Science.gov

Sample records for 1a2 2a6 2b6

  1. Differential effects of nicotine treatment and ethanol self-administration on CYP2A6, CYP2B6 and nicotine pharmacokinetics in African green monkeys.

    PubMed

    Ferguson, C S; Miksys, S; Palmour, R M; Tyndale, R F

    2012-12-01

    In primates, nicotine is metabolically inactivated in the liver by CYP2A6 and possibly CYP2B6. Changes in the levels of these two enzymes may affect nicotine pharmacokinetics and influence smoking behaviors. This study investigated the independent and combined effects of ethanol self-administration and nicotine treatment (0.5 mg/kg b.i.d. s.c.) on hepatic CYP2A6 and CYP2B6 levels (mRNA, protein, and enzymatic activity), in vitro nicotine metabolism, and in vivo nicotine pharmacokinetics in monkeys. CYP2A6 mRNA and protein levels and in vitro coumarin (selective CYP2A6 substrate) and nicotine metabolism were decreased by nicotine treatment but unaffected by ethanol. CYP2B6 protein levels and in vitro bupropion (selective CYP2B6 substrate) metabolism were increased by ethanol but unaffected by nicotine treatment; CYP2B6 mRNA levels were unaltered by either treatment. Combined ethanol and nicotine exposure decreased CYP2A6 mRNA and protein levels, as well as in vitro coumarin and nicotine metabolism, and increased CYP2B6 protein levels and in vitro bupropion metabolism, with no change in CYP2B6 mRNA levels. Chronic nicotine resulted in higher nicotine plasma levels achieved after nicotine administration, consistent with decreased CYP2A6. Ethanol alone, or combined with nicotine, resulted in lower nicotine plasma levels by a mechanism independent of the change in these enzymes. Thus, nicotine can decrease hepatic CYP2A6, reducing the metabolism of its substrates, including nicotine, whereas ethanol can increase hepatic CYP2B6, increasing the metabolism of CYP2B6 substrates. In vivo nicotine pharmacokinetics are differentially affected by ethanol and nicotine, but when both drugs are used in combination the effect more closely resembles ethanol alone.

  2. Structural and Biophysical Characterization of Human Cytochromes P450 2B6 and 2A6 Bound to Volatile Hydrocarbons: Analysis and Comparison

    PubMed Central

    Wilderman, P. Ross; Liu, Jingbao; Jang, Hyun-Hee; Zhang, Qinghai; Stout, C. David; Halpert, James R.

    2015-01-01

    X-ray crystal structures of complexes of cytochromes CYP2B6 and CYP2A6 with the monoterpene sabinene revealed two distinct binding modes in the active sites. In CYP2B6, sabinene positioned itself with the putative oxidation site located closer to the heme iron. In contrast, sabinene was found in an alternate conformation in the more compact CYP2A6, where the larger hydrophobic side chains resulted in a significantly reduced active-site cavity. Furthermore, results from isothermal titration calorimetry indicated a much more substantial contribution of favorable enthalpy to sabinene binding to CYP2B6 as opposed to CYP2A6, consistent with the previous observations with (+)-α-pinene. Structural analysis of CYP2B6 complexes with sabinene and the structurally similar (3)-carene and comparison with previously solved structures revealed how the movement of the F206 side chain influences the volume of the binding pocket. In addition, retrospective analysis of prior structures revealed that ligands containing –Cl and –NH functional groups adopted a distinct orientation in the CYP2B active site compared with other ligands. This binding mode may reflect the formation of Cl-π or NH-π bonds with aromatic rings in the active site, which serve as important contributors to protein-ligand binding affinity and specificity. Overall, the findings from multiple techniques illustrate how drugs metabolizing CYP2B6 and CYP2A6 handle a common hydrocarbon found in the environment. The study also provides insight into the role of specific functional groups of the ligand that may influence the binding to CYP2B6. PMID:25585967

  3. CYP2A6 and CYP2B6 genetic variation and its association with nicotine metabolism in South Western Alaska Native people

    PubMed Central

    Binnington, Matthew J.; Zhu, Andy Z.X.; Renner, Caroline C.; Lanier, Anne P.; Hatsukami, Dorothy K.; Benowitz, Neal L; Tyndale, Rachel F.

    2012-01-01

    Objectives Alaska Native people (AN) have a high prevalence of tobacco use and associated morbidity and mortality when compared to the general U.S. population. Variation in the CYP2A6 and CYP2B6 genes, encoding enzymes responsible for nicotine metabolic inactivation and procarcinogen activation, has not been characterized in AN and may contribute to the increased risk. Methods AN people (n = 400) residing in the Bristol Bay region of South Western Alaska were recruited for a cross-sectional study on tobacco use. They were genotyped for CYP2A6*1X2A, *1X2B, *1B, *2, *4, *7, *8, *9, *10, *12, *17, *35 and CYP2B6*4, *6, *9 and provided plasma and urine samples for measurement of nicotine and metabolites. Results CYP2A6 and CYP2B6 variant frequencies among the AN Yupik people (n=361) were significantly different from other ethnicities. Nicotine metabolism (as measured by the plasma and urinary ratio of metabolites trans-3’hydroxycotinine to cotinine [(3HC/COT)] was significantly associated with CYP2A6 (P< 0.001) but not CYP2B6 genotype (P = 0.95) when controlling for known covariates. Of note, plasma 3HC/COT ratios were high in the entire Yupik people, and among the Yupik CYP2A6 wild-type participants they were substantially higher than previously characterized racial/ethnic groups (P < 0.001 vs. Caucasians and African Americans). Conclusions Yupik AN people have a unique CYP2A6 genetic profile which associated strongly with in vivo nicotine metabolism. More rapid CYP2A6-mediated nicotine and nitrosamine metabolism in the Yupik people may modulate tobacco-related disease risk. PMID:22569203

  4. Pharmacogenetics of CYP2B6, CYP2A6 and UGT2B7 in HIV treatment in African populations: focus on efavirenz and nevirapine.

    PubMed

    Čolić, Antoinette; Alessandrini, Marco; Pepper, Michael S

    2015-05-01

    The CYP450 and UGT enzymes are involved in phase I and phase II metabolism of the majority of clinically prescribed drugs, including the non-nucleoside reverse transcriptase inhibitors, efavirenz and nevirapine, used in the treatment of HIV/AIDS. Variations in the activity of these enzymes due to gene polymorphisms can affect an individual's drug response or may lead to adverse drug reactions. There is an inter-ethnic distribution in the frequency of these polymorphisms, with African populations exhibiting higher genetic diversity compared to other populations. African specific alleles with clinical relevance have also emerged. Given the high prevalence of HIV/AIDS in sub-Saharan Africa, understanding the frequency of pharmacogenetically relevant alleles in populations of African origin, and their impact on efavirenz and nevirapine metabolism, is becoming increasingly critical. This review aims to investigate ethnic variation of CYP2B6, CYP2A6 and UGT2B7, and to understand the pharmacogenetic relevance when comparing frequencies in African populations to other populations worldwide.

  5. Isoniazid mediates the CYP2B6*6 genotype-dependent interaction between efavirenz and antituberculosis drug therapy through mechanism-based inactivation of CYP2A6.

    PubMed

    Court, Michael H; Almutairi, Fawziah E; Greenblatt, David J; Hazarika, Suwagmani; Sheng, Hongyan; Klein, Kathrin; Zanger, Ulrich M; Bourgea, Joanne; Patten, Christopher J; Kwara, Awewura

    2014-07-01

    Efavirenz is commonly used to treat patients coinfected with human immunodeficiency virus and tuberculosis. Previous clinical studies have observed paradoxically elevated efavirenz plasma concentrations in patients with the CYP2B6*6/*6 genotype (but not the CYP2B6*1/*1 genotype) during coadministration with the commonly used four-drug antituberculosis therapy. This study sought to elucidate the mechanism underlying this genotype-dependent drug-drug interaction. In vitro studies were conducted to determine whether one or more of the antituberculosis drugs (rifampin, isoniazid, pyrazinamide, or ethambutol) potently inhibit efavirenz 8-hydroxylation by CYP2B6 or efavirenz 7-hydroxylation by CYP2A6, the main mechanisms of efavirenz clearance. Time- and concentration-dependent kinetics of inhibition by the antituberculosis drugs were determined using genotyped human liver microsomes (HLMs) and recombinant CYP2A6, CYP2B6.1, and CYP2B6.6 enzymes. Although none of the antituberculosis drugs evaluated at up to 10 times clinical plasma concentrations were found to inhibit efavirenz 8-hydroxylation by HLMs, both rifampin (apparent inhibition constant [Ki] = 368 μM) and pyrazinamide (Ki = 637 μM) showed relatively weak inhibition of efavirenz 7-hydroxylation. Importantly, isoniazid demonstrated potent time-dependent inhibition of efavirenz 7-hydroxylation in both HLMs (inhibitor concentration required for half-maximal inactivation [KI] = 30 μM; maximal rate constant of inactivation [kinact] = 0.023 min(-1)) and recombinant CYP2A6 (KI = 15 μM; kinact = 0.024 min(-1)) and also formed a metabolite intermediate complex consistent with mechanism-based inhibition. Selective inhibition of the CYP2B6.6 allozyme could not be demonstrated for any of the antituberculosis drugs using either recombinant enzymes or CYP2B6*6 genotype HLMs. In conclusion, the results of this study identify isoniazid as the most likely perpetrator of this clinically important drug-drug interaction through

  6. Effects of anthocyanidins and anthocyanins on the expression and catalytic activities of CYP2A6, CYP2B6, CYP2C9, and CYP3A4 in primary human hepatocytes and human liver microsomes.

    PubMed

    Srovnalova, Alzbeta; Svecarova, Michaela; Zapletalova, Michaela Kopecna; Anzenbacher, Pavel; Bachleda, Petr; Anzenbacherova, Eva; Dvorak, Zdenek

    2014-01-22

    Anthocyanidins and anthocyanins are pharmacologically active constituents of various berry fruits, such as blueberry and cranberry. These compounds are also contained in massively used nutritional supplements based on extracts or dry matter from berry fruits. The current study evaluated the effects of anthocyanidins and anthocyanins on the expression and catalytic activity of major drug-metabolizing enzymes CYP2C9, CYP2A6, CYP2B6, and CYP3A4 in primary cultures of human hepatocytes and human liver microsomes. Expression of mRNA was quantified by qRT-PCR. Expression of proteins was evaluated by Western blotting and immunochemiluminescence. The catalytic activity of CYP enzymes was measured by HPLC using specific enzyme substrates. Tested anthocyanidins (6) and anthocyanins (21) did not induce the expression of mRNA and protein of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 genes in human hepatocytes. Catalytic activities of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 enzymes were inhibited by all anthocyanidins to different extents (e.g., delphinidin inhibits CYP3A4 by >90% at 100 μM with IC50 = 32 μM). Of 21 anthocyanins tested, only cyanidin-3-O-rhamnoside (CYP3A4 by >75% at 100 μM with IC50 = 44 μM) and two glycosides of delphinidin significantly inhibited examined cytochromes P450. It may be concluded that in the ranges of common ingestion of either food or dietary supplement an induction or significant inhibition of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 activity is most probably not expected.

  7. Preliminary investigation of the contribution of CYP2A6, CYP2B6, and UGT1A9 polymorphisms on artesunate-mefloquine treatment response in Burmese patients with Plasmodium falciparum malaria.

    PubMed

    Phompradit, Papichaya; Muhamad, Poonuch; Cheoymang, Anurak; Na-Bangchang, Kesara

    2014-08-01

    CYP2A6, CYP2B6, and UGT1A9 genetic polymorphisms and treatment response after a three-day course of artesunate-mefloquine was investigated in 71 Burmese patients with uncomplicated Plasmodium falciparum malaria. Results provide evidence for the possible link between CYP2A6 and CYP2B6 polymorphisms and plasma concentrations of artesunate/dihydroartemisinin and treatment response. In one patient who had the CYP2A6*1A/*4C genotype (decreased enzyme activity), plasma concentration of artesunate at one hour appeared to be higher, and the concentration of dihydroartemisinin was lower than for those carrying other genotypes (415 versus 320 ng/mL). The proportion of patients with adequate clinical and parasitologic response who had the CYP2B6*9/*9 genotype (mutant genotype) was significantly lower compared with those with late parasitologic failure (14.0% versus 19.0%). Confirmation through a larger study in various malaria-endemic areas is required before a definite conclusion on the role of genetic polymorphisms of these drug-metabolizing enzymes on treatment response after artesunate-based combination therapy can be made.

  8. Direct sequencing and comprehensive screening of genetic polymorphisms on CYP2 family genes (CYP2A6, CYP2B6, CYP2C8, and CYP2E1) in five ethnic populations.

    PubMed

    Kim, Jeong-Hyun; Cheong, Hyun Sub; Park, Byung Lae; Kim, Lyoung Hyo; Shin, Hee Jung; Na, Han Sung; Chung, Myeon Woo; Shin, Hyoung Doo

    2015-01-01

    Recently, CYP2A6, CYP2B6, CYP2C8, and CYP2E1 have been reported to play a role in the metabolic effect of pharmacological and carcinogenic compounds. Moreover, genetic variations of drug metabolism genes have been implicated in the interindividual variation in drug disposition and pharmacological response. To define the distribution of single nucleotide polymorphisms (SNPs) in these four CYP2 family genes and to discover novel SNPs across ethnic groups, 288 DNAs composed of 48 African-Americans, 48 European-Americans, 48 Japanese, 48 Han Chinese, and 96 Koreans were resequenced. A total of 143 SNPs, 26 in CYP2A6, 45 in CYP2B6, 29 in CYP2C8, and 43 in CYP2E1, were identified, including 13 novel variants. Notably, two SNPs in the regulatory regions, a promoter SNP rs2054675 and a nonsynonymous rs3745274 (p.172Q>H) in CYP2B6, showed significantly different minor allele frequencies (MAFs) among ethnic groups (minimum P = 4.30 × 10(-12)). In addition, rs2031920 in the promoter region of CYP2E1 showed a wide range of MAF between different ethnic groups, and even among other various ethnic groups based on public reports. Among 13 newly discovered SNPs in this study, 5 SNPs were estimated to have potential functions in further in silico analyses. Some differences in genetic variations and haplotypes of CYP2A6, CYP2B6, CYP2C8, and CYP2E1 were observed among populations. Our findings could be useful in further researches, such as genetic associations with drug responses.

  9. Optical Isomers of Atorvastatin, Rosuvastatin and Fluvastatin Enantiospecifically Activate Pregnane X Receptor PXR and Induce CYP2A6, CYP2B6 and CYP3A4 in Human Hepatocytes.

    PubMed

    Korhonova, Martina; Doricakova, Aneta; Dvorak, Zdenek

    2015-01-01

    Atorvastatin, fluvastatin and rosuvastatin are drugs used for treatment of hypercholesterolemia. They cause numerous drug-drug interactions by inhibiting and inducing drug-metabolizing cytochromes P450. These three statins exist in four optical forms, but they are currently used as enantiopure drugs, i.e., only one single enantiomer. There are numerous evidences that efficacy, adverse effects and toxicity of drugs may be enantiospecific. Therefore, we investigated the effects of optical isomers of atorvastatin, fluvastatin and rosuvastatin on the expression of drug-metabolizing P450s in primary human hepatocytes, using western blots and RT-PCR for measurement of proteins and mRNAs, respectively. The activity of P450 transcriptional regulators, including pregnane X receptor (PXR), aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR), was assessed by gene reporter assays and EMSA. Transcriptional activity of AhR was not influenced by any statin tested. Basal transcriptional activity of GR was not affected by tested statins, but dexamethasone-inducible activity of GR was dose-dependently and enantioselectively inhibited by fluvastatin. Basal and ligand-inducible transcriptional activity of PXR was dose-dependently influenced by all tested statins, and the potency and efficacy between individual optical isomers varied depending on statin and optical isomer. The expression of CYP1A1 and CYP1A2 in human hepatocytes was not influenced by tested statins. All statins induced CYP2A6, CYP2B6 and CYP3A4, and the effects on CYP2C9 were rather modulatory. The effects varied between statins and enantiomers and induction potency decreased in order: atorvastatin (RR>RS = SR>SS) > fluvastatin (SR>RS = SS>RR) > rosuvastatin (only RS active). The data presented here might be of toxicological and clinical importance.

  10. Evaluation of 309 molecules as inducers of CYP3A4, CYP2B6, CYP1A2, OATP1B1, OCT1, MDR1, MRP2, MRP3 and BCRP in cryopreserved human hepatocytes in sandwich culture.

    PubMed

    Badolo, Lassina; Jensen, Bente; Säll, Carolina; Norinder, Ulf; Kallunki, Pekka; Montanari, Dino

    2015-02-01

    1. Regulation of hepatic metabolism or transport may lead to increase in drug clearance and compromise efficacy or safety. In this study, cryopreserved human hepatocytes were used to assess the effect of 309 compounds on the activity and mRNA expression (using qPCR techniques) of CYP1A2, CYP2B6 and CYP3A4, as well as mRNA expression of six hepatic transport proteins: OATP1B1 (SCLO1B1), OCT1 (SLC22A1), MDR1 (ABCB1), MRP2 (ABCC2), MRP3 (ABCC3) and BCRP (ABCG2). 2. The results showed that 6% of compounds induced CYP1A2 activity (1.5-fold increase); 30% induced CYP2B6 while 23% induced CYP3A4. qPCR data identified 16, 33 or 32% inducers of CYP1A2, CYP2B6 or CYP3A4, respectively. MRP2 was induced by 27 compounds followed by MDR1 (16)>BCRP (9)>OCT1 (8)>OATP1B1 (5)>MRP3 (2). 3. CYP3A4 appeared to be down-regulated (≥2-fold decrease in mRNA expression) by 53 compounds, 10 for CYP2B6, 6 for OCT1, 4 for BCRP, 2 for CYP1A2 and OATP1B1 and 1 for MDR1 and MRP2. 4. Structure-activity relationship analysis showed that CYP2B6 and CYP3A4 inducers are bulky lipophilic molecules with a higher number of heavy atoms and a lower number of hydrogen bond donors. Finally, a strategy for testing CYP inducers in drug discovery is proposed.

  11. Effects of CYP2B6 and CYP1A2 Genetic Variation on Nevirapine Plasma Concentration and Pharmacodynamics as Measured by CD4 Cell Count in Zimbabwean HIV-Infected Patients.

    PubMed

    Mhandire, Doreen; Lacerda, Miguel; Castel, Sandra; Mhandire, Kudakwashe; Zhou, Danai; Swart, Marelize; Shamu, Tinei; Smith, Peter; Musingwini, Tutsirai; Wiesner, Lubbe; Stray-Pedersen, Babill; Dandara, Collet

    2015-09-01

    The extremely high prevalence of HIV/AIDS in sub-Saharan Africa and limitations of current antiretroviral medicines demand new tools to optimize therapy such as pharmacogenomics for person-to-person variations. African populations exhibit greater genetic diversity than other world populations, thus making it difficult to extrapolate findings from one population to another. Nevirapine, an antiretroviral medicine, displays large plasma concentration variability which adversely impacts therapeutic virological response. This study, therefore, aimed to identify sources of variability in nevirapine pharmacokinetics and pharmacodynamics, focusing on genetic variation in CYP2B6 and CYP1A2. Using a cross-sectional study design, 118 HIV-infected adult Zimbabwean patients on nevirapine-containing highly active antiretroviral therapy (HAART) were characterized for three key functional single nucleotide polymorphisms (SNPs), CYP2B6 c.516G>T (rs3745274), CYP2B6 c.983T>C (rs28399499), and CYP1A2 g.-163C>A (rs762551). We investigated whether genotypes at these loci were associated with nevirapine plasma concentration, a therapeutic biomarker, and CD4 cell count, a biomarker of disease progression. CYP2B6 and CYP1A2 were chosen as the candidate genes based on reports in literature, as well as their prominence in the metabolism of efavirenz, a drug in the same class with nevirapine. Nevirapine plasma concentration was determined using LC-MS/MS. The mean nevirapine concentration for CYP2B6 c.516T/T genotype differed significantly from that of 516G/G (p < 0.001) and 516G/T (p < 0.01) genotypes, respectively. There were also significant differences in mean nevirapine concentration between CYP2B6 c.983T > C genotypes (p = 0.04). Importantly, the CYP1A2 g.-163C>A SNP was significantly associated with the pharmacodynamics endpoint, the CD4 cell count (p = 0.012). Variant allele frequencies for the three SNPs observed in this Zimbabwean group were similar to other

  12. Effects of CYP2B6 and CYP1A2 Genetic Variation on Nevirapine Plasma Concentration and Pharmacodynamics as Measured by CD4 Cell Count in Zimbabwean HIV-Infected Patients

    PubMed Central

    Mhandire, Doreen; Lacerda, Miguel; Castel, Sandra; Mhandire, Kudakwashe; Zhou, Danai; Swart, Marelize; Shamu, Tinei; Smith, Peter; Musingwini, Tutsirai; Wiesner, Lubbe; Stray-Pedersen, Babill

    2015-01-01

    Abstract The extremely high prevalence of HIV/AIDS in sub-Saharan Africa and limitations of current antiretroviral medicines demand new tools to optimize therapy such as pharmacogenomics for person-to-person variations. African populations exhibit greater genetic diversity than other world populations, thus making it difficult to extrapolate findings from one population to another. Nevirapine, an antiretroviral medicine, displays large plasma concentration variability which adversely impacts therapeutic virological response. This study, therefore, aimed to identify sources of variability in nevirapine pharmacokinetics and pharmacodynamics, focusing on genetic variation in CYP2B6 and CYP1A2. Using a cross-sectional study design, 118 HIV-infected adult Zimbabwean patients on nevirapine-containing highly active antiretroviral therapy (HAART) were characterized for three key functional single nucleotide polymorphisms (SNPs), CYP2B6 c.516G>T (rs3745274), CYP2B6 c.983T>C (rs28399499), and CYP1A2 g.-163C>A (rs762551). We investigated whether genotypes at these loci were associated with nevirapine plasma concentration, a therapeutic biomarker, and CD4 cell count, a biomarker of disease progression. CYP2B6 and CYP1A2 were chosen as the candidate genes based on reports in literature, as well as their prominence in the metabolism of efavirenz, a drug in the same class with nevirapine. Nevirapine plasma concentration was determined using LC-MS/MS. The mean nevirapine concentration for CYP2B6 c.516T/T genotype differed significantly from that of 516G/G (p < 0.001) and 516G/T (p < 0.01) genotypes, respectively. There were also significant differences in mean nevirapine concentration between CYP2B6 c.983T > C genotypes (p = 0.04). Importantly, the CYP1A2 g.-163C>A SNP was significantly associated with the pharmacodynamics endpoint, the CD4 cell count (p = 0.012). Variant allele frequencies for the three SNPs observed in this Zimbabwean group were similar to

  13. Anti-CD28 monoclonal antibody-stimulated cytokines released from blood suppress CYP1A2, CYP2B6, and CYP3A4 in human hepatocytes in vitro.

    PubMed

    Czerwiński, Maciej; Kazmi, Faraz; Parkinson, Andrew; Buckley, David B

    2015-01-01

    Like most infections and certain inflammatory diseases, some therapeutic proteins cause a cytokine-mediated suppression of hepatic drug-metabolizing enzymes, which may lead to pharmacokinetic interactions with small-molecule drugs. We propose a new in vitro method to evaluate the whole blood-mediated effects of therapeutic proteins on drug-metabolizing enzymes in human hepatocytes cocultured with Kupffer cells. The traditional method involves treating hepatocyte cocultures with the therapeutic protein, which detects hepatocyte- and macrophage-mediated suppression of cytochrome P450 (P450). The new method involves treating whole human blood with a therapeutic protein to stimulate the release of cytokines from peripheral blood mononuclear cells (PBMCs), after which plasma is prepared and added to the hepatocyte coculture to evaluate P450 enzyme expression. In this study, human blood was treated for 24 hours at 37°C with bacterial lipopolysaccharide (LPS) or ANC28.1, an antibody against human T-cell receptor CD28. Cytokines were measured in plasma by sandwich immunoassay with electrochemiluminescense detection. Treatment of human hepatocyte cocultures with LPS or with plasma from LPS-treated blood markedly reduced the expression of CYP1A2, CYP2B6, and CYP3A4. However, treatment of hepatocyte cocultures with ANC28.1 did not suppress P450 expression, but treatment with plasma from ANC28.1-treated blood suppressed CYP1A2, CYP2B6, and CYP3A4 activity and mRNA levels. The results demonstrated that applying plasma from human blood treated with a therapeutic protein to hepatocytes cocultured with Kupffer cells is a suitable method to identify those therapeutic proteins that suppress P450 expression by an indirect mechanism-namely, the release of cytokines from PBMCs.

  14. Water pipe (Shisha, Hookah, Arghile) Smoking and Secondhand Tobacco Smoke Effects on CYP1A2 and CYP2A6 Phenotypes as Measured by Caffeine Urine Test.

    PubMed

    Yılmaz, Şenay Görücü; Llerena, Adrián; De Andrés, Fernando; Karakaş, Ümit; Gündoğar, Hasan; Erciyas, Kamile; Kimyon, Sabit; Mete, Alper; Güngör, Kıvanç; Özdemir, Vural

    2017-03-01

    Public policies to stop or reduce cigarette smoking and exposure to secondhand smoke and associated diseases have yielded successful results over the past decade. Yet, the growing worldwide popularity of another form of tobacco consumption, water pipe smoking, has received relatively less attention. To the best of our knowledge, no study to date has evaluated the effects of water pipe smoking on cytochrome P450 (CYP450) activities and drug interaction potential in humans, whereas only limited information is available on the impact of secondhand smoke on drug metabolism. In a sample of 99 healthy volunteers (28 water pipe smokers, 30 secondhand tobacco smoke exposed persons, and 41 controls), we systematically compared CYP1A2 and CYP2A6 enzyme activities in vivo using caffeine urine test. The median self-reported duration of water pipe smoking was 7.5 h/week and 3 years of exposure in total. The secondhand smoke group had a median of 14 h of self-reported weekly exposure to tobacco smoke indoor where a minimum of five cigarettes were smoked/hour for a total of 3.5 years (median). Analysis of variance did not find a significant difference in CYP1A2 and CYP2A6 activities among the three study groups (p > 0.05). Nor was there a significant association between the extent of water pipe or secondhand smoke exposure and the CYP1A2 and CYP2A6 activities (p > 0.05). Further analysis in a subsample with smoke exposure more than the median values also did not reveal a significant difference from the controls. Although we do not rule out an appreciable possible impact of water pipe smoke and secondhand smoke on in vivo activities of these two drug metabolism pathways, variability in smoke constituents from different tobacco consumption methods (e.g., water pipe) might affect drug metabolism in ways that might differ from that of cigarette smoke. Further studies in larger prospective samples are recommended to evaluate water pipe and secondhand tobacco smoke effects

  15. Imperatorin is a mechanism-based inactivator of CYP2B6.

    PubMed

    Zheng, Liwei; Cao, Jiaojiao; Lu, Dan; Ji, Lin; Peng, Ying; Zheng, Jiang

    2015-01-01

    Imperatorin (IMP) is the major active ingredient in many common medicinal herbs. We examined the irreversible inhibitory effect of IMP on CYP2B6. IMP produced a time- and concentration-dependent inactivation of CYP2B6. About 70% of activity of CYP2B6 was suppressed after its incubation with 1.5 μM IMP for 9 minutes. KI and kinact were found to be 0.498 μM and 0.079 min(-1), respectively. The loss of CYP2B6 activity required the presence of NADPH. Glutathione and catalase/superoxide dismutase showed little protection against the IMP-induced enzyme inactivation. Ticlopidine, a substrate of CYP2B6, showed protection of the enzyme against the inactivation induced by IMP. The estimated partition ratio of the inactivation was approximately 4. Additionally, a γ-ketoenal intermediate was identified in microsomal incubations with IMP. CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 were found to be involved in bioactivation of IMP. In conclusion, IMP is a mechanism-based inactivator of CYP2B6. The formation of γ-ketoenal intermediate may account for the enzyme inactivation.

  16. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    PubMed

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source.

  17. Differences in Methadone Metabolism by CYP2B6 Variants.

    PubMed

    Gadel, Sarah; Friedel, Christina; Kharasch, Evan D

    2015-07-01

    Methadone is a long-acting opioid with considerable unexplained interindividual variability in clearance. Cytochrome P450 2B6 (CYP2B6) mediates clinical methadone clearance and metabolic inactivation via N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). Retrospective studies suggest that individuals with the CYP2B6*6 allelic variant have higher methadone plasma concentrations. Catalytic activities of CYP2B6 variants are highly substrate- and expression-system dependent. This investigation evaluated methadone N-demethylation by expressed human CYP2B6 allelic variants in an insect cell coexpression system containing P450 reductase. Additionally, the influence of coexpressing cytochrome b5, whose role in metabolism can be inhibitory or stimulatory depending on the P450 isoform and substrate, on methadone metabolism, was evaluated. EDDP formation from therapeutic (0.25-1 μM) R- and S-methadone concentrations was CYP2B6.4 ≥ CYP2B6.1 ≥ CYP2B6.5 > CYP2B6.9 ≈ CYP2B6.6, and undetectable from CYP2B6.18. Coexpression of b5 had small and variant-specific effects at therapeutic methadone concentrations but at higher concentrations stimulated EDDP formation by CYP2B6.1, CYP2B6.4, CYP2B6.5, and CYP2B6.9 but not CYP2B6.6. In vitro intrinsic clearances were generally CYP2B6.4 ≥ CYP2B6.1 > CYP2B6.5 > CYP2B6.9 ≥ CYP2B6.6. Stereoselective methadone metabolism (S>R) was maintained with all CYP2B6 variants. These results show that methadone N-demethylation by CYP2B6.4 is greater compared with CYP2B6.1, whereas CYP2B6.9 and CYP2B6.6 (which both contain the 516G>T, Q172H polymorphism), are catalytically deficient. The presence or absence of b5 in expression systems may explain previously reported disparate catalytic activities of CYP2B6 variants for specific substrates. Differences in methadone metabolism by CYP2B6 allelic variants provide a mechanistic understanding of pharmacogenetic variability in clinical methadone metabolism and clearance.

  18. Methadone N-demethylation by the common CYP2B6 allelic variant CYP2B6.6.

    PubMed

    Gadel, Sarah; Crafford, Amanda; Regina, Karen; Kharasch, Evan D

    2013-04-01

    The long-acting opioid methadone displays considerable unexplained interindividual pharmacokinetic variability. Methadone metabolism clinically occurs primarily by N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), catalyzed predominantly by CYP2B6. Retrospective studies suggest that the common allele variant CYP2B6*6 may influence methadone plasma concentrations. The catalytic activity of CYP2B6.6, encoded by CYP2B6*6, is highly substrate-dependent. This investigation compared methadone N-demethylation by CYP2B6.6 with that by wild-type CYP2B6.1. Methadone enantiomer and racemate N-demethylation by recombinant-expressed CYP2B6.6 and CYP2B6.1 was determined. At substrate concentrations (0.25-2 µM) approximating plasma concentrations occurring clinically, rates of methadone enantiomer N-demethylation by CYP2B6.6, incubated individually or as the racemate, were one-third to one-fourth those by CYP2B6.1. For methadone individual enantiomers and metabolism by CYP2B6.6 compared with CYP2B6.1, Vmax was diminished, Ks was greater and the in vitro intrinsic clearance was diminished 5- to 6-fold. The intrinsic clearance for R- and S-EDDP formation from racemic methadone was diminished approximately 6-fold and 3-fold for R- and S-methadone, respectively. Both CYP2B6.6 and CYP2B6.1 showed similar stereoselectivity (S>R-methadone). Human liver microsomes with diminished CYP2B6 content due to a CYP2B6*6 allele had lower rates of methadone N-demethylation. Results show that methadone N-demethylation catalyzed by CYP2B6.6, the CYP2B6 variant encoded by the CYP2B6*6 polymorphism, is catalytically deficient compared with wild-type CYP2B6.1. Diminished methadone N-demethylation by CYP2B6.6 may provide a mechanistic explanation for clinical observations of altered methadone disposition in individuals carrying the CYP2B6*6 polymorphism.

  19. Characterization of feline cytochrome P450 2B6.

    PubMed

    Okamatsu, Gaku; Komatsu, Tetsuya; Ono, Yuka; Inoue, Hiroki; Uchide, Tsuyoshi; Onaga, Takenori; Endoh, Daiji; Kitazawa, Takio; Hiraga, Takeo; Uno, Yasuhiro; Teraoka, Hiroki

    2017-02-01

    1. Little is known about drug metabolism in carnivores. Although the domestic cat (Felis catus) is an obligate carnivore and is the most common companion animal, usage and dosage of many drugs are determined according to information obtained from humans and dogs. We determined the complete cDNA sequence of CYP2B6 from the feline lung. 2. Feline CYP2B6 consists of 494 deduced amino acids, showing highest identity with the dog CYP2B ortholog, followed by those of horse, pig, primate and human. 3. Feline CYP2B6 transcripts were expressed predominantly in the lung and slightly in the small intestine but not in the liver without significant sex-dependent differences. Western blot analysis with an anti-human CYP2B6 antibody confirmed the presence of CYP2B protein in the lung but not in the liver. 4. Feline CYP2B6 proteins heterologously expressed in Escherichia coli metabolized several substrates specific to human CYP2B6, including 7-ethoxy-4-(trifluoromethyl) coumarin (EFC). The metabolic activity was strongly inhibited by medetomidine and atipamezole, potent inhibitors of canine CYP2B11 (now officially CYP2B6) as well as by ticlopidine and sertraline, inhibitors selective to human CYP2B6. 5. The results suggest that feline CYP2B6 is a functional CYP2B ortholog that plays a role in the local defense mechanism in the cat respiratory system and intestine.

  20. MOLECULAR CHARACTERIZATION OF CYP2B6 SUBSTRATES

    PubMed Central

    Ekins, Sean; Iyer, Manisha; Krasowski, Matthew D.; Kharasch, Evan D.

    2008-01-01

    CYP2B6 has not been as fully characterized at the molecular level as other members of the human cytochrome P450 family. As more widely used in vitro probes for characterizing the involvement of this enzyme in the metabolism of xenobiotics have become available, the number of molecules identified as CYP2B6 substrates has increased. In this study we have analyzed the available kinetic data generated by multiple laboratories with human recombinant expressed CYP2B6 and along with calculated molecular properties derived from the ChemSpider database, we have determined the molecular features that appear to be important for CYP2B6 substrates. In addition we have applied 2D and 3D QSAR methods to generate predictive pharmacophore and 2D models. For 28 molecules with Km data, the molecular weight (mean ± SD) is 253.78±74.03, ACD/logP is 2.68±1.51, LogDpH 5.5 is 1.51±1.43, LogDpH 7.4 is 2.02±1.25, hydrogen bond donor (HBD) count is 0.57 ±0.57, hydrogen bond acceptor (HBA) count is 2.57±1.37, rotatable bonds is 3.50±2.71 and total polar surface area (TPSA) is 27.63±19.42. A second set of 15 molecules without Km data possessed similar mean molecular property values. These properties are comparable to those of a set of 21 molecules used in a previous pharmacophore modeling study (Ekins et al., J Pharmacol Exp Ther 288 (1), 21–29, 1999). Only the LogD and HBD values were statistically significantly different between these different datasets. We have shown that CYP2B6 substrates are generally small hydrophobic molecules that are frequently central nervous system active, which may be important for drug discovery research. PMID:18537573

  1. Functional characterization of CYP2B6 allelic variants in demethylation of antimalarial artemether.

    PubMed

    Honda, Masashi; Muroi, Yuka; Tamaki, Yuichiro; Saigusa, Daisuke; Suzuki, Naoto; Tomioka, Yoshihisa; Matsubara, Yoichi; Oda, Akifumi; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2011-10-01

    Artemether (AM) is one of the most effective antimalarial drugs. The elimination half-life of AM is very short, and it shows large interindividual variability in pharmacokinetic parameters. The aim of this study was to identify cytochrome P450 (P450) isozymes responsible for the demethylation of AM and to evaluate functional differences between 26 CYP2B6 allelic variants in vitro. Of 14 recombinant P450s examined in this study, CYP2B6 and CYP3A4 were primarily responsible for production of the desmethyl metabolite dihydroartemisinin. The intrinsic clearance (V(max)/K(m)) of CYP2B6 was 6-fold higher than that of CYP3A4. AM demethylation activity was correlated with CYP2B6 protein levels (P = 0.004); however, it was not correlated with CYP3A4 protein levels (P = 0.27) in human liver microsomes. Wild-type CYP2B6.1 and 25 CYP2B6 allelic variants (CYP2B6.2-CYP2B6.21 and CYP2B6.23-CYP2B6.27) were heterologously expressed in COS-7 cells. In vitro analysis revealed no enzymatic activity in 5 variants (CYP2B6.8, CYP2B6.12, CYP2B6.18, CYP2B6.21, and CYP2B6.24), lower activity in 7 variants (CYP2B6.10, CYP2B6.11, CYP2B6.14, CYP2B6.15, CYP2B6.16, CYP2B6.20, and CYP2B6.27), and higher activity in 4 variants (CYP2B6.2, CYP2B6.4, CYP2B6.6, and CYP2B6.19), compared with that of wild-type CYP2B6.1. In kinetic analysis, 3 variants (CYP2B6.2, CYP2B6.4, and CYP2B6.6) exhibited significantly higher V(max), and 3 variants (CYP2B6.14, CYP2B6.20 and CYP2B6.27) exhibited significantly lower V(max) compared with that of CYP2B6.1. This functional analysis of CYP2B6 variants could provide useful information for individualization of antimalarial drug therapy.

  2. Enantioselective inhibition of Cytochrome P450-mediated drug metabolism by a novel antithrombotic agent, S002-333: Major effect on CYP2B6.

    PubMed

    Bhateria, Manisha; Ramakrishna, Rachumallu; Puttrevu, Santosh Kumar; Saxena, Anil K; Bhatta, Rabi Sankar

    2016-08-25

    A significant number of new chemical entities (NCEs) fail in drug discovery due to inhibition of Cytochrome P450 (CYP) enzymes. Therefore, to avert costly drug failure at the clinical phase it becomes indispensable to evaluate the CYP inhibition profile of NCEs early in drug discovery. In light of these concerns, we envisioned to investigate the inhibitory effects of S002-333 [2-(4-methoxy-benzenesulfonyl)-2,3,4,9-tetrahydro-1H-b-carboxylic acid amide], a novel and potent antithrombotic agent, on nine major CYP enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4) of human liver microsomes (HLM). S002-333 exists as racemic mixture of S004-1032 (R-isomer) and S007-1558 (S-isomer), consequently, we further examined the enantioselective differences of S002-333 in the inhibition of human CYP enzymes. Of the CYP enzymes tested, CYP2B6-catalyzed bupropion 6-hydroxylation was inhibited by S002-333 (IC50 ∼ 9.25 ± 2.46 μM) in a stereoselective manner with (S)-isomer showing potent inhibition (IC50 ∼ 5.28 ± 1.25 μM) in contrast to (R)-isomer which showed negligible inhibition on CYP2B6 activity (IC50 > 50 μM). S002-333 and its (S)-isomer inhibited CYP2B6 activity in a non-competitive fashion with estimated Ki values of 10.1 ± 3.4 μM and 5.09 ± 1.05 μM, respectively. No shift in the IC50 value was observed for S002-333 and its isomers when preincubated for 30 min in the presence of NADPH suggesting that neither S002-333 nor its enantiomers are time-dependent inhibitors. Thus, the present findings signified that S002-333 is a potent stereoselective inhibitor of CYP2B6, whereas, inhibition for other CYPs was substantially negligible. These in vitro findings would be useful in deciding the development of S002-333 as a single-enantiomer or as a racemic mixture.

  3. The influence of sex, ethnicity, and CYP2B6 genotype on bupropion metabolism as an index of hepatic CYP2B6 activity in humans.

    PubMed

    Ilic, Katarina; Hawke, Roy L; Thirumaran, Ranjit K; Schuetz, Erin G; Hull, J Heyward; Kashuba, Angela D M; Stewart, Paul W; Lindley, Celeste M; Chen, Mei-Ling

    2013-03-01

    The effects of sex, ethnicity, and genetic polymorphism on hepatic CYP2B6 (cytochrome P450 2B6) expression and activity were previously demonstrated in vitro. Race/ethnic differences in CYP2B6 genotype and phenotype were observed only in women. To identify important covariates associated with interindividual variation in CYP2B6 activity in vivo, we evaluated these effects in healthy volunteers using bupropion (Wellbutrin SR GlaxoSmithKline, Research Triangle Park, NC) as a CYP2B6 probe substrate. A fixed 150-mg oral sustained-release dose of bupropion was administered to 100 healthy volunteers comprising four sex/ethnicity cohorts (n = 25 each): Caucasian men and Caucasian, African American, and Hispanic women. Blood samples were obtained at 0 and 6 hours postdose for the measurement of serum bupropion (BU) and hydroxybupropion (HB) concentrations. Whole blood was obtained at baseline for CYP2B6 genotyping. To characterize the relationship between CYP2B6 activity and ethnicity, sex, and genotype when accounting for serum BU concentrations (dose-adjusted log(10)-transformed), analysis of covariance model was fitted in which the dependent variable was CYP2B6 activity represented as the log(10)-transformed, metabolic ratio of HB to BU concentrations. Several CYP2B6 polymorphisms were associated with CYP2B6 activity. Evidence of dependence of CYP2B6 activity on ethnicity or genotype-by-ethnicity interactions was not detected in women. These results suggest that CYP2B6 genotype is the most important patient variable for predicting the level of CYP2B6 activity in women, when measured by the metabolism of bupropion. The bupropion metabolic ratio appears to detect known differences in CYP2B6 activity associated with genetic polymorphism, across different ethnic groups. Prospective studies will be needed to validate the use of bupropion as a probe substrate for clinical use.

  4. Phytoremediation of metolachlor by transgenic rice plants expressing human CYP2B6.

    PubMed

    Kawahigashi, Hiroyuki; Hirose, Sakiko; Ohkawa, Hideo; Ohkawa, Yasunobu

    2005-11-16

    We introduced the human cytochrome P450 gene CYP2B6 into rice plants (Oryza sativa L. cv. Nipponbare), and the CYP2B6-expressing rice plants became more tolerant to various herbicides than nontransgenic Nipponbare rice plants. In particular, CYP2B6 rice plants grown in soil showed tolerance to the chloroacetanilide herbicides alachlor and metolachlor. We evaluated the degradation of metolachlor by CYP2B6 rice plants to confirm the metabolic activity of the introduced CYP2B6. Although both CYP2B6 and nontransgenic Nipponbare rice plants could decrease the amount of metolachlor in plant tissue and culture medium, CYP2B6 rice plants could remove much greater amounts. In a greenhouse, the ability of CYP2B6 rice plants to remove metolachlor was confirmed in large-scale experiments, in which these plants appeared able to decrease residual quantities of metolachlor in water and soil.

  5. Pilot study of CYP2B6 genetic variation to explore the contribution of nitrosamine activation to lung carcinogenesis.

    PubMed

    Wassenaar, Catherine A; Dong, Qiong; Amos, Christopher I; Spitz, Margaret R; Tyndale, Rachel F

    2013-04-16

    We explored the contribution of nitrosamine metabolism to lung cancer in a pilot investigation of genetic variation in CYP2B6, a high-affinity enzymatic activator of tobacco-specific nitrosamines with a negligible role in nicotine metabolism. Previously we found that variation in CYP2A6 and CHRNA5-CHRNA3-CHRNB4 combined to increase lung cancer risk in a case-control study in European American ever-smokers (n = 860). However, these genes are involved in the pharmacology of both nicotine, through which they alter smoking behaviours, and carcinogenic nitrosamines. Herein, we separated participants by CYP2B6 genotype into a high- vs. low-risk group (*1/*1 + *1/*6 vs. *6/*6). Odds ratios estimated through logistic regression modeling were 1.25 (95% CI 0.68-2.30), 1.27 (95% CI 0.89-1.79) and 1.56 (95% CI 1.04-2.31) for CYP2B6, CYP2A6 and CHRNA5-CHRNA3-CHRNB4, respectively, with negligible differences when all genes were evaluated concurrently. Modeling the combined impact of high-risk genotypes yielded odds ratios that rose from 2.05 (95% CI 0.39-10.9) to 2.43 (95% CI 0.47-12.7) to 3.94 (95% CI 0.72-21.5) for those with 1, 2 and 3 vs. 0 high-risk genotypes, respectively. Findings from this pilot point to genetic variation in CYP2B6 as a lung cancer risk factor supporting a role for nitrosamine metabolic activation in the molecular mechanism of lung carcinogenesis.

  6. CYP2B6*6 is associated with increased breast cancer risk.

    PubMed

    Justenhoven, Christina; Pentimalli, Daniela; Rabstein, Sylvia; Harth, Volker; Lotz, Anne; Pesch, Beate; Brüning, Thomas; Dörk, Thilo; Schürmann, Peter; Bogdanova, Natalia; Park-Simon, Tjoung-Won; Couch, Fergus J; Olson, Janet E; Fasching, Peter A; Beckmann, Matthias W; Häberle, Lothar; Ekici, Arif; Hall, Per; Czene, Kamilla; Liu, Janjun; Li, Jingmei; Baisch, Christian; Hamann, Ute; Ko, Yon-Dschun; Brauch, Hiltrud

    2014-01-15

    The cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of testosterone. Functional changes in this enzyme may influence endogenous hormone exposure, which has been associated with risk of breast cancer. To assess potential associations between two functional polymorphisms CYP2B6_516_G>T (rs3745274) and CYP2B6_785_A>G (rs2279343) and breast cancer risk, we established a specific matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay. The GENICA breast cancer case-control study showed associations between the variant genotypes CYP2B6_516_TT and CYP2B6_785_GG and breast cancer risk with odds ratios (ORs) of 1.34 (p = 0.001) and 1.31 (p = 0.002), respectively. A similar effect was observed for carriers of the CYP2B6_516_T allele in a validation study including four independent studies from Germany, Sweden and USA. In a pooled analysis of all five studies involving 4,638 breast cancer cases and 3,594 controls of European ancestry, carriers of the CYP2B6_516_G and the CYP2B6_785_G variant had an increased breast cancer risk with ORs of 1.10 (p = 0.027) and 1.10 (p = 0.031), respectively. We conclude that the genetic variants CYP2B6_516_G and CYP2B6_785_G (designated CYP2B6*6), which are known to decrease activity of the CYP2B6 enzyme, contribute to an increased breast cancer risk.

  7. Allele and genotype frequencies of CYP2B6 in a Turkish population.

    PubMed

    Yuce-Artun, Nazan; Kose, Gulcin; Suzen, H Sinan

    2014-06-01

    Increasing interest in cytochrome P450 2B6 (CYP2B6) genetic polymorphism was stimulated by revelations of a specific CYP2B6 genotype significantly affecting the metabolism of various drugs in common clinical use in terms of increasing drug efficacy and avoiding adverse drug reactions. The present study aimed to determine the frequencies of CYP2B6*4 CYP2B6*5, CYP2B6*6, CYP2B6*7 and CYP2B6*9 alleles in healthy Turkish individuals (n = 172). Frequencies of three single nucleotide polymorphisms were 516G>T (28%), 785A>G (33%), and 1459C>T (12%). The frequencies of CYP2B6*1, *4, *5, *6, *7, and *9 alleles were 54.3 (95% CI 49.04-59.56), 6.4% (95% CI 3.81-8.99), 11% (95% CI 7.69-14.31), 25.3% (95% CI 20.71-29.89), 0.87% (95% CI -0.11-1.85) and 2.0% (95% CI 0.52-3.48), respectively. Allele *6 was more frequent (25.3%) than the other variant alleles in Turkish subjects. The frequencies of CYP2B6*4, *5, *6, *7, and *9 alleles were similar to European populations but significantly different from that reported for Asian populations. This is the first study to document the frequencies of the CYP2B6*4, *5, *6, *7, *9 alleles in the healthy Turkish individuals and our results could provide clinically useful information on drug metabolism by CYP2B6 in Turkish population.

  8. CYP2B6 non-coding variation associated with smoking cessation is also associated with differences in allelic expression, splicing, and nicotine metabolism independent of common amino-acid changes.

    PubMed

    Bloom, A Joseph; Martinez, Maribel; Chen, Li-Shiun; Bierut, Laura J; Murphy, Sharon E; Goate, Alison

    2013-01-01

    The Cytochrome P450 2B6 (CYP2B6) enzyme makes a small contribution to hepatic nicotine metabolism relative to CYP2A6, but CYP2B6 is the primary enzyme responsible for metabolism of the smoking cessation drug bupropion. Using CYP2A6 genotype as a covariate, we find that a non-coding polymorphism in CYP2B6 previously associated with smoking cessation (rs8109525) is also significantly associated with nicotine metabolism. The association is independent of the well-studied non-synonymous variants rs3211371, rs3745274, and rs2279343 (CYP2B6*5 and *6). Expression studies demonstrate that rs8109525 is also associated with differences in CYP2B6 mRNA expression in liver biopsy samples. Splicing assays demonstrate that specific splice forms of CYP2B6 are associated with haplotypes defined by variants including rs3745274 and rs8109525. These results indicate differences in mRNA expression and splicing as potential molecular mechanisms by which non-coding variation in CYP2B6 may affect enzymatic activity leading to differences in metabolism and smoking cessation.

  9. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain.

    PubMed

    Miksys, Sharon; Lerman, Caryn; Shields, Peter G; Mash, Deborah C; Tyndale, Rachel F

    2003-07-01

    CYP2B6 metabolizes drugs such as nicotine and bupropion, and many toxins and carcinogens. Nicotine induces CYP2B1 in rat brain and in humans polymorphic variation in CYP2B6 affects smoking cessation rates. The aim of this study was to compare CYP2B6 expression in brains of human smokers and non-smokers and alcoholics and non-alcoholics (n=26). CYP2B6 expression was brain region-specific, and was observed in both neurons and astrocytes. CYP2B6 levels were higher in brains of smokers and alcoholics, particularly in cerebellar Purkinje cells and hippocampal pyramidal neurons, cells known to be damaged in alcoholics. Significantly more (p<0.05) CYP2B6 protein was seen in four brain regions of smoking alcoholics compared to non-smoking non-alcoholics: hippocampus (5.8-fold), caudate nucleus (3.3-fold), putamen (3.0-fold) and cerebellar hemisphere (1.6-fold). The genetic variant C1459T (R487C) has been associated with reduced hepatic enzyme levels, stability and activity. Preliminary genotyping of this small sample (n=24) suggested that individuals with the CC genotype had higher brain CYP2B6 than those with the CT or TT genotype. Higher brain CYP2B6 activity in smokers and alcoholics may cause altered sensitivity to centrally acting drugs, increased susceptibility to neurotoxins and carcinogenic xenobiotics and contribute to central tolerance to nicotine.

  10. Polymorphic variants of cytochrome P450 2B6 (CYP2B6.4-CYP2B6.9) exhibit altered rates of metabolism for bupropion and efavirenz: a charge-reversal mutation in the K139E variant (CYP2B6.8) impairs formation of a functional cytochrome p450-reductase complex.

    PubMed

    Zhang, Haoming; Sridar, Chitra; Kenaan, Cesar; Amunugama, Hemali; Ballou, David P; Hollenberg, Paul F

    2011-09-01

    In this study, metabolism of bupropion, efavirenz, and 7-ethoxy-4-trifluoromethylcoumarin (7-EFC) by CYP2B6 wild type (CYP2B6.1) and six polymorphic variants (CYP2B6.4 to CYP2B6.9) was investigated in a reconstituted system to gain a better understanding of the effects of the mutations on the catalytic properties of these naturally occurring variants. All six variants were successfully overexpressed in Escherichia coli, including CYP2B6.8 (the K139E variant), which previously could not be overexpressed in mammalian COS-1 cells (J Pharmacol Exp Ther 311:34-43, 2004). The steady-state turnover rates for the hydroxylation of bupropion and efavirenz and the O-deethylation of 7-EFC showed that these mutations significantly alter the catalytic activities of CYP2B6. It was found that CYP2B6.6 exhibits 4- and 27-fold increases in the K(m) values for the hydroxylation of bupropion and efavirenz, respectively, and CYP2B6.8 completely loses its ability to metabolize any of the substrates under normal turnover conditions. However, compared with CYP2B6.1, CYP2B6.8 retains 77% of its 7-EFC O-deethylase activity in the presence of tert-butyl hydroperoxide as an alternative oxidant, indicating that the heme and the active site are catalytically competent. Presteady-state measurements of the rate of electron transfer from NADPH-dependent cytochrome P450 reductase (CPR) to CYP2B6.8 using stopped-flow spectrophotometry revealed that CYP2B6.8 is incapable of accepting electrons from CPR. These observations provide conclusive evidence suggesting that the charge-reversal mutation in the K139E variant prevents CYP2B6.8 from forming a functional complex with CPR. Results from this work provide further insights to better understand the genotype-phenotype correlation regarding CYP2B6 polymorphisms and drug metabolism.

  11. Variation in CYP2A6 and tobacco dependence throughout adolescence and in young adult smokers

    PubMed Central

    Chenoweth, Meghan J.; Sylvestre, Marie-Pierre; Contreras, Gisele; Novalen, Maria; O’Loughlin, Jennifer; Tyndale, Rachel F.

    2015-01-01

    Background Smoking is influenced by genetic factors including variation in CYP2A6 and CYP2B6, which encode nicotine-metabolizing enzymes. In early adolescence, CYP2A6 slow nicotine metabolism was associated with higher dependence acquisition, but reduced cigarette consumption. Here we extend this work by examining associations of CYP2A6 and CYP2B6 with tobacco dependence acquisition in a larger sample of smokers followed throughout adolescence. Methods White participants from the Nicotine Dependence in Teens cohort that had ever inhaled (n=421) were followed frequently from age 12–18 years. Cox’s proportional hazards models compared the risk of ICD-10 tobacco dependence acquisition (score 3+) for CYP2A6 and CYP2B6 metabolism groups. Early smoking experiences, as well as amount smoked at end of follow-up, was also computed. At age 24 (N=162), we assessed concordance between self-reported cigarette consumption and salivary cotinine. Results In those who initiated inhalation during follow-up, CYP2A6 slow (vs. normal) metabolizers were at greater risk of dependence (hazards ratio (HR)=2.3; 95% CI=1.1, 4.8); CYP2B6 slow (vs. normal) metabolizers had non-significantly greater risk (HR=1.5; 95% CI=0.8, 2.6). Variation in CYP2A6 or CYP2B6 was not significantly associated with early smoking symptoms or cigarette consumption at end of follow-up. At age 24, neither gene was significantly associated with dependence status. Self-reported consumption was associated with salivary cotinine, a biomarker of tobacco exposure, acquired at age 24 (B=0.37; P<0.001). Conclusions Our findings extend previous work indicating that slow nicotine metabolism mediated by CYP2A6, and perhaps CYP2B6, increases risk for tobacco dependence throughout adolescence. PMID:26644138

  12. CYP2B6 poor metaboliser alleles involved in efavirenz and nevirapine metabolism: CYP2B6*9 and CYP2B6*18 distribution in HIV-exposed subjects from Dschang, Western Cameroon.

    PubMed

    Paganotti, Giacomo Maria; Russo, Gianluca; Sobze, Martin Sanou; Mayaka, George Bouting; Muthoga, Charles Waithaka; Tawe, Leabaneng; Martinelli, Axel; Romano, Rita; Vullo, Vincenzo

    2015-10-01

    The prescription of patients' tailored anti-infectious treatments is the ultimate goal of pharmacogenetics/genomics applied to antimicrobial treatments, providing a basis for personalized medicine. Despite the efforts to screen Africans for alleles underlying defective metabolism for a panel of different drugs, still more research is necessary to clarify the interplay between host genetic variation and treatments' response. HIV is a major infectious disease in sub-Saharan African countries, and the main prescribed anti-HIV combination therapy includes efavirenz (EFV) or nevirapine (NVP). The two drugs are both mainly metabolised by cytochrome P450 2B6 liver enzyme (CYP2B6). Defective variants of CYP2B6 gene, leading to higher drug exposure with subsequent possible side effects and low compliance, are well known. However, little is known about CYP2B6 alleles in Cameroon where only one study was done on this subject. The main objective of the present work is to assess, in a subset of HIV-exposed subjects from Dschang in West Cameroon, the prevalence of two SNPs in the CYP2B6 gene: 516G>T (rs3745274) and 983T>C (rs28399499), both associated to a defective EFV and NVP metabolism. We analyzed 168 DNA samples collected during two cross-sectional surveys performed in Dschang, West Cameroon. In the population studied the observed allele frequencies of 516G>T and 983T>C were 44.35% (95%CI, 36.84-51.86%) and 12.80% (95%CI, 7.75-17.85%), respectively. Moreover, concerning the CYP2B6 expected phenotypes, 28.57% of the population showed a poor metaboliser phenotype, while 27.38% and 44.05% showed an extensive (wild-type) and an intermediate metaboliser phenotype, respectively. Here we found that an important fraction of the subjects is carrying EFV/NVP poor metaboliser alleles. Our findings could help to improve the knowledge about the previewed efficacy of anti-HIV drug therapy in Cameroon. Finally, we designed a new method of detection for the 983T>C genetic variation that

  13. Mechanism-Based Inactivation of Human Cytochrome P450 2B6 by Chlorpyrifos.

    PubMed

    D'Agostino, Jaime; Zhang, Haoming; Kenaan, Cesar; Hollenberg, Paul F

    2015-07-20

    Chlorpyrifos (CPS) is a commonly used pesticide which is metabolized by P450s into the toxic metabolite chlorpyrifos-oxon (CPO). Metabolism also results in the release of sulfur, which has been suggested to be involved in mechanism-based inactivation (MBI) of P450s. CYP2B6 was previously determined to have the greatest catalytic efficiency for CPO formation in vitro. Therefore, we characterized the MBI of CYP2B6 by CPS. CPS inactivated CYP2B6 in a time- and concentration-dependent manner with a kinact of 1.97 min(-1), a KI of 0.47 μM, and a partition ratio of 17.7. We further evaluated the ability of other organophosphate pesticides including chorpyrifos-methyl, diazinon, parathion-methyl, and azinophos-methyl to inactivate CYP2B6. These organophosphate pesticides were also potent MBIs of CYP2B6 characterized by similar kinact and KI values. The inactivation of CYP2B6 by CPS was accompanied by the loss of P450 detectable in the CO reduced spectrum and loss of detectable heme. High molecular weight aggregates were observed when inactivated CYP2B6 was run on SDS-PAGE gels indicating protein aggregation. Interestingly, we found that the rat homologue of CYP2B6, CYP2B1, was not inactivated by CPS despite forming CPO to a similar extent. On the basis of the locations of the Cys residues in the two proteins which could react with released sulfur during the metabolism of CPS, we investigated whether the C475 in CYP2B6, which is not conserved in CYP2B1, was the critical residue for inactivation by mutating it to a Ser. CYP2B6 C475S was inactivated to a similar extent as wild type CYP2B6 indicating that C475 is not likely the key difference between CYP2B1 and CYP2B6 with respect to inactivation. These results indicate that CPS and other organophosphate pesticides are potent MBIs of CYP2B6 which may have implications for the toxicity of these pesticides as well as the potential for pesticide-drug interactions.

  14. CYP2B6 18492T->C polymorphism compromises efavirenz concentration in coinfected HIV and tuberculosis patients carrying CYP2B6 haplotype *1/*1.

    PubMed

    Manosuthi, Weerawat; Sukasem, Chonlaphat; Thongyen, Supeda; Nilkamhang, Samruay; Manosuthi, Sukanya; Sungkanuparph, Somnuek

    2014-01-01

    Data regarding the effect of the CYP2B6 18492T→C polymorphism on plasma efavirenz concentrations and 96-week virologic responses in patients coinfected with HIV and tuberculosis (TB) are still unavailable. A total of 139 antiretroviral-naive HIV-infected adults with active TB were prospectively enrolled to receive efavirenz 600 mg-tenofovir 300 mg-lamivudine 300 mg. Eight single nucleotide polymorphisms (SNPs) within CYP2B6 were genotyped. Seven SNPs, including 64C→T, 499C→G, 516G→T, 785A→G, 1375A→G, 1459C→T, and 21563C→T, were included for CYP2B6 haplotype determination. The CYP2B6 18492T→C polymorphism was studied in 48 patients who carried haplotype *1/*1. At 12 and 24 weeks after antiretroviral therapy, plasma efavirenz concentrations at 12 h after dosing were measured. Plasma HIV RNA was monitored every 12 weeks for 96 weeks. Of 48 patients {body weight [mean±standard deviation (SD)], 56±10 kg}, 77% received a rifampin-containing anti-TB regimen. No drug resistance-associated mutation was detected at baseline. The frequencies of the wild type (18492TT) and the heterozygous (18492TC) and homozygous (18492CC) mutants of the CYP2B6 18492T→C polymorphism were 39%, 42%, and 19%, respectively. At 12 weeks, mean (±SD) efavirenz concentrations of patients who carried the 18492TT, 18492TC, and 18492CC mutants were 2.8±1.6, 1.7±0.9, and 1.4±0.5 mg/liter, respectively (P=0.005). At 24 weeks, the efavirenz concentrations of the corresponding groups were 2.4±0.8, 1.7±0.8, and 1.2±0.4 mg/liter, respectively (P=0.003). A low efavirenz concentration was independently associated with 18492T→C (β=-0.937, P=0.004) and high body weight (β=-0.032, P=0.046). At 96 weeks, 19%, 17%, and 28% of patients carrying the 18492TT, 18492TC, and 18492CC mutants, respectively, had plasma HIV RNA levels of >40 copies/ml and developed efavirenz-associated mutations (P=0.254). In summary, the CYP2B6 18492T→C polymorphism compromises efavirenz concentrations in

  15. Transgenic rice containing human CYP2B6 detoxifies various classes of herbicides.

    PubMed

    Hirose, Sakiko; Kawahigashi, Hiroyuki; Ozawa, Kenjirou; Shiota, Noriaki; Inui, Hideyuki; Ohkawa, Hideo; Ohkawa, Yasunobu

    2005-05-04

    The human gene for CYP2B6, a cytochrome P450 monooxygenase that inactivates xenobiotic chemicals, was introduced into Oryza sativa cv. Nipponbare by Agrobacterium-mediated transformation. At germination, R(1) seeds of transgenic rice plants expressing CYP2B6 (CYP2B6 rice) showed a high tolerance to 5 microM metolachlor, a preemergence herbicide that is degraded by CYP2B6. Thin-layer chromatography after culture with (14)C-labeled metolachlor revealed that the amounts of residual metolachlor decreased in plant tissues and the medium of CYP2B6 rice faster than those of untransformed Nipponbare. CYP2B6 rice plants were able to grow in the presence of 13 out of 17 herbicides: five chloroacetamides and mefenacet, pyributicarb, amiprofos-methyl, trifluralin, pendimethalin, norflurazon, and chlorotoluron. These herbicides differ in their modes of action and chemical structures. Transgenic rice expressing a xenobiotic-degrading human CYP2B6, which has broad substrate specificity, should be good not only for developing herbicide tolerant rice but also for reducing the environmental impact of agrochemicals.

  16. Psoralen, a mechanism-based inactivator of CYP2B6.

    PubMed

    Ji, Lin; Lu, Dan; Cao, Jiaojiao; Zheng, Liwei; Peng, Ying; Zheng, Jiang

    2015-10-05

    Furanocoumarin compound psoralen (PRN) is a major active ingredient found in herbaceous plants. PRN has been used for the treatment of various dermal diseases in China. We evaluated the inhibitory effect of PRN on cytochrome P450 2B6 (CYP2B6) and found that PRN induced a time-, concentration-, and NADPH-dependent inactivation of CYP2B6 with the values of KI and kinact being 110.2 μM and 0.200 min(-1), respectively. Ticlopidine, a CYP2B6 substrate, prevented the enzyme from the inactivation induced by PRN. Exogenous nucleophile glutathione (GSH) and catalase/superoxide dismutase showed limited protection of CYP2B6 from the inactivation. The estimated partition ratio of the inactivation was approximately 400. GSH trapping experiments indicates that an epoxide or/and γ-ketoenal intermediate was formed in microsomal incubations with PRN. In summary, PRN was characterized as a mechanism-based inactivator of CYP2B6.

  17. Inhibitory Effects of Garcinia cambogia Extract on CYP2B6 Enzyme Activity.

    PubMed

    Yu, Jun Sang; Choi, Min Sun; Park, Jong Suk; Rehman, Shaheed Ur; Nakamura, Katsunori; Yoo, Hye Hyun

    2017-03-13

    This study assessed the inhibitory effects of Garcinia cambogia extract on the cytochrome P450 enzymes in vitro. G. cambogia extract was incubated with cytochrome P450 isozyme-specific substrates in human liver microsomes and recombinant CYP2B6 isozyme, and the formation of the marker metabolites was measured to investigate the inhibitory potential on cytochrome P450 enzyme activities. The results showed that G. cambogia extract has significant inhibitory effects on CYP2B6 activity in a concentration-dependent manner. Furthermore, the inhibition was potentiated following preincubation with NADPH, indicating that G. cambogia extract is a time-dependent inhibitor of CYP2B6. Meanwhile, hydroxycitric acid, the major bioactive ingredient of G. cambogia extract, did not exhibit significant inhibition effects on cytochrome P450 enzyme activities. G. cambogia extract could modulate the pharmacokinetics of CYP2B6 substrate drugs and lead to interactions with those drugs. Therefore, caution may be required with respect to concomitant intake of dietary supplements containing G. cambogia extract with CYP2B6 substrates.

  18. Prevalence of CYP2B6 polymorphisms in Argentinians: the role of genetic testing.

    PubMed

    Scibona, P; Vazquez, C; Cajal, A R; Argibay, P F; Belloso, W H

    2015-12-11

    CYP2B6 is a highly polymorphic isoenzyme involved in the metabolism of many drugs including cyclophosphamide, bupropion, and efavirenz. A single nucleotide polymorphism (SNP) in CYP2B6 (516G>T) resulted in decreased expression and function associated with the CYP2B6*6 haplotype. Among the clinical implications of this phenotype, decreased activation of cyclophosphamide and increased plasma levels of efavirenz associated with increased central nervous system toxicity have been reported. The frequency of the CYP2B6 (516G>T) SNP has been studied in several different populations, but there is no data regarding distribution among Argentinians. In this study, 102 DNA samples from healthy volunteers were analyzed using a polymerase chain reaction-restriction fragment length polymorphism reaction specific for the CYP2B6 (516G>T) SNP. Our results showed a prevalence of 71.08% for the G allele and 28.92% for the T allele. This was distributed as 52.9% for the GG genotype (reduced dosage required), 36.6% for the GT genotype (normal dosage range), and 10.8% for the TT genotype (high drug toxicity). There was no preferential gender distribution observed. The relatively high prevalence of the TT genotype in our population supports the clinical use of genotyping as an additional tool in personalized medicine.

  19. Investigational small-molecule drug selectively suppresses constitutive CYP2B6 activity at the gene transcription level: physiologically based pharmacokinetic model assessment of clinical drug interaction risk.

    PubMed

    Zamek-Gliszczynski, Maciej J; Mohutsky, Michael A; Rehmel, Jessica L F; Ke, Alice B

    2014-06-01

    The glycogen synthase kinase-3 inhibitor LY2090314 specifically impaired CYP2B6 activity during in vitro evaluation of cytochrome P450 (P450) enzyme induction in human hepatocytes. CYP2B6 catalytic activity was significantly decreased following 3-day incubation with 0.1-10 μM LY2090314, on average by 64.3% ± 5.0% at 10 μM. These levels of LY2090314 exposure were not cytotoxic to hepatocytes and did not reduce CYP1A2 and CYP3A activities. LY2090314 was not a time-dependent CYP2B6 inhibitor, did not otherwise inhibit enzyme activity at concentrations ≤10 μM, and was not metabolized by CYP2B6. Thus, mechanism-based inactivation or other direct interaction with the enzyme could not explain the observed reduction in CYP2B6 activity. Instead, LY2090314 significantly reduced CYP2B6 mRNA levels (Imax = 61.9% ± 1.4%; IC50 = 0.049 ± 0.043 μM), which were significantly correlated with catalytic activity (r(2) = 0.87, slope = 0.77; Imax = 57.0% ± 10.8%, IC50 = 0.057 ± 0.027 μM). Direct inhibition of constitutive androstane receptor by LY2090314 is conceptually consistent with the observed CYP2B6 transcriptional suppression (Imax = 100.0% ± 10.8% and 57.1% ± 2.4%; IC50 = 2.5 ± 1.2 and 2.1 ± 0.4 μM for isoforms 1 and 3, respectively) and may be sufficiently extensive to overcome the weak but potent activation of pregnane X receptor by ≤10 μM LY2090314 (19.3% ± 2.2% of maximal rifampin response, apparent EC50 = 1.2 ± 1.1 nM). The clinical relevance of these findings was evaluated through physiologically based pharmacokinetic model simulations. CYP2B6 suppression by LY2090314 is not expected clinically, with a projected <1% decrease in hepatic enzyme activity and <1% decrease in hydroxybupropion exposure following bupropion coadministration. However, simulations showed that observed CYP2B6 suppression could be clinically relevant for a drug with different pharmacokinetic properties from LY2090314.

