP1A2 activity modificators for comparative evaluation of the effects of new drugs in rats. It is recommended to evaluate the activity of CYP1A2 by determining the MR for one of two caffeine metabolites, paraxanthine or theobromine, and the activity of CYP2C9 by determining the MR of metabolite Exp-3174 to losartan. PMID:24555232

  12. A highly polymorphic (ACT)n VNTR (variable nucleotide of tandem repeats) locus inside intron 12 of COL1A2, one of the two genes involved in dominant osteogenesis imperfecta.

    PubMed

    Pepe, G

    1993-01-01

    A new, highly polymorphic, region consisting of variable number of tandem repeats (VNTR) is described that occurs within intron 12 of the COL1A2 gene. This VNTR consists of the trinucleotide ACT repeated from 6 to 12 times. Of the six alleles so far detected four are common in the three major races. The two rare alleles, (ACT)11 and (ACT)12, have been found only in Africans. In addition, a rapid technique has been developed that can be used successfully with very small amounts of even partially degraded DNA, thus allowing the use of this VNTR for forensic applications. Since dominant OI can be due to mutations at either of two loci (COL1A1 and COL1A2) prenatal diagnosis becomes feasible in the majority of the affected families only if a very informative marker is available for both of these genes. This VNTR provides a very powerful marker for COL1A2. In fact the heterozygosity for it ranges from 0.634 to 0.741 with PIC values from 0.562 to 0.696, respectively. Since trinucleotide repeats can be "unstable," and sometimes pathogenic, the unexplained collagenopathies (or suspected collagenopathies) should be analyzed from this point of view. PMID:8104634

  13. Molecular wheel to monocyclic ring transition in boron-carbon mixed clusters C2B6⁻ and C3B5⁻.

    PubMed

    Galeev, Timur R; Ivanov, Alexander S; Romanescu, Constantin; Li, Wei-Li; Bozhenko, Konstantin V; Wang, Lai-Sheng; Boldyrev, Alexander I

    2011-05-21

    In this joint experimental and theoretical work we present a novel type of structural transition occurring in the series of C(x)B(8-x)(-) (x=1-8) mixed clusters upon increase of the carbon content from x=2 to x=3. The wheel to ring transition is surprising because it is rather planar-to-linear type of transition to be expected in the series since B(8), B(8)(-), B(8)(2-) and CB(7)(-) are known to possess wheel-type global minimum structures while C(8) is linear. PMID:21487619

  14. Rare Autosomal Recessive Cardiac Valvular Form of Ehlers-Danlos Syndrome Results from Mutations in the COL1A2 Gene That Activate the Nonsense-Mediated RNA Decay Pathway

    PubMed Central

    Schwarze, Ulrike; Hata, Ryu-Ichiro; McKusick, Victor A.; Shinkai, Hiroshi; Hoyme, H. Eugene; Pyeritz, Reed E.; Byers, Peter H.

    2004-01-01

    Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of proα2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement. PMID:15077201

  15. Ethanol and 4-methylpyrazole increase DNA adduct formation of furfuryl alcohol in FVB/N wild-type mice and in mice expressing human sulfotransferases 1A1/1A2.

    PubMed

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-03-01

    Furfuryl alcohol (FFA) is a carcinogenic food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. The activation by sulfotransferases (SULTs) yields a DNA reactive and mutagenic sulfate ester. The most prominent DNA adduct, N(2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N(2)-MF-dG), was detected in FFA-treated mice and also in human tissue samples. The dominant pathway of FFA detoxification is the oxidation via alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The activity of these enzymes may be greatly altered in the presence of inhibitors or competitive substrates. Here, we investigated the impact of ethanol and the ADH inhibitor 4-methylpyrazole (4MP) on the DNA adduct formation by FFA in wild-type and in humanized mice that were transgenic for human SULT1A1/1A2 and deficient in the mouse (m) Sult1a1 and Sult1d1 genes (h1A1/1A2/1a1(-)/1d1(-)). The administration of FFA alone led to hepatic adduct levels of 4.5 N(2)-MF-dG/10(8) nucleosides and 33.6 N(2)-MF-dG/10(8) nucleosides in male and female wild-type mice, respectively, and of 19.6 N(2)-MF-dG/10(8) nucleosides and 95.4 N(2)-MF-dG/10(8) nucleosides in male and female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 1.6g ethanol/kg body weight increased N(2)-MF-dG levels by 2.3-fold in male and by 1.7-fold in female wild-type mice and by 2.5-fold in male and by 1.5-fold in female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 100mg 4MP/kg body weight had a similar effect on the adduct levels. These findings indicate that modulators of the oxidative metabolism, e.g. the drug 4MP or consumption of alcoholic beverages, may increase the genotoxic effects of FFA also in humans. PMID:26775039

  16. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes.

    PubMed

    Yalley, Akua; Schill, Daniel; Hatta, Mitsutoki; Johnson, Nicole; Cirillo, Lisa Ann

    2016-04-15

    FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding. PMID:26929406

  17. Binding patterns of bovine seminal plasma proteins A1/A2, 30 kDa and osteopontin on ejaculated sperm before and after incubation with isthmic and ampullary oviductal fluid.

    PubMed

    Souza, Carlos Eduardo A; Moura, Arlindo A; Monaco, Elisa; Killian, Gary J

    2008-04-01

    Previous studies from our laboratory have reported empirical associations between bovine seminal plasma protein(s) (BSP) A1/A2 and 30 kDa and osteopontin (OPN) in accessory sex gland fluid and bull fertility. These BSP and OPN are believed to bind to sperm at ejaculation and to remain bound until sperm reach the oviduct. The objective of the present study was to evaluate the topographical distribution of BSP A1/A2, 30 kDa and OPN binding on: (1) bovine ejaculated sperm; (2) ejaculated sperm incubated with isthmic oviductal fluid (ODF); (3) ejaculated sperm+isthmic ODF incubated in ampullary ODF. From each of these media, aliquots of sperm for BSP and OPN were processed for immunocytochemistry and analysis by laser scanning confocal microscopy. Isthmic and ampullary ODF was collected from indwelling catheters and used as pools from three cows in the non-luteal phase of the estrous cycle. Anti-BSP A1/A2 was detected bound to the midpiece, post-equatorial and equatorial segments and acrosome of sperm after ejaculation and after incubation with isthmic and ampullary ODF. The BSP A1/A2 fluorescence was more concentrated on the midpiece and increased as acrosome-intact sperm came in contact with ODF. As compared with acrosome-intact sperm, non-intact acrosome intact sperm had 39 and 68% reductions of acrosome fluorescence and 36% and 90% increases of post-equatorial fluorescence after contact with isthmic and ampullary ODF (P<0.05). Anti-BSP 30 kDa was more intense on the midpiece than on post-equatorial, equatorial and acrosome regions of sperm after ejaculation and contact with ODF. However, equatorial fluorescence was 141% and 89% more intense and acrosome stainning was 80% and 76% less (P<0.05) in non-intact acrosome sperm than in acrosome intact cells, during all ODF incubations. Anti-OPN was identified on the acrosome of ejaculated sperm, but with less fluorescence (P<0.05) on the post-equatorial segment and midpiece. Incubation of sperm with isthmic ODF increased

  18. Molecular characterization of IFN-T expressed in buffalo embryonic trophoblasts and expression of recombinant BuIFN-T1a2 and BuIFN-T8 isoforms in E. coli.

    PubMed

    Saugandhika, Shrabani; Sharma, Vishal; Malik, Hrudananda; Mohapatra, Sushil Kumar; Bondre, Vijay P; Kumar, Sudarshan; Mohanty, Ashok Kumar; Malakar, Dhruba

    2016-06-01

    Interferon tau (IFN-T) acts as a signaling molecule for maternal recognition of pregnancy (MRP) in ruminants. Aim of the present study was to identify various Buffalo Interferon tau (BuIFN-T) transcripts in buffalo trophoblast, phylogenetic comparison of these sequences with known mRNA sequences of buffalo, bovine, caprine and ovine and to express and purify the recombinant BuIFN-T (rBuIFN-T) isoforms. Following RNA extraction from trophectodermal cells, RT-PCR was performed using Ifn-t gene specific primers. 13 distinct cDNA variants encoding eight different BuIFN-T proteins were identified. BuIFN-T1a2 and BuIFN-T8 were expressed in prokaryotic expression system at 37 °C, 25 °C and 16 °C with 1 mM IPTG for 12 h and the recombinant proteins expressed at 16 °C were partially purified by Immobilised Metal Affinity Chromatography (IMAC). BuIFN-T isoforms have greater nucleotide and amino acid homology with caprine (98-100%, 96-100%), ovine (94-97%, 90-95%) and bovine (89.6-90.6%, 82-86%). These novel BuIFN-T isoforms contained pronounced nucleotide and amino acid sequence identity with one another (99.1-99.8%, 98-99%) but moderate sequence identity with previously identified buffalo IFN-T (90-92%, 82-86%). Solubility of expressed recombinant isoforms (rBuIFN-T1a2 and rBuIFN-T8) was highest at 16 °C. In conclusion, 13 distinct Ifn-t gene variants exist in trophectoderm of in vitro developed buffalo blastocysts that encode eight different proteins. rBuIFN-T1a2 and rBuIFN-T8 were successfully expressed in soluble form in Escherichia coli expression system at 16 °C with 1 mM IPTG and the resulting recombinant proteins were partially purified by IMAC. PMID:26876002

  19. Human and rat primary hepatocyte CYP1A1 and 1A2 induction with 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and 2,3,4,7,8-pentachlorodibenzofuran.

    PubMed

    Budinsky, Robert A; LeCluyse, Edward L; Ferguson, Stephen S; Rowlands, J Craig; Simon, Ted

    2010-11-01

    The concentration dose response for aryl hydrocarbon receptor (AHR)-mediated CYP1A1 and CYP1A2 messenger RNA (mRNA) induction and enzyme activity was determined in primary cultures of rat and human hepatocytes for 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 2,3,7,8-tetrachlorodibenzofuran. Eleven different congener concentrations from 0.00001 to 100 nM were used, thus spanning seven orders of magnitude. The Hill model was used to obtain values of EC(x) and maximal response from the individual data sets. No-observed effect concentration values were derived using several statistical methods including Dunnett's test, the Welch-Aspin test, and step-down bilinear regression. Thresholds were estimated using baseline projection methods and a "hockey stick" fitting method. Human hepatocytes were less responsive and less sensitive with respect to CYP1A1 activity and mRNA induction than rats. On the other hand, the human CYP1A2 response was more robust than the response in rats but generally less sensitive. These data allow an evaluation of relative species sensitivities for developing interspecies toxicodynamic adjustment factors, for assessing AHR activation thresholds, and for evaluating relative congener potencies. Overall, these data support the position that humans are less sensitive than rats to these AHR-dependent end points and support the use of a data-derived adjustment factor of 1.0 or less for extrapolating between rats and humans. PMID:20705892

  20. The Hydroxyl Side Chain of a Highly Conserved Serine Residue Is Required for Cation Selectivity and Substrate Transport in the Glial Glutamate Transporter GLT-1/SLC1A2.

    PubMed

    Simonin, Alexandre; Montalbetti, Nicolas; Gyimesi, Gergely; Pujol-Giménez, Jonai; Hediger, Matthias A

    2015-12-18

    Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates L-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na(+) over Li(+). S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for L-aspartate over D-aspartate and L-glutamate, and lost their selectivity for Na(+) over Li(+). Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes. PMID:26483543

  1. Dimerization Is Not a Determining Factor for Functional High Affinity Human Plasminogen Binding by the Group A Streptococcal Virulence Factor PAM and Is Mediated by Specific Residues within the PAM a1a2 Domain*

    PubMed Central

    Bhattacharya, Sarbani; Liang, Zhong; Quek, Adam J.; Ploplis, Victoria A.; Law, Ruby; Castellino, Francis J.

    2014-01-01

    A emm53 subclass of Group A Streptococcus pyogenes (GAS) interacts tightly with human plasma plasminogen (hPg) and plasmin (hPm) via the kringle 2 (K2hPg) domain of hPg/hPm and the N-terminal a1a2 regions of a GAS coiled-coil M-like protein (PAM). Previous studies have shown that a monomeric PAM fragment, VEK30 (residues 97–125 + Tyr), interacted specifically with isolated K2hPg. However, the binding strength of VEK30 (KD = 56 nm) was ∼60-fold weaker than that of full-length dimeric PAM (KD = 1 nm). To assess whether this attenuated binding was due to the inability of VEK30 to dimerize, we defined the minimal length of PAM required to dimerize using a series of peptides with additional PAM residues placed at the NH2 and COOH termini of VEK30. VEK64 (PAM residues 83–145 + Tyr) was found to be the smallest peptide that adopted an α-helical dimer, and was bound to K2hPg with nearly the same affinity as PAM (KD = 1–2 nm). However, addition of two PAM residues (Arg126-His127) to the COOH terminus of VEK30 (VEK32) maintained a monomeric peptidic structure, but exhibited similar K2hPg binding affinity as full-length dimeric PAM. We identified five residues in a1a2 (Arg113, His114, Glu116, Arg126, His127), mutation of which reduced PAM binding affinity for K2hPg by ∼1000-fold. Replacement of these critical residues by Ala in the GAS genome resulted in reduced virulence, similar to the effects of inactivating the PAM gene entirely. We conclude that rather than dimerization of PAM, the five key residues in the binding domain of PAM are essential to mediate the high affinity interaction with hPg, leading to increased GAS virulence. PMID:24962580

  2. Dimerization is not a determining factor for functional high affinity human plasminogen binding by the group A streptococcal virulence factor PAM and is mediated by specific residues within the PAM a1a2 domain.

    PubMed

    Bhattacharya, Sarbani; Liang, Zhong; Quek, Adam J; Ploplis, Victoria A; Law, Ruby; Castellino, Francis J

    2014-08-01

    A emm53 subclass of Group A Streptococcus pyogenes (GAS) interacts tightly with human plasma plasminogen (hPg) and plasmin (hPm) via the kringle 2 (K2hPg) domain of hPg/hPm and the N-terminal a1a2 regions of a GAS coiled-coil M-like protein (PAM). Previous studies have shown that a monomeric PAM fragment, VEK30 (residues 97-125 + Tyr), interacted specifically with isolated K2hPg. However, the binding strength of VEK30 (KD = 56 nm) was ∼60-fold weaker than that of full-length dimeric PAM (KD = 1 nm). To assess whether this attenuated binding was due to the inability of VEK30 to dimerize, we defined the minimal length of PAM required to dimerize using a series of peptides with additional PAM residues placed at the NH2 and COOH termini of VEK30. VEK64 (PAM residues 83-145 + Tyr) was found to be the smallest peptide that adopted an α-helical dimer, and was bound to K2hPg with nearly the same affinity as PAM (KD = 1-2 nm). However, addition of two PAM residues (Arg(126)-His(127)) to the COOH terminus of VEK30 (VEK32) maintained a monomeric peptidic structure, but exhibited similar K2hPg binding affinity as full-length dimeric PAM. We identified five residues in a1a2 (Arg(113), His(114), Glu(116), Arg(126), His(127)), mutation of which reduced PAM binding affinity for K2hPg by ∼ 1000-fold. Replacement of these critical residues by Ala in the GAS genome resulted in reduced virulence, similar to the effects of inactivating the PAM gene entirely. We conclude that rather than dimerization of PAM, the five key residues in the binding domain of PAM are essential to mediate the high affinity interaction with hPg, leading to increased GAS virulence. PMID:24962580

  3. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay.

    PubMed

    Høie, Anja Hortemo; Svendsen, Camilla; Brunborg, Gunnar; Glatt, Hansruedi; Alexander, Jan; Meinl, Walter; Husøy, Trine

    2015-10-01

    The food processing contaminants 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 5-hydroxymethylfurfural (HMF) and 2,5 dimethylfuran (DMF) are potentially both mutagenic and carcinogenic in vitro and/or in vivo, although data on DMF is lacking. The PHIP metabolite N-hydroxy-PhIP and HMF are bioactivated by sulfotransferases (SULTs). The substrate specificity and tissue distribution of SULTs differs between species. A single oral dose of PhIP, HMF or DMF was administered to wild-type (wt) mice and mice expressing human SULT1A1/1A2 (hSULT mice). DNA damage was studied using the in vivo alkaline single cell gel electrophoresis (SCGE) assay. No effects were detected in wt mice. In the hSULT mice, PhIP and HMF exposure increased the levels of DNA damage in the liver and kidney, respectively. DMF was not found to be genotoxic. The observation of increased DNA damage in hSULT mice compared with wt mice supports the role of human SULTs in the bioactivation of N-hydroxy-PhIP and HMF in vivo. PMID:26270892

  4. A 1 + 1' resonance-enhanced multiphoton ionization scheme for rotationally state-selective detection of formaldehyde via the à (1)A2 ← X[combining tilde] (1)A1 transition.

    PubMed

    Park, G Barratt; Krüger, Bastian C; Meyer, Sven; Wodtke, Alec M; Schäfer, Tim

    2016-08-10

    The formaldehyde molecule is an important model system for understanding dynamical processes in small polyatomic molecules. However, prior to this work, there have been no reports of a resonance-enhanced multiphoton ionization (REMPI) detection scheme for formaldehyde suitable for rovibrationally state-selective detection in molecular beam scattering experiments. Previously reported tunable REMPI schemes are either non-rotationally resolved, involve multiple resonant steps, or involve many-photon ionization steps. In the current work, we present a new 1 + 1' REMPI scheme for formaldehyde. The first photon is tunable and provides rotational resolution via the vibronically allowed à (1)A2 ← X[combining tilde] (1)A1 transition. Molecules are then directly ionized from the à state by one photon of 157 nm. The results indicate that the ionization cross section from the 4(1) vibrational level of the à state is independent of the rotational level used as intermediate, to within experimental uncertainty. The 1 + 1' REMPI intensities are therefore directly proportional to the à ← X[combining tilde] absorption intensities and can be used for quantitative measurement of X[combining tilde]-state population distributions. PMID:27461406

  5. Adenosine A(1), A(2a), A(2b), and A(3) receptors in hematopoiesis. 2. Expression of receptor mRNA in resting and lipopolysaccharide-activated mouse RAW 264.7 macrophages.

