Science.gov

Sample records for 1a7 1a8 1a9

  1. [Influence of genetic polymorphisms in UGT1A1, UGT1A7 and UGT1A9 on the pharmacokynetics of irinotecan, SN-38 and SN-38G].

    PubMed

    Valenzuela Jiménez, B; González Sales, M; Escudero Ortiz, V; Martínez Navarro, E; Pérez Ruixo, C; Rebollo Liceaga, J; González Manzano, R; Pérez Ruixo, J J

    2013-01-01

    Objetivo: Evaluar la influencia de los polimorfismos genéticos en UGT1A1, UGT1A7 y UGT1A9 sobre la farmacocinética poblacional de irinotecán y sus metabolitos, SN-38 y SN-38G. Metodología: Las concentraciones plasmáticas de irinotecán, SN-38 y SN-38G determinadas en 72 pacientes se utilizaron para desarrollar un modelo farmacocinético poblacional en el programa NONMEM VII. Se empleó el método M3 para incluir en el análisis las concentraciones por debajo del límite de cuantificación de la técnica analítica. Se evaluó el efecto de la edad, sexo, superficie corporal, bilirrubina total, medicación concomitante, tipo de tumor y polimorfismos genéticos en UGT1A1, UGT1A7 y UGT1A9 sobre los parámetros farmacocineticos del modelo. La validación interna del modelo farmacocinético se realizó mediante normalized visual predictive check (NVPC) y normalized predictive distribution error (NPDE). Resultados: El valor medio (variabilidad interpaciente, %) del aclaramiento de irinotecán, SN-38 y SN-38G ha sido 42,9 (56,4%), 1340 (76,8%) y 188 L/h (70,1%), respectivamente. La presencia de alelos con baja actividad enzimática (UGT1A1*28, UGT1A7*3 y UGT1A9*22) redujo el aclaramiento de SN-38 entre un 20 y un 36%. La validación interna ha confirmado que el modelo farmacocinético poblacional resulta adecuado para describir la evolución temporal de las concentraciones plasmáticas de irinotecán, SN-38 y SN-38G y su variabilidad en pacientes oncológicos. Conclusión: La inclusión de información farmacocinética-farmacogenética puede añadir valor a la personalización de la dosificación de irinotecán por cuanto que permitirá manejar cuantitativamente las reducciones de dosis en pacientes con toxicidad iatrogénica debido a los polimorfismos genéticos en UGT1A1.

  2. Albumin Stimulates the Activity of the Human UDP-Glucuronosyltransferases 1A7, 1A8, 1A10, 2A1 and 2B15, but the Effects Are Enzyme and Substrate Dependent

    PubMed Central

    Svaluto-Moreolo, Paolo; Dziedzic, Klaudyna; Yli-Kauhaluoma, Jari; Finel, Moshe

    2013-01-01

    Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s Km, increasing its Vmax, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ Km are concerned. In the cases of Vmax values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to Vmax increases. Additionally, the BSA effects may be UGT subfamily dependent since Km decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large Vmax increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs. PMID:23372764

  3. Cellular Asymmetric Catalysis by UDP-glucuronosyltransferase 1A8 Shows Functional Localization to the Basolateral Plasma Membrane*

    PubMed Central

    Ziegler, Kerstin; Tumova, Sarka; Kerimi, Asimina; Williamson, Gary

    2015-01-01

    UDP-glucuronosyltransferases (UGTs) are highly expressed in liver, intestine and kidney, and catalyze the glucuronic acid conjugation of both endogenous compounds and xenobiotics. Using recombinant human UGT isoforms, we show that glucuronic acid conjugation of the model substrate, (−)-epicatechin, is catalyzed mainly by UGT1A8 and UGT1A9. In HepG2 cells, pretreatment with polyunsaturated fatty acids increased substrate glucuronidation. In the intestinal Caco-2/HT29-MTX co-culture model, overall relative glucuronidation rates were much higher than in HepG2 cells, and (−)-epicatechin was much more readily conjugated when applied to the basolateral side of the cell monolayer. Under these conditions, 95% of the conjugated product was effluxed back to the site of application, and none of the other phase 2-derived metabolites followed this distribution pattern. HT29-MTX cells contained >1000-fold higher levels of UGT1A8 mRNA than Caco-2 or HepG2 cells. Gene expression of UGT1A8 increased after treatment of cells with docosahexaenoic acid, as did UGT1A protein levels. Immunofluorescence staining and Western blotting showed the presence of UGT1A in the basal and lateral parts of the plasma membrane of HT29-MTX cells. These results suggest that some of the UGT1A8 enzyme is not residing in the endoplasmic reticulum but spans the plasma membrane, resulting in increased accessibility to compounds outside the cell. This facilitates more efficient conjugation of substrate and is additionally coupled with rapid efflux by functionally associated basolateral transporters. This novel molecular strategy allows the cell to carry out conjugation without the xenobiotic entering into the interior of the cell. PMID:25586184

  4. Enantiomer selective glucuronidation of the non-steroidal pure anti-androgen bicalutamide by human liver and kidney: role of the human UDP-glucuronosyltransferase (UGT)1A9 enzyme

    PubMed Central

    Grosse, Laurent; Campeau, Anne-Sophie; Caron, Sarah; Morin, Frédéric-Alexandre; Meunier, Kim; Trottier, Jocelyn; Caron, Patrick; Verreault, Mélanie; Barbier, Olivier

    2013-01-01

    Bicalutamide (Casodex®) is a non-steroidal pure anti-androgen used in the treatment of localized prostate cancer. It is a racemate drug and its activity resides in the (R)-enantiomer, with little in the (S)-enantiomer. A major metabolic pathway for bicalutamide is glucuronidation catalyzed by UDP-glucuronosyltransferase (UGT) enzymes. While (S)bicalutamide is directly glucuronidated, (R)bicalutamide requires hydroxylation prior to glucuronidation. The contribution of human tissues and UGT isoforms in the metabolism of these enantiomers has not been extensively investigated. In this study, both (R) and/or (S)bicalutamide were converted into glucuronide (-G) derivatives following incubation of pure and racemic solutions with microsomal extracts from human liver and kidney. Intestinal microsomes exhibited only low reactivity with these substrates. Km values of liver and kidney samples for (S)bicalutamide glucuronidation were similar, and lower than values obtained with the (R)-enantiomer. Among the 16 human UGTs tested, UGT1A8 and UGT1A9 were able to form both (S) and (R)bicalutamide-G from pure or racemic substrates. UGT2B7 was also able to form (R)bicalutamide-G. Kinetic parameters of the recombinant UGT2B7, UGT1A8 and UGT1A9 enzymes support a predominant role of the UGT1A9 isoform in bicalutamide metabolism. Accordingly, (S)bicalutamide inhibited the ability of human liver and kidney microsomes to glucuronidate the UGT1A9 probe substrate, propofol. In conclusion, the present study provides the first comprehensive analysis of in vitro bicalutamide glucuronidation by human tissues and UGTs, and identifies UGT1A9 as a major contributor for (R) and (S) glucuronidation in the human liver and kidney. PMID:23527766

  5. Dimerization of human uridine diphosphate glucuronosyltransferase allozymes 1A1 and 1A9 alters their quercetin glucuronidation activities.

    PubMed

    Liu, Yan-Qing; Yuan, Ling-Min; Gao, Zhang-Zhao; Xiao, Yong-Sheng; Sun, Hong-Ying; Yu, Lu-Shan; Zeng, Su

    2016-01-01

    Uridine diphosphate glucuronosyltransferase 1A (UGT1A) is a major phase II drug-metabolism enzyme superfamily involved in the glucuronidation of endobiotics and xenobiotics in humans. Many polymorphisms in UGT1A genes are reported to inhibit or decrease UGT1A activity. In this study, two UGT1A1 allozymes, UGT1A1 wild-type and a splice mutant, as well as UGT1A9 wild-type and its three UGT1A9 allozymes, UGT1A9*2(C3Y), UGT1A9*3(M33T), and UGT1A9*5(D256N) were single- or double-expressed in a Bac-to-Bac expression system. Dimerization of UGT1A1 or UGT1A9 allozymes was observed via fluorescence resonance energy transfer (FRET) and co-immunoprecipitation analysis. SNPs of UGT1A altered the ability of protein-protein interaction, resulting in differential FRET efficiencies and donor-acceptor r distances. Dimerization changed the chemical regioselectivity, substrate-binding affinity, and enzymatic activity of UGT1A1 and UGT1A9 in glucuronidation of quercetin. These findings provide molecular insights into the consequences of homozygous and heterozygous UGT1A1 and UGT1A9 allozymes expression on quercetin glucuronidation. PMID:27025983

  6. Dimerization of human uridine diphosphate glucuronosyltransferase allozymes 1A1 and 1A9 alters their quercetin glucuronidation activities

    PubMed Central

    Liu, Yan-Qing; Yuan, Ling-Min; Gao, Zhang-Zhao; Xiao, Yong-Sheng; Sun, Hong-Ying; Yu, Lu-Shan; Zeng, Su

    2016-01-01

    Uridine diphosphate glucuronosyltransferase 1A (UGT1A) is a major phase II drug-metabolism enzyme superfamily involved in the glucuronidation of endobiotics and xenobiotics in humans. Many polymorphisms in UGT1A genes are reported to inhibit or decrease UGT1A activity. In this study, two UGT1A1 allozymes, UGT1A1 wild-type and a splice mutant, as well as UGT1A9 wild-type and its three UGT1A9 allozymes, UGT1A9*2(C3Y), UGT1A9*3(M33T), and UGT1A9*5(D256N) were single- or double-expressed in a Bac-to-Bac expression system. Dimerization of UGT1A1 or UGT1A9 allozymes was observed via fluorescence resonance energy transfer (FRET) and co-immunoprecipitation analysis. SNPs of UGT1A altered the ability of protein-protein interaction, resulting in differential FRET efficiencies and donor-acceptor r distances. Dimerization changed the chemical regioselectivity, substrate-binding affinity, and enzymatic activity of UGT1A1 and UGT1A9 in glucuronidation of quercetin. These findings provide molecular insights into the consequences of homozygous and heterozygous UGT1A1 and UGT1A9 allozymes expression on quercetin glucuronidation. PMID:27025983

  7. Identification and characterization of oxymetazoline glucuronidation in human liver microsomes: evidence for the involvement of UGT1A9.

    PubMed

    Mahajan, Mukesh K; Uttamsingh, Vinita; Gan, Liang-Shang; Leduc, Barbara; Williams, David A

    2011-02-01

    The incubation of oxymetazoline, a nonprescription nasal decongestant, with human liver microsomes (HLMs) supplemented with uridine-5-diphosphoglucuronic acid (UDPGA) generated glucuronide metabolite as observed by LC/MS/MS. The uridine glucuronosyltransferases (UGTs) responsible for the O-glucuronidation of oxymetazoline remain thus far unidentified. The glucuronide formed in HLMs was identified by LC/MS/MS and characterized by one- and two-dimensional NMR to be the β-O-glucuronide of oxymetazoline. UGT screening with expressed UGTs identified UGT1A9 as the single UGT isoform catalyzing O-glucuronidation of oxymetazoline. Oxymetazoline O-glucuronidation by using HLMs was best fitted to the allosteric sigmoidal model. The derived S(50) and V(max) values were 2.42 ± 0.40 mM and 8.69 ± 0.58 pmole/(min mg of protein), respectively, and maximum clearance (CL(max)) was 3.61 L/min/mg. Oxymetazoline O-glucuronidation by using expressed UGT1A9 was best fitted to the substrate inhibition model. The derived K(m) and V(max) values were 2.53 ± 1.03 mM and 54.18 ± 16.92 pmole/(min mg of protein), respectively, and intrinsic clearance (CL(int)) was 21.41 L/(min mg). Our studies indicate that oxymetazoline is not glucuronidated at its nanomolar intranasal dose and thus is eliminated unchanged, because UGT1A9 would only contribute to its elimination at the toxic plasma concentrations.