  20. Single Heteroatom Substitutions in the Efavirenz Oxazinone Ring Impact Metabolism by CYP2B6.

    PubMed

    Cox, Philip M; Bumpus, Namandjé N

    2016-12-06

    Previously, we observed that the oxazinone ring is important for cytochrome P450 2B6 (CYP2B6) activity toward efavirenz ((4S)-6-chloro-4-(2-cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one), a CYP2B6 substrate used to treat HIV. To further understand the structural characteristics of efavirenz that render it a CYP2B6 substrate, we tested the importance of each heteroatom of the oxazinone ring. We assembled a panel of five analogues: 6-chloro-4-(2-cyclopropylethynyl)-1,4-dihydro-2-methyl-4-(trifluoromethyl)-2H-3,1-benzoxazine (1), (4S)-6-chloro-4-[(1E)-2-cyclopropylethenyl]-3,4-dihydro-4-(trifluoromethyl)-2(1H)-quinazolinone (2), (4S)-6-chloro-4-(2-cyclopropylethynyl)-3,4-dihydro-4-(trifluoromethyl)-2(1H)-quinazolinone (3), 6-chloro-4-(cyclopropylethynyl)-3,4-dihydro-4-(trifluoromethyl)-2(1H)-quinolinone (4), and 6-chloro-4-(cyclopropylethynyl)-4-(trifluoromethyl)-4H-benzo[d][1,3]dioxin-2-one (5). The metabolism of compounds 1-5 was investigated using human liver microsomes, individual P450s, and mass spectrometry or UV/Vis absorbance detection. Steady-state analysis of CYP2B6 metabolism of 1-5 showed KM values ranging from 0.3- to 3.9-fold different from that observed for efavirenz (KM : 3.6±1.7 μm). The lowest KM values, approximating 1 μm, were observed for the metabolism of 1, whereas the greatest KM value, 14±6.4 μm, was found for 4. Our work reveals that analogues with heteroatom changes in the oxazinone ring are still CYP2B6 substrates, although the changes in KM suggest altered substrate binding.

  1. High plasma efavirenz concentration and CYP2B6 polymorphisms in Thai HIV-1 infections.

    PubMed

    Sukasem, Chonlaphat; Chamnanphon, Montri; Koomdee, Napatrupron; Puangpetch, Apichaya; Santon, Siwalee; Jantararoungtong, Thawinee; Prommas, Santirat; Chantratita, Wasun; Manosuthi, Weerawat

    2013-01-01

      Efavirenz is mainly metabolized by cytochrome P450 2B6 (CYP2B6). This study aimed to examine the frequencies of CYP2B6 and the association between CYP2B6 polymorphisms and plasma efavirenz concentrations in an HIV-1 infected Thai population. Mid-dose plasma efavirenz concentration was determined at 12 weeks following the initiation of an antiretroviral therapy (tenofovir, lamivudine and efavirenz) in 100 Thai adults with HIV-1 infection using high-performance liquid chromatography. Candidate CYP2B6 polymorphisms (c.64C>T, c.499C>G, c.516G>T, c.785A>G, c.1375A>G, c.1459C>T) were conducted by real-time PCR-based allelic discrimination. The most frequent polymorphisms among this cohort were the CYP2B6 c.785A>G and c.516G>T, which had a frequency of 0.36 and 0.32, respectively. From the cases observed, two single nucleotide polymorphisms (SNPs) (c.516G>T and c.785A>G) were significantly associated with high efavirenz plasma levels (p < 0.05). The most frequent haplotypic combinations were *1/*6, *1/*1, *1/*2 and *6/*6 at a frequency of 42.0%, 32.0%, 8.0% and 7.0%, respectively. Increased plasma concentrations of efavirenz were present in individuals with CYP2B6 *6/*6 [7.210 mg/L; interquartile range (IQR), 5.020-9.260] when compared to those with CYP2B6*1/*1 (1.570 mg/L; IQR, 1.295-2.670), p < 0.001. In our study, the impact of SNPs which are correlated with a high level of efavirenz plasma concentrations was found. The genetic configuration of SNPs which are associated with high plasma efavirenz levels may be useful in optimizing the efavirenz dose that is used in HIV-1 infected patients.

  2. CYP2B6*6 and CYP2B6*18 Predict Long-Term Efavirenz Exposure Measured in Hair Samples in HIV-Positive South African Women.

    PubMed

    Röhrich, Carola R; Drögemöller, Britt I; Ikediobi, Ogechi; van der Merwe, Lize; Grobbelaar, Nelis; Wright, Galen E B; McGregor, Nathaniel; Warnich, Louise

    2016-06-01

    Long-term exposure to efavirenz (EFV) measured in hair samples may predict response to antiretroviral treatment (ART). Polymorphisms in CYP2B6 are known to alter EFV levels. The aim of this study was to assess the relationship between CYP2B6 genotype, EFV levels measured in hair, and virological outcomes on ART in a real-world setting. We measured EFV levels in hair from HIV-positive South African females who had been receiving EFV-based treatment for at least 3 months from the South African Black (SAB) (n = 81) and Cape Mixed Ancestry (CMA) (n = 53) populations. Common genetic variation in CYP2B6 was determined in 15 individuals from each population using bidirectional Sanger sequencing. Prioritized variants (n = 16) were subsequently genotyped in the entire patient cohort (n = 134). The predictive value of EFV levels in hair and selected variants in CYP2B6 on virological treatment outcomes was assessed. Previously described alleles (CYP2B6*2, CYP2B6*5, CYP2B6*6, CYP2B6*17, and CYP2B6*18), as well as two novel alleles (CYP2B6*31 and CYP2B6*32), were detected in this study. Compared to noncarriers, individuals homozygous for CYP2B6*6 had ∼109% increased EFV levels in hair (p = .016) and CYP2B6*18 heterozygotes demonstrated 82% higher EFV hair levels (p = .0006). This study confirmed that alleles affecting CYP2B6 metabolism and subsequent EFV exposure are present at significant frequencies in both the SAB and CMA populations. Furthermore, this study demonstrated that the use of hair samples for testing EFV concentrations may be a useful tool in determining long-term drug exposure in resource-limited countries.

  3. Equine cytochrome P450 2B6 — Genomic identification, expression and functional characterization with ketamine

    SciTech Connect

    Peters, L.M.; Demmel, S.; Pusch, G.; Buters, J.T.M.; Zielinski, J.; Leeb, T.; Mevissen, M.; Schmitz, A.

    2013-01-01

    Ketamine is an anesthetic and analgesic regularly used in veterinary patients. As ketamine is almost always administered in combination with other drugs, interactions between ketamine and other drugs bear the risk of either adverse effects or diminished efficacy. Since cytochrome P450 enzymes (CYPs) play a pivotal role in the phase I metabolism of the majority of all marketed drugs, drug–drug interactions often occur at the active site of these enzymes. CYPs have been thoroughly examined in humans and laboratory animals, but little is known about equine CYPs. The characterization of equine CYPs is essential for a better understanding of drug metabolism in horses. We report annotation, cloning and heterologous expression of the equine CYP2B6 in V79 Chinese hamster fibroblasts. After computational annotation of all CYP2B genes, the coding sequence (CDS) of equine CYP2B6 was amplified by RT-PCR from horse liver total RNA and revealed an amino acid sequence identity of 77% and a similarity of 93.7% to its human ortholog. A non-synonymous variant c.226G>A in exon 2 of the equine CYP2B6 was detected in 97 horses. The mutant A-allele showed an allele frequency of 82%. Two further variants in exon 3 were detected in one and two horses of this group, respectively. Transfected V79 cells were incubated with racemic ketamine and norketamine as probe substrates to determine metabolic activity. The recombinant equine CYP2B6 N-demethylated ketamine to norketamine and produced metabolites of norketamine, such as hydroxylated norketamines and 5,6-dehydronorketamine. V{sub max} for S-/and R-norketamine formation was 0.49 and 0.45 nmol/h/mg cellular protein and K{sub m} was 3.41 and 2.66 μM, respectively. The N-demethylation of S-/R-ketamine was inhibited concentration-dependently with clopidogrel showing an IC{sub 50} of 5.63 and 6.26 μM, respectively. The functional importance of the recorded genetic variants remains to be explored. Equine CYP2B6 was determined to be a CYP

  4. Photoelectron Spectroscopy Study of [Ta2B6]-: a Hexagonal Bipyramdial Cluster

    NASA Astrophysics Data System (ADS)

    Jian, Tian; Li, Weili; Romanescu, Constantin; Wang, Lai-Sheng

    2014-06-01

    It has been a long-sought goal in cluster science to discover stable atomic clusters as building blocks for cluster-assembled nanomaterials, as exemplified by the fullerenes and their subsequent bulk syntheses.[1,2] Clusters have also been considered as models to understand bulk properties, providing a bridge between molecular and solid-state chemistry.[3] Herein we report a joint photoelectron spectroscopy and theoretical study on the [Ta2B6]- and [Ta2B6] clusters.[4] The photoelectron spectrum of [Ta2B6]- displays a simple spectral pattern and a large HOMO-LUMO gap, suggesting its high symmetry. Theoretical calculations show that both the neutral and anion are D6h pyramidal. The chemical bonding analyses for [Ta2B6] revealed the nature of the B6 and Ta interactions and uncovered strong covalent bonding between B6 and Ta. The D6h-[TaB6Ta] gaseous cluster is reminiscent of the structural pattern in the ReB6X6Re core in the [(Cp*Re)2B6H4Cl2] and the TiB6Ti motif in the newly synthesized Ti7Rh4Ir2B8 solid-state compound.[5,6] The current work provides an intrinsic link between a gaseous cluster and motifs for solid materials. Continued investigations of the transition-metal boron clusters may lead to the discovery of new structural motifs involving pure boron clusters for the design of novel boride materials. Reference [1] H.W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162 - 163. [2] W. Krtschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 1990, 347, 354 - 358. [3] T. P. Fehlner, J.-F. Halet, J.-Y. Saillard, Molecular Clusters: A Bridge to Solid-State Chemitry, Cambridge University Press, UK, 2007. [4] W. L. Li, L. Xie, T. Jian, C. Romanescu, X. Huang, L.-S. Wang, Angew. Chem. Int. Ed. 2014, 126, 1312 - 1316. [5] B. Le Guennic, H. Jiao, S. Kahlal, J.-Y. Saillard, J.-F. Halet, S. Ghosh, M. Shang, A. M. Beatty, A. L. Rheingold, T. P. Fehlner, J. Am. Chem. Soc. 2004, 126, 3203 - 3217. [6] B. P. T. Fokwa, M. Hermus, Angew

  5. The CYP2B6*6 allele significantly alters the N-demethylation of ketamine enantiomers in vitro.

    PubMed

    Li, Yibai; Coller, Janet K; Hutchinson, Mark R; Klein, Kathrin; Zanger, Ulrich M; Stanley, Nathan J; Abell, Andrew D; Somogyi, Andrew A

    2013-06-01

    Ketamine is primarily metabolized to norketamine by hepatic CYP2B6 and CYP3A4-mediated N-demethylation. However, the relative contribution from each enzyme remains controversial. The CYP2B6*6 allele is associated with reduced enzyme expression and activity that may lead to interindividual variability in ketamine metabolism. We examined the N-demethylation of individual ketamine enantiomers using human liver microsomes (HLMs) genotyped for the CYP2B6*6 allele, insect cell-expressed recombinant CYP2B6 and CYP3A4 enzymes, and COS-1 cell-expressed recombinant CYP2B6.1 and CYP2B6.6 protein variant. Effects of CYP-selective inhibitors on norketamine formation were also determined in HLMs. The two-enzyme Michaelis-Menten model best fitted the HLM kinetic data. The Michaelis-Menten constants (K(m)) for the high-affinity enzyme and the low-affinity enzyme were similar to those for the expressed CYP2B6 and CYP3A4, respectively. The intrinsic clearance for both ketamine enantiomers by the high-affinity enzyme in HLMs with CYP2B6*1/*1 genotype were at least 2-fold and 6-fold higher, respectively, than those for CYP2B6*1/*6 genotype and CYP2B6*6/*6 genotype. The V(max) and K(m) values for CYP2B6.1 were approximately 160 and 70% of those for CYP2B6.6, respectively. N,N'N'-triethylenethiophosphoramide (thioTEPA) (CYP2B6 inhibitor, 25 μM) and the monoclonal antibody against CYP2B6 but not troleandomycin (CYP3A4 inhibitor, 25 μM) or the monoclonal antibody against CYP3A4 inhibited ketamine N-demethylation at clinically relevant concentrations. The degree of inhibition was significantly reduced in HLMs with the CYP2B6*6 allele (gene-dose P < 0.05). These results indicate a major role of CYP2B6 in ketamine N-demethylation in vitro and a significant impact of the CYP2B6*6 allele on enzyme-ketamine binding and catalytic activity.

  6. Effect of CYP2B6*6 and CYP2C19*2 genotype on chlorpyrifos metabolism.

    PubMed

    Crane, Alice L; Klein, Kathrin; Zanger, Ulrich M; Olson, James R

    2012-03-11

    Chlorpyrifos (CPF) is a widely used organophosphorus (OP) pesticide. CPF is bioactivated by cytochrome P450s (CYPs) to the potent cholinesterase inhibitor chlorpyrifos oxon (CPF-O) or detoxified to 3,5,6-trichloro-2-pyridinol (TCPy). Human CYP2B6 has the highest reported Vmax)/Km (intrinsic clearance--CL(int)) for bioactivation while CYP2C19 has the highest reported CL(int) for detoxification of CPF. In this study, 22 human liver microsomes (HLMs) genotyped for common variants of these enzymes (CYP2B6*6 and CYP2C19*2) were incubated with 10 μM and 0.5 μM CPF and assayed for metabolite production. While no differences in metabolite production were observed in homozygous CYP2C19*2 HLMs, homozygous CYP2B6*6 specimens produced significantly less CPF-O than wild-type specimens at 10 μM (mean 144 and 446 pmol/min/mg, respectively). This correlated with reduced expression of CYP2B6 protein (mean 4.86 and 30.1 pmol/mg, for CYP2B6*6 and *1, respectively). Additionally, CYP2B6*1 and CYP2B6*6 were over-expressed in mammalian COS-1 cells to assess for the first time the impact of the CYP2B6*6 variant on the kinetic parameters of CPF bioactivation. The Vmax for CYP2B6*6 (1.05×10⁵ pmol/min/nmol CYP2B6) was significantly higher than that of CYP2B6*1 (4.13×10⁴ pmol/min/nmol CYP2B6) but the K(m) values did not differ (1.97 μM for CYP2B6*6 and 1.84 μM for CYP2B6*1) resulting in CL(int) rates of 53.5 and 22.5 nL/min/nmol CYP2B6 for *6 and *1, respectively. These data suggest that CYP2B6*6 has increased specific activity but reduced capacity to bioactivate CPF in HLMs compared to wild-type due to reduced hepatic protein expression, indicating that individuals with this genotype may be less susceptible to CPF toxicity.

  7. Transcriptional Regulation of CYP2B6 Expression by Hepatocyte Nuclear Factor 3β in Human Liver Cells.

    PubMed

    Li, Linhao; Li, Daochuan; Heyward, Scott; Wang, Hongbing

    2016-01-01

    CYP2B6 plays an increasingly important role in xenobiotic metabolism and detoxification. The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) have been established as predominant regulators for the inductive expression of CYP2B6 gene in human liver. However, there are dramatic interindividual variabilities in CYP2B6 expression that cannot be fully explained by the CAR/PXR-based modulation alone. Here, we show that expression level of CYP2B6 was correlated with that of hepatocyte nuclear factor 3β (HNF3β) in human primary hepatocytes prepared from 35 liver donors. Utilizing recombinant virus-mediated overexpression or knockdown of HNF3β in HepG2 cells, as well as constructs containing serial deletion and site-directed mutation of HNF3β binding motifs in CYP2B6 luciferase reporter assays, we demonstrated that the presence or lack of HNF3β expression markedly correlated with CYP2B6 gene expression and its promoter activity. Novel enhancer modules of HNF3β located upstream of the CYP2B6 gene transcription start site were identified and functionally validated as key elements governing HNF3β-mediated CYP2B6 expression. Chromatin immunoprecipitation assays in human primary hepatocytes and surface plasmon resonance binding affinity experiments confirmed the essential role of these enhancers in the recruitment of HNF3β to the promoter of CYP2B6 gene. Overall, these findings indicate that HNF3β represents a new liver enriched transcription factor that is involved in the transcription of CYP2B6 gene and contributes to the large interindividual variations of CYP2B6 expression in human population.

  8. New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis

    PubMed Central

    Korhonen, L E; Turpeinen, M; Rahnasto, M; Wittekindt, C; Poso, A; Pelkonen, O; Raunio, H; Juvonen, R O

    2007-01-01

    Background and purpose: The cytochrome P450 2B6 (CYP2B6) enzyme metabolises a number of clinically important drugs. Drug-drug interactions resulting from inhibition or induction of CYP2B6 activity may cause serious adverse effects. The aims of this study were to construct a three-dimensional structure-activity relationship (3D-QSAR) model of the CYP2B6 protein and to identify novel potent and selective inhibitors of CYP2B6 for in vitro research purposes. Experimental approach: The inhibition potencies (IC50 values) of structurally diverse chemicals were determined with recombinant human CYP2B6 enzyme. Two successive models were constructed using Comparative Molecular Field Analysis (CoMFA). Key results: Three compounds proved to be very potent and selective competitive inhibitors of CYP2B6 in vitro (IC50<1 μM): 4-(4-chlorobenzyl)pyridine (CBP), 4-(4-nitrobenzyl)pyridine (NBP), and 4-benzylpyridine (BP). A complete inhibition of CYP2B6 activity was achieved with 0.1 μM CBP, whereas other CYP-related activities were not affected. Forty-one compounds were selected for further testing and construction of the final CoMFA model. The created CoMFA model was of high quality and predicted accurately the inhibition potency of a test set (n=7) of structurally diverse compounds. Conclusions and implications: Two CoMFA models were created which revealed the key molecular characteristics of inhibitors of the CYP2B6 enzyme. The final model accurately predicted the inhibitory potencies of several structurally unrelated compounds. CBP, BP and NBP were identified as novel potent and selective inhibitors of CYP2B6 and CBP especially is a suitable inhibitor for in vitro screening studies. PMID:17325652

  9. Characterization of CYP2B6 in a CYP2B6-humanized mouse model: inducibility in the liver by phenobarbital and dexamethasone and role in nicotine metabolism in vivo.

    PubMed

    Liu, Zhihua; Li, Lei; Wu, Hong; Hu, Jing; Ma, Jun; Zhang, Qing-Yu; Ding, Xinxin

    2015-02-01

    The aim of this study was to further characterize the expression and function of human CYP2B6 in a recently generated CYP2A13/2B6/2F1-transgenic (TG) mouse model, in which CYP2B6 is expressed selectively in the liver. The inducibility of CYP2B6 by phenobarbital (PB) and dexamethasone (DEX), known inducers of CYP2B6 in human liver, was examined in the TG mice, as well as in TG/Cyp2abfgs-null (or "CYP2B6-humanized") mice. Hepatic expression of CYP2B6 mRNA and protein was greatly induced by PB or DEX treatment in both TG and TG/Cyp2abfgs-null mice. Function of the transgenic CYP2B6 was first studied using bupropion as a probe substrate. In PB-treated mice, the rates of hepatic microsomal hydroxybupropion formation (at 50 μM bupropion) were >4-fold higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice (for both male and female mice); the rate difference was accompanied by a 5-fold higher catalytic efficiency in the TG/Cyp2abfgs-null mice and was abolished by an antibody to CYP2B6. The ability of CYP2B6 to metabolize nicotine was then examined, both in vitro and in vivo. The rates of hepatic microsomal cotinine formation from nicotine were significantly higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice, pretreated with PB or DEX. Furthermore, systemic nicotine metabolism was faster in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice. Thus, the transgenic CYP2B6 was inducible and functional, and, in the absence of mouse CYP2A and CYP2B enzymes, it contributed to nicotine metabolism in vivo. The CYP2B6-humanized mouse will be valuable for studies on in vivo roles of hepatic CYP2B6 in xenobiotic metabolism and toxicity.

  10. Allele and genotype frequencies of CYP2B6 and CYP2C19 polymorphisms in Egyptian agricultural workers.

    PubMed

    Ellison, Corie A; Abou El-Ella, Soheir S; Tawfik, Maha; Lein, Pamela J; Olson, James R

    2012-01-01

    Genetic variability in cytochrome P-450 (CYP) has the potential to modify pharmacological and toxicological responses to many chemicals. Both CYP2B6 and CYP2C19 are pharmacologically and toxicologically relevant due to their ability to metabolize multiple drugs and environmental contaminants, including the organophosphorus (OP) pesticide chlorpyrifos. The aim of this study was to determine the prevalence of CYP2B6 and CYP2C19 variants in an indigenous Egyptian population (n = 120) that was shown to be occupationally exposed to chlorpyrifos. Further, the genotyping data was compared for Egyptians with previously studied populations to determine between population differences. Allelic frequencies were CYP2B6 1459C > T (3.8%), CYP2B6 785A > G (30.4%), CYP2B6 516G > T (28.8%), CYP2C19 681G > A (3.8%), and CYP2C19 431G > A (0%). The most prevalent CYP2B6 genotype combinations were CYP2B6 *1/*1 (44%), *1/*6 (38%), *6/*6 (8%), and *1/*5 (6%). The frequency of the CYP2C19 genotype combinations were CYP2C19 *1/*1 (93%), *1/*2 (6%), and *2/*2 (1%). The frequency of the CYP2B6 516G > T and CYP2B6 785A > G polymorphisms in this Egyptian cohort is similar to that found North American and European populations but significantly different from that reported for West African populations, while that of CYP2B6 1459C > T is similar to that found in Africans and African Americans. The observed frequency of CYP2C19 681G > A in Egyptians is similar to that of African pygmies but significantly different from other world populations, while CYP2C19 431 G > A was significantly different from that of African pygmies but similar to other world populations.

  11. CYP2B6 gene single-nucleotide polymorphisms in an Italian population sample and relationship with nicotine dependence.

    PubMed

    Riccardi, Laura Natalia; Carano, Francesco; Bini, Carla; Ceccardi, Stefania; Ferri, Gianmarco; Pelotti, Susi

    2015-02-01

    The extensively polymorphic CYP2B6 gene metabolizes endogenous and exogenous compounds, among which are nicotine and bupropion, although its contribution to the systemic metabolism of nicotine still remains controversial. In the present study, the distribution of the CYP2B6 variant and genotype frequencies were analyzed in a sample of 202 Italian individuals who were also invited to answer the Fagerström test for nicotine dependence (FTND), in an effort to assess the involvement of CYP2B6 polymorphisms in nicotine dependence. Eight single-nucleotide polymorphisms of CYP2B6 were tested and seven different variants were identified showing frequencies similar to the European population. The reduced activity of the CYP2B6*6 variant was significantly (p=0.025) distributed among the nicotine-dependent individuals compared to non-nicotine dependents. Also, the CYP2B6*1/*6 genotype achieved statistical significance (p=0.016) within the nicotine-dependent individuals. The high occurrence of CYP2B6*6 carriers among nicotine-dependent individuals may suggest a possible involvement in nicotine dependence, with a potential impact on smoking cessation treatments tailored to the individual smoker's genotype.

  12. Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver--A comparison with other phenothiazines.

    PubMed

    Wójcikowski, Jacek; Boksa, Jan; Daniel, Władysława A

    2010-10-15

    The aim of the present study was to identify cytochrome P450 (CYP) isoenzymes involved in the 5-sulfoxidation, mono-N-demethylation and di-N-demethylation of the aliphatic-type phenothiazine neuroleptic chlorpromazine in human liver. Experiments were performed in vitro using cDNA-expressed human CYP isoforms (Supersomes 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4), liver microsomes from different donors and CYP-selective inhibitors. The obtained results indicate that CYP1A2 is the only CYP isoform that catalyzes the mono-N-demethylation and di-N-demethylation of chlorpromazine (100%) and is the main isoform responsible for chlorpromazine 5-sulfoxidation (64%) at a therapeutic concentration of the drug (10 microM). CYP3A4 contributes to a lesser degree to chlorpromazine 5-sulfoxidation (34%). The role of CYP2B6, CYP2C19 and CYP2D6 in catalyzing of the latter reaction is negligible (0.1-2%). Similar results were obtained at a higher, non-therapeutic concentration of the drug (100 microM); however, the contribution of CYP1A2 to chlorpromazine mono-N-demethylation was noticeably lower (75%), mostly in favour of CYP2C19 and CYP3A4 (about 12% each). The obtained results indicate that the catalysis of chlorpromazine N-demethylation and 5-sulfoxidation in humans exhibits a stricter CYP1A2 preference compared to the previously tested phenothiazines (promazine, perazine, and thioridazine). Hence pharmacokinetic interactions involving chlorpromazine and CYP1A2 substrates and inhibitors are likely to occur. Considering strong dopaminergic D(2), noradrenergic alpha(1) and cholinergic M(1) receptor blocking properties of chlorpromazine and some of its metabolites, as well as their serious side effects, the obtained results may be of pharmacological and clinical importance.

  13. Mechanism-Based Inactivation of Cytochrome P450 2B6 by Methadone through Destruction of Prosthetic Heme

    PubMed Central

    Amunugama, Hemali T.; Zhang, Haoming

    2012-01-01

    Methadone is a μ-opioid receptor agonist widely used in the treatment of narcotic addiction and chronic pain conditions. Methadone is metabolized predominantly in the liver by cytochromes P450 to its pharmacologically inactive primary metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine. Initial in vitro data suggested that CYP3A4 is the major isoform responsible for the in vivo clearance of methadone in humans. However, recent clinical data have indicated that CYP2B6 is actually the major isoform responsible for methadone metabolism and clearance in vivo. In this study, methadone was shown to act as a mechanism-based inactivator of CYP2B6. Methadone inactivates CYP2B6 in a time-, concentration-, and NADPH-dependent manner with a KI = 10.0 μM and kinact = 0.027 min−1. The loss of CYP2B6 activity in the presence of methadone and NADPH occurred with concomitant loss of the reduced CO spectrum of the P450. Moreover, there was good correlation between the loss of CYP2B6 activity and the loss of the CO-binding spectrum. High-performance liquid chromatography analysis of the native heme of the inactivated CYP2B6 demonstrated that approximately 75% loss of heme was accompanied by comparable inactivation of CYP2B6. Liquid chromatography-mass spectrometry analysis did not reveal the formation of a protein adduct during the inactivation. The evidence strongly suggests that destruction of prosthetic heme is the underlying mechanism leading to the inactivation of CYP2B6 by methadone. PMID:22685215

  14. Mechanism-based inactivation of cytochrome P450 2B6 by methadone through destruction of prosthetic heme.

    PubMed

    Amunugama, Hemali T; Zhang, Haoming; Hollenberg, Paul F

    2012-09-01

    Methadone is a μ-opioid receptor agonist widely used in the treatment of narcotic addiction and chronic pain conditions. Methadone is metabolized predominantly in the liver by cytochromes P450 to its pharmacologically inactive primary metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine. Initial in vitro data suggested that CYP3A4 is the major isoform responsible for the in vivo clearance of methadone in humans. However, recent clinical data have indicated that CYP2B6 is actually the major isoform responsible for methadone metabolism and clearance in vivo. In this study, methadone was shown to act as a mechanism-based inactivator of CYP2B6. Methadone inactivates CYP2B6 in a time-, concentration-, and NADPH-dependent manner with a K(I) = 10.0 μM and k(inact) = 0.027 min⁻¹. The loss of CYP2B6 activity in the presence of methadone and NADPH occurred with concomitant loss of the reduced CO spectrum of the P450. Moreover, there was good correlation between the loss of CYP2B6 activity and the loss of the CO-binding spectrum. High-performance liquid chromatography analysis of the native heme of the inactivated CYP2B6 demonstrated that approximately 75% loss of heme was accompanied by comparable inactivation of CYP2B6. Liquid chromatography-mass spectrometry analysis did not reveal the formation of a protein adduct during the inactivation. The evidence strongly suggests that destruction of prosthetic heme is the underlying mechanism leading to the inactivation of CYP2B6 by methadone.

  15. High-resolution melt analysis to detect sequence variations in highly homologous gene regions: application to CYP2B6.

    PubMed

    Twist, Greyson P; Gaedigk, Roger; Leeder, J Steven; Gaedigk, Andrea

    2013-06-01

    High-resolution melt (HRM) analysis using 'release-on-demand' dyes, such as EvaGreen(®) has the potential to resolve complex genotypes in situations where genotype interpretation is complicated by the presence of pseudogenes or allelic variants in close proximity to the locus of interest. We explored the utility of HRM to genotype a SNP (785A>G, K262R, rs2279343) that is located within exon 5 of the CYP2B6 gene, which contributes to the metabolism of a number of clinically used drugs. Testing of 785A>G is challenging, but crucial for accurate genotype determination. This SNP is part of multiple known CYP2B6 haplotypes and located in a region that is identical to CYP2B7, a nonfunctional pseudogene. Because small CYP2B6-specific PCR amplicons bracketing 785A>G cannot be generated, we simultaneously amplified both genes. A panel of 235 liver tissue DNAs and five Coriell samples were assessed. Eight CYP2B6/CYP2B7 diplotype combinations were found and a novel variant 769G>A (D257N) was discovered. The frequency of 785G corresponded to those reported for Caucasians and African-Americans. Assay performance was confirmed by CYP2B6 and/or CYP2B7 sequence analysis in a subset of samples, using a preamplified CYP2B6-specific long-range-PCR amplicon as HRM template. Inclusion rather than exclusion of a homologous pseudogene allowed us to devise a sensitive, reliable and affordable assay to test this CYP2B6 SNP. This assay design may be utilized to overcome the challenges and limitations of other methods. Owing to the flexibility of HRM, this assay design can easily be adapted to other gene loci of interest.

  16. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    SciTech Connect

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.; Gardiner, Catherine S.; Cao Yan; Rose, Randy L.; Wallace, Andrew D.

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 {mu}M. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 {mu}M. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 {mu}M, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 {mu}M and 10 {mu}M, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.

  17. CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction.

    PubMed

    Levran, Orna; Peles, Einat; Hamon, Sara; Randesi, Matthew; Adelson, Miriam; Kreek, Mary Jeanne

    2013-07-01

    Adequate methadone dosing in methadone maintenance treatment (MMT) for opioid addiction is critical for therapeutic success. One of the challenges in dose determination is the inter-individual variability in dose-response. Methadone metabolism is attributed primarily to cytochrome P450 enzymes CYP3A4, CYP2B6 and CYP2D6. The CYP2B6*6 allele [single nucleotide polymorphisms (SNPs) 785A>G (rs2279343) and 516G>T (rs3745274)] was associated with slow methadone metabolism. To explore the effects of CYP2B6*6 allele on methadone dose requirement, it was genotyped in a well-characterized sample of 74 Israeli former heroin addicts in MMT. The sample is primarily of Middle Eastern/European ancestry, based on ancestry informative markers (AIMs). Only patients with no major co-medication that may affect methadone metabolism were included. The stabilizing daily methadone dose in this sample ranges between 13 and 260mg (mean 140±52mg). The mean methadone doses required by subjects homozygous for the variant alleles of the CYP2B6 SNPs 785A>G and 516G>T (88, 96mg, respectively) were significantly lower than those of the heterozygotes (133, 129mg, respectively) and the non-carriers (150, 151mg, respectively) (nominal P=0.012, 0.048, respectively). The results remain significant after controlling for age, sex and the ABCB1 SNP 1236C>T (rs1128503), which was previously shown to be associated with high methadone dose requirement in this population (P=0.006, 0.030, respectively). An additional 77 CYP2B6, CYP3A4 and CYP2D6 SNPs were genotyped. Of these, 24 SNPs were polymorphic and none showed significant association with methadone dose. Further studies are necessary to replicate these preliminary findings in additional subjects and other populations.

  18. The effect of ritonavir on human CYP2B6 catalytic activity: heme modification contributes to the mechanism-based inactivation of CYP2B6 and CYP3A4 by ritonavir.

    PubMed

    Lin, Hsia-lien; D'Agostino, Jaime; Kenaan, Cesar; Calinski, Diane; Hollenberg, Paul F

    2013-10-01

    The mechanism-based inactivation of human CYP2B6 by ritonavir (RTV) in a reconstituted system was investigated. The inactivation is time, concentration, and NADPH dependent and exhibits a K(I) of 0.9 μM, a k(inact) of 0.05 min⁻¹, and a partition ratio of approximately 3. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the protonated molecular ion of RTV exhibits an m/z at 721 and its two major metabolites are an oxidation product with MH⁺ at m/z 737 and a deacylated product with MH⁺ at m/z 580. Inactivation of CYP2B6 by incubation with 10 μM RTV for 10 min resulted in an approximately 50% loss of catalytic activity and native heme, but no modification of the apoprotein was observed. RTV was found to be a potent mixed-type reversible inhibitor (K(i) = 0.33 μM) and a type II ligand (spectral dissociation constant-K(s) = 0.85 μM) of CYP2B6. Although previous studies have demonstrated that RTV is a potent mechanism-based inactivator of CYP3A4, the molecular mechanism responsible for the inactivation has not been determined. Here, we provide evidence that RTV inactivation of CYP3A4 is due to heme destruction with the formation of a heme-protein adduct. Similar to CYP2B6, there is no significant modification of the apoprotein. Furthermore, LC-MS/MS analysis revealed that both CYP3A4 and human liver microsomes form an RTV-glutathione conjugate having a MH⁺ at m/z 858 during metabolism of RTV, suggesting the formation of an isocyanate intermediate leading to formation of the conjugate.

  19. CCAAT/Enhancer-binding Protein α (C/EBPα) and Hepatocyte Nuclear Factor 4α (HNF4α) Synergistically Cooperate with Constitutive Androstane Receptor to Transactivate the Human Cytochrome P450 2B6 (CYP2B6) Gene

    PubMed Central

    Benet, Marta; Lahoz, Agustín; Guzmán, Carla; Castell, José V.; Jover, Ramiro

    2010-01-01

    The transcription of tissue-specific and inducible genes is usually subject to the dynamic control of multiple activators. Dedifferentiated hepatic cell lines lose the expression of tissue-specific activators and many characteristic hepatic genes, such as drug-metabolizing cytochrome P450. Here we demonstrate that by combining adenoviral vectors for CCAAT/enhancer-binding protein α (C/EBPα), hepatocyte nuclear factor 4α (HNF4α), and constitutive androstane receptor, the CYP2B6 expression and inducibility by CITCO are restored in human hepatoma HepG2 cells at levels similar to those in cultured human hepatocytes. Moreover, several other phase I and II genes are simultaneously activated, which suggests that this is an effective approach to endow dedifferentiated human hepatoma cells with a particular metabolic competence and response to inducers. In order to gain insight into the molecular mechanism, we examined the cooperation of these three transcription factors on the CYP2B6 5′-flanking region. We show new CYP2B6-responsive sequences for C/EBPα and HNF4α and a novel synergistic regulatory mechanism whereby C/EBPα, HNF4α, and constitutive androstane receptor bind and cooperate through proximal and distal response elements to confer a maximal level of expression. The results obtained from human liver also suggest that important differences in the expression and binding of C/EBPα and HNF4α could account for the large interindividual variability of the hepatic CYP2B6 enzyme, which metabolizes commonly used drugs. PMID:20622021

  20. Developmental Expression of CYP2B6: A Comprehensive Analysis of mRNA Expression, Protein Content and Bupropion Hydroxylase Activity and the Impact of Genetic Variation.

    PubMed

    Pearce, Robin E; Gaedigk, Roger; Twist, Greyson P; Dai, Hongying; Riffel, Amanda K; Leeder, J Steven; Gaedigk, Andrea

    2016-07-01

    Although CYP2B6 catalyzes the biotransformation of many drugs used clinically for children and adults, information regarding the effects of development on CYP2B6 expression and activity are scarce. Utilizing a large panel of human liver samples (201 donors: 24 fetal, 141 pediatric, and 36 adult), we quantified CYP2B6 mRNA and protein expression levels, characterized CYP2B6 (bupropion hydroxylase) activity in human liver microsomes (HLMs), and performed an extensive genotype analysis to differentiate CYP2B6 haplotypes such that the impact of genetic variation on these parameters could be assessed. Fetal livers contained extremely low levels of CYP2B6 mRNA relative to postnatal samples and fetal HLMs did not appear to catalyze bupropion hydroxylation; however, fetal CYP2B6 protein levels were not significantly different from postnatal levels. Considerable interindividual variation in CYP2B6 mRNA expression, protein levels, and activity was observed in postnatal HLMs (mRNA, ∼40,000-fold; protein, ∼300-fold; activity, ∼600-fold). The extremely wide range of interindividual variability in CYP2B6 expression and activity was significantly associated with age (P < 0.01) following log transformation of the data. Our data suggest that CYP2B6 activity appears as early as the first day of life, increases through infancy, and by 1 year of age, CYP2B6 levels and activity may approach those of adults. Surprisingly, CYP2B6 interindividual variability was not significantly associated with genetic variation in CYP2B6, nor was it associated with differences in gender or ethnicity, suggesting that factors other than these are largely responsible for the wide range of variability in CYP2B6 expression and activity observed among a large group of individuals/samples.

  1. CYP2B6 pharmacogenetics-based in vitro-in vivo extrapolation of efavirenz clearance by physiologically based pharmacokinetic modeling.

    PubMed

    Xu, Cong; Quinney, Sara K; Guo, Yingying; Hall, Stephen D; Li, Lang; Desta, Zeruesenay

    2013-12-01

    Efavirenz is mainly cleared by CYP2B6. The CYP2B6*6 allele is associated with lower efavirenz clearance. Efavirenz clearance was predictable using in vitro data for carriers of the CYP2B6*1/*1 genotype, but the prediction in carriers of the CYP2B6*6 allele was poor. To test the hypothesis that incorporation of mechanism of reduced efavirenz metabolism by the CYP2B6*6 allele can predict the genetic effect on efavirenz pharmacokinetics, in vitro-in vivo extrapolation of efavirenz clearance was performed by physiologically based pharmacokinetic modeling (Simcyp Simulator; Simcyp Ltd., Sheffield, UK) using data obtained from expressed CYP2B6.1 and CYP2B6.6 as well as human liver microsomes (HLMs) with CYP2B6*1/*1, *1/*6, and *6/*6 genotypes. Simulated pharmacokinetics of a single 600-mg oral dose of efavirenz for individuals with each genotype was compared with data observed in healthy subjects genotyped for the CYP2B6*6 allele (n = 20). Efavirenz clearance for carriers of the CYP2B6*1/*1 genotype was predicted reasonably well using HLM data, but the clearance in carriers of the CYP2B6*6 allele was underpredicted using both expressed and HLM systems. Improved prediction of efavirenz clearance was obtained from expressed CYP2B6 after recalculating intersystem extrapolation factors for CYP2B6.1 and CYP2B6.6 based on in vitro intrinsic clearance of bupropion 4-hydroxylation. These findings suggest that genetic effect on both CYP2B6 protein expression and catalytic efficiency needs to be taken into account for the prediction of pharmacokinetics in individuals carrying the CYP2B6*6/*6 genotype. Expressed CYP2B6 proteins may be a reliable in vitro system to predict effect of the CYP2B6*6 allele on the metabolism of CYP2B6 substrates.

  2. CYP2B6 Pharmacogenetics–Based In Vitro–In Vivo Extrapolation of Efavirenz Clearance by Physiologically Based Pharmacokinetic Modeling

    PubMed Central

    Xu, Cong; Quinney, Sara K.; Guo, Yingying; Hall, Stephen D.; Li, Lang

    2013-01-01

    Efavirenz is mainly cleared by CYP2B6. The CYP2B6*6 allele is associated with lower efavirenz clearance. Efavirenz clearance was predictable using in vitro data for carriers of the CYP2B6*1/*1 genotype, but the prediction in carriers of the CYP2B6*6 allele was poor. To test the hypothesis that incorporation of mechanism of reduced efavirenz metabolism by the CYP2B6*6 allele can predict the genetic effect on efavirenz pharmacokinetics, in vitro–in vivo extrapolation of efavirenz clearance was performed by physiologically based pharmacokinetic modeling (Simcyp Simulator; Simcyp Ltd., Sheffield, UK) using data obtained from expressed CYP2B6.1 and CYP2B6.6 as well as human liver microsomes (HLMs) with CYP2B6*1/*1, *1/*6, and *6/*6 genotypes. Simulated pharmacokinetics of a single 600-mg oral dose of efavirenz for individuals with each genotype was compared with data observed in healthy subjects genotyped for the CYP2B6*6 allele (n = 20). Efavirenz clearance for carriers of the CYP2B6*1/*1 genotype was predicted reasonably well using HLM data, but the clearance in carriers of the CYP2B6*6 allele was underpredicted using both expressed and HLM systems. Improved prediction of efavirenz clearance was obtained from expressed CYP2B6 after recalculating intersystem extrapolation factors for CYP2B6.1 and CYP2B6.6 based on in vitro intrinsic clearance of bupropion 4-hydroxylation. These findings suggest that genetic effect on both CYP2B6 protein expression and catalytic efficiency needs to be taken into account for the prediction of pharmacokinetics in individuals carrying the CYP2B6*6/*6 genotype. Expressed CYP2B6 proteins may be a reliable in vitro system to predict effect of the CYP2B6*6 allele on the metabolism of CYP2B6 substrates. PMID:23846872

  3. Metformin represses drug-induced expression of CYP2B6 by modulating the constitutive androstane receptor signaling.

    PubMed

    Yang, Hui; Garzel, Brandy; Heyward, Scott; Moeller, Timothy; Shapiro, Paul; Wang, Hongbing

    2014-02-01

    Metformin is currently the most widely used drug for the treatment of type 2 diabetes. Mechanistically, metformin interacts with many protein kinases and transcription factors that alter the expression of numerous downstream target genes governing lipid metabolism, cell proliferation, and drug metabolism. The constitutive androstane receptor (CAR, NR1i3), a known xenobiotic sensor, has recently been recognized as a novel signaling molecule, in that its activation could be regulated by protein kinases in addition to the traditional ligand binding. We show that metformin could suppress drug-induced expression of CYP2B6 (a typical target gene of CAR) by modulating the phosphorylation status of CAR. In human hepatocytes, metformin robustly suppressed the expression of CYP2B6 induced by both indirect (phenobarbital) and direct CITCO [6-(4-chlorophenyl)imidazo[2,1-b]1,3thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime] activators of human CAR. Mechanistic investigation revealed that metformin specifically enhanced the phosphorylation of threonine-38 of CAR, which blocks CAR nuclear translocation and activation. Moreover, we showed that phosphorylation of CAR by metformin was primarily an AMP-activated protein kinase- and extracellular signal-regulated kinase 1/2-dependent event. Additional two-hybrid and coimmunoprecipitation assays demonstrated that metformin could also disrupt CITCO-mediated interaction between CAR and the steroid receptor coactivator 1 or the glucocorticoid receptor-interacting protein 1. Our results suggest that metformin is a potent repressor of drug-induced CYP2B6 expression through specific inhibition of human CAR activation. Thus, metformin may affect the metabolism and clearance of drugs that are CYP2B6 substrates.

  4. Inactivation of CYP2A6 by the Dietary Phenylpropanoid trans-Cinnamic Aldehyde (Cinnamaldehyde) and Estimation of Interactions with Nicotine and Letrozole.

    PubMed

    Chan, Jeannine; Oshiro, Tyler; Thomas, Sarah; Higa, Allyson; Black, Stephen; Todorovic, Aleksandar; Elbarbry, Fawzy; Harrelson, John P

    2016-04-01

    Human exposure to trans-cinnamic aldehyde [t-CA; cinnamaldehyde; cinnamal; (E)-3-phenylprop-2-enal] is common through diet and through the use of cinnamon powder for diabetes and to provide flavor and scent in commercial products. We evaluated the likelihood of t-CA to influence metabolism by inhibition of P450 enzymes. IC50 values from recombinant enzymes indicated that an interaction is most probable for CYP2A6 (IC50 = 6.1 µM). t-CA was 10.5-fold more selective for human CYP2A6 than for CYP2E1; IC50 values for P450s 1A2, 2B6, 2C9, 2C19, 2D6, and 3A4 were 15.8-fold higher or more. t-CA is a type I ligand for CYP2A6 (KS = 14.9 µM). Inhibition of CYP2A6 by t-CA was metabolism-dependent; inhibition required NADPH and increased with time. Glutathione lessened the extent of inhibition modestly and statistically significantly. The carbon monoxide binding spectrum was dramatically diminished after exposure to NADPH and t-CA, suggesting degradation of the heme or CYP2A6 apoprotein. Using a static model and mechanism-based inhibition parameters (K(I) = 18.0 µM; k(inact) = 0.056 minute(-1)), changes in the area under the concentration-time curve (AUC) for nicotine and letrozole were predicted in the presence of t-CA (0.1 and 1 µM). The AUC fold-change ranged from 1.1 to 3.6. In summary, t-CA is a potential source of pharmacokinetic variability for CYP2A6 substrates due to metabolism-dependent inhibition, especially in scenarios when exposure to t-CA is elevated due to high dietary exposure, or when cinnamon is used as a treatment of specific disease states (e.g., diabetes).

  5. Inactivation of CYP2A6 by the Dietary Phenylpropanoid trans-Cinnamic Aldehyde (Cinnamaldehyde) and Estimation of Interactions with Nicotine and Letrozole

    PubMed Central

    Chan, Jeannine; Oshiro, Tyler; Thomas, Sarah; Higa, Allyson; Black, Stephen; Todorovic, Aleksandar; Elbarbry, Fawzy

    2016-01-01

    Human exposure to trans-cinnamic aldehyde [t-CA; cinnamaldehyde; cinnamal; (E)-3-phenylprop-2-enal] is common through diet and through the use of cinnamon powder for diabetes and to provide flavor and scent in commercial products. We evaluated the likelihood of t-CA to influence metabolism by inhibition of P450 enzymes. IC50 values from recombinant enzymes indicated that an interaction is most probable for CYP2A6 (IC50 = 6.1 µM). t-CA was 10.5-fold more selective for human CYP2A6 than for CYP2E1; IC50 values for P450s 1A2, 2B6, 2C9, 2C19, 2D6, and 3A4 were 15.8-fold higher or more. t-CA is a type I ligand for CYP2A6 (KS = 14.9 µM). Inhibition of CYP2A6 by t-CA was metabolism-dependent; inhibition required NADPH and increased with time. Glutathione lessened the extent of inhibition modestly and statistically significantly. The carbon monoxide binding spectrum was dramatically diminished after exposure to NADPH and t-CA, suggesting degradation of the heme or CYP2A6 apoprotein. Using a static model and mechanism-based inhibition parameters (KI = 18.0 µM; kinact = 0.056 minute−1), changes in the area under the concentration-time curve (AUC) for nicotine and letrozole were predicted in the presence of t-CA (0.1 and 1 µM). The AUC fold-change ranged from 1.1 to 3.6. In summary, t-CA is a potential source of pharmacokinetic variability for CYP2A6 substrates due to metabolism-dependent inhibition, especially in scenarios when exposure to t-CA is elevated due to high dietary exposure, or when cinnamon is used as a treatment of specific disease states (e.g., diabetes). PMID:26851241

  6. In silico prediction of efavirenz and rifampicin drug–drug interaction considering weight and CYP2B6 phenotype

    PubMed Central

    Rekić, Dinko; Röshammar, Daniel; Mukonzo, Jackson; Ashton, Michael

    2011-01-01

    AIMS This study aimed to test whether a pharmacokinetic simulation model could extrapolate nonclinical drug data to predict human efavirenz exposure after single and continuous dosing as well as the effects of concomitant rifampicin and further to evaluate the weight-based dosage recommendations used to counteract the rifampicin–efavirenz interaction. METHODS Efavirenz pharmacokinetics were simulated using a physiologically based pharmacokinetic model implemented in the Simcyp™ population-based simulator. Physicochemical and metabolism data obtained from the literature were used as input for prediction of pharmacokinetic parameters. The model was used to simulate the effects of rifampicin on efavirenz pharmacokinetics in 400 virtual patients, taking into account bodyweight and CYP2B6 phenotype. RESULTS Apart from the absorption phase, the simulation model predicted efavirenz concentration–time profiles reasonably well, with close agreement with clinical data. The simulated effects of rifampicin co-administration on efavirenz treatment showed only a minor decrease of 16% (95% confidence interval 13–19) in efavirenz area under the concentration–time curve, of the same magnitude as what has been clinically observed (22%). Efavirenz exposure depended on CYP2B6 phenotype and bodyweight. Increasing the efavirenz dose during concomitant rifampicin was predicted to be most successful in patients over 50 kg regardless of CYP2B6 status. CONCLUSIONS Our findings, although based on a simulation approach using limited in vitro data, support the current recommendations for using a 50 kg bodyweight cut-off for efavirenz dose increment when co-treating with rifampicin. PMID:21395646

  7. Generation and characterization of a CYP2A13/2B6/2F1-transgenic mouse model.

    PubMed

    Wei, Yuan; Wu, Hong; Li, Lei; Liu, Zhihua; Zhou, Xin; Zhang, Qing-Yu; Weng, Yan; D'Agostino, Jaime; Ling, Guoyu; Zhang, Xiuling; Kluetzman, Kerri; Yao, Yunyi; Ding, Xinxin

    2012-06-01

    CYP2A13, CYP2B6, and CYP2F1, which are encoded by neighboring cytochrome P450 genes on human chromosome 19, are active in the metabolic activation of many drugs, respiratory toxicants, and chemical carcinogens. To facilitate studies on the regulation and function of these human genes, we have generated a CYP2A13/2B6/2F1-transgenic (TG) mouse model (all *1 alleles). Homozygous transgenic mice are normal with respect to gross morphological features, development, and fertility. The tissue distribution of transgenic mRNA expression agreed well with the known respiratory tract-selective expression of CYP2A13 and CYP2F1 and hepatic expression of CYP2B6 in humans. CYP2A13 protein was detected through immunoblot analyses in the nasal mucosa (NM) (∼100 pmol/mg of microsomal protein; similar to the level of mouse CYP2A5) and the lung (∼0.2 pmol/mg of microsomal protein) but not in the liver of the TG mice. CYP2F1 protein, which could not be separated from mouse CYP2F2 in immunoblot analyses, was readily detected in the NM and lung but not the liver of TG/Cyp2f2-null mice, at levels 10- and 40-fold, respectively, lower than that of mouse CYP2F2 in the TG mice. CYP2B6 protein was detected in the liver (∼0.2 pmol/mg of microsomal protein) but not the NM or lung (with a detection limit of 0.04 pmol/mg of microsomal protein) of the TG mice. At least one transgenic protein (CYP2A13) seems to be active, because the NM of the TG mice had greater in vitro and in vivo activities in bioactivation of a CYP2A13 substrate, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (a lung carcinogen), than did the NM of wild-type mice.

  8. Q172H replacement overcomes effects on the metabolism of cyclophosphamide and efavirenz caused by CYP2B6 variant with Arg262.

    PubMed

    Ariyoshi, Noritaka; Ohara, Miyuki; Kaneko, Mayumi; Afuso, Sakino; Kumamoto, Takuya; Nakamura, Hiroyoshi; Ishii, Itsuko; Ishikawa, Tsutomu; Kitada, Mitsukazu

    2011-11-01

    There are a number of reports indicating that CYP2B6*6 (c.516G>T and c.785A>G) is responsible for decreased clearance of efavirenz (EFV), although increased disposition of cyclophosphamide (CPA) in individuals with this polymorphism was observed. Thus, we hypothesized that the effects of the two single nucleotide polymorphisms (SNPs) of CYP2B6*6 on the metabolism of drugs might be considerably different between these two agents. To clarify this possibility, we expressed two major variants of this enzyme, CYP2B6.6 (Q172H and K262R) and CYP2B6.4 (K262R), and investigated metabolic activities of these variants toward EFV and CPA. Kinetic analyses clearly indicated that CYP2B6.4 possessed enhanced metabolic activity toward EFV compared with that of the wild-type enzyme (CYP2B6.1), whereas CPA was metabolized less efficiently by CYP2B6.4 than by CYP2B6.1. On the other hand, CYP2B6.6 showed a completely opposite character, suggesting that Q172H gives inverse effects on metabolic activities of CYP2B6 affected by K262R. Although it is recognized that effects of amino acid change in cytochrome P450 on the metabolic activity depend on substrates, this study revealed SNPs giving an opposite effect on the metabolism of two clinically important drugs currently used. Furthermore, this study provides the first evidence that Q172H can reverse the direction of the effect caused by K262R in CYP2B6 on the metabolism of certain drugs.

  9. Evaluation of CYP2B6 Induction and Prediction of Clinical Drug-Drug Interactions: Considerations from the IQ Consortium Induction Working Group-An Industry Perspective.

    PubMed

    Fahmi, Odette A; Shebley, Mohamad; Palamanda, Jairam; Sinz, Michael W; Ramsden, Diane; Einolf, Heidi J; Chen, Liangfu; Wang, Hongbing

    2016-10-01

    Drug-drug interactions (DDIs) due to CYP2B6 induction have recently gained prominence and clinical induction risk assessment is recommended by regulatory agencies. This work aimed to evaluate the potency of CYP2B6 versus CYP3A4 induction in vitro and from clinical studies and to assess the predictability of efavirenz versus bupropion as clinical probe substrates of CYP2B6 induction. The analysis indicates that the magnitude of CYP3A4 induction was higher than CYP2B6 both in vitro and in vivo. The magnitude of DDIs caused by induction could not be predicted for bupropion with static or dynamic models. On the other hand, the relative induction score, net effect, and physiologically based pharmacokinetics SimCYP models using efavirenz resulted in improved DDI predictions. Although bupropion and efavirenz have been used and are recommended by regulatory agencies as clinical CYP2B6 probe substrates for DDI studies, CYP3A4 contributes to the metabolism of both probes and is induced by all reference CYP2B6 inducers. Therefore, caution must be taken when interpreting clinical induction results because of the lack of selectivity of these probes. Although in vitro-in vivo extrapolation for efavirenz performed better than bupropion, interpretation of the clinical change in exposure is confounded by the coinduction of CYP2B6 and CYP3A4, as well as the increased contribution of CYP3A4 to efavirenz metabolism under induced conditions. Current methods and probe substrates preclude accurate prediction of CYP2B6 induction. Identification of a sensitive and selective clinical substrate for CYP2B6 (fraction metabolized > 0.9) is needed to improve in vitro-in vivo extrapolation for characterizing the potential for CYP2B6-mediated DDIs. Alternative strategies and a framework for evaluating the CYP2B6 induction risk are proposed.

  10. Regioselective Versatility of Monooxygenase Reactions Catalyzed by CYP2B6 and CYP3A4: Examples with Single Substrates.

    PubMed

    Erratico, Claudio A; Deo, Anand K; Bandiera, Stelvio M

    2015-01-01

    Hepatic microsomal cytochrome P450 (CYP) enzymes have broad and overlapping substrate specificity and catalyze a variety of monooxygenase reactions, including aliphatic and aromatic hydroxylations, N-hydroxylations, oxygenations of heteroatoms (N, S, P and I), alkene and arene epoxidations, dehalogenations, dehydrogenations and N-, O- and S-dealkylations. Individual CYP enzymes typically catalyze the oxidative metabolism of a common substrate in a regioselective and stereoselective manner. In addition, different CYP enzymes often utilize different monooxygenase reactions when oxidizing a common substrate. This review examines various oxidative reactions catalyzed by a CYP enzyme acting on a single substrate. In the first example, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a halogenated aromatic environmental contaminant, was oxidatively biotransformed by human CYP2B6. Nine different metabolites of BDE-47 were produced by CYP2B6 via monooxygenase reactions that included aromatic hydroxylation, with and without an NIH-shift, dealkylation and debromination. In the second example, lithocholic acid (3α-hydroxy-5β-cholan-24-oic acid), an endogenous bile acid, served as a substrate for human CYP3A4 and yielded five different metabolites via aliphatic hydroxylation and dehydrogenation reactions.

  11. Combined effect of CYP2B6 and NAT2 genotype on plasma efavirenz exposure during rifampin-based antituberculosis therapy in the STRIDE study.

    PubMed

    Luetkemeyer, Anne F; Rosenkranz, Susan L; Lu, Darlene; Grinsztejn, Beatriz; Sanchez, Jorge; Ssemmanda, Michael; Sanne, Ian; McIlleron, Helen; Havlir, Diane V; Haas, David W

    2015-06-15

    In STRIDE, slow metabolizer CYP2B6 and NAT2 genotypes were each associated with increased plasma efavirenz concentrations during antituberculosis therapy. Concentrations were greater on therapy than off therapy in 58% with CYP2B6 and 93% with NAT2 slow metabolizer genotypes. Individuals with slow metabolizer genotypes in both genes had markedly elevated concentrations.

  12. Polymorphisms and haplotypes of the CYP2B6 detoxification gene in the predisposition of Acute Myeloid Leukemia (AML) and induction of its cytogenetic abnormalities.

    PubMed

    Daraki, Aggeliki; Kakosaiou, Katerina; Zachaki, Sophia; Sambani, Constantina; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Manola, Kalliopi N

    2016-11-01

    CYP2B6 is a polymorphic detoxification gene which plays a vital role in the degradation of genotoxic compounds. In this study we hypothesized that inadequate detoxification due to CYP2B6 polymorphisms may contribute to AML. To evaluate the potential impact of CYP2B6 polymorphisms on AML development and induction of its specific chromosomal abnormalities we studied C(777)A and A(785)G polymorphisms for the first time in AML. Furthermore, we investigated the co-existence of the above polymorphisms with G(516)T polymorphism to determine the CYP2B6 high-risk haplotypes in AML susceptibility. Our study included 619 AML patients and 430 healthy donors. Concerning C(777)A CYP2B6 polymorphism, no significant difference was found between patients and controls. However, A(785)G CYP2B6 polymorphism showed a statistically higher frequency of the variant genotypes in patients (48.2%), mainly in secondary AML patients (49.1%) than in controls (26.1%). Moreover, an increased frequency of the variant genotypes was found in those with abnormal karyotypes, especially with -7/del(7q), -5/del(5q), +8, inv(16) and t(8;21). The combination of the three CYP2B6 polymorphisms (G(516)T, C(777)A & A(785)G) revealed seven haplotypes. Four out of six haplotypes with at least one mutant allele were significantly associated with an increased risk for AML. Interestingly, T516A777G785 haplotype, where the three mutant alleles co-existed, had ~3-fold increased risk to be found in patients than controls. The association between haplotypes and cytogenetic aberrations revealed a positive correlation between specific CYP2B6 haplotypes and AML cytogenetic abnormalities. Our data suggest that A(785)G CYP2B6 gene polymorphism and specific CYP2B6 haplotypes may contribute to AML and its specific chromosomal aberrations.

  13. Prevalence of poor and rapid metabolizers of drugs metabolized by CYP2B6 in North Indian population residing in Indian national capital territory.

    PubMed

    Varshney, Ekta; Saha, Nilanjan; Tandon, Monika; Shrivastava, Vikesh; Ali, Shakir

    2012-01-01

    Identification of poor and rapid metabolizers for the category of drugs metabolized by cytochrome P450 2B6 (CYP2B6) is important for understanding the differences in clinical responses of drugs metabolized by this enzyme. This study reports the prevalence of poor and rapid metabolizers in North Indian population residing in the National Capital Territory. The prevalence of poor and rapid metabolizers was determined in the target population for the category of drugs metabolized by CYP2B6 by measuring plasma bupropion, a drug metabolized by CYP2B6, and its metabolite. Bupropion (75 mg) was administered to 107 volunteers, and the drug (bupropion) and its metabolite (hydroxybupropion) were determined simultaneously by LCMS/MS in the plasma. CYP2B6 activity was measured as hydroxybupropion/bupropion ratio, and volunteers were categorized as rapid or poor metabolizers on the basis of cutoff value of log (hydroxybupropion/bupropion). Significant differences were observed between the mean metabolite/drug ratio of rapid metabolizers (Mean = 0.59) and poor metabolizers (Mean = 0.26) with p<0.0001. Results indicate that 20.56% individuals in the target population were poor metabolizers for the category of drugs metabolized by CYP2B6. Cutoff value defined in this study can be used as a tool for evaluating the status of CYP2B6 using bupropion as a probe drug. The baseline information would be clinically useful before administering the drugs metabolized by this isoform.

  14. Involvement of CAR and PXR in the transcriptional regulation of CYP2B6 gene expression by ingredients from herbal medicines.

    PubMed

    Xu, Cong; Luo, Mengyue; Jiang, Huidi; Yu, Lushan; Zeng, Su

    2015-01-01

    1. Induction of hepatic drug-metabolizing enzymes can affect drug efficacy and cause toxicity. However, so far, limited information is available regarding the molecular mechanism how herbal medicines induce human CYP2B6, which metabolizes many of the clinically used therapeutics and activates several pro-carcinogens or toxicants. Accumulated evidence suggests that the human constitutive androstane receptor (hCAR) and the human pregnane X receptor (hPXR) play important roles in trans-activation of CYP2B6. In this study, we investigated the effects of 68 Chinese herbal ingredients on the receptor specificity of hPXR/hCAR-mediated CYP2B6 induction by luciferase reporter gene assays in transiently transfected HepG2 cells and on the expression of CYP2B6 in LS174T cells. 2. The HepG2 cells were transiently transfected with human CYP2B6 luciferase promoter reporter plasmids along with hPXR or hCAR3. The results indicated that apigenin (Api), curcumol (Cur) and praeruptorin A (Pra A) were identified as potent activators of hPXR, and Pra A was also a ligand of hCAR. 3. Furthermore, CYP2B6 mRNA expression in LS174T cells treated with the three herbal ingredients was determined by real-time polymerase chain reaction. By combining western blot and LC-MS/MS, CYP2B6 protein expression and catalytic activity induced by the three herbal ingredients were measured. 4. Our observation showed Api and Cur up-regulated CYP2B6 expression by transactivation of hPXR, and Pra A acted as the ligand of both hPXR and hCAR to induce CYP2B6 expression.

  15. Potential Contribution of Cytochrome P450 2B6 to Hepatic 4-Hydroxycyclophosphamide Formation In Vitro and In VivoS⃞

    PubMed Central

    Raccor, Brianne S.; Claessens, Adam J.; Dinh, Jean C.; Park, Julie R.; Hawkins, Douglas S.; Thomas, Sushma S.; Makar, Karen W.; McCune, Jeannine S.

    2012-01-01

    Results from retrospective studies on the relationship between cytochrome P450 (P450) 2B6 (CYP2B6) genotype and cyclophosphamide (CY) efficacy and toxicity in adult cancer patients have been conflicting. We evaluated this relationship in children, who have faster CY clearance and receive different CY-based regimens than adults. These factors may influence the P450s metabolizing CY to 4-hydroxycyclophosphamide (4HCY), the principal precursor to CY's cytotoxic metabolite. Therefore, we sought to characterize the in vitro and in vivo roles of hepatic CYP2B6 and its main allelic variants in 4HCY formation. CYP2B6 is the major isozyme responsible for 4HCY formation in recombinant P450 Supersomes. In human liver microsomes (HLM), 4HCY formation correlated with known phenotypic markers of CYP2B6 activity, specifically formation of (S)-2-ethyl-1,5-dimethyl-3,3-diphenyl pyrrolidine and hydroxybupropion. However, in HLM, CYP3A4/5 also contributes to 4HCY formation at the CY concentrations similar to plasma concentrations achieved in children (0.1 mM). 4HCY formation was not associated with CYP2B6 genotype at low (0.1 mM) or high (1 mM) CY concentrations potentially because CYP3A4/5 and other isozymes also form 4HCY. To remove this confounder, 4HCY formation was evaluated in recombinant CYP2B6 enzymes, which demonstrated that 4HCY formation was lower for CYP2B6.4 and CYP2B6.5 compared with CYP2B6.1. In vivo, CYP2B6 genotype was not directly related to CY clearance or ratio of 4HCY/CY areas under the curve in 51 children receiving CY-based regimens. Concomitant chemotherapy agents did not influence 4HCY formation in vitro. We conclude that CYP2B6 genotype is not consistently related to 4HCY formation in vitro or in vivo. PMID:21976622

  16. Effect of diurnal variation, CYP2B6 genotype and age on the pharmacokinetics of nevirapine in African children

    PubMed Central

    Bienczak, Andrzej; Cook, Adrian; Wiesner, Lubbe; Mulenga, Veronica; Kityo, Cissy; Kekitiinwa, Addy; Walker, A. Sarah; Owen, Andrew; Gibb, Diana M.; Burger, David; McIlleron, Helen; Denti, Paolo

    2017-01-01

    Objectives To characterize the effects of CYP2B6 polymorphisms, diurnal variation and demographic factors on nevirapine pharmacokinetics in African children. Methods Non-linear mixed-effects modelling conducted in NONMEM 7.3 described nevirapine plasma concentration–time data from 414 children aged 0.3–15 years. Results Nevirapine pharmacokinetics was best described using a one-compartment disposition model with elimination through a well-stirred liver model accounting for a first-pass effect and transit-compartment absorption. Intrinsic clearance was affected by diurnal variation (characterized using a cosine function with peak amplitude 29% at 12 noon) and CYP2B6 metabolizer status [extensive metabolizer (EM) 516GG|983TT, reference; intermediate metabolizer (IM) 516GT|983TT or 516GG|983TC, 17% lower; slow metabolizer (SM) 516TT|983TT or 516GT|983TC, 50% lower; ultra-slow metabolizer (USM) 516GG|983CC, 68% lower]. Age was found to affect pre-hepatic bioavailability: 31.7% lower at birth and increasing exponentially. Median (90% CI) evening Cmin values in the different metabolizer groups were 5.01 (3.01–7.47), 6.55 (3.65–13.32), 11.59 (5.44–22.71) and 12.32 (12.32–27.25) mg/L, respectively. Evening Cmin values were <3 mg/L in 43% of EM weighing <6 kg and 26% of IM weighing <6 kg, while 73% of SM and 88% of USM in all weight-bands had evening Cmin values >8 mg/L. Cmin was not markedly affected by administration time, but was altered by unequal splitting of the daily dose. Conclusions Diurnal variation does not greatly affect nevirapine exposure. However, when daily doses cannot be split equally, the larger dose should be given in the morning. To achieve homogeneous exposures, nevirapine doses for SM and USM should be reduced by 50%, and children weighing <6 kg with EM or IM metabolizer status should receive the same dose as children weighing 6–10 kg. PMID:27707991

  17. Estradiol induces cytochrome P450 2B6 expression at high concentrations: Implication in estrogen-mediated gene regulation in pregnancy

    PubMed Central

    Koh, Kwi Hye; Jurkovic, Steve; Yang, Kyunghee; Choi, Su-Young; Jung, Jin Woo; Kim, Kwang Pyo; Zhang, Wei; Jeong, Hyunyoung

    2012-01-01

    Pregnancy alters the rate and extent of drug metabolism, but little is known about the underlying molecular mechanism. We have found that 17β-estradiol (E2) upregulates expression of the major drug-metabolizing enzyme CYP2B6 in primary human hepatocytes. Results from promoter reporter assays in HepG2 cells revealed that E2 activates constitutive androstane receptor (CAR) and enhances promoter activity of CYP2B6, for which high concentrations of E2 reached during pregnancy were required. E2 triggered nuclear translocation of CAR in primary rat hepatocytes that were transiently transfected with human CAR as well as in primary human hepatocytes, further confirming transactivation of CAR by E2. E2-activated estrogen receptor (ER) also enhanced CYP2B6 promoter activity. The DNA-binding domain of ER was not required for the induction of CYP2B6 promoter activity by E2, suggesting involvement of a non-classical mechanism of ER action. Results from deletion and mutation assays as well as electrophorectic mobility shift and supershift assays revealed that two AP-1 binding sites (−1782/−1776 and −1664/−1658 of CYP2B6) are critical for ER-mediated activation of the CYP2B6 promoter by E2. Concurrent activation of both ER and CAR by E2 enhanced CYP2B6 expression in a synergistic manner. Our data demonstrate that at high concentrations reached during pregnancy, E2 activates both CAR and ER that synergistically induce CYP2B6 expression. These results illustrate pharmacological activity of E2 that would likely become prominent during pregnancy. PMID:22484313

  18. Investigation of the mechanisms underlying the differential effects of the K262R mutation of P450 2B6 on catalytic activity

    PubMed Central

    Bumpus, Namandjé N.; Hollenberg, Paul F.

    2008-01-01

    Human P450 2B6 is a polymorphic enzyme involved in the oxidative metabolism of a number of clinically relevant substrates. The lysine 262 to arginine mutant of P450 2B6 (P450 2B6.4) has been shown to have differential effects on P450 2B6 catalytic activity. We previously reported that the mutant enzyme was not able to metabolize 17-α-ethynylestradiol (17EE) or become inactivated by 17EE or efavirenz, which are inactivators of the wild-type enzyme. Studies were performed to elucidate the mechanism by which this mutation affects P450 2B6 catalytic activity. Studies using phenyldiazene to investigate differences between the active site topologies of the wild-type and mutant enzymes revealed only minor differences. Similarly, Ks values for the binding of both benzphetamine and efavirenz were comparable between the two enzymes. Using the alternate oxidant tert-butyl hydroperoxide, the mutant enzyme was inactivated by both 17EE and efavirenz. The stoichiometry of 17EE and efavirenz metabolism by P450s 2B6 and 2B6.4 revealed the mutant enzyme was more uncoupled, producing hydrogen peroxide as the primary product. Interestingly, the addition of cytochrome b5 improved the coupling of the mutant, resulting in increased catalytic activity. In the presence of cytochrome b5 the variant readily metabolized 17EE and was inactivated by both 17EE and efavirenz. It is therefore proposed that the oxyferrous or iron-peroxo intermediate formed by the mutant enzyme in the presence of 17EE and efavirenz may be less stable than the same intermediates formed by the wild-type enzyme. PMID:18621926

  19. Establishment of In Silico Prediction Models for CYP3A4 and CYP2B6 Induction in Human Hepatocytes by Multiple Regression Analysis Using Azole Compounds.