    PubMed

    Streitová, D; Hofer, M; Holá, J; Vacek, A; Pospísil, M

    2010-01-01

    Expression of mRNA for adenosine receptor subtypes A(1), A(2a), A(2b), and A(3) in normal and lipopolysaccharide (LPS)-activated murine RAW 264.7 macrophages has been investigated using the method of quantitative real-time polymerase chain reaction. The results have shown a very low, unquantifiable expression of adenosine A(1) receptor mRNA in both normal and LPS-activated macrophages. The other three adenosine receptor mRNAs have been found to be expressed at various but always quantifiable levels. Activation of the macrophages by LPS induced upregulation of the expression of adenosine receptor A(2a) and A(2b) mRNA, whereas the expression of adenosine receptor A(3) mRNA was downregulated. Unstimulated macrophages exhibited a high expression of the A(2b) adenosine receptor mRNA. The findings are discussed from the point of view of the antiinflammatory and hematopoiesis-stimulating roles of the adenosine receptor signaling. PMID:19249906

  6. The effect of knockout of sulfotransferases 1a1 and 1d1 and of transgenic human sulfotransferases 1A1/1A2 on the formation of DNA adducts from furfuryl alcohol in mouse models.

    PubMed

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2014-10-01

    Furfuryl alcohol is a rodent carcinogen present in numerous foodstuffs. Sulfotransferases (SULTs) convert furfuryl alcohol into the DNA reactive and mutagenic 2-sulfoxymethylfuran. Sensitive techniques for the isotope-dilution ultra performance liquid chromatography-tandem mass spectrometry quantification of resulting DNA adducts, e.g. N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were developed. To better understand the contribution of specific SULT forms to the genotoxicity of furfuryl alcohol in vivo, we studied the tissue distribution of N (2)-MF-dG in different mouse models. Earlier mutagenicity studies with Salmonella typhimurium strains expressing different human and murine SULT forms indicated that human SULT1A1 and murine Sult1a1 and 1d1 catalyze furfuryl alcohol sulfo conjugation most effectively. Here, we used three mouse lines to study the bioactivation of furfuryl alcohol by murine SULTs, FVB/N wild-type (wt) mice and two genetically modified models lacking either murine Sult1a1 or Sult1d1. The animals received a single dose of furfuryl alcohol, and the levels of the DNA adducts were determined in liver, kidney, lung, colon and small intestine. The effect of Sult1d1 gene disruption on the genotoxicity of furfuryl alcohol was moderate and limited to kidney and small intestine. In contrast, the absence of functional Sult1a1 had a massive influence on the adduct levels, which were lowered by 33-73% in all tissues of the female Sult1a1 null mice compared with the wt animals. The detection of high N (2)-MF-dG levels in a humanized mouse line expressing hSULT1A1/1A2 instead of endogeneous Sult1a1 and Sult1d1 supports the hypothesis that furfuryl alcohol is converted to the mutagenic 2-sulfoxymethylfuran also in humans. PMID:25053625

  7. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience.

    PubMed

    Pokorny, Thomas; Preller, Katrin H; Kraehenmann, Rainer; Vollenweider, Franz X

    2016-04-01

    The mixed serotonin (5-HT) 1A/2A/2B/2C/6/7 receptor agonist psilocybin dose-dependently induces an altered state of consciousness (ASC) that is characterized by changes in sensory perception, mood, thought, and the sense of self. The psychological effects of psilocybin are primarily mediated by 5-HT2A receptor activation. However, accumulating evidence suggests that 5-HT1A or an interaction between 5-HT1A and 5-HT2A receptors may contribute to the overall effects of psilocybin. Therefore, we used a double-blind, counterbalanced, within-subject design to investigate the modulatory effects of the partial 5-HT1A agonist buspirone (20mg p.o.) and the non-hallucinogenic 5-HT2A/1A agonist ergotamine (3mg p.o.) on psilocybin-induced (170 µg/kg p.o.) psychological effects in two groups (n=19, n=17) of healthy human subjects. Psychological effects were assessed using the Altered State of Consciousness (5D-ASC) rating scale. Buspirone significantly reduced the 5D-ASC main scale score for Visionary Restructuralization (VR) (p<0.001), which was mostly driven by a reduction of the VR item cluster scores for elementary and complex visual hallucinations. Further, buspirone also reduced the main scale score for Oceanic Boundlessness (OB) including derealisation and depersonalisation phenomena at a trend level (p=0.062), whereas ergotamine did not show any effects on the psilocybin-induced 5D-ASC main scale scores. The present finding demonstrates that buspirone exerts inhibitory effects on psilocybin-induced effects, presumably via 5-HT1A receptor activation, an interaction between 5-HT1A and 5-HT2A receptors, or both. The data suggest that the modulation of 5-HT1A receptor activity may be a useful target in the treatment of visual hallucinations in different psychiatric and neurological diseases. PMID:26875114

  8. Characterization of differences in substrate specificity among CYP1A1, CYP1A2 and CYP1B1: an integrated approach employing molecular docking and molecular dynamics simulations.

    PubMed

    Kesharwani, Siddharth S; Nandekar, Prajwal P; Pragyan, Preeti; Rathod, Vijay; Sangamwar, Abhay T

    2016-08-01

    Recent trends in new drug discovery of anticancer drugs have made oncologists more aware of the fact that the new drug discovery must target the developing mechanism of tumorigenesis to improve the therapeutic efficacy of antineoplastic drugs. The drugs designed are expected to have high affinity towards the novel targets selectively. Current research highlights overexpression of CYP450s, particularly cytochrome P450 1A1 (CYP1A1), in tumour cells, representing a novel target for anticancer therapy. However, the CYP1 family is identified as posing significant problems in selectivity of anticancer molecules towards CYP1A1. Three members have been identified in the human CYP1 family: CYP1A1, CYP1A2 and CYP1B1. Although sequences of the three isoform have high sequence identity, they have distinct substrate specificities. The understanding of macromolecular features that govern substrate specificity is required to understand the interplay between the protein function and dynamics, design novel antitumour compounds that could be specifically metabolized by only CYP1A1 to mediate their antitumour activity and elucidate the reasons for differences in substrate specificity profile among the three proteins. In the present study, we employed a combination of computational methodologies: molecular docking and molecular dynamics simulations. We utilized eight substrates for elucidating the difference in substrate specificity of the three isoforms. Lastly, we conclude that the substrate specificity of a particular substrate depends upon the type of the active site residues, the dynamic motions in the protein structure upon ligand binding and the physico-chemical characteristics of a particular ligand. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26916064

  9. An Expanded Analysis of Pharmacogenetics Determinants of Efavirenz Response that Includes 3′-UTR Single Nucleotide Polymorphisms among Black South African HIV/AIDS Patients

    PubMed Central

    Swart, Marelize; Evans, Jonathan; Skelton, Michelle; Castel, Sandra; Wiesner, Lubbe; Smith, Peter J.; Dandara, Collet

    2016-01-01

    Introduction: Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor prescribed as part of first-line highly active antiretroviral therapy (HAART) in South Africa. Despite administration of fixed doses of EFV, inter-individual variability in plasma concentrations has been reported. Poor treatment outcomes such as development of adverse drug reactions or treatment failure have been linked to EFV plasma concentrations outside the therapeutic range (1–4 μg/mL) in some studies. The drug metabolizing enzyme (DME), CYP2B6, is primarily responsible for EFV metabolism with minor contributions by CYP1A2, CYP2A6, CYP3A4, CYP3A5, and UGT2B7. DME coding genes are also regulated by microRNAs through targeting the 3′-untranslated region. Expanded analysis of 30 single nucleotide polymorphisms (SNPs), including those in the 3′-UTR, was performed to identify pharmacogenetics determinants of EFV plasma concentrations in addition to CYP2B6 c.516G>T and c.983T>C SNPs. Methods: SNPs in CYP1A2, CYP2B6, UGT2B7, and NR1I2 (PXR) were selected for genotyping among 222 Bantu-speaking South African HIV-infected patients receiving EFV-containing HAART. This study is a continuation of earlier pharmacogenetics studies emphasizing the role of genetic variation in the 3′-UTR of genes which products are either pharmacokinetic or pharmacodynamic targets of EFV. Results: Despite evaluating thirty SNPs, CYP2B6 c.516G>T and c.983T>C SNPs remain the most prominent predictors of EFV plasma concentration. Conclusion: We have shown that CYP2B6 c.516G>T and c.983T>C SNPs are the most important predictors of EFV plasma concentration after taking into account all other SNPs, including genetic variation in the 3′-UTR, and variables affecting EFV metabolism. PMID:26779253

  10. Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants.

    PubMed

    Ohkawa, Hideo; Inui, Hideyuki

    2015-06-01

    A yeast gene expression system originally established for mammalian cytochrome P450 monooxygenase cDNAs was applied to functional analysis of a number of mammalian and plant P450 species, including 11 human P450 species (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1 and CYP3A4). The human P450 species CYP1A1, CYP1A2, CYP2B6, CYP2C18 and CYP2C19 were identified as P450 species metabolising various agrochemicals and environmental chemicals. CYP2C9 and CYP2E1 specifically metabolised sulfonylurea herbicides and halogenated hydrocarbons respectively. Plant P450 species metabolising phenylurea and sulfonylurea herbicides were also identified mainly as the CYP71 family, although CYP76B1, CYP81B1 and CYP81B2 metabolised phenylurea herbicides. The transgenic plants expressing these mammalian and plant P450 species were applied to herbicide tolerance as well as phytoremediation of agrochemical and environmental chemical residues. The combined use of CYP1A1, CYP2B6 and CYP2C19 belonging to two families and three subfamilies covered a wide variety of herbicide tolerance and phytoremediation of these residues. The use of 2,4-D-and bromoxynil-induced CYP71AH11 in tobacco seemed to enhance herbicide tolerance and selectivity. PMID:25077812

  11. An improved substrate cocktail for assessing direct inhibition and time-dependent inhibition of multiple cytochrome P450s

    PubMed Central

    Chen, Zhong-hua; Zhang, Su-xing; Long, Na; Lin, Li-shan; Chen, Tao; Zhang, Fei-peng; Lv, Xue-qin; Ye, Pei-zhen; Li, Ning; Zhang, Ke-zhi

    2016-01-01

    Aim: The substrate cocktail is frequently used to evaluate cytochrome P450 (CYP) enzyme-mediated drug interactions and potential interactions among the probe substrates. Here, we re-optimized the substrate cocktail method to increase the reliability and accuracy of screening for candidate compounds and expanded the method from a direct CYP inhibition assay to a time-dependent inhibition (TDI) assay. Methods: In the reaction mixtures containing human liver microsome (0.1 mg/mL), both the concentrations of a substrate cocktail (phenacetin for 1A2, coumarin for 2A6, bupropion for 2B6, diclofenac for 2C9, dextromethorphan for 2D6, and testosterone for 3A4) and the incubation time were optimized. Metabolites of the substrate probes were simultaneously analyzed by multiple-reaction monitoring (MRM) using a routine LC/MS/MS. Direct CYP inhibition was validated using 7 inhibitors (α-naphthoflavone, tranylcypromine, ticlopidine, fluconazole, quinidine, ketoconazole and 1-ABT). The time-dependent inhibition was partially validated with 5 inhibitors (ketoconazole, verapamil, quinidine, paroxetine and 1-ABT). Results: The inhibition curve profiles and IC50 values of 7 CYP inhibitors were approximate when a single substrate and the substrate cocktail were tested, and were consistent with the previously reported values. Similar results were obtained in the IC50 shifts of 5 inhibitors when a single substrate and the substrate cocktail were tested in the TDI assay. Conclusion: The 6-in-1 substrate cocktail (for 1A2, 2A6, 2B6, 2C9, 2D6 and 3A) is reliable for assessing CYP inhibition and time-dependent inhibition of drug candidates. PMID:27063220

  12. Proteomic analysis of trichloroethylene-induced alterations in expression, distribution, and interactions of SET/TAF-Iα and two SET/TAF-Iα-binding proteins, eEF1A1 and eEF1A2, in hepatic L-02 cells

    SciTech Connect

    Hong, Wen-Xu; Yang, Liang; Chen, Moutong; Yang, Xifei; Ren, Xiaohu; Fang, Shisong; Ye, Jinbo; Huang, Haiyan; Peng, Chaoqiong; Zhou, Li; Huang, Xinfeng; Yang, Fan; Wu, Desheng; Zhuang, Zhixiong; Liu, Jianjun

    2012-09-01

    Emerging evidence indicates that trichloroethylene (TCE) exposure causes severe hepatotoxicity. However, the mechanisms of TCE hepatotoxicity remain unclear. Recently, we reported that TCE exposure up-regulated the expression of the oncoprotein SET/TAF-Iα and SET knockdown attenuated TCE-induced cytotoxicity in hepatic L-02 cells. To decipher the function of SET/TAF-Iα and its contributions to TCE-induced hepatotoxicity, we employed a proteomic analysis of SET/TAF-Iα with tandem affinity purification to identify SET/TAF-Iα-binding proteins. We identified 42 novel Gene Ontology co-annotated SET/TAF-Iα-binding proteins. The identifications of two of these proteins (eEF1A1, elongation factor 1-alpha 1; eEF1A2, elongation factor 1-alpha 2) were confirmed by Western blot analysis and co-immunoprecipitation (Co-IP). Furthermore, we analyzed the effects of TCE on the expression, distribution and interactions of eEF1A1, eEF1A2 and SET in L-02 cells. Western blot analysis reveals a significant up-regulation of eEF1A1, eEF1A2 and two isoforms of SET, and immunocytochemical analysis reveals that eEF1A1 and SET is redistributed by TCE. SET is redistributed from the nucleus to the cytoplasm, while eFE1A1 is translocated from the cytoplasm to the nucleus. Moreover, we find by Co-IP that TCE exposure significantly increases the interaction of SET with eEF1A2. Our data not only provide insights into the physiological functions of SET/TAF-Iα and complement the SET interaction networks, but also demonstrate that TCE exposure induces alterations in the expression, distribution and interactions of SET and its binding partners. These alterations may constitute the mechanisms of TCE cytotoxicity. -- Highlights: ► Identify 62 SET/TAF-Iα-associated proteins in human L-02 cells ► Trichloroethylene (TCE) alters the interaction of SET with eEF1A1 and eEF1A2. ► TCE induces the translocation and up-regulation of SET. ► TCE induces the translocation and up-regulation of eEF1A.

  13. An extensive cocktail approach for rapid risk assessment of in vitro CYP450 direct reversible inhibition by xenobiotic exposure.

    PubMed

    Spaggiari, Dany; Daali, Youssef; Rudaz, Serge

    2016-07-01

    Acute exposure to environmental factors strongly affects the metabolic activity of cytochrome P450 (P450). As a consequence, the risk of interaction could be increased, modifying the clinical outcomes of a medication. Because toxic agents cannot be administered to humans for ethical reasons, in vitro approaches are therefore essential to evaluate their impact on P450 activities. In this work, an extensive cocktail mixture was developed and validated for in vitro P450 inhibition studies using human liver microsomes (HLM). The cocktail comprised eleven P450-specific probe substrates to simultaneously assess the activities of the following isoforms: 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2 and subfamily 3A. The high selectivity and sensitivity of the developed UHPLC-MS/MS method were critical for the success of this methodology, whose main advantages are: (i) the use of eleven probe substrates with minimized interactions, (ii) a low HLM concentration, (iii) fast incubation (5min) and (iv) the use of metabolic ratios as microsomal P450 activities markers. This cocktail approach was successfully validated by comparing the obtained IC50 values for model inhibitors with those generated with the conventional single probe methods. Accordingly, reliable inhibition values could be generated 10-fold faster using a 10-fold smaller amount of HLM compared to individual assays. This approach was applied to assess the P450 inhibition potential of widespread insecticides, namely, chlorpyrifos, fenitrothion, methylparathion and profenofos. In all cases, P450 2B6 was the most affected with IC50 values in the nanomolar range. For the first time, mixtures of these four insecticides incubated at low concentrations showed a cumulative inhibitory in vitro effect on P450 2B6. PMID:27105555

  14. Role of Metabolic Enzymes P450 (CYP) on Activating Procarcinogen and their Polymorphisms on the Risk of Cancers.

    PubMed

    He, Xin; Feng, Shan

    2015-01-01

    Cytochrome P450 (CYP450) enzymes are the most important metabolizing enzyme family exists among all organs. Apart from their role in the deactivation of most endogenous compounds and xenobiotics, they also mediate most procarcinogens oxidation to ultimate carcinogens. There are several modes of CYP450s activation of procarcinogens. 1) Formation of epoxide and diol-epoxides intermediates, such as CYP1A1 and CYP1B1 mediates PAHs oxidation to epoxide intermediates; 2) Formation of diazonium ions, such as CYP2A6, CYP2A13 and CYP2E1 mediates activation of most nitrosamines to unstable metabolites, which can rearrange to give diazonium ions. 3) Formation of reactive semiquinones and quinines, such as CYP1A1 and CYP1B1 transformation of estradiol to catechol estrogens, subsequently formation semiquinones; 4) Formation of toxic O-esterification, such as CYP1A1 and CYP1A2 metabolizes PhIP to N(2)-acetoxy-PhIP and N(2)-sulfonyloxy-PhIP, which are carcinogenic metabolites. 5) Formation of free radical, such as CYP2E1 is involved in activation tetrachloromethane to free radicals. While for CYP2B6 and CYP2D6, only a minor role has been found in procarcinogens activation. In addition, as the gene polymorphisms reflected, the polymorphisms of CYP1A1 (-3801T/C and -4889A/G), CYP1A2 (- 163C/A and -2467T/delT), CYP1B1 (-48G/C, -119G/T and -432G/C), CYP2E1 (-1293G/C and -1053 C/T) have been associated with an increased risk of lung cancer. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), and CYP2E1 (PstI/Rsa and 9-bp insertion) have an association with higher risk colon cancers, whereas CYP1A2 (-163C/A and -3860G/A) polymorphism is found to be among the protective factors. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), CYP1B1 -432G/C, CYP2B6 (-516G/T and -785A/G) may increase the risk of breast cancer. In conclusion, CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2E1 are responsible for most of the procarcinogens activation, and their gene polymorphisms are associated with the risk of

  15. Theoretical Studies of Observable Transitions to Recoupled Pair Bonded States of Sulfur Halide Compounds: SF/SCl (X^2{Π}{→}A^2{Σ}^-), SF_2/SCl_2 (X^1A_1{→}1^1B_1, X^1A_1{→}1^1A_2), and SFCl (X^1A'{→}A^1A{'{'}})

    NASA Astrophysics Data System (ADS)

    Leiding, Jeff; Woon, David E.; Dunning, Thom H.; , Jr.