  8. Effects of β-Naphthoflavone on Ugt1a6 and Ugt1a7 Expression in Rat Brain.

    PubMed

    Sakakibara, Yukiko; Katoh, Miki; Kondo, Yuya; Nadai, Masayuki

    2016-01-01

    Uridine 5'-diphosphate-glucuronosyltransferase (UGT) catalyzes a major phase II reaction in a drug-metabolizing enzyme system. Although the UGT1A subfamily is expressed mainly in the liver, it is also expressed in the brain. The purpose of the present study was to elucidate the effect of β-naphthoflavone (BNF), one of the major inducers of drug-metabolizing enzymes, on Ugt1a6 and Ugt1a7 mRNA expression and their glucuronidation in the rat brain. Eight-week-old male Sprague-Dawley rats were treated intraperitoneally with BNF (80 mg/kg), once daily for 7 d. Ugt1a6 and Ugt1a7 mRNA expression increased in the cerebellum and hippocampus (Ugt1a6: 2.1- and 2.3-fold, respectively; Ugt1a7: 1.7- and 2.8-fold, respectively); acetaminophen glucuronidation also increased in the same regions by 4.1- and 2.7-fold, respectively. BNF induced Ugt1a6 and Ugt1a7 mRNA expression and their glucuronidation, and the degree of induction differed among 9 regions. BNF also upregulated CYP1A1, CYP1A2, and CYP1B1 mRNAs in the rat brain. Since the aryl hydrocarbon receptor signaling pathway was activated by BNF, it is indicated that Ugt1a6 and Ugt1a7 were induced via AhR in the rat brain. This study clarified that Ugt1a6 and Ugt1a7 mRNA expression and their enzyme activities were altered by BNF, suggesting that these changes may lead to alteration in the pharmacokinetics of UGT substrate in rat brain. PMID:26725430

  9. Effects of β-Naphthoflavone on Ugt1a6 and Ugt1a7 Expression in Rat Brain.

    PubMed

    Sakakibara, Yukiko; Katoh, Miki; Kondo, Yuya; Nadai, Masayuki

    2016-01-01

    Uridine 5'-diphosphate-glucuronosyltransferase (UGT) catalyzes a major phase II reaction in a drug-metabolizing enzyme system. Although the UGT1A subfamily is expressed mainly in the liver, it is also expressed in the brain. The purpose of the present study was to elucidate the effect of β-naphthoflavone (BNF), one of the major inducers of drug-metabolizing enzymes, on Ugt1a6 and Ugt1a7 mRNA expression and their glucuronidation in the rat brain. Eight-week-old male Sprague-Dawley rats were treated intraperitoneally with BNF (80 mg/kg), once daily for 7 d. Ugt1a6 and Ugt1a7 mRNA expression increased in the cerebellum and hippocampus (Ugt1a6: 2.1- and 2.3-fold, respectively; Ugt1a7: 1.7- and 2.8-fold, respectively); acetaminophen glucuronidation also increased in the same regions by 4.1- and 2.7-fold, respectively. BNF induced Ugt1a6 and Ugt1a7 mRNA expression and their glucuronidation, and the degree of induction differed among 9 regions. BNF also upregulated CYP1A1, CYP1A2, and CYP1B1 mRNAs in the rat brain. Since the aryl hydrocarbon receptor signaling pathway was activated by BNF, it is indicated that Ugt1a6 and Ugt1a7 were induced via AhR in the rat brain. This study clarified that Ugt1a6 and Ugt1a7 mRNA expression and their enzyme activities were altered by BNF, suggesting that these changes may lead to alteration in the pharmacokinetics of UGT substrate in rat brain.

  10. Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10

    PubMed Central

    Ramírez, Jacqueline; Mirkov, Snezana; House, Larry K.

    2015-01-01

    OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0–21%) was observed using clinically relevant OTS167 concentrations (0.4–2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration. PMID:25870101

  11. Effects of Phenobarbital on Expression of UDP-Glucuronosyltransferase 1a6 and 1a7 in Rat Brain.

    PubMed

    Sakakibara, Yukiko; Katoh, Miki; Kondo, Yuya; Nadai, Masayuki

    2016-03-01

    UDP-glucuronosyltransferase (UGT), a phase II drug-metabolizing enzyme, is expressed in the brain and can catalyze glucuronidation of endogenous and exogenous substrates in the brain. Thus, changes in UGT1A expression could affect homeostasis and drug efficacy. Phenobarbital (PB), a typical inducer of drug-metabolizing enzymes, has been reported to induce oxidative stress and epigenetic changes, which could alter UGT expression in the brain. Here, we aimed to clarify the effects of PB on Ugt1a6 and Ugt1a7 gene expression in rat brains. Sprague-Dawley rats were treated intraperitoneally with PB (80 mg/kg), once daily for 7 days. Ugt1a6 and Ugt1a7 mRNA expression levels were increased in the striatum and thalamus (Ugt1a6, 3.0- and 2.9-fold, respectively; Ugt1a7, 2.6- and 2.6-fold, respectively). Acetaminophen glucuronidation was also increased in the medulla oblongata and thalamus by 1.8- and 1.2-fold, respectively. The induction rates within different brain regions were correlated with Ugt1a6 and Ugt1a7 mRNA expression, and the degree of induction also correlated with that of NF-E2-related factor-2 mRNA. Measurement of oxidative stress markers suggested that PB induced oxidative stress in brain regions in which Ugt1a6 and Ugt1a7 mRNAs were increased. Moreover, histone modifications were altered by PB treatment, resulting in increased histone H3 lysine 4 trimethylation in the striatum and thalamus and decreased histone H3 lysine 9 trimethylation in the thalamus. These results suggested that oxidative stress and histone modifications may promote transcriptional activation of Ugt1a6 and Ugt1a7 genes. In summary, Ugt1a6 and Ugt1a7 mRNA levels were increased by PB treatment, which may alter pharmacokinetics in the brain.

  12. Glucuronidation of bavachinin by human tissues and expressed UGT enzymes: Identification of UGT1A1 and UGT1A8 as the major contributing enzymes.

    PubMed

    Lv, Xia; Hou, Jie; Xia, Yang-Liu; Ning, Jing; He, Gui-Yuan; Wang, Ping; Ge, Guang-Bo; Xiu, Zhi-Long; Yang, Ling

    2015-10-01

    Bavachinin (BCI), a major bioactive compound in Chinese herbal Psoralea corylifolia, possesses a wide range of biological activities. In this study, the glucuronidation pathway of BCI was characterized for the first time, by using pooled human liver microsomes (HLM), pooled human intestine microsomes (HIM) and recombinant human UDP-glucosyltransferases (UGTs). One mono-glucuronide was detected in HLM in the presence of uridine-diphosphate glucuronic acid (UDPGA), and it was biosynthesized and well-characterized as BCI-4'-O-glucuronide (BCIG). Reaction phenotyping assay showed that UGT1A1, UGT1A3 and UGT1A8 were involved in BCI-4'-O-glucuronidation, while UGT1A1 and UGT1A8 displayed the higher catalytic ability among all tested UGT isoforms. Kinetic analysis demonstrated that BCI-4'-O-glucuronidation in both HLM and UGT1A1 followed sigmoidal kinetic behaviors and displayed much close Km values (12.4 μM in HLM & 9.7 μM in UGT1A1). Both chemical inhibition assays and correlation analysis demonstrated that UGT1A1 displayed a predominant role in BCI-4'-O-glucuronidation in HLM. Both HIM and UGT1A8 exhibited substrate inhibition at high concentrations, and Km values of HIM and UGT1A8 were 3.6 and 2.3 μM, respectively. Similar catalytic efficiencies were observed for HIM (199.3 μL/min/mg) and UGT1A8 (216.2 μL/min/mg). These findings suggested that UGT1A1 and UGT1A8 were the primary isoforms involved in BCI-4'-O-glucuronidation in HLM, and HIM, respectively. PMID:26320626

  13. Differences in the glucuronidation of bisphenols F and S between two homologous human UGT enzymes, 1A9 and 1A10.

    PubMed

    Gramec Skledar, Darja; Troberg, Johanna; Lavdas, Jason; Peterlin Mašič, Lucija; Finel, Moshe

    2015-01-01

    1. Bisphenol S (BPS) and bisphenol F (BPF) are bisphenol A (BPA) analogues commonly used in the manufacturing of industrial and consumer products. 2. Bisphenols are often detoxified through conjugation with glucuronic acid or sulfate. In this work, we have examined the glucuronidation of BPS and BPF by recombinant human UDP-glucuronosyltransferase (UGT) enzymes. In addition, we have reexamined BPA glucuronidation, using extra-hepatic UGTs that were not tested previously. 3. The results revealed that UGT1A9, primarily a hepatic enzyme, is mainly responsible for BPS glucuronidation, whereas UGT1A10, an intestine enzyme that is highly homologous to UGT1A9 at the protein level, is by far the most active UGT in BPF glucuronidation. In contrast to the latter two UGTs that display significant specificity in the glucuronidation of BPS and BPF, UGT2A1 that is mainly expressed in the airways, exhibited high activity toward all the tested bisphenols, BPS, BPF and BPA. UGT1A10 exhibited somewhat higher BPA glucuronidation activity than UGT1A9, but it was lower than UGT2A1 and UGT2B15. 4. The new findings demonstrate interesting differences in the glucuronidation patterns of bisphenols and provide new insights into the role of extra-hepatic tissues in their detoxification.

  14. Gossypol exhibits a strong influence towards UDP-glucuronosyltransferase (UGT) 1A1, 1A9 and 2B7-mediated metabolism of xenobiotics and endogenous substances.

    PubMed

    Zhang, Yong-Sheng; Yuan, Jun; Fang, Zhong-Ze; Tu, Yan-Yang; Hu, Cui-Min; Li, Gan; Wang, Liang; Deng, Jian-Ping; Yao, Jia-Jiu; Li, Hai-Rong

    2012-01-01

    Gossypol, the polyphenolic constituent isolated from cottonseeds, has been used as a male antifertility drug for a long time, and has been demonstrated to exhibit excellent anti-tumor activity towards multiple cancer types. The toxic effects of gossypol limit its clinical utilization, and enzyme inhibition is an important facet of this. In the present study, in vitro human liver microsomal incubation system supplemented with UDPGA was used to investigate the inhibition of gossypol towards UGT1A1, 1A9 and 2B7-mediated metabolism of xenobiotics and endogenous substances. Estradiol, the probe substrate of UGT1A1, was selected as representative endogenous substance. Propofol (a probe substrate of UGT1A9) and 3'-azido-3'-deoxythimidine (AZT, a probe substrate of UGT2B7) were employed as representative xenobiotics. The results showed that gossypol noncompetitively inhibits UGT-mediated estradiol-3-glucuronidation and propofol O-glucuronidation, and the inhibition kinetic parameters (K(i)) were calculated to be 34.2 and 16.4 μM, respectively. Gossypol was demonstrated to exhibit competitive inhibition towards UGT-mediated AZT glucuronidation, and the inhibition kinetic parameter (K(i)) was determined to be 14.0 μM. All these results indicated that gossypol might induce metabolic disorders of endogenous substances and alteration of metabolic behaviour of co-administered xenobiotics through inhibition of UGTs' activity. PMID:22543504

  15. Involvement of UDP-glucuronosyltransferases UGT1A9 and UGT2B7 in ethanol glucuronidation, and interactions with common drugs of abuse.