    PubMed

    Nagai, Mika; Konno, Yoshihiro; Satsukawa, Masahiro; Yamashita, Shinji; Yoshinari, Kouichi

    2016-08-01

    Drug-drug interactions (DDIs) via cytochrome P450 (P450) induction are one clinical problem leading to increased risk of adverse effects and the need for dosage adjustments and additional therapeutic monitoring. In silico models for predicting P450 induction are useful for avoiding DDI risk. In this study, we have established regression models for CYP3A4 and CYP2B6 induction in human hepatocytes using several physicochemical parameters for a set of azole compounds with different P450 induction as characteristics as model compounds. To obtain a well-correlated regression model, the compounds for CYP3A4 or CYP2B6 induction were independently selected from the tested azole compounds using principal component analysis with fold-induction data. Both of the multiple linear regression models obtained for CYP3A4 and CYP2B6 induction are represented by different sets of physicochemical parameters. The adjusted coefficients of determination for these models were of 0.8 and 0.9, respectively. The fold-induction of the validation compounds, another set of 12 azole-containing compounds, were predicted within twofold limits for both CYP3A4 and CYP2B6. The concordance for the prediction of CYP3A4 induction was 87% with another validation set, 23 marketed drugs. However, the prediction of CYP2B6 induction tended to be overestimated for these marketed drugs. The regression models show that lipophilicity mostly contributes to CYP3A4 induction, whereas not only the lipophilicity but also the molecular polarity is important for CYP2B6 induction. Our regression models, especially that for CYP3A4 induction, might provide useful methods to avoid potent CYP3A4 or CYP2B6 inducers during the lead optimization stage without performing induction assays in human hepatocytes.

  20. Application of HC-AFW1 Hepatocarcinoma Cells for Mechanistic Studies: Regulation of Cytochrome P450 2B6 Expression by Dimethyl Sulfoxide and Early Growth Response 1.

    PubMed

    Petzuch, Barbara; Groll, Nicola; Schwarz, Michael; Braeuning, Albert

    2015-11-01

    Various exogenous compounds, for example, the drugs bupropione and propofol, but also various cytostatics, are metabolized in the liver by the enzyme cytochrome P450 (P450) CYP2B6. Transcription from the CYP2B6 gene is regulated mainly via the transcription factors constitutive androstane receptor (CAR) and pregnane-X-receptor (PXR). Most hepatic cell lines express no or only low levels of CYP2B6 because of loss of these two regulators. Dimethyl sulfoxide (DMSO) is frequently used in liver cell cultivation and is thought to affect the expression of various P450 isoforms by inducing or preserving cellular differentiation. We studied the effects of up to 1.5% of DMSO as cell culture medium supplement on P450 expression in hepatocarcinoma cells from line HC-AFW1. DMSO did not induce differentiation of the HC-AFW1 cell line, as demonstrated by unaltered levels of selected mRNA markers important for hepatocyte differentiation, and also by the lack of a DMSO effect on a broader spectrum of P450s. By contrast, CYP2B6 mRNA was strongly induced by DMSO. This process was independent of CAR or PXR activation. Interestingly, elevated transcription of CYP2B6 was accompanied by a simultaneous induction of early growth response 1 (EGR1), a transcription factor known to influence the expression of CYP2B6. Expression of wild-type EGR1 or of a truncated, dominant-negative EGR1 mutant was able to mimic or attenuate the DMSO effect, respectively. These findings demonstrate that EGR1 is involved in the regulation of CYP2B6 by DMSO in HC-AFW1 cells.

  1. Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor.

    PubMed

    Faucette, Stephanie R; Sueyoshi, Tatsuya; Smith, Cornelia M; Negishi, Masahiko; Lecluyse, Edward L; Wang, Hongbing

    2006-06-01

    Accumulated evidence suggests that cross-talk between the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) results in shared transcriptional activation of CYP2B and CYP3A genes. Although most data imply symmetrical cross-regulation of these genes by rodent PXR and CAR, the actual selectivities of the corresponding human receptors are unknown. The objective of this study was to evaluate the symmetry of human (h) PXR and hCAR cross-talk by comparing the selectivities of these receptors for CYP2B6 and CYP3A4. Human hepatocyte studies revealed nonselective induction of both CYP2B6 and CYP3A4 by hPXR activation but marked preferential induction of CYP2B6 by selective hCAR activation. Gel shift assays demonstrated that hPXR exhibited strong and relatively equal binding to all functional response elements in both CYP2B6 and CYP3A4 genes, whereas hCAR displayed significantly weak binding to the CYP3A4 proximal ER6 motif. In cell-based transfection assays, hCAR displayed greater activation of CYP2B6 reporter gene expression compared with CYP3A4 with constructs containing both proximal and distal regulatory elements. Furthermore, in agreement with binding observations, transfection assays using promoter constructs containing repeats of CYP2B6 DR4 and CYP3A4 ER6 motifs revealed an even greater difference in reporter activation by hCAR. In contrast, hPXR activation resulted in less discernible differences between CYP2B6 and CYP3A4 reporter gene expression. These results suggest asymmetrical cross-regulation of CYP2B6 and CYP3A4 by hCAR but not hPXR in that hCAR exhibits preferential induction of CYP2B6 relative to CYP3A4 because of its weak binding and functional activation of the CYP3A4 ER6.

  2. Novel CAR-mediated mechanism for synergistic activation of two distinct elements within the human cytochrome P450 2B6 gene in HepG2 cells.

    PubMed

    Swales, Karen; Kakizaki, Satoru; Yamamoto, Yukio; Inoue, Kaoru; Kobayashi, Kaoru; Negishi, Masahiko

    2005-02-04

    The constitutive active receptor (CAR) regulates the induction of the cytochrome P450 2B6 (CYP2B6) gene by phenobarbital-type inducers, such as 1,4 bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) via the distal phenobarbital-responsive enhancer module (PBREM, at -1732/-1685 bp). Activation of the PBREM by TCPOBOP generated a 10-fold induction of CYP2B6 mRNA in HepG2 cells stably expressing mouse CAR (Ym17). Co-treatment with the protein phosphatase inhibitor okadaic acid (OA) synergistically increased this induction over 100-fold without directly activating CAR or the PBREM. Although OA synergy required the presence of PBREM, deletion assays delineated the OA-responsive activity to a proximal 24-bp (-256/-233) sequence (OARE) in the CYP2B6 promoter. CAR did not directly bind to the OARE in electrophoretic mobility shift assays. However, both DNA affinity and chromatin immunoprecipitation assays showed a significant increase in CAR association with the OARE after co-treatment with TCPOBOP and OA, indicating the indirect binding of CAR to the OARE. The two cis-acting elements, the distal PBREM and the proximal OARE, within the chromatin structure are both regulated by CAR in response to TCPOBOP and OA, respectively, to maximally induce the CYP2B6 promoter. This functional interaction between the two sites expands the current understanding of the mechanism of CAR-mediated inducible transcription.

  3. Association of the CYP2B6 c.516G>T polymorphism with high blood propofol concentrations in women from northern Greece.

    PubMed

    Mastrogianni, Orthodoxia; Gbandi, Emma; Orphanidis, Amvrosios; Raikos, Nikolaos; Goutziomitrou, Evangelia; Kolibianakis, Efstratios M; Tarlatzis, Basil C; Goulas, Antonis

    2014-01-01

    Cytochrome P450 2B6 (CYP2B6) is responsible for the initial biotransformation of profol, an extensively metabolized intravenous anesthetic. In this study we examined the effect of the apparently functional CYP2B6 c.516G>T polymorphism on the distribution of propofol concentrations, quantified by GC/MS analysis following a single bolus dose, in the blood of 44 Greek women undergoing oocyte retrieval. Univariate analysis using age, height, weight and smoking status as covariates, as well as the Mann-Whitney non-parametric test, revealed a strong trend of association of the T allele with high propofol concentrations determined in whole blood, shortly after a single bolus dose. Propofol concentrations which were higher than one standard deviation of the mean were almost invariably associated with carriage of the T allele.

  4. Ethanol self-administration and nicotine treatment induce brain levels of CYP2B6 and CYP2E1 in African green monkeys.

    PubMed

    Ferguson, Charmaine S; Miksys, Sharon; Palmour, Roberta M; Tyndale, Rachel F

    2013-09-01

    CYP2B6 and CYP2E1 are enzymes responsible for the metabolism of many centrally acting drugs, toxins and endogenous compounds. Human smokers and alcoholics have elevated levels of CYP2B6 and CYP2E1 in certain brain regions, which may contribute to altered drug efficacy, neurotoxicity and metabolic tolerance. The objective of this study was to determine the effects of ethanol self-administration and nicotine treatment, alone and in combination, on brain CYP2B6 and CYP2E1 levels in monkeys. Monkeys were randomized into four groups (N = 10/group): an ethanol-only group, a nicotine-only group, an ethanol + nicotine group and a control (no drug) group. Ethanol (10% alcohol in sucrose solution) was voluntarily self-administered by the monkeys and nicotine was given as subcutaneous injections (0.5 mg/kg bid). Immunocytochemistry revealed induction of both CYP2B6 and CYP2E1 protein in certain brain regions and cells within monkey brain as a result of ethanol self-administration, nicotine treatment and combined exposure to both drugs. Immunoblotting analyses demonstrated CYP2B6 induction by ethanol in the caudate, putamen and cerebellum (1.5-3.2 fold, P < 0.05), and CYP2E1 induction by nicotine in the frontal cortex and putamen (1.6-2.0 fold, P < 0.05). Combined ethanol and nicotine exposure induced CYP2B6 in the caudate, putamen, thalamus and cerebellum (1.4-2.4 fold, P < 0.05), and CYP2E1 in the frontal cortex and putamen (1.5-1.8, P < 0.05). CYP2B6 and CYP2E1 mRNA levels were unaffected by ethanol or nicotine exposure. In summary, ethanol and nicotine can induce CYP2B6 and CYP2E1 protein in the primate brain, which could potentially result in altered sensitivity to centrally acting drugs and toxins.

  5. Rational Engineering of Cytochromes P450 2B6 and 2B11 for Enhanced Stability: Insights Into Structural Importance of Residue 334

    PubMed Central

    Talakad, Jyothi C.; Wilderman, P. Ross; Davydov, Dmitri R.; Kumar, Santosh; Halpert, James R.

    2009-01-01

    Rational mutagenesis was used to improve the thermal stability of human cytochrome P450 2B6 and canine P450 2B11. Comparison of the amino acid sequences revealed seven sites that are conserved between the stable 2B1 and 2B4 but different from those found in the less stable 2B6 and 2B11. P334S was the only mutant that showed increased heterologous expression levels and thermal stability in both 2B6 and 2B11. The mechanism of this effect was explored with pressure-perturbation spectroscopy. Compressibility of the heme pocket in variants of all four CYP2B enzymes containing proline at position 334 are characterized by lower compressibility than their more stable serine 334 counterpart. Therefore, the stabilizing effect of P334S is associated with increased conformational flexibility in the region of the heme pocket. Improved stability of P334S 2B6 and 2B11 may facilitate the studies of these enzymes by X-ray crystallography and biophysical techniques. PMID:19944064

  6. Molecular modelling of CYP2B6 based on homology with the CYP2C5 crystal structure: analysis of enzyme-substrate interactions.

    PubMed

    Lewis, David F V; Lake, Brian G; Dickins, Maurice; Goldfarb, Peter S

    2002-01-01

    The results of homology modelling of CYP2B6 based on the CYP2C5 crystal structure is described in terms of substrates and inhibitors binding within the putative active site. In general these results are in agreement with currently available evidence from substrate metabolism, mode of inhibitor action and site-directed mutagenesis experiments within the CYP2B subfamily of enzymes. Consequently, the model based on the CYP2C5 template represents an advance on those models produced from bacterial P450s, such as CYP101 and CYP102. Quantitative Structure-Activity Relationships (QSARs) for substrates binding to CYP2B6 indicate a key role for hydrogen bonding, and lipophilic character, as determined by the log P parameter (where P is the octanol/water partition coefficient), is also of importance for explaining the variation in experimental binding affinity for CYP2B6 substrates. It is possible to estimate the binding energies for typical CYP2B6 substrates based on their properties and interactions with the enzyme, which show good concordance with experimental data in the form of apparent Km values.

  7. Effect of mid-dose efavirenz concentrations and CYP2B6 genotype on viral suppression in patients on first-line antiretroviral therapy.

    PubMed

    Orrell, Catherine; Bienczak, Andrzej; Cohen, Karen; Bangsberg, David; Wood, Robin; Maartens, Gary; Denti, Paolo

    2016-06-01

    The therapeutic range for efavirenz plasma concentrations is unclear and some studies found no correlation with viral non-suppression. Efavirenz concentrations are variable, driven in part by polymorphisms in CYP2B6. We hypothesised that efavirenz mid-dosing concentrations, together with CYP2B6 metaboliser genotype, could predict viral non-suppression. Participants starting first-line efavirenz-based antiretroviral therapy were monitored for 48 weeks. HIV-RNA and efavirenz mid-dose interval concentrations were determined at Weeks 16 and 48. CYP2B6 metaboliser genotype status was determined by 516G→T and 983T→C polymorphisms. Cox proportional hazards modelling was used to predict viral non-suppression and to determine the most predictive efavirenz mid-dosing concentration threshold. In total, 180 participants were included. Median efavirenz concentrations were 2.3 mg/L (IQR 1.6-4.6 mg/L) and 2.2 mg/L (IQR 1.5-3.9 mg/L) at Weeks 16 and 48, respectively. Moreover, 49 (27.2%), 84 (46.7%) and 39 (21.7%) participants had extensive, intermediate or slow CYP2B6 metaboliser genotype, respectively. Log2 efavirenz concentrations [adjusted hazard ratio (aHR) = 0.77, 95% CI 0.67-0.89] and baseline CD4 cell count (aHR = 0.994, 95% CI 0.989-0.998), but not CYP2B6 genotype, were predictive of viral non-suppression. For every doubling of efavirenz concentration there was a 23% decrease in the hazard of non-suppression. A threshold of 0.7 mg/L was found to be the efavirenz mid-dosing concentration that was most predictive of non-suppression. Mid-dosing efavirenz concentrations are predictive of viral non-suppression, but the currently recommended lower therapeutic limit (1 mg/L) is higher than our finding. Knowledge of CYP2B6 metaboliser genotype is not required for prediction of virological outcomes.

  8. Influence of Various Polymorphic Variants of Cytochrome P450 Oxidoreductase (POR) on Drug Metabolic Activity of CYP3A4 and CYP2B6

    PubMed Central

    Naranmandura, Hua; Zeng, Su; Chen, Shu Qing

    2012-01-01

    Cytochrome P450 oxidoreductase (POR) is known as the sole electron donor in the metabolism of drugs by cytochrome P450 (CYP) enzymes in human. However, little is known about the effect of polymorphic variants of POR on drug metabolic activities of CYP3A4 and CYP2B6. In order to better understand the mechanism of the activity of CYPs affected by polymorphic variants of POR, six full-length mutants of POR (e.g., Y181D, A287P, K49N, A115V, S244C and G413S) were designed and then co-expressed with CYP3A4 and CYP2B6 in the baculovirus-Sf9 insect cells to determine their kinetic parameters. Surprisingly, both mutants, Y181D and A287P in POR completely inhibited the CYP3A4 activity with testosterone, while the catalytic activity of CYP2B6 with bupropion was reduced to approximately ∼70% of wild-type activity by Y181D and A287P mutations. In addition, the mutant K49N of POR increased the CLint (Vmax/Km) of CYP3A4 up to more than 31% of wild-type, while it reduced the catalytic efficiency of CYP2B6 to 74% of wild-type. Moreover, CLint values of CYP3A4-POR (A115V, G413S) were increased up to 36% and 65% of wild-type respectively. However, there were no appreciable effects observed by the remaining two mutants of POR (i.e., A115V and G413S) on activities of CYP2B6. In conclusion, the extent to which the catalytic activities of CYP were altered did not only depend on the specific POR mutations but also on the isoforms of different CYP redox partners. Thereby, we proposed that the POR-mutant patients should be carefully monitored for the activity of CYP3A4 and CYP2B6 on the prescribed medication. PMID:22719896

  9. CYP2B6 Genotype Guided Dosing of Propofol Anesthesia in the Elderly based on Nonparametric Population Pharmacokinetic Modeling and Simulations

    PubMed Central

    Eugene, Andy R.

    2017-01-01

    Objective The primary aim of this article is to test the hypothesis that nonparametric pharmacometric modeling will accurately identify CYP2B6 genotype subgroups based on data from a study that reported results based on parametric pharmacokinetics (PK). Methods Propofol concentration-time data were originally reported in the Kansaku et al. 2011 publication. Nonparametric Nonlinear Mixed Effects Modeling (NLME) was conducted using the PMETRICS R package while population pharmacokinetic model parameters were estimated using a FORTRAN compiler. Finally, model-based dosing simulations were conducted in the MATLAB Simbiology. Results A total of 51 patients were included in the final PK analysis. A two-compartment gamma multiplicative error model adequately described the propofol concentration-time data. The precision of the goodness-of-fit plots resulted in an R2 of 0.927 and an R2 of 0.992 for the population prediction and individual predictions, respectively. Neither the UGT1A9 nor the CYP2B6 G516T gene variants resulted in statistically significant PK parameter differences while the CYP2B6 A785G gene variants resulted in statistically significant differences for the elimination rate. Model-based dosing-simulations comparing patients with the CYP2B6 AA & AG genotypes to both GG genotypes and patients from a multicenter trial suggest a 50% decrease in propofol infusion dose, to 25mg/kg/min, be made to result in approximately equivalent drug exposures. Conclusion Based on the pharmacometric modeling and simulation, if no dosage adjustments are made for the elderly CYP2B6 AA and AG genotypes, a 250% higher propofol blood exposure will be evident within 1-hour from the start of the infusion. Thus, based on the pharmacokinetic model, genotyping elderly patients for the CYP2B6 AA and AG gene variants will decrease the total propofol blood exposure during anesthesia and sedation when an infusion dose adjustment is made to 25mg/kg/min. PMID:28154789

  10. Synthesis and optical characterization of LiKB4O7, Li2B6O10, and LiCsB6O10 glasses

    SciTech Connect

    Adamiv, V.; Teslyuk, I.; Dyachok, Ya.; Romanyuk, G.; Krupych, O.; Mys, O.; Martynyuk-Lototska, I.; Burak, Ya.; Vlokh, R.

    2010-10-01

    In the current work we report on the synthesis of LiKB4O7, Li2B6O10, and LiCsB6O10 borate glasses. The results for their piezo-optic, acousto-optic, acoustic, elastic, refractive, optical transmission, and optical resistance properties are also presented. It is shown that some of these glasses represent efficient acousto-optic materials that are transparent down to the vacuum ultraviolet range and highly resistant to laser radiation.

  11. CYP2B6*6 is an independent determinant of inferior response to fludarabine plus cyclophosphamide in chronic lymphocytic leukemia.

    PubMed

    Johnson, Gillian G; Lin, Ke; Cox, Trevor F; Oates, Melanie; Sibson, David R; Eccles, Richard; Lloyd, Bryony; Gardiner, Laura-Jayne; Carr, Daniel F; Pirmohamed, Munir; Strefford, Jonathan C; Oscier, David G; Gonzalez de Castro, David; Else, Monica; Catovsky, Daniel; Pettitt, Andrew R

    2013-12-19

    Fludarabine plus cyclophosphamide (FC) is the chemotherapy backbone of modern chronic lymphocytic leukemia (CLL) treatment. CYP2B6 is a polymorphic cytochrome P450 isoform that converts cyclophosphamide to its active form. This study investigated the possible impact of genetic variation in CYP2B6 on response to FC chemotherapy in CLL. Available DNA samples from the LRF CLL4 trial, which compared chlorambucil, fludarabine, and FC, were screened by TaqMan real-time polymerase chain reaction assays for CYP2B6 SNPs c.516G>T and c.785A>G, which define the most common variant allele (*6). Among the 455 samples successfully genotyped, 265 (58.2%), 134 (29.5%), and 29 (6.4%) were classified as *1/*1, *1/*6, and *6/*6, respectively. Patients expressing at least one *6 allele were significantly less likely to achieve a complete response (CR) after FC (odds ratio 0.27; P = .004) but not chlorambucil or fludarabine. Analysis of individual response indicators confirmed that this inferior response resulted from impaired cytoreduction rather than delayed hemopoietic recovery. Multivariate analysis controlling for age, gender, stage, IGHV mutational status, 11q deletion, and TP53 deletion/mutation identified CYP2B6*6 and TP53 mutation/deletion as the only independent determinants of CR attainment after FC. Our study provides the first demonstration that host pharmacogenetics can influence therapeutic response in CLL. This trial is registered as an International Standard Randomised Control Trial, number NCT 58585610 at www.clinicaltrials.gov.

  12. Inhibition of bupropion metabolism by selegiline: mechanism-based inactivation of human CYP2B6 and characterization of glutathione and peptide adducts.

    PubMed

    Sridar, Chitra; Kenaan, Cesar; Hollenberg, Paul F

    2012-12-01

    Selegiline, the R-enantiomer of deprenyl, is used in the treatment of Parkinson's disease. Bupropion, an antidepressant, often used to treat patients in conjunction with selegiline, is metabolized primarily by CYP2B6. The effect of selegiline on the enzymatic activity of human cytochrome CYP2B6 in a reconstituted system and its effect on the metabolism of bupropion were examined. Selegiline was found to be a mechanism-based inactivator of the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation (7-EFC) activity of CYP2B6 as well as bupropion metabolism. The inactivations were time-, concentration-, and NADPH-dependent and were characterized by K(I) values of 0.14 and 0.6 μM, k(inact) values of 0.022 and 0.029 min⁻¹, and t(½) values of 31.5 and 24 min, respectively. In standard inhibition assays, selegiline increased the K(m) of CYP2B6 for bupropion from 10 to 92 μM and decreased the k(cat) by ∼50%. The reduced carbon-monoxide difference spectrum revealed over a 50% loss in the cytochrome P450 spectrum in the inactivated sample, with no loss in heme, and there was ∼70% loss in enzyme activity. Trapping of the reactive metabolite using GSH led to the identification of a GSH-selegiline conjugate with a m/z 528 that could be explained by hydroxylation of selegiline followed by the addition of glutathione to the propargyl moiety after oxygenation to form the ketene intermediate. Liquid chromatography-tandem mass spectrometry analysis of the labeled protein following digestion with trypsin revealed the peptide ⁶⁴DVFTVHLGPR⁷³ as the peptide modified by the reactive metabolite of selegiline and the site of adduct formation is Asp64.

  13. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    PubMed

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation.

  14. Synthesis and optical characterization of LiKB4O7, Li2B6O10, and LiCsB6O10 glasses.

    PubMed

    Adamiv, V; Teslyuk, I; Dyachok, Ya; Romanyuk, G; Krupych, O; Mys, O; Martynyuk-Lototska, I; Burak, Ya; Vlokh, R

    2010-10-01

    In the current work we report on the synthesis of LiKB(4)O(7), Li(2)B(6)O(10), and LiCsB(6)O(10) borate glasses. The results for their piezo-optic, acousto-optic, acoustic, elastic, refractive, optical transmission, and optical resistance properties are also presented. It is shown that some of these glasses represent efficient acousto-optic materials that are transparent down to the vacuum ultraviolet range and highly resistant to laser radiation.

  15. Sleep quality in efavirenz-treated Chinese HIV patients - comparing between GT and GG genotype of CYP2B6-516 G/T polymorphisms.

    PubMed

    Lee, Shui Shan; To, Kin Wang; Lee, Man Po; Wong, Ngai Sze; Chan, Denise P C; Li, Patrick C K; Cheung, Siu Wai; Chan, Raphael C Y

    2014-03-01

    Seventy-two adult Chinese HIV-positive treatment-naïve patients were recruited in a study to evaluate prospectively the associations between CYP2B6 516 G/T polymorphisms and sleep quality following treatment with an efavirenz-based regimen. Overall, the patients gave an allelic frequency of 0.3 for CYP2B6 516 T, and a genotype frequency of 9.4% for TT. Compared to GG, GT gave a higher median value of plasma efavirenz level at four weeks (3.77 mg/L vs 2.59 mg/L, p < 0.001) and 12 months (3.57 mg/L vs 2.97 mg/L, p = 0.026). Using generalised estimating equations analysis to track the variance over time, there was poorer Pittsburgh Sleep Quality Index in GT compared to GG, while GT was associated with a higher efavirenz level of >4 mg/L. There was however no difference in the component sleep scores nor was there direct association between sleep quality and plasma efavirenz levels. The results suggested that CYP2B6 genotype was associated with different patterns of sleep problems, further investigation of which is warranted with the objective of optimizing therapy with efavirenz-based regimens.

  16. The G⁵¹⁶T CYP2B6 germline polymorphism affects the risk of acute myeloid leukemia and is associated with specific chromosomal abnormalities.

    PubMed

    Daraki, Aggeliki; Zachaki, Sophia; Koromila, Theodora; Diamantopoulou, Paraskevi; Pantelias, Gabriel E; Sambani, Constantina; Aleporou, Vasiliki; Kollia, Panagoula; Manola, Kalliopi N

    2014-01-01

    The etiology of acute myeloid leukemia (AML) underlies the influence of genetic variants in candidate genes. The CYP2B6 enzyme detoxifies many genotoxic xenobiotics, protecting cells from oxidative damage. The CYP2B6 gene is subjected to a single-nucleotide polymorphism (G⁵¹⁶T) with heterozygotes (GT) and homozygotes (TT) presenting decreased enzymatic activity. This case-control study aimed to investigate the association of CYP2B6 G⁵¹⁶T polymorphism with the susceptibility of AML and its cytogenetic and clinical characteristics. Genotyping was performed on 619 AML patients and 430 healthy individuals using RCR-RFLP and a novel LightSNip assay. The major finding was a statistically higher frequency of the variant genotypes (GT and TT) in patients compared to the controls (GT:38.8% vs 29.8% and TT:9.3% vs 5.3% respectively) (p<0.001). More specifically, a significantly higher frequency of GT+TT genotypes in de novo AML patients (46.6%) and an immensely high frequency of TT in secondary AML (s-AML) (20.5%) were observed. The statistical analysis showed that the variant T allele was approximately 1.5-fold and 2.4-fold higher in de novo and s-AML respectively than controls. Concerning FAB subtypes, the T allele presented an almost 2-fold increased in AML-M2. Interestingly, a higher incidence of the TT genotype was observed in patients with abnormal karyotypes. In particular, positive correlations of the mutant allele were found in patients carrying specific chromosomal aberrations [-7/del(7q), -5/del(5q), +8, +21 or t(8;21)], complex or monosomal karyotypes. Finally, a strikingly higher frequency of TT genotype was also observed in patients stratified to the poor risk group. In conclusion, our results provide evidence for the involvement of the CYP2B6 polymorphism in AML susceptibility and suggest a possible role of the CYP2B6 genetic background on the development of specific chromosomal aberrations.

  17. The G516T CYP2B6 Germline Polymorphism Affects the Risk of Acute Myeloid Leukemia and Is Associated with Specific Chromosomal Abnormalities

    PubMed Central

    Daraki, Aggeliki; Zachaki, Sophia; Koromila, Theodora; Diamantopoulou, Paraskevi; Pantelias, Gabriel E.; Sambani, Constantina; Aleporou, Vasiliki; Kollia, Panagoula; Manola, Kalliopi N.

    2014-01-01

    The etiology of acute myeloid leukemia (AML) underlies the influence of genetic variants in candidate genes. The CYP2B6 enzyme detoxifies many genotoxic xenobiotics, protecting cells from oxidative damage. The CYP2B6 gene is subjected to a single-nucleotide polymorphism (G516T) with heterozygotes (GT) and homozygotes (TT) presenting decreased enzymatic activity. This case-control study aimed to investigate the association of CYP2B6 G516T polymorphism with the susceptibility of AML and its cytogenetic and clinical characteristics. Genotyping was performed on 619 AML patients and 430 healthy individuals using RCR-RFLP and a novel LightSNip assay. The major finding was a statistically higher frequency of the variant genotypes (GT and TT) in patients compared to the controls (GT:38.8% vs 29.8% and TT:9.3% vs 5.3% respectively) (p<0.001). More specifically, a significantly higher frequency of GT+TT genotypes in de novo AML patients (46.6%) and an immensely high frequency of TT in secondary AML (s-AML) (20.5%) were observed. The statistical analysis showed that the variant T allele was approximately 1.5-fold and 2.4-fold higher in de novo and s-AML respectively than controls. Concerning FAB subtypes, the T allele presented an almost 2-fold increased in AML-M2. Interestingly, a higher incidence of the TT genotype was observed in patients with abnormal karyotypes. In particular, positive correlations of the mutant allele were found in patients carrying specific chromosomal aberrations [-7/del(7q), -5/del(5q), +8, +21 or t(8;21)], complex or monosomal karyotypes. Finally, a strikingly higher frequency of TT genotype was also observed in patients stratified to the poor risk group. In conclusion, our results provide evidence for the involvement of the CYP2B6 polymorphism in AML susceptibility and suggest a possible role of the CYP2B6 genetic background on the development of specific chromosomal aberrations. PMID:24586425

  18. CYP2B6 haplotype and biological factors responsible for hepatotoxicity in HIV-infected patients receiving efavirenz-based antiretroviral therapy.

    PubMed

    Manosuthi, Weerawat; Sukasem, Chonlaphat; Lueangniyomkul, Aroon; Mankatitham, Wiroj; Thongyen, Supeda; Nilkamhang, Samruay; Manosuthi, Sukanya; Sungkanuparph, Somnuek

    2014-03-01

    Data on the pharmacogenetic markers of CYP2B6 and biological factors associated with hepatotoxicity in HIV-infected patients receiving an efavirenz-based antiretroviral therapy (ART) regimen are very limited. A total of 134 HIV-infected Thai adults were prospectively enrolled to receive a once-daily regimen of efavirenz 600 mg/tenofovir/lamivudine. Seven single nucleotide polymorphisms (SNPs) within CYP2B6 were genotyped using real-time PCR. At 12 weeks after ART, plasma efavirenz concentrations at 12h after dosing were measured. The mean ± standard deviation patient age was 37 ± 8 years, and 77.6% were male. The median (IQR) CD4 count was 43 cells/mm(3) (17-105 cells/mm(3)). Eighteen patients (13.4%) had positive anti-HCV and 5 patients (3.7%) had positive HBsAg. The frequencies of heterozygous/homozygous mutants of each SNP were 64C>T (11%), 499C>G (0%), 516G>T (55%), 785A>G (63%), 1375A>G (0%), 1459C>T (3%) and 21563C>T (62%). The three most frequent haplotypes identified included *1/*6 (40.3%), *1/*1 (34.3%) and *6/*6 (8.2%). The median (IQR) plasma efavirenz concentration was 2.3mg/L (1.4-3.7 mg/L). At 24 weeks, median (IQR) serum ALP was 98 mg/dL (73-133 mg/dL) and direct bilirubin was 0.11 mg/dL (0.10-0.19 mg/dL). The proportion of grade 1 and grade 2 elevated serum ALP was 12.7% and 1.5%, respectively. By multivariate analysis, factors associated with high ALP, total bilirubin and direct bilirubin included CYP2B6 haplotype *6/*6, high serum ALP at Week 0 and positive anti-HCV (all P<0.05). In summary, HIV-infected patients with the pharmacogenetic marker 'CYP2B6 haplotype *6/*6' may have increased susceptibility to hepatotoxicity with efavirenz-based ART.

  19. CCAAT/enhancer-binding protein alpha (C/EBPalpha) and hepatocyte nuclear factor 4alpha (HNF4alpha) synergistically cooperate with constitutive androstane receptor to transactivate the human cytochrome P450 2B6 (CYP2B6) gene: application to the development of a metabolically competent human hepatic cell model.

    PubMed

    Benet, Marta; Lahoz, Agustín; Guzmán, Carla; Castell, José V; Jover, Ramiro

    2010-09-10

    The transcription of tissue-specific and inducible genes is usually subject to the dynamic control of multiple activators. Dedifferentiated hepatic cell lines lose the expression of tissue-specific activators and many characteristic hepatic genes, such as drug-metabolizing cytochrome P450. Here we demonstrate that by combining adenoviral vectors for CCAAT/enhancer-binding protein alpha (C/EBPalpha), hepatocyte nuclear factor 4alpha (HNF4alpha), and constitutive androstane receptor, the CYP2B6 expression and inducibility by CITCO are restored in human hepatoma HepG2 cells at levels similar to those in cultured human hepatocytes. Moreover, several other phase I and II genes are simultaneously activated, which suggests that this is an effective approach to endow dedifferentiated human hepatoma cells with a particular metabolic competence and response to inducers. In order to gain insight into the molecular mechanism, we examined the cooperation of these three transcription factors on the CYP2B6 5'-flanking region. We show new CYP2B6-responsive sequences for C/EBPalpha and HNF4alpha and a novel synergistic regulatory mechanism whereby C/EBPalpha, HNF4alpha, and constitutive androstane receptor bind and cooperate through proximal and distal response elements to confer a maximal level of expression. The results obtained from human liver also suggest that important differences in the expression and binding of C/EBPalpha and HNF4alpha could account for the large interindividual variability of the hepatic CYP2B6 enzyme, which metabolizes commonly used drugs.

  20. High density H2 associative absorption on Titanium alpha-borozene (Ti2B6H6): An ab-initio case study

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Alireza; Tymzcak, C. J.

    2011-03-01

    Hydrogen is considered as a clean energy carrier that could be a future replacement for our addiction to fossil fuels. However, in order to have hydrogen economy at its highest efficiently we need to store hydrogen at high volumetric and gravimetric density. Using the all electron hybrid density functional theory, we have designed a benzene-like-molecule, Ti2B6H6, which has the promise of achieving this goal. Our results show that the molecule can associatively absorb the hydrogen up to ten percent by weight of hydrogen, which exceeds the 2015 US department of energy target. In this presentation we will discuss the mechanisms of H2 absorption and possible applications of this novel molecule. This research is funded by the Welch Foundation under Grant J. 1675 and the Texas Southern University High Performance Computing Center.

  1. The prognostic values of CYP2B6 genetic polymorphisms and metastatic sites for advanced breast cancer patients treated with docetaxel and thiotepa.

    PubMed

    Song, Qingkun; Zhou, Xinna; Yu, Jing; Dong, Ningning; Wang, Xiaoli; Yang, Huabing; Ren, Jun; Lyerly, H Kim

    2015-11-25

    This study investigated interactive effects of CYP2B6 genotypes and liver metastasis on the prognosis of metastatic breast cancer patients who received combined chemotherapy of docetaxel and thiotepa. Totally 153 patients were retrospectively genotyped rs8192719 (c.1294 + 53C > T) and rs2279343 (c.785A > G). Kaplan-Meier method and Cox Proportional Hazard Regression model were used to estimate the survival. Patients with liver metastasis had worsen prognosis, conferring a 2.26-fold high risk of progression and 1.93-fold high risk of death (p < 0.05). Both CT/TT genotype of rs8192719 (c.1294 +  3C > T) and AG genotype of rs2279343 (c.785A > G) prolonged survival (p < 0.05). Furthermore, among liver metastatic patients, AG genotype of rs2279343 (c.785A > G) was associated with a 47% reduced risk of death and a 6-month-longer overall survival (p < 0.05). Among non-liver metastatic patients, hazard ratios of CT/TT genotype of rs8192719 (c.1294 + 53C > T) were 0.45 for progression and 0.40 for death; and the corresponding survival was improved by 6 months and 16 months, respectively (p < 0.05). Genotypes of CYP2B6 had an interaction with clinical efficacy of docetaxel and thiotepa on metastatic breast cancer patients; and metastatic sites also affected clinical responses. Further therapies should take into account of chemotherapy regimen, genotypes of metabolizing enzymes and metastatic sites for the particular subpopulation.

  2. Genetic variations of CYP2B6 gene were associated with plasma BPDE-Alb adducts and DNA damage levels in coke oven workers.

    PubMed

    Huang, Guoxiang; Guo, Huan; Wu, Tangchun

    2012-06-20

    Polycyclic aromatic hydrocarbons (PAHs), the main components of coke oven emissions, can induce activation of cytochrome P450 (CYP) enzymes, which metabolize PAHs and result in DNA damage by forming adducts. This study was designed to know whether genetic variants of CYP genes are associated with plasma benzo[a]pyrene-7,8-diol-9,10-epoxide-albumin (BPDE-Alb) adducts and DNA damage in coke oven workers. In this study, 298 workers were divided into four groups according to the environmental PAHs exposure levels. The concentrations of plasma BPDE-Alb adducts were detected by reverse-phase high-performance liquid chromatography and the DNA damage levels were measured using comet assay. Twelve tag single nucleotide polymorphisms (tagSNPs) of 4 CYP genes were selected and genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In the top group, workers with CYP2B6 rs3760657GA genotype have lower BPDE-Alb adducts and DNA damage levels than those with rs3760657GG genotype (P<0.05). In the control group, the DNA damage levels of subjects with CYP1A1 rs4646421AA or GA+AA genotypes were lower than those with GG genotype (P<0.05). However, no such effects were shown for the other tagSNPs. These results suggested that genetic variations of CYP2B6 might be associated with low BPDE-Alb adducts and DNA damage levels in worker with high exposure to PAHs.

  3. Efavirenz and Metabolites in Cerebrospinal Fluid: Relationship with CYP2B6 c.516G→T Genotype and Perturbed Blood-Brain Barrier Due to Tuberculous Meningitis

    PubMed Central

    Chau, Tran Thi Hong; Fisher, Martin; Nelson, Mark; Winston, Alan; Else, Laura; Carr, Daniel F.; Taylor, Steven; Ustianowski, Andrew; Back, David; Pirmohamed, Munir; Solomon, Tom; Farrar, Jeremy; Törok, M. Estée; Khoo, Saye

    2016-01-01

    Efavirenz (EFZ) has been associated with neuropsychiatric side effects. Recently, the 8-hydroxy-EFZ (8OH-EFZ) metabolite has been shown to be a potent neurotoxin in vitro, inducing neuronal damage at concentrations of 3.3 ng/ml. EFZ induced similar neuronal damage at concentrations of 31.6 ng/ml. We investigated the effect of genotype and blood-brain barrier integrity on EFZ metabolite concentrations in cerebrospinal fluid (CSF). We measured CSF drug concentrations in subjects from two separate study populations: 47 subjects with tuberculous meningitis (TBM) coinfection in Vietnam receiving 800 mg EFZ with standard antituberculous treatment and 25 subjects from the PARTITION study in the United Kingdom without central nervous system infection receiving 600 mg EFZ. EFZ and metabolite concentrations in CSF and plasma were measured and compared with estimates of effectiveness and neurotoxicity from available published in vitro and in vivo data. The effect of the CYP2B6 c.516G→T genotype (GG genotype, fast EFV metabolizer status; GT genotype, intermediate EFV metabolizer status; TT genotype, slow EFV metabolizer status) was examined. The mean CSF concentrations of EFZ and 8OH-EFZ in the TBM group were 60.3 and 39.3 ng/ml, respectively, and those in the no-TBM group were 15.0 and 5.9 ng/ml, respectively. Plasma EFZ and 8OH-EFZ concentrations were similar between the two groups. CSF EFZ concentrations were above the in vitro toxic concentration in 76% of samples (GG genotype, 61%; GT genotype, 90%; TT genotype, 100%) in the TBM group and 13% of samples (GG genotype, 0%; GT genotype, 18%; TT genotype, 50%) in the no-TBM group. CSF 8OH-EFZ concentrations were above the in vitro toxic concentration in 98% of the TBM group and 87% of the no-TBM group; levels were independent of genotype but correlated with the CSF/plasma albumin ratio. Potentially neurotoxic concentrations of 8OH-EFZ are frequently observed in CSF independently of the CYP2B6 genotype, particularly in those

  4. Genetic variation in the CYP2B6 Gene is related to circulating 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) concentrations: an observational population-based study

    PubMed Central

    2014-01-01

    Background Since human CYP2B6 has been identified as the major CYP enzyme involved in the metabolism of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) and that human 2B6 is a highly polymorphic CYP, with known functional variants, we evaluated if circulating concentrations of a major brominated flame retardant, BDE-47, were related to genetic variation in the CYP2B6 gene in a population sample. Methods In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (men and women all aged 70), 25 single nucleotide polymorphisms (SNPs) in the CYP2B6 gene were genotyped. Circulating concentrations of BDE-47 were analyzed by high-resolution gas chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Results Several SNPs in the CYP2B6 gene were associated with circulating concentrations of BDE-47 (P = 10-4 to 10-9). The investigated SNPs came primarily from two haplotypes, although the correlation between the haplotypes was rather high. Conditional analyses adjusting for the SNP with the strongest association with the exposure (rs2014141) did not provide evidence for independent signals. Conclusion Circulating concentrations of BDE-47 were related to genetic variation in the CYP2B6 gene in an elderly population. PMID:24885815

  5. Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19.

    PubMed

    Kawahigashi, Hiroyuki; Hirose, Sakiko; Ohkawa, Hideo; Ohkawa, Yasunobu

    2006-04-19

    This study evaluated the expression of human cytochrome P450 genes CYP1A1, CYP2B6, and CYP2C19 in rice plants (Oryza sativa cv. Nipponbare) introduced using the plasmid pIKBACH. The transgenic rice plants (pIKBACH rice plants) became more tolerant toward various herbicides than nontransgenic Nipponbare rice plants. Rice plants expressing pIKBACH grown in soil showed tolerance to the herbicides atrazine, metolachlor, and norflurazon and to a mixture of the three herbicides. The degradation of atrazine and metolachlor by pIKBACH rice plants was evaluated to confirm the metabolic activity of the introduced P450s. Although both pIKBACH and nontransgenic Nipponbare rice plants could decrease the amounts of the herbicides in plant tissue and culture medium, pIKBACH rice plants removed greater amounts in greenhouse experiments. The ability of pIKBACH rice plants to remove atrazine and metolachlor from soil was confirmed in large-scale experiments. The metabolism of herbicides by pIKBACH rice plants was enhanced by the introduced P450 species. Assuming that public and commercial acceptance is forthcoming, pIKBACH rice plants may become useful tools for the breeding of herbicide-tolerant crops and for phytoremediation of environmental pollution by organic chemicals.

  6. A Quantitative High-Throughput 96-well plate Fluorescence Assay for Mechanism-Based Inactivators of Cytochromes P450 Exemplified using CYP2B6

    PubMed Central

    Kenaan, Cesar; Zhang, Haoming; Hollenberg, Paul F.

    2010-01-01

    Mechanism-based inactivators such as bergamottin are useful chemical tools for identifying the roles of specific active-site amino acid residues in the reactions catalyzed by the cytochromes P450 (CYPs or P450s) that are responsible for the metabolism of a wide variety of drugs and endogenous substrates. In clinical settings mechanism-based inactivation of P450s involved in xenobiotic metabolism has the potential to lead to adverse drug-drug interactions and assays to identify and characterize drug candidates as P450 inactivators are important in drug discovery and development. Here we present a quantitative high-throughput protocol for investigating cytochrome P450 mechanism-based inactivators using the example of CYP2B6 and bergamottin to illustrate the finer points of this protocol. This protocol details the adaptation of a 7-ethoxytrifluoromethyl coumarin (7-EFC) O-deethylation fluorescence activity assay to a 96-well microtiter plate format and uses a plate-reader to detect the fluorescence of the product. Compared to previous methods, this protocol requires less P450 and takes significantly less time while greatly increasing throughput. The protocol as written takes approximately two hours to complete. The principles and procedures outlined in this protocol can be easily adapted to other inactivators, P450 isoforms, substrates and plate-readers. PMID:20885377

  7. Crystal Structure of a Cytochrome P450 2B6 Genetic Variant in Complex with the Inhibitor 4-(4-Chlorophenyl)imidazole at 2.0-Å Resolution

    PubMed Central

    Shah, Manish B.; Talakad, Jyothi C.; Maekawa, Keiko; Roberts, Arthur G.; Wilderman, P. Ross; Sun, Ling; Yang, Jane Y.; Huelga, Stephanie C.; Hong, Wen-Xu; Zhang, Qinghai; Stout, C. David; Halpert, James R.

    2010-01-01

    The structure of the K262R genetic variant of human cytochrome P450 2B6 in complex with the inhibitor 4-(4-chlorophenyl)imidazole (4-CPI) has been determined using X-ray crystallography to 2.0-Å resolution. Production of diffraction quality crystals was enabled through a combination of protein engineering, chaperone coexpression, modifications to the purification protocol, and the use of unique facial amphiphiles during crystallization. The 2B6-4-CPI complex is virtually identical to the rabbit 2B4 structure bound to the same inhibitor with respect to the arrangement of secondary structural elements and the placement of active site residues. The structure supports prior P450 2B6 homology models based on other mammalian cytochromes P450 and is consistent with the limited site-directed mutagenesis studies on 2B6 and extensive studies on P450 2B4 and 2B1. Although the K262R genetic variant shows unaltered binding of 4-CPI, altered binding affinity, kinetics, and/or product profiles have been previously shown with several other ligands. On the basis of new P450 2B6 crystal structure and previous 2B4 structures, substitutions at residue 262 affect a hydrogen-bonding network connecting the G and H helices, where subtle differences could be transduced to the active site. Docking experiments indicate that the closed protein conformation allows smaller ligands such as ticlopidine to bind to the 2B6 active site in the expected orientation. However, it is unknown whether 2B6 undergoes structural reorganization to accommodate bulkier molecules, as previously inferred from multiple P450 2B4 crystal structures. PMID:20061448

  8. Crystal structure of a cytochrome P450 2B6 genetic variant in complex with the inhibitor 4-(4-chlorophenyl)imidazole at 2.0-A resolution.

    PubMed

    Gay, Sean C; Shah, Manish B; Talakad, Jyothi C; Maekawa, Keiko; Roberts, Arthur G; Wilderman, P Ross; Sun, Ling; Yang, Jane Y; Huelga, Stephanie C; Hong, Wen-Xu; Zhang, Qinghai; Stout, C David; Halpert, James R

    2010-04-01

    The structure of the K262R genetic variant of human cytochrome P450 2B6 in complex with the inhibitor 4-(4-chlorophenyl)imidazole (4-CPI) has been determined using X-ray crystallography to 2.0-A resolution. Production of diffraction quality crystals was enabled through a combination of protein engineering, chaperone coexpression, modifications to the purification protocol, and the use of unique facial amphiphiles during crystallization. The 2B6-4-CPI complex is virtually identical to the rabbit 2B4 structure bound to the same inhibitor with respect to the arrangement of secondary structural elements and the placement of active site residues. The structure supports prior P450 2B6 homology models based on other mammalian cytochromes P450 and is consistent with the limited site-directed mutagenesis studies on 2B6 and extensive studies on P450 2B4 and 2B1. Although the K262R genetic variant shows unaltered binding of 4-CPI, altered binding affinity, kinetics, and/or product profiles have been previously shown with several other ligands. On the basis of new P450 2B6 crystal structure and previous 2B4 structures, substitutions at residue 262 affect a hydrogen-bonding network connecting the G and H helices, where subtle differences could be transduced to the active site. Docking experiments indicate that the closed protein conformation allows smaller ligands such as ticlopidine to bind to the 2B6 active site in the expected orientation. However, it is unknown whether 2B6 undergoes structural reorganization to accommodate bulkier molecules, as previously inferred from multiple P450 2B4 crystal structures.

  9. Vitamins B2, B6 and B12 and Risk of New Colorectal Adenomas in a Randomized Trial of Aspirin Use and Folic Acid Supplementation

    PubMed Central

    Figueiredo, Jane C.; Levine, A. Joan; Grau, Maria V.; Midttun, Øivind; Ueland, Per M.; Ahnen, Dennis J.; Barry, Elizabeth L.; Tsang, Shirley; Munroe, David; Ali, Iqbal; Haile, Robert W.; Sandler, Robert S.; Baron, John A.

    2008-01-01

    Background Folate, other vitamin B cofactors, and genes involved in folate-mediated one-carbon metabolism (FOCM) all may play important roles in colorectal neoplasia. In this study, we examined the associations between dietary and circulating plasma levels of vitamins B2, B6 and B12 and risk colorectal adenomas. Methods The Aspirin/Folate Polyp Prevention Study is a randomized clinical trial of folic acid supplementation and incidence of new colorectal adenomas in individuals with a history of adenomas (n=1,084). Diet and supplement use were ascertained through a food-frequency questionnaire administered at baseline. Blood collected at baseline was used to determine plasma B-vitamin levels. We used generalized linear regression to estimate risk ratios (RR) and 95% confidence limits (CI) as measures of association. Results We found a borderline significant inverse association with plasma B6 (pyridoxal 5′phosphate, PLP) and adenoma risk (adjusted RR Q4 vs. Q1=0.78, 95% CI=0.61-1.00, p-trend=0.08). This association was not modified by folic acid supplementation or plasma folate. However, the protective association of PLP with adenoma risk was observed only among subjects who did not drink alcohol (p-interaction=0.03). Plasma B2 (riboflavin) was inversely associated with risk of advanced lesions (adjusted RR Q4 vs. Q1=0.51; 95% CI=0.26-0.99, p-trend=0.12). No significant associations were observed between adenoma risk and plasma vitamin B12 or dietary intake of vitamin B2 and B6. When we examined specific gene-B-vitamin interactions, we observed a possible interaction between MTHFR-C677T and plasma B2 on risk of all adenomas. Conclusion Our results suggest that high levels of PLP and B2 may protect against colorectal adenomas. PMID:18708408

  10. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  11. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  12. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  13. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  14. 42 CFR 2a.6 - Issuance of Confidentiality Certificates; single project limitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Issuance of Confidentiality Certificates; single project limitation. 2a.6 Section 2a.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.6 Issuance of...

  15. Structures of Cytochrome P450 2B6 Bound to 4-Benzylpyridine and 4-(4-Nitrobenzyl)pyridine: Insight into Inhibitor Binding and Rearrangement of Active Site Side Chains

    PubMed Central

    Pascual, Jaime; Zhang, Qinghai; Stout, C. David; Halpert, James R.

    2011-01-01

    The biochemical, biophysical, and structural analysis of the cytochrome P450 2B subfamily of enzymes has provided a wealth of information regarding conformational plasticity and substrate recognition. The recent X-ray crystal structure of the drug-metabolizing P450 2B6 in complex with 4-(4-chlorophenyl)imidazole (4-CPI) yielded the first atomic view of this human enzyme. However, knowledge of the structural basis of P450 2B6 specificity and inhibition has remained limited. In this study, structures of P450 2B6 were determined in complex with the potent inhibitors 4-benzylpyridine (4-BP) and 4-(4-nitrobenzyl)pyridine (4-NBP). Comparison of the present structures with the previous P450 2B6-4-CPI complex showed that reorientation of side chains of the active site residue Phe206 on the F-helix and Phe297 on the I-helix was necessary to accommodate the inhibitors. However, P450 2B6 does not require any major side chain rearrangement to bind 4-NBP compared with 4-BP, and the enzyme provides no hydrogen-bonding partners for the polar nitro group of 4-NBP within the hydrophobic active site. In addition, on the basis of these new structures, substitution of residue 172 with histidine as observed in the single nucleotide polymorphism Q172H and in P450 2B4 may contribute to a hydrogen bonding network connecting the E- and I-helices, thereby stabilizing active site residues on the I-helix. These results provide insight into the role of active site side chains upon inhibitor binding and indicate that the recognition of the benzylpyridines in the closed conformation structure of P450 2B6 is based solely on hydrophobicity, size, and shape. PMID:21875942

  16. Evaluation of metabolism dependent inhibition of CYP2B6 mediated bupropion hydroxylation in human liver microsomes by monoamine oxidase inhibitors and prediction of potential as perpetrators of drug interaction.

    PubMed

    Nirogi, Ramakrishna; Palacharla, Raghava Choudary; Mohammed, Abdul Rasheed; Manoharan, Arunkumar; Ponnamaneni, Ranjith Kumar; Bhyrapuneni, Gopinadh

    2015-03-25

    The objective of the study was to evaluate the metabolism dependent inhibition of CYP2B6 catalyzed bupropion hydroxylation in human liver microsomes by monoamine oxidase (MAO) inhibitors and to predict the drug-drug interaction potential of monoamine oxidase inhibitors as perpetrators of drug interaction. Human liver microsomal CYP2B6 activities were investigated using bupropion hydroxylation as probe substrate marker. The results from single point time dependent inhibition and shift assays suggest that clorgyline, pargyline, phenelzine, and selegiline were metabolism based inhibitors of CYP2B6. In IC50 shift assays, clorgyline, pargyline, phenelzine and selegiline are metabolism based inhibitors of CYP2B6 with fold shit of 3.0-, 3.7-, 2.9-, and 11.4-fold respectively. The inactivation of clorgyline was characterized by KI value of 2.5 ± 0.3 and k(inact) value of 0.045 ± 0.001 min(-1). Phenelzine inactivated CYP2B6 with KI and k(inact) values of 44.9 ± 6.9 μM and 0.085 ± 0.003 min(-1) respectively. Inactivation of selegiline was characterized with KI and k(inact) values of 22.0 ± 3.3 and 0.074 ± 0.002 min(-1) respectively. The inactivation caused by these inhibitors was not reversed by dialysis indicating irreversible inhibition. Based on the mechanistic static model, selegiline showed an increase in the area under the curve (AUC) of efavirenz and bupropion by 1.01-fold. Phenelzine predicted to cause an increase in the AUC of efavirenz and bupropion by 9.4- and 2.4-fold respectively considering unbound hepatic inlet concentrations of phenelzine. In conclusion, the results from this study demonstrated that MAO inhibitors can inactivate human liver microsomal CYP2B6. The likelihood of drug interaction when selegiline co-administered with CYP2B6 substrates is remote. Caution is required while co-administering phenelzine with substrates that are exclusively metabolized by CYP2B6 enzyme and substrates that have narrow therapeutic index.

  17. Syntheses, structure, and luminescent properties of novel hydrated rare earth borates Ln2B6O10OH4•H2O (Ln = Pr, Nd, Sm, Eu, Gd, Dy, Ho, and Y).

    PubMed

    Cong, Rihong; Yang, Tao; Wang, Zheming; Sun, Junliang; Liao, Fuhui; Wang, Yingxia; Lin, Jianhua

    2011-03-07

    Ln(2)B(6)O(10)(OH)(4)•H(2)O (Ln = Pr, Nd, Sm-Gd, Dy, Ho, and Y), a new series of hydrated rare earth borates, have been synthesized under hydrothermal conditions. A single crystal of Nd analogue was used for the structure determination by X-ray diffraction. It crystallizes in the monoclinic space group C2/c with lattice constants a = 21.756(4), b = 4.3671(9), c = 12.192(2) Å, and β = 108.29(3)°. The other compounds are isostructural to Nd(2)B(6)O(10)(OH)(4)•H(2)O. The fundamental building block (FBB) of the polyborate anion in this structure is a three-membered ring [B(3)O(6)(OH)(2)](5-). The FBBs are connected by sharing oxygen atoms forming an infinite [B(3)O(5)(OH)(2)](3-) chain, and the chains are linked by hydrogen bonds, establishing a two-dimensional (2-D) [B(6)O(10)(OH)(4)•H(2)O](6-) layer. The 2-D borate layers are thus interconnected by Ln(3+) ions to form the complex three-dimensional structure. Ln(2)B(6)O(10)(OH)(4)•H(2)O dehydrates stepwise, giving rise to two new intermediate compounds Ln(2)B(6)O(10)(OH)(4) and Ln(2)B(6)O(11)(OH)(2). The investigation on the luminescent properties of Gd(2-2x)Eu(2x)B(6)O(10)(OH)(4)•H(2)O (x = 0.01-1.00) shows a high efficiency of Eu(3+) f-f transitions and the existence of the energy transfer process from Gd(3+) to Eu(3+). Eu(2)B(6)O(10)(OH)(4)•H(2)O and its two dehydrated products, Eu(2)B(6)O(10)(OH)(4) and Eu(2)B(6)O(11)(OH)(2), present the strongest emission peak at 620 nm ((5)D(0) → (7)F(2) transition), which may be potential red phosphors.

  18. Inhibition of CYP2B6 by Medicinal Plant Extracts: Implication for Use of Efavirenz and Nevirapine-Based Highly Active Anti-Retroviral Therapy (HAART) in Resource-Limited Settings.

    PubMed

    Thomford, Nicholas E; Awortwe, Charles; Dzobo, Kevin; Adu, Faustina; Chopera, Denis; Wonkam, Ambroise; Skelton, Michelle; Blackhurst, Dee; Dandara, Collet

    2016-02-16

    Highly active antiretroviral therapy (HAART) has greatly improved health parameters of HIV infected individuals. However, there are several challenges associated with the chronic nature of HAART administration. For populations in health transition, dual use of medicinal plant extracts and conventional medicine poses a significant challenge. There is need to evaluate interactions between commonly used medicinal plant extracts and antiretroviral drugs used against HIV/AIDS. Efavirenz (EFV) and nevirapine (NVP) are the major components of HAART both metabolized by CYP2B6, an enzyme that can potentially be inhibited or induced by compounds found in medicinal plant extracts. The purpose of this study was to evaluate the effects of extracts of selected commonly used medicinal plants on CYP2B6 enzyme activity. Recombinant human CYP2B6 was used to evaluate inhibition, allowing the assessment of herb-drug interactions (HDI) of medicinal plants Hyptis suaveolens, Myrothamnus flabellifolius, Launaea taraxacifolia, Boerhavia diffusa and Newbouldia laevis. The potential of these medicinal extracts to cause HDI was ranked accordingly for reversible inhibition and also classified as potential time-dependent inhibitor (TDI) candidates. The most potent inhibitor for CYP2B6 was Hyptis suaveolens extract (IC50 = 19.09 ± 1.16 µg/mL), followed by Myrothamnus flabellifolius extract (IC50 = 23.66 ± 4.86 µg/mL), Launaea taraxacifolia extract (IC50 = 33.87 ± 1.54 µg/mL), and Boerhavia diffusa extract (IC50 = 34.93 ± 1.06 µg/mL). Newbouldia laevis extract, however, exhibited weak inhibitory effects (IC50 = 100 ± 8.71 µg/mL) on CYP2B6. Launaea taraxacifolia exhibited a TDI (3.17) effect on CYP2B6 and showed a high concentration of known CYP450 inhibitory phenolic compounds, chlorogenic acid and caffeic acid. The implication for these observations is that drugs that are metabolized by CYP2B6 when co-administered with these herbal medicines and when adequate amounts of the extracts

  19. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes.

    PubMed

    Misaka, Shingen; Kawabe, Keisuke; Onoue, Satomi; Werba, José Pablo; Giroli, Monica; Tamaki, Sekihiro; Kan, Toshiyuki; Kimura, Junko; Watanabe, Hiroshi; Yamada, Shizuo

    2013-01-01

    The effects of green tea catechins on the main drug-metabolizing enzymatic system, cytochrome P450 (CYP), have not been fully elucidated. The objective of the present study was to evaluate the effects of green tea extract (GTE, total catechins 86.5%, w/w) and (-)-epigallocatechin-3-gallate (EGCG) on the activities of CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A in vitro, using pooled human liver and intestinal microsomes. Bupropion hydroxylation, amodiaquine N-deethylation, (S)-mephenytoin 4'-hydroxylation, dextromethorphan O-demethylation and midazolam 1'-hydroxylation were assessed in the presence or absence of various concentrations of GTE and EGCG to test their effects on CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A activities, respectively. Each metabolite was quantified using UPLC/ESI-MS, and the inhibition kinetics of GTE and EGCG on CYP enzymes was analyzed. In human liver microsomes, IC50 values of GTE were 5.9, 4.5, 48.7, 25.1 and 13.8 µg/mL, for CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A, respectively. ECGC also inhibited these CYP isoforms with properties similar to those of GTE, and produced competitive inhibitions against CYP2B6 and CYP2C8, and noncompetitive inhibition against CYP3A. In human intestinal microsomes, IC50 values of GTE and EGCG for CYP3A were 18.4 µg/mL and 31.1 µM, respectively. EGCG moderately inhibited CYP3A activity in a noncompetitive manner. These results suggest that green tea catechins cause clinically relevant interactions with substrates for CYP2B6 and CYP2C8 in addition to CYP3A.

  20. Metabolism of bilirubin by human cytochrome P450 2A6

    SciTech Connect

    Abu-Bakar, A'edah; Arthur, Dionne M.; Wikman, Anna S.; Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu; Ng, Jack C.; Lang, Matti A.

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic CYP2

  1. CYP2B6*6 genotype and high efavirenz plasma concentration but not nevirapine are associated with low lumefantrine plasma exposure and poor treatment response in HIV-malaria-coinfected patients.

    PubMed

    Maganda, B A; Minzi, O M S; Ngaimisi, E; Kamuhabwa, A A R; Aklillu, E

    2016-02-01

    We investigated the influence of efavirenz (EFV)- or nevirapine (NVP)-based antiretroviral therapy (ART) on lumefantrine plasma exposure in HIV-malaria-coinfected patients and implication of pharmacogenetic variations. A total of 269 HIV patients with uncomplicated falciparum malaria on NVP-based ART (NVP-arm), EFV-based ART (EFV-arm) or not receiving ART (control-arm) were enrolled and treated with artemether-lumefantrine. Day-7 lumefantrine, baseline EFV and NVP plasma concentrations, and CYP2B6*6,*18, CYP3A4*1B, CYP3A5*3,*6,*7, ABCB1 c.3435C>T and ABCB1 c.4036A>G genotypes were determined. The median day-7 lumefantrine plasma concentration was significantly lower in the EFV-arm compared with that in NVP- and control-arm. High EFV plasma concentrations and CYP2B6*6/*6 genotype significantly correlated with low lumefantrine plasma concentrations and high rate of recurrent parasitemia. No significant effect of NVP-based ART on lumefantrine exposure was observed. In conclusion, owing to long-term CYP3A induction, EFV-based ART cotreatment significantly reduces lumefantrine plasma exposure leading to poor malaria treatment response, which is more pronounced in CYP2B6 slow metabolizers.

  2. CYP2A6 polymorphisms and risk for tobacco-related cancers.

    PubMed

    Rossini, Ana; de Almeida Simão, Tatiana; Albano, Rodolpho Mattos; Pinto, Luis Felipe Ribeiro

    2008-11-01

    Tobacco consumption is the main identifiable risk to cancer, contributing to the majority of tumors in upper aerodigestive tissues. The psychoactive compound responsible for tobacco addiction, nicotine and the potent carcinogens present at high concentrations either in cigarette mainstream smoke or in smokeless tobacco products, 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK) and N-nitrosonornicotine (NNN) can be metabolized by CYP2A6. CYP2A6 is expressed in many aerodigestive tissues with high interindividual variability. The CYP2A6 gene is highly polymorphic and CYP2A6 alleles coding for enzymes with altered expression or metabolic capacity produce alterations in nicotine metabolism in vivo and seem to influence smoking behavior. These polymorphisms may change the rate of NNK and NNN activation and, therefore, may influence cancer risk associated with tobacco consumption. However, to date only a few and inconclusive studies have addressed the risk that a given CYP2A6 polymorphism presents for the development of tobacco-related tumors. Most, but not all, show a reduced risk associated with alleles that result in decreased enzyme activity. The overlapping substrate specificity and tissue expression between CYP2A6 and the highly similar CYP2A13 may add to the conflicting results observed. The intricate regulation of CYP2A6 and the variation of structurally different chemical compounds capable of inhibiting CYP2A enzymes also add to the complexity. Finally, the interaction between polymorphisms of genes that code for CYP2A6, CYP2A13 and other potent carcinogen-metabolizing CYP enzymes may help to determine individuals that are at higher risk of developing tumors associated with tobacco consumption.

  3. Nicotine Metabolism and Smoking: Ethnic Differences in the Role of P450 2A6.

    PubMed

    Murphy, Sharon E

    2017-01-17

    Nicotine is the primary addictive agent in tobacco, and P450 2A6 (gene name: CYP2A6) is the primary catalyst of nicotine metabolism. It was proposed more than 20 years ago that individuals who metabolize nicotine poorly would smoke less, either fewer cigarettes per day or less intensely per cigarette, compared to smokers who metabolize nicotine more efficiently. These poor metabolizers would then be less likely to develop lung cancer due to their lower exposure to the many carcinogens delivered with nicotine in each puff of smoke. Numerous studies have reported that smokers who carry reduced activity or null CYP2A6 alleles do smoke less. Yet only in Asian populations, both Japanese and Chinese, which have a high prevalence of genetic variants, has a link between CYP2A6, smoking dose, and lung cancer been established. In other ethnic groups, it has been challenging to confirm a direct link between P450 2A6-mediated nicotine metabolism and the risk of lung cancer. This challenge is due in part to the difficulty in accurately quantifying smoking dose and accurately predicting or measuring P450 2A6-mediated nicotine metabolism. Biomarkers of nicotine metabolism and smoking exposure, including the ratio of trans-3-hydroxycotine to cotinine, a measure of P450 2A6 activity and plasma cotinine, or urinary total nicotine equivalents (the sum of nicotine and six metabolites) as measures of exposure are useful for addressing this challenge. However, to take full advantage of these biomarkers in the study of ethnic/racial differences in the risk of lung cancer requires the complete characterization of nicotine metabolism across ethnic/racial groups. Variation in metabolism pathways, other than those catalyzed by P450 2A6, can impact biomarkers of both nicotine metabolism and dose. This is clearly important for smokers with low levels of UGT2B10-catalyzed nicotine and cotinine glucuronidation because the UGT2B10 genotype influences plasma cotinine levels. Cotinine is not

  4. High plasma efavirenz level and CYP2B6*6 are associated with efavirenz-based HAART-induced liver injury in the treatment of naïve HIV patients from Ethiopia: a prospective cohort study.

    PubMed

    Yimer, G; Amogne, W; Habtewold, A; Makonnen, E; Ueda, N; Suda, A; Worku, A; Haefeli, W E; Burhenne, J; Aderaye, G; Lindquist, L; Aklillu, E

    2012-12-01

    The objective of this study was to assess the incidence, timing and identify pharmacogenetic, efavirenz (EFV) pharmacokinetic and biochemical predictors of EFV-based antiretroviral therapy (ART) drug-induced liver injury (DILI). ART-naïve HIV patients (n = 285) were prospectively enrolled. Pretreatment laboratory evaluations included hepatitis B surface antigen and C antibody, CD4 count and viral load. Liver tests were done at baseline, 1st, 2nd, 4th, 8th, 12th, 24th and 48th weeks during ART. Plasma EFV and 8-hydroxyefvairenz concentration was determined at week 4 using liquid chromatography-mass spectrometry. CYP2B6, CYP3A5, ABCB1 3435C/T and UGT2B7*2 genotyping was done using Taqman genotyping assay. Data were analyzed using survival analysis and Cox proportional hazards model. The incidence of DILI was 15.7% or 27.9 per 100 person-years and that of severe injury was 3.4% or 6.13 per 100 person-years. The median time for the development of DILI and severe injury was 2 and 4 weeks after initiation of ART, respectively. There was significant association of DILI with lower baseline platelet, albumin, log plasma viral load and CD4 count (P = 0.031, 0.037, 0.06 and 0.019, respectively). Elevated baseline alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, plasma EFV level and CYP2B6*6 were good predictors for the development of DILI (P = 0.03, 0.01, 0.016, 0.017 and 0.04, respectively). We report for the first time CYP2B6*6 as a putative genetic marker and high plasma EFV concentration as intermediate biomarker for vulnerability to EFV-induced liver injury in HIV patients. CYP2B6 genotyping and/or regular monitoring of EFV and lever enzymes level during early therapy is advised for early diagnosis and management of DILI.

  5. Investigation of binding features: effects on the interaction between CYP2A6 and inhibitors.

    PubMed

    Ai, Chunzhi; Li, Yan; Wang, Yonghua; Li, Wei; Dong, Peipei; Ge, Guangbo; Yang, Ling

    2010-07-15

    A computational investigation has been carried out on CYP2A6 and its naphthalene inhibitors to explore the crucial molecular features contributing to binding specificity. The molecular bioactive orientations were obtained by docking (FlexX) these compounds into the active site of the enzyme. And the density functional theory method was further used to optimize the molecular structures with the subsequent analysis of molecular lipophilic potential (MLP) and molecular electrostatic potential (MEP). The minimal MLPs, minimal MEPs, and the band gap energies (the energy difference between the highest occupied molecular orbital and lowest unoccupied molecular orbital) showed high correlations with the inhibition activities (pIC(50)s), illustrating their significant roles in driving the inhibitor to adopt an appropriate bioactive conformation oriented in the active site of CYP2A6 enzyme. The differences in MLPs, MEPs, and the orbital energies have been identified as key features in determining the binding specificity of this series of compounds to CYP2A6 and the consequent inhibitory effects. In addition, the combinational use of the docking, MLP and MEP analysis is also demonstrated as a good attempt to gain an insight into the interaction between CYP2A6 and its inhibitors.

  6. Structural Insight into the Altered Substrate Specificity of Human Cytochrome P450 2A6 Mutants

    PubMed Central

    Sansen, Stefaan; Hsu, Mei-Hui; Stout, C. David; Johnson, Eric F.

    2009-01-01

    Human P450 2A6 displays a small active site that is well adapted for the oxidation of small planar substrates. Mutagenesis of CYP2A6 resulted in an increased catalytic efficiency for indole biotransformation to pigments and conferred a capacity to oxidize substituted indoles (Wu, Z.-L., Podust, L.M. and Guengerich, F.P. (2005) J.Biol.Chem. 49, 41090-41100). Here, we describe the structural basis that underlies the altered metabolic profile of three mutant enzymes, P450 2A6 N297Q, L240C/N297Q and N297Q/I300V. The Asn297 substitution abolishes a potential hydrogen bonding interaction with substrates in the active site, and replaces a structural water molecule between the helix B′-C region and helix I while maintaining structural hydrogen bonding interactions. The structures of the P450 2A6 N297Q/L240C and N297Q/I300V mutants provide clues as to how the protein can adapt to fit the larger substituted indoles in the active site, and enable a comparison with other P450 family 2 enzymes for which the residue at the equivalent position was seen to function in isozyme specificity, structural integrity and protein flexibility. PMID:17540336

  7. Gene-gene interactions between DRD3, MRP4 and CYP2B6 polymorphisms and its influence on the pharmacokinetic parameters of efavirenz in HIV infected patients.