    2011-06-01

    In previous studies regarding the nature of hypervalent behavior, we identified low-lying excited states of SF(a^4{Σ}^-), SCl(a^4{Σ}^-), SF_2(a^3B_1,b^3A_2), SFCl(a^3A{'{'}}) and SCl_2(a^3B_1) that involve recoupled pair bonding (rpb), where the electrons of the S 3p^2 pair are made available to form bonds. While the transitions from the ground states to the quartet states of SF/SCl and the triplet states of SF_2/SFCl/SCl_2 are spin-forbidden, each of these excited states have analogs with formally spin- and dipole-allowed transitions (except ^1A_2). We performed high level MRCI+Q/aug-cc-pV(Q+d)Z calculations in order to characterize the electronic spectra, spectroscopic constants, and bonding of these species, and made comparisons to available experimental data. We found that excitation into the experimentally known and dipole-forbidden singlet rpb state, SCl_2(B^1A_2), can explain the well-known photodissociation behavior of SCl_2 used to produce SCl(X^2{Π}) radicals in the laboratory. Finally, we have also found a possible system of bond-stretch isomers on the SFCl(A^1A{'{'}}) potential energy surface that is analogous to the behavior on the triplet surface reported in our previous study. Howe, J. D.; Ashfold, M. N. R.; Morgan, R. A.;Western, C. M.; Buma, W. J.; Milan, J. B. and de Lang, C. A. J. Chem. Soc. Faraday Trans. 1995, 91, 773. Leiding, J.; Woon, D. E., and Dunning, T. H., Jr. J. Phys. Chem. A 2011, 115, 329.

  16. Repeated dose toxicity and relative potency of 1,2,3,4,6,7-hexachloronaphthalene (PCN 66) 1,2,3,5,6,7-hexachloronaphthalene (PCN 67) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for induction of CYP1A1, CYP1A2 and thymic atrophy in female Harlan Sprague-Dawley rats

    PubMed Central

    Hooth, Michelle J.; Nyska, Abraham; Fomby, Laurene M.; Vasconcelos, Daphne Y.; Vallant, Molly; DeVito, Michael J.; Walker, Nigel J.

    2012-01-01

    In this study we assessed the relative toxicity and potency of the chlorinated naphthalenes 1,2,3,4,6,7-hexachloronaphthalene (PCN 66) and 1,2,3,5,6,7-hexachloronaphthalene (PCN 67) relative to that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Chemicals were administered in corn oil:acetone (99:1) by gavage to female Harlan Sprague-Dawley rats at dosages of 0 (vehicle), 500, 1500, 5000, 50000 and 500000 ng/kg (PCN 66 and PCN 67) and 1, 3, 10, 100, and 300 ng/kg (TCDD) for 2 weeks. Histopathologic changes were observed in the thymus, liver and lung of TCDD treated animals and in the liver and thymus of PCN treated animals. Significant increases in CYP1A1 and CYP1A2 associated enzyme activity were observed in all animals exposed to TCDD, PCN 66 and PCN 67. Dose response modeling of CYP1A1, CYP1A2 and thymic atrophy gave ranges of estimated relative potencies, as compared to TCDD, of 0.0015-0.0072, for PCN 66 and 0.00029-0.00067 for PCN 67. Given that PCN 66 and PCN 67 exposure resulted in biochemical and histopathologic changes similar to that seen with TCDD, this suggests that they should be included in the WHO Toxic Equivalency Factor (TEF) scheme, although the estimated relative potencies indicate that these hexachlorinated naphthalenes should not contribute greatly to the overall human body burden of dioxin-like activity. PMID:22813907

  17. Cytochrome P450 expression and activities in human tongue cells and their modulation by green tea extract

    SciTech Connect

    Yang, S.-P.; Raner, Gregory M. . E-mail: gmraner@uncg.edu

    2005-01-15

    The expression, inducibility, and activities of several cytochrome P450 (CYP) enzymes were investigated in a human tongue carcinoma cell model, CAL 27, and compared with the human liver model HepG2 cells. The modulation effects of green tea on various CYP isoforms in both cell lines were also examined. RT-PCR analysis of CAL 27 cells demonstrated constitutive expression of mRNA for CYPs 1A1, 1A2, 2C, 2E1, 2D6, and 4F3. The results were negative for CYP2A6, 2B6/7, 3A3/4, and 3A7. Both cell lines displayed identical expression and induction profiles for all of the isoforms examined in this study except 3A7 and 2B6/7, which were produced constitutively in HepG2 but not Cal-27 cells. CYP1A1 and 1A2 were both induced by treatment with {beta}-napthoflavone as indicated by RT-PCR and Western blotting, while CYP2C mRNA was upregulated by all-trans retinoic acid and farnesol. RT-PCR and Western blot analysis showed that the expressions of CYP1A1 and 1A2 were induced by green tea extract (GTE), which also caused an increase in mRNA for CYP2E1, CYP2D6, and CYP2C isoforms. The four tea catechins, EGC, EC, EGCG and ECG, applied to either HepG2 or Cal-27 cells at the concentration found in GTE failed to induce CYP1A1 or CYP1A2, as determined by RT-PCR. Of the isoforms that were apparently induced by GTE, only 7-ethoxycoumarin deethylase (ECOD) activity could be detected in CAL 27 or HepG2 cells. Interestingly, mRNA and protein for CYP1A1 and CYP1A2 were detected in both cell lines, and although protein and mRNA levels of CYP1A1 and CYP1A2 were increased by GTE, the observed ECOD activity in both cell lines was decreased.

  18. In vitro oxidative metabolism of cajaninstilbene Acid by human liver microsomes and hepatocytes: involvement of cytochrome p450 reaction phenotyping, inhibition, and induction studies.

    PubMed

    Hua, Xin; Peng, Xiao; Tan, Shengnan; Li, Chunying; Wang, Wei; Luo, Meng; Fu, Yujie; Zu, Yuangang; Smyth, Hugh

    2014-10-29

    Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid), an active constituent of pigeonpea leaves, an important tropical crop, is known for its clinical effects in the treatment of diabetes, hepatitis, and measles and its potential antitumor effect. In this study, the effect of the cytochrome P450 isozymes on the activity of CSA was investigated. Two hydroxylation metabolites were identified in the study. The reaction phenotype study showed that CYP3A4, CYP2C9, and CYP1A2 were the major cytochrome P450 isozymes in the metabolism of CSA. The metabolic food-drug interaction potential was also evaluated in vitro. The effect of CSA inhibition/induction of enzymatic activities of seven drug-metabolizing CYP450 isozymes in vitro was estimated by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analytical techniques. CSA showed different inhibitory effects on different isozymes. CSA reversibly inhibited CYP3A4 and CYP2C9 activities in human liver microsomes with IC50 values of 28.3 and 31.3 μM, respectively, but exhibited no inhibition activities to CYP1A2, CYP2A6, CYP2C19, CYP2D6, and CYP2E1. CSA showed a weak effect on CYP450 enzymes in a time-dependent manner. CSA did not substantially induce CYP1A2, CYP2A6, CYP2B6, CYP2E1, CYP2C9, CYP2C19, CYP2D6, or CYP3A4 at concentrations up to 30 μM in primary human hepatocytes. The results of our experiments may be helpful to predict clinically significant food-drug interactions when other drugs are administered in combination with CSA. PMID:25272989

  19. Cytochrome P450 inhibition potential of new psychoactive substances of the tryptamine class.

    PubMed

    Dinger, Julia; Woods, Campbell; Brandt, Simon D; Meyer, Markus R; Maurer, Hans H

    2016-01-22

    New psychoactive substances (NPS) are not tested for their cytochrome P450 (CYP) inhibition potential before consumption. Therefore, this potential was explored for tryptamine-derived NPS (TDNPS) including alpha-methyl tryptamines (AMTs), dimethyl tryptamines (DMTs), diallyl tryptamines (DALTs), and diisopropyl tryptamines (DiPTs) using test substrates preferred by the Food and Drug Administration in a cocktail assay. All tested TDNPS with the exception of DMT inhibited CYP2D6 activity with IC50 values below 100μM. DALTs inhibited CYP2D6 activity similar to paroxetine and quinidine and CYP1A2 activity comparable to fluvoxamine. 5-Methoxy-N,N-diallyltryptamine reduced in vivo the caffeine metabolism in rats consistent with in vitro results. Five of the AMTs also inhibited CYP1A2 activity comparable to amiodarone. AMT and 6-F-AMT inhibited CYP2A6 activity in the range of the test inhibitor tranylcypromine. CYP2B6 activity was inhibited by 19 tryptamines, but weakly compared to efavirenz. CYP2C8 activity was inhibited by five of the tested TDNPS and three showed values comparable to trimethoprim and gemfibrozil. Six tryptamines inhibited CYP2C9 and seven CYP2C19 activities comparable to fluconazole and chloramphenicol, respectively. Nineteen compounds showed inhibition of CYP2E1 and 18 of CYP3A activity, respectively. These results showed that the CYP inhibition by TDNPS might be clinically relevant, but clinical studies are needed to explore this further. PMID:26599973

  20. RS-Predictor models augmented with SMARTCyp reactivities: robust metabolic regioselectivity predictions for nine CYP isozymes.

    PubMed

    Zaretzki, Jed; Rydberg, Patrik; Bergeron, Charles; Bennett, Kristin P; Olsen, Lars; Breneman, Curt M

    2012-06-25

    RS-Predictor is a tool for creating pathway-independent, isozyme-specific, site of metabolism (SOM) prediction models using any set of known cytochrome P450 (CYP) substrates and metabolites. Until now, the RS-Predictor method was only trained and validated on CYP 3A4 data, but in the present study, we report on the versatility the RS-Predictor modeling paradigm by creating and testing regioselectivity models for substrates of the nine most important CYP isozymes. Through curation of source literature, we have assembled 680 substrates distributed among CYPs 1A2, 2A6, 2B6, 2C19, 2C8, 2C9, 2D6, 2E1, and 3A4, the largest publicly accessible collection of P450 ligands and metabolites released to date. A comprehensive investigation into the importance of different descriptor classes for identifying the regioselectivity mediated by each isozyme is made through the generation of multiple independent RS-Predictor models for each set of isozyme substrates. Two of these models include a density functional theory (DFT) reactivity descriptor derived from SMARTCyp. Optimal combinations of RS-Predictor and SMARTCyp are shown to have stronger performance than either method alone, while also exceeding the accuracy of the commercial regioselectivity prediction methods distributed by Optibrium and Schrödinger, correctly identifying a large proportion of the metabolites in each substrate set within the top two rank-positions: 1A2 (83.0%), 2A6 (85.7%), 2B6 (82.1%), 2C19 (86.2%), 2C8 (83.8%), 2C9 (84.5%), 2D6 (85.9%), 2E1 (82.8%), 3A4 (82.3%), and merged (86.0%). Comprehensive datamining of each substrate set and careful statistical analyses of the predictions made by the different models revealed new insights into molecular features that control metabolic regioselectivity and enable accurate prospective prediction of likely SOMs. PMID:22524152

  1. RS-Predictor models augmented with SMARTCyp reactivities: Robust metabolic regioselectivity predictions for nine CYP isozymes

    PubMed Central

    Zaretzki, Jed; Rydberg, Patrik; Bergeron, Charles; Bennett, Kristin P.; Olsen, Lars

    2012-01-01

    RS-Predictor is a tool for creating pathway-independent, isozyme-specific site of metabolism (SOM) prediction models using any set of known cytochrome P450 substrates and metabolites. Until now, the RS-Predictor method was only trained and validated on CYP 3A4 data, but in the present study we report on the versatility the RS-Predictor modeling paradigm by creating and testing regioselectivity models for substrates of the nine most important CYP isozymes. Through curation of source literature, we have assembled 680 substrates distributed among CYPs 1A2, 2A6, 2B6, 2C19, 2C8, 2C9, 2D6, 2E1 and 3A4, which we believe is the largest publicly accessible collection of P450 ligands and metabolites ever released. A comprehensive investigation into the importance of different descriptor classes for predicting the regioselectivity of each isozyme is made through the generation of multiple independent RS-Predictor models for each set of isozyme substrates. Two of these models include a DFT reactivity descriptor derived from SMARTCyp. Optimal combinations of RS-Predictor and SMARTCyp are shown to have stronger performance than either method alone, while also exceeding the accuracy of the commercial regioselectivity prediction methods distributed by StarDrop and Schrödinger, correctly identifying a large proportion of the metabolites in each substrate set within the top two rank-positions: 1A2(83.0%), 2A6(85.7%), 2B6(82.1%), 2C19(86.2%), 2C8(83.8%), 2C9(84.5%), 2D6(85.9%), 2E1(82.8%), 3A4(82.3%) and merged(86.0%). Comprehensive datamining of each substrate set and careful statistical analyses of the predictions made by the different models revealed new insights into molecular features that control metabolic regioselectivity and enable accurate prospective prediction of likely SOMs. PMID:22524152

  2. Gene polymorphisms and contents of cytochrome P450s have only limited effects on metabolic activities in human liver microsomes.

    PubMed

    Gao, Na; Tian, Xin; Fang, Yan; Zhou, Jun; Zhang, Haifeng; Wen, Qiang; Jia, Linjing; Gao, Jie; Sun, Bao; Wei, Jingyao; Zhang, Yunfei; Cui, Mingzhu; Qiao, Hailing

    2016-09-20

    Extensive inter-individual variations in pharmacokinetics are considered as a major reason for unpredictable drug responses. As the most important drug metabolic enzymes, inter-individual variations of cytochrome P450 (CYP) activities are not clear in human liver. In this paper, metabolic activities, gene polymorphisms and protein contents of 10 CYPs were determined in 105 human normal liver microsomes. The results indicated substantial inter-individual variations in CYP activities, with the greatest being CYP2C19 activity (>600-fold). Only half of 10 CYP isoforms and 26 gene polymorphism sites had limited effects on metabolic activities, such as CYP2A6, CYP2B6, CYP2C9, CYP2D6 and CYP3A4/5, others had almost no effects. Compared with their respective wild type, Km, Vmax, and CLint decreased by 51.6%, 88.7% and 70.7% in CYP2A6*1/*4 genotype, Vmax and CLint decreased by 32.8% and 60.2% in CYP2C9*1/*3 genotype, Km increased by 118.4% and CLint decreased by 65.2% in CYP2D6 100TT genotype, respectively. Moreover, there were only 4 CYP isoforms, CYP1A2, CYP2A6, CYP2E1 and CYP3A5, which had moderate or weak correlations between Vmax values and corresponding contents. In conclusions, the genotypes and contents of some CYPs have only limited effects on metabolic activities, which imply that there are other more important factors to influence inter-individual variations. PMID:27339126

  3. Ethanol Disrupts Chondrification of the Neurocranial Cartilages in Medaka Embryos without Affecting Aldehyde Dehydrogenase 1A2 (Aldh1A2) Promoter Methylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Medaka (Oryzias latipes) embryos at different developmental stages were exposed to ethanol for 48 h, then allowed to hatch. Teratogenic effects were evaluated in hatchlings after examining chondrocranial cartilage deformities. Ethanol disrupted cartilage development in medaka in a dose and developme...