    PubMed

    Al Saabi, Alaa; Allorge, Delphine; Sauvage, François-Ludovic; Tournel, Gilles; Gaulier, Jean-Michel; Marquet, Pierre; Picard, Nicolas

    2013-03-01

    Ethyl glucuronide (EtG) determination is increasingly used in clinical and forensic toxicology to document ethanol consumption. The enzymes involved in EtG production, as well as potential interactions with common drugs of abuse, have not been extensively studied. Activities of human liver (HLM), kidney (HKM), and intestinal (HIM) microsomes, as well as of 12 major human recombinant UDP-glucuronosyltransferases (UGTs), toward ethanol (50 and 500 mM) were evaluated in vitro using liquid chromatography-tandem mass spectrometry. Enzyme kinetic parameters were determined for pooled microsomes and recombinant UGTs with significant activity. Individual contributions of UGTs were estimated using the relative activity factor approach, proposed for scaling activities obtained with cDNA-expressed enzymes to HLM. Interaction of morphine, codeine, lorazepam, oxazepam, nicotine, cotinine, cannabinol, and cannabidiol (5, 10, 15 mg/l) with ethanol (1.15, 4.6, 11.5 g/l; i.e., 25, 100, 250 mM) glucuronidation was assessed using pooled HLM. Ethanol glucuronidation intrinsic clearance (Cl(int)) was 4 and 12.7 times higher for HLM than for HKM and HIM, respectively. All recombinant UGTs, except UGT1A1, 1A6, and 1A10, produced EtG in detectable amounts. UGT1A9 and 2B7 were the most active enzymes, each accounting for 17 and 33% of HLM Cl(int), respectively. Only cannabinol and cannabidiol significantly affected ethanol glucuronidation. Cannabinol increased ethanol glucuronidation in a concentration-dependent manner, whereas cannabidiol significantly inhibited EtG formation in a noncompetitive manner (IC(50) = 1.17 mg/l; inhibition constant (K(i)) = 3.1 mg/l). UGT1A9 and 2B7 are the main enzymes involved in ethanol glucuronidation. In addition, our results suggest that cannabinol and cannabidiol could significantly alter ethanol glucuronidation. PMID:23230132

  16. UGT1A1 and UGT1A9 functional variants, meat intake, and colon cancer, among Caucasians and African Americans

    PubMed Central

    Girard, Hugo; Butler, Lesley M.; Villeneuve, Lyne; Millikan, Robert C.; Sinha, Rashmi; Sandler, Robert S.; Guillemette, Chantal

    2008-01-01

    Glucuronidation by the UDP-glucuronosyltransferase enzymes (UGTs) is one of the primary detoxification pathways of dietary heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs). In a population-based case-control study of 537 cases and 866 controls, we investigated whether colon cancer was associated with genetic variations in UGT1A1 and UGT1A9 genes and we determined if those variations modify the association between colon cancer and dietary HCA and PAH exposure. We measured functional UGT1A1 polymorphisms at positions −53 (*28; A(TA)6TAA to A(TA)7TAA), −3156 (G>A), −3279 (T>G) and the UGT1A9-275(T>A) polymorphism, and found no association with colon cancer overall. However, when stratified by race, the UGT1A1-3279 GG/TG intermediate/low activity genotypes were associated with an increased risk of colon cancer (odds ratio (OR) = 1.5, 95% confidence interval (CI)=1.1–2.0) in Caucasians. This finding is also supported by haplotype analyses where the UGT1A1-3279G-allele-bearing haplotype is overrepresented in case group. Overall, UGT1A1-53 and -3156 genotypes modified the association between dietary benzo(a)pyrene (BaP) and colon cancer (P for interaction=0.02 and 0.03, respectively). The strongest association was observed for those with <7.7 ng/day BaP exposure and the low activity genotypes, for both UGT1A1*28/*28 (OR=1.8, 95% CI=1.1–2.9) and −3156AA (OR=1.7, 95% CI=1.0–3.0), compared to ≥7.7 ng/day and combined high/intermediate genotypes. These data support a hypothesis that UGTs modify the association between meat-derived PAH exposure and colon cancer by their role in the elimination of dietary carcinogens. PMID:18675828

  17. UDP-glucuronosyltransferase UGT1A7 genetic polymorphisms in hepatocellular carcinoma: a differential impact according to seropositivity of HBV or HCV markers?

    PubMed Central

    Stücker, I; Loriot, MA; N'Koutchou, G; Cénée, S; Bodin, L; Mulot, C; Gelu-Simeon, M; Pelletier, L; Bronowicki, JP; Degos, F; Beaune, P; Laurent-Puig, P; Hémon, D; Trinchet, JC; Pelletier, G

    2007-01-01

    Background: We conducted a case-control study to evaluate the role of UDP-glucuronosyltransferase 1A7 (UGT1A7) polymorphisms in the onset of hepatocellular carcinoma (HCC). Methods: The study included 165 patients with HCC, 134 with cirrhosis and 142 controls without liver disease, matched for age and hospital. All were men younger than 75 years. HCC and cirrhosis patients were stratified according to time since cirrhosis diagnosis. Results: We found a positive association between the UGT1A7*3/*3 genotype and HCC when the comparison was restricted to patients whose disease was of viral origin [OR = 3.4 (0.3–45)] but a negative association when it included only alcoholic patients [OR = 0.1 (0.02–0.6), p = 0.01]. Conclusion: Our study shows that UGT1A7 may play a role in hepatocellular carcinogenesis and that this role may differ according to the primary cause of the cirrhosis. PMID:18021430

  18. UDP-Glucuronosyltransferase (UGT) 1A9-Overexpressing HeLa Cells Is an Appropriate Tool to Delineate the Kinetic Interplay between Breast Cancer Resistance Protein (BRCP) and UGT and to Rapidly Identify the Glucuronide Substrates of BCRP

    PubMed Central

    Jiang, Wen; Xu, Beibei; Wu, Baojian; Yu, Rong

    2012-01-01

    The interplay between phase II enzymes and efflux transporters leads to extensive metabolism and low bioavailability for flavonoids. To investigate the simplest interplay between one UDP-glucuronosyltransferase isoform and one efflux transporter in flavonoid disposition, engineered HeLa cells stably overexpressing UGT1A9 were developed, characterized, and further applied to investigate the metabolism of two model flavonoids (genistein and apigenin) and excretion of their glucuronides. The results indicated that the engineered HeLa cells overexpressing UGT1A9 rapidly excreted the glucuronides of genistein and apigenin. The kinetic characteristics of genistein or apigenin glucuronidation were similar with the use of UGT1A9 overexpressed in HeLa cells or the commercially available UGT1A9. Small interfering (siRNA)-mediated UGT1A9 silencing resulted in a substantial decrease in glucuronide excretion (>75%, p < 0.01). Furthermore, a potent inhibitor of breast cancer resistance protein (BCRP), 3-(6-isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indol-3-yl)-propionic acid tert-butyl ester (Ko143), caused, in a dose-dependent manner, a substantial and marked reduction of the clearance (74–94%, p < 0.01), and a substantial increase in the intracellular glucuronide levels (4–8-fold, p < 0.01), resulting in a moderate decrease in glucuronide excretion (19–59%, p < 0.01). In addition, a significant, albeit moderate, reduction in the fraction of genistein metabolized (fmet) in the presence of Ko143 was observed. In contrast, leukotriene C4 and siRNA against multidrug resistance protein (MRP) 2 and MRP3 did not affect excretion of flavonoid glucuronides. In conclusion, the engineered HeLa cells overexpressing UGT1A9 is an appropriate model to study the kinetic interplay between UGT1A9 and BCRP in the phase II disposition of flavonoids. This simple cell model should also be very useful to rapidly identify whether a phase II

  19. Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei.

    PubMed

    Horikawa, K; Yokota, S; Fuji, K; Akiyama, M; Moriya, T; Okamura, H; Shibata, S

    2000-08-01

    In mammals, the environmental light/dark cycle strongly synchronizes the circadian clock within the suprachiasmatic nuclei (SCN) to 24 hr. It is well known that not only photic but also nonphotic stimuli can entrain the SCN clock. Actually, many studies have shown that a daytime injection of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH DPAT), a serotonin 1A/7 receptor agonist, as a nonphotic stimulus induces phase advances in hamster behavioral circadian rhythms in vivo, as well as the neuron activity rhythm of the SCN in vitro. Recent reports suggest that mammalian homologs of the Drosophila clock gene, Period (Per), are involved in photic entrainment. Therefore, we examined whether phase advances elicited by 8-OH DPAT were associated with a change of Period mRNA levels in the SCN. In this experiment, we cloned partial cDNAs encoding hamster Per1, Per2, and Per3 and observed both circadian oscillation and the light responsiveness of Period. Furthermore, we found that the inhibitory effect of 8-OH DPAT on hamster Per1 and Per2 mRNA levels in the SCN occurred only during the hamster's mid-subjective day, but not during the early subjective day or subjective night. The present findings demonstrate that the acute and circadian time-dependent reduction of Per1 and/or Per2 mRNA in the hamster SCN by 8-OH DPAT is strongly correlated with the phase resetting in response to 8-OH DPAT. PMID:10908630

  20. Construction and characterization of DNA vaccines encoding the single-chain variable fragment of the anti-idiotype antibody 1A7 mimicking the tumor-associated antigen disialoganglioside GD2.

    PubMed

    Zeytin, H E; Tripathi, P K; Bhattacharya-Chatterjee, M; Foon, K A; Chatterjee, S K

    2000-11-01

    Anti-idiotype antibody, 1A7, functionally mimics the tumor-associated antigen disialoganglioside GD2, which is overexpressed on the surface of a number of neuroectodermal tumors such as melanoma, neuroblastoma, soft tissue sarcoma, and small cell carcinoma of the lung. Immunization of mice with 1A7 generated the production of anti-GD2 antibodies. In a phase I clinical trial, immunization of patients with 1A7, mixed with the adjuvant QS21, demonstrated that 1A7 could act as a surrogate antigen for GD2 and induce strong humoral immune responses in advanced stage melanoma patients. DNA vaccines have recently been shown to invoke humoral as well as cellular responses in injected hosts against the transgene product. To evaluate the efficiency of DNA vaccines encoding anti-idiotype antibodies, we constructed expression plasmids encoding the variable heavy (VH) and variable light (VL) chains of 1A7. The plasmids were made in two configurations, expressing either the VH (pc1A7VHLnVL) or the VL (pc1A7VLLnVH) chain of 1A7 at the amino terminus, linked together by a 15-amino acid linker (Ln). In vitro transcription/translation assays and transfection of CHO-K1 cells with the plasmids demonstrated that a approximately 30-kDa protein was expressed by both configurations of the single-chain variable fragment. This protein can be specifically precipitated by monoclonal anti-GD2 antibody, 14G2a. Following intramuscular injection in mice, the plasmids were detectable in the injected tissues for at least 3 months and the injected plasmids actively transcribed the single-chain variable fragment 1A7 gene at the injected site. A single, intramuscular immunization of a group of C57BL/6 mice with pc1A7VLLnVH in phosphate-buffered saline induced humoral immune responses against 1A7 as well as GD2, the nominal antigen. Multiple immunizations, however, were required to elicit stronger immune responses. PMID:11129285

  1. Refinement of the canine CD1 locus topology and investigation of antibody binding to recombinant canine CD1 isoforms.

    PubMed

    Schjaerff, Mette; Keller, Stefan M; Fass, Joseph; Froenicke, Lutz; Grahn, Robert A; Lyons, Leslie; Affolter, Verena K; Kristensen, Annemarie T; Moore, Peter F

    2016-03-01

    CD1 molecules are antigen-presenting glycoproteins primarily found on dendritic cells (DCs) responsible for lipid antigen presentation to CD1-restricted T cells. Despite their pivotal role in immunity, little is known about CD1 protein expression in dogs, notably due to lack of isoform-specific antibodies. The canine (Canis familiaris) CD1 locus was previously found to contain three functional CD1A genes: canCD1A2, canCD1A6, and canCD1A8, where two variants of canCD1A8, canCD1A8.1 and canCD1A8.2, were assumed to be allelic variants. However, we hypothesized that these rather represented two separate genes. Sequencing of three overlapping bacterial artificial chromosomes (BACs) spanning the entire canine CD1 locus revealed canCD1A8.2 and canCD1A8.1 to be located in tandem between canCD1A7 and canCD1C, and canCD1A8.1 was consequently renamed canCD1A9. Green fluorescent protein (GFP)-fused canine CD1 transcripts were recombinantly expressed in 293T cells. All proteins showed a highly positive GFP expression except for canine CD1d and a splice variant of canine CD1a8 lacking exon 3. Probing with a panel of anti-CD1 monoclonal antibodies (mAbs) showed that Ca13.9H11 and Ca9.AG5 only recognized canine CD1a8 and CD1a9 isoforms, and Fe1.5F4 mAb solely recognized canine CD1a6. Anti-CD1b mAbs recognized the canine CD1b protein, but also bound CD1a2, CD1a8, and CD1a9. Interestingly, Ca9.AG5 showed allele specificity based on a single nucleotide polymorphism (SNP) located at position 321. Our findings have refined the structure of the canine CD1 locus and available antibody specificity against canine CD1 proteins. These are important fundamentals for future investigation of the role of canine CD1 in lipid immunity. PMID:26687789