    PubMed

    Sánchez-Martín, Almudena; Cabrera Figueroa, Salvador; Cruz, Raquel; Porras-Hurtado, Liliana; Calvo-Boyero, Fernando; Rasool, Mahmood; Domínguez-Gil Hurlé, Alfonso; Carracedo, Angel

    2016-10-01

    Genetic factors have a significant impact on the PK variability of EFV, much higher than other non-genetic factors, such as demography. In this work we have performed a comprehensive PG analysis of genes encoding the major metabolizing enzymes and transporters of EFV, establishing a clear relationship between the PK parameters and genetic factors, which explain 50% of the variability in EFV PK parameters. The most relevant associations for metabolizing enzymes were found in CYP2B6 (rs3745274), in agreement with previous studies. The influence of transporters on the kinetics of EFV was also proved with significant correlations between the PK parameters of EFV and MRP4 (rs1751034, rs2274407). Analysis of gene-gene interactions with CYP2B6 was particularly useful to reinforce the role of MRP4 and to reveal unknown associations, such as that of DRD3. However, the role of DRD3 cannot be a direct effect but an indirect one due to physical proximity of NAT and the DRD3 locus in the genome.

  8. Genetic markers in CYP2C19 and CYP2B6 for prediction of cyclophosphamide's 4‐hydroxylation, efficacy and side effects in Chinese patients with systemic lupus erythematosus

    PubMed Central

    Shu, Wenying; Guan, Su; Yang, Xiuyan; Liang, Liuqin; Li, Jiali; Chen, Zhuojia; Zhang, Yu; Chen, Lingyan

    2015-01-01

    Aims The aim of the study was to investigate the combined impact of genetic polymorphisms in key pharmacokinetic genes on plasma concentrations and clinical outcomes of cyclophosphamide (CPA) in Chinese patients with systemic lupus erythematosus (SLE). Methods One hundred and eighty nine Chinese SLE patients treated with CPA induction therapy (200 mg, every other day) were recruited and adverse reactions were recorded. After 4 weeks induction therapy, 128 lupus nephritis (LN) patients continued to CPA maintenance therapy (200–600 mg week–1) for 6 months, and their clinical outcomes were recorded. Blood samples were collected for CYP2C19, CYP2B6, GST and PXR polymorphism analysis, as well as CPA and its active metabolite (4‐hydroxycyclophosphamide (4‐OH‐CPA)) plasma concentration determination. Results Multiple linear regression analysis revealed that CYP2B6 ‐750 T > C (P < 0.001), −2320 T > C (P < 0.001), 15582C > T (P = 0.017), CYP2C19*2 (P < 0.001) and PXR 66034 T > C (P = 0.028) accounted for 47% of the variation in 4‐OH‐CPA plasma concentration. Among these variants, CYP2B6 ‐750 T > C and CYP2C19*2 were selected as the combination genetic marker because these two SNPs contributed the most to the inter‐individual variability in 4‐OH‐CPA concentration, accounting for 23.6% and 21.5% of the variation, respectively. Extensive metabolizers (EMs) (CYP2B6 ‐750TT, CYP2C19*1*1) had significantly higher median 4‐OH‐CPA plasma concentrations (34.8, 11.0 and 6.6 ng ml‐1 for EMs, intermediate metabolizers (IMs) and poor metabolizers (PMs), P < 0.0001), higher risks of leukocytopenia (OR = 7.538, 95% CI 2.951, 19.256, P < 0.0001) and gastrointestinal toxicity (OR = 7.579, 95% CI 2.934, 19.578, P < 0.0001), as well as shorter median time to achieve complete remission (13.2, 18.3 and 23.3 weeks for EMs, IMs and PMs, respectively, P = 0.026) in LN patients than PMs (CYP2B6 ‐750CC, CYP2C19*2*2) and

  9. CYP2C19 but not CYP2B6, CYP3A4, CYP3A5, ABCB1, PON1 or P2Y12 genetic polymorphism impacts antiplatelet response after clopidogrel in Koreans.

    PubMed

    Zhang, Hong-Zhe; Kim, Moo Hyun; Guo, Long-Zhe; Serebruany, Victor

    2017-01-01

    Clopidogrel response variability (CRV) is well documented, and may affect clinical outcomes. Impact of genetic polymorphisms is important for assessing and predicting CRV. The extensive evidence indicates the importance of CYP2C19 variants in reducing efficacy of clopidogrel. This study defined the impact of numerous genetic polymorphisms on CRV before and after percutaneous coronary interventions (PCI) exclusively in a Korean cohort assuming less genetic variability noise. One hundred and thirty-six patients of Korean origin undergoing PCI were included. Platelet reactivity was measured by VerifyNow assay before and after PCI. Genetic polymorphism of seven single nucleotides of CYP2B6, CYP2C19, CYP3A4, CYP3A5, ABCB1, PON1, and P2Y12 were evaluated and matched with platelet reactivity. Carriers of at least one CYP2C19*2 or *3 allele uniformly exhibited higher platelet reactivity compared to 0-carrier pre-PCI (odds ratio 3.1, 95% confidence interval 1.4-6.9, P < 0.01) and post-PCI (odds ratio 3.4, 95% confidence interval 1.7-6.8, P < 0.001). The carriers of other gene allele variants lack uniformed impact on CRV. The Korean carriers of CYP2C19*2 or *3 allele are linked to CRV, whereas CYP2B6, CYP3A4, CYP3A5, ABCB1, PON1, and P2Y12 failed to predict CRV. The exact clinical utility of these findings is uncertain, and requires a large randomized national trial for proof of concept.

  10. CYP2D6 and CYP2A6 biotransform dietary tyrosol into hydroxytyrosol.

    PubMed

    Rodríguez-Morató, Jose; Robledo, Patricia; Tanner, Julie-Anne; Boronat, Anna; Pérez-Mañá, Clara; Oliver Chen, C-Y; Tyndale, Rachel F; de la Torre, Rafael

    2017-02-15

    The dietary phenol tyrosol has been reported to be endogenously transformed into hydroxytyrosol, a potent antioxidant with multiple health benefits. In this work, we evaluated whether tyrosine hydroxylase (TH) and cytochrome P450s (CYPs) catalyzed this process. To assess TH involvement, Wistar rats were treated with α-methyl-L-tyrosine and tyrosol. Tyrosol was converted into hydroxytyrosol whilst α-methyl-L-tyrosine did not inhibit the biotransformation. The role of CYP was assessed in human liver microsomes (HLM) and tyrosol-to-hydroxytyrosol conversion was observed. Screening with selective enzymatic CYP inhibitors identified CYP2A6 as the major isoform involved in this process. Studies with baculosomes further demonstrated that CYP2D6 and CYP3A4 could transform tyrosol into hydroxytyrosol. Experiments using human genotyped livers showed an interindividual variability in hydroxytyrosol formation and supported findings that CYP2D6 and CYP2A6 mediated this reaction. The dietary health benefits of tyrosol-containing foods remain to be evaluated in light of CYP pharmacogenetics.

  11. Generation and characterization of a transgenic mouse model with hepatic expression of human CYP2A6.

    PubMed

    Zhang, Qing-Yu; Gu, Jun; Su, Ting; Cui, Huadong; Zhang, Xiuling; D'Agostino, Jaime; Zhuo, Xiaoliang; Yang, Weizhu; Swiatek, Pamela J; Ding, Xinxin

    2005-12-09

    The aim of this study was to prepare and characterize a transgenic mouse model in which CYP2A6, a human P450 enzyme, is expressed specifically in the liver. CYP2A6, which is mainly expressed in human liver, is active toward many xenobiotics. Our transgene construct contained the mouse transthyretin promoter/enhancer, a full-length CYP2A6 cDNA, and a downstream neomycin-resistance gene for positive selection in embryonic stem cells. Hepatic expression of the CYP2A6 transgene was demonstrated by immunoblotting, whereas tissue specificity of CYP2A6 expression was confirmed by RNA-PCR. The transgenic mouse was further characterized after being backcrossed to the B6 strain for six generations. Hepatic microsomes from homozygous transgenic mice had activities significantly higher than those of B6 mice toward coumarin. The in vivo activity of transgenic CYP2A6 was also determined. Systemic clearance of coumarin was significantly higher in the transgenic mice than in B6 controls, consistent with the predicted role of CYP2A6 as the major coumarin hydroxylase in human liver. The CYP2A6-transgenic mouse model should be valuable for studying the in vivo function of this polymorphic human enzyme in drug metabolism and chemical toxicity.

  12. A comparative molecular field analysis of cytochrome P450 2A5 and 2A6 inhibitors.

    PubMed

    Poso, A; Gynther, J; Juvonen, R

    2001-03-01

    Structure-activity relationships of 23 P450 2A5 and 2A6 inhibitors were analysed using the CoMFA and GOLPE/GRID with smart region definition (SRD). The predictive power of the resulting models was validated using five compounds not belonging to the model set. All models have high internal and external predictive power and resulting 3D-QSAR models are supporting each other. Both Sybyl and GOLPE highlight properties near lactone moiety to be important for 2A5 and 2A6 inhibition. Another important feature for pIC50 was the size of the substituent in the 7-positon of coumarin. The models suggest that the 2A5 binding site is larger that that of 2A6 due to larger steric regions in the CoMFA coefficient maps and corresponding GOLPE maps. In addition, the maps reveal that 2A6 disfavours negative charge near the lactone moiety of coumarin.

  13. Celery extract inhibits mouse CYP2A5 and human CYP2A6 activities via different mechanisms.

    PubMed

    Deng, Xiao; Pu, Qianghong; Wang, Erhao; Yu, Chao

    2016-12-01

    Human cytochrome P450 (CYP) 2A6 participates in the metabolism of nicotine and precarcinogens, thus the deliberate inhibition of CYP2A6 may reduce cigarette consumption and therefore reduce the risk of developing the types of cancer associated with smoking. The inhibitory effects and mechanisms of celery (Apium graveolens) extract on mouse CYP2A5 and human CYP2A6 activity remain unclear. These effects were investigated in mouse and human liver microsomes using coumarin 7-hydroxylation in a probe reaction. Celery extract reduced CYP2A5 and CYP2A6 activities in vitro in a dose-dependent manner. In vivo experiments also showed that celery extract markedly decreased CYP2A5 activity. The inhibition of celery extract on CYP2A5 was time- and nicotinamide adenine dinucleotide phosphate (NADPH)-independent, and was markedly reduced by ultracentrifugation. Additionally, the inhibition of celery extract on CYP2A6 was time and NADPH-dependent. Levels of inhibition were characterized by a Ki, the measure of the tightness of bonds between the enzyme and its inhibitor, of 266.4 µg/ml for CYP2A5, and a Ki of 1,018 µg/ml and Kinact of 0.3/min for CYP2A6. Kinact is the maximal rate of enzyme inactivation at a saturating concentration of inhibitor. The coumarin derivative 5-methoxypsoralen present in celery extract did not solely to the inhibition of CYP2A5/6 activity. In conclusion, celery extract inhibited the levels of mouse CYP2A5 and human CYP2A6 activity via different mechanisms: Mixed competitive inhibition for CYP2A5 and mechanism-based inhibition for CYP2A6.

  14. Celery extract inhibits mouse CYP2A5 and human CYP2A6 activities via different mechanisms

    PubMed Central

    Deng, Xiao; Pu, Qianghong; Wang, Erhao; Yu, Chao

    2016-01-01

    Human cytochrome P450 (CYP) 2A6 participates in the metabolism of nicotine and precarcinogens, thus the deliberate inhibition of CYP2A6 may reduce cigarette consumption and therefore reduce the risk of developing the types of cancer associated with smoking. The inhibitory effects and mechanisms of celery (Apium graveolens) extract on mouse CYP2A5 and human CYP2A6 activity remain unclear. These effects were investigated in mouse and human liver microsomes using coumarin 7-hydroxylation in a probe reaction. Celery extract reduced CYP2A5 and CYP2A6 activities in vitro in a dose-dependent manner. In vivo experiments also showed that celery extract markedly decreased CYP2A5 activity. The inhibition of celery extract on CYP2A5 was time- and nicotinamide adenine dinucleotide phosphate (NADPH)-independent, and was markedly reduced by ultracentrifugation. Additionally, the inhibition of celery extract on CYP2A6 was time and NADPH-dependent. Levels of inhibition were characterized by a Ki, the measure of the tightness of bonds between the enzyme and its inhibitor, of 266.4 µg/ml for CYP2A5, and a Ki of 1,018 µg/ml and Kinact of 0.3/min for CYP2A6. Kinact is the maximal rate of enzyme inactivation at a saturating concentration of inhibitor. The coumarin derivative 5-methoxypsoralen present in celery extract did not solely to the inhibition of CYP2A5/6 activity. In conclusion, celery extract inhibited the levels of mouse CYP2A5 and human CYP2A6 activity via different mechanisms: Mixed competitive inhibition for CYP2A5 and mechanism-based inhibition for CYP2A6. PMID:28101244

  15. Tritium analyses of COBRA-1A2 beryllium pebbles

    SciTech Connect

    Baldwin, D.L.

    1998-03-01

    Selected tritium measurements have been completed for the COBRA-1A2 experiment C03 and D03 beryllium pebbles. The completed results, shown in Tables 1, 2, and 3, include the tritium assay results for the 1-mm and 3-mm C03 pebbles, and the 1-mm D03 pebbles, stepped anneal test results for both types of 1-mm pebbles, and the residual analyses for the stepped-anneal specimens. All results have been reported with date-of-count and are not corrected for decay. Stepped-anneal tritium release response is provided in addenda.

  16. A comparative molecular field analysis of cytochrome P450 2A5 and 2A6 inhibitors

    NASA Astrophysics Data System (ADS)

    Poso, Antti; Gynther, Jukka; Juvonen, Risto

    2001-03-01

    Structure-activity relationships of 23 P450 2A5 and 2A6 inhibitors were analysed using the CoMFA [1] and GOLPE/GRID with smart region definition (SRD) [2]. The predictive power of the resulting models was validated using five compounds not belonging to the model set. All models have high internal and external predictive power and resulting 3D-QSAR models are supporting each other. Both Sybyl and GOLPE highlight properties near lactone moiety to be important for 2A5 and 2A6 inhibition. Another important feature for pIC50 was the size of the substituent in the 7-positon of coumarin. The models suggest that the 2A5 binding site is larger that that of 2A6 due to larger steric regions in the CoMFA coefficient maps and corresponding GOLPE maps. In addition, the maps reveal that 2A6 disfavours negative charge near the lactone moiety of coumarin.

  17. Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine

    SciTech Connect

    DeVore, Natasha M.; Meneely, Kathleen M.; Bart, Aaron G.; Stephens, Eva S.; Battaile, Kevin P.; Scott, Emily E.

    2013-11-20

    Human xenobiotic-metabolizing cytochrome P450 (CYP) enzymes can each bind and monooxygenate a diverse set of substrates, including drugs, often producing a variety of metabolites. Additionally, a single ligand can interact with multiple CYP enzymes, but often the protein structural similarities and differences that mediate such overlapping selectivity are not well understood. Even though the CYP superfamily has a highly canonical global protein fold, there are large variations in the active site size, topology, and conformational flexibility. We have determined how a related set of three human CYP enzymes bind and interact with a common inhibitor, the muscarinic receptor agonist drug pilocarpine. Pilocarpine binds and inhibits the hepatic CYP2A6 and respiratory CYP2A13 enzymes much more efficiently than the hepatic CYP2E1 enzyme. To elucidate key residues involved in pilocarpine binding, crystal structures of CYP2A6 (2.4 {angstrom}), CYP2A13 (3.0 {angstrom}), CYP2E1 (2.35 {angstrom}), and the CYP2A6 mutant enzyme, CYP2A6 I208S/I300F/G301A/S369G (2.1 {angstrom}) have been determined with pilocarpine in the active site. In all four structures, pilocarpine coordinates to the heme iron, but comparisons reveal how individual residues lining the active sites of these three distinct human enzymes interact differently with the inhibitor pilocarpine.

  18. CYP2A6- and CYP2A13-catalyzed metabolism of the nicotine Δ5'(1')iminium ion.

    PubMed

    von Weymarn, Linda B; Retzlaff, Cassandra; Murphy, Sharon E

    2012-11-01

    Nicotine, the major addictive agent in tobacco, is metabolized primarily by CYP2A6-catalyzed oxidation. The product of this reaction, 5'-hydroxynicotine, is in equilibrium with the nicotine Δ5'(1')iminium ion and is further metabolized to cotinine. We reported previously that both CYP2A6 and the closely related extrahepatic enzyme CYP2A13 were inactivated during nicotine metabolism; however, inactivation occurred after metabolism was complete. This led to the hypothesis that oxidation of a nicotine metabolite, possibly the nicotine Δ5'(1')iminium ion, was responsible for generating the inactivating species. In the studies presented here, we confirm that the nicotine Δ5'(1')iminium ion is an inactivator of both CYP2A6 and CYP2A13, and inactivation depends on time, concentration, and the presence of NADPH. Inactivation was not reversible and was accompanied by a parallel loss in spectrally active protein, as measured by reduced CO spectra. These data are consistent with the characterization of the nicotine Δ5'(1')iminium ion as a mechanism-based inactivator of both CYP2A13 and CYP2A6. We also confirm that both CYP2A6 and CYP2A13 catalyze the metabolism of the nicotine Δ5'(1')iminium ion to cotinine and provide evidence that both enzymes catalyze the sequential metabolism of the nicotine Δ5'(1')iminium ion. That is, a fraction of the cotinine formed may not be released from the enzyme before further oxidation to 3'-hydroxycotinine.

  19. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    PubMed

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-04

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated.

  20. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes.

    PubMed

    Turpeinen, Miia; Hofmann, Ute; Klein, Kathrin; Mürdter, Thomas; Schwab, Matthias; Zanger, Ulrich M

    2009-05-01

    Nabumetone, a widely used nonsteroidal anti-inflammatory drug, requires biotransformation into 6-methoxy-2-naphthylacetic acid (6-MNA), a close structural analog to naproxen, to achieve its analgesic and anti-inflammatory effects. Despite its wide use, the enzymes involved in metabolism have not been identified. In the present study, several in vitro approaches were used to identify the cytochrome P450 (P450) enzyme(s) responsible for 6-MNA formation. In human liver microsomes (HLMs) 6-MNA formation displayed monophasic Michaelis-Menten kinetics with apparent K(m) and V(max) values (mean +/- S.D.) of 75.1 +/- 15.3 microM and 1304 +/- 226 pmol/min/mg protein, respectively, and formation rate of 6-MNA varied approximately 5.5-fold (179-983 pmol/min/mg protein). 6-MNA activity correlated strongly with both CYP1A2-mediated phenacetin O-deethylation activity and CYP1A2 protein content (r = 0.85 and 0.74, respectively; p < 0.0001 for both). Additional correlations were found with model activities of CYP2C19 and CYP3A4. Of 11 cDNA-expressed recombinant P450s used, recombinant CYP1A2 was the major form catalyzing the 6-MNA formation with an apparent K(m) of 45 microM and V(max) of 8.7 pmol/min/pmol P450. Minor fractions were catalyzed by recombinant P450s CYP1A1, CYP2B6, CYP2C19, CYP2D6, and CYP2E1. Experiments with P450-selective chemical inhibitors and monoclonal anti-P450 antibodies showed that furafylline, a mechanism-based inhibitor CYP1A2, and anti-CYP1A2 antibody markedly inhibited 6-MNA formation, whereas inhibitors for other P450s did not show significant inhibitory effects. Taken together, these studies indicate that the formation of the active metabolite of nabumetone, 6-MNA, is predominantly catalyzed by CYP1A2 in HLMs with only minor contribution of other P450s.

  1. 2,3,7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)-MEDIATED OXIDATIVE STRESS IN FEMALE CYP1A-2 KNOCKOUT (CYP1A2-/-) MICE

    EPA Science Inventory

    2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD)-Mediated Oxidative Stress in Female CYP1A2 Knockout (CYP1A2-/-) Mice

    Deborah Burgin1, Janet Diliberto2, Linda Birnbaum2
    1UNC Toxicology; 2USEPA/ORD/NHEERL, RTP, NC

    Most of the effects due to TCDD exposure are mediated via...

  2. Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study

    PubMed Central

    Hong, Chi-Chen; Tang, Bing-Kou; Hammond, Geoffrey L; Tritchler, David; Yaffe, Martin; Boyd, Norman F

    2004-01-01

    Introduction Breast cancer risk may be determined by various genetic, metabolic, and lifestyle factors that alter sex hormone metabolism. Cytochrome P450 1A2 (CYP1A2) is responsible for the metabolism of estrogens and many exogenous compounds, including caffeine. Methods In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity and known or suspected risk factors for breast cancer. Blood levels of sex hormones, lipids, and growth factors were measured. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Stepwise and maximum R regression analyses were used to identify covariates related to CYP1A2 activity after adjustment for ethnicity. Results In both menopausal groups CYP1A2 activity was positively related to smoking and levels of sex hormone binding globulin. In premenopausal women, CYP1A2 activity was also positively related to insulin levels, caffeine intake, age, and plasma triglyceride levels, and negatively related with total cholesterol levels and body mass index. In postmenopausal women CYP1A2 activity was positively associated with insulin-like growth factor-1, and negatively associated with plasma triglyceride, high-density lipoprotein cholesterol, and age at menarche. Conclusion These results suggest that CYP1A2 activity is correlated with hormones, blood lipids, and lifestyle factors associated with breast cancer risk, although some of the observed associations were contrary to hypothesized directions and suggest that increased CYP1A2 function may be associated with increased risk for breast cancer. PMID:15217502

  3. A genetic polymorphism in coumarin 7-hydroxylation: Sequence of the human CYP2A genes and identification of variant CYP2A6 alleles

    SciTech Connect

    Fernandez-Salguero, P.; Hoffman, S.M.G.; Mohrenweiser, H.

    1995-09-01

    A group of human cytochrome P450 genes encompassing the CYP2A, CYP2B, and CYP2F subfamilies were cloned and assembled into a 350-kb contig localized on the long arm of chromosome 19. Three complete CYP2A genes - CYP2A6, CYP2A7, and CYP2A13 - plus two pseudogenes truncated after exon 5 were identified and sequenced. A variant CYP2A6 allele that differed from the corresponding CYP2A6 and CYP2A7 cDNAs previously sequenced was found and was designated CYP2A6{nu}2. Sequence differences in the CY-P2A6{nu}2 gene are restricted to regions encompassing exons 3, 6, and 8, which bear sequence relatedness with the corresponding exons of the CYP2A7 gene, located downstream and centromeric of CYP2A6{nu}2, suggesting recent gene-conversion events. The sequencing of all the CYP2A genes allowed the design of a PCR diagnostic test for the normal CYP2A6 allele, the CYP2A6{nu}2 allele, and a variant - designated CYP2A6{nu}1 - that encodes an enzyme with a single inactivating amino acid change. These variant alleles were found in individuals who were deficient in their ability to metabolize the CYP2A6 probe drug coumarin. The allelic frequencies of CYP2A6{nu}1 and CYP2A6{nu}2 differed significantly between Caucasian, Asian, and African-American populations. These studies establish the existence of a new cytochrome P450 genetic polymorphism. 30 refs., 4 figs., 2 tabs.

  4. Predictors of Variation in CYP2A6 mRNA, Protein, and Enzyme Activity in a Human Liver Bank: Influence of Genetic and Nongenetic Factors.

    PubMed

    Tanner, Julie-Anne; Prasad, Bhagwat; Claw, Katrina G; Stapleton, Patricia; Chaudhry, Amarjit; Schuetz, Erin G; Thummel, Kenneth E; Tyndale, Rachel F

    2017-01-01

    Cytochrome P450 2A6 CYP2A6: metabolizes several clinically relevant substrates, including nicotine, the primary psychoactive component in cigarette smoke. Smokers vary widely in their rate of inactivation and clearance of nicotine, altering numerous smoking phenotypes. We aimed to characterize independent and shared impact of genetic and nongenetic sources of variation in CYP2A6 mRNA, protein, and enzyme activity in a human liver bank (n = 360). For the assessment of genetic factors, we quantified levels of CYP2A6, cytochrome P450 oxidoreductase (POR), and aldo-keto reductase 1D1 (AKR1D1) mRNA, and CYP2A6 and POR proteins. CYP2A6 enzyme activity was determined through measurement of cotinine formation from nicotine and 7-hydroxycoumarin formation from coumarin. Donor DNA was genotyped for CYP2A6, POR, and AKR1D1 genetic variants. Nongenetic factors assessed included gender, age, and liver disease. CYP2A6 phenotype measures were positively correlated to each other (r values ranging from 0.47-0.88, P < 0.001). Female donors exhibited higher CYP2A6 mRNA expression relative to males (P < 0.05). Donor age was weakly positively correlated with CYP2A6 protein (r = 0.12, P < 0.05) and activity (r = 0.20, P < 0.001). CYP2A6 reduced-function genotypes, but not POR or AKR1D1 genotypes, were associated with lower CYP2A6 protein (P < 0.001) and activity (P < 0.01). AKR1D1 mRNA was correlated with CYP2A6 mRNA (r = 0.57, P < 0.001), protein (r = 0.30, P < 0.001), and activity (r = 0.34, P < 0.001). POR protein was correlated with CYP2A6 activity (r = 0.45, P < 0.001). Through regression analyses, we accounted for 17% (P < 0.001), 37% (P < 0.001), and 77% (P < 0.001) of the variation in CYP2A6 mRNA, protein, and activity, respectively. Overall, several independent and shared sources of variation in CYP2A6 activity in vitro have been identified, which could translate to variable hepatic clearance of nicotine.

  5. Human organic anion transporting polypeptide 1A2 (OATP1A2) mediates cellular uptake of all-trans-retinol in human retinal pigmented epithelial cells

    PubMed Central

    Chan, Ting; Zhu, Ling; Madigan, Michele C; Wang, Ke; Shen, Weiyong; Gillies, Mark C; Zhou, Fanfan

    2015-01-01

    Background and Purpose Vision depends on retinoid exchange between the retinal pigment epithelium (RPE) and photoreceptors. Defects in any step of the canonical visual cycle can lead to retinal degenerations. All-trans-retinol (atROL) plays an important role in visual signal transduction. However, how atROL enters human RPE from the apical membrane remains unclear. This study investigated the role of human organic anion transporting polypeptide 1A2 (OATP1A2) in atROL uptake in human RPE. Experimental Approach Immunoblotting and immunostaining elucidated the expression and localization of OATP1A2 in human RPE. Transporter functional studies were conducted to assess the interaction of OATP1A2 with atROL. Key Results Our study revealed OATP1A2 is expressed in human RPE, mainly at the apical membrane. Our data also indicated atROL inhibited the uptake of the typical OATP1A2 substrate, oestrone-3-sulfate (E3S), in over-expressing cells. Studies on the uptake of 3H-atROL in these over-expressing cells revealed atROL is a substrate of OATP1A2. We confirmed these findings in human primary RPE cells. The transport of E3S and atROL was significantly reduced in human primary RPE cells with OATP1A2 siRNA silencing. Conclusion and Implications Our data provides the first evidence of OATP1A2 expression in human RPE and more importantly, its novel role in the cellular uptake of atROL, which might be essential to the proper functioning of the canonical visual cycle. Our findings contribute to the understanding of the molecular mechanisms involved in retinoid transport between the RPE and photoreceptors and provide novel insights into potential pharmaceutical interventions for visual cycle disruption associated with retinal degenerations. PMID:25560245

  6. PDZK1 and NHERF1 Regulate the Function of Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) by Modulating Its Subcellular Trafficking and Stability

    PubMed Central

    Zheng, Jian; Chan, Ting; Cheung, Florence Shin Gee; Zhu, Ling; Murray, Michael; Zhou, Fanfan

    2014-01-01

    The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins, especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This study investigated the role of PDZK1 and NHERF1 in the regulation of OATP1A2 in an in vitro cell model. Transporter function and protein expression were assessed in OATP1A2-transfected HEK-293 cells that co-expressed PDZK1 or NHERF1. Substrate (estrone-3-sulfate) uptake by OATP1A2 was significantly increased to ∼1.6- (PDZK1) and ∼1.8- (NHERF1) fold of control; this was dependent on the putative PDZ-binding domain within the C-terminus of OATP1A2. The functional increase of OATP1A2 following PDZK1 or NHERF1 over-expression was associated with increased transporter expression at the plasma membrane and in the whole cell, and was reflected by an increase in the apparent maximal velocity of estrone-3-sulfate uptake (Vmax: 138.9±4.1 (PDZK1) and 181.4±16.7 (NHERF1) versus 55.5±3.2 pmol*(µg*4 min)−1 in control; P<0.01). Co-immunoprecipitation analysis indicated that the regulatory actions of PDZK1 and NHERF1 were mediated by direct interaction with OATP1A2 protein. In further experiments PDZK1 and NHERF1 modulated OATP1A2 expression by decreasing its internalization in a clathrin-dependent (but caveolin-independent) manner. Additionally, PDZK1 and NHERF1 enhanced the stability of OATP1A2 protein in HEK-293 cells. The present findings indicated that PDZK1 and NHERF1 regulate the transport function of OATP1A2 by modulating protein internalization via a clathrin-dependent pathway and by enhancing protein stability. PMID:24728453

  7. PDZK1 and NHERF1 regulate the function of human organic anion transporting polypeptide 1A2 (OATP1A2) by modulating its subcellular trafficking and stability.

    PubMed

    Zheng, Jian; Chan, Ting; Cheung, Florence Shin Gee; Zhu, Ling; Murray, Michael; Zhou, Fanfan

    2014-01-01

    The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins, especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This study investigated the role of PDZK1 and NHERF1 in the regulation of OATP1A2 in an in vitro cell model. Transporter function and protein expression were assessed in OATP1A2-transfected HEK-293 cells that co-expressed PDZK1 or NHERF1. Substrate (estrone-3-sulfate) uptake by OATP1A2 was significantly increased to ∼1.6- (PDZK1) and ∼1.8- (NHERF1) fold of control; this was dependent on the putative PDZ-binding domain within the C-terminus of OATP1A2. The functional increase of OATP1A2 following PDZK1 or NHERF1 over-expression was associated with increased transporter expression at the plasma membrane and in the whole cell, and was reflected by an increase in the apparent maximal velocity of estrone-3-sulfate uptake (V(max): 138.9±4.1 (PDZK1) and 181.4±16.7 (NHERF1) versus 55.5±3.2 pmol*(µg*4 min)⁻¹ in control; P<0.01). Co-immunoprecipitation analysis indicated that the regulatory actions of PDZK1 and NHERF1 were mediated by direct interaction with OATP1A2 protein. In further experiments PDZK1 and NHERF1 modulated OATP1A2 expression by decreasing its internalization in a clathrin-dependent (but caveolin-independent) manner. Additionally, PDZK1 and NHERF1 enhanced the stability of OATP1A2 protein in HEK-293 cells. The present findings indicated that PDZK1 and NHERF1 regulate the transport function of OATP1A2 by modulating protein internalization via a clathrin-dependent pathway and by enhancing protein stability.

  8. Mechanism-based inhibition of cytochrome P450 (CYP)2A6 by chalepensin in recombinant systems, in human liver microsomes and in mice in vivo

    PubMed Central

    Ueng, Yune-Fang; Chen, Chien-Chih; Chung, Yu-Ting; Liu, Tsung-Yun; Chang, Yu-Ping; Lo, Wei-Sheng; Murayama, Norie; Yamazaki, Hiroshi; Souček, Pavel; Chau, Gar-Yang; Chi, Chin-Wen; Chen, Ruei-Ming; Li, Ding-Tzai

    2011-01-01

    BACKGROUND AND PURPOSE Chalepensin is a pharmacologically active furanocoumarin compound found in rue, a medicinal herb. Here we have investigated the inhibitory effects of chalepensin on cytochrome P450 (CYP) 2A6 in vitro and in vivo. EXPERIMENTAL APPROACH Mechanism-based inhibition was studied in vitro using human liver microsomes and bacterial membranes expressing genetic variants of human CYP2A6. Effects in vivo were studied in C57BL/6J mice. CYP2A6 activity was assayed as coumarin 7-hydroxylation (CH) using HPLC and fluorescence measurements. Metabolism of chalepensin was assessed with liquid chromatography/mass spectrometry (LC/MS). KEY RESULTS CYP2A6.1, without pre-incubation with NADPH, was competitively inhibited by chalepensin. After pre-incubation with NADPH, inhibition by chalepensin was increased (IC50 value decreased by 98%). This time-dependent inactivation (kinact 0.044 min−1; KI 2.64 µM) caused the loss of spectrally detectable P450 content and was diminished by known inhibitors of CYP2A6, pilocarpine or tranylcypromine, and by glutathione conjugation. LC/MS analysis of chalepensin metabolites suggested an unstable epoxide intermediate was formed, identified as the corresponding dihydrodiol, which was then conjugated with glutathione. Compared with the wild-type CYP2A6.1, the isoforms CYP2A6.7 and CYP2A6.10 were less inhibited. In mouse liver microsomes, pre-incubation enhanced inhibition of CH activity. Oral administration of chalepensin to mice reduced hepatic CH activity ex vivo. CONCLUSIONS AND IMPLICATIONS Chalepensin was a substrate and a mechanism-based inhibitor of human CYP2A6. Formation of an epoxide could be a key step in this inactivation. ‘Poor metabolizers’ carrying CYP2A6*7 or *10 may be less susceptible to inhibition by chalepensin. Given in vivo, chalepensin decreased CYP2A activity in mice. PMID:21418183

  9. Diversity of selective environmental substrates for human cytochrome P450 2A6: alkoxyethers, nicotine, coumarin, N-nitrosodiethylamine, and N-nitrosobenzylmethylamine.

    PubMed

    Le Gal, Annabelle; Dréano, Yvonne; Lucas, Danièle; Berthou, François

    2003-09-15

    Cytochrome P450 2A6 constitutes 5-10% of the total microsomal CYPs of human liver. Although CYP2A6 is the major coumarin 7-hydroxylase, other known substrates of CYP2A6 include many toxicants and precarcinogens. The chemical structure diversity of these substrates raises the question of their selectivity. Thus, kinetic parameters were determined for the hydroxylation of five substrates of diverse chemical structures known to be selective for cytochrome P450 2A6: methyl tert-butyl ether (MTBE), nicotine, coumarin, N-nitrosobenzylmethylamine (NBzMA), and N-nitrosodiethylamine (NDEA). Sources of enzymes were either human liver microsomes or heterologously expressed CYPs. Coumarin was shown to be the substrate with the highest affinity, followed by NDEA, nicotine, NBzMA, and MTBE. Variability of CYP2A6 catalytic activities in human liver was between 24-fold for MTBE to sevenfold for coumarin, while CYP2A6 content varied 68-fold in human liver microsomes. These five catalytic activities were highly significantly correlated between them and with hepatic CYP2A6 content. The most selective chemical inhibitor of these five substrates was shown to be 8-methoxypsoralen. Based upon chemical inhibition of the enzymatic activities of pure recombinant human CYPs, it cannot be totally excluded that P450s other than CYP2A6, especially CYP2E1, are involved, although to a lesser extent, in NDEA and NBzMA metabolism. In conclusion, the prototype probes for CYP2A6 phenotyping are coumarin and nicotine.

  10. Evidence for Concurrent Effects of Exposure to Environmental Cadmium and Lead on Hepatic CYP2A6 Phenotype and Renal Function Biomarkers in Nonsmokers

    PubMed Central

    Satarug, Soisungwan; Nishijo, Muneko; Ujjin, Pailin; Vanavanitkun, Yuvaree; Baker, Jason R.; Moore, Michael R.

    2004-01-01

    We examined the interrelationships between phenotype of hepatic cytochrome P450 2A6 (CYP2A6), nephropathy, and exposure to cadmium and lead in a group of 118 healthy Thai men and women who had never smoked. Their urinary Cd excretion ranged from 0.05 to 2.36 μg/g creatinine, whereas their urinary Pb excretion ranged from 0.1 to 12 μg/g creatinine. Average age and Cd burden of women and men did not differ. Women, however, on average showed a 46% higher urinary Pb excretion (p < 0.001) and lower zinc status, suggested by lower average serum Zn and urinary Zn excretion compared with those in men. Cd-linked nephropathy was detected in both men and women. However, Pb-linked nephropathy was seen only in women, possibly because of higher Pb burden coupled with lower protective factors, notably of Zn (p < 0.001), in women compared with men. In men, Pb burden showed a negative association with CYP2A6 activity (adjusted β= −0.29, p = 0.003), whereas Cd burden showed a positive association with CYP2A6 activity (adjusted β= 0.38, p = 0.001), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. The weaker correlation between Cd burden CYP2A6 activity in women despite similarity in Cd burden between men and women is consistent with opposing effects of Pb and Cd on hepatic CYP2A6 phenotypic expression. A positive correlation between Cd-linked nephropathy (urinary N-acetyl-β-d-glucosaminidase excretion) and CYP2A6 activity in men (r = 0.39, p = 0.002) and women (r = 0.37, p = 0.001) suggests that Cd induction of hepatic CYP2A6 expression and Cd-linked nephropathy occurred simultaneously. PMID:15531436

  11. Genetic determinants of CYP2A6 activity across racial/ethnic groups with different risks of lung cancer and effect on their smoking intensity.

    PubMed

    Park, Sungshim L; Tiirikainen, Maarit I; Patel, Yesha M; Wilkens, Lynne R; Stram, Daniel O; Le Marchand, Loic; Murphy, Sharon E

    2016-03-01

    Genetic variation in cytochrome P450 2A6 (CYP2A6) gene is the primary contributor to the intraindividual and interindividual differences in nicotine metabolism and has been found to influence smoking intensity. However, no study has evaluated the relationship between CYP2A6 genetic variants and the CYP2A6 activity ratio (total 3-hydroxycotinine/cotinine) and their influence on smoking intensity [total nicotine equivalents (TNE)], across five racial/ethnic groups found to have disparate rates of lung cancer. This study genotyped 10 known functional CYP2A6 genetic or copy number variants in 2115 current smokers from the multiethnic cohort study [African Americans (AA) = 350, Native Hawaiians (NH) = 288, Whites = 413, Latinos (LA) = 437 and Japanese Americans (JA) = 627] to conduct such an investigation. Here, we found that LA had the highest CYP2A6 activity followed by Whites, AA, NH and JA, who had the lowest levels. Adjusting for age, sex, race/ethnicity and body mass index, we found that CYP2A6 diplotypes were predictive of TNE levels, particularly in AA and JA (P trend < 0.0001). However, only in JA did the association remain after accounting for cigarettes per day. Also, it is only in this population that the lower activity ratio supports lower TNE levels, carcinogen exposure and thereby lower risk of lung cancer. Despite the association between nicotine metabolism (CYP2A6 activity phenotype and diplotypes) and smoking intensity (TNE), CYP2A6 levels did not correlate with the higher TNE levels found in AA nor the lower TNE levels found in LA, suggesting that other factors may influence smoking dose in these populations. Therefore, further study in these populations is recommended.

  12. A Global Health Diagnostic for Personalized Medicine in Resource-Constrained World Settings: A Simple PCR-RFLP Method for Genotyping CYP2B6 g.15582C>T and Science and Policy Relevance for Optimal Use of Antiretroviral Drug Efavirenz.

    PubMed

    Evans, Jonathan; Swart, Marelize; Soko, Nyarai; Wonkam, Ambroise; Huzair, Farah; Dandara, Collet

    2015-06-01

    The use of pharmacogenomics (PGx) knowledge in treatment of individual patients is becoming a common phenomenon in the developed world. However, poorly resourced countries have thus far been constrained for three main reasons. First, the cost of whole genome sequencing is still considerably high in comparison to other (non-genomics) diagnostics in the developing world where both science and social dynamics create a dynamic and fragile healthcare ecosystem. Second, studies correlating genomic differences with drug pharmacokinetics and pharmacodynamics have not been consistent, and more importantly, often not indexed to impact on societal end-points, beyond clinical practice. Third, ethics regulatory frames over PGx testing require improvements based on nested accountability systems and in ways that address the user community needs. Thus, CYP2B6 is a crucial enzyme in the metabolism of antiretroviral drugs, efavirenz and nevirapine. More than 40 genetic variants have been reported, but only a few contribute to differences in plasma EFV and NVP concentrations. The most widely reported CYP2B6 variants affecting plasma drug levels include c.516G>T, c.983T>C, and to a lesser extent, g.15582C>T, which should be considered in future PGx tests. While the first two variants are easily characterized, the g.15582C>T detection has been performed primarily by sequencing, which is costly, labor intensive, and requires access to barely available expertise in the developing world. We report here on a simple, practical PCR-RFLP method with vast potentials for use in resource-constrained world regions to detect the g.15582C>T variation among South African and Cameroonian persons. The effects of CYP2B6 g.15582C>T on plasma EFV concentration were further evaluated among HIV/AIDS patients. We report no differences in the frequency of the g.15582T variant between the South African (0.08) and Cameroonian (0.06) groups, which are significantly lower than reported in Asians (0.39) and

  13. Maternal and zygotic aldh1a2 activity is required for pancreas development in zebrafish.

    PubMed

    Alexa, Kristen; Choe, Seong-Kyu; Hirsch, Nicolas; Etheridge, Letitiah; Laver, Elizabeth; Sagerström, Charles G

    2009-12-11

    We have isolated and characterized a novel zebrafish pancreas mutant. Mutant embryos lack expression of isl1 and sst in the endocrine pancreas, but retain isl1 expression in the CNS. Non-endocrine endodermal gene expression is less affected in the mutant, with varying degrees of residual expression observed for pdx1, carbA, hhex, prox1, sid4, transferrin and ifabp. In addition, mutant embryos display a swollen pericardium and lack fin buds. Genetic mapping revealed a mutation resulting in a glycine to arginine change in the catalytic domain of the aldh1a2 gene, which is required for the production of retinoic acid from vitamin A. Comparison of our mutant (aldh1a2(um22)) to neckless (aldh1a2(i26)), a previously identified aldh1a2 mutant, revealed similarities in residual endodermal gene expression. In contrast, treatment with DEAB (diethylaminobenzaldehyde), a competitive reversible inhibitor of Aldh enzymes, produces a more severe phenotype with complete loss of endodermal gene expression, indicating that a source of Aldh activity persists in both mutants. We find that mRNA from the aldh1a2(um22) mutant allele is inactive, indicating that it represents a null allele. Instead, the residual Aldh activity is likely due to maternal aldh1a2, since we find that translation-blocking, but not splice-blocking, aldh1a2 morpholinos produce a phenotype similar to DEAB treatment. We conclude that Aldh1a2 is the primary Aldh acting during pancreas development and that maternal Aldh1a2 activity persists in aldh1a2(um22) and aldh1a2(i26) mutant embryos.

  14. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated oxidative stress in CYP1A2 knockout (CYP1A2-/-) mice.

    PubMed

    Slezak, B P; Diliberto, J J; Birnbaum, L S

    1999-10-22

    The objective of the study was to compare alterations in indicators of oxidative stress following 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in cytochrome P4501A2 (CYP1A2) knockout mice and their parental lineage strains (C57BL/6N and 129/Sv). This study will aid in determining the role, if any, of CYP1A2 in TCDD-mediated oxidative stress. Formation of thiobarbituric acid-reactive substances (TBARS) as a measurement of lipid peroxidation, production of reactive oxygen species (ROS) via the in vitro reduction of cytochrome c in tissue homogenate, and changes in the biochemical antioxidant glutathione were monitored to determine oxidative stress 7 days following a single oral dose of 25 microg TCDD/kg. TBARS, reduction of cytochrome c, and changes in glutathione demonstrated a similar response in CYP1A2 knockout and parental strains. These data suggest that CYP1A2 does not play a critical role in the acute oxidative stress response following TCDD exposure.

  15. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst.

    PubMed

    Pearce, Robin E; Cohen-Wolkowiez, Michael; Sampson, Mario R; Kearns, Gregory L

    2013-09-01

    Despite metronidazole's widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a "therapeutic concentration" of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo.

  16. INHIBITION OF HUMAN AND RAT CYP1A2 BY TCDD AND DIOXIN-LIKE CHEMICALS

    EPA Science Inventory

    Dioxins have been shown to bind and induce rodent CYP1A2, producing a dose-dependent hepatic sequestration in vivo. The induction of CYP1A2 activity has been used as a noninvasive biomarker for human exposure to dioxins; while there is a consistent relationship between exposure ...

  17. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... communication (See also § 1917.1(a)(2)(vi))....

  18. Caffeine induces CYP1A2 expression in rat hepatocytes but not in human hepatocytes.

    PubMed

    Vaynshteyn, David; Jeong, Hyunyoung

    2012-06-01

    Caffeine is the active constituent in coffee. Continual consumption of caffeine can lead to an attenuated response also known as tolerance. Results from rat studies have shown that caffeine is an inducer of CYP1A2, the enzyme responsible for caffeine's metabolism. This suggests that CYP1A2 induction by caffeine may be in part responsible for caffeine tolerance. However, whether caffeine induces CYP1A2 expression in humans remains unknown. Our results from luciferase assays performed in HepG2 cells showed that caffeine is not an activator of the aromatic hydrocarbon receptor (AhR), a major transcription factor involved in upregulation of CYP1A2. Furthermore, caffeine did not induce CYP1A2 expression in primary human hepatocytes at a concentration attained by ordinary coffee drinking. On the other hand, caffeine enhanced CYP1A2 expression by 9-fold in rat hepatocytes. Our results suggest that caffeine from ordinary coffee drinking does not induce CYP1A2 expression in humans and that factors other than CYP1A2 induction by caffeine likely contribute to development of caffeine tolerance in humans.

  19. Measurement of CYP1A2 activity: a focus on caffeine as a probe.

    PubMed

    Perera, Vidya; Gross, Annette S; McLachlan, Andrew J

    2012-06-01

    The drug metabolising enzyme CYP1A2 contributes to the metabolism of a number of medicines including clozapine, olanzapine and theophylline. These medicines display a high degree of inter-individual variability in pharmacokinetics and response. Measuring CYP1A2 activity in vivo can be an important tool to identify the factors that influence variability in drug pharmacokinetics and inform dose selection. Caffeine is the only currently accepted probe to conduct in vivo phenotyping of CYP1A2. Despite the number of proposed matrices (biological fluid containing the drug and/or metabolite/s of interest) and metrics (mathematical formula relating the drug and/or metabolite/s to enzyme activity) proposed to measure CYP1A2 activity using caffeine, many of these are compromised by factors related to the specific metabolic pathway studied or pharmacokinetic characteristics of caffeine and its metabolites. Furthermore, questions regarding the appropriate study design and methodology to conduct studies to evaluate CYP1A2 activity have often been overlooked. These issues include the potential influence of a methylxanthine abstinence period prior to caffeine CYP1A2 phenotyping and the impact of caffeine formulation on determining CYP1A2 activity. This review aims to discuss the various CYP1A2 matrices and metrics with a particular focus on unresolved methodological issues.

  20. Tanshinone I increases CYP1A2 protein expression and enzyme activity in primary rat hepatocytes.

    PubMed

    Lee, Wayne Y W; Zhou, Xuelin; Or, Penelope M Y; Kwan, Yiu Wa; Yeung, John H K

    2012-01-15

    This study investigated the effects of Danshen and its active ingredients on the protein expression and enzymatic activity of CYP1A2 in primary rat hepatocytes. The ethanolic extract of Danshen roots (containing mainly tanshinones) inhibited CYP1A2-catalyzed phenacetin O-deethylation (IC(50)=24.6 μg/ml) in primary rat hepatocytes while the water extract containing mainly salvianolic acid B and danshenshu had no effect. Individual tanshinones such as cryptotanshinone, dihydrotanshinone, tanshinone IIA inhibited the CYP1A2-mediated metabolism with IC(50) values at 12.9, 17.4 and 31.9 μM, respectively. After 4-day treatment of the rat hepatocytes, the ethanolic extract of Danshen and tanshinone I increased rat CYP1A2 activity by 6.8- and 5.2-fold, respectively, with a concomitant up-regulation of CYP1A2 protein level by 13.5- and 6.5-fold, respectively. CYP1A2 induction correlated with the up-regulation of mRNA level of aryl hydrocarbon receptor (AhR), which suggested a positive feedback mechanism of tanshinone I-mediated CYP1A2 induction. A formulated Danshen pill (containing mainly danshensu and salvianolic acid B and the tanshinones) up-regulated CYP1A2 protein expression and enzyme activity, but danshensu and salvianolic acid B, when used individually, did not affect CYP1A2 activity. This study was the first report on the Janus action of the tanshinones on rat CYP1A2 activity.

  1. Cloning and functional characterization of the pig (Sus scrofa) organic anion transporting polypeptide 1a2.

    PubMed

    Yu, Yejin; Liu, Xiaoxiao; Zhang, Zheren; Xiao, Yunpeng; Hong, Mei

    2013-08-01

    1. Organic anion transporting polypeptides (OATPs) are a family of transporter proteins that have been extensively recognized as key determinants of absorption, distribution, metabolism and excretion of various drugs. Human OATP1A2 has been demonstrated to transport wide spectrum of endogenous and exogenous compounds. Study on OATP1A2 orthologues of other species, however, is still limited. 2. Here, we described the cloning and functional characterization of a member of the OATP/Oatp family member obtained from pig (Sus scrofa) liver. Sequence analysis suggested that it has a high homology with human OATP1A2 and bovine Oatp1a2. Prototypic substrates estrone-3-sulfate (E-3-S) and taurocholic acid were transported by the protein. The transport of these two substrates is pH-dependent, with lower pH showing higher uptake function. Kinetic study showed the transport of these two substrates have a Km of 42.5 ± 12.1 and 33.1 ± 8.7 µM, respectively. Pig Slco1a2 has the highest expression level in the liver, and to a less extend in the brain and small intestine. 3. In conclusion, an OATP member was cloned from pig liver. Sequence analysis and phylogenic study revealed it as an orthologue of human OATP1A2. Its kinetic characteristic for prototypic substrates and organ distribution are similar with that of OATP1A2.

  2. Cytochrome P450 1A2 Metabolizes 17β-Estradiol to Suppress Hepatocellular Carcinoma

    PubMed Central

    Ren, Jianwai; Chen, George G.; Liu, Yi; Su, Xianwei; Hu, Baoguang; Leung, Billy C. S.; Wang, Y.; Ho, Rocky L. K.; Yang, Shengli; Lu, Gang; Lee, C. G.; Lai, Paul B. S.

    2016-01-01

    Hepatocellular carcinoma (HCC) occurs more frequently in men than in women. It is commonly agreed that estrogen plays important roles in suppressing HCC development, however, the underlying mechanism remains largely unknown. Since estrogen is mainly metabolized in liver and its metabolites affect cell proliferation, we sought to investigate if the liver-specific cytochrome P450 1A2 (CYP1A2) mediated the inhibitory effect of estrogen on HCC. In this study, the expression of estrogen-metabolizing enzyme CYP1A2 was determined in HCC tissues and cell lines. Cell proliferation and apoptosis were assessed in cells with or without CYP1A2 overexpression. The levels of 17β-estradiol (E2) and its metabolite 2-methoxyestradiol (2-ME) were determined. A xenograft tumor model in mice was established to confirm the findings. It was found that CYP1A2 expression was greatly repressed in HCC. E2 suppressed HCC cell proliferation and xenograft tumor development by inducing apoptosis. The inhibitory effect was significantly enhanced in cells with CYP1A2 overexpression, which effectively conversed E2 to the cytotoxic 2-ME. E2 in combination with sorafenib showed an additive effect on HCC. The anti-HCC effect of E2 was not associated with estrogen receptors ERα and ERβ as well as tumor suppressor P53 but enhanced by the approved anti-HCC drug sorafenib. In addition, HDAC inhibitors greatly induced CYP1A2 promoter activities in cancer cells, especially liver cancer cells, but not in non-tumorigenic cells. Collectively, CYP1A2 metabolizes E2 to generate the potent anti-tumor agent 2-ME in HCC. The reduction of CYP1A2 significantly disrupts this metabolic pathway, contributing the progression and growth of HCC and the gender disparity of this malignancy. PMID:27093553

  3. Curcumin Successfully Inhibited the Computationally Identified CYP2A6 Enzyme-Mediated Bioactivation of Aflatoxin B1 in Arbor Acres broiler

    PubMed Central

    Muhammad, Ishfaq; Sun, Xiaoqi; Wang, He; Li, Wei; Wang, Xinghe; Cheng, Ping; Li, Sihong; Zhang, Xiuying; Hamid, Sattar

    2017-01-01

    Cytochrome P450 enzymes are often responsible for the toxic and carcinogenic effects of toxicants, such as aflatoxin B1 (AFB1). The human hepatic CYP2A6 enzyme mediates the oxidative metabolism of several procarcinogens. In this study, we characterized a partial sequence of CYP2A6 gene from Arbor Acres (AA) broiler and studied its role in AFB1 bioactivation. Moreover, the effect of curcumin on CYP2A6 is illustrated. Six groups of AA broiler were treated for 28 days including the control group (fed only basal diet), curcumin alone-treated group (450 mg/kg feed), the group fed AFB1-contaminated feed (5 mg/kg feed) plus the low (150 mg), medium (300 mg) or high (450 mg) of curcumin, and the group fed AFB1-contaminated diet alone (5 mg/kg feed). After the end of treatment period, liver samples were collected for different analyses. The results revealed that the histopathological examination showed clear signs of liver toxicity in AA broliers in AFB1-fed group, but curcumin-supplementation in feed prevented partially AFB1-induced liver toxicity. Liver and body weights were recorded to study the AFB1 harmful effects. We noted an obvious increase in liver weight and decrease in body weight in AFB1-fed group. But, the administration of curcumin partially ameliorated the increase in liver weight and decrease in body weight in a dose-dependent manner. The results (RT-PCR and Elisa) revealed that mRNA and protein expression level enhanced in AFB1-fed group. Consistently, CYP2A6 enzyme activity also increased in AFB1-fed group, suggesting that AA broiler CYP2A6 actively involved in bioactivation of AFB1. However, curcumin treatment inhibited CYP2A6 at mRNA and protein levels in AFB1 treated AA broiler in a dose-dependent manner. Maximum inhibition of liver CYP2A6 enzyme activity in AA broiler has been achieved at a dose of 450 mg/kg curcumin. This is the first study identifying and confirming the role of CYP2A6 enzyme in AFB1 bioactivation in AA broiler liver (in vivo), and

  4. Curcumin Successfully Inhibited the Computationally Identified CYP2A6 Enzyme-Mediated Bioactivation of Aflatoxin B1 in Arbor Acres broiler.

    PubMed

    Muhammad, Ishfaq; Sun, Xiaoqi; Wang, He; Li, Wei; Wang, Xinghe; Cheng, Ping; Li, Sihong; Zhang, Xiuying; Hamid, Sattar

    2017-01-01

    Cytochrome P450 enzymes are often responsible for the toxic and carcinogenic effects of toxicants, such as aflatoxin B1 (AFB1). The human hepatic CYP2A6 enzyme mediates the oxidative metabolism of several procarcinogens. In this study, we characterized a partial sequence of CYP2A6 gene from Arbor Acres (AA) broiler and studied its role in AFB1 bioactivation. Moreover, the effect of curcumin on CYP2A6 is illustrated. Six groups of AA broiler were treated for 28 days including the control group (fed only basal diet), curcumin alone-treated group (450 mg/kg feed), the group fed AFB1-contaminated feed (5 mg/kg feed) plus the low (150 mg), medium (300 mg) or high (450 mg) of curcumin, and the group fed AFB1-contaminated diet alone (5 mg/kg feed). After the end of treatment period, liver samples were collected for different analyses. The results revealed that the histopathological examination showed clear signs of liver toxicity in AA broliers in AFB1-fed group, but curcumin-supplementation in feed prevented partially AFB1-induced liver toxicity. Liver and body weights were recorded to study the AFB1 harmful effects. We noted an obvious increase in liver weight and decrease in body weight in AFB1-fed group. But, the administration of curcumin partially ameliorated the increase in liver weight and decrease in body weight in a dose-dependent manner. The results (RT-PCR and Elisa) revealed that mRNA and protein expression level enhanced in AFB1-fed group. Consistently, CYP2A6 enzyme activity also increased in AFB1-fed group, suggesting that AA broiler CYP2A6 actively involved in bioactivation of AFB1. However, curcumin treatment inhibited CYP2A6 at mRNA and protein levels in AFB1 treated AA broiler in a dose-dependent manner. Maximum inhibition of liver CYP2A6 enzyme activity in AA broiler has been achieved at a dose of 450 mg/kg curcumin. This is the first study identifying and confirming the role of CYP2A6 enzyme in AFB1 bioactivation in AA broiler liver (in vivo), and

  5. More potent inhibition of human CYP2A6 than mouse CYP2A5 enzyme activities by derivatives of phenylethylamine and benzaldehyde.

    PubMed

    Rahnasto, M; Raunio, H; Poso, A; Juvonen, R O

    2003-05-01

    1. A rapid 96-well plate assay method was developed and validated to measure liver microsomal coumarin 7-hydroxylation in vitro. 2. The method was used to test inhibition of human and mouse CYP2A enzymes by three phenylethylamine derivatives 2-(p-tolyl)-ethylamine, amphetamine, 2-phenylethylamine and benzaldehyde, and two of its derivatives, 4-methylbenzaldehyde and 4-methoxybenzaldehyde. 3. The benzaldehyde derivatives were more potent inhibitors of CYP2A5 than the phenylethylamines. The K(ic) value of 4-methylbenzaldehyde was 3.4 micro M and for 4-methoxybenzaldehyde it was 0.86 micro M for CYP2A5. 4. Amphetamine is a weak inhibitor of CYP2A6, whereas benzaldehyde is a suicide inhibitor with K(inact) = 0.16 min(-1) and K(I) = 18 micro M. The K(ic) values of 2-phenylethylamine, 2-(p-tolyl)-ethylamine, 4-methylbenzaldehyde and 4-methoxybenzaldehyde were 1.13, 0.23, 0.36 and 0.73 micro M for CYP2A6, respectively. 5. Novel potent inhibitors were found for CYP2A6 and, except for 4-methoxybenzaldehyde, all the compounds inhibited CYP2A5 and CYP2A6 enzymes differentially. These data add to the refinement of CYP2A enzyme active sites and provide chemical leads for developing novel chemical inhibitors of the CYP2A6 enzyme.

  6. Chloroquine and Hydroxychloroquine Are Novel Inhibitors of Human Organic Anion Transporting Polypeptide 1A2.

    PubMed

    Xu, Chenghao; Zhu, Ling; Chan, Ting; Lu, Xiaoxi; Shen, Weiyong; Madigan, Michele C; Gillies, Mark C; Zhou, Fanfan

    2016-02-01

    Chloroquine (CQ) and hydroxychloroquine (HCQ) are widely used to treat malaria and inflammatory diseases, long-term usage of which often causes severe side effects, especially retinopathy. Solute carrier transporters (SLCs) are important proteins responsible for the cellular uptake of endogenous and exogenous substances. Inhibitors competing with transporter substrates for SLCs often results in unfavorable toxicities and unsatisfactory therapeutic outcomes. We investigated the inhibitory effect of CQ and HCQ on substrate uptake mediated through a range of important SLC transporters in overexpressing human embryonic kidney (HEK293) cells. Our data revealed that both CQ and HCQ potently inhibit the uptake activity of organic anion transporting polypeptide 1A2 (OATP1A2). We recently reported OATP1A2 to be expressed in human retinal pigment epithelium (RPE), where it mediates cellular uptake of all-trans-retinol (atROL), a key step in the classical visual cycle. In this study, we demonstrate that CQ and HCQ could markedly impair atROL uptake in OATP1A2-expressing HEK293 cells and more importantly, in primary human RPE cells. Our study shows that CQ and HCQ are novel inhibitors of OATP1A2 and significantly impair OATP1A2-mediated substrate uptake, particularly transport of atROL into the RPE. This effect may compromise the function of the classic visual cycle leading to vision impairment and contribute to the retinopathy observed clinically in patients using CQ or HCQ.

  7. Genome-Wide Pharmacogenomic Study on Methadone Maintenance Treatment Identifies SNP rs17180299 and Multiple Haplotypes on CYP2B6, SPON1, and GSG1L Associated with Plasma Concentrations of Methadone R- and S-enantiomers in Heroin-Dependent Patients.

    PubMed

    Yang, Hsin-Chou; Chu, Shih-Kai; Huang, Chieh-Liang; Kuo, Hsiang-Wei; Wang, Sheng-Chang; Liu, Sheng-Wen; Ho, Ing-Kang; Liu, Yu-Li

    2016-03-01

    Methadone maintenance treatment (MMT) is commonly used for controlling opioid dependence, preventing withdrawal symptoms, and improving the quality of life of heroin-dependent patients. A steady-state plasma concentration of methadone enantiomers, a measure of methadone metabolism, is an index of treatment response and efficacy of MMT. Although the methadone metabolism pathway has been partially revealed, no genome-wide pharmacogenomic study has been performed to identify genetic determinants and characterize genetic mechanisms for the plasma concentrations of methadone R- and S-enantiomers. This study was the first genome-wide pharmacogenomic study to identify genes associated with the plasma concentrations of methadone R- and S-enantiomers and their respective metabolites in a methadone maintenance cohort. After data quality control was ensured, a dataset of 344 heroin-dependent patients in the Han Chinese population of Taiwan who underwent MMT was analyzed. Genome-wide single-locus and haplotype-based association tests were performed to analyze four quantitative traits: the plasma concentrations of methadone R- and S-enantiomers and their respective metabolites. A significant single nucleotide polymorphism (SNP), rs17180299 (raw p = 2.24 × 10(-8)), was identified, accounting for 9.541% of the variation in the plasma concentration of the methadone R-enantiomer. In addition, 17 haplotypes were identified on SPON1, GSG1L, and CYP450 genes associated with the plasma concentration of methadone S-enantiomer. These haplotypes accounted for approximately one-fourth of the variation of the overall S-methadone plasma concentration. The association between the S-methadone plasma concentration and CYP2B6, SPON1, and GSG1L were replicated in another independent study. A gene expression experiment revealed that CYP2B6, SPON1, and GSG1L can be activated concomitantly through a constitutive androstane receptor (CAR) activation pathway. In conclusion, this study revealed new

  8. Genome-Wide Pharmacogenomic Study on Methadone Maintenance Treatment Identifies SNP rs17180299 and Multiple Haplotypes on CYP2B6, SPON1, and GSG1L Associated with Plasma Concentrations of Methadone R- and S-enantiomers in Heroin-Dependent Patients

    PubMed Central

    Yang, Hsin-Chou; Chu, Shih-Kai; Huang, Chieh-Liang; Kuo, Hsiang-Wei; Wang, Sheng-Chang; Liu, Sheng-Wen; Ho, Ing-Kang; Liu, Yu-Li

    2016-01-01

    Methadone maintenance treatment (MMT) is commonly used for controlling opioid dependence, preventing withdrawal symptoms, and improving the quality of life of heroin-dependent patients. A steady-state plasma concentration of methadone enantiomers, a measure of methadone metabolism, is an index of treatment response and efficacy of MMT. Although the methadone metabolism pathway has been partially revealed, no genome-wide pharmacogenomic study has been performed to identify genetic determinants and characterize genetic mechanisms for the plasma concentrations of methadone R- and S-enantiomers. This study was the first genome-wide pharmacogenomic study to identify genes associated with the plasma concentrations of methadone R- and S-enantiomers and their respective metabolites in a methadone maintenance cohort. After data quality control was ensured, a dataset of 344 heroin-dependent patients in the Han Chinese population of Taiwan who underwent MMT was analyzed. Genome-wide single-locus and haplotype-based association tests were performed to analyze four quantitative traits: the plasma concentrations of methadone R- and S-enantiomers and their respective metabolites. A significant single nucleotide polymorphism (SNP), rs17180299 (raw p = 2.24 × 10−8), was identified, accounting for 9.541% of the variation in the plasma concentration of the methadone R-enantiomer. In addition, 17 haplotypes were identified on SPON1, GSG1L, and CYP450 genes associated with the plasma concentration of methadone S-enantiomer. These haplotypes accounted for approximately one-fourth of the variation of the overall S-methadone plasma concentration. The association between the S-methadone plasma concentration and CYP2B6, SPON1, and GSG1L were replicated in another independent study. A gene expression experiment revealed that CYP2B6, SPON1, and GSG1L can be activated concomitantly through a constitutive androstane receptor (CAR) activation pathway. In conclusion, this study revealed new

  9. Identification of N-(hydroxymethyl) norcotinine as a major product of cytochrome P450 2A6, but not cytochrome P450 2A13-catalyzed cotinine metabolism.

    PubMed

    Brown, Kathryn M; von Weymarn, Linda B; Murphy, Sharon E

    2005-12-01

    Cotinine formation is the major pathway of nicotine metabolism in smokers, and the primary pathway of cotinine metabolism is trans-3'-hydroxylation. trans-3'-Hydroxycotinine and its glucuronide conjugate account for up to 50% of the nicotine metabolites excreted by smokers. Minor metabolites of cotinine excreted by smokers include norcotinine and cotinine N-oxide, each of which account for <5% of the nicotine dose. It has been reported that P450 2A6 is the catalyst of cotinine metabolism. However, we report here that the major product of P450 2A6-catalyzed cotinine metabolism is N-(hydroxymethyl)norcotinine, a previously unknown human metabolite of cotinine. N-(Hydroxymethyl)norcotinine was chemically synthesized, and its stability under the conditions of the enzyme reactions was confirmed. The products of P450 2A6-catalyzed [5-3H]cotinine metabolism were quantified by radioflow HPLC. The identification of N-(hydroxymethyl)norcotinine as the major metabolite was based on HPLC analysis on three unique systems and coelution with N-(hydroxymethyl)norcotinine standard. 5'-Hydroxycotinine and trans-3'-hydroxycotinine were minor products of P450 2A6-catalyzed cotinine metabolism, accounting for 14 and 8% of the total cotinine metabolites, respectively. N-(Hydroxymethyl)norcotinine was a product of cotinine metabolism by the extrahepatic P450, 2A13, but it was a minor one. The major product of P450 2A13-catalyzed cotinine metabolism was 5'-hydroxycotinine, which was formed at twice the rate of trans-3'-hydroxycotinine. The identification of all cotinine metabolites formed by both enzymes was confirmed by LC/MS/MS analysis. Kinetic parameters for cotinine metabolism were determined for P450 2A6 and P450 2A13. This work has confirmed that the major metabolite of cotinine in smokers, trans-3'-hydroxycotinine, is only a minor metabolite of P450 2A6-catalyzed cotinine metabolism.

  10. Inhibition effects of Vernonia cinerea active compounds against cytochrome P450 2A6 and human monoamine oxidases, possible targets for reduction of tobacco dependence.

    PubMed

    Prasopthum, Aruna; Pouyfung, Phisit; Sarapusit, Songklod; Srisook, Ekaruth; Rongnoparut, Pornpimol

    2015-04-01

    The human cytochrome P450 2A6 (CYP2A6) and monoamine oxidases (MAO-A and MAO-B), catalyzing nicotine and dopamine metabolisms, respectively, are two therapeutic targets of nicotine dependence. Vernonia cinerea, a medicinal plant commonly used for treatment of diseases such as asthma and bronchitis, has been shown reducing tobacco dependence effect among tobacco users. In the present study, we found eight active compounds isolated from V. cinerea that comprise inhibitory activity toward CYP2A6 and MAO-A and MAO-B enzymes using activity-guided assays, with coumarin as substrate of CYP2A6 and kynuramine of MAOs. These compounds were three flavones (apigenin, chrysoeriol, luteolin), one flavonol (quercetin), and four hirsutinolide-type sesquiterpene lactones (8α-(2-methylacryloyloxy)-hirsutinolide-13-O-acetate, 8α-(4-hydroxymethacryloyloxy)-hirsutinolide-13-O-acetate, 8α-tigloyloxyhirsutinolide-13-O-acetate, and 8α-(4-hydroxytigloyloxy)-hirsutinolide-13-O-acetate). Modes and kinetics of inhibition against the three enzymes were determined. Flavonoids possessed strong inhibitory effect on CYP2A6 in reversible mode, while inhibition by hirsutinolides was mechanism-based (NADPH-, concentration-, and time-dependence) and irreversible. Inhibition by hirsutinolides could not be reversed by dialysis and by addition of trapping agents or potassium ferricyanide. Flavonoids inhibited MAOs with variable degrees and were more prominent in inhibition toward MAO-A than hirsutinolides, while two of hirsutinolides inhibited MAO-B approximately comparable to two flavonoids. These results could have implications in combination of drug therapy for smoking cessation.

  11. The Role of Protein Elongation Factor eEF1A2 in Breast Cancer

    DTIC Science & Technology

    2006-09-01

    31, 301-5. Page 11 Appendix A. Figures. Page 12 negative or weak moderate or strong years from diagnosis p= 0.005 cu m m u la ti ve s u rv iv al3...function of years following diagnosis . The difference is significant at p = 0.005. b 0 1 2 3 4 5 6 7 8 9 eEF1A2 negative eEF1A2 positive T u m o u r si ze...mouse model of aristolochic acid nephropathy , and human kidney-proximal tubule cells. Satisfyingly, one of these targets is Dishevelled 2 (DVL2

  12. Thermal ramp tritium release in COBRA-1A2 C03 beryllium pebbles

    SciTech Connect

    Baldwin, D.L.

    1998-03-01

    Tritium release kinetics, using the method of thermal ramp heating at three linear ramp rates, were measured on the COBRA-1A2 C03 1-mm beryllium pebbles. This report includes a brief discussion of the test, and the test data in graph format.

  13. COMPARING ENVIRONMENTALLY RELEVANT PCBS TO TCDD IN CYP1A2 NULL AND WILDTYPE MICE

    EPA Science Inventory


    The role of CYP1A2 on the interactions of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin, dioxin), dioxin-like (DL) and non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) was compared in multiple responses of different laboratory-defined mixtures, based on mass ratios found in...

  14. EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2

    EPA Science Inventory

    EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2. T M Ross1, B P Anderson1, G Zhao2, R A Pegram1 and J W Allis1. 1U.S. EPA, ORD, NHEERL, Research Triangle Park, NC; 2University of North Carolina, Chapel Hill, NC.
    Sponsor: H Barton

    Bromodichlorometh...

  15. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Marine Terminal Operations § 1917.28...