  4. In vitro evaluation of the effects of 4-aminopyridine on cytochrome P450 enzymes

    PubMed Central

    Caggiano, Anthony; Blight, Andrew

    2013-01-01

    Background Dalfampridine extended release tablets (dalfampridine-ER, known as prolonged-, modified, or sustained-release fampridine tablets in some countries) are approved for the improvement of walking in patients with multiple sclerosis (MS). Dalfampridine-ER is an extended release formulation of 4-aminopyridine (4-AP). Dalfampridine-ER is incorporated into MS management strategies that may include disease-modifying and symptomatic therapies. Since several symptomatic therapies are partially or fully metabolized by enzymes of the hepatic cytochrome P450 system (CYP450) it is important to evaluate drug–drug interactions through potential effects of dalfampridine-ER on CYP450. Methods The ability of 4-AP to inhibit CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4/5 in a direct and time-dependent manner was evaluated using pooled human liver microsomes. 4-AP concentrations were 0.03, 0.1, 0.3, 1, 3, 10, and 30 μM, representing 0.1–100-times the average plasma 4-AP concentration (30 ng/mL; 0.32 μM) at therapeutic dosing; the concentration inhibiting 50% of each enzyme activity (IC50) was determined. The ability of 4-AP (0.025, 0.25, 2.5, and 25 μM) to induce the expression of CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4/5 enzymes was evaluated using primary cultures of freshly isolated human hepatocytes from non-transplantable livers. The enzyme-inducing effects of 4-AP were compared with the prototypical inducers. Metabolites were assayed using high-performance liquid chromatography-tandem mass spectrometry techniques. All inhibition and induction assays included positive controls. Results 4-AP did not directly inhibit CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, or CYP3A4/5, but at a concentration of 30 μM, CYP2E1 was inhibited by 12%, resulting in an estimated IC50 value of 125 μM. None of the enzymes demonstrated time-dependent inhibition by 4-AP. There was little or no effect by 4-AP on enzyme induction, with

  5. Multiple P450 substrates in a single run: rapid and comprehensive in vitro interaction assay.

    PubMed

    Turpeinen, Miia; Uusitalo, Jouko; Jouko, Uusitalo; Jalonen, Jorma; Jorma, Jalonen; Pelkonen, Olavi; Olavi, Pelkeonen

    2005-01-01

    The dramatically increased number of new chemical entities (NCE) used in drug discovery has raised a demand for efficient and rapid drug metabolism screening techniques. The aim of this study was to develop a global in vitro metabolic interaction screening test utilising the N-in-1 approach. A cocktail consisting of 10 CYP-selective probes with known kinetic, metabolic and interaction properties in vivo was incubated in a pool of human liver microsomes, and metabolites of melatonin (CYP1A2), coumarin (CYP2A6), bupropion (CYP2B6), amodiaquine (CYP2C8), tolbutamide (CYP2C9), omeprazole (CYP2C19 and CYP3A4), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1), midazolam (CYP3A4) and testosterone (CYP3A4) were analysed simultaneously using LC/TOF-MS. Performance of the method was assessed with cDNA expressed P450s and diagnostic CYP-specific inhibitors. The results were in good accordance with literature and our previous studies. The cocktail developed is suitable for fast and reliable in vitro screening of the interaction potential and characteristics of NCEs. PMID:15626586

  6. Insights on Cytochrome P450 Enzymes and Inhibitors Obtained Through QSAR Studies

    PubMed Central

    Sridhar, Jayalakshmi; Liu, Jiawang; Foroozesh, Maryam; Stevens, Cheryl L. Klein

    2013-01-01

    The cytochrome P450 (CYP) superfamily of heme enzymes play an important role in the metabolism of a large number of endogenous and exogenous compounds, including most of the drugs currently on the market. Inhibitors of CYP enzymes have important roles in the treatment of several disease conditions such as numerous cancers and fungal infections in addition to their critical role in drug-drug interactions. Structure activity relationships (SAR), and three-dimensional quantitative structure activity relationships (3D-QSAR) represent important tools in understanding the interactions of the inhibitors with the active sites of the CYP enzymes. A comprehensive account of the QSAR studies on the major human CYPs 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4 and a few other CYPs are detailed in this review which will provide us with an insight into the individual/common characteristics of the active sites of these enzymes and the enzyme-inhibitor interactions. PMID:22864238

  7. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    PubMed Central

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to the 7-hydroxylation of granisetron, one of which was a high affinity component with a Km of 4 microM. A single, low affinity, enzyme was responsible for the 9'-desmethylation of granisetron. 4. Granisetron caused no inhibition of any of the cytochrome P450 activities investigated (CYP1A2, CYP2A6, CYP2B6, CYP2C9/8, CYP2C19, CYP2D6, CYP2E1 and CYP3A), at concentrations up to 250 microM. 5. Studies using chemical inhibitors selective for individual P450 enzymes indicated the involvement of cytochrome P450 3A (CYP3A), both pathways of granisetron metabolism being very sensitive to ketoconazole inhibition. Correlation data were consistent with the role of CYP3A3/4 in granisetron 9'-desmethylation but indicated that a different enzyme was involved in the 7-hydroxylation. PMID:7888294

  8. High-throughput screening of inhibitory effects of Bo-yang-hwan-o-tang on human cytochrome P450 isoforms in vitro using UPLC/MS/MS.

    PubMed

    Lee, Miran; Park, Jeonghyeon; Lim, Mi-sun; Seong, Sook Jin; Lee, Joomi; Seo, Jeong Ju; Park, Yong-Ki; Lee, Hae Won; Yoon, Young-Ran

    2012-01-01

    Bo-yang-hwan-o-tang (BHT) is an oriental herbal medicine for treating brain disorders such as cerebral ischemia. The objective of this study was to develop an economically feasible and time-saving high-throughput screening method to monitor the potential inhibitory effects of BHT on human cytochrome P450 (CYP) enzymes in vitro. Two cocktail sets were used for incubation of human liver microsomes: Cocktail A: 6 probe substrates for CYP1A2, CYP2A6, CYP2C8, CYP2C19, CYP2D6, CYP3A4; Cocktail B: 3 for CYP2B6, CYP2C9, CYP2E1. The concentrations of the substrate metabolites were simultaneously analyzed using UPLC/MS/MS. The BHT extract had almost negligible inhibitory effects on the nine human CYP isoforms tested, with the half-maximal inhibitory concentration value ranged from 3624.99 to 45412.44 μg/ml. The results suggest that BHT extract has no inhibitory effects on CYP isoforms within the clinically recommended dosage range. We conclude that BHT might be free of drug-herb interactions when co-administered with other medicines. However, more in vivo human studies are needed to confirm these results. The high-throughput screening method can be a useful tool for drug discovery and for understanding drug interactions. PMID:23232241

  9. Cyp2D6 catalyzes 5-hydroxylation of 1-(2-pyrimidinyl)-piperazine, an active metabolite of several psychoactive drugs, in human liver microsomes.

    PubMed

    Raghavan, Nirmala; Zhang, Donglu; Zhu, Mingshe; Zeng, Jianing; Christopher, Lisa

    2005-02-01

    1-(2-Pyrimidinyl)-piperazine (1-PP) is an active metabolite of several psychoactive drugs including buspirone. 1-PP is also the major metabolite in the human circulation and in rat brains following oral administration of buspirone. This study was conducted to identify the enzyme responsible for the metabolic conversion of 1-PP to 5-hydroxy-1-(2-pyrimidinyl)-piperazine (HO-1-PP) in human liver microsomes (HLMs). The product HO-1-PP was quantified by a validated liquid chromatography-tandem mass spectrometry method. In the presence of NADPH, 1-PP (100 microM) was incubated separately with human cDNA-expressed cytochrome P450 isozymes (including CYP2D6, 3A4, 1A2, 2A6, 2C9, 2C19, 2E1, and 2B6) at 37 degrees C. CYP2D6 catalyzed the formation of HO-1-PP from 1-PP. This catalytic activity was >95% inhibited by quinidine, a CYP2D6 inhibitor. HO-1-PP formation rates correlated well with the bufuralol 1-hydroxylase (CYP2D6) activities of individual HLMs. The formation of HO-1-PP followed a Michaelis-Menten kinetics with a K(m) of 171 microM and V(max) of 313 pmol/min x mg protein in HLMs. Collectively, these results indicate that polymorphic CYP2D6 is responsible for the conversion of 1-PP to HO-1-PP. PMID:15507542

  10. 2-Aminopyrimidines as dual adenosine A1/A2A antagonists.

    PubMed

    Robinson, Sarel J; Petzer, Jacobus P; Terre'Blanche, Gisella; Petzer, Anél; van der Walt, Mietha M; Bergh, Jacobus J; Lourens, Anna C U

    2015-11-01

    In this study thirteen 2-aminopyrimidine derivatives were synthesised and screened as potential antagonists of adenosine A1 and A2A receptors in order to further investigate the structure activity relationships of this class of compounds. 4-(5-Methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (8m) was identified as a compound with high affinities for both receptors, with an A2AKi value of 6.34 nM and an A1Ki value of 9.54 nM. The effect of selected compounds on the viability of cultured cells was assessed and preliminary results indicate low cytotoxicity. In vivo efficacy at A2A receptors was illustrated for compounds 8k and 8m since these compounds attenuated haloperidol-induced catalepsy in rats. A molecular docking study revealed that the interactions between the synthesised compounds and the adenosine A2A binding site most likely involve Phe168 and Asn253, interactions which are similar for structurally related adenosine A2A receptor antagonists. PMID:26462195

  11. Age-Dependent Changes in Human Hepatic CYP2C8 and 1A2 Expression

    EPA Science Inventory

    Predicting age-specific metabolism of pyrethroids is important in evaluating age-related sensitivity. Our goal is to use an in vitro to in vivo extrapolation (IVIVE) approach to predict pyrethroid metabolism for different ages incorporating enzyme ontogeny and expressed enzyme ki...

  12. Stepped-anneal helium release in 1-mm beryllium pebbles from COBRA-1A2

    SciTech Connect

    Oliver, B.M.

    1998-03-01

    Stepped-anneal helium release measurements on two sets of fifteen beryllium pebbles irradiated in the Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-w), are reported. The purpose of the measurements was to determine the helium release characteristics of the beryllium using larger sample sizes and longer anneal times relative to earlier measurements. Sequential helium analyses were conducted over a narrower temperature range from approximately 800 C to 1100 C in 100 C increments, but with longer anneal time periods. To allow for overnight and unattended operation, a temperature controller and associated circuitry were added to the experimental setup. Observed helium release was nonlinear with time at each temperature interval, with each step being generally characterized by an initial release rate followed by a slowing of the rate over time. Sample Be-C03 showed a leveling off in the helium release after approximately 3 hours at a temperature of 890 C. Sample Be-D03, on the other hand, showed a leveling off only after {approximately}12 to 24 hours at a temperature of 1100 C. This trend is consistent with that observed in earlier measurements on single microspheres from the same two beryllium lots. None of the lower temperature steps showed any leveling off of the helium release. Relative to the total helium concentrations measured earlier, the total helium releases observed here represent approximately 80% and 92% of the estimated total helium in the C03 and D03 samples, respectively.

  13. Helium analyses of 1-mm beryllium microspheres from COBRA-1A2

    SciTech Connect

    Oliver, B.M.

    1998-03-01

    Multiple helium analyses on four beryllium microspheres irradiated in the Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W), are reported. The purpose of the analyses was to determine the total helium content of the beryllium, and to determine the helium release characteristics of the beryllium as a function of time and temperature. For the helium release measurements, sequential helium analyses were conducted on two of the samples over a temperature range from 500 C to 1100 C in 100 C increments. Total helium measurements were conducted separately using the normal analysis method of vaporizing the material in a single analysis run. Observed helium release in the two beryllium samples was nonlinear with time at each temperature interval, with each step being characterized by a rather rapid initial release rate, followed by a gradual slowing of the rate over time. Sample Be-C03-1 released virtually all of its helium after approximately 30 minutes at 1000 C, reaching a final value of 2722 appm. Sample Be-D03-1, on the other hand, released only about 62% of its helium after about 1 hour at 1100 c, reaching a final value of 1519 appm. Combining these results with subsequent vaporization runs on the two samples, yielded total helium concentrations of 2724 and 2459 appm. Corresponding helium concentrations measured in the two other C03 and D03 samples, by vaporization alone, were 2941 and 2574 appm. Both sets of concentrations are in reasonable agreement with predicted values of 2723 and 2662 appm. Helium-3 levels measured during the latter two vaporization runs were 2.80 appm for Be-C03-2, and 2.62 appm for Be-D03-2. Calculated {sup 3}He values are slightly lower at 2.55 and 2.50 appm, respectively, suggesting somewhat higher tritium levels in the beryllium than predicted.

  14. Total synthesis of proanthocyanidin A1, A2, and their stereoisomers.

    PubMed

    Sharma, Pradeep K; Romanczyk, Leo J; Kondaveti, Leelakrishna; Reddy, Bollu; Arumugasamy, Jeeva; Lombardy, Richard; Gou, Yanni; Schroeter, Hagen

    2015-05-15

    The first novel stereoselective synthesis of naturally occurring A1 (1) and A2 proanthocyanidins (2) has been achieved. The key synthetic steps involved (a) the formation of a coupled product (13 or 14) between an open chain C-ring C-4 hydroxyethoxy analogue of either (+)-catechin or (-)-epicatechin with 5,7,3',3'-tetra-O-benzyl-(+)-catechin/-(-)-epicatechin in the presence of bentonite clay K-10, (b) removal of benzyl protecting groups under mild catalytic hydrogenation conditions to form the desired A-type compound in situ as a mixture of diastereomers via ketal/oxonium ion/carbonium ion formation, and (c) separation of the diasteromers via silica gel column chromatography. The structures of A1 and A2 proanthocyanidins were unequivocally established by analytical comparison to the natural products. Following this methodology, an additional six diastereomers of proanthocyanidins A1 and A2 have been synthesized. A plausible mechanism for the formation of the A-type linkage in proanthocyanidins has been proposed. PMID:25927567

  15. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain

    PubMed Central

    Gehman, Lauren T.; Stoilov, Peter; Maguire, Jamie; Damianov, Andrey; Lin, Chia-Ho; Shiue, Lily; Ares, Manuel; Mody, Istvan; Black, Douglas L.

    2011-01-01

    The Rbfox family of RNA binding proteins regulates alternative splicing of many important neuronal transcripts but their role in neuronal physiology is not clear1. We show here that central nervous system (CNS)-specific deletion of the Rbfox1 gene results in heightened susceptibility to spontaneous and kainic acid-induced seizures. Electrophysiological recording reveals a corresponding increase in neuronal excitability in the dentate gyrus of the knockout mice. Whole transcriptome analyses identify multiple splicing changes in the Rbfox1−/− brain with few changes in overall transcript abundance. These splicing changes alter proteins that mediate synaptic transmission and membrane excitation, some of which are implicated in human epilepsy. Thus, Rbfox1 directs a genetic program required in the prevention of neuronal hyperexcitation and seizures. The Rbfox1 knockout mice provide a new model to study the post-transcriptional regulation of synaptic function. PMID:21623373

  16. 76 FR 72091 - Airworthiness Directives; Turbomeca S.A. Makila 1A2 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Register published on April 11, 2000 (65 FR 19477-78). Authority for This Rulemaking Title 49 of the United... Procedures (44 FR 11034, February 26, 1979), and 3. Will not have a significant economic impact, positive or... control mode, which could result in engine power loss and emergency landing of the helicopter. DATES:...

  17. Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  18. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  19. Population pharmacogenetic-based pharmacokinetic modeling of efavirenz, 7-hydroxy- and 8-hydroxyefavirenz

    PubMed Central

    Abdelhady, A.M.; Desta, Z.; Jiang, F.; Yeo, C.W.; Shin, J.; Overholser, B. R.

    2015-01-01

    Objectives The purpose of this study was to determine the demographic and pharmacogenetic covariates that influence the disposition of efavirenz (EFV) and its major metabolites. Methods: A population pharmacokinetic (PK) model was developed from a randomized, cross-over, drug-interaction study in healthy male Korean subjects (n=17). Plasma concentrations of EFV and its hydroxy-metabolites (0–120 hrs) were measured by LC/MS/MS. Genomic DNA was genotyped for variants in the cytochrome P450 (CYP) 2A6, 2B6, 3A5 and MDR1 genes. A PK model was built in a stepwise procedure using nonlinear mixed effect modeling in NONMEM 7. The covariate model was built using the generalized additive modeling and forward selection-backward elimination. Model-based simulations were performed to predict EFV steady-state concentrations following 200, 400, and 600 mg daily oral dose among different CYP2B6 genotypes Results The final model included only CYP2B6 genotype as covariate that predicts EFV clearance through the formation of 8-OH EFV that represented 65% to 80% of EFV clearance. The total clearance of EFV in CYP2B6*6/*6 genotype was ~ 30% lower than CYP2B6*1/*1 or CYP2B6*1/*6 alleles (P<0.001). Clopidogrel reduced both formation and elimination clearances of 8-OH EFV by 22% and 19% respectively (P= 0.033 and 0.041). Other demographics and genotype of accessory CYP pathways did not predict EFV or metabolites PK. Conclusion CYP2B6 genotype was the only significant predictor of EFV disposition. The developed model may serve as the foundation for further exploration of pharmacogenetic-based dosing of EFV. PMID:24142869

  20. Multiple genetic variants predict steady-state nevirapine clearance in HIV-infected Cambodians

    PubMed Central

    Bertrand, Julie; Chou, Monidarin; Richardson, Danielle M.; Verstuyft, Céline; Leger, Paul D.; Mentré, France; Taburet, Anne-Marie; Haas, David W.

    2013-01-01

    Objective In a previous analysis involving protocol ANRS 12154, interindividual variability in steady-state nevirapine clearance among HIV-infected Cambodians was partially explained by CYP2B6 516G→T (CYP2B6*6). Here, we examine whether additional genetic variants predict nevirapine clearance in this cohort. Methods Analyses included Phnom Penh ESTHER (Ensemble pour une Solidarité Thérapeutique Hospitalière en Réseau) cohort participants who had consented for genetic testing. All participants were receiving nevirapine plus two nucleoside analogs. The mean individual nevirapine clearance estimates were derived from a population model developed on nevirapine concentrations at 18 and 36 months of therapy. Polymorphisms were assayed in ABCB1, CYP2A6, CYP2B6, CYP2C19, CYP3A4, CYP3A5, and NR1I2. Results Of 198 assayed loci, 130 were polymorphic. Among 129 individuals with evaluable genetic data, nevirapine clearance ranged from 1.06 to 5.00 l/h in 128 individuals and was 7.81 l/h in one individual. In bivariate linear regression, CYP2B6 516G→T (CYP2B6*6) was associated with lower nevirapine clearances (P = 3.5 × 10–6). In a multivariate linear regression model conditioned on CYP2B6 516G→T, independent associations were identified with CYP2B6 rs7251950, CYP2B6 rs2279343, and CYP3A4 rs2687116. The CYP3A4 association disappeared after censoring the outlier clearance value. A model that included CYP2B6 516G→T (P = 1.0 × 10–9), rs7251950 (P = 4.8 × 10–5), and rs2279343 (P = 7.1 × 10–5) explained 11% of interindividual variability in nevirapine clearance. Conclusion Among HIV-infected Cambodians, several CYP2B6 polymorphisms were associated independently with steady-state nevirapine clearance. The prediction of nevirapine clearance was improved by considering several polymorphisms in combination. PMID:23104099

  1. Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes: A GeT-RM Collaborative Project.