  2. UDP-glucuronosyltransferases 1A6 and 1A10 catalyze reduced menadione glucuronidation

    SciTech Connect

    Nishiyama, Takahito; Ohnuma, Tomokazu; Inoue, Yuu; Kishi, Takehiko; Ogura, Kenichiro; Hiratsuka, Akira

    2008-06-27

    Menadione (2-methyl-1,4-naphthoquine), also known as vitamin K3, has been widely used as a model compound in the field of oxidative stress-related research. The metabolism of menadione has been studied, and it is known that menadione undergoes a two-electron reduction by NAD(P)H:Quinone oxidoreductase 1 (NQO1) after which the reduced form of menadione (2-methyl-1,4-naphthalenediol, menadiol) is glucuronidated and excreted in urine. To investigate which human UDP-glucuronosyltransferase (UGT) isoforms participate in the glucuronidation of menadiol reduced by NQO1 from menadione, we first constructed heterologously expressed NQO1 in Sf9 cells and tested the menadiol glucuronidating activity of 16 human recombinant UGT isoforms. Of the 16 UGT isoforms, UGTs 1A6, 1A7, 1A8, 1A9, and 1A10 catalyzed menadiol glucuronidation, and, of these, UGTs 1A6 and 1A10 catalyzed menadiol glucuronidation at much higher rates than the other UGTs. Menadiol was regioselectively glucuronidated in the manner of 4-position > 1-position by UGTs 1A7, 1A8, 1A9, and 1A10. In contrast to these UGTs, only UGT1A6 exhibited 1-menadiol-preferential glucuronidating activity. The results suggest possible detoxification pathways for quinones via NQO1 reduction followed by UGT glucuronidation.

  3. Glucuronidation of anabolic androgenic steroids by recombinant human UDP-glucuronosyltransferases.

    PubMed

    Kuuranne, Tiia; Kurkela, Mika; Thevis, Mario; Schänzer, Wilhelm; Finel, Moshe; Kostiainen, Risto

    2003-09-01

    A multidimensional study on the glucuronidation of anabolic androgenic steroids and their phase I metabolites by 11 recombinant human UDP-glucuronosyltransferases (UGTs) was carried out using liquid chromatographic-tandem mass spectrometric analyses. Large differences between the enzymes with respect to the conjugation profiles of the 11 tested aglycones were detected. Two UGTs, 1A6 and 1A7, did not exhibit measurable activity toward any of the aglycones that were examined in this study. Regioselectivity was demonstrated by UGTs 1A8, 1A9, and 2B15 that preferentially catalyzed hydroxyl glucuronidation at the 17beta-position. Most of the other enzymes glucuronidated hydroxyl groups at both the 3alpha- and the 17beta-positions. Clear stereoselectivity was observed in glucuronidation of diastereomeric nandrolone metabolites (5alpha-estran-3alpha-ol-17-one and 5beta-estran-3alpha-ol-17-one), whereas such specificity was not seen when analogous methyltestosterone metabolites were assayed. UGTs 1A1, 1A3, 1A4, 1A8, 1A9, 1A10, 2B4, 2B7, and 2B15 readily glucuronidated 5alpha-androstane-3alpha,17beta-diol, but none of them exhibited methyltestosterone glucuronidation activity. In agreement with the latter observations, we found that the methyltestosterone glucuronidation activity of human liver microsomes is extremely low, whereas in induced rat liver microsomes it was significantly higher. The homology among UGTs 1A7 to 1A10 at the level of amino acid sequence is very high, and it was thus surprising to find large differences in their activity toward this set of aglycones. Furthermore, the high activity of UGT1A8 and 1A10 toward some of the substrates indicates that extrahepatic enzymes might play a role in the metabolism of anabolic androgenic steroids. PMID:12920167

  4. Drug-Drug Interaction Potentials of Tyrosine Kinase Inhibitors via Inhibition of UDP-Glucuronosyltransferases

    PubMed Central

    Zhang, Nan; Liu, Yong; Jeong, Hyunyoung

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are anticancer drugs that may be co-administered with other drugs. The aims of this study are to investigate the inhibitory effects of TKIs on UDP-glucuronosyltransferase (UGT) activities, and to quantitatively evaluate their potential to cause drug-drug interactions (DDIs). Inhibition kinetic profiles of a panel of UGT enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17) by four TKIs (axitinib, imatinib, lapatinib and vandetanib) were characterized by using hepatic microsomes and recombinant proteins. Lapatinib exhibited potent competitive inhibition against UGT1A1 activity with a Ki of 0.5 μM. Imatinib was found to exhibit broad inhibition on several UGTs, particularly potent competitive inhibition against UGT2B17 with a Ki of 0.4 μM. The TKIs also exerted intermediate inhibition against several UGTs (i.e., UGT1A7 by lapatinib; UGT1A1 by imatinib; UGT1A4, 1A7 and 1A9 by axitinib; and UGT1A9 by vandetanib). Results from modeling for the quantitative prediction of DDI risk indicated that the coadministration of lapatinib or imatinib at clinical doses could result in a significant increase in AUC of drugs primarily cleared by UGT1A1 or 2B17. Lapatinib and imatinib may cause clinically significant DDIs when co-administered UGT1A1 or 2B17 substrates. PMID:26642944

  5. Evidence for differences in regioselective and stereoselective glucuronidation of silybin diastereomers from milk thistle (Silybum marianum) by human UDP-glucuronosyltransferases.

    PubMed

    Jančová, Petra; Siller, Michal; Anzenbacherová, Eva; Křen, Vladimír; Anzenbacher, Pavel; Simánek, Vilím

    2011-09-01

    The flavonolignan silybin, the main component of silymarin, extract from the seeds of Silybum marianum, is used mostly as a hepatoprotectant. Silybin is almost 1:1 mixture of two diastereomers A and B. The individual UDP-glucuronosyltransferases (UGTs) contributing to the metabolism of silybin diastereomers have not been identified yet. In this study, the contribution of UGTs to silybin metabolism was examined. The potential silybin metabolites were formed in vitro by incubating silybin (i) with the human liver microsomal fraction, (ii) with human hepatocytes and finally (iii) with 12 recombinant UGTs (UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15 and 2B17). High-performance liquid chromatographic (HPLC) techniques with UV detection and additionally MS detection were used for metabolite identification. Hepatocytes and microsomes formed silybin A-7-O-β-D-glucuronides, B-7-O-β-D-glucuronides, A-20-O-β-D-glucuronides and B-20-O-β-D-glucuronides. With recombinant UGTs, the major role of the UGT1A1, 1A3, 1A8 and 1A10 enzymes but also of the UGT1A6, 1A7, 1A9, 2B7 and 2B15 in the stereoselective reactions leading to the respective silybin glucuronides was confirmed. UGT1A4, UGT2B4 and UGT2B17 did not participate in silybin glucuronidation. The predominant formation of 7-O-β-D-glucuronides and the preferential glucuronidation of silybin B diastereomer in vitro by human UGTs were confirmed.

  6. Glucuronidation of Monohydroxylated Warfarin Metabolites by Human Liver Microsomes and Human Recombinant UDP-Glucuronosyltransferases

    PubMed Central

    Zielinska, Agnieszka; Lichti, Cheryl F.; Bratton, Stacie; Mitchell, Neil C.; Gallus-Zawada, Anna; Le, Vi-Huyen; Finel, Moshe; Miller, Grover P.; Radominska-Pandya, Anna; Moran, Jeffery H.

    2008-01-01

    Our understanding of human phase II metabolic pathways which facilitate detoxification and excretion of warfarin (Coumadin) is limited. The goal of this study was to test the hypothesis that there are specific human hepatic and extrahepatic UDP-glucuronosyltransferase (UGT) isozymes, which are responsible for conjugating warfarin and hydroxylated metabolites of warfarin. Glucuronidation activity of human liver microsomes (HLMs) and eight human recombinant UGTs toward (R)- and (S)-warfarin, racemic warfarin, and major cytochrome P450 metabolites of warfarin (4′-, 6-, 7-, 8-, and 10-hydroxywarfarin) has been assessed. HLMs, UGT1A1, 1A8, 1A9, and 1A10 showed glucuronidation activity toward 4′-, 6-, 7-, and/or 8-hydroxywarfarin with Km values ranging from 59 to 480 μM and Vmax values ranging from 0.03 to 0.78 μM/min/mg protein. Tandem mass spectrometry studies and structure comparisons suggested glucuronidation was occurring at the C4′-,C6-, C7-, and C8-positions. Of the hepatic UGT isozymes tested, UGT1A9 exclusively metabolized 8-hydroxywarfarin, whereas UGT1A1 metabolized 6-, 7-, and 8-hydroxywarfarin. Studies with extrahepatic UGT isoforms showed that UGT1A8 metabolized 7- and 8-hydroxywarfarin and that UGT1A10 glucuronidated 4′-, 6-, 7-, and 8-hydroxywarfarin. UGT1A4, 1A6, 1A7, and 2B7 did not have activity with any substrate, and none of the UGT isozymes evaluated catalyzed reactions with (R)- and (S)-warfarin, racemic warfarin, or 10-hydroxywarfarin. This is the first study identifying and characterizing specific human UGT isozymes, which glucuronidate major cytochrome P450 metabolites of warfarin with similar metabolic rates known to be associated with warfarin metabolism. Continued characterization of these pathways may enhance our ability to reduce life-threatening and costly complications associated with warfarin therapy. PMID:17921187

  7. Renal drug metabolism in humans: the potential for drug–endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT)

    PubMed Central

    Knights, Kathleen M; Rowland, Andrew; Miners, John O

    2013-01-01

    Although knowledge of human renal cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes and their role in xenobiotic and endobiotic metabolism is limited compared with hepatic drug and chemical metabolism, accumulating evidence indicates that human kidney has significant metabolic capacity. Of the drug metabolizing P450s in families 1 to 3, there is definitive evidence for only CYP 2B6 and 3A5 expression in human kidney. CYP 1A1, 1A2, 1B1, 2A6, 2C19, 2D6 and 2E1 are not expressed in human kidney, while data for CYP 2C8, 2C9 and 3A4 expression are equivocal. It is further known that several P450 enzymes involved in the metabolism of arachidonic acid and eicosanoids are expressed in human kidney, CYP 4A11, 4F2, 4F8, 4F11 and 4F12. With the current limited evidence of drug substrates for human renal P450s drug–endobiotic interactions arising from inhibition of renal P450s, particularly effects on arachidonic acid metabolism, appear unlikely. With respect to the UGTs, 1A5, 1A6, 1A7, 1A9, 2B4, 2B7 and 2B17 are expressed in human kidney, whereas UGT 1A1, 1A3, 1A4, 1A8, 1A10, 2B10, 2B11 and 2B15 are not. The most abundantly expressed renal UGTs are 1A9 and 2B7, which play a significant role in the glucuronidation of drugs, arachidonic acid, prostaglandins, leukotrienes and P450 derived arachidonic acid metabolites. Modulation by drug substrates (e.g. NSAIDs) of the intrarenal activity of UGT1A9 and UGT2B7 has the potential to perturb the metabolism of renal mediators including aldosterone, prostaglandins and 20-hydroxyeicosatetraenoic acid, thus disrupting renal homeostasis. PMID:23362865

  8. Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT).