  16. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Marine Terminal Operations § 1917.28...

  17. 29 CFR 1917.28 - Hazard communication (See also § 1917.1(a)(2)(vi)).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Hazard communication (See also § 1917.1(a)(2)(vi)). 1917.28 Section 1917.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Marine Terminal Operations § 1917.28...

  18. Novel Natural Inhibitors of CYP1A2 Identified by in Silico and in Vitro Screening

    PubMed Central

    Zhu, Ruixin; Hu, Liwei; Li, Haiyun; Su, Juan; Cao, Zhiwei; Zhang, Weidong

    2011-01-01

    Inhibition of cytochrome P450 (CYP) is a major cause of herb–drug interactions. The CYP1A2 enzyme plays a major role in the metabolism of drugs in humans. Its broad substrate specificity, as well as its inhibition by a vast array of structurally diverse herbal active ingredients, has indicated the possibility of metabolic herb–drug interactions. Therefore nowadays searching inhibitors for CYP1A2 from herbal medicines are drawing much more attention by biological, chemical and pharmological scientists. In our work, a pharmacophore model as well as the docking technology is proposed to screen inhibitors from herbal ingredients data. Firstly different pharmaphore models were constructed and then validated and modified by 202 herbal ingredients. Secondly the best pharmaphore model was chosen to virtually screen the herbal data (a curated database of 989 herbal compounds). Then the hits (147 herbal compounds) were continued to be filtered by a docking process, and were tested in vitro successively. Finally, five of eighteen candidate compounds (272, 284, 300, 616 and 817) were found to have inhibition of CYP1A2 activity. The model developed in our study is efficient for in silico screening of large herbal databases in the identification of CYP1A2 inhibitors. It will play an important role to prevent the risk of herb–drug interactions at an early stage of the drug development process. PMID:21686183

  19. Familial Hemiplegic Migraine with Severe Attacks: A New Report with ATP1A2 Mutation

    PubMed Central

    Martínez, E.; Moreno, R.; López-Mesonero, L.; Vidriales, I.; Ruiz, M.; Tellería, J. J.

    2016-01-01

    Introduction. Familial hemiplegic migraine (FHM) is a rare disorder characterized by migraine attacks with motor weakness during the aura phase. Mutations in CACNA1A, ATP1A2, SCN1A, and PRRT2 genes have been described. Methods. To describe a mutation in ATP1A2 gene in a FHM case with especially severe and prolonged symptomatology. Results. 22-year-old woman was admitted due to migraine-type headache and sudden onset of right-sided weakness and aphasia; she had similar episodes in her childhood. Her mother was diagnosed with hemiplegic migraine without genetic confirmation. She presented with fever, decreased consciousness, left gaze preference, mixed aphasia, right facial palsy, right hemiplegia, and left crural paresis. Computed tomography (CT) showed no lesion and CT perfusion study evidenced oligohemia in left hemisphere. A normal brain magnetic resonance (MR) was obtained. Impaired consciousness and dysphasia began to improve three days after admission and mild dysphasia and right hemiparesis lasted for 10 days. No recurrences were reported during a follow-up of two years. We identified a variant in heterozygous state in ATP1A2 gene (p.Thr364Met), pathogenic according to different prediction algorithms (SIFT, PolyPhen2, MutationTaster, and Condel). Conclusion. Prolonged and severe attacks with diffuse hypoperfusion in a FHM seemed to be specially related to ATP1A2 mutations, and p.T364M should be considered. PMID:27818813

  20. TSU-16, (Z)-3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-2-indolinone, is a potent activator of aryl hydrocarbon receptor and increases CYP1A1 and CYP1A2 expression in human hepatocytes.

    PubMed

    Matsuoka-Kawano, Kazuaki; Yoshinari, Kouichi; Nagayama, Sekio; Yamazoe, Yasushi

    2010-04-15

    (Z)-3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-2-indolinone (TSU-16), is a potent anti-angiogenic agent that inhibits the tyrosine kinase of vascular endothelial growth factor receptor-2. In clinical trials with daily or twice weekly intravenous administration of TSU-16, its increased clearance was observed. To understand the mechanism underlying this observation, we have investigated the TSU-16-mediated regulation of cytochrome P450 expression. In human hepatocytes, TSU-16 increased mRNA levels of CYP1A1 and CYP1A2, but not CYP2B6 and CYP3A4. The extent of increase and profiles of the time-dependent changes in CYP1A1 and CYP1A2 mRNA levels after TSU-16 treatment were similar to those after treatment with 3-methylcholanthrene (3MC), a well-known activator of the aryl hydrocarbon receptor (AhR). In reporter assays using a plasmid construct that contained the human CYP1A1 5'-flanking region including the region crucial for the AhR-dependent transcription of both human CYP1A1 and CYP1A2, TSU-16 treatment increased reporter activities to an extent similar to that obtained with 3MC. Treatment of HepG2 cells and human hepatocytes with AhR-targeting siRNA suppressed the increase in both mRNA levels and CYP1A activities after treatment with TSU-16 as well as after that with omeprazole or 3MC. TSU-16 also time-dependently reduced cellular AhR protein levels in HepG2 cells to a similar extent with 3MC treatment. Furthermore, we demonstrated that unlabeled TSU-16 and 3MC but not omeprazole completely inhibited the specific binding of [(3)H]-3MC to mouse Hepa1c1c7 cytosol, suggesting TSU-16 as an AhR ligand. In conclusion, our present results suggest that TSU-16 binds to and activates AhR to enhance the expression of both human CYP1A1 and CYP1A2. Because TSU-16 is metabolized mainly by CYP1A2, its increased clearance after repeated dosing may be attributed to the enhanced expression of hepatic CYP1A2.

  1. Cytochrome P450 1A2 Detoxicates Aristolochic Acid in the Mouse

    PubMed Central

    Einolf, Heidi J.; Dickman, Kathleen G.; Wang, Lai; Smith, Amanda; Grollman, Arthur P.

    2010-01-01

    Aristolochic acids (AAs) are plant-derived nephrotoxins and carcinogens responsible for chronic renal failure and associated urothelial cell cancers in several clinical syndromes known collectively as aristolochic acid nephropathy (AAN). Mice provide a useful model for study of AAN because the renal histopathology of AA-treated mice is strikingly similar to that of humans. AA is also a potent carcinogen in mice with a tissue spectrum somewhat different from that in humans. The toxic dose of AA in mice is higher than that in humans; this difference in susceptibility has been postulated to reflect differing rates of detoxication between the species. Recent studies in mice have shown that the hepatic cytochrome P450 system detoxicates AA, and inducers of the arylhydrocarbon response protect mice from the nephrotoxic effects of AA. The purpose of this study was to determine the role of specific cytochrome P450 (P450) enzymes in AA metabolism in vivo. Of 18 human P450 enzymes we surveyed only two, CYP1A1 and CYP1A2, which were effective in demethylating 8-methoxy-6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAI) to the nontoxic derivative 8-hydroxy-6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAIa). Kinetic analysis revealed similar efficiencies of formation of AAIa by human and rat CYP1A2. We also report here that CYP1A2-deficient mice display increased sensitivity to the nephrotoxic effects of AAI. Furthermore, Cyp1a2 knockout mice accumulate AAI-derived DNA adducts in the kidney at a higher rate than control mice. Differences in bioavailability or hepatic metabolism of AAI, expression of CYP1A2, or efficiency of a competing nitroreduction pathway in vivo may explain the apparent differences between human and rodent sensitivity to AAI. PMID:20164109

  2. Influence of synthetic and natural food dyes on activities of CYP2A6, UGT1A6, and UGT2B7.

    PubMed

    Kuno, Nayumi; Mizutani, Takaharu

    2005-08-27

    Synthetic or natural food dyes are typical xenobiotics, as are drugs and pollutants. After ingestion, part of these dyes may be absorbed and metabolized by phase I and II drug-metabolizing enzymes and excreted by transporters of phase III enzymes. However, there is little information regarding the metabolism of these dyes. It was investigated whether these dyes are substrates for CYP2A6 and UDP-glucuronosyltransferase (UGT). The in vitro inhibition of drug-metabolizing enzymes by these dyes was also examined. The synthetic food dyes studied were amaranth (food red no. 2), erythrosine B (food red no. 3), allura red (food red no. 40), new coccine (food red no. 102), acid red (food red no. 106), tartrazine (food Yellow no. 4), sunset yellow FCF (food yellow no. 5), brilliant blue FCF (food blue no. 1), and indigo carmine (food blue no. 2). The natural additive dyes studied were extracts from purple sweet potato, purple corn, cochineal, monascus, grape skin, elderberry, red beet, gardenia, and curthamus. Data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. Only indigo carmine inhibited CYP2A6 in a noncompetitive manner, while erythrosine B inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). In the natural additive dyes just listed, only monascus inhibited UGT1A6 and UGT2B7.

  3. Electrochemical reduction of flavocytochromes 2B4 and 1A2 and their catalytic activity.

    PubMed

    Shumyantseva, V V; Bulko, T V; Bachmann, T T; Bilitewski, U; Schmid, R D; Archakov, A I

    2000-05-01

    The present study shows that cytochromes P450 2B4 and 1A2 with a covalently attached riboflavin (semisynthetic flavocytochromes RfP450 2B4 and RfP450 1A2) can be reduced electrochemically on rhodium-graphite electrodes at a potential of -500 mV (vs Ag/AgCl). In the presence of substrates such as aminopyrine, aniline, 7-ethoxyresorufin, and 7-pentoxyresorufin, N-demethylation, p-hydroxylation, and O-dealkylation reactions proceeded, as was confirmed by product analysis. Rates of electrocatalytically driven reactions are comparable to those obtained using NAD(P)H as the source of reducing equivalents. These results suggest the practicality of developing flavocytochrome P450s as catalysts for oxidation reactions with different classes of organic substrates.

  4. SLC1A2 variant associated with essential tremor but not Parkinson disease in Chinese subjects.

    PubMed

    Tan, Eng-King; Foo, Jia-Nee; Tan, Louis; Au, Wing-Lok; Prakash, Kumar M; Ng, Ebonne; Ikram, M Kamran; Wong, Tien-Yin; Liu, Jian-Jun; Zhao, Yi

    2013-04-23

    Essential tremor (ET) is characterized by postural and action tremor.(1-3) A genome-wide association study (GWAS) identified a LINGO1 gene variant to be associated with ET.(4) Subsequent GWAS further identified an intronic variant (rs3794087) of the main glial glutamate transporter (SLC1A2) gene to be associated with ET with an odds ratio (OR) of approximately 1.4.(5) We conducted a case-control study to examine the SLC1A2 gene variant in an Asian cohort of ET. In addition, we also investigated the variant in patients with Parkinson disease (PD) because the GWAS LINGO1 variant has been implicated in both ET and PD and etiologic links between the conditions have been suggested.(6.)

  5. Production of {sup 4}He and tritium from Be in the COBRA-1A2 irradiation

    SciTech Connect

    Greenwood, L.R.

    1998-03-01

    The production of {sup 4}He and tritium has been calculated for beryllium irradiated in the COBRA-1A2 experiment in the Experimental Breeder Reactor II. Reaction rates were based on adjusted neutron spectra determined from reactor dosimetry measurements at three different elevations in the region of the beryllium capsules. Equations are given so that gas production can be calculated for any specific capsule elevation.

  6. M1A2 tank commander's independent thermal viewer optics: system engineering perspective

    NASA Astrophysics Data System (ADS)

    Ratcliff, David D.

    1993-08-01

    As successful as the M1A1 Abrams tank was in the Gulf War, a program has been under way for several years to improve and modernize the M1A1 to keep pace with new threats and to take advantage of new technology. This program has resulted in the M1A2 upgrade program which significantly improves the survivability and lethality of the tank. First, the point-to-point wiring and analog signal processing was replaced with digital processing and control with a modern, aircraft-style digital data bus. Additional command and control aspects of the upgrade greatly improved the situational awareness of the M1A2 commander. Finally, an additional thermal imaging system was added for the commander. This system, the M1A2 Commander's Independent Thermal Viewer (CITV) is the topic of the following paper, which details the design from a system engineering perspective, and a companion paper that presents the optical design perspective.

  7. Pyranoflavones: A Group of Small-molecule Probes for Exploring the Active Site Cavities of Cytochrome P450 Enzymes 1A1, 1A2, and 1B1

    PubMed Central

    Liu, Jiawang; Taylor, Shannon F.; Dupart, Patrick S.; Arnold, Corey L.; Sridhar, Jayalakshmi; Jiang, Quan; Wang, Yuji; Skripnikova, Elena V.; Zhao, Ming; Foroozesh, Maryam

    2013-01-01

    Selective inhibition of P450 enzymes is the key to block the conversion of environmental procarcinogens to their carcinogenic metabolites in both animals and humans. To discover highly potent and selective inhibitors of P450s 1A1, 1A2, and 1B1, as well as to investigate active site cavities of these enzymes, 14 novel flavone derivatives were prepared as chemical probes. Fluorimetric enzyme inhibition assays were used to determine the inhibitory activities of these probes towards P450s 1A1, 1A2, 1B1, 2A6, and 2B1. A highly selective P450 1B1 inhibitor, 5-hydroxy-4′-propargyloxyflavone (5H4′FPE) was discovered. Some tested compounds also showed selectivity between P450s 1A1 and 1A2. Alpha-naphthoflavone-like and 5-hydroxyflavone derivatives preferentially inhibited P450 1A2, while beta-naphthoflavone-like flavone derivatives showed selective inhibition of P450 1A1. On the basis of structural analysis, the active site cavity models of P450 enzymes 1A1 and 1A2 were generated, demonstrating a planar long strip cavity and a planar triangular cavity, respectively. PMID:23600958

  8. ALDH1A2 (RALDH2) genetic variation in human congenital heart disease

    PubMed Central

    2009-01-01

    Background Signaling by the vitamin A-derived morphogen retinoic acid (RA) is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2) is critical for cardiac development, we screened patients with congenital heart disease (CHDs) for genetic variation at the ALDH1A2 locus. Methods One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430) at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM) simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay. Results We describe in Tetralogy of Fallot (TOF) the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT) design using single marker genotype, or haplotype information do not show differences between cases and controls. Conclusion In summary, our screen indicates that ALDH1A2 genetic

  9. Oxidation of N-Nitrosoalkylamines by human cytochrome P450 2A6: sequential oxidation to aldehydes and carboxylic acids and analysis of reaction steps.

    PubMed

    Chowdhury, Goutam; Calcutt, M Wade; Guengerich, F Peter

    2010-03-12

    Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH(3)CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect ((D)k(app) approximately 10), which was highly expressed in a variety of competitive and non-competitive experiments. The (D)k(app) for DEN was approximately 3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO(2)H and CH(3)CO(2)H, respectively. In neither case was a lag observed, which was unexpected considering the k(cat) and K(m) parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde).

  10. Overexpression of MMP-7 increases collagen 1A2 in the aging kidney

    PubMed Central

    Ślusarz, Anna; Nichols, LaNita A; Grunz-Borgmann, Elizabeth A; Chen, Gang; Akintola, Adebayo D; Catania, Jeffery M; Burghardt, Robert C; Trzeciakowski, Jerome P; Parrish, Alan R

    2013-01-01

    The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis that leads to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however, it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, with over a 500-fold upregulation in 2-year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of protein kinase A (PKA), src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 upregulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src, and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD. PMID:24273653

  11. [Simplified microdetermination of cerebral phospholipase A1, A2 and lysophopholipase].

    PubMed

    Hirashima, Y; Koshu, K; Kamiyama, K; Endo, S; Takaku, A; Honda, T; Takasaki, C

    1983-08-01

    The purpose of our study was to examine the ischemia induced enzymatic changes of decaylation-reacylation cycle of membrane phospholipids in dog brain. In this study, we developed new modified method for assay of phospholipase A1, A2 and lysophospholipase which is simpler and needs only a smaller amount of materials. For the first report, we introduced this new method and demonstrated some properties of phospholipase A1, A2 and lysophospholipase in dog brain. Crude enzyme solution for assays of phospholipase A1, A2 and lysophospholipase was gained from extraction of frozen brain with aceton, butanol and saline. The level of phosphorus in the enzyme extract was determined and only those extracts which had a level of phosphorus within a certain range were used. The substrates for assays were L-alpha-[beta-palmitoyl-1-14C] phosphatidylcholine, dipalmitoyl for phospholipase A1 and A2 and L-lysophosphatidylcholine-1-[1-14C] palmitoyl for lysophospolipase respectively. Each radioactive substrates was diluted with cold carrier lipid to give the proper specific activity. Reaction system including substrate, buffer [pH 7.0] and enzyme extract was incubated for 10 hours at 38 degrees C. But for the assay of phospholipase A1 and A2, enzyme solution was pre-incubated at 70 degrees C for 5 minutes. In our new method, reaction mixture was directly separated by TLC without extracting lipids. Enzyme activities were calculated from radio thin-layer chromatograms. Furthermore, we made a comparison between our method and the former one. The value of each enzyme activity was slightly higher in our method than in the former one. However, it was revealed that the results were reproducible in both methods.

  12. Exploring QSAR and QAAR for inhibitors of cytochrome P450 2A6 and 2A5 enzymes using GFA and G/PLS techniques.

    PubMed

    Roy, Kunal; Roy, Partha Pratim

    2009-05-01

    A series of naphthalene and non-naphthalene derivatives (n=42) having cytochrome P450 2A6 and 2A5 inhibitory activities, reported by Rahnasto et al., were subjected to QSAR and QAAR studies. The analyses were performed using electronic, spatial, shape and thermodynamic descriptors to develop quantitative models for prediction of the inhibitory activities and to explore importance of different descriptors for the responses. The data set was divided into training and test sets (with test set size being approximately 25% of the full data set size) based on K-means clustering applied on the standardized descriptor matrix. Genetic function approximation (GFA) and genetic partial least-squares (G/PLS) were used as chemometric tools for modeling, and the derived equations were of acceptable statistical and prediction (both internal and external) qualities although different equations varied in quality in a wide range (R(2): 0.561-0.898, R(a)(2): 0.508-0.870, Q(2): 0.495-0.814, R(pred)(2): 0.615-0.914, r(2): 0.679-0.905, r(0)(2): 0.639-0.904, r(m)(2): 0.494-0.876). In the case of CYP2A5 inhibition, the GFA derived QSAR model is better than the G/PLS derived model considering both internal and external validations. In the case of CYP2A6 inhibitory potency data, the GFA derived QSAR model is better than the G/PLS model considering internal validation whereas the latter is better in external validation (which is more important) than the former. The model development process was subjected to randomization test at 90% confidence level by taking into account the whole pool of descriptors, while the developed models were also subjected to randomization test (99% confidence level) for validation. Based on the randomization test results, GFA models are found to be superior to the G/PLS models. Among the parameters, which were found important in modeling both the responses, were different Jurs descriptors, electronic descriptors (like Sr, Apol), steric descriptors (like shadow

  13. [Modeling of a three-dimensional structure of cytochrome P-450 1A2 and search for its new ligands].

    PubMed

    Belkina, N V; Skvortsov, V S; Ivanov, A S; Archakov, A I

    1998-01-01

    The substances inhibiting cytochrome P450 1A2 (CYP1A2) represent a perspective class of new drugs, which application in clinical practice can become the important part in preventive maintenance in oncology. The present work is devoted to computer modelling of 3-D structure of CYP1A2 and searching of new inhibitors by database mining. The modelling of CYP1A2 was done based on homology with 4 bacterial cytochromes P450 with known 3-D structure. For optimization of CYP1A2 active site structure the models of its complexes with characteristic substrates (caffeine and 7-ethoxyresorufin) were designed. These complexes were optimized by molecular dynamics simulation in water. The models of 24 complexes of CYP1A2 with known ligands with known Kd were designed by means of DockSearch and LeapFrog programs. 3D-QSAR model with good predictive force was created based on these complexes. On a final stage the search of knew CYP1A2 ligands in testing database (more than 23.000 substances from database Maybridge and 112 known CYP1A2 ligands from database Metabolite, MDL) was executed. 680 potential ligands of CYP1A2 with Kd values, comparable with known ones were obtained. This number has included 73 compounds from 112 known ligands, introduced in tested database as the internal control.

  14. Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism

    PubMed Central

    Sachse, Christoph; Bhambra, Upinder; Smith, Gillian; Lightfoot, Tracy J; Barrett, Jennifer H; Scollay, Jenna; Garner, R Colin; Boobis, Alan R; Wolf, C Roland; Gooderham, Nigel J

    2003-01-01

    Aim Several single nucleotide polymorphisms (SNPs) of the cytochrome P450 enzyme 1A2 gene (CYP1A2) have been reported. Here, frequencies, linkage disequilibrium and phenotypic consequences of six SNPs are described. Methods From genomic DNA, 114 British Caucasians (49 colorectal cancer cases and 65 controls) were genotyped for the CYP1A2 polymorphisms −3858G→A (allele CYP1A2*1C), −2464T→delT (CYP1A2*1D), −740T→G (CYP1A2*1E and *1G), −164A→C (CYP1A2*1F), 63C→G (CYP1A2*2), and 1545T→C (alleles CYP1A2*1B, *1G, *1H and *3), using polymerase chain reaction–restriction fragment length polymorphism assays. All patients and controls were phenotyped for CYP1A2 by h.p.l.c. analysis of urinary caffeine metabolites. Results In 114 samples, the most frequent CYP1A2 SNPs were 1545T→C (38.2% of tested chromosomes), −164A→C (CYP1A2*1F, 33.3%) and −2464T→delT (CYP1A2*1D, 4.82%). The SNPs were in linkage disequilibrium: the most frequent constellations were found to be −3858G/−2464T/−740T/−164A/63C/1545T (61.8%), −3858G/−2464T/−740T/−164C/63C/1545C (33.3%), and −3858G/−2464delT/−740T/−164A/63C/1545C (3.51%), with no significant frequency differences between cases and controls. In the phenotype analysis, lower caffeine metabolic ratios were detected in cases than in controls. This was significant in smokers (n = 14, P = 0.020), and in a subgroup of 15 matched case-control pairs (P = 0.007), but it was not significant in nonsmokers (n = 100, P = 0.39). There was no detectable association between CYP1A2 genotype and caffeine phenotype. Conclusions (i) CYP1A2 polymorphisms are in linkage disequilibrium. Therefore, only −164A→C (CYP1A2*1F) and −2464T→delT (CYP1A2*1D) need to be analysed in the routine assessment of CYP1A2 genotype; (ii) in vivo CYP1A2 activity is lower in colorectal cancer patients than in controls, and (iii) CYP1A2 genotype had no effect on phenotype (based on the caffeine metabolite ratio). However, this

  15. Alaska Native smokers and smokeless tobacco users with slower CYP2A6 activity have lower tobacco consumption, lower tobacco-specific nitrosamine exposure and lower tobacco-specific nitrosamine bioactivation.

    PubMed

    Zhu, Andy Z X; Binnington, Matthew J; Renner, Caroline C; Lanier, Anne P; Hatsukami, Dorothy K; Stepanov, Irina; Watson, Clifford H; Sosnoff, Connie S; Benowitz, Neal L; Tyndale, Rachel F

    2013-01-01

    Nicotine, the psychoactive ingredient in tobacco, is metabolically inactivated by CYP2A6 to cotinine. CYP2A6 also activates procarcinogenic tobacco-specific nitrosamines (TSNA). Genetic variation in CYP2A6 is known to alter smoking quantity and lung cancer risk in heavy smokers. Our objective was to investigate how CYP2A6 activity influences tobacco consumption and procarcinogen levels in light smokers and smokeless tobacco users. Cigarette smokers (n = 141), commercial smokeless tobacco users (n = 73) and iqmik users (n = 20) were recruited in a cross-sectional study of Alaska Native people. The participants' CYP2A6 activity was measured by both endophenotype and genotype, and their tobacco and procarcinogen exposure biomarker levels were also measured. Smokers, smokeless tobacco users and iqmik users with lower CYP2A6 activity had lower urinary total nicotine equivalents (TNE) and (methylnitrosamino)-1-(3)pyridyl-1-butanol (NNAL) levels (a biomarker of TSNA exposure). Levels of N-nitrosonornicotine (NNN), a TSNA metabolically bioactivated by CYP2A6, were higher in smokers with lower CYP2A6 activities. Light smokers and smokeless tobacco users with lower CYP2A6 activity reduce their tobacco consumption in ways (e.g. inhaling less deeply) that are not reflected by self-report indicators. Tobacco users with lower CYP2A6 activity are exposed to lower procarcinogen levels (lower NNAL levels) and have lower procarcinogen bioactivation (as indicated by the higher urinary NNN levels suggesting reduced clearance), which is consistent with a lower risk of developing smoking-related cancers. This study demonstrates the importance of CYP2A6 in the regulation of tobacco consumption behaviors, procarcinogen exposure and metabolism in both light smokers and smokeless tobacco users.

  16. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1091 Ship radio equipment—Sea areas A1, A2, and A3....

  17. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1091 Ship radio equipment—Sea areas A1, A2, and A3....

  18. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1091 Ship radio equipment—Sea areas A1, A2, and A3....

  19. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1091 Ship radio equipment—Sea areas A1, A2, and A3....

  20. 47 CFR 80.1091 - Ship radio equipment-Sea areas A1, A2, and A3.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Ship radio equipment-Sea areas A1, A2, and A3... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1091 Ship radio equipment—Sea areas A1, A2, and A3....

  1. C5-hydroxylation of liquiritigenin is catalyzed selectively by CYP1A2.

    PubMed

    Wang, Ao-Xue; Hu, Ying; Liu, Hui-Xin; Qi, Xiao-Yi; Liu, Yong; Tu, Cai-Xia; Yang, Ling

    2011-05-01

    Liquiritigenin (7,4'-dihydroxyflavone), the primary active component of a traditional Chinese medicine Glycyrrhizae radix, has a wide range of pharmacological activities. Six oxidative metabolites of liquiritigenin (7,3',4'-trihydroxyflavone, a hydroxyl quinine metabolite, two A-ring dihydroxymetabolites, 7,4'-dihydroxyflavone, and 7-hydroxychromone) have been detected in rat liver microsomes (RLMs), and one CYP3A4-catalyzed metabolite (7,4'-dihydroxyflavone) has been identified in human liver microsomes (HLMs) recently. In this study, a novel mono-hydroxylated metabolite was detected in reaction catalyzed by HLMs, and was identified as 4',5,7-trihydroxyflavanone by comparing the tandem mass spectra and the chromatographic retention time with that of the standard compound. Significant difference in CL(int) (9-fold) was found between these two oxidative pathways of liquiritigenin, and C5-hydroxylation pathway was identified as the major oxidative metabolism of liquiritigenin. The study with chemical selective inhibitor, cDNA-expressed human CYPs, correlation assay, and kinetic study demonstrated that CYP1A2 was the specific isozyme responsible for the C5-hydroxylation metabolism of liquiritigenin in HLMs.

  2. Effects of mexiletine, a CYP1A2 inhibitor, on tizanidine pharmacokinetics and pharmacodynamics.

    PubMed

    Momo, Kenji; Homma, Masato; Osaka, Yoshiko; Inomata, Shin-ichi; Tanaka, Makoto; Kohda, Yukinao

    2010-03-01

    The aim of this study was to determine whether mexiletine, a CYP1A2 inhibitor, altered the pharmacokinetics and pharmacodynamics of tizanidine. The pharmacokinetics of tizanidine were examined in an open-label study in 12 healthy participants after a single dose of tizanidine (2 mg) with and without mexiletine coadministration (50 mg, 3 times as a pretreatment for a day and 2 times on the study day). Compared with tizanidine alone, mexiletine coadministration increased the peak plasma concentration (1.8 +/- 0.8 vs 5.3 +/- 1.8 ng/mL), area under the curve (4.5 +/- 2.2 vs 15.4 +/- 6.5 ng x h/mL), and the half-life (1.3 +/- 0.2 vs 1.8 +/- 0.7 h) of tizanidine, respectively (P < .05). Reduction in systolic blood pressure (-10 +/- 8 vs -24 +/- 7 mm Hg) and diastolic blood pressure (-10 +/- 7 vs -18 +/- 8 mm Hg) after tizanidine administration was also significantly enhanced by coadministration of mexiletine (P < .01). Of the 15 patients treated with tizanidine and mexiletine, 4 suffered tizanidine-induced adverse effects such as drowsiness and dry mouth in the retrospective survey. Present results suggested that coadministration of mexiletine increased blood tizanidine concentrations and enhanced tizanidine pharmacodynamics in terms of reduction in blood pressure and adverse symptoms.

  3. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer

    SciTech Connect

    Sun, Yue; Du, Chengli; Wang, Bo; Zhang, Yanling; Liu, Xiaoyan; Ren, Guoping

    2014-07-18

    Highlights: • The expression of eEF1A2 is up-regulated in prostate cancer tissues. • Suppression of eEF1A2 inhibits the proliferation and promotes apoptosis. • Inhibition of eEF1A2 enhances the expression of apoptotic relevant proteins. • The expressions of eEF1A2 and cleavage-caspase3 are inversely correlated. - Abstract: Background: eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. Methods: We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Results: Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Conclusion: Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.

  4. Binding of diverse environmental chemicals with human cytochromes P450 2A13, 2A6, and 1B1 and enzyme inhibition.

    PubMed

    Shimada, Tsutomu; Kim, Donghak; Murayama, Norie; Tanaka, Katsuhiro; Takenaka, Shigeo; Nagy, Leslie D; Folkman, Lindsay M; Foroozesh, Maryam K; Komori, Masayuki; Yamazaki, Hiroshi; Guengerich, F Peter

    2013-04-15

    A total of 68 chemicals including derivatives of naphthalene, phenanthrene, fluoranthene, pyrene, biphenyl, and flavone were examined for their abilities to interact with human P450s 2A13 and 2A6. Fifty-one of these 68 chemicals induced stronger Type I binding spectra (iron low- to high-spin state shift) with P450 2A13 than those seen with P450 2A6, i.e., the spectral binding intensities (ΔAmax/Ks ratio) determined with these chemicals were always higher for P450 2A13. In addition, benzo[c]phenanthrene, fluoranthene, 2,3-dihydroxy-2,3-dihydrofluoranthene, pyrene, 1-hydroxypyrene, 1-nitropyrene, 1-acetylpyrene, 2-acetylpyrene, 2,5,2',5'-tetrachlorobiphenyl, 7-hydroxyflavone, chrysin, and galangin were found to induce a Type I spectral change only with P450 2A13. Coumarin 7-hydroxylation, catalyzed by P450 2A13, was strongly inhibited by 2'-methoxy-5,7-dihydroxyflavone, 2-ethynylnaphthalene, 2'-methoxyflavone, 2-naphththalene propargyl ether, acenaphthene, acenaphthylene, naphthalene, 1-acetylpyrene, flavanone, chrysin, 3-ethynylphenanthrene, flavone, and 7-hydroxyflavone; these chemicals induced Type I spectral changes with low Ks values. On the basis of the intensities of the spectral changes and inhibition of P450 2A13, we classified the 68 chemicals into eight groups based on the order of affinities for these chemicals and inhibition of P450 2A13. The metabolism of chemicals by P450 2A13 during the assays explained why some of the chemicals that bound well were poor inhibitors of P450 2A13. Finally, we compared the 68 chemicals for their abilities to induce Type I spectral changes of P450 2A13 with the Reverse Type I binding spectra observed with P450 1B1: 45 chemicals interacted with both P450s 2A13 and 1B1, indicating that the two enzymes have some similarty of structural features regarding these chemicals. Molecular docking analyses suggest similarities at the active sites of these P450 enzymes. These results indicate that P450 2A13, as well as Family 1 P450

  5. Binding of Diverse Environmental Chemicals with Human Cytochromes P450 2A13, 2A6, and 1B1 and Enzyme Inhibition

    PubMed Central

    Shimada, Tsutomu; Kim, Donghak; Murayama, Norie; Tanaka, Katsuhiro; Takenaka, Shigeo; Nagy, Leslie D.; Folkman, Lindsay M.; Foroozesh, Maryam K.; Komori, Masayuki; Yamazaki, Hiroshi; Guengerich, F. Peter

    2014-01-01

    A total of 68 chemicals including derivatives of naphthalene, phenanthrene, fluoranthene, pyrene, biphenyl, and flavone were examined for their abilities to interact with human P450s 2A13 and 2A6. Fifty-one of these 68 chemicals induced stronger Type I binding spectra (iron low- to high-spin state shift) with P450 2A13 than those seen with P450 2A6, i.e. the spectral binding intensities (ΔAmax/Ks ratio) determined with these chemicals were always higher for P450 2A13. In addition, benzo[c]phenanthrene, fluoranthene, 2,3-dihydroxy-2,3-dihydrofluoranthene, pyrene, 1-hydroxypyrene, 1-nitropyrene, 1-acetylpyrene, 2-acetylpyrene, 2,5,2’,5’-tetrachlorobiphenyl, 7-hydroxyflavone, chrysin, and galangin were found to induce a Type I spectral change only with P450 2A13. Coumarin 7-hydroxylation, catalyzed by P450 2A13, was strongly inhibited by 2’-methoxy-5,7-dihydroxyflavone, 2-ethynylnaphthalene, 2’-methoxyflavone, 2-naphththalene propargyl ether, acenaphthene, acenaphthylene, naphthalene, 1-acetylpyrene, flavanone, chrysin, 3-ethynylphenanthrene, flavone, and 7-hydroxyflavone; these chemicals induced Type I spectral changes with low Ks values. On the basis of the intensities of the spectral changes and inhibition of P450 2A13, we classified the 68 chemicals into eight groups based on the order of affinities for these chemicals and inhibition of P450 2A13. The metabolism of chemicals by P450 2A13 during the assays explained why some of the chemicals that bound well were poor inhibitors of P450 2A13. Finally, we compared the 68 chemicals for their abilities to induce Type I spectral changes of P450 2A13 with the Reverse Type I binding spectra observed with P450 1B1: 45 chemicals interacted with both P450s 2A13 and 1B1, indicating that the two enzymes have some similarty of structural features regarding these chemicals. Molecular docking analyses suggest similarities at the active sites of these P450 enzymes. These results indicate that P450 2A13, as well as Family

  6. Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation-A mammalian cell-based mutagenesis approach

    SciTech Connect

    Chiang, Huai-chih; Wang, Chin-Ying; Lee, Hui-Ling; Tsou, Tsui-Chun

    2011-06-01

    Both cytochrome P450 2A6 (CYP2A6) and cytochrome P450 2A13 (CYP2A13) are involved in metabolic activation of tobacco-specific nitrosamines and may play important roles in cigarette smoking-induced lung cancer. Unlike CYP2A6, effects of CYP2A13 on the tobacco-specific nitrosamine-induced mutagenesis in lung cells remain unclear. This study uses a supF mutagenesis assay to examine the relative effects of CYP2A6 and CYP2A13 on metabolic activation of a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and its resulting mutagenesis in human lung cells. A recombinant adenovirus-mediated CYP2A6/CYP2A13 expression system was established to specifically address the relative effects of these two CYPs. Mutagenesis results revealed that both CYP2A6 and CYP2A13 significantly enhanced the NNK-induced supF mutation and that the mutagenic effect of CYP2A13 was markedly higher than that of CYP2A6. Analysis of NNK metabolism indicated that {>=} 70% of NNK was detoxified to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), either with or without CYP2A6/CYP2A13 expression. Both CYP2A6 and CYP2A13 significantly enhanced the {alpha}-hydroxylation of NNK; and the {alpha}-hydroxylation activity of CYP2A13 was significantly higher than that of CYP2A6. Analysis of the NNK-related DNA adduct formation indicated that, in the presence of CYP2A13, NNK treatments caused marked increases in O{sup 6}-methylguanine (O{sup 6}-MeG). The present results provide the first direct in vitro evidence demonstrating the predominant roles of CYP2A13 in NNK-induced mutagenesis, possibly via metabolic activation of NNK {alpha}-hydroxylation.

  7. Caffeine and paraxanthine HPLC assay for CYP1A2 phenotype assessment using saliva and plasma.

    PubMed

    Perera, Vidya; Gross, Annette S; McLachlan, Andrew J

    2010-10-01

    Caffeine has been extensively used as a probe to measure CYP1A2 activity in humans with caffeine clearance or the paraxanthine (major metabolite of caffeine) to caffeine concentration ratio being regarded as the preferred metric. A simple reverse-phased C(18) HPLC assay using ethyl acetate liquid-liquid extraction was developed to quantitate caffeine and paraxanthine concentrations in saliva and plasma. The mobile phase consisted of acetonitrile-acetic acid-H(2)O (100:1:899) and analytes were quantitated with UV detection at 280 nm. The extraction recovery for paraxanthine and caffeine was approximately 70% in both saliva and plasma. The assay was linear over the concentration ranges 0.05-2.50 and 0.05-5.00 µg/mL, for paraxanthine and caffeine, respectively, in saliva. In plasma the assay was linear over the ranges 0.025-2.50 and 0.025-5.00 µg/mL for paraxanthine and caffeine, respectively. Intra- and inter-assay precision and accuracy were less than 15%. Detection limits were 0.015 µg/mL for paraxanthine and caffeine in saliva, while it was 0.005 µg/mL for paraxanthine and caffeine in plasma. Utility was established in samples collected from two healthy volunteers who abstained from caffeine for 24 h and received a single 100 mg oral dose of caffeine. The assay developed is a robust, simple and precise technique to measure caffeine and paraxanthine in saliva and plasma of healthy volunteers after a single oral dose of caffeine.

  8. Arginine to lysine 108 substitution in recombinant CYP1A2 abolishes methoxyresorufin metabolism in lymphoblastoid cells

    PubMed Central

    Hadjokas, Nicholas E; Dai, Renke; Friedman, Fred K; Spence, Michael J; Cusack, Barry J; Vestal, Robert E; Ma, Yongsheng

    2002-01-01

    Cytochrome P4501A2 (CYP1A2) activates a large number of procarcinogens to carcinogens. Phytochemicals such as flavones can inhibit CYP1A2 activity competitively, and hydroxylated derivatives of flavone (galangin) may be potent, selective inhibitors of CYP1A2 activity relative to CYP1A1 activity. Molecular modelling of the CYP1A2 interaction with hydroxylated derivatives of flavone suggests that a number of hydrophobic residues of the substrate-binding domain engage in hydrogen bonding with such inhibitors.We have tested this model using site-directed mutagenesis of these residues in expression plasmids transfected into the human B-lymphoblastoid cell line, AHH-1 TK+/−.Consistent with the molecular model's predicted placement in the active site, amino acid substitutions at the predicted residues abolished CYP1A2 enzymatic activity.Transfected cell lines contained equal amounts of immunoreactive CYP1A2.Our results support the molecular model's prediction of the critical amino acid residues present in the hydrophobic active site, residues that can hydrogen bond with CYP1A2 inhibitors and modify substrate binding and/or turnover. PMID:12023936

  9. Quantitative Assessment of the Influence of Cytochrome P450 1A2 Gene Polymorphism and Colorectal Cancer Risk

    PubMed Central

    Rewuti, Abudouaini; Ma, Yu-Shui; Wang, Xiao-Feng; Xia, Qing; Fu, Da; Han, Yu-Song

    2013-01-01

    Cytochrome P450 1A2 (CYP1A2) encodes a member of the cytochrome P450 superfamily of enzymes, which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of colorectal cancer (CRC). The CYP1A2*C (rs2069514) and CYP1A2*F (rs762551) polymorphism are two of the most commonly studied polymorphisms of the gene for their association with risk of CRC, but the results are conflicting. To derive a more precise estimation of the relationship between CYP1A2 and genetic risk of CRC, we performed a comprehensive meta-analysis which included 7088 cases and 7568 controls from 12 published case-control studies. In a combined analysis, the summary per-allele odds ratio for CRC was 0.91 (95% CI: 0.83–1.00, P = 0.04), and 0.91 (95% CI: 0.68–1.22, P = 0.53), for CYP1A2 *F and *C allele, respectively. In the subgroup analysis by ethnicity, significant associations were found in Asians for CYP1A2*F and CYP1A2*C, while no significant associations were detected among Caucasian populations. Similar results were also observed using dominant genetic model. Potential sources of heterogeneity were explored by subgroup analysis and meta-regression. No significant heterogeneity was detected in most of comparisons. This meta-analysis suggests that the CYP1A2 *F and *C polymorphism is a protective factor against CRC among Asians. PMID:23951174

  10. Translation Elongation Factor eEF1A2 is a Novel Anticancer Target for the Marine Natural Product Plitidepsin

    PubMed Central

    Losada, Alejandro; Muñoz-Alonso, María José; García, Carolina; Sánchez-Murcia, Pedro A.; Martínez-Leal, Juan Fernando; Domínguez, Juan Manuel; Lillo, M. Pilar; Gago, Federico; Galmarini, Carlos M.

    2016-01-01

    eEF1A2 is one of the isoforms of the alpha subunit of the eukaryotic Elongation Factor 1. It is overexpressed in human tumors and is endowed with oncogenic properties, favoring tumor cell proliferation while inhibiting apoptosis. We demonstrate that plitidepsin, an antitumor agent of marine origin that has successfully completed a phase-III clinical trial for multiple myeloma, exerts its antitumor activity by targeting eEF1A2. The drug interacts with eEF1A2 with a KD of 80 nM and a target residence time of circa 9 min. This protein was also identified as capable of binding [14C]-plitidepsin in a cell lysate from K-562 tumor cells. A molecular modelling approach was used to identify a favorable binding site for plitidepsin at the interface between domains 1 and 2 of eEF1A2 in the GTP conformation. Three tumor cell lines selected for at least 100-fold more resistance to plitidepsin than their respective parental cells showed reduced levels of eEF1A2 protein. Ectopic expression of eEF1A2 in resistant cells restored the sensitivity to plitidepsin. FLIM-phasor FRET experiments demonstrated that plitidepsin localizes in tumor cells sufficiently close to eEF1A2 as to suggest the formation of drug-protein complexes in living cells. Altogether, our results strongly suggest that eEF1A2 is the primary target of plitidepsin. PMID:27713531

  11. The Impact of CYP1A2 and CYP2E1 Genes Polymorphism on Theophylline Response.

    PubMed

    Sutrisna, Em

    2016-11-01

    Theophylline is a medicine with narrow therapeutic index. This implies that a small change in dosage would cause side effects. Theophylline is metabolized by CYP1A2 and CYP2E1. The aim of this review is to know the impact of CYP1A2 and CYP2E1 genes polymorphism on theophylline response. The review was done by searching literature in Pubmed and Science Direct databases with keywords 'polymorphism', 'pharmacogenetic', 'CYP1A2', 'CYP2E1' and 'theophylline'. There were 5 research articles from Pubmed and 65 articles (21 research articles, 23 review articles and 21 book chapters) from Science Direct. The exclusion criteria were - articles discussing about polymorphism but not CYP1A2 or CYP2E1, the ones with a mention of theophylline but not about its metabolism, articles on CYP1A2 and/or 2E1 polymorphism but not on the effect on theophylline. Thus, 33 articles were reviewed due to their suitability. The review discusses the influence of polymorphism of CYP1A2 and CYP2E1 genes on theophylline response.

  12. Influence of environmental and genetic factors on CYP1A2 activity in individuals of South Asian and European ancestry.

    PubMed

    Perera, V; Gross, A S; McLachlan, A J

    2012-10-01

    The drug-metabolizing enzyme CYP1A2 contributes to the metabolism of a number of commonly used medicines and displays wide interindividual variability. The aim of this study was to investigate CYP1A2 activity in a population of South Asian ancestry and compare it with a population of European ancestry. CYP1A2 activity was determined using the 4 h paraxanthine/caffeine saliva concentration ratio following a 100-mg oral dose of caffeine in healthy individuals of South Asian (n = 166) and European (n = 166) ancestry. Participants were surveyed for extrinsic ethnic factors and genotyped for polymorphisms in CYP1A2 and related genes. Significantly lower CYP1A2 activity was observed in South Asian participants (median: 0.42; range: 0.10-1.06) as compared with European participants (0.54; 0.12-1.64) (P < 0.01). Multiple linear regression indicated that 41% of the variability in CYP1A2 activity could be explained by the diet, lifestyle, and genetic factors studied.

  13. Crystal structures of SULT1A2 and SULT1A1 *3: insights into the substrate inhibition and the role of Tyr149 in SULT1A2.

    PubMed

    Lu, Jinghua; Li, Haitao; Zhang, Jiping; Li, Mei; Liu, Ming-Yih; An, Xiaomin; Liu, Ming-Cheh; Chang, Wenrui

    2010-05-28

    The cytosolic sulfotransferases (SULTs) in vertebrates catalyze the sulfonation of endogenous thyroid/steroid hormones and catecholamine neurotransmitters, as well as a variety of xenobiotics, using 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as the sulfonate donor. In this study, we determined the structures of SULT1A2 and an allozyme of SULT1A1, SULT1A1 *3, bound with 3'-phosphoadenosine 5'-phosphate (PAP), at 2.4 and 2.3A resolution, respectively. The conformational differences between the two structures revealed a plastic substrate-binding pocket with two channels and a switch-like substrate selectivity residue Phe247, providing clearly a structural basis for the substrate inhibition. In SULT1A2, Tyr149 extends approximately 2.1A further to the inside of the substrate-binding pocket, compared with the corresponding His149 residue in SULT1A1 *3. Site-directed mutagenesis study showed that, compared with the wild-type SULT1A2, mutant Tyr149Phe SULT1A2 exhibited a 40 times higher K(m) and two times lower V(max) with p-nitrophenol as substrate. These latter data imply a significant role of Tyr149 in the catalytic mechanism of SULT1A2.

  14. Interaction of Angeli's salt with cytochrome P450 1A2 distal mutants: an optical absorption spectral study.

    PubMed

    Shibata, Y; Sato, H; Sagami, I; Shimizu, T

    1997-11-14

    Angeli's salt, Na2N2O3 or O-N=N+-(OH)(O-) in aqueous solution, is known to release NO- or NO., which relaxes vascular tissue and lowers blood pressure. In the liver, the most abundant heme enzyme is cytochrome P450. In the present study, we studied the effect of rat liver cytochrome P450 1A2 (P450 1A2) in regard to its catalysis of the N=N bond scission of Angeli's salt with optical absorption spectra. Also, we examined the contribution of putative distal amino acids of P450 1A2 to the reaction with the salt. We found that wild-type Fe3+ P450 1A2 markedly enhances the N=N scission of the salt up to 100 fold in terms of absorption spectroscopy. A Fe3+ P450 1A2-NO complex with an absorption peak at 435 nm was formed when the salt was added and the complex was then changed to a 6-coordinated Fe2+-NO complex having a 440-nm peak. Glu318Asp, Glu318Ala and Thr319Ala mutants at the putative distal site of P450 1A2 formed a 5-coordinated Fe2+-NO complex having a 400-nm absorption, that was not formed with the wild type. The Glu318Ala mutant, in particular, did not form the Fe3+-NO complex with the addition of Angeli's salt. The presence of L-Cys, reduced glutathione, catalase or superoxide dismutase markedly stabilized the Fe3+ wild type-NO complex. Thus, our data suggests that the N=N bond of Angeli's salt is cleaved with the P450 1A2 active site and NO- or NO. is released. We discuss mechanisms of redox and ligand changes of the P450 heme.

  15. Predictive three-dimensional quantitative structure-activity relationship of cytochrome P450 1A2 inhibitors.

    PubMed

    Korhonen, Laura E; Rahnasto, Minna; Mähönen, Niina J; Wittekindt, Carsten; Poso, Antti; Juvonen, Risto O; Raunio, Hannu

    2005-06-02

    The purpose of this study was to determine the cytochrome P450 1A2 (CYP1A2) inhibition potencies of structurally diverse compounds to create a comprehensive three-dimensional quantitative structure-activity relationship (3D-QSAR) model of CYP1A2 inhibitors and to use this model to predict the inhibition potencies of an external set of compounds. Fifty-two compounds including naphthalene, lactone and quinoline derivatives were assayed in a 96-well plate format for CYP1A2 inhibition activity using 7-ethoxyresorufin O-dealkylation as the probe reaction. The IC50 values of the tested compounds varied from 2.3 microM to over 40,000 microM. On the basis of this data set, a comparative molecular field analysis (CoMFA) and GRID/GOLPE models were created that yielded novel structural information about the interaction between inhibitory molecules and the CYP1A2 active site. The created CoMFA model was able to accurately predict inhibitory potencies of several structurally unrelated compounds, including selective inhibitors of other cytochrome P450 forms.

  16. Enzymatic characterization of in vitro-expressed Baikal seal cytochrome P450 (CYP) 1A1, 1A2, and 1B1: implication of low metabolic potential of CYP1A2 uniquely evolved in aquatic mammals.

    PubMed

    Iwata, Hisato; Yamaguchi, Keisuke; Takeshita, Yoko; Kubota, Akira; Hirakawa, Shusaku; Isobe, Tomohiko; Hirano, Masashi; Kim, Eun-Young

    2015-05-01

    This study aimed to elucidate the catalytic function of cytochrome P450 (CYP) 1 enzymes in aquatic mammals. Alkoxyresorufin O-dealkylation (AROD) activities including methoxy- (MROD), ethoxy- (EROD), pentoxy- (PROD), and benzyloxyresorufin O-dealkylation (BROD), and 2- and 4-hydroxylation activities of 17β-estradiol (E2) were measured by using yeast-expressed Baikal seal (Pusa sibirica) CYP1A1, 1A2, and 1B1 proteins. Heterologous protein expression of the Baikal seal CYP1s (bsCYP1s) in yeast microsomes was confirmed by reduced CO-difference spectra and immunoblotting. Heterologously expressed human CYP1 enzyme (hCYP1) activities were simultaneously measured and compared with those of bsCYP1 isozymes. Recombinant bsCYP1A1 protein showed the highest Vmax of EROD, followed by MROD, PROD, and BROD, similar to that of hCYP1A1. Vmax/Km ratios of all AROD activities catalyzed by bsCYP1A1 were lower than those catalyzed by hCYP1A1, suggesting less potential for AROD by bsCYP1A1. Enzymatic assays for bsCYP1A2 showed no or minimal AROD activities, while hCYP1A2 displayed MROD and EROD activities. bsCYP1B1 showed an AROD profile (EROD>BROD>MROD>PROD) similar to that of hCYP1B1; however, Vmax/Km ratios of all AROD activities by bsCYP1B1 were higher. Yeast microsomes containing bsCYP1A1 and 1B1 and hCYP1A1, 1A2, and 1B1 metabolized E2 to 2-OHE2 and 4-OHE2, whereas bsCYP1A2 showed no such activity. Comparison of 4- and 2-hydroxylations of E2 by CYP1As suggests that bsCYP1A1, hCYP1A1, and 1A2 preferentially catalyze 2- rather than 4-hydroxylation. As for CYP1B1, the Vmax/Km ratios suggest that both Baikal seal and human CYPs catalyze 4- rather than 2-hydroxylation. Interspecies comparison showed that bsCYP1B1 has higher metabolic potencies for both E2 hydroxylations than does hCYP1B1, whereas the activity of bsCYP1A1 was lower than that of hCYP1A1. Messenger RNA expression levels of bsCYP1s in the liver of Baikal seals indicated that bsCYP1A1 and 1A2 enzymes contributed to 16

  17. Identification of inhibitory component in cinnamon--O-methoxycinnamaldehyde inhibits CYP1A2 and CYP2E1-.

    PubMed

    Hasegawa, Atsushi; Yoshino, Masaki; Nakamura, Hiroyoshi; Ishii, Itsuko; Watanabe, Toshiko; Kiuchi, Masahiro; Ishikawa, Tsutomu; Ohmori, Shigeru; Kitada, Mitsukazu

    2002-01-01

    The Cinnamomi Cortex and Ephedra Herba were found to more strongly inhibit aminopyrine N-demethylation in rat liver microsomes compared to other constituents included in Sho-seiryu-to. The component inhibiting drug oxidations catalyzed by CYP1A2 and CYP2E1 was isolated from Cinnamomi Cortex, and was identified as o-methoxycinnamaldehyde (OMCA). When phenacetin and 4-nitrophenol were used as probe substrates for CYP1A2 and CYP2E1, respectively, the OMCA was shown to be a competitive inhibitor against CYP1A2 while it was a mixed type inhibitor against CYP2E1. The inhibitory effect of OMCA on 4-nitrophenol 2-hydroxylation (K(i)=6.3 microM) was somewhat potent compared to that observed on phenacetin O-deethylation (K(i)=13.7 microM) in rat liver microsomes.

  18. Association between CYP1A2 and CYP1B1 Polymorphisms and Colorectal Cancer Risk: A Meta-Analysis

    PubMed Central

    Liu, Zhi-Zhong; Xie, Jian-Jun; Wang, Wei; Du, Ya-Ping; Chen, Yu; Si, Hui-Qiang; Liu, Qing; Wu, Li-Xia; Wei, Wu

    2014-01-01

    Background The previous published data on the association between CYP1A2*F (rs762551), CYP1B1 Leu432Val (rs1056836), Asn453Ser (rs180040), and Arg48Gly (rs10012) polymorphisms and colorectal cancer risk remained controversial. Methodology/Principal Findings The purpose of this study is to evaluate the role of CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly genotypes in colorectal cancer susceptibility. We performed a meta-analysis on all the eligible studies that provided 5,817 cases and 6,544 controls for CYP1A2*F (from 13 studies), 9219 cases and 10406 controls for CYP1B1 Leu432Val (from 12 studies), 6840 cases and 7761 controls for CYP1B1 Asn453Ser (from 8 studies), and 4302 cases and 4791 controls for CYP1B1Arg48Gly (from 6 studies). Overall, no significant association was found between CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly and colorectal cancer risk when all the eligible studies were pooled into the meta-analysis. And in the subgroup by ethnicity and source of controls, no evidence of significant association was observed in any subgroup analysis. Conclusions/Significance In summary, this meta-analysis indicates that CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly polymorphisms do not support an association with colorectal cancer, and further studies are needed to investigate the association. In addition, our work also points out the importance of new studies for CYP1A2*F polymorphism in Asians, because high heterogeneity was found (dominant model: I2 = 81.3%; heterozygote model: I2 = 79.0). PMID:25115775

  19. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    PubMed

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-01-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.

  20. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  1. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  2. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  3. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  4. 47 CFR 80.1093 - Ship radio equipment-Sea areas A1, A2, A3, and A4.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship radio equipment-Sea areas A1, A2, A3, and... AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment Requirements for Ship Stations § 80.1093 Ship radio equipment—Sea areas A1,...

  5. Suppression of Hepatic Cyp1a2 by Total Ginsenosides in Lipopolysaccharide-Treated Mice and Primary Mouse Hepatocytes.

    PubMed

    Sun, Haiyan; Yan, Yijing; Xu, Chenshu; Wan, Hongxia; Liu, Dong

    2016-03-23

    The roots of Panax ginseng (ginseng) have been extensively used in traditional Chinese medicine. However, herb-drug interactions between ginseng and other co-administered drugs are not fully understood concerning the effect of ginseng on drug metabolism and clearance. The current study aimed to elucidate the effect of total ginsenosides, a typical ginseng extract, on the regulation of Cyp1a2, a key enzyme to regulate drug metabolism under the normal and inflammatory conditions in mice. Female C57BL/6J mice treated with vehicle and lipopolysaccharide (LPS) were intragastrically administered ginseng extract for 7 days before hepatic P450 expression was analyzed. Primary mouse hepatocytes were also employed to further explore the effects of total ginsenosides on Cyp1a2 expression. The results showed that total ginsenosides in P. ginseng extract exhibited a concentration-dependent suppression on Cyp1a2 mRNA and protein level in both mice and primary mouse hepatocytes. Notably, the inhibitory effects of total ginsenosides on Cyp1a2 mRNA and protein expression were further enhanced following LPS treatment. Therefore, future research is warranted to investigate the role of ginsenosides in the regulation of hepatic CYP450s. Moreover, consumption of ginseng as food or supplement should be monitored for patients on combinational therapy, especially those with inflammatory diseases.

  6. Screening of CACNA1A and ATP1A2 genes in hemiplegic migraine: clinical, genetic, and functional studies

    PubMed Central

    Carreño, Oriel; Corominas, Roser; Serra, Selma Angèlica; Sintas, Cèlia; Fernández-Castillo, Noèlia; Vila-Pueyo, Marta; Toma, Claudio; Gené, Gemma G; Pons, Roser; Llaneza, Miguel; Sobrido, María-Jesús; Grinberg, Daniel; Valverde, Miguel Ángel; Fernández-Fernández, José Manuel; Macaya, Alfons; Cormand, Bru

    2013-01-01

    Hemiplegic migraine (HM) is a rare and severe subtype of autosomal dominant migraine, characterized by a complex aura including some degree of motor weakness. Mutations in four genes (CACNA1A, ATP1A2, SCN1A and PRRT2) have been detected in familial and in sporadic cases. This genetically and clinically heterogeneous disorder is often accompanied by permanent ataxia, epileptic seizures, mental retardation, and chronic progressive cerebellar atrophy. Here we report a mutation screening in the CACNA1A and ATP1A2 genes in 18 patients with HM. Furthermore, intragenic copy number variant (CNV) analysis was performed in CACNA1A using quantitative approaches. We identified four previously described missense CACNA1A mutations (p.Ser218Leu, p.Thr501Met, p.Arg583Gln, and p.Thr666Met) and two missense changes in the ATP1A2 gene, the previously described p.Ala606Thr and the novel variant p.Glu825Lys. No structural variants were found. This genetic screening allowed the identification of more than 30% of the disease alleles, all present in a heterozygous state. Functional consequences of the CACNA1A-p.Thr501Met mutation, previously described only in association with episodic ataxia, and ATP1A2-p.Glu825Lys, were investigated by means of electrophysiological studies, cell viability assays or Western blot analysis. Our data suggest that both these variants are disease-causing. PMID:24498617

  7. The Application of Molecular Modeling for Prediction of Substrate Specificity in Cytochrome P450 1A2 Mutants

    PubMed Central

    Tu, Youbin; Deshmukh, Rahul; Sivaneri, Meena; Szklarz, Grazyna D.

    2008-01-01

    Molecular dynamics (MD) simulations of 7-ethoxy and 7-methoxyresorufin bound in the active site of P450 1A2 wild type and various mutants were used to predict changes in substrate specificity of the mutants. A total of 26 multiple mutants representing all possible combinations of five key amino acid residues which are different between P450 1A1 and 1A2, were examined. The resorufin substrates were docked in the active site of each enzyme in the productive binding orientation and MD simulations were performed on the ES complex. Ensembles collected from MD trajectories were then scored based on geometric parameters relating substrate position with respect to the activated oxoheme cofactor. The results showed a high correlation between the previous experimental data on P450 1A2 wild type and single mutants with respect to the ratio between 7-ethoxyresorufin-O-deethylase (EROD) and 7-methoxyresorufin-O-demethylase (MROD) activities, and the equivalent in silico E/M scores. Moreover, this correlation served to establish linear regression models utilized to evaluate E/M scores of multiple P450 1A2 mutants. Seven mutants, all of them incorporating the L382V substitution, were predicted to shift specificity to that of P450 1A1. The predictions were then verified experimentally. The appropriate P450 1A2 multiple mutants were constructed by site-directed mutagenesis, expressed in E. coli, and assayed for EROD and MROD activities. Out of six mutants, five demonstrated increased EROD/MROD ratio confirming modeling predictions. PMID:18703643

  8. Association of rare variation in the glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder and schizophrenia.

    PubMed

    Fiorentino, Alessia; Sharp, Sally I; McQuillin, Andrew

    2015-09-01

    The SLC1A2 gene encodes the excitatory amino acid transporter 2 (EAAT2). Glutamate is the major mediator of excitatory neurotransmission and EAAT2 is responsible for clearing the neurotransmitter from the synaptic cleft. Genetic variation in SLC1A2 has been implicated in a range of neurological and neuropsychiatric conditions including schizophrenia (SZ), autism and in core phenotypes of bipolar disorder (BD). The coding and putative regulatory regions of SLC1A2 gene were screened for variants using high resolution melting or sequenced in 1099 or in 32 BD subjects. Thirty-two variants were detected in the SLC1A2 gene. Fifteen potentially etiological variants were selected for genotyping in 1099 BD and 1095 control samples. Five amino acid changing variants were also genotyped in 630 participants suffering from SZ. None of the variants were found to be associated with BD or SZ or with the two diseases combined. However, two recurrent missense variants (rs145827578:G>A, p.(G6S); rs199599866:G>A, p.(R31Q)) and one recurrent 5'-untranslated region (UTR) variant (ss825678885:G>T) were detected in cases only. Combined analysis of the recurrent-case-only missense variants and of the case-only missense and 5'-UTR variants showed nominal evidence for association with the combined diseases (Fisher's P=0.019 and 0.0076). These findings are exploratory in nature and await replication in larger cohorts, however, they provide intriguing evidence that potentially functional rare variants in the SLC1A2 gene may confer susceptibility to psychotic disorders.

  9. A LC-MS/MS method for concurrent determination of nicotine metabolites and role of CYP2A6 in nicotine metabolism in U937 macrophages: implications in oxidative stress in HIV + smokers.

    PubMed

    Jin, Mengyao; Earla, Ravinder; Shah, Ankit; Earla, Rajya L; Gupte, Raeesa; Mitra, Ashim K; Kumar, Anil; Kumar, Santosh

    2012-03-01

    Nicotine, the major constituent of tobacco, is predominantly metabolized by liver CYP2A6 into cotinine and many other compounds, including nicotine-derived nitrosamine ketone (NNK), which is known to cause oxidative stress. We have recently shown that CYP2A6 is highly expressed in U937 monocyte-derived macrophages. In this study we investigated the role of CYP2A6 in nicotine metabolism and oxidative stress in U937 macrophages. To study nicotine metabolism, we developed a highly sensitive LC-MS/MS method for simultaneous quantitative determination of nicotine, cotinine, and NNK. The LC-MS/MS analysis was carried out by multiple reaction monitoring mass transitions with m/z of 163.2/130.1, 177.4/98.3, and 208.4/122.1 for nicotine, cotinine, and NNK, respectively. The calibration curves were linear within 3.3-1028.1 ng/ml for nicotine and 0.3-652.6 ng/ml for cotinine and NNK. This novel method was then applied to quantify nicotine metabolites, cotinine and NNK, in nicotine-treated U937 macrophages. Cotinine and NNK initially formed at 30 min, followed by a peak at 2-3 h. The role of CYP2A6 in nicotine metabolism in U937 macrophages was further confirmed by using CYP2A6-selective inhibitor, tryptamine, which significantly decreased cotinine (70%) and completely inhibited NNK formations. Finally, we showed that nicotine-treated macrophages increase the formation of oxidant at 30-60 min, which is consistent with the initial formation of cotinine and NNK. In conclusion, we have developed a new LCMS/MS method for concurrent determination of nicotine metabolites and analyzed the role of CYP2A6 in nicotine metabolism and oxidative stress in U937 macrophages, which may have implications in viral replication among HIV + smokers.

  10. Genomic Landscape of Experimental Bladder Cancer in Rodents and Its Application to Human Bladder Cancer: Gene Amplification and Potential Overexpression of Cyp2a5/CYP2A6 Are Associated with the Invasive Phenotype

    PubMed Central

    Kanemoto, Kazuhiro; Fukuta, Katsuhiro; Kawai, Noriyasu; Tozawa, Keiichi; Ochiai, Masako; Okamoto, Koji; Ohnami, Sumiko; Sakamoto, Hiromi; Yoshida, Teruhiko; Kanai, Yae; Katoh, Masaru; Yasui, Takahiro; Kohri, Kenjiro; Kakizoe, Tadao; Nakagama, Hitoshi

    2016-01-01

    Non-muscle invasive (superficial) bladder cancer is a low-grade malignancy with good prognosis, while muscle invasive (invasive) bladder cancer is a high-grade malignancy with poor prognosis. N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) induces superficial bladder cancers with papillary morphology in rats and invasive bladder cancers with infiltrating phenotype in mice. In this study, we analyzed genomic landscapes of rodent BBN-induced bladder cancers using array-based comparative genomic hybridization (array CGH). While no significant copy number alterations were detected in superficial bladder tumors in rats, copy number gains in chromosomal regions 2D-E1, 7qA3, 9F2, and 11C-D were detected in invasive bladder tumors in mice. Amplification of representative genes located on 2D-E1 and 7qA3 chromosomal regions was confirmed by quantitative PCR. Cyp2a22 and Cyp2a5 genes but not Cyp2g1, Cyp2a12, and Rab4b genes on mouse chromosome 7qA3 were amplified in invasive bladder cancers. Although the human ortholog gene of Cyp2a22 has not been confirmed, the mouse Cyp2a5 gene is the ortholog of the human CYP2A6 gene located in chromosomal region 19q13.2, and CYP2A6 was identified by database search as one of the closest human homolog to mouse Cyp2a22. Considering a possibility that this region may be related to mouse 7qA3, we analyzed CYP2A6 copy number and expression in human bladder cancer using cell lines and resected tumor specimens. Although only one of eight cell lines showed more than one copy increase of the CYP2A6 gene, CYP2A6 amplification was detected in six out of 18 primary bladder tumors where it was associated with the invasive phenotype. Immunohistochemical analyses of 118 primary bladder tumors revealed that CYP2A6 protein expression was also higher in invasive tumors, especially in those of the scattered type. Together, these findings indicate that the amplification and overexpression of the CYP2A6 gene are characteristic of human bladder cancers with

  11. Identification and characterization of reactive metabolites in myristicin-mediated mechanism-based inhibition of CYP1A2.

    PubMed

    Yang, Ai-Hong; He, Xin; Chen, Jun-Xiu; He, Li-Na; Jin, Chun-Huan; Wang, Li-Li; Zhang, Fang-Liang; An, Li-Jun

    2015-07-25

    Myristicin belongs to the methylenedioxyphenyl or allyl-benzene family of compounds, which are found widely in plants of the Umbelliferae family, such as parsley and carrot. Myristicin is also the major active component in the essential oils of mace and nutmeg. However, this compound can cause adverse reactions, particularly when taken inappropriately or in overdoses. One important source of toxicity of natural products arises from their metabolic biotransformations into reactive metabolites. Myristicin contains a methylenedioxyphenyl substructure, and this specific structural feature may allow compounds to cause a mechanism-based inhibition of cytochrome P450 enzymes and produce reactive metabolites. Therefore, the aim of this work was to identify whether the role of myristicin in CYP enzyme inhibition is mechanism-based inhibition and to gain further information regarding the structure of the resulting reactive metabolites. CYP cocktail assays showed that myristicin most significantly inhibits CYP1A2 among five CYP enzymes (CYP1A2, CYP2D6, CYP2E1, CYP3A4 and CYP2C19) from human liver microsomes. The 3.21-fold IC50 shift value of CYP1A2 indicates that myristicin may be a mechanism-based inhibitor of CYP1A2. Next, reduced glutathione was shown to block the inhibition of CYP1A2, indicating that myristicin utilized a mechanism-based inhibition. Phase I metabolism assays identified two metabolites, 5-allyl-1-methoxy-2,3-dihydroxybenzene (M1) and 1'-hydroxymyristicin or 2',3'-epoxy-myristicin (M2). Reduced glutathione capturing assays captured the glutathione-M1 adduct, and the reactive metabolites were identified using UPLC-MS(2) as a quinone and its tautomer. Thus, it was concluded that myristicin is a mechanism-based inhibitor of CYP1A2, and the reactive metabolites are quinone tautomers. Additionally, the cleavage process of the glutathione-M1 adduct was analyzed in further detail. This study provides additional information on the metabolic mechanism of myristicin

  12. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2.

    PubMed

    Reed, James R; dela Cruz, Albert Leo N; Lomnicki, Slawo M; Backes, Wayne L

    2015-12-01

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductase and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2-CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2.

  13. The Functions of the A1A2A3 Domains in Von Willebrand Factor Include Multimerin 1 Binding

    PubMed Central

    Parker, D’Andra N.; Tasneem, Subia; Farndale, Richard W.; Bihan, Dominique; Sadler, J. Evan; Sebastian, Silvie; De Groot, Philip G.

    2016-01-01

    Summary Multimerin 1 (MMRN1) is a massive, homopolymeric protein that is stored in platelets and endothelial cells for activation-induced release. In vitro, MMRN1 binds to the outer surfaces of activated platelets and endothelial cells, the extracellular matrix (including collagen) and von Willebrand factor (VWF) to support platelet adhesive functions. VWF associates with MMRN1 at high shear, not static conditions, suggesting that shear exposes cryptic sites within VWF that support MMRN1 binding. Modified ELISA and surface plasmon resonance were used to study the structural features of VWF that support MMRN1 binding, and determine the affinities for VWF-MMRN1 binding. High shear microfluidic platelet adhesion assays determined the functional consequences for VWF-MMRN1 binding. VWF binding to MMRN1 was enhanced by shear exposure and ristocetin, and required VWF A1A2A3 region, specifically the A1 and A3 domains. VWF A1A2A3 bound to MMRN1 with a physiologically relevant binding affinity (KD: 2.0 ± 0.4 nM), whereas the individual VWF A1 (KD: 39.3 ± 7.7 nM) and A3 domains (KD: 229 ± 114 nM) bound to MMRN1 with lower affinities. VWF A1A2A3 was also sufficient to support the adhesion of resting platelets to MMRN1 at high shear, by a mechanism dependent on VWF-GPIbα binding. Our study provides new information on the molecular basis of MMRN1 binding to VWF, and its role in supporting platelet adhesion at high shear. We propose that at sites of vessel injury, MMRN1 that is released following activation of platelets and endothelial cells, binds to VWF A1A2A3 region to support platelet adhesion at arterial shear rates. PMID:27052467

  14. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury

    PubMed Central

    Gazoni, Leo M.; Walters, Dustin M.; Unger, Eric B.; Linden, Joel; Kron, Irving L.; Laubach, Victor E.