    PubMed

    Pratt, Victoria M; Everts, Robin E; Aggarwal, Praful; Beyer, Brittany N; Broeckel, Ulrich; Epstein-Baak, Ruth; Hujsak, Paul; Kornreich, Ruth; Liao, Jun; Lorier, Rachel; Scott, Stuart A; Smith, Chingying Huang; Toji, Lorraine H; Turner, Amy; Kalman, Lisa V

    2016-01-01

    Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing. PMID:26621101

  2. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5'-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    PubMed

    Kwon, Soon-Sang; Kim, Ju-Hyun; Jeong, Hyeon-Uk; Cho, Yong Yeon; Oh, Sei-Ryang; Lee, Hye Suk

    2016-01-01

    Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca(2+)-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes of human liver microsomes to determine if mechanistic aschantin-enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4'-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4'-hydroxylation, and CYP3A4-mediated midazolam 1'-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1'-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4. PMID:27128896

  3. Development of HepG2-derived cells expressing cytochrome P450s for assessing metabolism-associated drug-induced liver toxicity.

    PubMed

    Xuan, Jiekun; Chen, Si; Ning, Baitang; Tolleson, William H; Guo, Lei

    2016-08-01

    The generation of reactive metabolites from therapeutic agents is one of the major mechanisms of drug-induced liver injury (DILI). In order to evaluate metabolism-related toxicity and improve drug efficacy and safety, we generated a battery of HepG2-derived cell lines that express 14 cytochrome P450s (CYPs) (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5 and 3A7) individually using a lentiviral expression system. The expression/production of a specific CYP in each cell line was confirmed by an increased abundance of the CYP at both mRNA and protein levels. Moreover, the enzymatic activities of representative CYPs in the corresponding cell lines were also measured. Using our CYP-expressed HepG2 cells, the toxicity of three drugs that could induce DILI (amiodarone, chlorpromazine and primaquine) was assessed, and all of them showed altered (increased or decreased) toxicity compared to the toxicity in drug-treated wild-type HepG2 cells. CYP-mediated drug toxicity examined in our cell system is consistent with previous reports, demonstrating the potential of these cells for assessing metabolism-related drug toxicity. This cell system provides a practical in vitro approach for drug metabolism screening and for early detection of drug toxicity. It is also a surrogate enzyme source for the enzymatic characterization of a particular CYP that contributes to drug-induced liver toxicity. PMID:26477383

  4. Metabolism of the endocrine disruptor pesticide-methoxychlor by human P450s: pathways involving a novel catechol metabolite.

    PubMed

    Hu, Yiding; Kupfer, David

    2002-09-01

    The metabolism of methoxychlor, a proestrogenic pesticide (endocrine disruptor), was investigated with cDNA expressed human cytochrome P450s and liver microsomes (HLM). In addition to 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M), 1,1,1-trichloro-2, 2-bis(4-hydroxyphenyl)ethane (bis-OH-M), and 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (tris-OH-M), a new metabolite was identified as 1,1,1-trichloro-2-(4-methoxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (catechol-M; previously assumed to be ring-OH-M) and as a key metabolic intermediate. A novel metabolic route was proposed involving methoxychlor O-demethylation to mono-OH-M, followed by bifurcation of the pathway, both leading to the same final product tris-OH-M: pathway a, mono-OH-M is demethylated to bis-OH-M, followed by ortho-hydroxylation forming tris-OH-M and pathway b, mono-OH-M is ortho-hydroxylated forming catechol-M that is O-demethylated forming tris-OH-M. Among the human cDNA-expressed P450s examined, CYP1A2, 2A6, 2C8, 2C9, 2C19, and 2D6 exhibited mainly O-demethylation, with CYP2C19 being the most catalytically competent. CYP3A4, 3A5, and rat 2B1 catalyzed primarily ortho-hydroxylation of mono-OH-M (CYP3A4 being catalytically the most active) but were weak in O-demethylation. CYP1A1, 1B1, 2E1, and 4A11 demonstrated little or no catalytic activity. CYP2B6 appeared unique, catalyzing effectively both O-demethylation and ortho-hydroxylation. Thus, CYP2B6 demethylated methoxychlor to mono-OH-M and ortho-hydroxylated the mono-OH-M forming catechol-M; however, 2B6 did not appreciably demethylate mono-OH-M or ortho-hydroxylate bis-OH-M, suggesting a narrow substrate specificity. CYP2C19-catalyzed demethylation of methoxychlor, mono-OH-M and catechol-M, demonstrating relatively good substrate affinity (K(m) = 0.23 - 0.41 microM). However, the 3A4 ortho-hydroxylation of mono-OH-M and bis-OH-M exhibited lower affinity, K(m) = 12 and 25 microM, respectively. Thus, a

  5. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    SciTech Connect

    Leahy, D.A.; Nousek, J.; Hamilton, A.J.S. Pennsylvania State University, University Park Joint Institute for Laboratory Astrophysics, Boulder, CO )

    1991-06-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate description for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results. 29 refs.

  6. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Nousek, J.; Hamilton, A. J. S.

    1991-01-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate description for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results.

  7. CYP1A2 IS NOT REQUIRED FOR 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN-INDUCED IMMUNOSUPPRESSION

    EPA Science Inventory

    ABSTRACT
    One of the most sensitive and reproducible immunotoxic endpoints of 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) exposure is suppression of the antibody response to sheep red blood cells (SRBCs) in mice. Immunosuppression occurs in concert with hepatomegaly and associ...

  8. Neuronal Ablation of p-Akt at Ser473 Leads to Altered 5-HT1A/2A Receptor Function

    PubMed Central

    Saunders, Christine; Siuta, Michael; Robertson, Sabrina D.; Davis, Adeola R.; Sauer, Jennifer; Matthies, Heinrich J.G.; Gresch, Paul J.; Airey, David; Lindsley, Craig W.; Schetz, John A.; Niswender, Kevin D.

    2014-01-01

    The serotonergic system regulates a wide range of behavior, including mood and impulsivity, and its dysregulation has been associated with mood disorders, autism spectrum disorder, and addiction. Diabetes is a risk factor for these conditions. Insulin resistance in the brain is specifically associated with susceptibility to psychostimulant abuse. Here, we examined whether phosphorylation of Akt, a key regulator of the insulin signaling pathway, controls serotonin (5-HT) signaling. To explore how impairment in Akt function regulates 5-HT homeostasis, we used a brain-specific rictor knockout (KO) mouse model of impaired neuronal phosphorylation of Akt at Ser473. Cortical 5-HT1A and 5-HT2A receptor binding was significantly elevated in rictor KO mice. Concomitant with this elevated receptor expression, the 5-HT1A receptor agonist 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) led to an increased hypothermic response in rictor KO mice. The increased cortical 5-HT1A receptor density was associated with higher 5-HT1A receptor levels on the cortical cell surface. In contrast, rictor KO mice displayed significantly reduced head-twitch response (HTR) to the 5-HT2A/C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI), with evidence of impaired 5-HT2A/C receptor signaling. In vitro, pharmacological inhibition of Akt significantly increased 5-HT1A receptor expression and attenuated DOI-induced 5-HT2A receptor signaling, thereby lending credence to the observed in vivo cross-talk between neuronal Akt signaling and 5-HT receptor regulation. These data reveal that defective central Akt function alters 5-HT signaling as well as 5-HT-associated behaviors, demonstrating a novel role for Akt in maintaining neuronal 5-HT receptor function. PMID:24090638

  9. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  10. A1-, A2A- and A3-subtype adenosine receptors modulate intraocular pressure in the mouse

    PubMed Central

    Avila, Marcel Y; Stone, Richard A; Civan, Mortimer M

    2001-01-01

    Despite the potential importance of the mouse in studying the pharmacology of aqueous dynamics, measurement of intraocular pressure (IOP) in its very small eye has been problematic. Utilizing a novel servo-null electrophysiologic approach recently applied to the mouse, we have identified a diversity of adenosine-receptor mechanisms in modulating IOP in this species. We report the first evidence that A3 receptors increase IOP in any species, and verify in the mouse reports with larger mammals that A1 receptors lower and A2A receptors increase IOP. PMID:11564641

  11. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    PubMed

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control. PMID:23861318

  12. Acid-sensing ion channel (ASIC) 1a/2a heteromers have a flexible 2:1/1:2 stoichiometry.

    PubMed

    Bartoi, Tudor; Augustinowski, Katrin; Polleichtner, Georg; Gründer, Stefan; Ulbrich, Maximilian H

    2014-06-01

    Acid-sensing ion channels (ASICs) are widely expressed proton-gated Na(+) channels playing a role in tissue acidosis and pain. A trimeric composition of ASICs has been suggested by crystallization. Upon coexpression of ASIC1a and ASIC2a in Xenopus oocytes, we observed the formation of heteromers and their coexistence with homomers by electrophysiology, but could not determine whether heteromeric complexes have a fixed subunit stoichiometry or whether certain stoichiometries are preferred over others. We therefore imaged ASICs labeled with green and red fluorescent proteins on a single-molecule level, counted bleaching steps from GFP and colocalized them with red tandem tetrameric mCherry for many individual complexes. Combinatorial analysis suggests a model of random mixing of ASIC1a and ASIC2a subunits to yield both 2:1 and 1:2 ASIC1a:ASIC2a heteromers together with ASIC1a and ASIC2a homomers. PMID:24847067

  13. Pharmacogenetics of plasma efavirenz exposure in HIV-infected adults and children in South Africa

    PubMed Central

    Sinxadi, Phumla Z; Leger, Paul D; McIlleron, Helen M; Smith, Peter J; Dave, Joel A; Levitt, Naomi S; Maartens, Gary; Haas, David W

    2015-01-01

    Aims Genetic factors, notably CYP2B6 516G→T [rs3745274] and 983T→C [rs28399499], explain much of the interindividual variability in efavirenz pharmacokinetics, but data from Africa are limited. We characterized relationships between genetic polymorphisms and plasma efavirenz concentrations in HIV-infected Black South African adults and children. Methods Steady-state mid-dosing interval efavirenz concentrations were measured. We genotyped 241 polymorphisms in genes potentially relevant to efavirenz metabolism and transport, including ABCB1, CYP2A6, CYP2B6, CYP3A4, CYP3A5, NR1I2 and NR1I3. Results Among 113 participants (59 adults and 54 children), minor allele frequencies for CYP2B6 516G→T, 983T→C, and 15582C→T [rs4803419] were 0.36, 0.07, and 0.09, respectively. Based on composite CYP2B6 15582/516/983 genotype, there were 33 extensive metabolizer, 62 intermediate metabolizer and 18 slow metabolizer genotypes. Median (IQR) mid-dose efavirenz concentrations were 1.44 (1.21–1.93) µg ml–1, 2.08 (1.68–2.94) µg ml–1 and 7.26 (4.82–8.34) µg ml–1 for extensive, intermediate and slow metabolizers, respectively. In univariate analyses, a model that included composite genotype best predicted efavirenz concentrations (β = 0.28, 95% CI 0.21, 0.35, P = 2.4 × 10–11). Among individual CYP2B6 polymorphisms, 516G→T best predicted efavirenz concentrations (β = 0.22, 95% CI 0.13, 0.30, P = 1.27 × 10−6). There was also associations with 983T→C (β = 0.27, 95% CI 0.10, 0.44, P = 0.002) and 15582C→T (β = 0.11, 95% CI 0.01, 0.22, P = 0.04). Associations were consistent in adults and children. No other polymorphisms were independently associated with efavirenz concentrations. Conclusions Composite CYP2B6 genotype based on CYP2B6 516G→T, 983T→C, and 15582C→T best described efavirenz exposure in HIV-infected Black South African adults and children. PMID:25611810

  14. Inhibition of human cytochrome P450 enzymes by the natural hepatotoxin safrole.

    PubMed

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw

    2005-05-01

    The hepatotoxin, safrole is a methylenedioxy phenyl compound, found in sassafras oil and certain other essential oils. Recombinant cytochrome P450 (CYP, P450) and human liver microsomes were studied to investigate the selective inhibitory effects of safrole on human P450 enzymes and the mechanisms of action. Using Escherichia coli-expressed human P450, our results demonstrated that safrole was a non-selective inhibitor of CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP3A4 in the IC(50) order CYP2E1 < CYP1A2 < CYP2A6 < CYP3A4 < CYP2D6. Safrole strongly inhibited CYP1A2, CYP2A6, and CYP2E1 activities with IC(50) values less than 20 microM. Safrole caused competitive, non-competitive, and non-competitive inhibition of CYP1A2, CYP2A6 and CYP2E1 activities, respectively. The inhibitor constants were in the order CYP1A2 < CYP2E1 < CYP2A6. In human liver microsomes, 50 microM safrole strongly inhibited 7-ethoxyresorufin O-deethylation, coumarin hydroxylation, and chlorzoxazone hydroxylation activities. These results revealed that safrole was a potent inhibitor of human CYP1A2, CYP2A6, and CYP2E1. With relatively less potency, CYP2D6 and CYP3A4 were also inhibited. PMID:15778010

  15. Follow-up to the pre-validation of a harmonised protocol for assessment of CYP induction responses in freshly isolated and cryopreserved human hepatocytes with respect to culture format, treatment, positive reference inducers and incubation conditions.

    PubMed

    Abadie-Viollon, Catherine; Martin, Hélène; Blanchard, Nadège; Pekthong, Dumrongsak; Bachellier, Philippe; Mantion, Georges; Heyd, Bruno; Schuler, Frantz; Coassolo, Philippe; Alexandre, Eliane; Richert, Lysiane

    2010-02-01

    We have compared induction responses of human hepatocytes to known inducers of CYP1A2, CYP2B6, CYP2C and CYP3A4/5 to determine whether the culture format, treatment regimen and/or substrate incubation conditions affected the outcome. CYP induction responses to prototypical inducers were equivalent regardless of pre-culture time (24h or 48h), plate format (60mm or 24-well plates) used or whether CYP activities were measured in microsomes or whole cell monolayers. Fold-induction of CYP3A4/5 by 1000muM PB and 10microM RIF were equivalent. In contrast, the fold-induction of CYP2B6 by PB was 3-fold higher that by 10microM RIF. In addition to inducing CYP1A2, 50microM OME also induced CYP3A4/5 in 50% of the donors tested. CYP2B6 was induced in 14 out of 21 donors by BNF; however CYP3A4/5 was unaffected by BNF in these donors. In order to confirm that donor-to-donor variation was not due to inter-laboratory differences, the induction responses of 5 different batches of cryopreserved human hepatocytes were compared in two different laboratories. The induction of CYP1A2, CYP2B6 and CYP3A4 measured in our laboratory were equivalent to those obtained by the commercial companies, proving good between-laboratory reproducibility. In conclusion, there is some flexibility in the treatment and incubation protocols for classical CYP induction assays on human hepatocytes. Both RIF and PB are suitable positive control inducers of CYP3A4/5 but PB may be more appropriate for CYP2B6 induction. BNF may be more appropriate for CYP1A2 induction than OME since, in contrast to the latter, it does not induce CYP3A4. Induction responses using hepatocytes from the same donor but in different labs can be expected to be similar. The good reproducibility of induction responses between laboratories using cryopreserved hepatocytes underlines the usefulness of these cells for these types of studies. PMID:19497360

  16. 76 FR 15820 - Airworthiness Directives; B-N Group Ltd. Model BN-2, BN-2A, BN-2A-2, BN-2A-3, BN-2A-6, BN-2A-8...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... published in the Federal Register on December 21, 2010 (75 FR 79990). That NPRM proposed to correct an... ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and (3) Will... result in, or be caused by, internal structural delamination and/or failure. Such a failure could have...

  17. 75 FR 79990 - Airworthiness Directives; B-N Group Ltd. Model BN-2, BN-2A, BN-2A-2, BN-2A-3, BN-2A-6, BN-2A-8...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... Procedures (44 FR 11034, February 26, 1979); and 3. Will not have a significant economic impact, positive or... profiles. There is concern that this could potentially result in, or be caused by, internal structural..., internal structural delamination and/or failure. Such a failure could have a serious effect on the...

  18. Applicability of second-generation upcyte® human hepatocytes for use in CYP inhibition and induction studies

    PubMed Central

    Ramachandran, Sarada D; Vivarès, Aurélie; Klieber, Sylvie; Hewitt, Nicola J; Muenst, Bernhard; Heinz, Stefan; Walles, Heike; Braspenning, Joris

    2015-01-01

    Human upcyte® hepatocytes are proliferating hepatocytes that retain many characteristics of primary human hepatocytes. We conducted a comprehensive evaluation of the application of second-generation upcyte® hepatocytes from four donors for inhibition and induction assays using a selection of reference inhibitors and inducers. CYP1A2, CYP2B6, CYP2C9, and CYP3A4 were reproducibly inhibited in a concentration-dependent manner and the calculated IC50 values for each compound correctly classified them as potent inhibitors. Upcyte® hepatocytes were responsive to prototypical CYP1A2, CYP2B6, CYP2C9, and CYP3A4 inducers, confirming that they have functional AhR-, CAR-, and PXR-mediated CYP regulation. A panel of 11 inducers classified as potent, moderate or noninducers of CYP3A4 and CYP2B6 were tested. There was a good fit of data from upcyte® hepatocytes to three different predictive models for CYP3A4 induction, namely the Relative Induction Score (RIS), AUCu/F2, and Cmax,u/Ind50. In addition, PXR (rifampicin) and CAR-selective (carbamazepine and phenytoin) inducers of CYP3A4 and CYP2B6 induction, respectively, were demonstrated. In conclusion, these data support the use of second-generation upcyte® hepatocytes for CYP inhibition and induction assays. Under the culture conditions used, these cells expressed CYP activities that were equivalent to or higher than those measured in primary human hepatocyte cultures, which could be inhibited or induced by prototypical CYP inhibitors and inducers, respectively. Moreover, they can be used to predict in vivo CYP3A4 induction potential using three prediction models. Bulk availability of cells from multiple donors makes upcyte® hepatocytes suitable for DDI screening, as well as more in-depth mechanistic investigations. PMID:26516577

  19. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms.