    PubMed

    Knights, Kathleen M; Rowland, Andrew; Miners, John O

    2013-10-01

    Although knowledge of human renal cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes and their role in xenobiotic and endobiotic metabolism is limited compared with hepatic drug and chemical metabolism, accumulating evidence indicates that human kidney has significant metabolic capacity. Of the drug metabolizing P450s in families 1 to 3, there is definitive evidence for only CYP 2B6 and 3A5 expression in human kidney. CYP 1A1, 1A2, 1B1, 2A6, 2C19, 2D6 and 2E1 are not expressed in human kidney, while data for CYP 2C8, 2C9 and 3A4 expression are equivocal. It is further known that several P450 enzymes involved in the metabolism of arachidonic acid and eicosanoids are expressed in human kidney, CYP 4A11, 4F2, 4F8, 4F11 and 4F12. With the current limited evidence of drug substrates for human renal P450s drug-endobiotic interactions arising from inhibition of renal P450s, particularly effects on arachidonic acid metabolism, appear unlikely. With respect to the UGTs, 1A5, 1A6, 1A7, 1A9, 2B4, 2B7 and 2B17 are expressed in human kidney, whereas UGT 1A1, 1A3, 1A4, 1A8, 1A10, 2B10, 2B11 and 2B15 are not. The most abundantly expressed renal UGTs are 1A9 and 2B7, which play a significant role in the glucuronidation of drugs, arachidonic acid, prostaglandins, leukotrienes and P450 derived arachidonic acid metabolites. Modulation by drug substrates (e.g. NSAIDs) of the intrarenal activity of UGT1A9 and UGT2B7 has the potential to perturb the metabolism of renal mediators including aldosterone, prostaglandins and 20-hydroxyeicosatetraenoic acid, thus disrupting renal homeostasis. PMID:23362865

  9. Differential expression of the UGT1A family of genes in stomach cancer tissues.

    PubMed

    Cengiz, Beyhan; Yumrutas, Onder; Bozgeyik, Esra; Borazan, Ersin; Igci, Yusuf Ziya; Bozgeyik, Ibrahim; Oztuzcu, Serdar

    2015-08-01

    Uridine 5'-diphospho-glucuronosyltransferases (UGT) are the key players in the biotransformation of drugs, xenobiotics, and endogenous compounds. Particularly, UDP-glucuronosyltransferase 1A (UGT1A) participates in a wide range of biological and pharmacological processes and plays a critical role in the conjugation of endogenous and exogenous components. Thirteen alternative splicing products were produced from UGT1A gene locus designated as UGT1A1 and UGT1A3-10. A growing amount of evidence suggests that they have important roles in the carcinogenesis which is well documented by colon, liver, pancreas, and kidney cancer studies. Here, we report differential expressions of UGT1A genes in normal and tumor tissues of stomach cancer patients. Total numbers of 49 patients were enrolled for this study, and expression analysis of UGT1A genes was evaluated by the real-time PCR method. Accordingly, UGT1A1, UGT1A8, and UGT1A10 were found to be upregulated, and UGT1A3, UGT1A5, UGT1A7, and UGT1A9 were downregulated in stomach tumors. No expression changes were observed in UGT1A4. Also, UGT1A6 transcription variants were significantly upregulated in stomach cancer tissues compared to normal stomach tissue. Additionally, UGT1A7 gene showed highest expression in both normal and tumoral tissues, and interestingly, UGT1A7 gene expression was significantly reduced in stage II patients as compared to other patients. In conclusion, UGT1A genes are differentially expressed in normal and tumoral stomach tissues and expression changes of these genes may affect the development and progression of various types of cancer including the cancer of the stomach. PMID:25712374

  10. In vitro glucuronidation of the antibacterial triclocarban and its oxidative metabolites.

    PubMed

    Schebb, N H; Franze, B; Maul, R; Ranganathan, A; Hammock, B D

    2012-01-01

    Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is widely used as an antibacterial in bar soaps. During use of these soaps, a significant portion of TCC is absorbed by humans. For the elimination from the body, glucuronidation plays a key role in both biliary and renal clearance. To investigate this metabolic pathway, we performed microsomal incubations of TCC and its hydroxylated metabolites 2'-OH-TCC, 3'-OH-TCC, and 6-OH-TCC. Using a new liquid chromatography-UV-mass spectrometry method, we could show a rapid glucuronidation for all OH-TCCs by the uridine-5'-diphosphate-glucuronosyltransferases (UGT) present in liver microsomes of humans (HLM), cynomolgus monkeys (CLM), rats (RLM), and mice (MLM). Among the tested human UGT isoforms, UGT1A7, UGT1A8, and UGT1A9 showed the highest activity for the conjugation of hydroxylated TCC metabolites followed by UGT1A1, UGT1A3, and UGT1A10. Due to this broad pattern of active UGTs, OH-TCCs can be efficiently glucuronidated in various tissues, as shown for microsomes from human kidney (HKM) and intestine (HIM). The major renal metabolites in humans, TCC-N-glucuronide and TCC-N'-glucuronide, were formed at very low conversion rates (<1%) by microsomal incubations. Low amounts of N-glucuronides were generated by HLM, HIM, and HKM, as well as by MLM and CLM, but not by RLM, according to the observed species specificity of this metabolic pathway. Among the human UGT isoforms, only UGT1A9 had activity for the N-glucuronidation of TCC. These results present an anomaly where in vivo the predominant urinary metabolites of TCC are N and N'-glucuronides, but these compounds are slowly produced in vitro. PMID:21953915

  11. Placental profiling of UGT1A enzyme expression and activity and interactions with preeclampsia at term.

    PubMed

    Collier, Abby C; Thévenon, Audrey D; Goh, William; Hiraoka, Mark; Kendal-Wright, Claire E

    2015-12-01

    Placental UDP-glucuronosyltransferase (UGT) enzymes have critical roles in hormone, nutrient, chemical balance and fetal exposure during pregnancy. Placental UGT1A isoforms were profiled and differences between preeclamptic (PE) and non-PE placental UGT expression determined. In third trimester villous placenta, UGT1A1, 1A4, 1A6 and 1A9 were expressed and active in all specimens (n = 10), but UGT1A3, 1A5, 1A7, 1A8 and 1A10 were absent. The UGT1A activities were comparable to human liver microsomes per milligram, but placental microsome yields were only 2 % of liver (1 mg/g of tissue vs. 45 mg/g of tissue). For successful PCR, placental collection and processing within 60 min from delivery, including DNAse and ≥300 ng of RNA in reverse transcription were essential and snap freezing in liquid nitrogen immediately was the best preservation method. Although UGT1A6 mRNA was lower in PE (P < 0.001), there were no other significant effects on UGT mRNA, protein or activities. A more comprehensive tissue sample set is required for confirmation of PE interactions with UGT. Placental UGT1A enzyme expression patterns are similar to the liver and a detoxicative role for placental UGT1A is inferred. PMID:25465229

  12. Characterization of dibenzo[a,l]pyrene-trans-11,12-diol (dibenzo[def,p]chrysene) glucuronidation by UDP-glucuronosyltransferases.

    PubMed

    Olson, Kristine C; Sun, Dongxiao; Chen, Gang; Sharma, Arun K; Amin, Shantu; Ropson, Ira J; Spratt, Thomas E; Lazarus, Philip

    2011-09-19

    Dibenzo[a,l]pyrene (DB[a,l]P) (dibenzo[def,p]chrysene) is a highly carcinogenic polycyclic aromatic hydrocarbon (PAH) that has been identified in tobacco smoke and is found in our environment due to incomplete combustion of organic matter. Its metabolites are known to form stable DNA adducts in bacteria and mammalian cells, and can lead to tumors in animal models. Glucuronidation of major metabolites of DB[a,l]P by the uridine-5'-diphosphate glucuronosyltransferase (UGT) family of enzymes is an important route of detoxification of this pro-carcinogen. The focus of the current study was to characterize the glucuronidation of the pro-carcinogenic enantiomers DB[a,l]P-(+)-trans-11S,12S-diol and DB[a,l]P-(-)-trans-11R,12R-diol. Glucuronidation assays with HEK293 cell lines overexpressing individual human UGT enzymes demonstrated that UGTs 1A1, 1A4, 1A7, 1A8, 1A9, 1A10, and 2B7 glucuronidated one or both DB[a,l]P-trans-11,12-diol enantiomers. Three glucuronide conjugates were observed in activity assays with UGTs 1A1 and 1A10, while two glucuronides were formed by UGTs 1A7, 1A8, and 1A9, and one glucuronide was made by UGT1A4 and UGT2B7. Enzyme kinetic analysis indicated that UGT1A9 was the most efficient UGT at forming both the (+)-DB[a,l]P-11-Gluc and (-)-DB[a,l]P-11-Gluc products, while UGTs 1A1 and 1A10 were the most efficient at forming the (+)-DB[a,l]P-12-Gluc product (as determined by k(cat)/K(M)). Incubations with human liver microsomes showed the formation of three diastereomeric glucuronide products: (+)-DB[a,l]P-11-Gluc, (+)-DB[a,l]P-12-Gluc, and (-)-DB[a,l]P-11-Gluc, with an average overall ratio of 31:32:37 in four liver specimens. Human bronchus and trachea tissue homogenates demonstrated glucuronidation activity against both DB[a,l]P-trans-11,12-diol enantiomers, with both tissues producing the (+)-DB[a,l]P-11-Gluc and (+)-DB[a,l]P-12-Gluc with little or no formation of (-)-DB[a,l]P-11-Gluc. These results indicate that multiple UGTs are involved in the

  13. Characterization of Dibenzo[a,l ]pyrene-trans-11,12-diol (Dibenzo[def,p]chrysene) Glucuronidation by UDP-glucuronosyltransferases

    PubMed Central

    Olson, Kristine C.; Sun, Dongxiao; Chen, Gang; Sharma, Arun K.; Amin, Shantu; Ropson, Ira J.; Spratt, Thomas E.; Lazarus, Philip

    2011-01-01

    Dibenzo[a,l]pyrene (DB[a,l]P) (dibenzo[def,p]chrysene) is a highly carcinogenic polycyclic aromatic hydrocarbon (PAH) that has been identified in tobacco smoke and is found in our environment due to incomplete combustion of organic matter. Its metabolites are known to form stable DNA adducts in bacteria and mammalian cells, and can lead to tumors in animal models. Glucuronidation of major metabolites of DB[a,l]P by the uridine-5’-diphosphate glucuronosyltransferase (UGT) family of enzymes is an important route of detoxification of this pro-carcinogen. The focus of the current study was to characterize the glucuronidation of the pro-carcinogenic enantiomers DB[a,l]P-(+)-trans-11S,12S–diol and DB[a,l]P-(−)-trans-11R,12R–diol. Glucuronidation assays with HEK293 cell lines over-expressing individual human UGT enzymes demonstrated that UGTs 1A1, 1A4, 1A7, 1A8, 1A9, 1A10, and 2B7 glucuronidated one or both DB[a,l]P-trans-11,12-diol enantiomers. Three glucuronide conjugates were observed in activity assays with UGTs 1A1 and 1A10, while two glucuronides were formed by UGTs 1A7, 1A8, and 1A9, and one glucuronide was made by UGT1A4 and UGT2B7. Enzyme kinetic analysis indicated that UGT1A9 was the most efficient UGT at forming both the (+)-DB[a,l]P-11-Gluc and (−)-DB[a,l]P-11-Gluc products while UGTs 1A1 and 1A10 were the most efficient at forming the (+)-DB[a,l]P-12-Gluc product (as determined by the kcat/KM). Incubations with human liver microsomes showed formation of three diastereomeric glucuronide products: (+)-DB[a,l]P-11-Gluc, (+)-DB[a,l]P-12-Gluc, and (−)-DB[a,l]P-11-Gluc, with an average overall ratio of 31 : 32 : 37 in four liver specimens. Human bronchus and trachea tissue homogenates demonstrated glucuronidation activity against both DB[a,l]P-trans-11,12-diol enantiomers, with both tissues producing the (+)-DB[a,l]P-11-Gluc and (+)-DB[a,l]P-12-Gluc with little or no formation of (−)-DB[a,l]P-11-Gluc. These results indicate that multiple UGTs are