    2010-01-01

    Objective Adenosine and the activation of specific adenosine receptors are implicated in the attenuation of inflammation and organ ischemia-reperfusion (IR) injury. We hypothesized that activation of A1, A2A, or A3 adenosine receptors would provide protection against lung IR injury. Methods Using an isolated, ventilated, blood-perfused rabbit lung model, lungs underwent 18 hours cold ischemia followed by 2 hours reperfusion. Lungs were administered either vehicle, adenosine, or selective A1, A2A, or A3 receptor agonists (CCPA, ATL-313, or IB-MECA, respectively) alone or with their respective antagonists (DPCPX, ZM241385, or MRS1191) during reperfusion. Results Compared to the vehicle-treated control group, treatment with A1, A2A, or A3 agonists significantly improved function (increased lung compliance and oxygenation and decreased pulmonary artery pressure), decreased neutrophil infiltration by myeloperoxidase activity, decreased edema, and reduced TNF-α production. Adenosine treatment was also protective but not to the level of the agonists. When each agonist was paired with its respective antagonist, all protective effects were blocked. The A2A agonist reduced pulmonary artery pressure and myeloperoxidase activity and increased oxygenation to a greater degree than the A1 or A3 agonists. Conclusions Selective activation of A1, A2A, or A3 adenosine receptors provides significant protection against lung IR injury. The decreased elaboration of the potent proinflammatory cytokine, TNF-α, and decreased neutrophil sequestration likely contribute to the overall improvement in pulmonary function. These results provide evidence for the therapeutic potential of specific adenosine receptor agonists in lung transplant recipients. PMID:20398911

  15. Genetic polymorphisms in promoter and intronic regions of CYP1A2 gene in Roma and Hungarian population samples.

    PubMed

    Szalai, Renata; Magyari, Lili; Matyas, Petra; Duga, Balazs; Banfai, Zsolt; Szabo, Andras; Kovesdi, Erzsebet; Melegh, Bela

    2014-11-01

    The purpose of this study was to determine the interethnic differences of four CYP1A2 drug metabolizing enzyme variants. A total of 404 Roma and 396 Hungarian healthy subjects were genotyped for -163C>A, -729C>T, -2467delT and -3860G>A variants of CYP1A2 by RT-PCR and PCR-RFLP technique. The -3860A and -729T allele were not detectable in Roma samples, while in Hungarian samples were present with 2.02% and 0.25% prevalence, respectively. There was a 1.5-fold difference in presence of homozygous -163AA genotype between Hungarian and Roma samples (49.5% vs. 31.9%, p<0.001). The -163A allele frequency was 68.6% in Hungarians and 56.9% in Romas (p=0.025). The -2467delT allele frequency was 6.81% in Roma group and 5.81% in Hungarians. The most frequent allelic constellation was -3860G/-2467T/-729C/-163A in both populations. In conclusion, Hungarians have markedly elevated chance for rapid metabolism of CYP1A2 substrates, intensified procarcinogen activation and increased risk for cancers.

  16. Omeprazole does not enhance the metabolism of phenacetin, a marker of CYP1A2 activity, in healthy volunteers.

    PubMed

    Xiaodong, S; Gatti, G; Bartoli, A; Cipolla, G; Crema, F; Perucca, E

    1994-06-01

    Omeprazole has been reported to increase cytochrome P450IA2 (CYP1A2) activity in vitro, but whether this effect also occurs in vivo is controversial. To clarify this issue, the effect of omeprazole (20 mg/day for 8 days) on the kinetics and metabolism of phenacetin, an in vivo marker of CYP1A2 activity, was examined in 10 healthy volunteers. The pharmacokinetic parameters of phenacetin and metabolically derived paracetamol on the 8th day of omeprazole administration were very similar to those observed in a control session in the absence of omeprazole administration, the only significant difference being a higher peak plasma phenacetin concentration during omeprazole treatment. It is concluded that at the dosage used omeprazole does not increase the rate of oxidative and conjugative reactions involved in the metabolism of phenacetin and paracetamol respectively. These data are consistent with the hypothesis that omeprazole is generally devoid of inducing effects on CYP1A2 activity in vivo, at least in a Caucasian population with a low prevalence of the omeprazole-mephenytoin poor metabolizer phenotype.

  17. Materials Data on Gd(Co2B)6 (SG:166) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on K2B6H5NO2 (SG:63) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-04

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on Sr(Ni2B)6 (SG:166) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Ba(Ni2B)6 (SG:166) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. CYP1A2 Genotype Variations Do Not Modify the Benefits and Drawbacks of Caffeine during Exercise: A Pilot Study

    PubMed Central

    Salinero, Juan J.; Lara, Beatriz; Ruiz-Vicente, Diana; Areces, Francisco; Puente-Torres, Carlos; Gallo-Salazar, César; Pascual, Teodoro; Del Coso, Juan

    2017-01-01

    Previous investigations have determined that some individuals have minimal or even ergolytic performance effects after caffeine ingestion. The aim of this study was to analyze the influence of the genetic variations of the CYP1A2 gene on the performance enhancement effects of ingesting a moderate dose of caffeine. In a double-blind randomized experimental design, 21 healthy active participants (29.3 ± 7.7 years) ingested 3 mg of caffeine per kg of body mass or a placebo in testing sessions separated by one week. Performance in the 30 s Wingate test, visual attention, and side effects were evaluated. DNA was obtained from whole blood samples and the CYP1A2 polymorphism was analyzed (rs762551). We obtained two groups: AA homozygotes (n = 5) and C-allele carriers (n = 16). Caffeine ingestion increased peak power (682 ± 140 vs. 667 ± 137 W; p = 0.008) and mean power during the Wingate test (527 ± 111 vs. 518 ± 111 W; p < 0.001) with no differences between AA homozygotes and C-allele carriers (p > 0.05). Reaction times were similar between caffeine and placebo conditions (276 ± 31 vs. 269 ± 71 milliseconds; p = 0.681) with no differences between AA homozygotes and C-allele carriers. However, 31.3% of the C-allele carriers reported increased nervousness after caffeine ingestion, while none of the AA homozygotes perceived this side effect. Genetic variations of the CYP1A2 polymorphism did not affect the ergogenic effects and drawbacks derived from the ingestion of a moderate dose of caffeine. PMID:28287486

  2. ATP1A2 Mutations in Migraine: Seeing through the Facets of an Ion Pump onto the Neurobiology of Disease

    PubMed Central

    Friedrich, Thomas; Tavraz, Neslihan N.; Junghans, Cornelia

    2016-01-01

    Mutations in four genes have been identified in familial hemiplegic migraine (FHM), from which CACNA1A (FHM type 1) and SCN1A (FHM type 3) code for neuronal voltage-gated calcium or sodium channels, respectively, while ATP1A2 (FHM type 2) encodes the α2 isoform of the Na+,K+-ATPase's catalytic subunit, thus classifying FHM primarily as an ion channel/ion transporter pathology. FHM type 4 is attributed to mutations in the PRRT2 gene, which encodes a proline-rich transmembrane protein of as yet unknown function. The Na+,K+-ATPase maintains the physiological gradients for Na+ and K+ ions and is, therefore, critical for the activity of ion channels and transporters involved neuronal excitability, neurotransmitter uptake or Ca2+ signaling. Strikingly diverse functional abnormalities have been identified for disease-linked ATP1A2 mutations which frequently lead to changes in the enzyme's voltage-dependent properties, kinetics, or apparent cation affinities, but some mutations are truly deleterious for enzyme function and thus cause full haploinsufficiency. Here, we summarize structural and functional data about the Na+,K+-ATPase available to date and an overview is provided about the particular properties of the α2 isoform that explain its physiological relevance in electrically excitable tissues. In addition, current concepts about the neurobiology of migraine, the correlations between primary brain dysfunction and mechanisms of headache pain generation are described, together with insights gained recently from modeling approaches in computational neuroscience. Then, a survey is given about ATP1A2 mutations implicated in migraine cases as documented in the literature with focus on mutations that were described to completely destroy enzyme function, or lead to misfolded or mistargeted protein in particular model cell lines. We also discuss whether or not there are correlations between these most severe mutational effects and clinical phenotypes. Finally, perspectives

  3. Adaptations for the Oxidation of Polycyclic Aromatic Hydrocarbons Exhibited By the Structure of Human 450 1a2

    SciTech Connect

    Sansen, S.; Yano, J.K.; Reynald, R.L.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F.

    2007-07-12

    Microsomal cytochrome P450 family 1 enzymes play prominent roles in xenobiotic detoxication and procarcinogen activation. P450 1A2 is the principal cytochrome P450 family 1 enzyme expressed in human liver and participates extensively in drug oxidations. This enzyme is also of great importance in the bioactivation of mutagens, including the N-hydroxylation of arylamines. P450-catalyzed reactions involve a wide range of substrates, and this versatility is reflected in a structural diversity evident in the active sites of available P450 structures. Here, we present the structure of human P450 1A2 in complex with the inhibitor alpha-naphthoflavone, determined to a resolution of 1.95 A. alpha-Naphthoflavone is bound in the active site above the distal surface of the heme prosthetic group. The structure reveals a compact, closed active site cavity that is highly adapted for the positioning and oxidation of relatively large, planar substrates. This unique topology is clearly distinct from known active site architectures of P450 family 2 and 3 enzymes and demonstrates how P450 family 1 enzymes have evolved to catalyze efficiently polycyclic aromatic hydrocarbon oxidation. This report provides the first structure of a microsomal P450 from family 1 and offers a template to study further structure-function relationships of alternative substrates and other cytochrome P450 family 1 members.

  4. Metabolism of methyl tert-butyl ether and other gasoline ethers by human liver microsomes and heterologously expressed human cytochromes P450: identification of CYP2A6 as a major catalyst.

    PubMed

    Hong, J Y; Wang, Y Y; Bondoc, F Y; Lee, M; Yang, C S; Hu, W Y; Pan, J

    1999-10-01

    To reduce the production of carbon monoxide and other pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Previously, we demonstrated that human liver is active in metabolizing MTBE to tert-butyl alcohol (TBA) and that cytochrome P450 (CYP) enzymes play a critical role in the metabolism of MTBE. The present study demonstrates that human liver is also active in the oxidative metabolism of ETBE and TAME. A large interindividual variation in metabolizing these gasoline ethers was observed in 15 human liver microsomal samples. The microsomal activities in metabolizing MTBE, ETBE, and TAME were highly correlated among each other (r, 0.91-0. 96), suggesting that these ethers are metabolized by the same enzyme(s). Correlation analysis of the ether-metabolizing activities with individual CYP enzyme activities in the liver microsomes showed that the highest degree of correlation was with human CYP2A6 (r, 0. 90-0.95), which is constitutively expressed in human livers and known to be polymorphic. CYP2A6 displayed the highest turnover number in metabolizing gasoline ethers among a battery of human CYP enzymes expressed in human B-lymphoblastoid cells. Kinetic studies on MTBE metabolism with three human liver microsomes exhibited apparent Km values that ranged from 28 to 89 microM and the V(max) values from 215 to 783 pmol/min/mg, with similar catalytic efficiency values (7.7 to 8.8 microl/min/mg protein). Metabolism of MTBE, ETBE, and TAME by human liver microsomes was inhibited by coumarin, a known substrate of human CYP2A6, in a concentration-dependent manner. Monoclonal antibody against human CYP2A6 caused a significant inhibition (75% to 95%) of the metabolism of MTBE, ETBE, and TAME in human liver microsomes. Taken together, these results clearly indicate that in human liver, CYP2A6 is the major enzyme responsible for the

  5. Activation of Presynaptic GABAB(1a,2) Receptors Inhibits Synaptic Transmission at Mammalian Inhibitory Cholinergic Olivocochlear–Hair Cell Synapses

    PubMed Central

    Wedemeyer, Carolina; Zorrilla de San Martín, Javier; Ballestero, Jimena; Gómez-Casati, María Eugenia; Torbidoni, Ana Vanesa; Fuchs, Paul A.; Bettler, Bernhard; Elgoyhen, Ana Belén

    2013-01-01

    The synapse between olivocochlear (OC) neurons and cochlear mechanosensory hair cells is cholinergic, fast, and inhibitory. The inhibitory sign of this cholinergic synapse is accounted for by the activation of Ca2+-permeable postsynaptic α9α10 nicotinic receptors coupled to the opening of hyperpolarizing Ca2+-activated small-conductance type 2 (SK2)K+ channels. Acetylcholine (ACh) release at this synapse is supported by both P/Q- and N-type voltage-gated calcium channels (VGCCs). Although the OC synapse is cholinergic, an abundant OC GABA innervation is present along the mammalian cochlea. The role of this neurotransmitter at the OC efferent innervation, however, is for the most part unknown. We show that GABA fails to evoke fast postsynaptic inhibitory currents in apical developing inner and outer hair cells. However, electrical stimulation of OC efferent fibers activates presynaptic GABAB(1a,2) receptors [GABAB(1a,2)Rs] that downregulate the amount of ACh released at the OC–hair cell synapse, by inhibiting P/Q-type VGCCs. We confirmed the expression of GABABRs at OC terminals contacting the hair cells by coimmunostaining for GFP and synaptophysin in transgenic mice expressing GABAB1–GFP fusion proteins. Moreover, coimmunostaining with antibodies against the GABA synthetic enzyme glutamic acid decarboxylase and synaptophysin support the idea that GABA is directly synthesized at OC terminals contacting the hair cells during development. Thus, we demonstrate for the first time a physiological role for GABA in cochlear synaptic function. In addition, our data suggest that the GABAB1a isoform selectively inhibits release at efferent cholinergic synapses. PMID:24068816

  6. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation

    PubMed Central

    Capoferri, Luigi; Verkade-Vreeker, Marlies C. A.; Buitenhuis, Danny; Commandeur, Jan N. M.; Pastor, Manuel; Vermeulen, Nico P. E.; Geerke, Daan P.

    2015-01-01

    Prediction of human Cytochrome P450 (CYP) binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD) simulations and Linear Interaction Energy (LIE) theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE) of 4.1 kJ mol-1 and a standard error in prediction (SDEP) in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units). PMID:26551865

  7. A pharmacometric approach to investigate the impact of methylxanthine abstinence and caffeine consumption on CYP1A2 activity.

    PubMed

    Perera, Vidya; Gross, Annette S; Forrest, Alan; Landersdorfer, Cornelia B; Xu, Hongmei; Ait-Oudhia, Sihem; McLachlan, Andrew J

    2013-11-01

    This study aimed to investigate the impact of methylxanthine abstinence (MA) periods on CYP1A2 activity in individuals with varying levels of caffeine consumption through development of a population pharmacokinetic model of caffeine and its major metabolite paraxanthine. This study developed and evaluated a mixed-effects pharmacokinetic model for caffeine and paraxanthine concentration-time data derived from a sequential single-dose cross-over study in healthy male volunteers (n = 30) who received oral 100 mg caffeine doses. Participants received caffeine with and without a MA period. Participants were classified as low (0-100 mg/d), medium (100-200 mg/d), or high (>200 mg/d) caffeine consumers (LCCs, MCCs, or HCCs, respectively). All caffeine and paraxanthine concentration-time data were simultaneously modeled. Caffeine pharmacokinetics was described by a two-compartment model with first-order absorption and two first-order elimination pathways. Paraxanthine was described by a one-compartment model with first-order absorption and elimination. Among LCCs (n = 16) and MCCs (n = 9), there was no difference in the mean (95% confidence interval) total apparent caffeine clearance (CL) between the MA period [LCCs: 6.88 (5.61-8.16 l/h); MCCs: 10.09 (7.57-12.60 l/h)] versus the no MA period [LCCs: 6.22 (4.97-7.46 l/h); MCCs: 9.68 (7.12-12.24 l/h)]. The mean CL among HCCs (n = 5) was considerably higher in the MA period [10.48 (5.62-15.33 l/h)] compared with the no MA period [6.30 (3.40-9.20 l/h)] (P < 0.05). The decrease in CL in the no MA period among HCC appears to be due to alternative caffeine elimination pathways, rather than CYP1A2.

  8. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas

    SciTech Connect

    Sun, Yu; Wong, Nicholas; Guan, Yinghui; Salamanca, Clara M.; Cheng, Jung Chien; Lee, Jonathan M.; Gray, Joe W.; Auersperg, Nelly

    2008-04-25

    Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.

  9. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism: Mexiletine N-Hydroxylation by Cytochrome P450 1A2.

    PubMed

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik; Harvey, Jeremy N; Mulholland, Adrian J

    2016-06-20

    The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site, but this is not a prerequisite for reaction via either mechanism. Several active site residues play a role in the binding of mexiletine in the active site, including Thr124 and Phe226. This work reveals key details of the N-hydroxylation of mexiletine and further demonstrates that mechanistic studies using QM/MM methods are useful for understanding drug metabolism.

  10. A simple chromatographic method for determining norfloxacin and enoxacin in pharmacokinetic study assessing CYP1A2 inhibition.

    PubMed

    Kobayashi, Toshimi; Homma, Masato; Momo, Kenji; Kobayashi, Daisuke; Kohda, Yukinao

    2011-04-01

    We developed a simple assay method for the determination of serum and urine norfloxacin and enoxacin using reversed-phase high-performance liquid chromatography and perchloric acid precipitation for sample pre-treatment. Optimized conditions can permit detection of norfloxacin and enoxacin in the same chromatogram, so either compound can be used as an internal standard for another determinant. Supernatants of the precipitated samples were analyzed by the octadecylsilyl silica-gel column under ambient temperature and an ultraviolet wavelength of 272  nm. A mobile phase solvent consisting of 20 mm sodium dihydrogenphosphate (pH 3.0) and acetonitrile (85:15, v/v) was pumped at a flow rate of 1.0 mL/min. The calibration curves for norfloxacin and enoxacin at a concentration of 62.5-1000 ng/mL for serum and 250-4000 ng/mL for urine were linear (r > 0.9997). The recoveries of norfloxacin and enoxacin from serum and urine were >94% with the coefficient of variations (CV) <5%. The CVs for intra- and inter-day assay of norfloxacin and enoxacin were <4.2 and <5.5%, respectively. This method can be applied to the pharmacokinetic study of norfloxacin and enoxacin after repeated administration to assess changes in CYP1A2 activity in healthy subjects.

  11. The first Japanese case of the arthrochalasia type of Ehlers-Danlos syndrome with COL1A2 gene mutation.

    PubMed

    Hatamochi, Atsushi; Hamada, Takahiro; Yoshino, Makoto; Hashimoto, Takashi

    2014-03-15

    This is the first report for a Japanese case of arthrochalasia type of Ehlers-Danlos syndrome (EDS). A 46-year-old woman consulted us for joint hypermobility and skin hyperextensibility that had been present soon after birth. There was no family history of a similar disease. She was diagnosed as having bilateral congenital hip dislocation and bilateral habitual shoulder dislocation at her childhood. Her skin was velvety, doughy and hyperextensible. She showed hypermobility of the joints of the hands and feet and generalized joint laxity, with no evidence of scoliosis. Electrophoretic analysis of collagenous proteins revealed the presence of an additional band in the position of pNα2(I) in the sample from culture medium of the patient fibroblasts. Analysis of the α2 chains of type I collagen gene, COL1A2, showed a heterozygous G to T transition at the +1 position of the exon 6 donor splice site (c.279+1G>T). This mutation resulted in skipping of exon 6, which leads to deficient processing of the amino-terminal end of proα2(I) chains of type I collagen. Based on these findings, we made a diagnosis of the arthrochalasia type of EDS, which corresponds to EDS type VIIB in the former classification.

  12. Genetic polymorphism analysis of the drug-metabolizing enzyme CYP1A2 in a Uyghur Chinese population: a pilot study.

    PubMed

    Geng, Tingting; Zhang, Xi Yang; Wang, Li; Wang, Huijuan; Shi, Xugang; Kang, Longli; Hou, Peng; Jin, Tianbo

    2016-01-01

    1. CYP1A2 is a highly polymorphic gene and CYP1A2 enzyme results in broad inter-individual variability in response to certain pharmacotherapies, while little is known about the genetic variation of CYP1A2 in Uyghur Chinese population. The aim of the present study was to screen Uyghur volunteers for CYP1A2 genetic polymorphisms. 2. We used DNA sequencing to investigate promoter, exons, introns, and 3' UTR of the CYP1A2 gene in 96 unrelated healthy Uyghur individuals. We also used SIFT (Sorting Intolerant From Tolerant) and PolyPhen-2 (Polymorphism Phenotyping v2) to predict the protein function of the novel non-synonymous mutation in CYP1A2 coding regions. 3. We identified 20 different CYP1A2 polymorphisms in the Uyghur Chinese population, including two novel variants (119A > G and 2410G > A). Variant 119A > G was predicted to be probably damaging on protein function by PolyPhen-2, by contrast, 2410G > A was identified as benign. The allele frequencies of CYP1A2*1A, *1B, *1F, *1G, *1J, *1M, *4, and *9 were 23.4%, 53.1%, 3.7%, 2.6%, 2.6%, 13.5%, 0.5%, and 0.5%, respectively. The frequency of *1F, a putative high inducibility allele, was higher in our sample population compared with that in the Caucasian population (p < 0.05). The most common genotype combinations were *1A/*1B (46.9%) and *1B/*1M (27.1%). 4. Our results provide basic information on CYP1A2 polymorphisms in Uyghur individuals and suggest that the enzymatic activities of CYP1A2 may differ among the diverse ethnic populations of the world.

  13. In Utero and Lactational Exposure to PCBs in Mice: Adult Offspring Show Altered Learning and Memory Depending on Cyp1a2 and Ahr Genotypes

    PubMed Central

    Curran, Christine P.; Genter, Mary Beth; Patel, Krishna V.; Schaefer, Tori L.; Skelton, Matthew R.; Williams, Michael T.; Vorhees, Charles V.

    2011-01-01

    Background: Both coplanar and noncoplanar polychlorinated biphenyls (PCBs) exhibit neurotoxic effects in animal studies, but individual congeners do not always produce the same effects as PCB mixtures. Humans genetically have > 60-fold differences in hepatic cytochrome P450 1A2 (CYP1A2)-uninduced basal levels and > 12-fold variability in aryl hydrocarbon receptor (AHR)affinity; because CYP1A2 is known to sequester coplanar PCBs and because AHR ligands include coplanar PCBs, both genotypes can affect PCB response. Objectives: We aimed to develop a mouse paradigm with extremes in Cyp1a2 and Ahr genotypes to explore genetic susceptibility to PCB-induced developmental neurotoxicity using an environmentally relevant mixture of PCBs. Methods: We developed a mixture of eight PCBs to simulate human exposures based on their reported concentrations in human tissue, breast milk, and food supply. We previously characterized specific differences in PCB congener pharmacokinetics and toxicity, comparing high-affinity–AHR Cyp1a2 wild-type [Ahrb1_Cyp1a2(+/+)], poor-affinity–AHR Cyp1a2 wild-type [Ahrd_Cyp1a2(+/+)], and high-affinity–AHR Cyp1a2 knockout [Ahrb1_Cyp1a2(–/–)] mouse lines [Curran CP, Vorhees CV, Williams MT, Genter MB, Miller ML, Nebert DW. 2011. In utero and lactational exposure to a complex mixture of polychlorinated biphenyls: toxicity in pups dependent on the Cyp1a2 and Ahr genotypes. Toxicol Sci 119:189–208]. Dams received a mixture of three coplanar and five noncoplanar PCBs on gestational day 10.5 and postnatal day (PND) 5. In the present study we conducted behavioral phenotyping of exposed offspring at PND60, examining multiple measures of learning, memory, and other behaviors. Results: We observed the most significant deficits in response to PCB treatment in Ahrb1_Cyp1a2(–/–) mice, including impaired novel object recognition and increased failure rate in the Morris water maze. However, all PCB-treated genotypes showed significant differences on

  14. Oppositional Effects of Serotonin Receptors 5-HT1a, 2, and 2c in the Regulation of Adult Hippocampal Neurogenesis

    PubMed Central

    Klempin, Friederike; Babu, Harish; Tonelli, Davide De Pietri; Alarcon, Edson; Fabel, Klaus; Kempermann, Gerd

    2009-01-01

    Serotonin (5-HT) appears to play a major role in controlling adult hippocampal neurogenesis and thereby it is relevant for theories linking failing adult neurogenesis to the pathogenesis of major depression and the mechanisms of action of antidepressants. Serotonergic drugs lacked acute effects on adult neurogenesis in many studies, which suggested a surprisingly long latency phase. Here we report that the selective serotonin reuptake inhibitor fluoxetine, which has no acute effect on precursor cell proliferation, causes the well-described increase in net neurogenesis upon prolonged treatment partly by promoting the survival and maturation of new postmitotic neurons. We hypothesized that this result is the cumulative effect of several 5-HT-dependent events in the course of adult neurogenesis. Thus, we used specific agonists and antagonists to 5-HT1a, 2, and 2c receptor subtypes to analyze their impact on different developmental stages. We found that 5-HT exerts acute and opposing effects on proliferation and survival or differentiation of precursor cells by activating the diverse receptor subtypes on different stages within the neuronal lineage in vivo. This was confirmed in vitro by demonstrating that 5-HT1a receptors are involved in self-renewal of precursor cells, whereas 5-HT2 receptors effect both proliferation and promote neuronal differentiation. We propose that under acute conditions 5-HT2 effects counteract the positive proliferative effect of 5-HT1a receptor activation. However, prolonged 5-HT2c receptor activation fosters an increase in late-stage progenitor cells and early postmitotic neurons, leading to a net increase in adult neurogenesis. Our data indicate that serotonin does not show effect latency in the adult dentate gyrus. Rather, the delayed response to serotonergic drugs with respect to endpoints downstream of the immediate receptor activity is largely due to the initially antagonistic and un-balanced action of different 5-HT receptors. PMID

  15. Two novel distinct COL1A2 mutations highlight the complexity of genotype-phenotype correlations in osteogenesis imperfecta and related connective tissue disorders.

    PubMed

    Reuter, Miriam S; Schwabe, Georg C; Ehlers, Christian; Marschall, Christoph; Reis, André; Thiel, Christian; Graul-Neumann, Luitgard

    2013-12-01

    Osteogenesis imperfecta is a heritable connective tissue disorder characterized by variable symptoms including predisposition to fractures. Despite the identification of numerous mutations, a reliable genotype-phenotype correlation has remained notoriously difficult. We now describe two patients with osteogenesis imperfecta and novel, so far undescribed mutations in the COL1A2 gene, further highlighting this complexity. A 3-year-old patient presented with features reminiscent of a connective tissue disorder, with joint hypermobility, Wormian bones, streaky lucencies in the long bones and relative macrocephaly. The patient carried a heterozygous c.1316G > A (p.Gly439Asp) mutation in the COL1A2 gene located in a triple-helix region, in which glycine substitutions have been assumed to cause perinatal lethal OI (Sillence type II). A second family with type I osteogenesis imperfecta carried a heterozygous nonsense mutation c.4060C > T (p.Gln1354X) within the last exon of COL1A2. Whereas other heterozygous nonsense mutations in COL1A2 do not lead to a phenotype, in this case the mRNA is presumed to escape nonsense-mediated decay. Therefore the predicted COL1A2 propeptide lacks the last 13 C-terminal amino acids, suggesting that the OI phenotype results from decelerated assembly and overmodification of the collagen triple helix. The presented COL1A2 mutations exemplify the complexity of COL1A2 genotype-phenotype correlation in genetic counselling in OI.

  16. CpG site degeneration triggered by the loss of functional constraint created a highly polymorphic macaque drug-metabolizing gene, CYP1A2

    PubMed Central

    2011-01-01

    Background Elucidating the pattern of evolutionary changes in drug-metabolizing genes is an important subject not only for evolutionary but for biomedical research. We investigated the pattern of divergence and polymorphisms of macaque CYP1A1 and CYP1A2 genes, which are major drug-metabolizing genes in humans. In humans, CYP1A2 is specifically expressed in livers while CYP1A1 has a wider gene expression pattern in extrahepatic tissues. In contrast, macaque CYP1A2 is expressed at a much lower level than CYP1A1 in livers. Interestingly, a previous study has shown that Macaca fascicularis CYP1A2 harbored unusually high genetic diversity within species. Genomic regions showing high genetic diversity within species is occasionally interpreted as a result of balancing selection, where natural selection maintains highly diverged alleles with different functions. Nevertheless many other forces could create such signatures. Results We found that the CYP1A1/2 gene copy number and orientation has been highly conserved among mammalian genomes. The signature of gene conversion between CYP1A1 and CYP1A2 was detected, but the last gene conversion event in the simian primate lineage occurred before the Catarrhini-Platyrrhini divergence. The high genetic diversity of macaque CYP1A2 therefore cannot be explained by gene conversion between CYP1A1 and CYP1A2. By surveying CYP1A2 polymorphisms in total 91 M. fascicularis and M. mulatta, we found several null alleles segregating in these species, indicating functional constraint on CYP1A2 in macaques may have weakened after the divergence between humans and macaques. We propose that the high genetic diversity in macaque CYP1A2 is partly due to the degeneration of CpG sites, which had been maintained at a high level by purifying selection, and the rapid degeneration process was initiated by the loss of functional constraint on macaque CYP1A2. Conclusions Our findings show that the highly polymorphic CYP1A2 gene in macaques has not been

  17. Hyper- and Hypo- Induction of Cytochrome P450 activities with Aroclor 1254 and 3-Methylcholanthrene in Cyp1a2(−/−) mice

    PubMed Central

    Barker, Melissa L.; Hathaway, Laura B.; Arch, Dorinda D.; Westbroek, Mark L.; Kushner, James P.; Phillips, John D.; Franklin, Michael R.

    2009-01-01

    The response of hepatic mono-oxygenase activities to Aroclor 1254 or 3-methylcholanthrene was investigated in wild-type and Cyp1a2(−/−) mice. Cytochrome P450 concentrations were similar in naïve Cyp1a2(−/−) and wild-type mice. There was no difference between naïve wild-type and Cyp1a2(−/−) animals in 7-ethoxyresorufin and 7-ethoxy-4-trifluoromethylcoumarin dealkylase activities, nor was the induction response after 3-methylcholanthrene any different between the two genotypes. However, both activities were induced to a higher extent in Cyp1a2(−/−) mice after Aroclor 1254. In contrast, 7-pentoxyresorufin dealkylation activity was lower in Cyp1a2(−/−) mice and this differential was maintained during induction by both agents. 7-Methoxy- and 7-benzoxyresorufin dealkylation activities were also lower than wild-type in naïve Cyp1a2(−/−) animals and during 3-methylcholanthrene induction, but showed accelerated induction in Cyp1a2(−/−) mice with Aroclor 1254. Bufuralol 1′- and testosterone 6β-hydroxylation activities, and P450 characteristics were evaluated 48 hours after inducer administration. Bufuralol 1′-hydroxylation, a sexual dimorphic activity (female > male) showed no genotype differences in naïve animals. Activity changes varied across gender and genotype, with 3-methylcholanthrene and Aroclor 1254 inducing in male Cyp1a2(−/−), and Aroclor 1254 inducing in female wild-type. Testosterone 6β-hydroxylation activity was 16% higher in Cyp1a2(−/−) mice and neither 3-methylcholanthrene nor Aroclor 1254 elicited induction. After Aroclor 1254, a 24% increase in P450 concentration with a hypsochromic shift in the ferrous-CO maximum characteristic of CYP1A enzymes occurred in wild-type, compared to no change in either parameter in Cyp1a2(−/−) mice. Induction changes with 3-methylcholanthrene were greater in wild-type mice, a 60% increase in concentration and ~2 nm hypsochromic shift versus a 10% increase and ~1 nm hypsochromic

  18. Omeprazole transactivates human CYP1A1 and CYP1A2 expression through the common regulatory region containing multiple xenobiotic-responsive elements.

    PubMed

    Yoshinari, Kouichi; Ueda, Rika; Kusano, Kazutomi; Yoshimura, Tsutomu; Nagata, Kiyoshi; Yamazoe, Yasushi

    2008-07-01

    Omeprazole induces human CYP1A1 and CYP1A2 in human hepatoma cells and human liver. Aryl hydrocarbon receptor (AHR) is shown to be involved in this induction. However, its precise molecular mechanism remains unknown because the chemical activates AHR without its direct binding in contrast to typical AHR ligands such as 3-methylcholanthrene (3MC) and beta-naphthoflavone (BNF). Human CYP1A1 and CYP1A2 genes are located in a head-to-head orientation sharing about 23 kb 5'-flanking region. Recently, we succeeded to measure CYP1A1 and CYP1A2 transcriptional activities simultaneously using dual reporter gene constructs containing the 23 kb sequence. In this study, transient transfection assays have been performed using numbers of single and dual reporter constructs to identify omeprazole-responsive region for CYP1A1 and CYP1A2 induction. Reporter assays with deletion constructs have demonstrated that the omeprazole-induced expression of both CYP1A1 and CYP1A2 is mediated via the common regulatory region containing multiple AHR-binding motifs (the nucleotides from -464 to -1829 of human CYP1A1), which is identical with the region for BNF and 3MC induction. Interestingly, omeprazole activated the transcription of CYP1A1 and CYP1A2 to similar extents while BNF and 3MC preferred CYP1A1 expression. We have also found that primaquine is an omeprazole-like CYP1A inducer, while lansoprazole and albendazole are 3MC/BNF-like in terms of the CYP1A1/CYP1A2 preference. The present results suggest that omeprazole as well as BNF and 3MC activates both human CYP1A1 and CYP1A2 expression through the common regulatory region despite that omeprazole may involve a different cellular signal(s) from BNF and 3MC.

  19. In vivo characterization of the role of tissue-specific translation elongation factor 1A2 in protein synthesis reveals insights into muscle atrophy.

    PubMed

    Doig, Jennifer; Griffiths, Lowri A; Peberdy, David; Dharmasaroja, Permphan; Vera, Maria; Davies, Faith J C; Newbery, Helen J; Brownstein, David; Abbott, Catherine M

    2013-12-01

    Translation elongation factor 1A2 (eEF1A2), uniquely among translation factors, is expressed specifically in neurons and muscle. eEF1A2-null mutant wasted mice develop an aggressive, early-onset form of neurodegeneration, but it is unknown whether the wasting results from denervation of the muscles, or whether the mice have a primary myopathy resulting from loss of translation activity in muscle. We set out to establish the relative contributions of loss of eEF1A2 in the different tissues to this postnatal lethal phenotype. We used tissue-specific transgenesis to show that correction of eEF1A2 levels in muscle fails to ameliorate the overt phenotypic abnormalities or time of death of wasted mice. Molecular markers of muscle atrophy such as Fbxo32 were dramatically upregulated at the RNA level in wasted mice, both in the presence and in the absence of muscle-specific expression of eEF1A2, but the degree of upregulation at the protein level was significantly lower in those wasted mice without transgene-derived expression of eEF1A2 in muscle. This provides the first in vivo confirmation that eEF1A2 plays an important role in translation. In spite of the inability of the nontransgenic wasted mice to upregulate key atrogenes at the protein level in response to denervation to the same degree as their transgenic counterparts, there were no measurable differences between transgenic and nontransgenic wasted mice in terms of weight loss, grip strength, or muscle pathology. This suggests that a compromised ability fully to execute the atrogene pathway in denervated muscle does not affect the process of muscle atrophy in the short term.

  20. Genetic polymorphisms and function of the organic anion-transporting polypeptide 1A2 and its clinical relevance in drug disposition.

    PubMed

    Zhou, Yinhui; Yuan, Jingjing; Li, Zhisong; Wang, Zhongyu; Cheng, Dan; Du, Yingying; Li, Wenlu; Kan, Quancheng; Zhang, Wei

    2015-01-01

    The solute carrier organic anion-transporting polypeptides (OATPs) are a family of transporter proteins that have been extensively recognized as key determinants of absorption, distribution, metabolism and excretion of various drugs because of their broad substrate specificity and wide tissue distribution as well as the involvement of drug-drug interaction. Human OATP1A2 is a drug uptake transporter known for its broad substrate specificity, including many drugs in clinical use. OATP1A2 expression has been detected in the intestine, liver, brain and kidney. A considerable number of single nucleotide polymorphisms have been found for the OATP1A2 gene. A number of studies have shown that the cellular uptake and pharmacokinetic behavior of some drugs may be impaired in the case of certain OATP1A2 variants. Interestingly, some studies show that the mRNA expression of OATP1A2 is nearly 10-fold higher in breast cancer compared with adjacent healthy breast tissues. This review is, therefore, focused on the genetic polymorphisms, function and clinical relevance of OATP1A2 as well as on the substrates transported by it.

  1. [Clinical survey of tizanidine-induced adverse effects--impact of concomitant drugs providing cytochrome P450 1A2 modification--].

    PubMed

    Momo, Kenji; Homma, Masato; Matsumoto, Sayaka; Sasaki, Tadanori; Kohda, Yukinao

    2013-01-01

    The drug-drug interactions of tizanidine and cytochrome (CYP) P450 1A2 inhibitors, which potentially alter the hepatic metabolism of tizanidine, were investigated by retrospective survey of medical records with regard to prescription. One thousand five hundred sixty-three patients treated with tizanidine at University of Tsukuba Hospital were investigated. Of those, 713 patients (45.6%) were treated with coadministration of tizanidine and CYP1A2 inhibitors (37 drugs). The patients who received a combination of tizanidine and CYP1A2 inhibitors were characterized as elderly, having multiple diseases, and taking a large number of comedications (over 10 drugs) for a long period as compared with the patients who did not receive CYP1A2 inhibitors. Tizanidine-induced adverse effects were examined in 100 patients treated with coadministration of tizanidine and 8 CYP1A2 inhibitors. Adverse effects (e.g., drowsiness: 10 patients; low blood pressure: 9 patients; low heart rate: 9 patients) were observed in 23 patients (23%) 8±10 days after CYP1A2 inhibitors were coadministered. The patients with tizanidine-induced adverse effects were of older age (64.3±9.8 vs. 57.5±18.1 years, p<0.05) and received a higher daily dose of tizanidine (3.00±0.74 vs. 2.56±0.86 mg/day, p<0.05) than the patients without adverse effects. The present results suggest that coadministration of tizanidine and CYP1A2 inhibitors enhances tizanidine-induced adverse effects, especially in elderly patients treated with a higher dose of tizanidine.

  2. Relative Contributions of CYP1A2 and CYP2E1 to the Bioactivation and Clearance of 4-Aminobiphenyl in Adult Mice.

    PubMed

    Wang, Shuang; Bott, Debbie; Tung, Aveline; Sugamori, Kim S; Grant, Denis M

    2015-07-01

    4-Aminobiphenyl (ABP), a prototypical aromatic amine carcinogen in rodents and humans, requires bioactivation to manifest its toxic effects. A traditional model of ABP bioactivation, based on in vitro enzyme kinetic evidence, had postulated initial N-hydroxylation by the cytochrome P450 isoform CYP1A2. This is followed by phase 2 O-conjugation and hydrolysis to form a reactive nitrenium ion that covalently binds to DNA and produces tumor-initiating mutations. However, Cyp1a2(-/-) mice still possess significant liver ABP N-hydroxylation activity, DNA damage, and incidence of ABP-induced liver tumors, and in vivo induction of CYP1A2 paradoxically reduces levels of ABP-induced DNA damage. Competing ABP detoxification pathways can include N-acetylation by arylamine N-acetyltransferase 1 (NAT1) and/or NAT2; however, wild-type and Nat1/2(-/-) mice have similar in vivo ABP clearance rates. Together, these studies suggest the existence of novel ABP bioactivating and clearance/detoxification enzymes. In the present study, we detected similar reductions in Vmax for ABP N-hydroxylation by liver microsomes from Cyp1a2(-/-) and Cyp2e1(-/-) mice when compared with wild-type mice. In addition, recombinant mouse CYP1A2 and CYP2E1 were both able to N-hydroxylate ABP in mouse hepatoma cells. However, the in vivo clearance of ABP was significantly reduced in Cyp1a2(-/-) but not in Cyp2e1(-/-) mice. Our results support a significant role for CYP2E1 as a novel ABP N-oxidizing enzyme in adult mice, and suggest a more important contribution of CYP1A2 to the in vivo plasma clearance and thus detoxification of ABP.

  3. The structures of the human calcium channel {alpha}{sub 1} subunit (CACNL1A2) and {beta} subunit (CACNLB3) genes

    SciTech Connect

    Yamada, Yuichiro; Masuda, Kazuhiro; Li, Qing

    1995-05-20

    Calcium influx in pancreatic {beta}-cells is regulated mainly by L-type voltage-dependent calcium channels (VDCCs) and triggers insulin secretion. The {alpha}{sub 1} subunit (CACN4) and the {beta} subunit ({beta}{sub 3}) of VDCCs, both of which are expressed in pancreatic islets, are major components for the VDCC activity, and so they may play a critical role in the regulation of insulin secretion. The authors have determined the structures of the human CACN4 (CACNL1A2) and the human {beta}{sub 3} (CACNLB3) genes. The CACNL1A2 gene spans more than 155 kb and has 49 exons. Most of the positions interrupted by introns are well conserved between the CACNL1A2 gene and the previously reported L-type VDCC {alpha}{sub 1} subunit, CACNL1A1, gene. On the other hand, the CACNLB3 gene distributes in {approximately} 8 kb and comprises 13 exons, most of which are located together within {approximately} 5 kb. Comparisons of the genomic sequences of CACNL1A2 with the previously reported cDNA sequences indicate that there are a number of polymorphisms in the human CACNL1A2 gene. In addition, the PCR-SSCP procedure of exon 1 of CACNL1A2 revealed a change from 7 to 8 ATG trinucleotide repeats in a patient with noninsulin-dependent diabetes mellitus (NIDDM), resulting in an addition of methionine at the amino-terminus of CACN4. The determination of the structures of the human CACNL1A2 and CACNLB3 genes should facilitate study of the role of these genes in the development of NIDDM and also other genetic diseases such as long QT syndrome. 39 refs., 3 figs., 3 tabs.

  4. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus)

    PubMed Central

    Feng, Ruijuan; Fang, Lingling; Cheng, Yunying; He, Xue; Jiang, Wentao; Dong, Ranran; Shi, Hongjuan; Jiang, Dongneng; Sun, Lina; Wang, Deshou

    2015-01-01

    Meiosis is a process unique to the differentiation of germ cells. Retinoic acid (RA) is the key factor controlling the sex-specific timing of meiotic initiation in tetrapods; however, the role of RA in meiotic initiation in teleosts has remained unclear. In this study, the genes encoding RA synthase aldh1a2, and catabolic enzyme cyp26a1 were isolated from Nile tilapia (Oreochromis niloticus), a species without stra8. The expression of aldh1a2 was up-regulated and expression of cyp26a1 was down-regulated before the meiotic initiation in ovaries and in testes. Treatment with RA synthase inhibitor or disruption of Aldh1a2 by CRISPR/Cas9 resulted in delayed meiotic initiation, with simultaneous down-regulation of cyp26a1 and up-regulation of sycp3. By contrast, treatment with an inhibitor of RA catabolic enzyme and disruption of cyp26a1 resulted in earlier meiotic initiation, with increased expression of aldh1a2 and sycp3. Additionally, treatment of XY fish with estrogen (E2) and XX fish with fadrozole led to sex reversal and reversion of meiotic initiation. These results indicate that RA is indispensable for meiotic initiation in teleosts via a stra8 independent signaling pathway where both aldh1a2 and cyp26a1 are critical. In contrast to mammals, E2 is a major regulator of sex determination and meiotic initiation in teleosts. PMID:25976364

  5. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus).

    PubMed

    Feng, Ruijuan; Fang, Lingling; Cheng, Yunying; He, Xue; Jiang, Wentao; Dong, Ranran; Shi, Hongjuan; Jiang, Dongneng; Sun, Lina; Wang, Deshou

    2015-05-15

    Meiosis is a process unique to the differentiation of germ cells. Retinoic acid (RA) is the key factor controlling the sex-specific timing of meiotic initiation in tetrapods; however, the role of RA in meiotic initiation in teleosts has remained unclear. In this study, the genes encoding RA synthase aldh1a2, and catabolic enzyme cyp26a1 were isolated from Nile tilapia (Oreochromis niloticus), a species without stra8. The expression of aldh1a2 was up-regulated and expression of cyp26a1 was down-regulated before the meiotic initiation in ovaries and in testes. Treatment with RA synthase inhibitor or disruption of Aldh1a2 by CRISPR/Cas9 resulted in delayed meiotic initiation, with simultaneous down-regulation of cyp26a1 and up-regulation of sycp3. By contrast, treatment with an inhibitor of RA catabolic enzyme and disruption of cyp26a1 resulted in earlier meiotic initiation, with increased expression of aldh1a2 and sycp3. Additionally, treatment of XY fish with estrogen (E2) and XX fish with fadrozole led to sex reversal and reversion of meiotic initiation. These results indicate that RA is indispensable for meiotic initiation in teleosts via a stra8 independent signaling pathway where both aldh1a2 and cyp26a1 are critical. In contrast to mammals, E2 is a major regulator of sex determination and meiotic initiation in teleosts.

  6. Measurement of human CYP1A2 induction by inhalation exposure to benzo(a)pyrene based on in vivo isotope breath method.

    PubMed

    Duan, Xiaoli; Shen, Guofeng; Yang, Hongbiao; Lambert, George; Wei, Fusheng; Zhang, Junfeng Jim

    2016-01-01

    Cytochrome P450 1A2 (CYP1A2) is an enzyme involved in the metabolic activation of certain carcinogens, and inducible by toxic substrates. To date, few studies have investigated in vivo CYP1A2 induction in humans and its relationship to polycylic aromatic hydrocarbons (PAHs) like benzo(a)pyrene (BaP). Non-smoking healthy male coke-oven workers (n = 30) were recruited as 'exposure' group, and non-smoking healthy office workers in the same city (n = 10) were selected as 'control' group, to test whether high inhalation exposure to PAHs can induce CYP1A2 activity in human livers. Significantly higher inhalation exposure of PAHs were found among the exposure group compared to the control. Inhalation BaP exposure concentration in the exposure group was more than 30 times higher than the control group (p < 0.001). However, the exposure group did not exhale significant higher levels of (13)CO2/(12)CO2 in breath samples (p = 0.81), and no significant relationship was found between the inhaled BaP concentration and the (13)CO2/(12)CO2 ratio (p = 0.91). A significant association was found between the (13)CO2/(12)CO2 exhalation and dietary BaP intake level. Hepatic CYP1A2 activity/induction level was not effected by inhaled BaP but was altered by ingestion of BaP.

  7. CYP1A2 and CYP2D6 Gene Polymorphisms in Schizophrenic Patients with Neuroleptic Drug-Induced Side Effects.

    PubMed

    Ivanova, S A; Filipenko, M L; Vyalova, N M; Voronina, E N; Pozhidaev, I V; Osmanova, D Z; Ivanov, M V; Fedorenko, O Yu; Semke, A V; Bokhan, N A

    2016-03-01

    Polymorphic variants of CYP1A2 and CYP2D6 genes of the cytochrome P450 system were studied in patients with schizophrenia with drug-induced motor disorders and hyperprolactinemia against the background of long-term neuroleptic therapy. We revealed an association of polymorphic variant C-163A CYP1A2*1F of CYP1A2 gene with tardive dyskinesia and association of polymorphic variant 1846G>A CY2D6*4 and genotype A/A of CYP2D6 gene (responsible for debrisoquin-4-hydroxylase synthesis) with limbotruncal tardive dyskinesia in patients with schizophrenia receiving neuroleptics for a long time.

  8. Solute Carrier Family of the Organic Anion-Transporting Polypeptides 1A2- Madin-Darby Canine Kidney II: A Promising In Vitro System to Understand the Role of Organic Anion-Transporting Polypeptide 1A2 in Blood-Brain Barrier Drug Penetration.

    PubMed

    Liu, Houfu; Yu, Na; Lu, Sijie; Ito, Sumito; Zhang, Xuan; Prasad, Bhagwat; He, Enuo; Lu, Xinyan; Li, Yang; Wang, Fei; Xu, Han; An, Gang; Unadkat, Jashvant D; Kusuhara, Hiroyuki; Sugiyama, Yuichi; Sahi, Jasminder

    2015-07-01

    Organic anion-transporting polypeptide (OATP) 1A2 has the potential to be a target for central nervous system drug delivery due to its luminal localization at the human blood-brain barrier and broad substrate specificity. We found OATP1A2 mRNA expression in the human brain to be comparable to breast cancer resistance protein and OATP2B1 and much higher than P-glycoprotein (P-gp), and confirmed greater expression in the brain relative to other tissues. The goal of this study was to establish a model system to explore OATP1A2-mediated transcellular transport of substrate drugs and the interplay with P-gp. In vitro (human embryonic kidney 293 cells stably expressing Oatp1a4, the closest murine isoform) and in vivo (naïve and Oatp1a4 knock-out mice) studies with OATP1A2 substrate triptan drugs demonstrated that these drugs were not Oatp1a4 substrates. This species difference demonstrates that the rodent is not a good model to investigate the active brain uptake of potential OATP1A2 substrates. Thus, we constructed a novel OATP1A2 expressing Madin-Darby canine kidney (MDCK) II wild type and an MDCKII-multidrug resistance protein 1 (MDR1) system using BacMam virus transduction. The spatial expression pattern of OATP1A2 after transduction in MDCKII-MDR1 cells was superimposed to P-gp, confirming apical membrane localization. OATP1A2-mediated uptake of zolmitriptan, rosuvastatin, and fexofenadine across monolayers increased with increasing OATP1A2 protein expression. OATP1A2 counteracted P-gp efflux for cosubstrates zolmitriptan and fexofenadine. A three-compartment model incorporating OATP1A2-mediated influx was used to quantitatively describe the time- and concentration-dependent apical-to-basolateral transcellular transport of rosuvastatin across OATP1A2 expressing the MDCKII monolayer. This novel, simple and versatile experimental system is useful for understanding the contribution of OATP1A2-mediated transcellular transport across barriers, such as the blood

  9. The Caffeine Cytochrome P450 1A2 Metabolic Phenotype Does Not Predict the Metabolism of Heterocyclic Aromatic Amines in Humans

    PubMed Central

    Turesky, Robert J.; White, Kami K.; Wilkens, Lynne R.; Marchand, Loïc Le

    2015-01-01

    2-Amino-1-methylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are carcinogenic heterocyclic aromatic amines (HAAs) formed in well-done cooked meats. Chemicals that induce cytochrome P450 (P450) 1A2, a major enzyme involved in the bioactivation of HAAs, also form in cooked meat. Therefore, well-done cooked meat may pose an increase in cancer risk because it contains both inducers of P450 1A2 and procarcinogenic HAAs. We examined the influence of components in meat to modulate P450 1A2 activity and the metabolism of PhIP and MeIQx in volunteers during a 4 week feeding study of well-done cooked beef. The mean P450 1A2 activity, assessed by caffeine metabolic phenotyping, ranged from 6.3 to 7.1 before the feeding study commenced and from 9.6 to 10.4 during the meat feeding period: the difference in means was significant (P < 0.001). Unaltered PhIP, MeIQx, and their P450 1A2 metabolites, N2-(β-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (HON-PhIP-N2-Gl); N3-(β-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (HON-PhIP-N3-Gl); 2-amino-3-methylimidazo-[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH); and 2-amino-8-(hydroxymethyl)-3-methylimidazo[4,5-f]quinoxaline (8-CH2OH-IQx) were measured in urine during days 2, 14, and 28 days of the meat diet. Significant correlations were observed on these days between the levels of the unaltered HAAs and their oxidized metabolites, when expressed as percent of dose ingested or as metabolic ratios. However, there was no statistically significant correlation between the caffeine P450 1A2 phenotype and any urinary HAA biomarker. Although the P450 1A2 activity varied by greater than 20-fold among the subjects, there was a large intra-individual variation of the P450 1A2 phenotype and inconsistent responses to inducers of P450 1A2. The coefficient of variation of the P450 1A2 phenotype within-individual ranged between 1 to 112% (median=40

  10. Haploinsufficiency for translation elongation factor eEF1A2 in aged mouse muscle and neurons is compatible with normal function.

    PubMed

    Griffiths, Lowri A; Doig, Jennifer; Churchhouse, Antonia M D; Davies, Faith C J; Squires, Charlotte E; Newbery, Helen J; Abbott, Catherine M

    2012-01-01

    Translation elongation factor isoform eEF1A2 is expressed in muscle and neurons. Deletion of eEF1A2 in mice gives rise to the neurodegenerative phenotype "wasted" (wst). Mice homozygous for the wasted mutation die of muscle wasting and neurodegeneration at four weeks post-natal. Although the mutation is said to be recessive, aged heterozygous mice have never been examined in detail; a number of other mouse models of motor neuron degeneration have recently been shown to have similar, albeit less severe, phenotypic abnormalities in the heterozygous state. We therefore examined the effects of ageing on a cohort of heterozygous +/wst mice and control mice, in order to establish whether a presumed 50% reduction in eEF1A2 expression was compatible with normal function. We evaluated the grip strength assay as a way of distinguishing between wasted and wild-type mice at 3-4 weeks, and then performed the same assay in older +/wst and wild-type mice. We also used rotarod performance and immunohistochemistry of spinal cord sections to evaluate the phenotype of aged heterozygous mice. Heterozygous mutant mice showed no deficit in neuromuscular function or signs of spinal cord pathology, in spite of the low levels of eEF1A2.

  11. CYP1A2 DOES NOT PLAY A CRITICAL ROLE IN 2, 3 7, 8-TETRACHLORODIBENZO-P-DIOXIN-INDUCED IMMUNOSUPRESSION

    EPA Science Inventory

    CYP1A2 IS NOT REQUIRED FOR 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN-INDUCED IMMUNOSUPPRESSION Smialowicz, Ralph J1; Burgin, Deborah E2; Williams, Wanda C1; Diliberto, Janet J1; Birnbaum, Linda S1
    1 Experimental Toxicology Division, US EPA, RTP, NC, USA; 2Curriculum in Toxicology, U...

  12. In Silico Docking of Ligands to Drug Oxidation Enzymes Cytochrome P450 3A4 and Cytochrome P450 1A2.

    NASA Astrophysics Data System (ADS)

    Smith, David; Guglielmon, Jonathan; Glenn, Marsch; Peter, Guengerich F.

    2009-03-01

    Cytochrome P450 3A4 (CYP3A4) and Cytochrome P450 1A2 (CYP1A2) oxidize most drugs in humans. Protein modeling toolkits from OpenEye Scientific Software were used to examine the interaction of drug substrates with CYP3A4 and CYP1A2. Conformers and partial atomic charges were generated for each drug molecule. User-defined volumes were defined around CYP3A4 and CYP1A2 active sites. Ligands were docked assuming protein and substrates as rigid bodies. To assess rigid docking accuracy, x-ray diffraction coordinates of CYP3A4-erythromycin and CYP3A4-metyrapone complexes were obtained. Rigid re-docking of erythromycin and metyrapone into CYP3A4 yielded poses similar to the crystal structures. Rigid docking revealed two other energetically-favorable CYP3A4-metyrapone poses. The best poses were obtained by using all the Open Eye scoring functions. Optimization of protein-ligand interactions within 5-10 Angstroms of the docked ligand was then performed using the Merck Molecular Force Field in which the protein was assumed to be flexible and the ligand to be rigid. Nearby protein residues pulled slightly closer to the substrate, reducing the volume of the active site.

  13. Down-regulation of CYP1A2 induction during the maturation of mouse cerebellar granule cells in culture: role of nitric oxide accumulation.

    PubMed

    Mulero-Navarro, Sonia; Santiago-Josefat, Belen; Pozo-Guisado, Eulalia; Merino, Jaime M; Fernandez-Salguero, Pedro M

    2003-10-01

    Nitric oxide (NO) is responsible for cytochrome P450 (CYP450) loss during isolation and cytokine treatment of primary rat hepatocytes. As P450s mediate the metabolism of toxic chemicals, their inhibition could compromise the cells competence to eliminate toxins, a condition potentially relevant in neurological diseases involving constitutive activation of nitric oxide synthase (NOS) and NO over-production. Here, we have investigated the correlation between NO accumulation and CYP1A2 down-regulation during maturation of mouse cerebellar granule cells (CGC). As neurons matured in culture, the inducible levels of CYP1A2 protein and catalytic activity decreased to almost undetectable values. In parallel, a significant increase in NO concentration was observed. Neuronal NOS remained constitutively active during maturation, thus contributing to NO accumulation. The NOS inhibitor l-NAME, restored CYP1A2 catalytic activity up to 9 days in vitro, supporting a role for NO in the inhibition process. Maturation was also followed by increased NMDA receptor activity and intracellular Ca2+ concentration. We suggest that maintained NOS activity during CGC maturation could lead to NO accumulation and to decreased CYP1A2 inducibility. Increased NMDA receptor activity and Ca2+ entry could contribute to this process. Thus, neurodegeneration could diminish the induction of specific P450s and impair the metabolism of foreign and/or endogenous chemicals in the CNS.

  14. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway

    PubMed Central

    Awortwe, Charles; Manda, Vamshi K.; Avonto, Cristina; Khan, Shabana I.; Khan, Ikhlas A.; Walker, Larry A.; Bouic, Patrick J.; Rosenkranz, Bernd

    2015-01-01

    This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. Thus E. purpurea preparations cause herb–drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation. PMID:25377539

  15. High coffee intake, but not caffeine, is associated with reduced estrogen receptor negative and postmenopausal breast cancer risk with no effect modification by CYP1A2 genotype.

    PubMed

    Lowcock, Elizabeth C; Cotterchio, Michelle; Anderson, Laura N; Boucher, Beatrice A; El-Sohemy, Ahmed

    2013-01-01

    Associations between caffeine and coffee consumption and breast cancer risk are uncertain, with studies suggesting inverse and null associations. Variation in cytochrome P450 1A2 (CYP1A2), a gene responsible for caffeine metabolism, may modify these associations. Cases (n = 3,062) were recruited through the Ontario Cancer Registry and controls (n = 3,427) through random digit dialing. Logistic regression was used to evaluate associations between breast cancer risk and intakes of 7 caffeine-containing items and total caffeine, and examine whether a genetic variant in CYP1A2 (rs762551) modified these associations. Analyses were stratified by estrogen receptor (ER), menopausal, and smoking status. Generally, coffee and caffeine were not associated with breast cancer risk; however, a significant reduction in risk was observed with the highest category of coffee consumption [≥5 cups per day vs. never, multivariate-adjusted odds ratio (MVOR) = 0.71, 95% confidence interval (CI): 0.51, 0.98]. Variant rs762551 did not modify associations. In stratified analyses, high coffee intake was associated with reduced risk of ER- (MVOR = 0.41, 95% CI: 0.19, 0.92) and postmenopausal breast cancer (MVOR = 0.63, 95% CI: 0.43, 0.94). High coffee consumption, but not total caffeine, may be associated with reduced risk of ER- and postmenopausal breast cancers, independent of CYP1A2 genotype. Further studies are needed to replicate these findings.

  16. Determination of Human Hepatic CYP2C8 and CYP1A2 Age-Dependent Expression to Support Human Health Risk Assessment for Early Ages.

    PubMed

    Song, Gina; Sun, Xueying; Hines, Ronald N; McCarver, D Gail; Lake, Brian G; Osimitz, Thomas G; Creek, Moire R; Clewell, Harvey J; Yoon, Miyoung

    2017-02-22

    Predicting age-specific metabolism is important for evaluating age-related drug and chemical sensitivity. Multiple cytochrome P450s (CYP) and carboxylesterase (CES) enzymes are responsible for human pyrethroid metabolism. Complete ontogeny data for each enzyme is needed to support in vitro to in vivo extrapolation (IVIVE). This study was designed to determine age-dependent human hepatic CYP2C8 expression, for which only limited ontogeny data are available, and to further define CYP1A2 ontogeny. CYP2C8 and 1A2 protein levels were measured by quantitative Western blotting using liver microsomal samples prepared from 222 subjects with ages ranging from 8 weeks gestation to 18 years after birth. The median CYP2C8 expression was significantly greater among samples from subjects older than 35 postnatal days (n=122) compared to fetal samples and those from very young infants (fetal to 35 days postnatal, n=100) (0.00 vs. 13.38 pmol/mg microsomal protein; p<0.0001). In contrast, the median CYP1A2 expression was significantly greater after 15 months postnatal age (n=55) than in fetal and younger postnatal samples (fetal to 15 months postnatal, n=167) (0.0167 vs. 2.354 pmol/mg microsomal protein; p<0.0001). CYP2C8, but not CYP1A2, protein levels, significantly correlated with those of CYP2C9, CYP2C19, and CYP3A4 (p<0.001) consistent with CYP2C8 and CYP1A2 ontogeny being probably controlled by different mechanisms. This study provides key data for physiologically based pharmacokinetic model-based prediction of age-dependent pyrethroid metabolism, which will be used for IVIVE to support pyrethroid risk assessment for early life stages.

  17. MLIF Alleviates SH-SY5Y Neuroblastoma Injury Induced by Oxygen-Glucose Deprivation by Targeting Eukaryotic Translation Elongation Factor 1A2

    PubMed Central

    Liu, Yulan; Cheng, Hao; Wang, Jing; Zhang, Yue; Rui, Yaocheng; Li, Tiejun

    2016-01-01

    Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide, has been shown to exert potent anti-inflammatory effects in ischemic brain injury. In this study, we investigated the neuroprotective action of MLIF against oxygen-glucose deprivation (OGD)-induced injury in human neuroblastoma SH-SY5Y cells. MTT assay was used to assess cell viability, and flow cytometry assay and Hoechst staining were used to evaluate apoptosis. LDH assay was used to exam necrosis. The release of inflammatory cytokines was detected by ELISA. Levels of the apoptosis associated proteins were measured by western blot analysis. To identify the protein target of MLIF, pull-down assay and mass spectrometry were performed. We observed that MLIF enhanced cell survival and inhibited apoptosis and necrosis by inhibiting p-JNK, p53, c-caspase9 and c-caspase3 expression. In the microglia, OGD-induced secretion of inflammatory cytokines was markedly reduced in the presence of MLIF. Furthermore, we found that eukaryotic translation elongation factor 1A2 (eEF1A2) is a downstream target of MLIF. Knockdown eEF1A2 using short interfering RNA (siRNA) almost completely abrogated the anti-apoptotic effect of MLIF in SH-SY5Y cells subjected to OGD, with an associated decrease in cell survival and an increase in expression of p-JNK and p53. These results indicate that MLIF ameliorates OGD-induced SH-SY5Y neuroblastoma injury by inhibiting the p-JNK/p53 apoptotic signaling pathway via eEF1A2. Our findings suggest that eEF1A2 may be a new therapeutic target for ischemic brain injury. PMID:26918757

  18. Zebrafish foxc1a plays a crucial role in early somitogenesis by restricting the expression of aldh1a2 directly.

    PubMed

    Li, Jingyun; Yue, Yunyun; Dong, Xiaohua; Jia, Wenshuang; Li, Kui; Liang, Dong; Dong, Zhangji; Wang, Xiaoxiao; Nan, Xiaoxi; Zhang, Qinxin; Zhao, Qingshun

    2015-04-17

    Foxc1a is a member of the forkhead transcription factors. It plays an essential role in zebrafish somitogenesis. However, little is known about the molecular mechanisms underlying its controlling somitogenesis. To uncover how foxc1a regulates zebrafish somitogenesis, we generated foxc1a knock-out zebrafish using TALEN (transcription activator-like effector nuclease) technology. The foxc1a null embryos exhibited defective somites at early development. Analyses on the expressions of the key genes that control processes of somitogenesis revealed that foxc1a controlled early somitogenesis by regulating the expression of myod1. In the somites of foxc1a knock-out embryos, expressions of fgf8a and deltaC were abolished, whereas the expression of aldh1a2 (responsible for providing retinoic acid signaling) was significantly increased. Once the increased retinoic acid level in the foxc1a null embryos was reduced by knocking down aldh1a2, the reduced expression of myod1 was partially rescued by resuming expressions of fgf8a and deltaC in the somites of the mutant embryos. Moreover, a chromatin immunoprecipitation assay on zebrafish embryos revealed that Foxc1a bound aldh1a2 promoter directly. On the other hand, neither knocking down fgf8a nor inhibiting Notch signaling affected the expression of aldh1a2, although knocking down fgf8a reduced expression of deltaC in the somites of zebrafish embryos at early somitogenesis and vice versa. Taken together, our results demonstrate that foxc1a plays an essential role in early somitogenesis by controlling Fgf and Notch signaling through restricting the expression of aldh1a2 in paraxial mesoderm directly.

  19. Constitutive androstane receptor transcriptionally activates human CYP1A1 and CYP1A2 genes through a common regulatory element in the 5'-flanking region.

    PubMed

    Yoshinari, Kouichi; Yoda, Noriaki; Toriyabe, Takayoshi; Yamazoe, Yasushi

    2010-01-15

    Phenobarbital has long been known to increase cellular levels of CYP1A1 and CYP1A2 possibly through a pathway(s) independent of aryl hydrocarbon receptor. We have investigated the role of constitutive androstane receptor (CAR), a xenobiotic-responsive nuclear receptor, in the transactivation of human CYP1A1 and CYP1A2. These genes are located in a head-to-head orientation, sharing a 5'-flanking region. Reporter assays were thus performed with dual-reporter constructs, containing the whole or partially deleted human CYP1A promoter between two different reporter genes. In this system, human CAR (hCAR) enhanced the transcription of both genes through common promoter regions from -461 to -554 and from -18089 to -21975 of CYP1A1. With reporter assays using additional deleted and mutated constructs, electrophoresis mobility shift assays and chromatin immunoprecipitation assays, an ER8 motif (everted repeat separated by eight nucleotides), located at around -520 of CYP1A1, was identified as an hCAR-responsive element and a binding motif of hCAR/human retinoid X receptor alpha heterodimer. hCAR enhanced the transcription of both genes also in the presence of an aryl hydrocarbon receptor ligand. Finally, hCAR activation increased CYP1A1 and CYP1A2 mRNA levels in cultured human hepatocytes. Our results indicate that CAR transactivates human CYP1A1 and CYP1A2 in human hepatocytes through the common cis-element ER8. Interestingly, the ER8 motif is highly conserved in the CYP1A1 proximal promoter sequences of various species, suggesting a fundamental role of CAR in the xenobiotic-induced expression of CYP1A1 and CYP1A2 independent of aryl hydrocarbon receptor.

  20. Ah receptor, CYP1A1, CYP1A2 and CYP1B1 gene polymorphisms are not involved in the risk of recurrent pregnancy loss.

    PubMed

    Saijo, Y; Sata, F; Yamada, H; Suzuki, K; Sasaki, S; Kondo, T; Gong, Y Y; Kato, E H; Shimada, S; Morikawa, M; Minakami, H; Kishi, R

    2004-10-01

    The etiology of recurrent pregnancy loss (RPL) remains unclear, but it may be related to a possible genetic predisposition together with involvement of environmental factors. We examined the relation between RPL and polymorphisms in four genes, human aryl hydrocarbon (Ah) receptor, cytochrome P450 (CYP) 1A1, CYP1A2 and CYP1B1, which are involved in the metabolism of a wide range of environmental toxins and carcinogens. All cases and controls were women resident in Sapporo, Japan and the surrounding area. The Ah receptor, CYP1A1, CYP1A2 and CYP1B1 genotypes were assessed in 113 Japanese women with recurrent pregnancy loss (RPL) and 203 ethnically matched women experiencing at least one live birth and no spontaneous abortion (control). No significant differences in Ah receptor, CYP1A1, CYP1A2 and CYP1B1 genotype frequencies were found between the women with RPL and the controls [Ah receptor: Arg/Arg (reference); Arg/Lys and Lys/Lys, odds ratio (OR)=0.67; 95% confidence interval (CI)=0.40-1.11, CYP1A1: m1m1 (reference); m1m2 and m2m2, OR = 0.86; 95% CI = 0.53-1.40, CYP1A2: C/C and C/A (reference); A/A, OR = 1.16; 95% CI = 0.71-1.88, CYP1B1: Leu/Leu (reference); Leu/Val and Val/Val, OR = 1.18; 95% CI = 0.68-2.02]. The present study suggests that the Ah receptor, CYP1A1, CYP1A2 and CYP1B1 gene polymorphisms are not major genetic regulators in RPL.

  1. Theoretical studies of the mechanism of N-hydroxylation of primary aromatic amines by cytochrome P450 1A2: radicaloid or anionic?

    PubMed

    Ripa, Lena; Mee, Christine; Sjö, Peter; Shamovsky, Igor

    2014-02-17

    Primary aromatic and heteroaromatic amines are notoriously known as potential mutagens and carcinogens. The major event of the mechanism of their mutagenicity is N-hydroxylation by P450 enzymes, primarily P450 1A2 (CYP1A2), which leads to the formation of nitrenium ions that covalently modify nucleobases of DNA. Energy profiles of the NH bond activation steps of two possible mechanisms of N-hydroxylation of a number of aromatic amines by CYP1A2, radicaloid and anionic, are studied by dispersion-corrected DFT calculations. The classical radicaloid mechanism is mediated by H-atom transfer to the electrophilic ferryl-oxo intermediate of the P450 catalytic cycle (called Compound I or Cpd I), whereas the alternative anionic mechanism involves proton transfer to the preceding nucleophilic ferrous-peroxo species. The key structural features of the catalytic site of human CYP1A2 revealed by X-ray crystallography are maintained in calculations. The obtained DFT reaction profiles and additional calculations that account for nondynamical electron correlation suggest that Cpd I has higher thermodynamic drive to activate aromatic amines than the ferrous-peroxo species. Nevertheless, the anionic mechanism is demonstrated to be consistent with a variety of experimental observations. Thus, energy of the proton transfer from aromatic amines to the ferrous-peroxo dianion splits aromatic amines into two classes with different mutagenicity mechanisms. Favorable or slightly unfavorable barrier-free proton transfer is inherent in compounds that undergo nitrenium ion mediated mutagenicity. Monocyclic electron-rich aromatic amines that do not follow this mutagenicity mechanism show significantly unfavorable proton transfer. Feasibility of the entire anionic mechanism is demonstrated by favorable Gibbs energy profiles of both chemical steps, NH bond activation, and NO bond formation. Taken together, results suggest that the N-hydroxylation of aromatic amines in CYP1A2 undergoes the anionic

  2. Discovery of Western European R1b1a2 Y chromosome variants in 1000 genomes project data: an online community approach.