    PubMed

    Sun, Jianguo; Peng, Ying; Wu, Hui; Zhang, Xueyuan; Zhong, Yunxi; Xiao, Yanan; Zhang, Fengyi; Qi, Huanhuan; Shang, Lili; Zhu, Jianping; Sun, Yue; Liu, Ke; Liu, Jinghan; A, Jiye; Ho, Rodney J Y; Wang, Guangji

    2015-05-01

    Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1'-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration-time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction. PMID:25681130

  20. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions

    PubMed Central

    Prakash, Chandra; Zuniga, Baltazar; Song, Chung Seog; Jiang, Shoulei; Cropper, Jodie; Park, Sulgi; Chatterjee, Bandana

    2016-01-01

    Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug’s impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and

  1. The impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[a]pyrene in human livers

    PubMed Central

    Šulc, Miroslav; Indra, Radek; Moserová, Michaela; Schmeiser, Heinz H.; Frei, Eva; Arlt, Volker M.; White, P.

    2016-01-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. In this study human recombinant CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1, 3A4, and 3A5) were expressed in Supersomes™ together with their reductases, NADPH:CYP oxidoreductase, epoxide hydrolase and cytochrome b5, to investigate BaP metabolism. Human CYPs produced up to eight BaP metabolites. Among these, BaP‐7,8‐dihydrodiol and BaP‐9‐ol, which are intermediates in BaP‐derived DNA adduct formation, were mainly formed by CYP1A1 and 1B1, and to a lesser extent by CYP2C19 and 3A4. BaP‐3‐ol, a metabolite that is a ‘detoxified’ product of BaP, was formed by most human CYPs tested, although CYP1A1 and 1B1 produced it the most efficiently. Based on the amounts of the individual BaP metabolites formed by these CYPs and their expression levels in human liver, we determined their contributions to BaP metabolite formation in this organ. Our results indicate that hepatic CYP1A1 and CYP2C19 are most important in the activation of BaP to BaP‐7,8‐dihydrodiol, whereas CYP2C19, 3A4, and 1A1 are the major enzymes contributing to the formation of BaP‐9‐ol. BaP‐3‐ol is predominantly formed by hepatic CYP3A4, while CYP1A1 and 2C19 are less active. Environ. Mol. Mutagen. 57:229–235, 2016. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:26919089

  2. Identification and Quantification of Fumonisin A1, A2, and A3 in Corn by High-Resolution Liquid Chromatography-Orbitrap Mass Spectrometry

    PubMed Central

    Tamura, Masayoshi; Mochizuki, Naoki; Nagatomi, Yasushi; Harayama, Koichi; Toriba, Akira; Hayakawa, Kazuichi

    2015-01-01

    Three compounds, hypothesized as fumonisin A1 (FA1), fumonisin A2 (FA2), and fumonisin A3 (FA3), were detected in a corn sample contaminated with mycotoxins by high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS). One of them has been identified as FA1 synthesized by the acetylation of fumonisin B1 (FB1), and established a method for its quantification. Herein, we identified the two remaining compounds as FA2 and FA3, which were acetylated fumonisin B2 (FB2) and fumonisin B3 (FB3), respectively. Moreover, we examined a method for the simultaneous analysis of FA1, FA2, FA3, FB1, FB2, and FB3. The corn samples were prepared by extraction using a QuEChERS kit and purification using a multifunctional cartridge. The linearity, recovery, repeatability, limit of detection, and limit of quantification of the method were >0.99, 82.9%–104.6%, 3.7%–9.5%, 0.02–0.60 μg/kg, and 0.05–1.98 μg/kg, respectively. The simultaneous analysis of the six fumonisins revealed that FA1, FA2, and FA3 were present in all corn samples contaminated with FB1, FB2, and FB3. The results suggested that corn marketed for consumption can be considered as being contaminated with both the fumonisin B-series and with fumonisin A-series. This report presents the first identification and quantification of FA1, FA2, and FA3 in corn samples. PMID:25690692

  3. Generation of in-silico cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4 inhibition QSAR models.

    PubMed

    Gleeson, M Paul; Davis, Andrew M; Chohan, Kamaldeep K; Paine, Stuart W; Boyer, Scott; Gavaghan, Claire L; Arnby, Catrin Hasselgren; Kankkonen, Cecilia; Albertson, Nan

    2007-01-01

    In-silico models were generated to predict the extent of inhibition of cytochrome P450 isoenzymes using a set of relatively interpretable descriptors in conjunction with partial least squares (PLS) and regression trees (RT). The former was chosen due to the conservative nature of the resultant models built and the latter to more effectively account for any non-linearity between dependent and independent variables. All models are statistically significant and agree with the known SAR and they could be used as a guide to P450 liability through a classification based on the continuous pIC50 prediction given by the model. A compound is classified as having either a high or low P450 liability if the predicted pIC(50) is at least one root mean square error (RMSE) from the high/low pIC(50) cut-off of 5. If predicted within an RMSE of the cut-off we cannot be confident a compound will be experimentally low or high so an indeterminate classification is given. Hybrid models using bulk descriptors and fragmental descriptors do significantly better in modeling CYP450 inhibition, than bulk property QSAR descriptors alone. PMID:18034311

  4. INDUCTION OF CYP1A BY BENZO[K]FLUORANTHENE IN HUMAN HEPATOCYTES. CYP1A1 OR CYP1A2? (R827180)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. Toxicity studies with 5-hydroxymethylfurfural and its metabolite 5-sulphooxymethylfurfural in wild-type mice and transgenic mice expressing human sulphotransferases 1A1 and 1A2.

    PubMed

    Bauer-Marinovic, Morana; Taugner, Felicitas; Florian, Simone; Glatt, Hansruedi

    2012-05-01

    5-Sulphooxymethylfurfural (SMF), an electrophilic metabolite of the abundant Maillard product 5-hydroxymethylfurfural (HMF), was intraperitoneally administered to FVB/N mice. At a dosage of 250 mg/kg, most animals died after 5-11 days due to massive damage to proximal tubules. At lower dosages, administered repeatedly, tubules also were the major target of toxicity, with regeneration and atypical hyperplasia occurring at later periods. Additionally, hepatotoxic effects and serositis of peritoneal tissues were observed. SMF is a minor metabolite of HMF in conventional mice, but HMF is an excellent substrate for a major sulphotransferase (hSULT1A1) in humans. Parental FVB/N mice and FVB/N-hSULT1A1/2 mice, carrying multiple copies of the hSULT1A1/2 gene cluster, were exposed to HMF in drinking water (0, 134 and 536 mg/kg body mass/day) for 12 weeks. Nephrotoxic effects and enhanced proliferation of hepatocytes were only detected at the high dosage. They were mild and, surprisingly, unaffected by hSULT1A1/2 expression. Thus, SMF was a potent nephrotoxicant when administered as a bolus, but did not reach levels sufficient to produce serious toxicity when generated from HMF administered continuously via drinking water. This was even the case in transgenic mice expressing clearly higher HMF sulphation activity in liver and kidney than humans. PMID:22349055

  6. Revised structures of gambiriins A1, A2, B1, and B2, chalcane-flavan dimers from gambir (Uncaria gambir extract).

    PubMed

    Taniguchi, Shoko; Kuroda, Kayo; Doi, Kou-ichi; Tanabe, Masahiro; Shibata, Takashi; Yoshida, Takashi; Hatano, Tsutomu

    2007-02-01

    Gambir, the aqueous extract from Uncaria gambir (Rubiaceae), has been used as an astringent medicine in Asian countries. Investigation of the constituents in the extract led to the isolation of four chalcane-flavan dimers, gambiriin A1 (6), A2 (7), B1 (8), and B2 (9), in addition to (+)-catechin (1), (+)-epicatechin (2), and dimeric proanthocyanidins, procyanidin B1 (3), procyanidin B3 (4), and gambiriin C (5). The spectroscopic and chemical data obtained in the present study indicated that their previously proposed structures 6a, 7a, 8a, and 9a should be revised to 6, 7, 8, and 9, respectively. PMID:17268100

  7. A complete X-ray sample of the high latitude sky from HEAO-1 A-2: log N lo S and luminosity functions

    NASA Technical Reports Server (NTRS)

    Piccinotti, G.; Mushotzky, R. F.; Boldt, E. A.; Holt, S. S.; Marshall, F. E.; Serlemitsos, P. J.; Shafer, R. A.

    1981-01-01

    An experiment was performed in which a complete X-ray survey of the 8.2 steradians of the sky at galactic latitudes where the absolute value of b is 20 deg down to a limiting sensitivity of 3.1 x ten to the minus 11th power ergs/sq cm sec in the 2-10 keV band. Of the 85 detected sources 17 were identified with galactic objects, 61 were identified with extragalactic objects, and 7 remain unidentified. The log N - log S relation for the non-galactic objects is well fit by the Euclidean relationship. The X-ray spectra of these objects were used to construct log N - log S in physical units. The complete sample of identified sources was used to construct X-ray luminosity functions, using the absolute maximum likelihood method, for clusters galaxies and active galactic nuclei.

  8. In Vivo Profiling and Distribution of Known and Novel Phase I and Phase II Metabolites of Efavirenz in Plasma, Urine, and Cerebrospinal Fluid.

    PubMed

    Aouri, Manel; Barcelo, Catalina; Ternon, Béatrice; Cavassini, Matthias; Anagnostopoulos, Alexia; Yerly, Sabine; Hugues, Henry; Vernazza, Pietro; Günthard, Huldrych F; Buclin, Thierry; Telenti, Amalio; Rotger, Margalida; Decosterd, Laurent A

    2016-01-01

    Efavirenz (EFV) is principally metabolized by CYP2B6 to 8-hydroxy-efavirenz (8OH-EFV) and to a lesser extent by CYP2A6 to 7-hydroxy-efavirenz (7OH-EFV). So far, most metabolite profile analyses have been restricted to 8OH-EFV, 7OH-EFV, and EFV-N-glucuronide, even though these metabolites represent a minor percentage of EFV metabolites present in vivo. We have performed a quantitative phase I and II metabolite profile analysis by tandem mass spectrometry of plasma, cerebrospinal fluid (CSF), and urine samples in 71 human immunodeficiency virus patients taking efavirenz, prior to and after enzymatic (glucuronidase and sulfatase) hydrolysis. We have shown that phase II metabolites constitute the major part of the known circulating efavirenz species in humans. The 8OH-EFV-glucuronide (gln) and 8OH-EFV-sulfate (identified for the first time) in humans were found to be 64- and 7-fold higher than the parent 8OH-EFV, respectively. In individuals (n = 67) genotyped for CYP2B6, 2A6, and CYP3A metabolic pathways, 8OH-EFV/EFV ratios in plasma were an index of CYP2B6 phenotypic activity (P < 0.0001), which was also reflected by phase II metabolites 8OH-EFV-glucuronide/EFV and 8OH-EFV-sulfate/EFV ratios. Neither EFV nor 8OH-EFV, nor any other considered metabolites in plasma were associated with an increased risk of central nervous system (CNS) toxicity. In CSF, 8OH-EFV levels were not influenced by CYP2B6 genotypes and did not predict CNS toxicity. The phase II metabolites 8OH-EFV-gln, 8OH-EFV-sulfate, and 7OH-EFV-gln were present in CSF at 2- to 9-fold higher concentrations than 8OH-EFV. The potential contribution of known and previously unreported EFV metabolites in CSF to the neuropsychological effects of efavirenz needs to be further examined in larger cohort studies. PMID:26553012

  9. Measurement of Human Cytochrome P450 Enzyme Induction Based on Mesalazine and Mosapride Citrate Treatments Using a Luminescent Assay.

    PubMed

    Kim, Young-Hoon; Bae, Young-Ji; Kim, Hyung Soo; Cha, Hey-Jin; Yun, Jae-Suk; Shin, Ji-Soon; Seong, Won-Keun; Lee, Yong-Moon; Han, Kyoung-Moon

    2015-09-01

    Drug metabolism mostly occurs in the liver. Cytochrome P450 (CYP) is a drug-metabolizing enzyme that is responsible for many important drug metabolism reactions. Recently, the US FDA and EU EMA have suggested that CYP enzyme induction can be measured by both enzymatic activity and mRNA expression. However, these experiments are time-consuming and their inter-assay variability can lead to misinterpretations of the results. To resolve these problems and establish a more powerful method to measure CYP induction, we determined CYP induction by using luminescent assay. Luminescent CYP assays link CYP enzyme activity to firefly luciferase luminescence technology. In this study, we measured the induction of CYP isozymes (1A2, 2B6, 2C9, and 3A4) in cryopreserved human hepatocytes (HMC424, 478, and 493) using a luminometer. We then examined the potential induction abilities (unknown so far) of mesalazine, a drug for colitis, and mosapride citrate, which is used as an antispasmodic drug. The results showed that mesalazine promotes CYP2B6 and 3A4 activities, while mosapride citrate promotes CYP1A2, 2B6, and 3A4 activities. Luminescent CYP assays offer rapid and safe advantages over LC-MS/MS and qRT-PCR methods. Furthermore, luminescent CYP assays decrease the interference between the optical properties of the test compound and the CYP substrates. Therefore, luminescent CYP assays are less labor intensive, rapid, and can be used as robust tools for high-throughput CYP screening during early drug discovery. PMID:26336590

  10. Simultaneous determination of bupropion, metroprolol, midazolam, phenacetin, omeprazole and tolbutamide in rat plasma by UPLC-MS/MS and its application to cytochrome P450 activity study in rats.

    PubMed

    Ma, Jianshe; Wang, Shuanghu; Zhang, Meiling; Zhang, Qingwei; Zhou, Yunfang; Lin, Chongliang; Lin, Guanyang; Wang, Xianqin

    2015-08-01

    A specific ultra-performance liquid chromatography tandem mass spectrometry method is described for the simultaneous determination of bupropion, metroprolol, midazolam, phenacetin, omeprazole and tolbutamide in rat plasma with diazepam as internal standard, which are the six probe drugs of the six cytochrome P450 isoforms CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19 and CYP2C9. Plasma samples were protein precipitated with acetonitrile. The chromatographic separation was achieved using a UPLC® BEH C18 column (2.1 × 100 mm, 1.7 µm). The mobile phase consisted of acetonitrile and water (containing 0.1% formic acid) with gradient elution. The triple quadrupole mass spectrometric detection was operated by multiple reaction monitoring in positive electrospray ionization. The precisions were <13%, and the accuracy ranged from 93.3 to 110.4%. The extraction efficiency was >90.5%, and the matrix effects ranged from 84.3 to 114.2%. The calibration curves in plasma were linear in the range of 2-2000 ng/mL, with correlation coefficient (r(2) ) >0.995. The method was successfully applied to pharmacokinetic studies of the six probe drugs of the six CYP450 isoforms and used to evaluate the effects of erlotinib on the activities of CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19 and CYP2C9 in rats. Erlotinib may inhibit the activity of CYP2B6 and CYP3A4, and may induce CYP2C9 of rats. PMID:25582505

  11. The effects of clobazam treatment in rats on the expression of genes and proteins encoding glucronosyltransferase 1A/2B (UGT1A/2B) and multidrug resistance‐associated protein-2 (MRP2), and development of thyroid follicular cell hypertrophy

    SciTech Connect

    Miyawaki, Izuru Tamura, Akitoshi; Matsumoto, Izumi; Inada, Hiroshi; Kunimatsu, Takeshi; Kimura, Juki; Funabashi, Hitoshi

    2012-12-15

    Clobazam (CLB) is known to increase hepatobiliary thyroxine (T4) clearance in Sprague–Dawley (SD) rats, which results in hypothyroidism followed by thyroid follicular cell hypertrophy. However, the mechanism of the acceleration of T4-clearance has not been fully investigated. In the present study, we tried to clarify the roles of hepatic UDP-glucronosyltransferase (UGT) isoenzymes (UGT1A and UGT2B) and efflux transporter (multidrug resistance–associated protein-2; MRP2) in the CLB-induced acceleration of T4-clearance using two mutant rat strains, UGT1A-deficient mutant (Gunn) and MRP2-deficient mutant (EHBR) rats, especially focusing on thyroid morphology, levels of circulating hormones (T4 and triiodothyronine (T3)) and thyroid-stimulating hormone (TSH), and mRNA or protein expressions of UGTs (Ugt1a1, Ugt1a6, and Ugt2b1/2) and MRP2 (Mrp). CLB induced thyroid morphological changes with increases in TSH in SD and Gunn rats, but not in EHBR rats. T4 was slightly decreased in SD and Gunn rats, and T3 was decreased in Gunn rats, whereas these hormones were maintained in EHBR rats. Hepatic Ugt1a1, Ugt1a6, Ugt2b1/2, and Mrp2 mRNAs were upregulated in SD rats. In Gunn rats, UGT1A mRNAs (Ugt1a1/6) and protein levels were quite low, but UGT2B mRNAs (Ugt2b1/2) and protein were prominently upregulated. In SD and Gunn rats, MRP2 mRNA and protein were upregulated to the same degree. These results suggest that MRP2 is an important contributor in development of the thyroid cellular hypertrophy in CLB-treated rats, and that UGT1A and UGT2B work in concert with MRP2 in the presence of MRP2 function to enable the effective elimination of thyroid hormones. -- Highlights: ► Role of UGT and MRP2 in thyroid pathology was investigated in clobazam-treated rats. ► Clobazam induced thyroid cellular hypertrophy in SD and Gunn rats, but not EHBR rats. ► Hepatic Mrp2 gene and protein were upregulated in SD and Gunn rats, but not EHBR rats. ► Neither serum thyroid hormones (T3/T4) nor thyroid pathology changed in EHBR rats. ► Mrp2 was implied to be a key molecule in clobazam-induced thyroid pathology in rats.