  14. Human UDP-Glucuronosyltransferase 1A1 is the Primary Enzyme Responsible for the N-glucuronidation of N-hydroxy-PhIP in vitro

    SciTech Connect

    Malfatti, M A; Felton, J S

    2004-04-06

    UDP-Glucuronosyltransferase 1A proteins (UGT1A) catalyze the glucuronidation of many endogenous and xenobiotic compounds including heterocyclic amines and their hydroxylated metabolites (the main topic of this study). Studies have shown that in humans UGT1A mediated glucuronidation is an important pathway in the detoxification of food-borne carcinogenic heterocyclic amines. The biotransformation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most mass abundant heterocyclic amine found in cooked meats, is highly dependent on cytochrome P4501A2 hydroxylation followed by UGT catalyzed glucuronidation of the N-hydroxy-PhIP reactive intermediate. To determine which UGT1A proteins are involved in the glucuronidation of N-hydroxy-PhIP, microsomal preparations from baculovirus infected insect cells that express all of the known functional human UGT1A isozymes (UGT1A1, -1A3, -1A4, -1A6, -1A7, -1A8, -1A9, -1A10) were exposed to N-hydroxy-PhIP and the reaction products were isolated by HPLC. All UGT1A proteins except UGT1A6 showed some degree of activity towards N-hydroxy-PhIP. The formation of both N-hydroxy-PhIP-N{sup 2}-glucuronide and N-hydroxy-PhIP-N3-glucuronide was both time and substrate concentration dependent in all the microsomal incubations that showed appreciable activity. UGT1A1 was the most efficient in converting N-hydroxy-PhIP to both conjugates producing 5 times more of the N{sup 2}-conjugate than UGT1A4, the next active UGT, and 286 times more than UGT1A7, the least active UGT. With an apparent Km of 52 {micro}M and a K{sub cat} of 114 min-1, UGT1A1 was also the most catalytically efficient in forming N-hydroxy-PhIP-N{sup 2}-glucuronide. Catalytic constants for UGT1A4, UGT1A8 and UGT1A9 were 52 min-1, 35 min{sup -1} and 3.7 min{sup -1}, respectively. The catalytic efficiency for N-hydroxy-PhIP-N3-glucuronide formation was 8, 10, and 6 times lower for UGT1A1, -1A4, and -1A8, respectively, when compared to the k{sub cat} values for N

  15. 26 CFR 1.904-7T - Transition rules (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... post-1986 foreign income taxes on the first day of the foreign corporation's first taxable year... in each separate category of post-1986 undistributed earnings (as defined in § 1.902-1(a)(9)) that were accumulated, and post-1986 foreign income taxes (as defined in § 1.902-1(a)(8)) paid, accrued,...

  16. Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes.

    PubMed

    Kuehl, Gwendolyn E; Bigler, Jeannette; Potter, John D; Lampe, Johanna W

    2006-02-01

    Acetylsalicylic acid (aspirin) is a common nonsteroidal anti-inflammatory drug used for treatment of pain and arthritis. In the body, acetylsalicylic acid is rapidly deacetylated to form salicylic acid. Both compounds have been proposed as anti-inflammatory agents. Major metabolites of salicylic acid are its acyl and phenolic glucuronide conjugates. Formation of these conjugates, catalyzed by UDP-glucuronosyltransferases (UGTs), decreases the amount of pharmacologically active salicylic acid present. We aimed to identify the UGTs catalyzing the glucuronidation of salicylic acid using both heterologously expressed enzymes and pooled human liver microsomes (HLMs) and to develop a liquid chromatography-tandem mass spectrometry method to quantify glucuronidation activity of UGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17 Supersomes. All UGTs tested, except 1A4, 2B15, and 2B17, catalyzed salicylic acid phenolic and acyl glucuronidation. Ratios of salicylic acid phenolic to acyl glucuronide formation varied more than 12-fold from 0.5 for UGT1A6 to 6.1 for UGT1A1. These results suggest that all UGTs except 1A4, 2B15, and 2B17 might be involved in the glucuronidation of salicylic acid in vivo. From comparisons of apparent Km values determined in pooled HLMs and in expressed UGTs, UGT2B7 was suggested as a likely catalyst of salicylic acid acyl glucuronidation, whereas multiple UGTs were suggested as catalysts of phenolic glucuronidation. The results of this UGT screening may help target future evaluation of the effects of UGT polymorphisms on response to aspirin in clinical and population-based studies.

  17. Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes.

    PubMed

    Kuehl, Gwendolyn E; Bigler, Jeannette; Potter, John D; Lampe, Johanna W

    2006-02-01

    Acetylsalicylic acid (aspirin) is a common nonsteroidal anti-inflammatory drug used for treatment of pain and arthritis. In the body, acetylsalicylic acid is rapidly deacetylated to form salicylic acid. Both compounds have been proposed as anti-inflammatory agents. Major metabolites of salicylic acid are its acyl and phenolic glucuronide conjugates. Formation of these conjugates, catalyzed by UDP-glucuronosyltransferases (UGTs), decreases the amount of pharmacologically active salicylic acid present. We aimed to identify the UGTs catalyzing the glucuronidation of salicylic acid using both heterologously expressed enzymes and pooled human liver microsomes (HLMs) and to develop a liquid chromatography-tandem mass spectrometry method to quantify glucuronidation activity of UGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17 Supersomes. All UGTs tested, except 1A4, 2B15, and 2B17, catalyzed salicylic acid phenolic and acyl glucuronidation. Ratios of salicylic acid phenolic to acyl glucuronide formation varied more than 12-fold from 0.5 for UGT1A6 to 6.1 for UGT1A1. These results suggest that all UGTs except 1A4, 2B15, and 2B17 might be involved in the glucuronidation of salicylic acid in vivo. From comparisons of apparent Km values determined in pooled HLMs and in expressed UGTs, UGT2B7 was suggested as a likely catalyst of salicylic acid acyl glucuronidation, whereas multiple UGTs were suggested as catalysts of phenolic glucuronidation. The results of this UGT screening may help target future evaluation of the effects of UGT polymorphisms on response to aspirin in clinical and population-based studies. PMID:16258079

  18. Variations of chromosome 2 gene expressions among patients with lung cancer or non-cancer.

    PubMed

    Bao, Lianmin; Zhang, Yong; Wang, Jian; Wang, Haiyun; Dong, Nian; Su, Xiaoqiong; Xu, Menglin; Wang, Xiangdong

    2016-10-01

    Lung cancer is one of the most common malignancies worldwide. The present study aimed to investigate specific genotypes of different subtypes or stages of lung cancer through gene expression variations of chromosome 2 genes, trying to identify predictors for diagnosis or prognosis of lung cancer. About 537 patients with lung adenocarcinoma (ADC), 140 patients with lung squamous carcinoma (SQC), 9 patients with lung large cell carcinoma (LCC), 56 patients with small cell lung cancer (SCLC), and 590 patients without cancer were analyzed in present study. Co-expressed, subtype-specific, and stage-specific chromosome 2 genes were identified and further analyzed by bioinformatic methods. As a result, 15 or 10 genes were significantly up- or down-regulated in all four subtypes of lung cancer. GKN1, LOC100131510, prominin-2 (PROM2), IL37, and SNORA41 were identified as ADC-specific up-regulated genes; SQC-specific up-regulated genes included HOXD family (HOXD1, HOXD3, HOXD4, HOXD8, and HOXD9) and UGT1A family (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A7, UGT1A8, UGT1A9, and UGT1A10); and LCC- or SCLC-specific genes were also identified. Nine genes were significantly up-expressed at all four stages of ADC while 230 genes at all three stages of SQC. MFSD2B, CCL20 and STAT1, or STARD7 and ZNF512 genes may be risk or protect factors in prognosis of ADC, while HTR2B, DPP4, and TGFBRAP1 genes may be risk factors in prognosis of SQC. Our results suggested that a number of altered chromosome 2 genes have the subtype or stage specificities of lung cancer and may be considered as diagnostic and prognostic biomarkers.

  19. New insights into the risk of phthalates: Inhibition of UDP-glucuronosyltransferases.

    PubMed

    Liu, Xin; Cao, Yun-Feng; Ran, Rui-Xue; Dong, Pei-Pei; Gonzalez, Frank J; Wu, Xue; Huang, Ting; Chen, Jian-Xin; Fu, Zhi-Wei; Li, Rong-Shan; Liu, Yong-Zhe; Sun, Hong-Zhi; Fang, Zhong-Ze

    2016-02-01

    Wide utilization of phthalates-containing products results in the significant exposure of humans to these compounds. Many adverse effects of phthalates have been documented in rodent models, but their effects in humans exposed to these chemicals remain unclear until more mechanistic studies on phthalate toxicities can be carried out. To provide new insights to predict the potential adverse effects of phthalates in humans, the recent study investigated the inhibition of representative phthalates di-n-octyl ortho-phthalate (DNOP) and diphenyl phthalate (DPhP) towards the important xenobiotic and endobiotic-metabolizing UDP-glucuronosyltransferases (UGTs). An in vitro UGTs incubation system was employed to study the inhibition of DNOP and DPhP towards UGT isoforms. DPhP and DNOP weakly inhibited the activities of UGT1A1, UGT1A7, and UGT1A8. 100 µM of DNOP inhibited the activities of UGT1A3, UGT1A9, and UGT2B7 by 41.8% (p < 0.01), 45.6% (p < 0.01), and 48.8% (p < 0.01), respectively. 100 µM of DPhP inhibited the activity of UGT1A3, UGT1A6, and UGT1A9 by 81.8 (p < 0.001), 49.1% (p < 0.05), and 76.4% (p < 0.001), respectively. In silico analysis was used to explain the stronger inhibition of DPhP than DNOP towards UGT1A3 activity. Kinetics studies were carried our to determine mechanism of inhibition of UGT1A3 by DPhP. Both Dixon and Lineweaver-Burk plots showed the competitive inhibition of DPhP towards UGT1A3. The inhibition kinetic parameter (Ki) was calculated to be 0.89 µM. Based on the [I]/Ki standard ([I]/Ki < 0.1, low possibility; 1>[I]/Ki > 0.1, medium possibility; [I]/Ki > 1, high possibility), these studies predicted in vivo drug-drug interaction might occur when the plasma concentration of DPhP was above 0.089 µM. Taken together, this study reveales the potential for adverse effects of phthalates DNOP and DPhP as a result of UGT inhibition.

  20. XELIRI compared with FOLFIRI as a second-line treatment in patients with metastatic colorectal cancer.

    PubMed

    Cui, Chengxu; Shu, Chang; Yang, Yi; Liu, Junbao; Shi, Shuping; Shao, Zhujun; Wang, Nan; Yang, Ting; Hu, Songnian

    2014-10-01

    The aim of this study was to compare the efficacy, safety and survival rate of a treatment regimen comprising capecitabine plus irinotecan (XELIRI) to those of a standard regimen comprising leucovorin, fluorouracil and irinotecan (FOLFIRI), to determine the correlation among the inherited genetic variations in UGT1A1, UGT1A7 and UGT1A9. A total of 84 consecutive patients with histologically confirmed metastatic colorectal cancer (mCRC) were included in the study. All patients were treated with FOLFIRI or XELIRI. The median progression-free survival time was 4.4 months for FOLFIRI and 5.7 months for XELIRI (hazard ratio=1.35; 95% confidence interval, 0.83-2.21; P=0.22). When compared with FOLFIRI (6.34%), XELIRI was associated with lower rates of severe toxicity (3.29) (P=0.026) and similar disease control rates (69.57% for FOLFIRI and 61.11% for XELIRI; P=0.49). In total, 17 single nucleotide polymorphisms were identified, five of which revealed an association with grade 3/4 neutropenia, including UGT1A7*4; however, UGT1A1*28 and UGT1A1*6, which have been previously reported, were not significant. Additionally, H2 haplotypes, which include UGT1A9*22, and H5 and H7 haplotypes, which include UGT1A7*2, UGT1A7*3 and UGT1A7*4, were associated with a higher risk of severe neutropenia. In conclusion, XELIRI is an effective treatment regimen with acceptable response rates and tolerability for mCRC patients as a second-line treatment. Furthermore, inherited genetic variations in UGT1A1, UGT1A7 and UGT1A9 are associated with grade 3/4 neutropenia. PMID:25202427

  1. 40 CFR Table 1 to Subpart II of... - General Provisions of Applicability to Subpart II

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reference Applies to subpart II Comment 63.1(a)(1)-(3) Yes. 63.1(a)(4) Yes Subpart II clarifies the applicability of each paragraph in subpart A to sources subject to subpart II. 63.1(a)(5)-(7) Yes 63.1(a)(8) No Discusses State programs. 63.1(a)(9)-(14) Yes 63.1(b)(1) Yes § 63.781 specifies applicability in more...