    PubMed

    Rocca, Richard A; Magoon, Gregory; Reynolds, David F; Krahn, Thomas; Tilroe, Vincent O; Op den Velde Boots, Peter M; Grierson, Andrew J

    2012-01-01

    The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data.

  3. Beta 1-integrin ligation and TLR ligation enhance GM-CSF–induced ALDH1A2 expression in dendritic cells, but differentially regulate their anti-inflammatory properties

    PubMed Central

    Yokota-Nakatsuma, Aya; Ohoka, Yoshiharu; Takeuchi, Hajime; Song, Si-Young; Iwata, Makoto

    2016-01-01

    Retinoic acid (RA)–producing CD103+ mature dendritic cells (DCs) in mesenteric lymph nodes (MLNs) play crucial roles in gut immunity. GM-CSF and RA contribute to the expression of the RA-producing enzyme ALDH1A2. However, additional signals appeared to be required for inducing ALDH1A2high mature DCs from immature DCs. We found here that TLR ligands (Ls) and immobilized E-cadherin could provide such signals in FLT3-L–generated bone marrow (BM)–derived DCs after treatment with GM-CSF and the RA receptor agonist Am80. The TLR-L-treated DCs produced proinflammatory cytokines unlike normal ALDH1A2high MLN-DCs, whereas the E-cadherin-treated DCs did not. Immobilized VCAM-1 and semaphorin 7 A exerted effects similar to those of E-cadherin. Soluble anti-integrin β1 antibodies or inhibitors of integrin signaling molecules suppressed the effects of these immobilized proteins, whereas immobilized anti-integrin β1 antibodies enhanced the GM-CSF/Am80-induced ALDH1A2 expression without inducing proinflammatory cytokines. Sequential stimulation of splenic pre-DCs with GM-CSF/Am80 and immobilized E-cadherin or anti-integrin β1 antibody also induced differentiation to mature DCs with high ALDH activity. The E-cadherin-treated BM-DCs induced gut-tropic Foxp3+ T cells and alleviated DSS–induced colitis, whereas the TLR-L-treated DCs aggravated DSS–induced colitis. The results suggest that integrin β1-mediated signals contribute to the differentiation and maturation of RA-producing anti-inflammatory DCs. PMID:27897208

  4. Three-dimensional modelling of human cytochrome P450 1A2 and its interaction with caffeine and MeIQ

    NASA Astrophysics Data System (ADS)

    Lozano, J. J.; López-de-Briñas, E.; Centeno, N. B.; Guigó, R.; Sanz, F.

    1997-07-01

    The three-dimensional modelling of proteins is a useful tool to fill the gap between the number of sequenced proteins and the number of experimentally known 3D structures. However, when the degree of homology between the protein and the available 3D templates is low, model building becomes a difficult task and the reliability of the results depends critically on the correctness of the sequence alignment. For this reason, we have undertaken the modelling of human cytochrome P450 1A2 starting by a careful analysis of several sequence alignment strategies (multiple sequence alignments and the TOPITS threading technique). The best results were obtained using TOPITS followed by a manual refinement to avoid unlikely gaps. Because TOPITS uses secondary structure predictions, several methods that are available for this purpose (Levin, Gibrat, DPM, NnPredict, PHD, SOPM and NNSP) have also been evaluated on cytochromes P450 with known 3D structures. More reliable predictions on α-helices have been obtained with PHD, which is the method implemented in TOPITS. Thus, a 3D model for human cytochrome P450 1A2 has been built using the known crystal coordinates of P450 BM3 as the template. The model was refined using molecular mechanics computations. The model obtained shows a consistent location of the substrate recognition segments previously postulated for the CYP2 family members. The interaction of caffeine and a carcinogenic aromatic amine (MeIQ), which are characteristic P450 1A2 substrates, has been investigated. The substrates were solvated taking into account their molecular electrostatic potential distributions. The docking of the solvated substrates in the active site of the model was explored with the AUTODOCK programme, followed by molecular mechanics optimisation of the most interesting complexes. Stable complexes were obtained that could explain the oxidation of the considered substrates by cytochrome P450 1A2 and could offer an insight into the role played by water

  5. Downregulation of let-7b promotes COL1A1 and COL1A2 expression in dermis and skin fibroblasts during heat wound repair.

    PubMed

    Liu, Jinyan; Luo, Chengqun; Yin, Zhaoqi; Li, Ping; Wang, Shaohua; Chen, Jia; He, Quanyong; Zhou, Jianda

    2016-03-01

    MicroRNAs (miRs), a class of non‑coding RNAs 18‑25 nucleotides in length, generally serve suppressive role in the regulation of gene expression via directly binding to the 3'‑untranslated region (UTR) of their target mRNA. Previous studies have identified several miRs to be involved in thermal injury repair. However, the role of miR let‑7b during the recovery of thermal injury, in addition to the underlying mechanisms, has not previously been studied. In the present study, the expression of let‑7b was observed to be significantly increased in skin tissue shortly following thermal injury, however, gradually reduced during the recovery of thermal injury. Notably, similar findings were observed in heat‑denatured skin fibroblasts. Furthermore, collagen, type I, alpha 1 (COL1A1) and collagen, type I, alpha 2 (COL1A2), which are associated with the synthesis of type I collagen, were identified as two targets of let‑7b in skin fibroblasts. The overexpression of let‑7b was observed to upregulate the protein expression levels of COL1A1 and COL1A2, while knockdown of let‑7b reduced the levels of COL1A1 and COL1A2 in skin fibroblasts. Furthermore, COL1A1 and COL1A2 were significantly downregulated shortly following thermal injury, while gradually upregulated during healing, in heat‑damaged skin tissue and skin fibroblasts, with the expression profiles opposite to that of let‑7b. Taken together, this suggests that the downregulation of let‑7b in heat‑damaged dermis promotes the synthesis of type I collagen and thus aids in burn wound repair.

  6. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk-results from the EPIC cohort study.

    PubMed

    Dik, Vincent K; Bueno-de-Mesquita, H B As; Van Oijen, Martijn G H; Siersema, Peter D; Uiterwaal, Cuno S P M; Van Gils, Carla H; Van Duijnhoven, Fränzel J B; Cauchi, Stéphane; Yengo, Loic; Froguel, Philippe; Overvad, Kim; Bech, Bodil H; Tjønneland, Anne; Olsen, Anja; Boutron-Ruault, Marie-Christine; Racine, Antoine; Fagherazzi, Guy; Kühn, Tilman; Campa, Daniele; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Peppa, Eleni; Oikonomou, Eleni; Palli, Domenico; Grioni, Sara; Vineis, Paolo; Tumino, Rosaria; Panico, Salvatore; Peeters, Petra H M; Weiderpass, Elisabete; Engeset, Dagrun; Braaten, Tonje; Dorronsoro, Miren; Chirlaque, María-Dolores; Sánchez, María-José; Barricarte, Aurelio; Zamora-Ros, Raul; Argüelles, Marcial; Jirström, Karin; Wallström, Peter; Nilsson, Lena M; Ljuslinder, Ingrid; Travis, Ruth C; Khaw, Kay-Tee; Wareham, Nick; Freisling, Heinz; Licaj, Idlir; Jenab, Mazda; Gunter, Marc J; Murphy, Neil; Romaguera-Bosch, Dora; Riboli, Elio

    2014-07-15

    Coffee and tea contain numerous antimutagenic and antioxidant components and high levels of caffeine that may protect against colorectal cancer (CRC). We investigated the association between coffee and tea consumption and CRC risk and studied potential effect modification by CYP1A2 and NAT2 genotypes, enzymes involved in the metabolization of caffeine. Data from 477,071 participants (70.2% female) of the European Investigation into Cancer and Nutrition (EPIC) cohort study were analyzed. At baseline (1992-2000) habitual (total, caffeinated and decaffeinated) coffee and tea consumption was assessed with dietary questionnaires. Cox proportional hazards models were used to estimate adjusted hazard ratio's (HR) and 95% confidence intervals (95% CI). Potential effect modification by genotype-based CYP1A2 and NAT2 activity was studied in a nested case-control set of 1,252 cases and 2,175 controls. After a median follow-up of 11.6 years, 4,234 participants developed CRC (mean age 64.7 ± 8.3 years). Total coffee consumption (high vs. non/low) was not associated with CRC risk (HR 1.06, 95% CI 0.95-1.18) or subsite cancers, and no significant associations were found for caffeinated (HR 1.10, 95% CI 0.97-1.26) and decaffeinated coffee (HR 0.96, 95% CI 0.84-1.11) and tea (HR 0.97, 95% CI 0.86-1.09). High coffee and tea consuming subjects with slow CYP1A2 or NAT2 activity had a similar CRC risk compared to non/low coffee and tea consuming subjects with a fast CYP1A2 or NAT2 activity, which suggests that caffeine metabolism does not affect the link between coffee and tea consumption and CRC risk. This study shows that coffee and tea consumption is not likely to be associated with overall CRC.

  7. Development and validation of a reversed-phase HPLC method for CYP1A2 phenotyping by use of a caffeine metabolite ratio in saliva.

    PubMed

    Begas, Elias; Kouvaras, Evangelos; Tsakalof, Andreas K; Bounitsi, Maria; Asprodini, Eftihia Konstadinos

    2015-11-01

    CYP1A2 is important for metabolizing various clinically used drugs. Phenotyping of CYP1A2 may prove helpful for drug individualization therapy. Several HPLC methods have been developed for quantification of caffeine metabolites in plasma and urine. Aim of the present study was to develop a valid and simple HPLC method for evaluating CYP1A2 activity during exposure in xenobiotics by the use of human saliva. Caffeine and paraxanthine were isolated from saliva by liquid-liquid extraction (chlorophorm/isopropanol 85/15v/v). Extracts were analyzed by reversed-phase HPLC on a C18 column with mobile phase 0.1% acetic acid/methanol/acetonitrile (80/20/2 v/v) and detected at 273nm. Caffeine and paraxanthine elution times were <13min with no interferences from impurities or caffeine metabolites. Detector response was linear (0.10-8.00µg/ml, R(2) >0.99), recovery was >93% and bias <4.47%. Intra- and inter-day precision was <5.14% (n=6). The limit of quantitation was 0.10µg/ml and the limit of detection was 0.018±0.002µg/mL for paraxanthine and 0.032±0.002µg/ml for caffeine. Paraxanthine/caffeine ratio of 34 healthy volunteers was significantly higher in smokers (p<0.001). Saliva paraxanthine/caffeine ratios and urine metabolite ratios were highly correlated (r=0.85, p<0.001). The method can be used for the monitoring of CYP1A2 activity in clinical practice and in studies relevant to exposure to environmental and pharmacological xenobiotics.

  8. COMPARISON OF OVERALL METABOLISM OF 1, 2, 7, 8-PECDD IN CYP1A2(-L-) KNOCKOUT AND C57BL/6N PARENTAL STRAINS OF MICE

    EPA Science Inventory

    COMPARISON OF OVERALL METABOLISM OF 1,2,3,7,8-PeCDD
    IN CYP1A2 (-/-) KNOCKOUT AND C57BL/6N PARENTAL
    STRAINS OF MICE

    Heldur Hakk1 and Janet J. Diliberto2

    1 USDA-ARS, Biosciences Research Laboratory, P.O. Box 5674, Fargo, ND, USA
    2 US EPA, ORD, National Heal...

  9. S-adenosylmethionine blocks collagen I production by preventing transforming growth factor-beta induction of the COL1A2 promoter.

    PubMed

    Nieto, Natalia; Cederbaum, Arthur I

    2005-09-02

    To study the anti-fibrogenic mechanisms of S-adenosylmethionine (AdoMet), transgenic mice harboring the -17 kb to +54 bp of the collagen alpha2 (I) promoter (COL1A2) cloned upstream from the beta-gal reporter gene were injected with carbon tetrachloride (CCl4) to induce fibrosis and coadministered either AdoMet or saline. Control groups received AdoMet or mineral oil. AdoMet lowered the pathology in CCl4-treated mice as shown by transaminase levels, hematoxylin and eosin, Masson's trichrome staining, and collagen I expression. beta-Galactosidase activity indicated activation of the COL1A2 promoter in stellate cells from CCl4-treated mice and repression of such activation by AdoMet. Lipid peroxidation, transforming growth factor-beta (TGFbeta) expression, and decreases in glutathione levels were prevented by AdoMet. Incubation of primary stellate cells with AdoMet down-regulated basal and TGFbeta-induced collagen I and alpha-smooth muscle actin proteins. AdoMet metabolites down-regulated collagen I protein and mRNA levels. AdoMet repressed basal and TGFbeta-induced reporter activity in stellate cells transfected with COL1A2 promoter deletion constructs. AdoMet blocked TGFbeta induction of the -378 bp region of the COL1A2 promoter and prevented the phosphorylation of extracellular signal-regulated kinase 1/2 and the binding of Sp1 to the TGFbeta-responsive element. These observations unveil a novel mechanism by which AdoMet could ameliorate liver fibrosis.

  10. Sp7/Osterix induces the mouse pro-α2(I) collagen gene (Col1a2) expression via the proximal promoter in osteoblastic cells.

    PubMed

    Yano, Hiroyuki; Hamanaka, Ryoji; Nakamura-Ota, Miki; Adachi, Sawako; Zhang, Juan Juan; Matsuo, Noritaka; Yoshioka, Hidekatsu

    2014-09-26

    Bone is essentially composed of two components, hydroxyapatite and extracellular matrix proteins. The extracellular matrix of bone is primary composed of collagen, mostly type I collagen, with lesser amounts of other types of collagen such as type V collagen. Osteoblast differentiation is a multi-step process in which many classes of factors function in a coordinated manner. Sp7/Osterix, which binds to G/C-rich sequences, is a transcription factor that contributes to osteoblast differentiation. The present study aimed to clarify the involvement of Sp7/Osterix with the proximal promoter region of the mouse Col1a2 gene containing multiple G/C-rich sequences exist. Consequently, a functional analysis of the proximal mouse Col1a2 promoter showed that a substitution mutation of the second G/C-rich sequence from the transcription site specifically decreased the activity of osteoblastic cells. In addition, the experiments of overexpression of Sp7/Osterix and treatment with its specific siRNA showed that this G/C-rich sequence is responsible for the specific expression in osteoblastic cells. Consistent with these data, Sp7/Osterix bound to the region and increased the expression of the Col1a2 gene in association with osteoblast differentiation in the culture system.

  11. Functional and pharmacological characterization of two different ASIC1a/2a heteromers reveals their sensitivity to the spider toxin PcTx1

    PubMed Central

    Joeres, Niko; Augustinowski, Katrin; Neuhof, Andreas; Assmann, Marc; Gründer, Stefan

    2016-01-01

    Acid Sensing Ion Channels (ASICs) detect extracellular proton signals and are involved in synaptic transmission and pain sensation. ASIC subunits assemble into homo- and heteromeric channels composed of three subunits. Single molecule imaging revealed that heteromers composed of ASIC1a and ASIC2a, which are widely expressed in the central nervous system, have a flexible 2:1/1:2 stoichiometry. It was hitherto not possible, however, to functionally differentiate these two heteromers. To have a homogenous population of ASIC1a/2a heteromers with either 2:1 or 1:2 stoichiometry, we covalently linked subunits in the desired configuration and characterized their functional properties in Xenopus oocytes. We show that the two heteromers have slightly different proton affinity, with an additional ASIC1a subunit increasing apparent affinity. Moreover, we found that zinc, which potentiates ASIC2a-containing ASICs but not homomeric ASIC1a, potentiates both heteromers. Finally, we show that PcTx1, which binds at subunit-subunit interfaces of homomeric ASIC1a, inhibits both heteromers suggesting that ASIC2a can also contribute to a PcTx1 binding site. Using this functional fingerprint, we show that rat cortical neurons predominantly express the ASIC1a/2a heteromer with a 2:1 stoichiometry. Collectively, our results reveal the contribution of individual subunits to the functional properties of ASIC1a/2a heteromers. PMID:27277303

  12. Activities of cytochrome P450 1A2, N-acetyltransferase 2, xanthine oxidase, and cytochrome P450 2D6 are unaltered in children with cystic fibrosis.

    PubMed

    Kennedy, Mary Jayne; Scripture, Charity D; Kashuba, Angela D M; Scott, Christy S; Gaedigk, Andrea; Kearns, Gregory L

    2004-03-01

    The activities of hepatic cytochrome P450 (CYP) 1A2, N-acetyltransferase 2 (NAT-2), xanthine oxidase (XO), and CYP2D6 were evaluated in 12 young children (aged 3-8 years) with mild cystic fibrosis (CF) and 12 age-matched healthy control subjects by use of standard caffeine and dextromethorphan phenotyping methods. Subjects were given 4 oz of Coca-Cola (approximately 35 mg caffeine) (The Coca-Cola Company, Atlanta, Ga) and a single 0.5-mg/kg dose of dextromethorphan. Urine was collected for 8 hours after biomarker administration, and enzyme activity was assessed by use of previously validated caffeine and dextromethorphan molar ratios. CYP2D6 genotyping was also performed in 10 of 12 subjects with CF and 11 of 12 control subjects. There were no significant differences in the urinary molar ratios for any of the enzyme systems evaluated. These data suggest that CF does not alter the activities of CYP1A2, NAT-2, XO, and CYP2D6. Altered biotransformation of drugs in this patient population is likely enzyme- and isoform-specific and thus is apparent for only selected compounds that are substrates for enzymes other than CYP1A2, NAT-2, XO, and CYP2D6.

  13. Changes in CYP1A2 activity in humans after 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) administration using caffeine as a probe drug.

    PubMed

    Yubero-Lahoz, Samanta; Pardo, Ricardo; Farre, Magí; Mathuna, Brian Ó; Torrens, Marta; Mustata, Cristina; Perez-Mañá, Clara; Langohr, Klaus; Carbó, Marcel Lí; de la Torre, Rafael

    2012-01-01

    3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is a ring-substituted amphetamine widely used for recreational purposes. MDMA is predominantly O-demethylenated in humans by cytochrome P450 (CYP) 2D6, and is also a potent mechanism-based inhibitor of the enzyme. After assessing the inhibition and recovery of CYP2D6 in a previous study, the aim of this work was to study in humans the activity of CYP1A2 in vivo after CYP2D6 had been inhibited by MDMA, using caffeine as a probe drug. Twelve male and nine female recreational MDMA users were included. In session 1, 100 mg of caffeine was given at 0 h. In session 2, a 1.5 mg/kg MDMA dose (range 75-100 mg) was given at 0 h followed by a 100 mg dose of caffeine 4 h later. Aliquots of plasma were assayed for caffeine (137X) and paraxanthine (17X) and statistically significant differences were assessed with a one-way ANOVA. There were significant gender differences at basal condition, which persisted after MDMA administration. CYP1A2 activity was higher in both genders after drug administration, with an increase in 40% in females and 20% in males. Results show an increase in CYP1A2 activity when CYP2D6 is inhibited by MDMA in both genders, being more pronounced in females.

  14. Analysis of caffeine and paraxanthine in human saliva with ultra-high-performance liquid chromatography for CYP1A2 phenotyping.

    PubMed

    Jordan, Nan Yeun; Mimpen, Jolet Y; van den Bogaard, Willie J M; Flesch, Frits M; van de Meent, Michiel H M; Torano, Javier Sastre

    2015-07-15

    Cytochrome P450 1A2 (CYP1A2) plays an important role in drug metabolism. Caffeine (CAF) is converted into paraxanthine (PX) by this enzyme and is used as a xenobiotic substrate to determine the CYP1A2 phenotype in humans. A method for the quantification of CAF and PX in saliva was developed using liquid-liquid extraction with ethyl acetate and analysis with ultra-high-performance liquid chromatography. Peaks from CAF, PX and internal standard were resolved within 6min. The method was validated from 0.05 to 5μgmL(-1) CAF and 0.025-2.5μgmL(-1) PX. Inter- and intra-day accuracies ranged from 91.2 to 107.2% with precisions <13.5%. The limits of detection were 0.16 and 0.63 ngmL(-1) for PX and CAF, respectively. PX/CAF concentration ratios from volunteers were 0.26-1.09 with mean ratios of 0.78±0.26 and 0.38±0.10 for regular and light/non-coffee drinkers, respectively.

  15. Biallelic mutations in the gene encoding eEF1A2 cause seizures and sudden death in F0 mice

    PubMed Central

    Davies, Faith C. J.; Hope, Jilly E.; McLachlan, Fiona; Nunez, Francis; Doig, Jennifer; Bengani, Hemant; Smith, Colin; Abbott, Catherine M.

    2017-01-01

    De novo heterozygous missense mutations in the gene encoding translation elongation factor eEF1A2 have recently been found to give rise to neurodevelopmental disorders. Children with mutations in this gene have developmental delay, epilepsy, intellectual disability and often autism; the most frequently occurring mutation is G70S. It has been known for many years that complete loss of eEF1A2 in mice causes motor neuron degeneration and early death; on the other hand heterozygous null mice are apparently normal. We have used CRISPR/Cas9 gene editing in the mouse to mutate the gene encoding eEF1A2, obtaining a high frequency of biallelic mutations. Whilst many of the resulting founder (F0) mice developed motor neuron degeneration, others displayed phenotypes consistent with a severe neurodevelopmental disorder, including sudden unexplained deaths and audiogenic seizures. The presence of G70S protein was not sufficient to protect mice from neurodegeneration in G70S/− mice, showing that the mutant protein is essentially non-functional. PMID:28378778

  16. SIRT1 deacetylates RFX5 and antagonizes repression of collagen type I (COL1A2) transcription in smooth muscle cells

    SciTech Connect

    Xia, Jun; Wu, Xiaoyan; Yang, Yuyu; Zhao, Yuhao; Fang, Mingming; Xie, Weiping; Wang, Hong; Xu, Yong

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer SIRT1 interacts with and deacetylates RFX5. Black-Right-Pointing-Pointer SIRT1 activation attenuates whereas SIRT1 inhibition enhances collagen repression by RFX5 in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 promotes cytoplasmic localization and proteasomal degradation of RFX5 and cripples promoter recruitment of RFX5. Black-Right-Pointing-Pointer IFN-{gamma} represses SIRT1 expression in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 agonist alleviates collagen repression by IFN-{gamma} in vascular smooth muscle cells. -- Abstract: Decreased expression of collagen by vascular smooth muscle cells (SMCs) within the atherosclerotic plaque contributes to the thinning of the fibrous cap and poses a great threat to plaque rupture. Elucidation of the mechanism underlying repressed collagen type I (COL1A2) gene would potentially provide novel solutions that can prevent rupture-induced complications. We have previously shown that regulatory factor for X-box (RFX5) binds to the COL1A2 transcription start site and represses its transcription. Here we report that SIRT1, an NAD-dependent, class III deacetylase, forms a complex with RFX5. Over-expression of SIRT1 or NAMPT, which synthesizes NAD+ to activate SIRT1, or treatment with the SIRT1 agonist resveratrol decreases RFX5 acetylation and disrupts repression of the COL1A2 promoter activity by RFX5. On the contrary, knockdown of SIRT1 or treatment with SIRT1 inhibitors induces RFX5 acetylation and enhances the repression of collagen transcription. SIRT1 antagonizes RFX5 activity by promoting its nuclear expulsion and proteasomal degradation hence dampening its binding to the COL1A2 promoter. The pro-inflammatory cytokine IFN-{gamma} represses COL1A2 transcription by down-regulating SIRT1 expression in SMCs. Therefore, our data have identified as novel pathway whereby SIRT1 maintains collagen synthesis in SMCs by modulating RFX5 activity.

  17. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    SciTech Connect

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  18. Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of Chios mastic gum to male Wistar rats.

    PubMed

    Katsanou, Efrosini S; Kyriakopoulou, Katerina; Emmanouil, Christina; Fokialakis, Nikolas; Skaltsounis, Alexios-Leandros; Machera, Kyriaki

    2014-01-01

    Chios mastic gum (CMG), a resin derived from Pistacia lentiscus var. chia, is known since ancient times for its pharmacological activities. CYP1A1 and CYP1A2 enzymes are among the most involved in the biotransformation of chemicals and the metabolic activation of pro-carcinogens. Previous studies referring to the modulation of these enzymes by CMG have revealed findings of unclear biological and toxicological significance. For this purpose, the modulation of CYP1A1 and CYP1A2 enzymes in the liver of male Wistar rats following oral administration of CMG extract (CMGE), at the levels of mRNA and CYP1A1 enzyme activity, was compared to respective enzyme modulation following oral administration of a well-known bioactive natural product, caffeine, as control compound known to involve hepatic enzymes in its metabolism. mRNA levels of Cyp1a1 and Cyp1a2 were measured by reverse transcription real-time polymerase chain reaction and their relative quantification was calculated. CYP1A1 enzyme induction was measured through the activity of ethoxyresorufin-O-deethylase (EROD). The results indicated that administration of CMGE at the recommended pharmaceutical dose does not induce significant transcriptional modulation of Cyp1a1/2 and subsequent enzyme activity induction of CYP1A1 while effects of the same order of magnitude were observed in the same test system following the administration of caffeine at the mean daily consumed levels. The outcome of this study further confirms the lack of any toxicological or biological significance of the specific findings on liver following the administration of CMGE.

  19. Arginine vasotocin V1a2 receptor and GnRH-I co-localize in preoptic neurons of the sex changing grouper, Epinephelus adscensionis.

    PubMed

    Kline, Richard J; Holt, G Joan; Khan, Izhar A

    2016-01-01

    The arginine vasotocin/vasopressin (AVT/AVP) and gonadotropin releasing hormone (GnRH) systems are known to control sexual behaviors and reproduction, respectively, in different vertebrate groups. However, a direct functional connection between these two neuroendocrine systems has not been demonstrated for any vertebrate species. Therefore, the objective of this research was to test the hypothesis that AVT acts on the GnRH system via an AVT V1a receptor in a sex changing grouper species, the rock hind, Epinephelus adscensionis. AVT V1a2 receptors were co-localized with GnRH-I on neurons in the preoptic anterior hypothalamus identifying a structural linkage between the AVT system and GnRH-I. Transcripts for avt, gnrh-I, and two AVT receptor subtypes (v1a1 and v1a2) were isolated and characterized for E. adscensionis and their expression was measured in males and females by q-RT-PCR. Translation of V1a-type cDNA sequences revealed two distinct forms of the AVT V1a receptor in E. adscensionis brain similar to those reported for other species. The observation of significantly higher gnrh-I mRNA in the POA+H of rock hind males as compared to females suggests differential regulation of the gnrh-I transcripts in the two sexes of this protogynous species. In male E. adscensionis, but not in females, a negative relationship was seen between plasma 11-ketotestosterone (11-KT) and the v1a1 receptor mRNA levels in the POA+H, while a positive trend was observed between 11-KT and v1a2 receptor mRNA levels, indicating that these receptor forms may be differentially regulated.

  20. A Physiologically Based Pharmacokinetic Model to Predict Disposition of CYP2D6 and CYP1A2 Metabolized Drugs in Pregnant Women

    PubMed Central

    Ke, Alice Ban; Nallani, Srikanth C.; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina

    2013-01-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age–dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2–metabolized drug theophylline (THEO) and CYP2D6–metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  1. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    SciTech Connect

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2012-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  2. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    SciTech Connect

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  3. Oxidations of p-alkoxyacylanilides catalyzed by human cytochrome P450 1A2: structure-activity relationships and simulation of rate constants of individual steps in catalysis.

    PubMed

    Yun, C H; Miller, G P; Guengerich, F P

    2001-04-10

    Human cytochrome P450 (P450) 1A2 is involved in the oxidation of many important drugs and carcinogens. The prototype substrate phenacetin is oxidized to an acetol as well as the O-dealkylation product [Yun, C.-H., Miller, G. P., and Guengerich, F. P. (2000) Biochemistry 39, 11319-11329]. In an effort to improve rates of catalysis of P450 1A2 enzymes, we considered a set of p-alkoxyacylanilide analogues of phenacetin and found that variations in the O-alkyl and N-acyl substituents altered the rates of the two oxidation reactions and the ratio of acetol/phenol products. Moving one methylene group of phenacetin from the O-alkyl group to the N-acyl moiety increased rates of both oxidations approximately 5-fold and improved the coupling efficiency (oxidation products formed/NADPH consumed) from 6% to 38%. Noncompetitive kinetic deuterium isotope effects of 2-3 were measured for all O-dealkylation reactions examined with wild-type P450 1A2 and the E225I mutant, which has 6-fold higher activity. A trend of decreasing kinetic deuterium isotope effect for E225I > wild-type > mutant D320A was observed for O-demethylation of p-methoxyacetanilide, which follows the trend for k(cat). The set of O-dealkylation and acetol formation results for wild-type P450 1A2 and the E225I mutant with several of the protiated and deuterated substrates were fit to a model developed for the basic catalytic cycle and a set of microscopic rate constants in which the only variable was the rate of product formation (substrate oxygenation, including hydrogen abstraction). In this model, k(cat) is considerably less than any of the microscopic rate constants and is affected by several individual rate constants, including the rate of formation of the oxygenating species, the rate of substrate oxidation by the oxygenating species, and the rates of generation of reduced oxygen species (H(2)O(2), H(2)O). This analysis of the effects of the individual rate constants provides a framework for consideration of

  4. Phenotype of the Cyp1a1/1a2/1b1(−/−) Triple-Knockout Mouse*

    PubMed Central

    Dragin, Nadine; Shi, Zhanquan; Madan, Rajat; Karp, Christopher L.; Sartor, Maureen A.; Chen, Chi; Gonzalez, Frank J.; Nebert, Daniel W.

    2009-01-01

    Crossing the Cyp1a1/1a2(−/−) double-knockout mouse with the Cyp1b1(−/−) single-knockout mouse, we generated the Cyp1a1/1a2/1b1(−/−) triple-knockout mouse. In this triple-knockout mouse, statistically significant phenotypes (with incomplete penetrance) included slower weight gain and greater risk of embryolethality before gestational day 11, hydrocephalus, hermaphroditism, and cystic ovaries. Oral benzo[a]pyrene (BaP) daily for 18 days in the Cyp1a1/1a2(−/−) produced the same degree of marked immunosuppression as seen in the Cyp1a1(−/−) mouse; we believe this reflects the absence of intestinal CYP1A1. Oral BaP-treated Cyp1a1/1a2/1b1(−/−) mice showed the same “rescued” response as that seen in the Cyp1a1/1b1(−/−) mouse; we believe this reflects the absence of CYP1B1 in immune tissues. Urinary metabolite profiles were dramatically different between untreated triple-knockout and wild-type; principal components analysis showed that the shifts in urinary metabolite patterns in oral BaP-treated triple-knockout and wild-type mice were also strikingly different. Liver microarray cDNA differential expression (comparing triple-knockout with wild-type) revealed at least 89 genes up- and 62 genes down-regulated (P-value ≤0.00086). Gene Ontology “classes of genes” most perturbed in the untreated triple-knockout (compared with wild-type) include lipid, steroid, and cholesterol biosynthesis and metabolism; nucleosome and chromatin assembly; carboxylic and organic acid metabolism; metal-ion binding; and ion homeostasis. In the triple-knockout compared with the wild-type mice, response to zymosan-induced peritonitis was strikingly exaggerated, which may well reflect down-regulation of Socs2 expression. If a single common molecular pathway is responsible for all of these phenotypes, we suggest that functional effects of the loss of all three Cyp1 genes could be explained by perturbations in CYP1-mediated eicosanoid production, catabolism and

  5. Molecular Cloning, Tissue Distribution, and Functional Characterization of Marmoset Cytochrome P450 1A1, 1A2, and 1B1.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2016-01-01

    The common marmoset (Callithrix jacchus), a New World monkey, has potential to be an animal model for drug metabolism studies. In this study, we identified and characterized cytochrome P450 (P450) 1A1 and 1B1 in addition to the known P450 1A2 in marmosets. Marmoset P450 1A1 and 1B1 cDNA contained open reading frames encoding 512 and 543 amino acids, respectively, with high sequence identities (90%-93%) to other primate P450 1A1s and 1B1s. A phylogenetic tree based on amino acid sequences showed close evolutionary relationships among marmoset, macaque, and human P450 1A and 1B enzymes. By mRNA quantification and immunoblot analyses in five marmoset tissues, P450 1A1 was mainly expressed in lungs and small intestines, and P450 1A2 was expressed predominantly in livers. In contrast, P450 1B1 was expressed in all tissues tested. Marmoset P450 1A1, 1A2, and 1B1 heterologously expressed in Escherichia coli catalyzed 7-ethoxyresorufin O-deethylation, 7-ethoxycoumarin O-deethylation, and phenacetin O-deethylation, similar to those of humans and cynomolgus monkeys. Notably, marmoset P450 1A1 and 1A2 more efficiently catalyzed 7-ethoxyresorufin O-deethylation than those of the human homologs, but were comparable to those of the cynomolgus monkey homologs. Additionally, marmoset P450 1B1 preferentially catalyzed estradiol 4-hydroxylation; however, rat P450 1B1 more favorably catalyzed estradiol 2-hydroxylation, indicating that the estradiol hydroxylation specificity of marmoset P450 1B1 was similar to those of human and cynomolgus monkey P450 1B1. These results indicated that marmoset P450 1A and 1B enzymes had functional characteristics similar to those of humans and cynomolgus monkeys, suggesting that P450 1A and 1B-dependent metabolism was similar among marmosets, cynomolgus monkeys, and humans.

  6. Identification and characterization of psoralen and isopsoralen as potent CYP1A2 reversible and time-dependent inhibitors in human and rat preclinical studies.

    PubMed

    Zhuang, Xiao-Mei; Zhong, Yu-Huan; Xiao, Wei-Bin; Li, Hua; Lu, Chuang

    2013-11-01

    Naturally occurring furanocoumarin compounds psoralen (PRN) and isopsoralen (IPRN) are bioactive constituents found in herbaceous plants. They are widely used as active ingredients in several Chinese herbal medicines. In this study, the CYP1A2 inhibitory potential of PRN and IPRN was investigated in rats in vitro and in vivo as well as in human liver microsomes. Both compounds exhibited reversible and time-dependent inhibition toward rat microsomal cyp1a2. The IC(50), k(inact), and K(I) values were 10.4 ± 1.4 μM, 0.060 ± 0.002 min(-1), and 1.13 ± 0.12 μM for PRN, and 7.1 ± 0.6 μM, 0.10 ± 0.01 min(-1), and 1.95 ± 0.31 μM for IPRN, respectively. In human liver microsomal incubations, potent reversible CYP1A2 inhibition was observed for both compounds, with IC(50) values of 0.26 ± 0.01 μM and 0.22 ± 0.03 μM for PRN and IPRN, respectively. However, time-dependent inhibition was only observed for IPRN, with kinact and KI values of 0.050 ± 0.002 min(-1) and 0.40 ± 0.06 μM, respectively. Coadministration with PRN or IPRN significantly inhibited cyp1a2 activity in rats, with the area under the curve (AUC) of phenacetin increasing more than 5-fold. Simcyp simulation predicted that PRN would cause 1.71- and 2.12-fold increases in the phenacetin AUC in healthy volunteers and smokers, respectively. IPRN, on the other hand, would result in 3.24- and 5.01-fold increases in phenacetin AUCs in healthy volunteers and smokers, respectively. These findings represent the first detailed report comparing the potential drug-drug interactions of PRN and IPRN, and provide useful information for balancing safe and efficacious doses of PRN and IPRN.

  7. Hypervelocity Impact (HVI). Volume 2; WLE Small-Scale Fiberglass Panel Flat Multi-Layer Targets A-1, A-2, and B-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, A-2, and B-2 was to study hypervelocity impacts through multi-layered panels simulating Whipple shields on spacecraft. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  8. The 3A2, 1A2, 3B2, and 1B2 electronic states of CH2: Small bond angle states

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yukio; Schaefer, Henry F., III

    1997-02-01

    Molecular structures with very small bond angles are a curiosity in chemistry. The two triplet (3A2 and 3B2) and two singlet (1A2 and 1B2) excited states of CH2 have been investigated systematically using ab initio electronic structure theory. For these four states total energies and physical properties including geometries, dipole moments, harmonic vibrational frequencies, and associated infrared intensities were determined with the single and double excitation configuration interaction (CISD) method using four different basis sets. It is confirmed in this study that the four states of CH2 all have bent structures with longer CH bond lengths and smaller bond angles than the four lower-lying (X˜, ã, b˜, and c˜) states of CH2. At the CISD optimized geometries single point energies were determined with complete active space self-consistent-field (CASSCF) and CASSCF second-order configuration interaction (SOCI) levels of theory. For the triplet excited states single point energies were also determined employing coupled cluster with single and double excitations (CCSD) and CCSD with perturbative triple excitations methods. At the CISD level with the largest basis set, the triple zeta plus triple polarizations with two sets of higher angular momentum and two sets of diffuse functions basis set [TZ3P(2 f,2d)+2diff], the bond angles were predicted to be 40.6° (3A2), 46.1° (1A2), 76.3° (3B2), and 81.3° (1B2), while the dipole moments were determined to be 2.35 (3A2), 2.26 (1A2), 1.69 (3B2), and 1.60 debye (1B2), respectively. With the most accurate method in this study, the CASSCF-SOCI level with the TZ3P(2 f,2d)+2diff basis set, the energy separations (Te value) between the ground state (X˜ 3B1) and the four excited states were predicted to be 73.7 kcal/mol (3.20 eV, 25 800 cm-1) for the 3A2 state, 96.8 kcal/mol (4.20 eV, 33 800 cm-1) for the 1A2 state, 151.0 kcal/mol (6.55 eV, 52 800 cm-1) for the 3B2 state, and 182.5 kcal/mol (7.91 eV, 63 800 cm-1) for the 1B2

  9. Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: Evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta

    SciTech Connect

    Spotila, L.D.; Constantinou, C.D.; Sereda, L.; Ganguly, A.; Prockop, D.J. ); Riggs, B.L. )

    1991-06-15

    Mutations in the two genes for type I collagen (COL1A1 or COL1A2) cause osteogenesis imperfecta (OI), a heritable disease characterized by moderate to extreme brittleness of bone early in life. Here, the authors show that a 52-year-old post menopausal woman with severe osteopenia and a compression fracture of a thoracic vertebra had a mutation in the gene for the {alpha}2(I) chain of type I collagen (COL1A2) similar to mutations that cause OI. cDNA was prepared from the woman's skin fibroblast RNA and assayed for the presence of a mutation by treating DNA heteroduplexes with carbodiimide. The results indicated a sequence variation in the region encoding amino acid residues 660-667 of the {alpha}2(I) chain. Further analysis demonstrated a single-base mutation that caused a serine-for-glycine substitution at position 661 of the {alpha}2(I) triple-helical domain. The substitution produced posttranslational overmodification of the collagen triple helix, as is seen with most glycine substitutions that cause OI. The patient had a history of five previous fractures, slightly blue sclerae, and slight hearing loss. Therefore, the results suggest that there may be phenotypic and genotypic overlap between mild osteogenesis imperfecta and postmenopausal osteoporosis, and that a subset of women with postmenopausal osteoporosis may have mutations in the genes for type I procollagen.

  10. Modelling the metabolic action of human and rat CYP1A2 and its relationship with the carcinogenicity of heterocyclic amines

    NASA Astrophysics Data System (ADS)

    da Fonseca, Rute; Menziani, Maria Cristina; Melo, André; João Ramos, Maria

    Cytochrome P450 (CYP) is a family of enzymes responsible for organism detoxification. However, some of the members of the CYP1A subfamily also catalyse the activation of heterocyclic amines (HAs), present in cooked meat, to carcinogenic compounds which have been shown to increase the risk of breast, colorectal and lung cancer. In humans, CYP1A2 is the enzyme with the most significant action in HA metabolism but in rodents CYP1A1 is also important in this biotransformation. Understanding the metabolic action of these enzymes is essential to predict the factors that enable the formation of the carcinogenic products. We have built two models of CYP1A2, one for the human enzyme and one for the rat homologue. The templates chosen include the only X-ray structure published to date for a mammal CYP, a quimeric C2A5 from rabbit, as well as CYPs belonging to Bacillus megaterium (CYPBm-3), Pseudomonas putida (CYPcam), Pseudomonas sp. (CYPterp), and Saccharopolyspora erythraea (CYPeryf). Two HAs, MeIQ (2-amino-3,4-dimethylimidazo[4,5-f]quinoline) and MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline), known substrates of human and rat CYPIA2, were docked in the active site of the models, providing information regarding the different catalytic rates associated with the metabolisms in both enzymes. This is important for analysing the behaviour of animal models concerning the testing of anticancer drugs.

  11. Quantification of caffeine in human saliva by Nuclear Magnetic Resonance as an alternative method for cytochrome CYP1A2 phenotyping.

    PubMed

    Schievano, Elisabetta; Finotello, Claudia; Navarini, Luciano; Mammi, Stefano

    2015-08-01

    The first step in caffeine metabolism is mediated for over 95% by the CYP1A2 isoform of cytochrome P450. Therefore, CYP1A2 activity is most conveniently measured through the determination of caffeine clearance. The HPLC quantification of caffeine is fully validated and is the most widely used method. It can be performed on saliva, which is gaining importance as a diagnostic biofluid and permits easy and low invasive sampling. Here, we present a quantitative (1)H nuclear magnetic resonance (NMR) method to determine caffeine in human saliva. The procedure is simple because it involves only an ultra-filtration step and a direct extraction in a deuterated solvent, yielding a matrix that is then analyzed. The reliability of this NMR method was demonstrated in terms of linearity, accuracy, recovery, and limits of detection (LoD). Good precision (relative standard deviation, RSD <4%), a recovery of >95% and LoD of 6.8·10(-7) mol L(-1) were obtained. The method was applied to samples collected from different volunteers over 24h following a single oral dose of about 100mg of caffeine administered with either coffee beverage or a capsule.

  12. Rough Set Theory as an Interpretable Method for Predicting the Inhibition of Cytochrome P450 1A2 and 2D6.

    PubMed

    Burton, Julien; Petit, Joachim; Danloy, Emeric; Maggiora, Gerald M; Vercauteren, Daniel P

    2013-07-01

    Early prediction of ADME properties such as the cytochrome P450 (CYP) mediated drug-drug interactions is an important challenge in the drug discovery area. In this study, we propose to couple an original data mining approach based on Rough Set Theory (RST) to a structural description of molecules. The latter was achieved by using two types of structural keys: (1) the MACCS keys and (2) a set of five in-house fingerprints based on properties of the electron density distributions of chemical groups. The compounds considered are involved in the inhibition of CYP1A2 and CYP2D6. RST allowed the extraction of rules further used as classifiers to predict the inhibitory profile of an independent set of molecules. The results reached prediction accuracies of 90.6 and 88.2 % for CYP1A2 and CYP2D6, respectively. In addition, these classifiers were analyzed to determine which structural fragments were most used for building the rules, revealing relationships between the occurrence of particular molecular fragments and CYP inhibition. The results assessed RST as a suitable tool to build strongly predictive models and infer structure-activity rules associated with potency.

  13. Gene sequences for cytochromes p450 1A1 and 1A2: the need for biomarker development in sea otters (Enhydra lutris).

    PubMed

    Hook, Sharon E; Cobb, Michael E; Oris, James T; Anderson, Jack W

    2008-11-01

    There has been recent public concern regarding the impacts of environmental pollution on populations of otters. Population level impacts have been seen with otter (Lutra lutra) populations in Europe due to polychlorinated biphenyls, and with some segments of the Prince William Sound, AK, sea otter (Enhydra lutris) population following the Exxon Valdez oil spill. Despite public interest in these animals and their ecological significance, there are few tools that allow for the study of otter's response to contaminant exposure. Cytochrome p450 1A (CYP1A) performs the first step in metabolizing many xenobiotics, including many polychlorinated biphenyls and polycyclic aromatic hydrocarbons. CYP1A induction is a frequently used biomarker of exposure to these compounds. Despite the potential importance of this gene in ecological risk assessment, the complete coding sequence has not been published for any otter species. This study's objective was to isolate the gene for CYP1A1 and CYP1A2 in sea otters using a series of PCR-based approaches. The coding sequences from CYP1A1 and CYP1A2 from sea otters were identified and published in GenBank. Both CYP1A sequences are homologous to those obtained from marine mammals and other carnivores. These sequences will be useful as tools for researchers assessing contaminant exposure in mustelid populations.

  14. CYP1A2 and NAT2 phenotyping and 3-aminobiphenyl and 4-aminobiphenyl hemoglobin adduct levels in smokers and non-smokers

    SciTech Connect

    Sarkar, Mohamadi; Stabbert, Regina; Kinser, Robin D.; Oey, Jan; Rustemeier, Klaus; Holt, Klaus von; Schepers, Georg; Walk, Roger A.; Roethig, Hans J.

    2006-06-15

    Some aromatic amines are considered to be putative bladder carcinogens. Hemoglobin (Hb) adducts of 3-aminobiphenyl (3-ABP) and 4-aminobiphenyl (4-ABP) have been used as biomarkers of exposure to aromatic amines from cigarette smoke. One of the goals of this study was to determine intra- and inter-individual variability in 3-ABP and 4-ABP Hb adducts and to explore the predictability of ABP Hb adduct levels based on caffeine phenotyping. The study was conducted in adult smokers (S, n = 65) and non-smokers (NS, n 65). The subjects were phenotyped for CYP1A2 and NAT2 using urinary caffeine metabolites. Blood samples were collected twice within 6 weeks and adducts measured by GC/MS. The levels of 4-ABP Hb adducts were significantly (p < 0.0001) greater in S (34.5 {+-} 21.06 pg/g Hb) compared to NS (6.3 {+-} 3.02 pg/g Hb). The levels of 3-ABP Hb adducts were below the limit of quantification (BLOQ) in most (82%) of the NS and about 10-fold lower in S (3.6 {+-} 3.29 pg/g Hb) compared to 4-ABP Hb adducts. No differences were observed in the adduct levels between weeks 1 and 6 in the smokers, suggesting that a single sample would be adequate to monitor cigarette smoke exposure. The regression model developed with CYP1A2, NAT2 phenotype and number of cigarettes smoked (NCIG) accounted for 47% of the variability in 3-ABP adducts, whereas 32% variability in 4-ABP adducts was accounted by CYP1A2 and NCIG. The ratio of 4-ABP Hb adducts in adult S:NS was {approx} 5:1, whereas 3-ABP Hb adducts levels were BLOQ in some S, exhibited large interindividual variability ({approx} 91% compared to 57% for 4-ABP Hb) and poor dose response relationship. Therefore, 4-ABP Hb adduct levels may be a more useful biomarker of aminobiphenyl exposure from cigarette smoke.

  15. Ab initio quantum study of the photodynamics and absorption spectrum for the coupled 1(1)A2 and 1(1)B1 states of SO2.

    PubMed

    Lévêque, Camille; Komainda, Adrian; Taïeb, Richard; Köppel, Horst

    2013-01-28

    The nonadiabatic photoinduced dynamics occurring in the coupled 1(1)A(2) and 1(1)B(1) excited states of SO(2) is investigated using ab initio quantum dynamical methods. To this end, large scale calculations of the potential energy surfaces have been carried out at the multireference configuration interaction level. All vibrational degrees of freedom of the molecule are considered in the potential energy surface calculations and the quantum dynamical treatment. To deal with the symmetry-allowed conical intersection which occurs between the potential energy surfaces, we use the diabatic picture in the framework of regularized diabatic states. Wave-packet propagation on the coupled surfaces was performed and allowed to reproduce with good accuracy the complex absorption band observed experimentally in the 29,000-42,000 cm(-1) range. This provides a basis for a subsequent theoretical treatment of the high order harmonic spectra of SO(2).

  16. Understanding the Mechanism of Human P450 CYP1A2 Using Coupled Quantum-Classical Simulations in a Dynamical Environment

    SciTech Connect

    Draeger, E W; Bennion, B; Gygi, F; Lightstone, F

    2006-02-10

    The reaction mechanism of the human P450 CYP1A2 enzyme plays a fundamental role in understanding the effects of environmental carcinogens and mutagens on humans. Despite extensive experimental research on this enzyme system, key questions regarding its catalytic cycle and oxygen activation mechanism remain unanswered. In order to elucidate the reaction mechanism in human P450, new computational methods are needed to accurately represent this system. To enable us to perform computational simulations of unprecedented accuracy on these systems, we developed a dynamic quantum-classical (QM/MM) hybrid method, in which ab initio molecular dynamics are coupled with classical molecular mechanics. This will provide the accuracy needed to address such a complex, large biological system in a fully dynamic environment. We also present detailed calculations of the P450 active site, including the relative charge transfer between iron porphine and tetraphenyl porphyrin.

  17. Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1, CYP1A2, and CYP2C9.

    PubMed

    Otake, Yoko; Walle, Thomas

    2002-02-01

    There is very limited information on cytochrome P450 (P450)-mediated oxidative metabolism of dietary flavonoids in humans. In this study, we used human liver microsomes and recombinant P450 isoforms to examine the metabolism of two flavonols, galangin and kaempferide, and one flavone, chrysin. Both galangin and kaempferide, but not chrysin, were oxidized by human liver microsomes to kaempferol, with K(m) values of 9.5 and 17.8 microM, respectively. These oxidations were catalyzed mainly by CYP1A2 but also by CYP2C9. Consistent with these observations, the human liver microsomal metabolism of galangin and kaempferide were inhibited by the P450 inhibitors furafylline and sulfaphenazole. In addition, CYP1A1, although less efficient, was also able to oxidize the two flavonols. Thus, dietary flavonols are likely to undergo oxidative metabolism mainly in the liver but also extrahepatically.

  18. High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica

    DOE PAGES

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; ...

    2015-06-14

    Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. Lastly, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Rootmore » Nodule Bacteria (GEBA-RNB) project proposal.« less

  19. High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica

    SciTech Connect

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; Reddy, T. B. K.; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Baeshen, Mohammed; Baeshen, Nabih; Kyrpides, Nikos; Reeve, Wayne

    2015-06-14

    Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. Lastly, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.

  20. Genetic control of a central pattern generator: rhythmic oromotor movement in mice is controlled by a major locus near Atp1a2.

    PubMed

    Boughter, John D; Mulligan, Megan K; St John, Steven J; Tokita, Kenichi; Lu, Lu; Heck, Detlef H; Williams, Robert W

    2012-01-01

    Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h(2)≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F(1) hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10). Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons. Both this subunit and the entire Na(+)/K(+)-ATPase molecule have been implicated in rhythmogenesis for respiration and locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central pattern generator tempo.

  1. Genetic Control of a Central Pattern Generator: Rhythmic Oromotor Movement in Mice Is Controlled by a Major Locus near Atp1a2

    PubMed Central

    Boughter, John D.; Mulligan, Megan K.; St. John, Steven J.; Tokita, Kenichi; Lu, Lu; Heck, Detlef H.; Williams, Robert W.

    2012-01-01

    Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h2≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F1 hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10). Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons. Both this subunit and the entire Na+/K+-ATPase molecule have been implicated in rhythmogenesis for respiration and locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central pattern generator tempo. PMID:22675444

  2. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM

    PubMed Central

    Amin, N; Byrne, E; Johnson, J; Chenevix-Trench, G; Walter, S; Nolte, I M; Vink, J M; Rawal, R; Mangino, M; Teumer, A; Keers, J C; Verwoert, G; Baumeister, S; Biffar, R; Petersmann, A; Dahmen, N; Doering, A; Isaacs, A; Broer, L; Wray, N R; Montgomery, G W; Levy, D; Psaty, B M; Gudnason, V; Chakravarti, A; Sulem, P; Gudbjartsson, D F; Kiemeney, L A; Thorsteinsdottir, U; Stefansson, K; van Rooij, F J A; Aulchenko, Y S; Hottenga, J J; Rivadeneira, F R; Hofman, A; Uitterlinden, A G; Hammond, C J; Shin, S-Y; Ikram, A; Witteman, J C M; Janssens, A C J W; Snieder, H; Tiemeier, H; Wolfenbuttel, B H R; Oostra, B A; Heath, A C; Wichmann, E; Spector, T D; Grabe, H J; Boomsma, D I; Martin, N G; van Duijn, C M

    2012-01-01

    Coffee consumption is a model for addictive behavior. We performed a meta-analysis of genome-wide association studies (GWASs) on coffee intake from 8 Caucasian cohorts (N=18 176) and sought replication of our top findings in a further 7929 individuals. We also performed a gene expression analysis treating different cell lines with caffeine. Genome-wide significant association was observed for two single-nucleotide polymorphisms (SNPs) in the 15q24 region. The two SNPs rs2470893 and rs2472297 (P-values=1.6 × 10−11 and 2.7 × 10−11), which were also in strong linkage disequilibrium (r2=0.7) with each other, lie in the 23-kb long commonly shared 5′ flanking region between CYP1A1 and CYP1A2 genes. CYP1A1 was found to be downregulated in lymphoblastoid cell lines treated with caffeine. CYP1A1 is known to metabolize polycyclic aromatic hydrocarbons, which are important constituents of coffee, whereas CYP1A2 is involved in the primary metabolism of caffeine. Significant evidence of association was also detected at rs382140 (P-value=3.9 × 10−09) near NRCAM—a gene implicated in vulnerability to addiction, and at another independent hit rs6495122 (P-value=7.1 × 10−09)—an SNP associated with blood pressure—in the 15q24 region near the gene ULK3, in the meta-analysis of discovery and replication cohorts. Our results from GWASs and expression analysis also strongly implicate CAB39L in coffee drinking. Pathway analysis of differentially expressed genes revealed significantly enriched ubiquitin proteasome (P-value=2.2 × 10−05) and Parkinson's disease pathways (P-value=3.6 × 10−05). PMID:21876539

  3. Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line

    SciTech Connect

    Zhang Rong; Sun Jianguo; Ma Liping; Wu Xiaolan; Pan Guoyu; Hao Haiping; Zhou Fang; Jiye, A; Liu Changhui; Ai Hua; Shang Lili; Gao Haiyan; Peng Ying; Wan Ping; Wu Hui; Wang Guangji

    2011-04-01

    Diterpenoid tanshinones including tanshinone IIA (TIIA), cryptotanshinone (CTS), tanshinone I (TI) and dihydrotanshinone I (DHTI) are the major bioactive components from Danshen. The major aim of our present study was to investigate the induction potential of these four main components of tanshinones (TIIA, CTS, TI, and DHTI) on the expression of CYP1A1 and CYP1A2 in HepG2 cells. Our results showed that all of these four tanshinones caused a significant time- and concentration-dependent increase in the amount of CYP1A1/2 expression in HepG2 cells. These induction effects were further characterized through transcriptional regulation: the induction of CYP1A1/2 mRNA level by tanshinones was completely blocked by the transcription inhibitor actinomycin D; the expression of CYP1A1/2 heterogeneous nuclear RNA was induced by tanshinone treatment; and CYP1A1 mRNA stability was not influenced by these tanshinones. Interestingly, tanshinones plus B[a]P produced additive/synergistic effect on CYP1A1/2 induction. In addition, the tanshinone-induced CYP1A1/2 expression was abolished by the aryl hydrocarbon receptor (AhR) antagonist resveratrol, suggesting an AhR dependent transcription mechanism. In the reporter gene assay, while TI and DHTI significantly induced AhR-dependent luciferase activity, TIIA and CTS failed to induce this activity. Collectively, the tanshinones could induce CYP1A1 and CYP1A2 expression through transcriptional activation mechanism and exert differential effects on activating AhR in HepG2 cells. Our findings suggest that rational administration of tanshinones should be considered with respect to their effect on AhR and CYP1A1/2 expression.

  4. Impact of Tetrahydropalmatine on the Pharmacokinetics of Probe Drugs for CYP1A2, 2D6 and 3A Isoenzymes in Beagle Dogs.

    PubMed

    Zhao, Yong; Liang, Aihua; Zhang, Yushi; Li, Chunying; Yi, Yan; Nilsen, Odd Georg

    2016-06-01

    Tetrahydropalmatine (Tet) exhibit multiple pharmacological activities and is used frequently by clinical practitioners. In this study, we evaluate the in vivo effects of single and repeated oral Tet administrations on CYP1A2, 2D6 and 3A activities in six beagle dogs in a randomized, controlled, open-label, crossover study. A cocktail approach, with dosages of the probe drugs caffeine (3.0 mg/kg), metoprolol (2.33 mg/kg) and midazolam (0.45 mg/kg), was used to measure cytochrome P450 (CYP) metabolic activities. The cocktail was administered orally as a single dose (12 mg/kg) 1 day prior to and 4 days after repeated oral Tet administrations (12 mg/kg three times daily). The probe drugs and their metabolites in plasma were quantified simultaneously by a validated HPLC technique, and non-compartmental parameters were used to evaluate metabolic variables for assessment of CYP inhibition or induction. Tet had no or minor impact on the pharmacokinetics and metabolism of the probe drugs caffeine and metoprolol, CYP1A2 and CYP2D6 substrates, respectively. However, Tet increased AUC0-24 h and decreased AUCratio(0-24 h) (1-hydroxymidazolam/midazolam ratio) for midazolam statistically significant, both in single or multiple dosing of Tet, with up to 39 or 57% increase for AUC0-24 h and 29% or 22 decrease for AUCratio(0-24 h), respectively, in line with previous in vitro findings for its CYP3A4 inhibition. The extensive use of Tet and herbal medicines containing Tet makes Tet a candidate for further evaluation of CYP3A-mediated herb-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Scoliosis in osteogenesis imperfecta caused by COL1A1/COL1A2 mutations - genotype-phenotype correlations and effect of bisphosphonate treatment.

    PubMed

    Sato, Atsuko; Ouellet, Jean; Muneta, Takeshi; Glorieux, Francis H; Rauch, Frank

    2016-05-01

    Bisphosphonates are widely used to treat children with osteogenesis imperfecta (OI), a bone fragility disorder that is most often caused by mutations in COL1A1 or COL1A2. However, it is unclear whether this treatment decreases the risk of developing scoliosis. We retrospectively evaluated spine radiographs and charts of 437 patients (227 female) with OI caused by mutations in COL1A1 or COL1A2 and compared the relationship between scoliosis, genotype and bisphosphonate treatment history. At the last follow-up (mean age 11.9 [SD: 5.9] years), 242 (55%) patients had scoliosis. The prevalence of scoliosis was highest in OI type III (89%), followed by OI type IV (61%) and OI type I (36%). Moderate to severe scoliosis (Cobb angle ≥25°) was rare in individuals with COL1A1 haploinsufficiency mutations but was present in about two fifth of patients with triple helical glycine substitutions or C-propeptide mutations. During the first 2 to 4years of bisphosphonate therapy, patients with OI type III had lower Cobb angle progression rates than before bisphosphonate treatment, whereas in OI types I and IV bisphosphonate treatment was not associated with a change in Cobb angle progression rates. At skeletal maturity, the prevalence of scoliosis (Cobb angle >10°) was similar in patients who had started bisphosphonate treatment early in life (before 5.0years of age) and in patients who had started therapy later (after the age of 10.0years) or had never received bisphosphonate therapy. Bisphosphonate treatment decreased progression rate of scoliosis in OI type III but there was no evidence of a positive effect on scoliosis in OI types I and IV. The prevalence of scoliosis at maturity was not influenced by the bisphosphonate treatment history in any OI type.

  6. Caffeine raises the serum melatonin level in healthy subjects: an indication of melatonin metabolism by cytochrome P450(CYP)1A2.

    PubMed

    Ursing, C; Wikner, J; Brismar, K; Röjdmark, S

    2003-05-01

    Caffeine is metabolized in the liver by cytochrome P450(CYP)1A2. Recent findings imply that this enzyme may also be of importance for the metabolism of human melatonin (MT). If caffeine and MT are metabolized by the same enzyme, one may expect to find different serum MT levels after ingestion of coffee compared with placebo. Although coffee is consumed by people all over the world, few studies have focused on whether caffeine actually affects serum MT levels in normal subjects. We decided to study that particular topic. For that purpose 12 healthy individuals were tested on two occasions, one week apart. On one of these occasions they were given a capsule containing 200 mg caffeine in the evening. On the other, they received placebo. The experimental order was randomized. Serum MT levels were determined every second hour between 22:00 h and 08:00 h, and the melatonin areas under the curve (MT-AUCs) were calculated. After caffeine the serum MT level rose from 0.09 +/- 0.03 nmol/l at 22:00 h to 0.48 +/- 0.07 nmol/l at 04:00 h. The corresponding rise after placebo was less prominent (from 0.06 +/- 0.01 to 0.35 +/- 0.06 nmol/l). This was reflected by the MT-AUC which was 32% larger after ingestion of caffeine compared with placebo (MT-AUC(caffeine) 3.16 +/- 0.44 nmol/l x h vs MT-AUC(placebo) 2.39 +/- 0.40 nmol/l x h; p < 0.02). These findings imply that caffeine, ingested in the evening at a dose corresponding to two ordinary cups of coffee, augments the nocturnal serum MT level, which in turn supports the notion that cytochrome P450(CYP)1A2 is involved in the hepatic metabolism of human MT.

  7. Cis-Nerolidol Induces Endoplasmic Reticulum Stress and Cell Death in Human Hepatocellular Carcinoma Cells through Extensive CYP2C19 and CYP1A2 Oxidation.

    PubMed

    Biazi, Bruna Isabela; Zanetti, Thalita Alves; Baranoski, Adrivanio; Corveloni, Amanda Cristina; Mantovani, Mário Sérgio

    2017-03-02

    Of late, many studies are attempting to find new molecules with anti-cancer properties, especially those with the capability to inhibit cell growth. The aim of this work was to evaluate nerolidol, a plant-based compound, as its cytotoxicity, genotoxicity, antiproliferative and apoptotic induction, cell cycle, mitochondrial membrane potential, and RT-qPCR of transcripts related to those pathways in the human hepatocellular carcinoma cell line (HepG2/C3A). Only cis-nerolidol (C-NER) demonstrated cytotoxicity (100 to 250 μM) activity and was selected to conduct the following experiments. C-NER did not show genotoxic activity, but altered the mitochondrial membrane potential, reduced cell proliferation by arresting cell cycle in G1 phase and induced cell death. RT-qPCR showed that C-NER down-regulated genes related to apoptosis (BAK1, BAX, CAPN1, CASP8, CASP9, PARP1 and TP53), cell cycle (CCND1, CCNE1, CDK1 and CDK2), xenobiotic metabolism (CYP2D6 and CYP3A4) and paraptosis (IGF1R receptor). Up-regulation was seen in case of genes related to cell survival (BBC3 and MYC) and reticulum stress protein response (EIF2AK3 and ERN1) and xenobiotic metabolism (CYP1A2 and CYP2C19). We deduced that the antiproliferative activity of C-NER is attributable to its modulation of the cyclins and cyclin-dependent kinases as these proteins are necessary for G1/S phase transition. EIF2AK3, ERN1, CYP2C19 and CYP1A2 up-regulation suggests that endoplasmic reticulum stress was induced owing to the increased activity of cytochrome P450 enzymes. Caspase-independent cell death was also observed, indicating that another type of cell death, paraptosis, was triggered. Our results indicate that C-NER has considerable potential in anti-cancer therapy because it modulates important molecular targets of cell survival and proliferation. This article is protected by copyright. All rights reserved.

  8. Design synthesis and evaluation of the inhibitory selectivity of novel trans-resveratrol analogues on human recombinant CYP1A1 CYP1A2 and CYP1B1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of trans-stilbene derivatives containing 4’-thiomethyl substituent were synthesized and evaluated for inhibitory activities on human recombinant cytochrome P450(s): CYP1A1, CYP1A2, and CYP1B1. CYP1A2-related metabolism of stilbene derivatives was estimated by using NADPH oxidation assay. A...

  9. Partial isodisomy for maternal chromosome 7 and short stature in an individual with a mutation at the COL1A2 locus

    SciTech Connect

    Spotila, L.D.; Sereda, L.; Prockop, D.J. )

    1992-12-01

    Uniparental disomy for chromosome 7 has been described previously in two individuals with cystic fibrosis. Here, the authors describe a third case that was discovered because the proband was homozygous for a mutation in the COL1A2 gene for type I procollagen, although his mother was heterozygous and his father did not have the mutation. Phenotypically, the proband was similar to the two previously reported cases with uniparental disomy for chromosome 7, in that he was short in stature and growth retarded. Paternity was assessed with five polymorphic markers. Chromosome 7 inheritance in the proband was analyzed using 12 polymorphic markers distributed along the entire chromosome. Similar analysis of the proband's two brothers established the phase of the alleles at the various loci, assuming minimal recombination. The proband inherited only maternal alleles at five loci and was homozygous at all loci examined, except one. He was heterozygous for an RFLP at the IGBP-1 locus at 7p13-p12. The results suggest that the isodisomy was not complete because of a recombination event involving the proximal short arms of two maternal chromosomes. In addition, the phenotype of proportional dwarfism in the proband suggests imprinting of one or more growth-related genes on chromosome 7. 42 refs., 5 figs., 3 tabs.

  10. Partial isodisomy for maternal chromosome 7 and short stature in an individual with a mutation at the COL1A2 locus.

    PubMed Central

    Spotila, L D; Sereda, L; Prockop, D J

    1992-01-01

    Uniparental disomy for chromosome 7 has been described previously in two individuals with cystic fibrosis. Here, we describe a third case that was discovered because the proband was homozygous for a mutation in the COL1A2 gene for type I procollagen, although his mother was heterozygous and his father did not have the mutation. Phenotypically, the proband was similar to the two previously reported cases with uniparental disomy for chromosome 7, in that he was short in stature and growth retarded. Paternity was assessed with five polymorphic markers. Chromosome 7 inheritance in the proband was analyzed using 12 polymorphic markers distributed along the entire chromosome. Similar analysis of the proband's two brothers established the phase of the alleles at the various loci, assuming minimal recombination. The proband inherited only maternal alleles at five loci and was homozygous at all loci examined, except one. He was heterozygous for an RFLP at the IGBP-1 locus at 7p13-p12. The results suggest that the isodisomy was not complete because of a recombination event involving the proximal short arms of two maternal chromosomes. In addition, the phenotype of proportional dwarfism in the proband suggests imprinting of one or more growth-related genes on chromosome 7. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:1463018

  11. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4

    PubMed Central

    Gaohua, Lu; Abduljalil, Khaled; Jamei, Masoud; Johnson, Trevor N; Rostami-Hodjegan, Amin

    2012-01-01

    Aims Pregnant women are usually not part of the traditional drug development programme. Pregnancy is associated with major biological and physiological changes that alter the pharmacokinetics (PK) of drugs. Prediction of the changes to drug exposure in this group of patients may help to prevent under- or overtreatment. We have used a pregnancy physiologically based pharmacokinetic (p-PBPK) model to assess the likely impact of pregnancy on three model compounds, namely caffeine, metoprolol and midazolam, based on the knowledge of their disposition in nonpregnant women and information from in vitro studies. Methods A perfusion-limited form of a 13-compartment full-PBPK model (Simcyp® Simulator) was used for the nonpregnant women, and this was extended to the pregnant state by applying known changes to all model components (including the gestational related activity of specific cytochrome P450 enzymes) and through the addition of an extra compartment to represent the fetoplacental unit. The uterus and the mammary glands were grouped into the muscle compartment. The model was implemented in Matlab Simulink and validated using clinical observations. Results The p-PBPK model predicted the PK changes of three model compounds (namely caffeine, metoprolol and midazolam) for CYP1A2, CYP2D6 and CYP3A4 during pregnancy within twofold of observed values. The changes during the third trimester were predicted to be a 100% increase, a 30% decrease and a 35% decrease in the exposure of caffeine, metoprolol and midazolam, respectively, compared with the nonpregnant women. Conclusions In the absence of clinical data, the in silico prediction of PK behaviour during pregnancy can provide a valuable aid to dose adjustment in pregnant women. The performance of the model for drugs metabolized by a single enzyme to different degrees (high and low extraction) and for drugs that are eliminated by several different routes warrants further study. PMID:22725721

  12. In Vitro Inhibition of Human CYP450s 1A2, 2C9, 3A4/5, 2D6 and 2E1 by Grandisin.

    PubMed

    Habenschus, Maísa Daniela; Moreira, Fernanda de Lima; Lopes, Norberto Peporine; de Oliveira, Anderson R M

    2017-01-10

    Grandisin, a lignan isolated from many species of plants, such as Virola surinamensis, is a potential drug candidate due to its biological properties, highlighted by its antitumor and trypanocidal activities. In this study, the inhibitory effects of grandisin on the activities of human cytochrome P450 enzymes were investigated by using human liver microsomes. Results showed that grandisin is a competitive inhibitor of CYP2C9 and a competitive and mechanism-based inhibitor of CYP3A4/5. The apparent Ki value for CYP2C9 was 50.60 µM and those for CYP3A4/5 were 48.71 µM and 31.25 µM using two different probe substrates, nifedipine and midazolam, respectively. The apparent KI, kinact, and kinact/KI ratio for the mechanism-based inhibition of CYP3A4/5 were 6.40 µM, 0.037 min(-1), and 5.78 mL · min(-1) µmol(-1), respectively, by examining nifedipine oxidation, and 31.53 µM, 0.049 min(-1), and 1.55 mL · min(-1) µmol(-1), respectively, by examining midazolam 1'-hydroxylation. These apparent kinact/KI values were comparable to or even higher than those for several therapeutic drugs that act as mechanism-based inhibitors of CYP3A4/5. CYP1A2 and CYP2D6 activities, in turn, were not substantially inhibited by grandisin (IC50 > 200 µM and 100 µM, respectively). In contrast, from a concentration of 4 µM, grandisin significantly stimulated CYP2E1 activity. These results improve the prediction of grandisin-drug interactions, suggesting that the risk of interactions with drugs metabolized by CYP3A4/5 and CYP2E1 cannot be overlooked.

  13. In vitro digestion of purified β-casein variants A(1), A(2), B, and I: effects on antioxidant and angiotensin-converting enzyme inhibitory capacity.