  12. Investigation of Efavirenz Discontinuation in Multi-ethnic Populations of HIV-positive Individuals by Genetic Analysis

    PubMed Central

    Cummins, Nathan W.; Neuhaus, Jacqueline; Chu, Haitao; Neaton, James; Wyen, Christoph; Rockstroh, Jürgen K.; Skiest, Daniel J.; Boyd, Mark A.; Khoo, Saye; Rotger, Margalida; Telenti, Amalio; Weinshilboum, Richard; Badley, Andrew D.

    2015-01-01

    Background Efavirenz (EFV) based antiretroviral therapy is expanding worldwide. However discontinuation of EFV containing regimens is common in some patients, particularly black patients, due most often to neuropsychiatric side effects. These adverse drug effects often result in premature drug discontinuation, as well as considerable morbidity. Methods We genotyped CYP2A6, CYP2B6 and CYP3A4, which encode enzymes principally involved in EFV metabolism, from patients enrolled in the multinational SMART, FIRST and ESPRIT studies, for whom outcome data of treatment adherence was available. Patients with loss or decrease of function single nucleotide polymorphisms (SNPs) in the above genes were assigned a risk score based upon the number of SNPs present weighted relative to whether CYP2B6 (main metabolism pathway) and/or CYP2A6 and CYP3A4 (accessory pathways) were involved. Cox regression models were used to study the association between high genetic risk and time from initiation to EFV discontinuation. Failure was defined as discontinuation of an antiretroviral regimen other than for virologic failure or protocol determined discontinuation. Findings Patients with highest pharmacogenetic risk, as defined by cumulative SNPs in CYP2A6, CYP2B6 and CYP3A4, have an increased risk of discontinuation of EFV containing therapy compared to patients with lower genetic risk scores (adjusted HR 1.9, 95% CI 1.2, 3.1, P = 0.009). High genetic risk score was not associated with an increased risk of discontinuing atazanavir or nevirapine. High genetic risk was present more often in blacks compared to non-blacks (Adjusted OR 4.5, 95% CI: 1.9,10.5), and treatment discontinuation was also increased in blacks overall (Adjusted HR 1.4, 95% CI 1.0, 1.9). However, high genetic risk was more associated with treatment discontinuation than race alone for both blacks (Adjusted OR 1.9, 95% CI 0.8, 4.8) and non-blacks (Adjusted OR 5.3, 95% CI 1.5, 18.0). Interpretation Premature discontinuation

  13. Effects of suberoylanilide hydroxamic acid on rat cytochrome P450 enzyme activities

    PubMed Central

    Lin, Kezhi; Zhang, Qingwei; Liu, Zezheng; Yang, Suping; Lin, Yingying; Wen, Congcong; Zheng, Yuancai

    2015-01-01

    Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. The rats were randomly divided into SAHA groups (low, medium and high dosage) and control group. The SAHA group rats were given 12.3, 24.5, and 49 mg/kg SAHA, respectively, by continuous intragastric administration for 7 days. The influence of SAHA on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C19, CYP2D6 and CYP2C9 were evaluated by cocktail method, they were responsed by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metroprolol and omeprazole. The five probe drugs were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of SAHA group compared to control group, there were statistical pharmacokinetics difference for bupropion, phenacetin, tolbutamide and metroprolol. Continuous intragastric administration for 7 days may induce the activities of CYP2C19 of rats, inhibit CYP1A2 and slightly inhibit CYP2B6 and CYP2D6 of rats. This may give advising for reasonable drug use after co-used with SAHA. The results indicated that drug co-administrated with SAHA may need dose adjustment. Furthermore, continuous intragastric administration of SAHA for 7 days, liver cell damaged, causing liver cell edema, in liver metabolism process. PMID:26191268

  14. Effects of suberoylanilide hydroxamic acid on rat cytochrome P450 enzyme activities.

    PubMed

    Lin, Kezhi; Zhang, Qingwei; Liu, Zezheng; Yang, Suping; Lin, Yingying; Wen, Congcong; Zheng, Yuancai

    2015-01-01

    Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. The rats were randomly divided into SAHA groups (low, medium and high dosage) and control group. The SAHA group rats were given 12.3, 24.5, and 49 mg/kg SAHA, respectively, by continuous intragastric administration for 7 days. The influence of SAHA on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C19, CYP2D6 and CYP2C9 were evaluated by cocktail method, they were responsed by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metroprolol and omeprazole. The five probe drugs were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of SAHA group compared to control group, there were statistical pharmacokinetics difference for bupropion, phenacetin, tolbutamide and metroprolol. Continuous intragastric administration for 7 days may induce the activities of CYP2C19 of rats, inhibit CYP1A2 and slightly inhibit CYP2B6 and CYP2D6 of rats. This may give advising for reasonable drug use after co-used with SAHA. The results indicated that drug co-administrated with SAHA may need dose adjustment. Furthermore, continuous intragastric administration of SAHA for 7 days, liver cell damaged, causing liver cell edema, in liver metabolism process. PMID:26191268

  15. Pharmacokinetic and Pharmacodynamic Comparison of Once‐Daily Efavirenz (400 mg vs. 600 mg) in Treatment‐Naïve HIV‐Infected Patients: Results of the ENCORE1 Study

    PubMed Central

    Amin, J; Else, L; Boffito, M; Egan, D; Owen, A; Khoo, S; Back, D; Orrell, C; Clarke, A; Losso, M; Phanuphak, P; Carey, D; Cooper, DA; Emery, S

    2015-01-01

    Daily efavirenz 400 mg (EFV400) was virologically noninferior to 600 mg (EFV600) at 48 weeks in treatment‐naïve patients. We evaluated EFV400 and EFV600 pharmacokinetics (NONMEM v. 7.2), assessing patient demographics and genetic polymorphisms (CYP2B6, CYP2A6, CYP3A4, NR1I3) as covariates and explored relationships with efficacy (plasma HIV‐RNA (pVL) <200 copies/mL) and safety outcomes at 48 weeks in 606 randomized ENCORE1 patients (female = 32%, African = 37%, Asian = 33%; EFV400 = 311, EFV600 = 295). CYP2B6 516G>T/983T>C/CYP2A6*9B/*17 and weight were associated with efavirenz CL/F. Exposure was significantly lower for EFV400 (geometric mean ratio, GMR; 90% confidence interval, CI: 0.73 (0.68–0.78)) but 97% (EFV400) and 98% (EFV600) of evaluable pVL was <200 copies/mL at 48 weeks (P = 0.802). Four of 20 patients with mid‐dose concentrations <1.0 mg/L had pVL ≥200 copies/mL (EFV400 = 1; EFV600 = 3). Efavirenz exposure was similar between those with and without efavirenz‐related side effects (GMR; 90% CI: 0.95 (0.88–1.02)). HIV suppression was comparable between doses despite significantly lower EFV400 exposure. Comprehensive evaluation of efavirenz pharmacokinetics/pharmacodynamics revealed important limitations in the accepted threshold concentration. PMID:26044067

  16. Effect of acute paraquat poisoning on CYP450 isoforms activity in rats by cocktail method.

    PubMed

    Wang, Shuanghu; Wang, Zhiyi; Chen, Dongxin; Chen, Mengchun; Lin, Yingying; Liu, Zezheng; Zhang, Lijing; Wen, Congcong; Wang, Xianqin; Ma, Jianshe

    2015-01-01

    Paraquat is a highly effective contact herbicide that is marketed worldwide as a fantastical, non-selective compound for broadleaf weed control. As compared to most pesticides, paraquat is extremely toxic to humans and the lack of strategies to manage paraquat poisoning has resulted in high fatality rates. The rats were randomly divided into acute paraquat poisoning group and control group. The paraquat group rats were given 36 mg/kg paraquat by intragastric administration. The influence of acute paraquat poisoning on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C9, CYP2D6, CYP3A4 and CYP2C19 were evaluated by cocktail method, they were responded by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metoprolol, midazolam and omeprazole. The six probe drugs were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. In the results of paraquat group compared to control group, there was statistical pharmacokinetic difference for bupropion, tolbutamide, metoprolol, midazolam and omeprazole. Acute paraquat poisoning may induce the activities of CYP2C19, and inhibit of CYP2B6, CYP2C9, CYP2D6 and CYP3A4 in rats. This may give advising for reasonable drug use after acute paraquat poisoning. PMID:26770539

  17. Effect of acute paraquat poisoning on CYP450 isoforms activity in rats by cocktail method

    PubMed Central

    Wang, Shuanghu; Wang, Zhiyi; Chen, Dongxin; Chen, Mengchun; Lin, Yingying; Liu, Zezheng; Zhang, Lijing; Wen, Congcong; Wang, Xianqin; Ma, Jianshe

    2015-01-01

    Paraquat is a highly effective contact herbicide that is marketed worldwide as a fantastical, non-selective compound for broadleaf weed control. As compared to most pesticides, paraquat is extremely toxic to humans and the lack of strategies to manage paraquat poisoning has resulted in high fatality rates. The rats were randomly divided into acute paraquat poisoning group and control group. The paraquat group rats were given 36 mg/kg paraquat by intragastric administration. The influence of acute paraquat poisoning on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C9, CYP2D6, CYP3A4 and CYP2C19 were evaluated by cocktail method, they were responded by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metoprolol, midazolam and omeprazole. The six probe drugs were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. In the results of paraquat group compared to control group, there was statistical pharmacokinetic difference for bupropion, tolbutamide, metoprolol, midazolam and omeprazole. Acute paraquat poisoning may induce the activities of CYP2C19, and inhibit of CYP2B6, CYP2C9, CYP2D6 and CYP3A4 in rats. This may give advising for reasonable drug use after acute paraquat poisoning. PMID:26770539

  18. Interactions of sesquiterpenes zederone and germacrone with the human cytochrome P450 system.

    PubMed

    Pimkaew, Prapapan; Küblbeck, Jenni; Petsalo, Aleksanteri; Jukka, Jouni; Suksamrarn, Apichart; Juvonen, Risto; Auriola, Seppo; Piyachaturawat, Pawinee; Honkakoski, Paavo

    2013-09-01

    Misclassification of Curcuma species (family Zingiberaceae) may lead to unwanted human exposure to Curcuma elata sesquiterpenes zederone and germacrone which have caused hepatotoxicity and changes in CYP expression in laboratory animals. We investigated how these compounds interact with the human cytochrome P450 (CYP) system, in order to evaluate their potential for human liver toxicity and herb-drug interactions. We found that both sesquiterpenes (1-30 μM) greatly induced expression of CYP2B6 and CYP3A4 but not CYP1A2 mRNAs in human primary hepatocytes (HPHs). This induction profile correlated with activation of constitutive androstane and pregnane X receptors. Cytotoxicity was also observed in exposed HPHs. CYP inhibition studies with pooled human liver microsomes (HLMs) indicated that zederone and germacrone moderately inhibited CYP2B6 and CYP3A4 activities in vitro, with IC50 values below 10 μM. When zederone was incubated with HLMs and NADPH, one di-epoxide metabolite was formed and by using glutathione trapping, five epoxide-derived conjugates were detected. Germacrone produced two oxidized metabolites and four glutathione conjugates. The results suggest that enzymes in HLMs convert sesquiterpenes into reactive, electrophilic compounds which may be causative for the reported liver injuries. These findings provide insight on the safety and drug-herb interactions of the Curcuma species. PMID:23850985

  19. RELATIVE SENSITIVITIES OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN-INDUCED CYP1A-1 AND CYP1A-2 GENE EXPRESSION AND UMMUNOTOXICITY IN FEMALE B6C3F1 MICE

    EPA Science Inventory

    Improvements in risk assessment require better linkage of exposure to response by the determination of target tissue dose. he relative sensitivity of several responses in female B6C3Fl mice was compared on the basis of administered and target tissue dose spanning 3 orders of magn...

  20. A complete X-ray sample of the high-latitude /absolute value of b greater than 20 deg/ sky from HEAO 1 A-2 - Log N-log S and luminosity functions

    NASA Technical Reports Server (NTRS)

    Piccinotti, G.; Mushotzky, R. F.; Boldt, E. A.; Holt, S. S.; Marshall, F. E.; Serlemitsos, P. J.; Shafer, R. A.

    1982-01-01

    An all-sky survey of X-ray sources was performed, complete to a limiting sensitivity of 3.1 x 10 to the -11 ergs/sq cm/s in the 2-10 keV band. The complete sample has allowed construction of luminosity functions based on a flux-limited sample for clusters of galaxies and active galactic nuclei. Integration of the best-fit luminosity functions indicates that clusters of galaxies contribute about 4% of the 2-10 keV DXRB, and active galactic nuclei about 20%. It is predicted that many of the objects seen in the deep survey should be local, relatively low luminosity active galactic nuclei and clusters of galaxies.

  1. Mercury modulates the cytochrome P450 1a1, 1a2 and 1b1 in C57BL/6J mice: in vivo and in vitro studies

    SciTech Connect

    Amara, Issa E.A.; Anwar-Mohamed, Anwar; Abdelhamid, Ghada; El-Kadi, Ayman O.S.

    2013-02-01

    In the current study C57BL/6J mice were injected intraperitoneally with Hg{sup 2+} in the absence and presence of TCDD. After 6 and 24 h the liver was harvested and the expression of Cyps was determined. In vitro, isolated hepatocytes were incubated with TCDD in the presence and absence of Hg{sup 2+}. At the in vivo level, Hg{sup 2+} significantly decreased the TCDD-mediated induction of Cyps at 6 h while potentiating their levels at 24 h. In vitro, Hg{sup 2+} significantly inhibited the TCDD-mediated induction of Cyp1a1 in a concentration- and time-dependent manner. Interestingly, Hg{sup 2+} increased the serum hemoglobin (Hb) levels in mice treated for 24 h. Upon treatment of isolated hepatocytes with Hb alone, there was an increase in the AhR-dependent luciferase activity with a subsequent increase in Cyp1a1 protein and catalytic activity levels. Importantly, when hepatocytes were treated for 2 h with Hg{sup 2+} in the presence of TCDD, then the medium was replaced with new medium containing Hb, there was potentiation of the TCDD-mediated effect. In addition, Hg{sup 2+} increased heme oxygenase-1 (HO-1) mRNA, which coincided with a decrease in the Cyp1a1 activity level. When the competitive HO-1 inhibitor, tin mesoporphyrin was applied to the hepatocytes there was a partial restoration of Hg{sup 2+}-mediated inhibition of Cyp1a1 activity. In conclusion, we demonstrate for the first time that there is a differential modulation of the TCDD-mediated induction of Cyp1a1 by Hg{sup 2+} in C57BL/6J mice livers and isolated hepatocytes. Moreover, this study implicates Hb as an in vivo specific modulator of Cyp1 family. -- Highlights: ► In vivo, Hg{sup 2+} decreased the Cyps at 6 h while potentiating their levels at 24 h. ► In vitro, Hg{sup 2+} significantly inhibited the TCDD-mediated induction of Cyps. ► Hg{sup 2+} increased the serum Hb levels in animals treated for 24 h. ► Hb potentiated the TCDD-mediated effect on Cyps. ► Tin mesoporphyrin partially restored Hg{sup 2+}-mediated inhibition of Cyp1a1.

  2. DISPOSITION OF 2,3,7,8-TETRABROMODIBENZO-P-DIOXIN AND 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN IN THE RAT: BILIARY EXCRETION AND INDUCTION OF CYTOCHROMES CYP1A1 AND CYP1A2

    EPA Science Inventory

    The biologic activity and pharmacokinetic properties of 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) are similar to those of the chlorinated congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Metabolism of both compounds appears to be rate-limiting for excretion which is primaril...

  3. COMPARISON OF OVERALL METABOLISM OF 1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN (PECDD) IN CYP1A2(-L-)KNOCKOUT (KO) AND C57BL/6N PARENTAL STRAINS OF MICE

    EPA Science Inventory

    Assessment of immune responses to Penicillium chrysogenum and characterization of its allergens

    Yongjoo Chung1, Michael E Viana2, Lisa B Copeland3, and MaryJane K Selgrade3, Marsha D W Ward3. 1 UNC, SPH, Chapel Hill, NC, 2NCSU, CVM, Raleigh, NC, 3US EPA, ORD, NHEERL, RTP,...

  4. PROCEEDINGS: 1991 INTERNATIONAL CONFERENCE ON MUNICIPAL WASTE COMBUSTION - VOLUME 1. SESSIONS P, 0, 1A, 2A, 3A, 4A, 6A, 6B, 9C, AND 10B

    EPA Science Inventory

    The three-volumes document 82 presentations by authors from 15 countries at the Second International Conference on Municipal Waste Combustion (MWC) in Tampa, Florida, April 16-19, 1991. The Conference fostered the exchange of current information on research concerning MWC, ash di...

  5. Rubimetide, humanin, and MMK1 exert anxiolytic-like activities via the formyl peptide receptor 2 in mice followed by the successive activation of DP1, A2A, and GABAA receptors.

    PubMed

    Zhao, Hui; Sonada, Soushi; Yoshikawa, Akihiro; Ohinata, Kousaku; Yoshikawa, Masaaki

    2016-09-01

    Rubimetide (Met-Arg-Trp), which had been isolated as an antihypertensive peptide from an enzymatic digest of spinach ribulose-bisphosphate carboxylase/oxygenase (Rubisco), showed anxiolytic-like activity prostaglandin (PG) D2-dependent manner in the elevated plus-maze test after administration at a dose of 0.1mg/kg (ip.) or 1mg/kg (p.o.) in male mice of ddY strain. In this study, we found that rubimetide has weak affinities for the FPR1 and FPR2, subtypes of formyl peptide receptor (FPR). The anxiolytic-like activity of rubimetide (0.1mg/kg, ip.) was blocked by WRW4, an antagonist of FPR2, but not by Boc-FLFLF, an antagonist of FPR1, suggesting that the anxiolytic-like activity was mediated by the FPR2. Humanin, an endogenous agonist peptide of the FPR2, exerted an anxiolytic-like activity after intracerebroventricular (icv) administration, which was also blocked by WRW4. MMK1, a synthetic agonist peptide of the FPR2, also exerted anxiolytic-like activity. Thus, FPR2 proved to mediate anxiolytic-like effect as the first example of central effect exerted by FPR agonists. As well as the anxiolytic-like activity of rubimetide, that of MMK1 was blocked by BW A868C, an antagonist of the DP1-receptor. Furthermore, anxiolytic-like activity of rubimetide was blocked by SCH58251 and bicuculline, antagonists for adenosine A2A and GABAA receptors, respectively. From these results, it is concluded that the anxiolytic-like activities of rubimetide and typical agonist peptides of the FPR2 were mediated successively by the PGD2-DP1 receptor, adenosine-A2A receptor, and GABA-GABAA receptor systems downstream of the FPR2. PMID:27475912

  6. INFLUENCE OF TYPE II DIABETES, OBESITY, AND EXPOSURE TO 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD) EXPOSURE ON THE EXPRESSION OF HEPATIC CYP1A2 IN A MURIN MODEL OF TYPE II DIABETES

    EPA Science Inventory

    Influence of type II diabetes, obesity and exposure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on the expression of hepatic CYPIA2 in a murine model of type II diabetes. SJ Godin', VM Richardson2, JJ Diliberto2, LS Birnbaum', MJ DeVito2; 'Curriculum In Toxicology, UNC-CH...