  2. Standards for Agricultural Occupations Programs in Illinois Community Colleges. Interim Report of the Community College Phase [Phase I] of Project RD1-A8-564 Entitled "Standards for Illinois ABAO Post-Secondary Programs and Secondary Programs in Cook County".

    ERIC Educational Resources Information Center

    Walker, Robert W.; Hemp, Paul E.

    A study was made of Phase 1 of the long-term standards program for agricultural occupations programs for Illinois community colleges. The unique feature of this project was the procedure used to maximize the input of community college teachers in the validation and revision of the national standards. Survey instruments were sent to community…

  3. 40 CFR Table 1 to Subpart W of... - General Provisions Applicability to Subpart W

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... leak standard (40 CFR part 63, subpart H) Comment § 63.1(a)(1) Yes Yes Yes Additional terms defined in § 63.522. § 63.1(a)(2) Yes Yes Yes § 63.1(a)(3) Yes Yes Yes § 63.1(a)(4) Yes Yes Yes Subpart W....1(a)(6) Yes Yes Yes § 63.1(a)(7) Yes Yes Yes § 63.1(a)(8) No......

  4. A novel system for predicting the toxicity of irinotecan based on statistical pattern recognition with UGT1A genotypes.

    PubMed

    Tsunedomi, Ryouichi; Hazama, Shoichi; Fujita, Yusuke; Okayama, Naoko; Kanekiyo, Shinsuke; Inoue, Yuka; Yoshino, Shigefumi; Yamasaki, Takahiro; Suehiro, Yutaka; Oba, Koji; Mishima, Hideyuki; Sakamoto, Junichi; Hamamoto, Yoshihiko; Oka, Masaaki

    2014-10-01

    To predict precisely severe toxicity of irinotecan, we evaluated the association of UGT1A variants, haplotypes and the combination of UGT1A genotypes to severe toxicity of irinotecan. UGT1A1*6 (211G>A), UGT1A1*28 (TA6>TA7), UGT1A1*60 (-3279T>G), UGT1A7 (387T>G), UGT1A7 (622T>C), and UGT1A9*1b (-118T9>T10, also named *22) were genotyped in 123 patients with metastatic colorectal cancer who had received irinotecan-based chemotherapy. Among the 123 patients, 73 were enrolled in either of two phase II studies of the FOLFIRI (leucovorin, 5-fluorouracil and irinotecan) regimen; these patients constituted the training population, which was used to construct the predicting system. The other 50 patients constituted the validation population; these 50 patients either had participated in a phase II study of irinotecan/5'-deoxy-5-fluorouridine or were among consecutive patients who received FOLFIRI therapy. This prediction system used sequential forward floating selection based on statistical pattern recognition using UGT1A genotypes, gender and age. Several UGT1A genotypes [UGT1A1*6, UGT1A7 (387T>G), UGT1A7 (622T>C) and UGT1A9*1b] were associated with the irinotecan toxicity. Among the haplotypes, haplotype-I (UGT1A1: -3279T, TA6, 211G; UGT1A7: 387T, 622T; UGT1A9: T10) and haplotype-II (UGT1A1: -3279T, TA6, 211A; UGT1A7: 387G, 622C; UGT1A9: T9) were also associated with irinotecan toxicity. Furthermore, our new system for predicting the risk of irinotecan toxicity was 83.9% accurate with the training population and 72.1% accurate with the validation population. Our novel prediction system using statistical pattern recognition depend on genotypes in UGT1A, age and gender; moreover, it showed high predictive performance even though the treatment regimens differed among the training and validation patients. PMID:25175642

  5. Drug-Drug Interactions Potential of Icariin and Its Intestinal Metabolites via Inhibition of Intestinal UDP-Glucuronosyltransferases

    PubMed Central

    Cao, Yun-Feng; He, Rong-Rong; Cao, Jun; Chen, Jian-Xing; Huang, Ting; Liu, Yong

    2012-01-01

    Icariin is known as an indicative constituent of the Epimedium genus, which has been commonly used in Chinese herbal medicine to enhance treat impotence and improve sexual function, as well as for several other indications for over 2000 years. In this study, we aimed to investigate the effects of icariin and its intestinal metabolites on the activities of human UDP-glucuronosyltransferase (UGT) activities. Using a panel of recombinant human UGT isoforms, we found that icariin exhibited potent inhibition against UGT1A3. It is interesting that the intestinal metabolites of icariin exhibited a different inhibition profile compared with icariin. Different from icariin, icariside II was a potent inhibitor of UGT1A4, UGT1A7, UGT1A9, and UGT2B7, and icaritin was a potent inhibitor of UGT1A7 and UGT1A9. The potential for drug interactions in vivo was also quantitatively predicted and compared. The quantitative prediction of risks indicated that in vivo inhibition against intestinal UGT1A3, UGT1A4, and UGT1A7 would likely occur after oral administration of icariin products. PMID:23118789

  6. Metabolism of chamaechromone in vitro with human liver microsomes and recombinant human drug-metabolizing enzymes.

    PubMed

    Lou, Yan; Hu, Haihong; Qiu, Yunqing; Zheng, Jinqi; Wang, Linrun; Zhang, Xingguo; Zeng, Su

    2014-04-01

    Chamaechromone is a major component in the dried roots of Stellera chamaejasme with antihepatitis B virus and insecticidal activity. In this study, metabolic profiles of chamaechromone were investigated in human liver microsomes. One monohydroxide and two monoglucuronides of chamaechromone were identified. The enzyme kinetics for both hydroxylation and glucuronidation were fitted to the Michaelis-Menten equation. The hydroxylation of chamaechromone was inhibited by α-naphthoflavone, and predominantly catalyzed by recombinant human cytochrome P450 1A2, whereas the glucuronidation was inhibited by quercetin, 1-naphthol, and fluconazole, and mainly catalyzed by recombinant human UDP-glucuronosyltransferase 1A3, 1A7, 1A9, and 2B7.

  7. Structure–inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs)

    SciTech Connect

    Fang, Zhong-Ze; Cao, Yun-Feng; Hu, Cui-Min; Hong, Mo; Sun, Xiao-Yu; Ge, Guang-Bo; Liu, Yong; Zhang, Yan-Yan; Yang, Ling; Sun, Hong-Zhi

    2013-03-01

    The wide utilization of ginseng provides the high risk of herb–drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb–drug interaction (HDI). Compared with the deep studies on the ginsenosides' inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behavior of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb–drug interaction induced by this kind of inhibition, the ginsenoside Rg{sub 3} was selected as an example, and the inhibition kinetic type and parameters (K{sub i}) were determined. Rg{sub 3} competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K{sub i} values) were calculated to be 22.6, 7.9, 1.9, and 2.0 μM for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg{sub 3} (400 ng/ml (0.5 μM)) after intramuscular injection of 60 mg Rg{sub 3}, the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides' inhibition towards UGT isoforms might be an important reason for ginseng–drug interaction. - Highlights: ► Structure-dependent inhibition of

  8. UDP-glucuronosyltransferase (UGT) 1A1 mainly contributes to the glucuronidation of trovafloxacin.

    PubMed

    Fujiwara, Ryoichi; Sumida, Kyohei; Kutsuno, Yuki; Sakamoto, Masaya; Itoh, Tomoo

    2015-02-01

    Identification of drug-metabolizing enzyme(s) responsible for the metabolism of drugs is an important step to understand not only interindividual variability in pharmacokinetics but also molecular mechanisms of metabolite-related toxicity. While it was reported that the major metabolic pathway of trovafloxacin, which is an antibiotic, was glucuronidation, the UDP-glucuronosyltransferase (UGT) isoform(s) responsible for the trovafloxacin glucuronidation has not been identified yet. In the present study, among the functional human UGT members, UGT1A1, UGT1A3, and UGT1A9 exhibited higher trovafloxacin acyl-glucuronidation activities. While other UGT members such as UGT1A8, UGT2B7, and UGT2B15 showed glucuronidation activity toward trovafloxacin, the metabolic velocity was extremely low. In human liver microsomes, trovafloxacin acyl-glucuronidation followed the Hill equation with S50 value of 95 μM, Vmax value of 243 pmol/min per mg, and a Hill coefficient of 2.0, while the UGT1A1-expressing system displayed Michaelis-Menten kinetics with a substrate inhibition, with Km value of 759 μM and Vmax value of 1160 pmol/min per mg. In human liver microsomes prepared from poor metabolizers (UGT1A1*28/*28), significantly reduced trovafloxacin acyl-glucuronide formation activity was observed, indicating that UGT1A1 mainly, while other UGT members such as UGT1A3 and UGT1A9 partially, contributes to the glucuronidation of trovafloxacin. PMID:25760534

  9. Metabolic fate of desomorphine elucidated using rat urine, pooled human liver preparations, and human hepatocyte cultures as well as its detectability using standard urine screening approaches.

    PubMed

    Richter, Lilian H J; Kaminski, Yeda Rumi; Noor, Fozia; Meyer, Markus R; Maurer, Hans H

    2016-09-01

    Desomorphine is an opioid misused as "crocodile", a cheaper alternative to heroin. It is a crude synthesis product homemade from codeine with toxic byproducts. The aim of the present work was to investigate the metabolic fate of desomorphine in vivo using rat urine and in vitro using pooled human liver microsomes and cytosol as well as human liver cell lines (HepG2 and HepaRG) by Orbitrap-based liquid chromatography-high resolution-tandem mass spectrometry or hydrophilic interaction liquid chromatography. According to the identified metabolites, the following metabolic steps could be proposed: N-demethylation, hydroxylation at various positions, N-oxidation, glucuronidation, and sulfation. The cytochrome P450 (CYP) initial activity screening revealed CYP3A4 to be the only CYP involved in all phase I steps. UDP-glucuronyltransferase (UGT) initial activity screening showed that UGT1A1, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17 formed desomorphine glucuronide. Among the tested in vitro models, HepaRG cells were identified to be the most suitable tool for prediction of human hepatic phase I and II metabolism of drugs of abuse. Finally, desomorphine (crocodile) consumption should be detectable by all standard urine screening approaches mainly via the parent compound and/or its glucuronide assuming similar kinetics in rats and humans. PMID:27372715

  10. In Vitro Study of UGT Metabolism and Permeability of Orientin and Isoorientin, Two Active flavonoid C-glycosides.

    PubMed

    Shi, Jian; Zhu, Lijun; Li, Ye; Zheng, Haihui; Yu, Jia; Lu, Linlin; Liu, Zhongqiu

    2016-01-01

    C-glycosides are important flavonoids with significant pharmacological activities implicated in anticancer and antioxidative effects. However, their characteristics of metabolism and transportation have been rarely investigated. This research aimed to examine the metabolic characteristics of two active C-glycosides, namely, orientin and isoorientin, in human liver microsomes (HLMs) and rat liver microsomes (RLMs) and to confirm the specific uridine 5'-diphospho glucuronosyltransferase (UGT) isoforms involved in glucuronidation by HLMs. Furthermore, the permeability of orientin and isoorientin was also determined by using Caco-2 cell monolayers. Results revealed that orientin and isoorientin could generate two metabolites, which were identified as monoglucuronides. HLM- and RLM-mediated glucuronide formations were in accordance with typical Michaelis-Menten kinetics. Conversely, RLM initially metabolized orientin to its corresponding metabolite, and this process was consistent with biphasic kinetics. Among the UGT isoform, UGT1A1, 1A8, 1A9 and 1A10 exhibited the highest enzyme activity. Passive diffusion was the predominant orientin and isoorientin transportation mechanism in Caco-2 cell monolayers, and their apparent permeability further confirmed that orientin and isoorientin were well absorbed. Therefore, orientin and isoorientin can be metabolized by UGT isoforms and microsomes; these flavonoids can also be transported via passive diffusion in Caco-2 cells, which are relatively permeable. PMID:26891873

  11. Induction of mouse UDP-glucuronosyltransferase mRNA expression in liver and intestine by activators of aryl-hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and nuclear factor erythroid 2-related factor 2.