    PubMed

    Petrat-Melin, B; Andersen, P; Rasmussen, J T; Poulsen, N A; Larsen, L B; Young, J F

    2015-01-01

    Genetic polymorphisms of bovine milk proteins affect the protein profile of the milk and, hence, certain technological properties, such as casein (CN) number and cheese yield. However, reports show that such polymorphisms may also affect the health-related properties of milk. Therefore, to gain insight into their digestion pattern and bioactive potential, β-CN was purified from bovine milk originating from cows homozygous for the variants A(1), A(2), B, and I by a combination of cold storage, ultracentrifugation, and acid precipitation. The purity of the isolated β-CN was determined by HPLC, variants were verified by mass spectrometry, and molar extinction coefficients at λ=280nm were determined. β-Casein from each of the variants was subjected to in vitro digestion using pepsin and pancreatic enzymes. Antioxidant and angiotensin-converting enzyme (ACE) inhibitory capacities of the hydrolysates were assessed at 3 stages of digestion and related to that of the undigested samples. Neither molar extinction coefficients nor overall digestibility varied significantly between these 4 variants; however, clear differences in digestion pattern were indicated by gel electrophoresis. In particular, after 60min of pepsin followed by 5min of pancreatic enzyme digestion, one ≈4kDa peptide with the N-terminal sequence (106)H-K-E-M-P-F-P-K- was absent from β-CN variant B. This is likely a result of the (122)Ser to (122)Arg substitution in variant B introducing a novel trypsin cleavage site, leading to the changed digestion pattern. All investigated β-CN variants exhibited a significant increase in antioxidant capacity upon digestion, as measured by the Trolox-equivalent antioxidant capacity assay. After 60min of pepsin + 120min of pancreatic enzyme digestion, the accumulated increase in antioxidant capacity was ≈1.7-fold for the 4 β-CN variants. The ACE inhibitory capacity was also significantly increased by digestion, with the B variant reaching the highest inhibitory

  14. Formation of DNA adducts in wild-type and transgenic mice expressing human sulfotransferases 1A1 and 1A2 after oral exposure to furfuryl alcohol

    PubMed Central

    Høie, Anja Hortemo; Monien, Bernhard Hans; Sakhi, Amrit Kaur; Glatt, Hansruedi; Hjertholm, Hege; Husøy, Trine

    2015-01-01

    Furfuryl alcohol (FFA) is present in many heat-treated foods as a result of its formation via dehydration of pentoses. It is also used legally as a flavouring agent. In an inhalation study conducted in the National Toxicology Program, FFA showed some evidence of carcinogenic activity in rats and mice. FFA was generally negative in conventional genotoxicity assays, which suggests that it may be a non-genotoxic carcinogen. However, it was recently found that FFA is mutagenic in Salmonella strains expressing appropriate sulfotransferases (SULTs), such as human or mouse SULT1A1. The same DNA adducts that were formed by FFA in these strains, mainly N 2-((furan-2-yl)methyl)-2′-deoxyguanosine (N 2-MF-dG), were also detected in tissues of FFA-exposed mice and even in human lung specimens. In the present study, a single oral dose of FFA (250mg/kg body weight) or saline was administered to FVB/N mice and transgenic mice expressing human SULT1A1/1A2 on the FVB/N background. The transgenic mice were used, since human and mouse SULT1A1 substantially differ in substrate specificity and tissue distribution. DNA adducts were studied in liver, kidney, proximal and distal small intestine as well as colon, using isotope-dilution ultra performance liquid chromatography (UPLC–MS/MS). Surprisingly, low levels of adducts that may represent N 2-MF-dG were detected even in tissues of untreated mice. FFA exposure enhanced the adduct levels in colon and liver, but not in the remaining investigated tissues of wild-type (wt) mice. The situation was similar in transgenic mice, except that N 2-MF-dG levels were also strongly enhanced in the proximal small intestine. These different results between wt and transgenic mice may be attributed to the fact that human SULT1A1, but not the orthologous mouse enzyme, is strongly expressed in the small intestine. PMID:25904584

  15. Formation of DNA adducts in wild-type and transgenic mice expressing human sulfotransferases 1A1 and 1A2 after oral exposure to furfuryl alcohol.

    PubMed

    Høie, Anja Hortemo; Monien, Bernhard Hans; Sakhi, Amrit Kaur; Glatt, Hansruedi; Hjertholm, Hege; Husøy, Trine

    2015-09-01

    Furfuryl alcohol (FFA) is present in many heat-treated foods as a result of its formation via dehydration of pentoses. It is also used legally as a flavouring agent. In an inhalation study conducted in the National Toxicology Program, FFA showed some evidence of carcinogenic activity in rats and mice. FFA was generally negative in conventional genotoxicity assays, which suggests that it may be a non-genotoxic carcinogen. However, it was recently found that FFA is mutagenic in Salmonella strains expressing appropriate sulfotransferases (SULTs), such as human or mouse SULT1A1. The same DNA adducts that were formed by FFA in these strains, mainly N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were also detected in tissues of FFA-exposed mice and even in human lung specimens. In the present study, a single oral dose of FFA (250 mg/kg body weight) or saline was administered to FVB/N mice and transgenic mice expressing human SULT1A1/1A2 on the FVB/N background. The transgenic mice were used, since human and mouse SULT1A1 substantially differ in substrate specificity and tissue distribution. DNA adducts were studied in liver, kidney, proximal and distal small intestine as well as colon, using isotope-dilution ultra performance liquid chromatography (UPLC-MS/MS). Surprisingly, low levels of adducts that may represent N (2)-MF-dG were detected even in tissues of untreated mice. FFA exposure enhanced the adduct levels in colon and liver, but not in the remaining investigated tissues of wild-type (wt) mice. The situation was similar in transgenic mice, except that N (2)-MF-dG levels were also strongly enhanced in the proximal small intestine. These different results between wt and transgenic mice may be attributed to the fact that human SULT1A1, but not the orthologous mouse enzyme, is strongly expressed in the small intestine.

  16. Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses.

    PubMed

    Gottwein, Judith M; Jensen, Sanne B; Li, Yi-Ping; Ghanem, Lubna; Scheel, Troels K H; Serre, Stéphanie B N; Mikkelsen, Lotte; Bukh, Jens

    2013-03-01

    With the development of directly acting antivirals, hepatitis C virus (HCV) therapy entered a new era. However, rapid selection of resistance mutations necessitates combination therapy. To study combination therapy in infectious culture systems, we aimed at developing HCV semi-full-length (semi-FL) recombinants relying only on the JFH1 NS3 helicase, NS5B, and the 3' untranslated region. With identified adaptive mutations, semi-FL recombinants of genotypes(isolates) 1a(TN) and 3a(S52) produced supernatant infectivity titers of ~4 log(10) focus-forming units/ml in Huh7.5 cells. Genotype 1a(TN) adaptive mutations allowed generation of 1a(H77) semi-FL virus. Concentration-response profiles revealed the higher efficacy of the NS3 protease inhibitor asunaprevir (BMS-650032) and the NS5A inhibitor daclatasvir (BMS-790052) against 1a(TN and H77) than 3a(S52) viruses. Asunaprevir had intermediate efficacy against previously developed 2a recombinants J6/JFH1 and J6cc. Daclatasvir had intermediate efficacy against J6/JFH1, while low sensitivity was confirmed against J6cc. Using a cross-titration scheme, infected cultures were treated until viral escape or on-treatment virologic suppression occurred. Compared to single-drug treatment, combination treatment with relatively low concentrations of asunaprevir and daclatasvir suppressed infection with all five recombinants. Escaped viruses primarily had substitutions at amino acids in the NS3 protease and NS5A domain I reported to be genotype 1 resistance mutations. Inhibitors showed synergism at drug concentrations reported in vivo. In summary, semi-FL HCV recombinants, including the most advanced reported genotype 3a infectious culture system, permitted genotype-specific analysis of combination treatment in the context of the complete viral life cycle. Despite differential sensitivity to lead compound NS3 protease and NS5A inhibitors, genotype 1a, 2a, and 3a viruses were suppressed by combination treatment with relatively low

  17. Differential cellular expression of organic anion transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for carrier-mediated transport of neuropeptides and neurosteriods in the CNS.

    PubMed

    Gao, Bo; Vavricka, Stephan R; Meier, Peter J; Stieger, Bruno

    2015-07-01

    Organic anion transporting polypeptides (OATPs) are polyspecific organic anion transporters, which are expressed in the blood-brain barrier, the choroid plexus, and other organs. The physiologic function of OATPs in extrahepatic tissues remains ambiguous. In rat retina, members of the OATP family are expressed. We therefore investigated the human retina for the expression of OATP1A2 and OATP2B1 and extended the study to human brain. Furthermore, we searched for peptide neurotransmitters as novel OATP substrates. OATP1A2 displayed a broad expression pattern in human retina as assessed by immunofluorescence localization. It is expressed in photoreceptor bodies and somas of amacrine cells. OATP1B2 expression is restricted to the inner nuclear layer and to the inner plexiform layer. Using paraffin sections from human cortex, cerebellum, and hippocampus, OATP1A2 was localized to neurons and neuronal processes, while OATP2B1 is expressed in endothelial cells of brain capillaries. Substance P and vasoactive intestinal peptide were identified as substrates for OATP1A2 and OATP2B1. Double-labeling immunofluorescence of human retina demonstrated the presence of substance P and of vasoactive intestinal peptides in neurons expressing OATP1A2 and OATP2B1, respectively. The expression of OATP1A2 and OATP2B1 in retinal neurons implies a role of these transporters in the reuptake of peptide neurotransmitters released from retinal neurons. The abundant expression of OATP1A2 in brain neurons points to the possibility that OATP1A2 could be involved in the homeostasis of neurosteroids. The high expression of OATP2B1 in brain capillaries supports an important function of OATPs in substance penetration across the blood-brain barrier.

  18. Inhibition of Cytochrome P450 by Propolis in Human Liver Microsomes

    PubMed Central

    Ryu, Chang Seon; Oh, Soo Jin; Oh, Jung Min; Lee, Ji-Yoon; Lee, Sang Yoon; Chae, Jung-woo; Kwon, Kwang-il; Kim, Sang Kyum

    2016-01-01

    Although propolis is one of the most popular functional foods for human health, there have been no comprehensive studies of herb-drug interactions through cytochrome P450 (CYP) inhibition. The purpose of this study was to determine the inhibitory effects of propolis on the activities of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 using pooled human liver microsomes (HLMs). Propolis inhibited CYP1A2, CYP2E1 and CYP2C19 with an IC50 value of 6.9, 16.8, and 43.1 μg/mL, respectively, whereas CYP2A6, 2B6, 2C9, 2D6, and 3A4 were unaffected. Based on half-maximal inhibitory concentration shifts between microsomes incubated with and without nicotinamide adenine dinucleotide phosphate, propolis-induced CYP1A2, CYP2C19, and CYP2E1 inhibition was metabolism-independent. To evaluate the interaction potential between propolis and therapeutic drugs, the effects of propolis on metabolism of duloxetine, a serotonin-norepinephrine reuptake inhibitor, were determined in HLMs. CYP1A2 and CYP2D6 are involved in hydroxylation of duloxetine to 4-hydroxy duloxetine, the major metabolite, which was decreased following propolis addition in HLMs. These results raise the possibility of interactions between propolis and therapeutic drugs metabolized by CYP1A2. PMID:27437087

  19. Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1

    PubMed Central

    Milichovský, Jan; Bárta, František; Schmeiser, Heinz H.; Arlt, Volker M.; Frei, Eva; Stiborová, Marie; Martínek, Václav

    2016-01-01

    Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are NAD(P)H:quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using 32P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast

  20. The effect of dose on 2,3,7,8-TCDD tissue distribution, metabolism and elimination in CYP1A2 (-/-) knockout and C57BL/6N parental strains of mice

    SciTech Connect

    Hakk, Heldur; Diliberto, Janet J.; Birnbaum, Linda S.

    2009-11-15

    Numerous metabolism studies have demonstrated that the toxic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is poorly metabolized. A hallmark feature of TCDD exposure is induction of hepatic CYP1A2 and subsequent sequestration leading to high liver-to-fat concentration ratios. This study was initiated to determine whether TCDD was inherently poorly metabolized or unavailable for metabolism because of sequestration to CYP1A2. [{sup 3}H]TCDD was administered as a single, oral dose (0.1 and 10 mug/kg) to 12 male C57BL/6N mice or 12 CYP1A2 (-/-) mice. At 96 h, less than 5% of the dose was eliminated in the urine of all groups, and TCDD detected in urine was bound to mouse major urinary protein (mMUP). Feces were the major elimination pathway (24-31% of dose), and fecal extracts and non-extractables were quantitated by HPLC for metabolites. No great differences in urinary or fecal elimination (% dose) were observed between the high and low dose treatments. TCDD concentrations were the highest in adipose tissue for CYP1A2 knockout mice but in liver for C57BL/6N mice supporting the role of hepatic CYP1A2 in the sequestration of TCDD. Overall metabolism between parental and knockout strains showed no statistical differences at either the high or low doses. The data suggested that metabolism of TCDD is inherently slow, due principally to CYP1A1, and that hepatic CYP1A2 is not an active participant in the metabolism of TCDD in male mice. Rather, CYP1A2 governs the pharmacokinetics of TCDD by making it unavailable for hepatic CYP1A1 through sequestration and attenuating extrahepatic tissue disposition.

  1. Effect of polyunsaturated fatty acids ω-3 on the induction of activity and expression of CYP1A1 and CYP1A2 genes in the liver of rats under the influence of indole-3-carbinol.

    PubMed

    Kravchenko, L V; Tutel'yan, V A; Trusov, N V; Guseva, G V; Aksenov, I V

    2014-01-01

    Supplementation of the ration with eicosapentaenoic and docosahexaenoic ω-3 polyunsaturated fatty acids (PUFA) in doses of 0.3 and 1 g/kg body weight for 4 weeks had no effect on ethoxyresorufin O-dealkylase (EROD) activity and expression of the CYP1A1 gene in male Wistar rats, but caused a dose-dependent increase in methoxyresorufin O-dealkylase (MROD) activity of CYP1A2 (by 28 and 73%, respectively) without significant changes in CYP1A2 mRNA expression. ω-3 PUFA had no effect on the indole-3-carbinol-induced (20 mg/kg body weight over the last 7 days of the experiment) EROD activity and expression of CYP1A1 mRNA. The indole-3-carbinol-induced MROD activity was shown to increase by 6.2 times in rats not receiving ω-3 PUFA and only by 3.9 and 2.7 times in animals receiving ω-3 PUFA. The indole-3-carbinol-induced expression of CYP1A2 mRNA slightly increased in animals receiving ω-3 PUFA. Our results suggest that the effect of ω-3 PUFA on the induced and basal activity of CYP1A2 is not related to modulation of CYP1A2 gene expression.

  2. The Effect of Dose on 2,3,7,8-TCDD Tissue Distribution, Metabolism and Elimination in CYP1A2 (-/-) Knockout and C57BL/6N Parental Strains of Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous metabolism studies have demonstrated that the highly toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is poorly metabolized. A hallmark feature of TCDD exposure is induction of hepatic CYP1A2 and subsequent sequestration leading to high liver to fat concentration ratios. This study was in...

  3. USE OF A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL (PBPK) FOR RATS TO STUDY THE INFLUENCE OF BODY FAT MASS AND INDUCTION OF CYP1A2 ON THE PHARMACOKINETICS OF TCDD

    EPA Science Inventory

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly lipophilic chemical which distributes into adipose tissue, especially at low doses. However, at high doses TCDD sequesters in liver because it induces CYP1A2 that binds TCDD. A physiologically based pharmacokinetic (PBPK) mod...

  4. 3D-QSAR methods on the basis of ligand-receptor complexes. Application of COMBINE and GRID/GOLPE methodologies to a series of CYP1A2 ligands.

    PubMed

    Lozano, J J; Pastor, M; Cruciani, G; Gaedt, K; Centeno, N B; Gago, F; Sanz, F

    2000-05-01

    Many heterocyclic amines (HCA) present in cooked food exert a genotoxic activity when they are metabolised (N-oxidated) by the human cytochrome P450 1A2 (CYP1A2h). In order to rationalize the observed differences in activity of this enzyme on a series of 12 HCA, 3D-QSAR methods were applied on the basis of models of HCA-CYP1A2h complexes. The CYP1A2h enzyme model has been previously reported and was built by homology modeling based on cytochrome P450 BM3. The complexes were automatically generated applying the AUTODOCK software and refined using AMBER. A COMBINE analysis on the complexes identified the most important enzyme-ligand interactions that account for the differences in activity within the series. A GRID/GOLPE analysis was then performed on just the ligands, in the conformations and orientations found in the modeled complexes. The results from both methods were concordant and confirmed the advantages of incorporating structural information from series of ligand-receptor complexes into 3D-QSAR methodologies.

  5. 3D-QSAR methods on the basis of ligand-receptor complexes. Application of COMBINE and GRID/GOLPE methodologies to a series of CYP1A2 ligands

    NASA Astrophysics Data System (ADS)

    Lozano, Juan José; Pastor, Manuel; Cruciani, Gabriele; Gaedt, Katrin; Centeno, Nuria B.; Gago, Federico; Sanz, Ferran

    2000-05-01

    Many heterocyclic amines (HCA) present in cooked food exert a genotoxic activity when they are metabolised (N-oxidated) by the human cytochrome P450 1A2 (CYP1A2h). In order to rationalize the observed differences in activity of this enzyme on a series of 12 HCA, 3D-QSAR methods were applied on the basis of models of HCA-CYP1A2h complexes. The CYP1A2h enzyme model has been previously reported and was built by homology modeling based on cytochrome P450 BM3. The complexes were automatically generated applying the AUTODOCK software and refined using AMBER. A COMBINE analysis on the complexes identified the most important enzyme-ligand interactions that account for the differences in activity within the series. A GRID/GOLPE analysis was then performed on just the ligands, in the conformations and orientations found in the modeled complexes. The results from both methods were concordant and confirmed the advantages of incorporating structural information from series of ligand-receptor complexes into 3D-QSAR methodologies.

  6. COMPARISON OF OVERALL METABOLISM OF 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN IN CYP1A2(-/-) KNOCKOUT AND C57BL/6N PARENTAL STRAINS OF MICE

    EPA Science Inventory

    Comparison of Overall Metabolism of 2,3,7,8-TCDD
    in CYP1A2 (-/-) Knockout and C57BL/6N Parental Strains of Mice

    Heldur Hakk* and Janet J. Diliberto**

    * USDA-ARS Biosciences Research Laboratory, P.O. Box 5674, Fargo, ND, USA
    ** US-EPA ORD, National Health Eff...

  7. A COMPARISON OF THE METABOLISM OF METHOXYRESORUFIN, ACETANILIDE AND CAFFIENE IN RAT AND HUMAN CYP1A2 SUPERSOMES AND THEIR INHIBITION BY 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)

    EPA Science Inventory

    A COMPARISON OF THE METABOLISM OF METHOXYRESORUFIN, ACETANILIDE AND CAFFIENE IN RAT AND HUMAN CYP1A2 SUPERSOMES AND THEIR INHIBITION BY 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD). DF Staskal1, DG Ross2, LS Birnbaum2 and MJ DeVito2 1Curriculum In Toxicology, UNC-CH, Chapel Hill ...

  8. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms

    PubMed Central

    Hartkoorn, Ruben C; San Kwan, Wai; Shallcross, Victoria; Chaikan, Ammara; Liptrott, Neill; Egan, Deirdre; Enrique Salcedo Sora, J; James, Chloe E; Gibbons, Sara; Bray, Pat G; Back, David J; Khoo, Saye H; Owen, Andrew

    2016-01-01

    OATP1B1 and OATP1B3 are major hepatic drug transporters whilst OATP1A2 is mainly located in the brain but is also located in liver and several other organs. These transporters affect the distribution and clearance of many endo- and xenobiotics and have been reported to have functional SNPs. We have assessed the substrate specificites of these transporters for a panel of antiretrovirals and investigated the effects of SNPs within these transporters on the pharmacokinetics of lopinavir. SLCO1A2, SLCO1B1 and SLCO1B3 were cloned, verified and used to generate cRNA for use in the Xenopus laevis oocyte transport system. Using the oocyte system, antiretrovirals were tested for their substrate specificities. Plasma samples (n=349) from the Liverpool therapeutic drug monitoring registry were genotyped for SNPs in SLCO1A2, SLCO1B1 and SLCO1B3 and associations between SNPs and lopinavir plasma concentrations were analysed. Antiretroviral protease inhibitors, but not non-nucleoside reverse transcriptase inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3. Furthermore, ritonavir was not an inhibitor of OATP1B1. The 521T>C polymorphism in SLCO1B1 was significantly associated with higher lopinavir plasma concentrations. No associations were observed with functional variants of SLCO1A2 and SLCO1B3. These data add to our understanding of the factors that contribute to variability in plasma concentrations of protease inhibitors. Further studies are now required to confirm the association of SLCO1B1 521T>C with lopinavir plasma concentrations and to assess the influence of other polymorphisms in the SLCO family. PMID:20051929

  9. Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds

    SciTech Connect

    Zhang Xiaowei; Moore, Jeremy N.; Newsted, John L.; Hecker, Markus Zwiernik, Matthew J.; Jones, Paul D.; Bursian, Steven J.

    2009-02-01

    As part of an ongoing effort to understand aryl hydrocarbon receptor (AhR) mediated toxicity in mink, cDNAs encoding for CYP1A1 and the CYP1A2 mixed function monooxygenases were cloned and characterized. In addition, the effects of selected dibenzofurans on the expression of these genes and the presence of their respective proteins (P4501A) were investigated, and then correlated with the catalytic activities of these proteins as measured by ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) activities. The predicted protein sequences for CYP1A1 and CYP1A2 comprise 517 and 512 amino acid residues, respectively. The phylogenetic analysis of the mink CYP1As with protein sequences of other mammals revealed high sequence homology with sea otter, seals and the dog, with amino acid identities ranging from 89 to 95% for CYP1A1 and 81 to 93% for CYP1A2. Since exposure to both 2,3,7,8-Tetrachlorodibenzofuran (TCDF) and 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) resulted in dose-dependent increases of CYP1A1 mRNA, CYP1A2 mRNA and CYP1A protein levels an underlying AhR-mediated mechanism is suggested. The up-regulation of CYP1A mRNA in liver was more consistent to the sum adipose TEQ concentration than to the liver TEQ concentration in minks treated with TCDF or PeCDF. The result suggested that the hepatic-sequestered fraction of PeCDF was biologically inactive to the induction of CYP1A1 and CYP1A2.

  10. Genetic evidence that mutations in the COL1A1, COL1A2, COL3A1, or COL5A2 collagen genes are not responsible for mitral valve prolapse.

    PubMed Central

    Henney, A M; Tsipouras, P; Schwartz, R C; Child, A H; Devereux, R B; Leech, G J

    1989-01-01

    DNA markers were used to assess the segregation of genes encoding the collagen types that predominate in the mitral valve (types I, III, and V) in two family pedigrees that are phenotypically different but showed dominantly inherited mitral valve prolapse. The inheritance of these markers was compared with the segregation of the phenotype for mitral valve prolapse in both families. In one family it was shown that the COL1A1, COL1A2, COL3A1, and COL5A2 genes segregated independently of the phenotype; in the other family the results for COL1A1, COL1A2, and COL5A2 were similar but analysis at the COL3A1 locus was not possible. These data indicate that in these families mitral valve prolapse does not arise from a defect in one of these collagen genes. PMID:2930668

  11. Secretion of albumin and induction of CYP1A2 and CYP3A4 in novel three-dimensional culture system for human hepatocytes using micro-space plate.

    PubMed

    Nishimura, Masuhiro; Hagi, Mieko; Ejiri, Yoko; Kishimoto, Sanae; Horie, Toru; Narimatsu, Shizuo; Naito, Shinsaku

    2010-01-01

    We evaluated a novel primary three-dimensional culture system for human hepatocytes using micro-space plates. The functional activity of human hepatocytes in primary culture was determined by measuring albumin secretion from hepatocytes to medium and measuring expression levels of albumin, CYP1A2 and CYP3A4 mRNA. Albumin secretion was higher in micro-space plates compared with traditional plates after 72 h of culture; the levels of albumin secretion from hepatocytes to medium in culture using micro-space plates after 96 h of culture were 2.7-fold higher than those in culture using traditional plates, and secretion of albumin in micro-space plate culture subsequently remained constant. Expression levels of albumin, CYP1A2 and CYP3A4 mRNA in the culture of hepatocytes were significantly higher using micro-space plates than using traditional plates. The inducibility of CYP1A2 and CYP3A4 mRNA after exposure to inducers in hepatocyte culture on micro-space plates was comparable to that in culture on traditional plates, while expression of CYP1A2 and CYP3A4 mRNA after exposure to inducers was higher on micro-space plates than on traditional plates. The present study demonstrates that a novel primary three-dimensional culture system of cryopreserved human hepatocytes using micro-space plates could be used for evaluating the induction of drug-metabolizing enzymes in humans. This in vitro method may thus be useful for screening the induction potency of new drug candidates.

  12. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts

    PubMed Central

    Tang, Chun-Mei; Zhang, Ming; Huang, Lei; Hu, Zhi-qin; Zhu, Jie-Ning; Xiao, Zhen; Zhang, Zhuo; Lin, Qiu-xiong; Zheng, Xi-Long; -Yang, Min; Wu, Shu-Lin; Cheng, Jian-Ding; Shan, Zhi-Xin

    2017-01-01

    Circular RNAs (circRNAs) participate in regulating gene expression in diverse biological and pathological processes. The present study aimed to investigate the mechanism underlying the modulation of circRNA_000203 on expressions of fibrosis-associated genes in cardiac fibroblasts. CircRNA_000203 was shown upregulated in the diabetic mouse myocardium and in Ang-II-induced mouse cardiac fibroblasts. Enforced-expression of circRNA_000203 could increase expressions of Col1a2, Col3a1 and α-SMA in mouse cardiac fibroblasts. RNA pull-down and RT-qPCR assay indicated that circRNA_000203 could specifically sponge miR-26b-5p. Dual luciferase reporter assay revealed that miR-26b-5p interacted with 3′UTRs of Col1a2 and CTGF, and circ_000203 could block the interactions of miR-26b-5p and 3′UTRs of Col1a2 and CTGF. Transfection of miR-26b-5p could post-transcriptionaly inhibit expressions of Col1a2 and CTGF, accompanied with the suppressions of Col3a1 and α-SMA in cardiac fibroblasts. Additionally, over-expression of circRNA_000203 could eliminate the anti-fibrosis effect of miR-26b-5p in cardiac fibroblasts. Together, our results reveal that suppressing the function of miR-26b-5p contributes to the pro-fibrosis effect of circRNA_000203 in cardiac fibroblasts. PMID:28079129

  13. The influence of ethnic factors and gender on CYP1A2-mediated drug disposition: a comparative study in Caucasian and Chinese subjects using phenacetin as a marker substrate.

    PubMed

    Bartoli, A; Xiaodong, S; Gatti, G; Cipolla, G; Marchiselli, R; Perucca, E

    1996-10-01

    To assess potential ethnic and gender-related differences in the expression of cytochrome CYP1A2-mediated activity, the pharmacokinetics of phenacetin (a CYP1A2 substrate) and its metabolite paracetamol were compared in 20 Caucasian and 20 Chinese subjects after administration of a single oral 900 mg phenacetin dose. Peak plasma concentrations and apparent oral clearance values for phenacetin did not differ between the two groups (geometric means: 3.4 micrograms/ml and 1.56 ml h-1 kg-1, respectively, for Caucasians vs. 4.7 micrograms/ml and 1.25 ml h-1 kg-1, respectively, for Chinese, after excluding one Caucasian with aberrantly low plasma phenacetin values). Pharmacokinetic parameters for metabolically derived paracetamol were also similar in the two groups. When subjects were divided into subgroups according to gender, phenacetin apparent oral clearance values were found to be lower in Chinese women compared with both Chinese men and Caucasian subjects of either sex. It is concluded that there are no major interethnic differences in the expression of CYP1A2-related activity between Caucasians and Chinese, although Chinese women as a subgroup may exhibit comparatively lower enzyme activity.

  14. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk

    PubMed Central

    Bethke, Lara; Webb, Emily; Sellick, Gabrielle; Rudd, Matthew; Penegar, Stephen; Withey, Laura; Qureshi, Mobshra; Houlston, Richard

    2007-01-01

    Background Cytochrome P450 (CYP) enzymes have the potential to affect colorectal cancer (CRC) risk by determining the genotoxic impact of exogenous carcinogens and levels of sex hormones. Methods To investigate if common variants of CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1 and CYP19A1 influence CRC risk we genotyped 2,575 CRC cases and 2,707 controls for 20 single nucleotide polymorphisms (SNPs) that have not previously been shown to have functional consequence within these genes. Results There was a suggestion of increased risk, albeit insignificant after correction for multiple testing, of CRC for individuals homozygous for CYP1B1 rs162558 and heterozygous for CYP1A2 rs2069522 (odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.03–1.80 and OR = 1.34, 95% CI: 1.00–1.79 respectively). Conclusion This study provides some support for polymorphic variation in CYP1A2 and CYP1B1 playing a role in CRC susceptibility. PMID:17615053

  15. Regulatory xenobiotic responsive elements in the distal 5'-flanking region of the mouse Cyp1a2 gene required for transcriptional activation by 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Kawasaki, Yuki; Sakuma, Tsutomu; Goto, Yuma; Nemoto, Nobuo

    2010-10-01

    We examined the xenobiotic responsive element (XRE) responsible for induction of the mouse Cyp1a2 gene by 3-methylcholanthrene (3MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) using a reporter gene assay in mouse hepatocytes in primary culture. Although, the 5'-flanking region up to -9.5 kilobase pairs did not show a significant increase in transcriptional activity after treatment with 3MC or TCDD, a further distal 5'-flanking region from -13,958 to -12,520 containing 12 putative XREs (5'-GCGTG-3') demonstrated distinctive transcriptional activity after treatment with 3MC or TCDD. When a mutation was introduced into XRE14 at -12,972, the activation was decreased, and concurrent mutations in XRE14, XRE13, and XRE15 completely abolished it. However, mutations in XRE13, XRE15, XRE16, or XRE17 did not affect the inducible transcriptional activation of the mouse Cyp1a2 gene. These results suggest that XRE14 is important and that XRE13 at -12,897 and/or XRE15 at -13,061 are cooperative to the inducible transcriptional activation of the mouse Cyp1a2 gene by ligands of the aryl hydrocarbon receptor.

  16. Bimodal action of miroestrol and deoxymiroestrol, phytoestrogens from Pueraria candollei var. mirifica, on hepatic CYP2B9 and CYP1A2 expressions and antilipid peroxidation in mice.

    PubMed

    Udomsuk, Latiporn; Juengwatanatrakul, Thaweesak; Putalun, Waraporn; Jarukamjorn, Kanokwan

    2012-01-01

    Miroestrol and deoxymiroestrol are phytoestrogens isolated from Pueraria candollei var. mirifica. The influence of miroestrol and dexoymirosestrol on hepatic cytochrome P450 (P450) enzymes and antioxidative activity in brain was examined in C57BL/6 mice compared with that of a synthetic female sex hormone estradiol. We hypothesized that miroestrol and deoxymiroestrol would induce CYP2B9 expression, whereas CYP1A2 expression would be suppressed compared with estradiol. Miroestrol and deoxymiroestrol treatment significantly increased uterus weight and volume. In addition, both of these phytoestrogens induced the expression of CYP2B9 and suppressed the expression of CYP1A2, as expected. Hepatic P450 activities correspondingly showed that both compounds increased benzyloxyresorufin O-dealkylase activity, whereas methoxyresorufin O-dealkylase activity was reduced. These observations suggested that miroestrol and deoxymiroestrol might affect hepatic P450 enzymes, including the CYP2B9 and CYP1A2 P450 isoforms. Assessment of lipid peroxidation demonstrated that miroestrol and deoxymiroestrol markedly decreased levels of malondialdehyde formation in the mouse brain. This is the first report suggesting miroestrol and deoxymiroestrol as potential alternative medicines to estradiol because of their distinctive ability to regulate mouse hepatic P450 expression and their beneficial antioxidative activities.

  17. A clinical study to assess CYP1A2 and CYP3A4 induction by AZD7325, a selective GABAA receptor modulator – an in vitro and in vivo comparison

    PubMed Central

    Zhou, Diansong; Sunzel, Maria; Ribadeneira, Maria D; Smith, Mark A; Desai, Dhaval; Lin, Jianrong; Grimm, Scott W

    2012-01-01

    AIM(S) To investigate the potential of AZD7325 to induce CYP1A2 and CYP3A4 enzyme activities. METHODS Induction of CYP1A2 and CYP3A4 by AZD7325 was first evaluated using cultured human hepatocytes. The effect of multiple doses of 10 mg AZD7325 on the pharmacokinetics of midazolam and caffeine was then examined in healthy subjects. RESULTS The highest CYP1A2 and CYP3A4 induction responses were observed in human hepatocytes treated with 1 or 10 µm of AZD7325, in the range of 17.9%–54.9% and 76.9%–85.7% of the positive control responses, respectively. The results triggered the further clinical evaluation of AZD7325 induction potential. AZD7325 reached a plasma Cmax of 0.2 µm after 10 mg daily dosing to steady-state. AZD7325 decreased midazolam geometric mean AUC by 19% (0.81-fold, 90% CI 0.77, 0.87), but had no effect on midazolam Cmax (90% CI 0.82, 0.97). The mean CL/F of midazolam increased from 62 l h−1 (midazolam alone) to 76 l h−1 when co-administered with AZD7325. The AUC and Cmax of caffeine were not changed after co-administration of AZD7325, with geometric mean ratios (90% CI) of 1.17 (1.12, 1.23) and 0.99 (0.95, 1.03), respectively. CONCLUSIONS While AZD7325 appeared to be a potent CYP3A4 inducer and a moderate CYP1A2 inducer from in vitro studies, the expected efficacious dose of AZD7325 had no effect on CYP1A2 activity and only a weak inducing effect on CYP3A4 activity. This comparison of in vitro and in vivo results demonstrates the critical role that clinical exposure plays in evaluating the CYP induction risk of a drug candidate. PMID:22122233

  18. Urinary excretion of vitamin B1, B2, B6, niacin, pantothenic acid, folate, and vitamin C correlates with dietary intakes of free-living elderly, female Japanese.

    PubMed

    Tsuji, Tomiko; Fukuwatari, Tsutomu; Sasaki, Satoshi; Shibata, Katsumi

    2010-03-01

    We hypothesized that 24-hour urinary excretion of water-soluble vitamins might correlate with their intake in free-living Japanese elderly females aged 70 to 84 years. We performed a cross-sectional study composed of 37 healthy, elderly, Japanese females living freely. All foods and the corresponding weights consumed for 4 consecutive days were recorded accurately. A 24-hour urine sample was collected on the fourth day, and the urinary content of water-soluble vitamins was measured. The urinary levels of all vitamins, except for B(12) (r = 0.01; P = .936), were correlated positively with the mean intake over the recent 4 days (vitamin B1: r = 0.62; P < .001; vitamin B2: r = 0.57; P < .001; vitamin B6: r = 0.37; P < .005; niacin: r = 0.54; P < .001; niacin equivalents: r = 0.54; P < .001; pantothenic acid: r = 0.59; P < .001; folate: r = 0.55; P = .001; and vitamin C: r = 0.53; P < .001). Mean estimated intakes of water-soluble vitamins calculated using urinary concentrations and recovery rates showed 96% to 107% of their 3-day mean intake, except for vitamin B12 (65%). We conclude that urinary levels of water-soluble vitamins, except for B12, reflected their recent intake in free-living Japanese elderly females and could be used as a measure of their intake during the previous few days both for group means and for individual rankings within a group.

  19. Metabolism of Endosulfan-Alpha by Human Liver Microsomes and its Utility as a Simultaneous In Vitro Probe for CYP2B6 and CYP3A4

    DTIC Science & Technology

    2006-03-30

    cyclophosphamide and ifosfamide (Huang et al., 2000), S-mephenytoin (Heyn et al., 1996; Ko et al., 1998), bupropion (Faucette et al., 2000; Hesse et al...cyclophosphamide and ifosfamide . Biochem Pharmacol 59:961-972. Khanna RN, Misra D, Anand M and Sharma HK (1979) Distribution of endosulfan in cat

  20. An insertion/deletion polymorphism in the 3' untranslated region of type I collagen a2 (COL1A2) is associated with susceptibility for hepatocellular carcinoma in a Chinese population.

    PubMed

    Zhu, Zhansheng; Jiang, Yuting; Chen, Shougong; Jia, Shasha; Gao, Xueren; Dong, Dong; Gao, Yuzhen

    2011-05-01

    Hepatocellular carcinoma (HCC) is one of the most common and severe diseases in the world. Besides the influence of environmental factors, such as viral infection, an increasing number of novel genetic components identified by genome-wide association studies have been associated with predisposition to HCC. Thus, studies focusing on functional variants in these findings are indispensable. In the present study, based on in-silico analysis, we carried out a case-control study in a Chinese population (207 cases and 245 controls) to investigate the association between HCC susceptibility with a 7 base pair (bp) insertion/deletion polymorphism (rs3917) in the 3'UTR of COL1A2. Our results showed that the ins/del + del/del genotype had an odds ratio of 1.76 (95% C.I.=1.03-3.01; P=0.028) for developing HCC compared to the ins/ins genotype. Carriers for the "del" allele of rs3917 were associated with a 1.73-fold increased risk for HCC (95% C.I.=1.06-2.84; P(trend)=0.02). Computational modeling suggests that this polymorphism is located in the hsa-let-7 g potential target sequence in the COL1A2 3' untranslated region. Our data suggest that most likely, common genetic changes in COL1A2 may influence HCC risk, at least in part by let-7 g-mediated regulation, which is possibly involved in the pathogenesis of HCC. The replication of our studies in other populations will further strengthen our understanding of this association.

  1. Metabolic activation of o-phenylphenol to a major cytotoxic metabolite, phenylhydroquinone: role of human CYP1A2 and rat CYP2C11/CYP2E1.

    PubMed

    Ozawa, S; Ohta, K; Miyajima, A; Kurebayashi, H; Sunouchi, M; Shimizu, M; Murayama, N; Matsumoto, Y; Fukuoka, M; Ohno, Y

    2000-10-01

    1. The in vitro metabolic activation of o-phenylphenol has been evaluated as yielding a toxic metabolite, 2,5-dihydroxybiphenyl (phenylhydroquinone), by p-hydroxylation in liver microsomes of rat and human. The involvement of rat CYP2C11, CYP2E1 and human CYP1A2 in the p-hydroxylation of o-phenylphenol is suggested. 2. 2,3- and phenylhydroquinone, which induced DNA single-strand scission in the presence of 1 microM CuCl2, were the most cytotoxic chemicals examined to cultured mammalian cell lines among o-phenylphenol, m-phenylphenol, p-phenylphenol, 2,2'-, 4,4'-, 2,3- and phenylhydroquinone. 3. Rat and human liver microsomes catalysed the formation of phenylhydroquinone, but not 2,3-dihydroxybiphenyl, using o-phenylphenol as a substrate. A higher rate of metabolic activation of o-phenylphenol was observed with livers of the male than the female rats by 5.6- and 2.6-fold respectively. 4. Inhibitory antibodies against the male-specific CYP2C11 inhibited hepatic o-phenylphenol p-hydroxylation in the male F344 and Sprague-Dawley rat by > 70%. Liver microsomes from the isoniazid-treated rats produced 1.8- and 3-fold induction of o-phenylphenol p-hydroxylation and chlorzoxazone 6-hydroxylation (a CYP2E1-dependent activity) respectively. 5. Human CYP1A2, expressed by baculovirus-mediated cDNA expression systems, exhibited a remarkably higher capacity for o-phenylphenol p-hydroxylation at concentrations of 5 (> 5-fold), 50 (> 2-fold) and 500 microM (> 2-fold) than CYP2A, CYP2B, CYP2Cs, CYP2D6, CYP2E1 and CYP3A4 on the basis of pmol P450. 6. Among various CYP inhibitors tested here, 7,8-benzoflavone and furafylline, typical human CYP1A2 inhibitors, inhibited the microsomal p-hydroxylation of o-phenylphenol in human livers most potently by 70 and 50% respectively. 7. The results thus indicate the involvement of rat CYP2C11/CYP2E1 and human CYP1A2 in the hepatic p-hydroxylation of o-phenylphenol.

  2. Small-scale fluctuations and angular correlations of the X-ray background in the HEAO 1 A-2 energy band - Constraints on clustering of X-ray sources

    NASA Technical Reports Server (NTRS)

    Martin-Mirones, J. M.; De Zotti, G.; Franceschini, A.; Boldt, E. A.; Marshall, F. E.; Danese, L.; Persic, M.

    1991-01-01

    HEAO 1 A-2 all-sky survey data have been used to determine the amplitude of intensity fluctuations of the extragalactic 2-10 keV X-ray background (XRB) over an effective solid angle of 1.84 sq deg and their angular correlation function on angular scales of less than 3 deg. A good empirical fit to the data is obtained assuming that the integral counts in the A-2 band have a slope of 1.65 + 0.06 or - 0.07. Alternatively, the data may imply a significant clustering of extragalactic X-ray sources.

  3. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes.

    PubMed

    Yalley, Akua; Schill, Daniel; Hatta, Mitsutoki; Johnson, Nicole; Cirillo, Lisa Ann

    2016-04-15

    FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding.

  4. Tissue- and cell type-specific expression of cytochrome P450 1A1 and cytochrome P450 1A2 mRNA in the mouse localized in situ hybridization.

    PubMed

    Dey, A; Jones, J E; Nebert, D W

    1999-08-01

    We used in situ hybridization to examine organ- and cell type-specific constitutive and 3-methylcholanthrene (3MC)-inducible cytochrome P450 (CYP)1A1 and CYP1A2 mRNA expression in various tissues of the C57BL/6N mouse. In situ hybridization was carried out 10 hr after the mice had received intraperitoneal 3MC, or vehicle alone. We detected levels of 3MC-induced CYP1A1 mRNA in: liver (centrilobular, more so than periportal, regions); lung (Clara Type II cells much more than Type I epithelial cells); brain, especially endothelial cells lining the vascular surface of the choroid plexus; the digestive tract (duodenum > jejunum > ileum > colon > esophagus > stomach--in particular, the villous epithelium, plus cells surrounding glands in the lamina propria); renal corpuscles of the kidney; the ovary (medulla more so than cortex); and the endothelial cells of blood vessels throughout the animal. Constitutive CYP1A1 mRNA was not detectable by in situ hybridization in any of these tissues. In contrast, constitutive CYP1A2 mRNA was measurable in liver, and 3MC-inducible CYP1A2 mRNA was observed only in liver, lung, and duodenum (having cell-type locations similar to those of CYP1A1); the other above-mentioned tissues were negative for CYP1A2 mRNA. These data demonstrate the striking differences in tissue- and cell type-specific expression between the two members of the mouse Cypla subfamily. Because of the ubiquitous nature of 3MC-inducible CYP1A1 throughout the animal rather than just "portals of entry," these results support our hypothesis that CYP1A1, induced by particular endogenous signals in various tissues and cell types, might participate in one or more critical life processes--in addition to its well-established role of metabolism of polycyclic hydrocarbons, certain drugs, and other environmental pollutants.

  5. Ethanol and 4-methylpyrazole increase DNA adduct formation of furfuryl alcohol in FVB/N wild-type mice and in mice expressing human sulfotransferases 1A1/1A2.

    PubMed

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-03-01

    Furfuryl alcohol (FFA) is a carcinogenic food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. The activation by sulfotransferases (SULTs) yields a DNA reactive and mutagenic sulfate ester. The most prominent DNA adduct, N(2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N(2)-MF-dG), was detected in FFA-treated mice and also in human tissue samples. The dominant pathway of FFA detoxification is the oxidation via alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The activity of these enzymes may be greatly altered in the presence of inhibitors or competitive substrates. Here, we investigated the impact of ethanol and the ADH inhibitor 4-methylpyrazole (4MP) on the DNA adduct formation by FFA in wild-type and in humanized mice that were transgenic for human SULT1A1/1A2 and deficient in the mouse (m) Sult1a1 and Sult1d1 genes (h1A1/1A2/1a1(-)/1d1(-)). The administration of FFA alone led to hepatic adduct levels of 4.5 N(2)-MF-dG/10(8) nucleosides and 33.6 N(2)-MF-dG/10(8) nucleosides in male and female wild-type mice, respectively, and of 19.6 N(2)-MF-dG/10(8) nucleosides and 95.4 N(2)-MF-dG/10(8) nucleosides in male and female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 1.6g ethanol/kg body weight increased N(2)-MF-dG levels by 2.3-fold in male and by 1.7-fold in female wild-type mice and by 2.5-fold in male and by 1.5-fold in female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 100mg 4MP/kg body weight had a similar effect on the adduct levels. These findings indicate that modulators of the oxidative metabolism, e.g. the drug 4MP or consumption of alcoholic beverages, may increase the genotoxic effects of FFA also in humans.

  6. The comparative effects of diethyldithiocarbamate-copper complex with established proteasome inhibitors on expression levels of CYP1A2/3A4 and their master regulators, aryl hydrocarbon and pregnane X receptor in primary cultures of human hepatocytes.

    PubMed

    Vrzal, Radim; Dvorak, Zdenek

    2016-12-01

    In the recent years, a therapeutic potential of disulfiram (Antabuse) complex with copper, as an anticancer drug, was recognized towards several cancer cell lines. The proteasome was suggested as one of the cellular targets for this compound. As the therapeutic use of diethyldithiocarbamate-copper complex (CuET) is expected to increase, it is of great interest to know whether this compound may be the source of drug-drug interactions via the induction of biotransformation enzymes, especially cytochromes P450 (CYPs). To this purpose, we examined the effect of CuET and compared it with typical inducers (rifampicin and dioxin) of CYPs and with well-established proteasome inhibitors (MG132 and bortezomib). Diethyldithiocarbamate-copper complex revealed inconsistent and rather modulatory effect on the expression of CYP1A2 and CYP3A4 in several cultures of human hepatocytes. Moreover, it was able to cause neither ubiquitin accumulation nor significant and dose-dependent inhibition of proteasome activity. It had no effect on essential transcription factors involved in regulation of selected CYPs, aryl hydrocarbon (AhR) nor pregnane X receptor (PXR). However, the AhR protein was increased in majority of examined hepatocyte cultures. The main finding of this study is that: (i) disulfiram-copper complex is not the cause of drug-drug interactions via CYP1A2/3A4 induction; (ii) proteasome inhibitors may have different impact on studied parameters in given in vitro system.

  7. No dose adjustment on coadministration of the PDE4 inhibitor roflumilast with a weak CYP3A, CYP1A2, and CYP2C19 inhibitor: an investigation using cimetidine.

    PubMed

    Böhmer, Gabriele M; Gleiter, Christoph H; Mörike, Klaus; Nassr, Nassr; Walz, Antje; Lahu, Gezim

    2011-04-01

    This nonrandomized, fixed-sequence, 2-period crossover study investigated potential pharmacokinetic interactions between the phosphodiesterase 4 inhibitor roflumilast, currently in clinical development for the treatment of chronic obstructive pulmonary disease, and the histamine 2 agonist cimetidine. Participants received roflumilast, 500 µg once daily, on days 1 and 13. Cimetidine, 400 mg twice daily, was administered from days 6 to 16. Pharmacokinetic analysis of roflumilast and its active metabolite roflumilast N-oxide was performed, and the ratio of geometric means for roflumilast alone and concomitantly with steady-state cimetidine was calculated. The effect of cimetidine on the total PDE4 inhibitory activity (tPDE4i; total exposure to roflumilast and roflumilast N-oxide) was also calculated. Coadministration of steady-state cimetidine increased mean tPDE4i of roflumilast and roflumilast N-oxide by about 47%. The maximum plasma concentration (C(max)) of roflumilast increased by about 46%, with no effect on C(max) of roflumilast N-oxide. The increase in tPDE4i of roflumilast and roflumilast N-oxide following coadministration with cimetidine was mainly due to the inhibitory effect of cimetidine on cytochrome P450 (CYP) isoenzymes CYP1A2, CYP3A, and CYP2C19. These moderate changes indicate that dose adjustment of roflumilast is not required when coadministered with a weak inhibitor of CYP1A2, CYP3A, and CYP2C19, such as cimetidine.

  8. Identity of M2A (D2-40) antigen and gp36 (Aggrus, T1A-2, podoplanin) in human developing testis, testicular carcinoma in situ and germ-cell tumours.

    PubMed

    Sonne, Si Brask; Herlihy, Amy S; Hoei-Hansen, Christina E; Nielsen, John E; Almstrup, Kristian; Skakkebaek, Niels E; Marks, Alexander; Leffers, Henrik; Rajpert-De Meyts, Ewa

    2006-08-01

    Testicular germ-cell tumours of young adults are derived from a pre-invasive intratubular lesion, carcinoma in situ (CIS). In a recent genome-wide gene expression screening using cDNA microarrays, we found PDPN over-expressed in CIS compared to normal adult testis. PDPN encodes podoplanin (Aggrus, human gp36, T1A-2), a transmembrane glycoprotein expressed in lymphatic endothelium and various solid tumours. To examine a potential role for PDPN in testicular neoplasms and during testicular development, we investigated its expression pattern during the development of human testis and in a series of testicular CIS, gonadoblastoma and overt germ-cell tumours. We established by RT-PCR and by immunohistochemistry with a gp36 antibody that PDPN mRNA and the protein product were expressed in testes with germ-cell neoplasms but not in the normal adult testis. We also found gp36 expression in early foetal gonocytes and immature Sertoli cells, similar to the expression pattern of M2A antigen, a previously identified marker for CIS and seminoma. This reinforced our previous proposal that M2A (D2-40) antigen was identical to gp36 (podoplanin, Aggrus, T1A-2). Our findings also suggest that podoplanin has a function in developing testis, most likely at the level of cell-cell interactions among pre-meiotic germ cells and immature Sertoli cells.

  9. Structure-function relationships of inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives.

    PubMed

    Shimada, Tsutomu; Tanaka, Katsuhiro; Takenaka, Shigeo; Murayama, Norie; Martin, Martha V; Foroozesh, Maryam K; Yamazaki, Hiroshi; Guengerich, F Peter; Komori, Masayuki

    2010-12-20

    Structure-function relationships for the inhibition of human cytochrome P450s (P450s) 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives were studied. Thirty-two of the 33 flavonoids tested produced reverse type I binding spectra with P450 1B1, and the potencies of binding were correlated with the abilities to inhibit 7-ethoxyresorufin O-deethylation activity. The presence of a hydroxyl group in flavones, for example, 3-, 5-, and 7-monohydroxy- and 5,7-dihydroxyflavone, decreased the 50% inhibition concentration (IC50) of P450 1B1 from 0.6 μM to 0.09, 0.21, 0.25, and 0.27 μM, respectively, and 3,5,7-trihydroxyflavone (galangin) was the most potent, with an IC50 of 0.003 μM. The introduction of a 4'-methoxy- or 3',4'-dimethoxy group into 5,7-dihydroxyflavone yielded other active inhibitors of P450 1B1 with IC50 values of 0.014 and 0.019 μM, respectively. The above hydroxyl and/or methoxy groups in flavone molecules also increased the inhibition activity with P450 1A1 but not always toward P450 1A2, where 3-, 5-, or 7-hydroxyflavone and 4'-methoxy-5,7-dihydroxyflavone were less inhibitory than flavone itself. P450 2C9 was more inhibited by 7-hydroxy-, 5,7-dihydroxy-, and 3,5,7-trihydroxyflavones than by flavone but was weakly inhibited by 3- and 5-hydroxyflavone. Flavone and several other flavonoids produced type I binding spectra with P450 3A4, but such binding was not always related to the inhibitiory activities toward P450 3A4. These results indicate that there are different mechanisms of inhibition for P450s 1A1, 1A2, 1B1, 2C9, and 3A4 by various flavonoid derivatives and that the number and position of hydroxyl and/or methoxy groups highly influence the inhibitory actions of flavonoids toward these enzymes. Molecular docking studies suggest that there are different mechanisms involved in the interaction of various flavonoids with the active site of P450s, thus causing differences in inhibition of these P450 catalytic activities by flavonoids.

  10. Structure-Function Relationships of Inhibition of Human Cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 Flavonoid Derivatives

    PubMed Central

    Shimada, Tsutomu; Tanaka, Katsuhiro; Takenaka, Shigeo; Murayama, Norie; Martin, Martha V.; Foroozesh, Maryam K.; Yamazaki, Hiroshi; Guengerich, F. Peter; Komori, Masayuki

    2010-01-01

    Structure-function relationships for inhibition of human cytochrome P450s (P450s) 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives were studied. Thirty-two of the 33 flavonoids tested produced Reverse Type I binding spectra with P450 1B1, and the potencies of binding were correlated with the abilities to inhibit 7-ethoxyresorufin O-deethylation activity. The presence of a hydroxyl group in flavones, e.g. 3-, 5-, and 7-monohydroxy- and 5,7-dihydroxyflavone, decreased the 50% inhibition concentration (IC50) of P450 1B1 from 0.6 µM to 0.09, 0.21, 0.25, and 0.27 µM, respectively, and 3,5,7-trihydroxyflavone (galangin) was the most potent, with an IC50 of 0.003 µM. The introduction of a 4’-methoxy- or 3’,4’-dimethoxy group into 5,7-dihydroxyflavone yielded other active inhibitors of P450 1B1 with IC50 values of 0.014 and 0.019 µM, respectively. The above hydroxyl- and/or methoxy-groups in flavone molecules also increased the inhibition activity with P450 1A1 but not always towards P450 1A2, where 3-, 5-, or 7-hydroxyflavone, and 4’-methoxy-5,7-dihydroxyflavone were less inhibitory than flavone itself. P450 2C9 was more inhibited by 7-hydroxy-,5,7-dihydroxy-, and 3,5,7-trihydroxyflavones than by flavone but was weakly inhibited by 3-and 5-hydroxyflavone. Flavone and several other flavonoids produced Type I binding spectra with P450 3A4, but such binding was not always related to the inhibitiory activities towards P450 3A4. These results indicate that there are different mechanisms of inhibition for P450s 1A1, 1A2, 1B1, 2C9, and 3A4 by various flavonoid derivatives and that the number and position of hydroxyl and/or methoxy groups highly influence the inhibitory actions of flavonoids towards these enzymes. Molecular docking studies suggest that there are different mechanisms involved in the interaction of various flavonoids with the active site of P450s, thus causing differences in inhibition of these P450 catalytic activities by flavonoids. PMID

  11. Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke.

    PubMed

    Hussain, Tajamul; Al-Attas, Omar S; Al-Daghri, Nasser M; Mohammed, Arif A; De Rosas, Edgard; Ibrahim, Shebl; Vinodson, Benjamin; Ansari, Mohammed G; El-Din, Khaled I Alam

    2014-06-01

    Incense smoke is increasingly being recognized as a potential environmental contaminant and is linked to malignant and non-malignant respiratory diseases. The detoxification of environmental contaminants including polycyclic aromatic hydrocarbons (PAHs) involves the induction of cytochrome P-450 family enzymes (CYPs) by PAHs. However, the detoxification of PAHs also results in the generation of reactive and unstable intermediary metabolites which are implicated in the oxidative stress, DNA damage, and inflammation. It is unclear whether CYPs are similarly induced by incense smoke, which incidentally contains substantial amounts of PAHs. Here, we examined the impact of long-term incense smoke exposure on the induction of CYPs in male Wister Albino rats. Incense smoke exposure significantly induced the expression of CYP1A1, CYP1A2, and CYP1B1 mRNAs in both lung and liver tissues. The extent of CYP1A1 and CYP1B1 induction was significantly higher in the liver compared to that in the lung, while that of CYP1A2 was greater in the lung than in liver. Incense smoke exposure also increased malondialdehyde and reduced glutathione levels in lung and liver tissues, and the catalase activity in the liver tissues to significant levels. Furthermore incense smoke exposure led to a marked increase in TNF-α and IL-4 levels. The data demonstrate for the first time the capacity of incense smoke to induce CYP1 family enzymes in the target and non-target tissues. Induction of CYPs increased oxidative stress and inflammation appear to be intimately linked to promote the carcinogenesis and health complications in people chronically exposed to incense smoke.

  12. Maternal protein restriction during lactation modulated the expression and activity of rat offspring hepatic CYP1A1, CYP1A2, CYP2B1, CYP2B2, and CYP2E1 during development

    PubMed Central

    Da Costa, N. Meireles; Visoni, S.B.C.; Dos Santos, I.L.; Barja-Fidalgo, T.C.; Ribeiro-Pinto, L.F.

    2016-01-01

    Early nutrition plays a long-term role in the predisposition to chronic diseases and influences the metabolism of several drugs. This may happen through cytochromes P450 (CYPs) regulation, which are the main enzymes responsible for the metabolism of xenobiotics. Here, we analyzed the effects of maternal protein restriction (MPR) on the expression and activity of hepatic offspring’s CYPs during 90 days after birth, using Wistar rats as a mammal model. Hepatic CYP1A1, CYP1A2, CYP2B1, CYP2B2 and CYP2E1 mRNA and protein expression, and associated catalytic activities (ECOD, EROD, MROD, BROD, PROD and PNPH) were evaluated in 15-, 30-, 60-, and 90-day-old offspring from dams fed with either a 0% protein (MPR groups) or a standard diet (C groups) during the 10 first days of lactation. Results showed that most CYP genes were induced in 60- and 90-day-old MPR offspring. The inductions detected in MPR60 and MPR90 were of 5.0- and 2.0-fold (CYP1A2), 3.7- and 2.0-fold (CYP2B2) and 9.8- and 5.8– fold (CYP2E1), respectively, and a 3.8-fold increase of CYP2B1 in MPR90. No major alterations were detected in CYP protein expression. The most relevant CYP catalytic activities’ alterations were observed in EROD, BROD and PNPH. Nevertheless, they did not follow the same pattern observed for mRNA expression, except for an induction of EROD in MPR90 (3.5-fold) and of PNPH in MPR60 (2.2-fold). Together, these results suggest that MPR during lactation was capable of altering the expression and activity of the hepatic CYP enzymes evaluated in the offspring along development. PMID:27828666

  13. The Hydroxyl Side Chain of a Highly Conserved Serine Residue Is Required for Cation Selectivity and Substrate Transport in the Glial Glutamate Transporter GLT-1/SLC1A2*

    PubMed Central

    Simonin, Alexandre; Montalbetti, Nicolas; Gyimesi, Gergely; Pujol-Giménez, Jonai; Hediger, Matthias A.

    2015-01-01

    Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates l-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na+ over Li+. S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for l-aspartate over d-aspartate and l-glutamate, and lost their selectivity for Na+ over Li+. Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes. PMID:26483543

  14. Maternal protein restriction during lactation modulated the expression and activity of rat offspring hepatic CYP1A1, CYP1A2, CYP2B1, CYP2B2, and CYP2E1 during development.

    PubMed

    Da Costa, N Meireles; Visoni, S B C; Dos Santos, I L; Barja-Fidalgo, T C; Ribeiro-Pinto, L F

    2016-01-01

    Early nutrition plays a long-term role in the predisposition to chronic diseases and influences the metabolism of several drugs. This may happen through cytochromes P450 (CYPs) regulation, which are the main enzymes responsible for the metabolism of xenobiotics. Here, we analyzed the effects of maternal protein restriction (MPR) on the expression and activity of hepatic offspring's CYPs during 90 days after birth, using Wistar rats as a mammal model. Hepatic CYP1A1, CYP1A2, CYP2B1, CYP2B2 and CYP2E1 mRNA and protein expression, and associated catalytic activities (ECOD, EROD, MROD, BROD, PROD and PNPH) were evaluated in 15-, 30-, 60-, and 90-day-old offspring from dams fed with either a 0% protein (MPR groups) or a standard diet (C groups) during the 10 first days of lactation. Results showed that most CYP genes were induced in 60- and 90-day-old MPR offspring. The inductions detected in MPR60 and MPR90 were of 5.0- and 2.0-fold (CYP1A2), 3.7- and 2.0-fold (CYP2B2) and 9.8- and 5.8- fold (CYP2E1), respectively, and a 3.8-fold increase of CYP2B1 in MPR90. No major alterations were detected in CYP protein expression. The most relevant CYP catalytic activities' alterations were observed in EROD, BROD and PNPH. Nevertheless, they did not follow the same pattern observed for mRNA expression, except for an induction of EROD in MPR90 (3.5-fold) and of PNPH in MPR60 (2.2-fold). Together, these results suggest that MPR during lactation was capable of altering the expression and activity of the hepatic CYP enzymes evaluated in the offspring along development.

  15. Hepatic foci in rats after diethylnitrosamine initiation and 2,3,7,8-tetrachlorodibenzo-p-dioxin promotion: evaluation of a quantitative two-cell model and of CYP 1A1/1A2 as a dosimeter.

    PubMed

    Conolly, R B; Andersen, M E

    1997-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent hepatic tumor promoter in female rats. We used a quantitative, stochastic initiation-promotion model based on R. B. Conolly and J. S. Kimbell (Toxicol. Appl. Pharmacol. 124, 284-295, 1994) to analyze initiation-promotion results from a previously published study (H. C. Pitot et al., Carcinogenesis 8, 1491-1499, 1987) within the context of a negative selection model of tumor promotion. In this model, two types of initiated cells (called A and B cells) are produced by DEN initiation. Visually excellent correspondence between model predictions and data (i.e., foci/cm3 liver and percentage of liver occupied by foci) are obtained when TCDD is described as having dose-responsive effects on division and death (apoptotic) rates of these two cell types. For A cells, both the division and the death rates increase while the difference between division and apoptotic rates decreases. For B cells, the difference between division and apoptotic rates increases, primarily due to a decrease in the apoptotic rate. We also linked these alterations in cell kinetics to a pharmacokinetic model for TCDD incorporating a five subcompartment model of the liver acinus with induction of CYP1A1 and 1A2 genes in the subcompartments. Alterations in A cell kinetics correlate with effects of TCDD in the region most sensitive to induction (subcompartment 5-centrilobular region); B cell dynamics correlate with induction in subcompartments 3-5 (centrilobular and mid-zonal regions). In summary, these modeling exercises show that (1) the two-cell model, without presuming effects of TCDD on the mutation rate of normal hepatocytes, reproduces the data of Pitot et al. (1987) and (2) induction of CYP1A1/1A2 in different regions of the hepatic acinus can be used as a general correlate of these presumed changes in cell growth kinetics.

  16. In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4 phenotypes

    PubMed Central

    Gardner, Stephanie F.; Hubbard, Martha A.; Williams, D. Keith; Gentry, W. Brooks; Khan, Ikhlas A.; Shah., Amit

    2007-01-01

    Objectives Phytochemical-mediated modulation of cytochrome P-450 activity may underlie many herb-drug interactions. Single time-point, phenotypic metabolic ratios were used to determine whether long-term supplementation of goldenseal (Hydrastis canadensis), black cohosh (Cimicifuga racemosa), kava kava (Piper methysticum), or valerian (Valeriana officinalis) extracts affected CYP1A2, CYP2D6, CYP2E1, or CYP3A4/5 activity. Methods Twelve healthy volunteers (6 females) were randomly assigned to receive goldenseal, black cohosh, kava kava, or valerian for 28 days. For each subject, a 30-day washout period was interposed between each supplementation phase. Probe drug cocktails of midazolam and caffeine, followed 24 hours later by chlorzoxazone and debrisoquine were administered before (baseline) and at the end of supplementation. Pre- and post-supplementation phenotypic trait measurements were determined for CYP3A4/5, CYP1A2, CYP2E1, and CYP2D6 using 1-hydroxymidazolam/midazolam serum ratios (1-hour sample), paraxanthine/caffeine serum ratios (6-hour sample), 6-hydroxychlorzoxazone/chlorzoxazone serum ratios (2-hour sample), and debrisoquine urinary recovery ratios (8-hour collection), respectively. The content of purported “active” phytochemicals was determined for each supplement. Results Comparisons of pre- and post-supplementation phenotypic ratio means revealed significant inhibition (~40%) of CYP2D6 (difference = −0.228; 95% CI = −0.268 to −0.188) and CYP3A4/5 (difference = −1.501; 95% CI = −1.840 to −1.163) activity for goldenseal. Kava produced significant reductions (~40%) in CYP2E1 only (difference = −0.192; 95% CI = −0.325 to −0.060). Black cohosh also exhibited statistically significant inhibition of CYP2D6 (difference = −0.046; 95% CI = −0.085 to −0.007), but the magnitude of the effect (~7%) did not appear clinically relevant. No significant changes in phenotypic ratios were observed for valerian. Conclusions Botanical

  17. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay

    PubMed Central

    Høie, Anja Hortemo; Svendsen, Camilla; Brunborg, Gunnar; Glatt, Hansruedi; Alexander, Jan; Meinl, Walter

    2015-01-01

    The food processing contaminants 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP), 5‐hydroxymethylfurfural (HMF) and 2,5 dimethylfuran (DMF) are potentially both mutagenic and carcinogenic in vitro and/or in vivo, although data on DMF is lacking. The PHIP metabolite N‐hydroxy‐PhIP and HMF are bioactivated by sulfotransferases (SULTs). The substrate specificity and tissue distribution of SULTs differs between species. A single oral dose of PhIP, HMF or DMF was administered to wild‐type (wt) mice and mice expressing human SULT1A1/1A2 (hSULT mice). DNA damage was studied using the in vivo alkaline single cell gel electrophoresis (SCGE) assay. No effects were detected in wt mice. In the hSULT mice, PhIP and HMF exposure increased the levels of DNA damage in the liver and kidney, respectively. DMF was not found to be genotoxic. The observation of increased DNA damage in hSULT mice compared with wt mice supports the role of human SULTs in the bioactivation of N‐hydroxy‐PhIP and HMF in vivo. Environ. Mol. Mutagen. 56:709–714, 2015. © 2015 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:26270892

  18. The aryl hydrocarbon receptor-interacting protein (AIP) is required for dioxin-induced hepatotoxicity but not for the induction of the Cyp1a1 and Cyp1a2 genes.

    PubMed

    Nukaya, Manabu; Lin, Bernice C; Glover, Edward; Moran, Susan M; Kennedy, Gregory D; Bradfield, Christopher A

    2010-11-12

    The aryl hydrocarbon receptor (AHR) plays an essential role in the toxic response to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), in the adaptive up-regulation of xenobiotic metabolizing enzymes, and in hepatic vascular development. In our model of AHR signaling, the receptor is found in a cytosolic complex with a number of molecular chaperones, including Hsp90, p23, and the aryl hydrocarbon receptor-interacting protein (AIP), also known as ARA9 and XAP2. To understand the role of AIP in adaptive and toxic aspects of AHR signaling, we generated a conditional mouse model where the Aip locus can be deleted in hepatocytes. Using this model, we demonstrate two important roles for the AIP protein in AHR biology. (i) The expression of AIP in hepatocytes is essential to maintain high levels of functional cytosolic AHR protein in the mammalian liver. (ii) Expression of the AIP protein is essential for dioxin-induced hepatotoxicity. Interestingly, classical AHR-driven genes show differential dependence on AIP expression. The Cyp1b1 and Ahrr genes require AIP expression for normal up-regulation by dioxin, whereas Cyp1a1 and Cyp1a2 do not. This differential dependence on AIP provides evidence that the mammalian genome contains more than one class of AHR-responsive genes and suggests that a search for AIP-dependent, AHR-responsive genes may guide us to the targets of the dioxin-induced hepatotoxicity.

  19. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay.

    PubMed

    Høie, Anja Hortemo; Svendsen, Camilla; Brunborg, Gunnar; Glatt, Hansruedi; Alexander, Jan; Meinl, Walter; Husøy, Trine

    2015-10-01

    The food processing contaminants 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 5-hydroxymethylfurfural (HMF) and 2,5 dimethylfuran (DMF) are potentially both mutagenic and carcinogenic in vitro and/or in vivo, although data on DMF is lacking. The PHIP metabolite N-hydroxy-PhIP and HMF are bioactivated by sulfotransferases (SULTs). The substrate specificity and tissue distribution of SULTs differs between species. A single oral dose of PhIP, HMF or DMF was administered to wild-type (wt) mice and mice expressing human SULT1A1/1A2 (hSULT mice). DNA damage was studied using the in vivo alkaline single cell gel electrophoresis (SCGE) assay. No effects were detected in wt mice. In the hSULT mice, PhIP and HMF exposure increased the levels of DNA damage in the liver and kidney, respectively. DMF was not found to be genotoxic. The observation of increased DNA damage in hSULT mice compared with wt mice supports the role of human SULTs in the bioactivation of N-hydroxy-PhIP and HMF in vivo.

  20. Reaction of cytochrome P450 with cumene hydroperoxide: ESR spin-trapping evidence for the homolytic scission of the peroxide O-O bond by ferric cytochrome P450 1A2.

    PubMed

    Barr, D P; Martin, M V; Guengerich, F P; Mason, R P

    1996-01-01

    ESR spin trapping was used to investigate the reaction of rabbit cytochrome P450 (P450) 1A2 with cumene hydroperoxide. Cumene hydroperoxide-derived peroxyl, alkoxyl, and carbon-centered radicals were formed and trapped during the reaction. The relative contributions of each radical adduct to the composite ESR spectrum were influenced by the concentration of the spin trap. Computer simulation of the experimental data obtained at various 5,5-dimethyl-1-pyrroline N-oxide (DMPO) concentrations was used to quantitate the contributions of each radical adduct to the composite ESR spectrum. The alkoxyl radical was the initial radical produced during the reaction. Experiments with 2-methyl-2-nitrosopropane identified the carbon-centered adducts as those of the methyl radical, hydroxymethyl radical, and a secondary carbon-centered radical. The reaction did not require NADPH-cytochrome P450 reductase or NADPH. It is concluded that the reaction involves the initial homolytic scission of the peroxide O-O bond to produce the cumoxyl radical. Methyl radicals were produced from the beta-scission of the cumoxyl radical. The peroxyl adduct was not observed in the absence of molecular oxygen. We conclude that the DMPO peroxyl radical adduct detected in