  7. Pharmacogenetics of nicotine and associated smoking behaviors.

    PubMed

    Tanner, Julie-Anne; Chenoweth, Meghan J; Tyndale, Rachel F

    2015-01-01

    This chapter summarizes genetic factors that contribute to variation in nicotine pharmacokinetics and nicotine's pharmacological action in the central nervous system (CNS), and how this in turn influences smoking behaviors. Nicotine, the major psychoactive compound in cigarette smoke, is metabolized by a number of enzymes, including CYP2A6, CYP2B6, FMOs, and UGTs, among others. Variation in the genes encoding these enzymes, in particular CYP2A6, can alter the rate of nicotine metabolism and smoking behaviors. Faster nicotine metabolism is associated with higher cigarette consumption and nicotine dependence, as well as lower quit rates. Variation in nicotine's CNS targets and downstream signaling pathways can also contribute to interindividual differences in smoking patterns. Binding of nicotine to neuronal nicotinic acetylcholine receptors (nAChRs) mediates the release of several neurotransmitters including dopamine and serotonin. Genetic variation in nAChRs, and in transporter and enzyme systems that leads to altered CNS levels of dopamine and serotonin, is associated with a number of smoking behaviors. To date, the precise mechanism underpinning many of these findings remains unknown. Considering the complex etiology of nicotine addiction, a more comprehensive approach that assesses the contribution of multiple gene variants, and their interaction with environmental factors, will likely improve personalized therapeutic approaches and increase smoking cessation rates. PMID:25655887

  8. Novel Cytochrome P450 Reaction Phenotyping for Low-Clearance Compounds Using the Hepatocyte Relay Method.

    PubMed

    Yang, Xin; Atkinson, Karen; Di, Li

    2016-03-01

    A novel cytochrome P450 (P450) reaction phenotyping method for low-clearance compounds has been developed for eight P450 enzymes (CYP1A2, 2B6, 2D6, 2C8, 2C9, 2C19, 3A, and 3A4) and pan-cytochrome using the hepatocyte relay approach. Selective mechanism-based inhibitors were used to inactivate the individual P450 enzymes during preincubation, and inactivators were removed from the incubation before adding substrates to minimize reversible inhibition and maximize inhibitor specificity. The inhibitors were quite selective for specific P450 isoforms using the following inhibitor concentrations and preincubation times: furafylline (1 µM, 15 minutes) for CYP1A2, phencyclidine (20 µM, 15 minutes) for 2B6, paroxetine (1.8 µM, 15 minutes) for CYP2D6, gemfibrozil glucuronide (100 µM, 30 minutes) for 2C8, tienilic acid (15 µM, 30 minutes) for 2C9, esomeprazole (8 µM, 15 minutes) for 2C19, troleandomycin (25 µM, 15 minutes) for 3A4/5, CYP3cide (2 µM, 15 minutes) for 3A4, and 1-aminobenzotriazole (1 mM, 30 minutes) supplemented with tienilic acid (15 µM, 30 minutes) for pan-cytochrome. The inhibitors were successfully applied to the hepatocyte relay method in a 48-well format for P450 reaction phenotyping of low-clearance compounds. This novel method provides a new approach for determining the fraction metabolized of low-turnover compounds that are otherwise challenging with the traditional methods, such as chemical inhibitors with human liver microsomes and hepatocytes or human recombinant P450 enzymes. PMID:26700955

  9. Assessment of effect of Zhu-tan Tong-luo decoction on CYP450 isoforms activity of rats

    PubMed Central

    Jin, Yongxi; Shao, Lingjiu; Li, Gaowen; Shao, Mengmeng; Zhi, Yinghao; Zhu, Wenzong

    2015-01-01

    In order to investigate the effects of Zhu-tan Tong-luo decoction on the metabolic capacity of cytochrome P450 (CYP) enzymes, a cocktail method was employed to evaluate the activities of CYP2B6, CYP2C19, CYP1A2, CYP3A4, CYP2C9, CYP2D6. The rats were randomly divided into acute Zhu-Tan Tong-Luo decoction group (Low, High), chronic Zhu-Tan Tong-Luo decoction group (Low, High) and control group. The acute group rats were given 0.6, 1.2 g/kg (Low, High) Zhu-tan Tong-luo decoction by intragastric administration for 1 day, and the chronic group for 14 days. Six probe drugs bupropion, omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. There statistical pharmacokinetics differences for omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol in rats were observed by comparing acute Zhu-tan Tong-luo decoction group with control group; and statistical pharmacokinetics differences for bupropion, omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol were observed by comparing chronic Zhu-Tan Tong-Luo decoction group with control group. After intragastric administration of Zhu-Tan Tong-Luo decoction may slightly induce the activities of CYP2B6, CYP2C19, CYP1A2, CYP3A4, CYP2C9, CYP2D6 of rats. Induction of drug metabolizing enzyme by Zhu-Tan Tong-Luo decoction would reduce the efficacy of other drug. Additional, there no statistical difference for biochemical results after 1 or 14 intragastric administration of Zhu-Tan Tong-Luo decoction. PMID:26629097

  10. Evaluation of cytochrome P450 inductions by anti-epileptic drug oxcarbazepine, 10-hydroxyoxcarbazepine, and carbamazepine using human hepatocytes and HepaRG cells.

    PubMed

    Sugiyama, Ikuo; Murayama, Norie; Kuroki, Ayaka; Kota, Jagannath; Iwano, Shunsuke; Yamazaki, Hiroshi; Hirota, Takashi

    2016-09-01

    Anti-epileptic drug oxcarbazepine is structurally related to carbamazepine, but has reportedly different metabolic pathway. Auto-induction potentials of oxcarbazepine, its pharmacologically active metabolite 10-hydroxyoxcarbazepine and carbamazepine were evaluated by cytochrome P450 (CYP) 1A2, CYP2B6 and CYP3A4 mRNA levels and primary metabolic rates using human hepatocytes and HepaRG cells. For the CYP1A2 the induction potential determined as the fold change in mRNA levels was 7.2 (range: 2.3-11.5) and 10.0 (6.2-13.7) for oxcarbazepine and carbamazepine, respectively, while 10-hydroxyoxcarbazepine did not induce. The fold change in mRNA levels for CYP2B6 was 11.5 (3.2-19.3), 7.0 (2.5-10.8) and 14.8 (3.1-29.1) for oxcarbazepine, 10-hydroxyoxcarbazepine and carbamazepine, respectively. The fold change for CYP3A4 induction level by oxcarbazepine, 10-hydroxyoxcarbazepine and carbamazepine was 3.5 (1.2-7.4), 2.7 (0.8-5.7) and 8.3 (3.5-14.5), respectively. The data suggest lower induction potential of oxcarbazepine and 10-hydroxyoxcarbazepine relative to carbamazepine. The results in HepaRG cells showed similar trend as the human hepatocytes. After incubation for 72 h in hepatocytes and HepaRG cells, auto-induction was evident for only carbamazepine metabolism. The 10-keto group instead of double bond at C10 position is evidently a determinant factor for limited auto-induction of P450 enzymes by oxcarbazepine. PMID:26711482

  11. Interactions of the hepatitis C virus protease inhibitor faldaprevir with cytochrome P450 enzymes: in vitro and in vivo correlation.

    PubMed

    Sabo, John P; Kort, Jens; Ballow, Charles; Kashuba, Angela D M; Haschke, Manuel; Battegay, Manuel; Girlich, Birgit; Ting, Naitee; Lang, Benjamin; Zhang, Wei; Cooper, Curtis; O'Brien, Drané; Seibert, Eleanore; Chan, Tom S; Tweedie, Donald; Li, Yongmei

    2015-04-01

    The potential inhibition of the major human cytochrome P450 (CYP) enzymes by faldaprevir was evaluated both in vitro and in clinical studies (healthy volunteers and hepatitis C virus [HCV] genotype 1-infected patients). In vitro studies indicated that faldaprevir inhibited CYP2B6, CYP2C9, and CYP3A, and was a weak-to-moderate inactivator of CYP3A4. Faldaprevir 240 mg twice daily in healthy volunteers demonstrated moderate inhibition of hepatic and intestinal CYP3A (oral midazolam: 2.96-fold increase in AUC(0-24 h)), weak inhibition of hepatic CYP3A (intravenous midazolam: 1.56-fold increase in AUC(0-24 h)), weak inhibition of CYP2C9 ([S]-warfarin: 1.29-fold increase in AUC(0-120 h)), and had no relevant effects on CYP1A2, CYP2B6, or CYP2D6. Faldaprevir 120 mg once daily in HCV-infected patients demonstrated weak inhibition of hepatic and intestinal CYP3A (oral midazolam: 1.52-fold increase in AUC(0-∞)), and had no relevant effects on CYP2C9 or CYP1A2. In vitro drug-drug interaction predictions based on inhibitor concentration ([I])/inhibition constant (Ki) ratios tended to overestimate clinical effects and a net-effect model provided a more accurate approach. These studies suggest that faldaprevir shows a dose-dependent inhibition of CYP3A and CYP2C9, and does not induce CYP isoforms. PMID:25449227

  12. ABCB1 and cytochrome P450 polymorphisms: clinical pharmacogenetics of clozapine.

    PubMed

    Jaquenoud Sirot, Eveline; Knezevic, Branka; Morena, Gina Perla; Harenberg, Sabine; Oneda, Beatrice; Crettol, Séverine; Ansermot, Nicolas; Baumann, Pierre; Eap, Chin B

    2009-08-01

    To examine the genetic factors influencing clozapine kinetics in vivo, 75 patients treated with clozapine were genotyped for CYPs and ABCB1 polymorphisms and phenotyped for CYP1A2 and CYP3A activity. CYP1A2 activity and dose-corrected trough steady-state plasma concentrations of clozapine correlated significantly (r = -0.61; P = 1 x 10), with no influence of the CYP1A2*1F genotype (P = 0.38). CYP2C19 poor metabolizers (*2/*2 genotype) had 2.3-fold higher (P = 0.036) clozapine concentrations than the extensive metabolizers (non-*2/*2). In patients comedicated with fluvoxamine, a strong CYP1A2 inhibitor, clozapine and norclozapine concentrations correlate with CYP3A activity (r = 0.44, P = 0.075; r = 0.63, P = 0.007, respectively). Carriers of the ABCB1 3435TT genotype had a 1.6-fold higher clozapine plasma concentrations than noncarriers (P = 0.046). In conclusion, this study has shown for the first time a significant in vivo role of CYP2C19 and the P-gp transporter in the pharmacokinetics of clozapine. CYP1A2 is the main CYP isoform involved in clozapine metabolism, with CYP2C19 contributing moderately, and CYP3A4 contributing only in patients with reduced CYP1A2 activity. In addition, ABCB1, but not CYP2B6, CYP2C9, CYP2D6, CYP3A5, nor CYP3A7 polymorphisms, influence clozapine pharmacokinetics. PMID:19593168

  13. An evaluation of the cytochrome P450 inhibition potential of selected pesticides in human hepatic microsomes.

    PubMed

    Abass, Khaled; Turpeinen, Miia; Pelkonen, Olavi

    2009-08-01

    The goal of this work was to study the ability of 18 pesticides to inhibit selective model activities for all major xenobiotic-metabolizing enzymes, namely CYP1A1/2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4. Generally organophosphorus insecticides were the most potent and extensive inhibitors, especially towards CYP1A1/2 (IC(50) values of chlorpyrifos, fenitrothion and profenofos approximately 3 micro M), CYP2B6 (IC(50) values of chlorpyrifos and fenitrothion 2.5 micro M), CYP2C8 (fenitrothion 4.3 micro M), CYP2C9 (fenitrothion and malathion 4.8 and 2.5 micro M, respectively), CYP2D6 (chlorpyrifos and phenthoate approximately 3 micro M) and CYP3A4 (chlorpyrifos, fenitrothion and phenthoate 3-4 micro M). Otherwise there were quite considerable differences in potency and extent of inhibition between different organophosphates. Pyrethroids were in general very weak or inactive. Deltamethrin and fenvalerate were potent inhibitors of CYP2D6 (IC(50) values of approximately 3 micro M) while lambda-cyhalothrin potently inhibited both CYP2D6 and CYP3A4-mediated activities (IC(50)'s about 3-4 micro M). Some pesticides caused relatively potent inhibitions sporadically (carbendazim, CYP2D6, IC(50) = 12 micro M; atrazine, CYP3A4, IC(50) = 2.8 micro M; glyphosate, CYP2C9, IC(50) = 3.7 micro M; hexaflumuron, IC(50) = 6.0 micro M). With the exceptions of alpha-cypermethrin, cypermethrin, isoproturon, carbaryl and abamectin, most pesticides inhibited relatively potently at least one CYP-selective activity, which may have relevance for potential interactions in occupational exposures and for further studies on the CYP-associated metabolism of respective pesticides. PMID:20183062

  14. Role of induction of specific hepatic cytochrome P450 isoforms in epoxidation of 4-vinylcyclohexene.

    PubMed

    Fontaine, S M; Hoyer, P B; Halpert, J R; Sipes, I G

    2001-09-01

    4-Vinyl-1-cyclohexene (VCH) is ovotoxic in B6C3F(1) mice but not in Fischer-344 rats, which can be partially attributed to greater formation of toxic epoxides from VCH in mice compared with rats. Since repeated exposure to VCH is necessary to cause ovotoxicity in mice, it is important to determine whether repeated exposure results in induction of cytochrome P450 (CYP) enzymes involved in its bioactivation. Hepatic microsomes prepared from mice or rats treated repeatedly with VCH demonstrated significantly increased VCH bioactivation in vitro, as assessed by VCH-1,2-epoxide, VCH-7,8-epoxide, or vinylcyclohexene diepoxide (VCD) formation. Mice and rats were then dosed with VCH, VCH-1,2-epoxide, or VCD for 10 days and measured for increases in hepatic microsomal CYP levels or activities. Total hepatic CYP levels were elevated only in microsomes from mice pretreated with VCH or VCH-1,2-epoxide. Immunoblotting analysis of microsomes from VCH-treated rodents revealed elevated levels of CYP2A and CYP2B in mice but not rats. VCH-1,2-epoxide pretreatment also increased CYP2B levels in the mouse. Activities toward specific substrates for CYP2A and CYP2B (coumarin and pentoxyresorufin, respectively) confirmed that VCH and VCH-1,2-epoxide pretreatments resulted in increased catalytic activities of CYP2A and CYP2B in the mouse but not the rat. Pretreatment with phenobarbital, a known inducer of CYP2A and CYP2B, increased VCH bioactivation in both species. Interestingly, metabolism studies with human CYP "Supersomes" reveal that, of eight isoforms tested, only human CYP2E1 and CYP2B6 were capable of significantly catalyzing VCH epoxidation, whereas CYP2B6, CYP2A6, CYP2E1, and CYP3A4 were capable of catalyzing the epoxidation of the monoepoxides. PMID:11502734

  15. Assessment of cytochrome P450-mediated drug-drug interaction potential of orteronel and exposure changes in patients with renal impairment using physiologically based pharmacokinetic modeling and simulation.

    PubMed

    Lu, Chuang; Suri, Ajit; Shyu, Wen Chyi; Prakash, Shimoga

    2014-12-01

    Orteronel is a nonsteroidal, selective inhibitor of 17,20-lyase that was recently in phase 3 clinical development as a treatment for castration-resistant prostate cancer. In humans, the primary clearance route for orteronel is renal excretion. Human liver microsomal studies indicated that orteronel weakly inhibits CYP1A2, 2C8, 2C9 and 2C19, with IC50 values of 17.8, 27.7, 30.8 and 38.8 µm, respectively, whereas orteronel does not inhibit CYP2B6, 2D6 or 3A4/5 (IC50  > 100 µm). Orteronel also does not exhibit time-dependent inhibition of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 or 3A4/5. The results of a static model indicated an [I]/Ki ratio >0.1 for CYP1A2, 2C8, 2C9 and 2C19. Therefore, a physiologically based pharmacokinetic (PBPK) model was developed to assess the potential for drug-drug interactions (DDIs) between orteronel and theophylline, repaglinide, (S)-warfarin and omeprazole, which are sensitive substrates of CYP1A2, 2C8, 2C9 and 2C19, respectively. Simulation of the area under the plasma concentration-time curve (AUC) of these four CYP substrates in the presence and absence of orteronel revealed geometric mean AUC ratios <1.25. Therefore, in accordance with the 2012 US FDA Draft Guidance on DDIs, orteronel can be labeled a 'non-inhibitor' and further clinical DDI evaluation is not required. In PBPK models of moderate and severe renal impairment, the AUC of orteronel was predicted to increase by 52% and 83%, respectively. These results are in agreement with those of a clinical trial in which AUC increases of 38% and 87% were observed in patients with moderate and severe renal impairment, respectively. PMID:25264242