    PubMed

    Buckley, David B; Klaassen, Curtis D

    2009-04-01

    UDP-glucuronosyltransferases (UGTs) catalyze the addition of UDP-glucuronic acid to endo- and xenobiotics, enhancing their water solubility and elimination. Many exogenous compounds, such as microsomal enzyme inducers (MEIs), alter gene expression through xenobiotic-responsive transcription factors, namely, the aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARalpha), and nuclear factor erythroid 2-related factor 2 (Nrf2). These transcription factors regulate xenobiotic-inducible expression of hepatic and intestinal biotransformation enzymes and transporters. The purpose of this study was to determine hepatic and intestinal inducibility of mouse Ugt mRNA by MEIs. Male C57BL/6 mice were treated for four consecutive days with activators of AhR [2,3,7,8-tetrachlorodibenzodioxin (TCDD), polychlorinated biphenyl 126, and beta-naphthoflavone], CAR [1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), phenobarbital, and diallyl sulfide], PXR [pregnenolone-16alpha-carbonitrile (PCN), spironolactone, and dexamethasone], PPARalpha (clofibrate, ciprofibrate, and diethylhexylphthalate), and Nrf2 (oltipraz, ethoxyquin, and butylated hydroxyanisole), respectively. Ugt1a1 mRNA expression in liver was induced by activators of all five transcription factor pathways, Ugt1a5 by Nrf2 activators, Ugt1a6 by all the pathways except CAR, and Ugt1a9 by all the pathways except Nrf2. Ugt2b35 mRNA in liver was induced by AhR activators and Ugt2b36 by CAR and PPARalpha activators. Throughout the small and large intestine, the AhR ligand TCDD increased Ugt1a6 and Ugt1a7 mRNA. In small intestine, the PXR activator PCN increased Ugt1a1, Ugt1a6, Ugt1a7, Ugt2b34, and Ugt2b35 mRNA in the duodenum. In conclusion, chemical activation of AhR, CAR, PXR, PPARalpha, and Nrf2 in mouse results in induction of distinct Ugt gene sets in liver and intestine, predominantly the Ugt1a isoforms.

  12. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guo, Ming; Tian, Hong; He, Fei-Yue; Lee, Gene-Hsiang; Peng, Shie-Ming

    2006-11-01

    One-dimensional alternative chains of two lanthanum complexes: [La( L1) 3(CH 3OH)(H 2O) 2]·5H 2O ( L1=anion of α-cyano-4-hydroxycinnamic acid ) 1 and [La( L2) 3(H 2O) 2]·3H 2O ( L2=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C 31H 36LaN 3O 17, triclinic, P-1, a=9.8279(4) Å, b=11.8278(5) Å, c=17.8730(7) Å, α=72.7960(10)°, β=83.3820(10)°, γ=67.1650(10)º, Z=2, R1=0.0377, wR2=0.0746; for 2: C 33H 37LaO 14, triclinic, P-1, a=8.7174(5) Å, b=9.9377(5) Å, c=21.153(2) Å, α=81.145(2)°, β=87.591(2)°, γ=67.345(5)°, Z=2, R1=0.0869, wR2=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two η3-O bridges and four bridges (two η2-O and two η3-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands.

  13. Biotransformation of bisphenol AF to its major glucuronide metabolite reduces estrogenic activity.

    PubMed

    Li, Ming; Yang, Yunjia; Yang, Yi; Yin, Jie; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings. PMID:24349450

  14. Crystal structures of the new ternary stannides La3Mg4-xSn2+x and LaMg3-xSn2

    NASA Astrophysics Data System (ADS)

    Solokha, P.; De Negri, S.; Minetti, R.; Proserpio, D. M.; Saccone, A.

    2016-01-01

    Synthesis and structural characterization of the two new lanthanum-magnesium-stannides La3Mg4-xSn2+x (0.12≤x≤0.40) and LaMg3-xSn2 (0.33≤x≤0.78) are reported. The crystal structures of these intermetallics were determined by single crystal X-ray diffraction analysis and confirmed by Rietveld refinement of powder X-ray diffraction patterns of the corresponding samples. The La3Mg4-xSn2+x phase crystallizes in the hexagonal Zr3Cu4Si2 structure type (P6bar2m, hP9, Z=3, x=0.12(1), a=7.7974(7), c=4.8384(4) Å), which represents an ordered derivative of the hP9-ZrNiAl prototype, ubiquitous among equiatomic intermetallics. The LaMg3-xSn2 phase is the second representative of the trigonal LaMg3-xGe2 type, which is a superstructure of the LaLi3Sb2 structure type (P3bar1c, hP34-0.12, Z=6, x=0.35(1), a=8.3222(9), c=14.9546(16) Å). The scheme describing the symmetry reduction/coloring with respect to the parent type is reported here with the purpose to discuss the LaMg3-xSn2 off-stoichiometry from the geometrical point of view. Structural relationships between the La-Mg-Sn ternary phases, including the already known equiatomic LaMgSn compound (oP12-TiNiSi), are presented in the framework of the AlB2-related compounds family and discussed with the aid of group-subgroup relations in the Bärnighausen formalism.

  15. The influence of clan structure on the genetic variation in a single Ghanaian village.

    PubMed

    Sanchez-Faddeev, Hernando; Pijpe, Jeroen; van der Hulle, Tom; Meij, Hans J; van der Gaag, Kristiaan J; Slagboom, P Eline; Westendorp, Rudi G J; de Knijff, Peter

    2013-10-01

    Socioeconomic and cultural factors are thought to have an important role in influencing human population genetic structure. To explain such population structure differences, most studies analyse genetic differences among widely dispersed human populations. In contrast, we have studied the genetic structure of an ethnic group occupying a single village in north-eastern Ghana. We found a markedly skewed male population substructure because of an almost complete lack of male gene flow among Bimoba clans in this village. We also observed a deep male substructure within one of the clans in this village. Among all males, we observed only three Y-single-nucleotide polymorphism (SNP) haplogroups: E1b1a*-M2, E1b1a7a*-U174 and E1b1a8a*-U209, P277, P278. In contrast to the marked Y-chromosomal substructure, mitochondrial DNA HVS-1 sequence variation and autosomal short-tandem repeats variation patterns indicate high genetic diversities and a virtually random female-mediated gene flow among clans. On the extreme micro-geographical scale of this single Bimoba village, correspondence between the Y-chromosome lineages and clan membership could be due to the combined effects of the strict patrilocal and patrilineal structure. If translated to larger geographic scales, our results would imply that the extent of variation in uniparentally inherited genetic markers, which are typically associated with historical migration on a continental scale, could equally likely be the result of many small and different cumulative effects of social factors such as clan membership that act at a local scale. Such local scale effects should therefore be considered in genetic studies, especially those that use uniparental markers, before making inferences about human history at large.

  16. Organochlorines inhibit acetaminophen glucuronidation by redirecting UDP-glucuronic acid towards the D-glucuronate pathway

    SciTech Connect

    Chan, Tom S. Wilson, John X.; Selliah, Subajini; Bilodeau, Marc; Zwingmann, Claudia; Poon, Raymond; O'Brien, Peter J.

    2008-11-01

    Industry-derived organochlorines are persistent environmental pollutants that are a continuing health concern. The effects of these compounds on drug metabolism are not well understood. In the current study we present evidence that the inhibition of acetaminophen (APAP) glucuronidation by minute concentrations of organochlorines correlates well with their ability to stimulate the D-glucuronate pathway leading to ascorbate synthesis. A set of 6 arylated organochlorines, including 5 PCB (polychlorinated biphenyl) congeners, were assessed for their effects on APAP glucuronidation in isolated hepatocytes from male Sprague-Dawley rats. The capacity of each organochlorine to inhibit APAP glucuronidation was found to be directly proportional to its capacity to stimulate ascorbate synthesis. PCB153, PCB28 and bis-(4-chlorophenyl sulfone) (BCPS) in increasing order were the most effective organochlorines for inhibiting APAP glucuronidation and stimulating the D-glucuronate pathway. None of the 3 inhibitors of APAP glucuronidation were able to alter the expression of UGT1A6, UGT1A7 and UGT1A8 (the major isoforms responsible for APAP glucuronidation in the rat), however, their efficacy at inhibiting APAP glucuronidation was proportional to their capacity to deplete UDP-glucuronic acid (UDPGA). BCPS-mediated inhibition of APAP glucuronidation in isolated hepatocytes had non-competitive characteristics and was insensitive to the inactivation of cytochrome P450. The effective organochlorines were also able to selectively stimulate the hydrolysis of UDPGA to UDP and glucuronate in isolated microsomes, but could not inhibit APAP glucuronidation in microsomes when UDPGA was in excess. We conclude that organochlorines are able to inhibit APAP glucuronidation in hepatocytes by depleting UDPGA via redirecting UDPGA towards the D-glucuronate pathway. Because the inhibition is non-competitive, low concentrations of these compounds could have long term inhibitory effects on the

  17. Glucuronidation of the steroid enantiomers ent-17β-estradiol, ent-androsterone and ent-etiocholanolone by the human UDP-glucuronosyltransferases

    PubMed Central

    Sneitz, Nina; Krishnan, Kathiresan; Covey, Douglas F.; Finel, Moshe

    2011-01-01

    Steroids enantiomers are interesting compounds for detailed exploration of drug metabolizing enzymes, such as the UDP-glucuronosyltransferases (UGTs). We have now studied the glucuronidation of the enantiomers of estradiol, androsterone and etiocholanolone by the 19 human UGTs of subfamilies 1A, 2A and 2B. The results reveal that the pattern of human UGTs of subfamily 2B that glucuronidate ent-17β-estradiol, particularly 2B15 and 2B17, resembles the glucuronidation of epiestradiol (17α-estradiol) rather than 17β-estradiol, the main physiological estrogen. The UGTs of subfamilies 1A and 2A exhibit higher degree of regioselectivity than enantioselectivity in the conjugation of these estradiols, regardless of whether the activity is primarily toward the non-chiral site, 3-OH (UGT1A1, UGT1A3, UGT1A7, UGT1A8 and, above all, UGT1A10), or the 17-OH (UGT1A4). In the cases of etiocholanolone and androsterone, glucuronidation of the ent-androgens, like the conjugation of the natural androgens, is mainly catalyzed by UGTs of subfamilies 2A and 2B. Nevertheless, the glucuronidation of ent-etiocholanolone and ent-androsterone by both UGT2B7 and UGT2B17 differ considerably from their respective activity toward the corresponding endogenous androgens, whereas UGT2A1-catalyzed conjugation is much less affected by the stereochemistry differences. Kinetic analyses reveal that the Km value of UGT2A1 for ent-estradiol is much higher than the corresponding value in the other two high activity enzymes, UGT1A10 and UGT2B7. Taken together, the results highlight large enantioselectivity differences between individual UGTs, particularly those of subfamily 2B. PMID:21899827

  18. The History of Slavs Inferred from Complete Mitochondrial Genome Sequences

    PubMed Central

    Mielnik-Sikorska, Marta; Daca, Patrycja; Malyarchuk, Boris; Derenko, Miroslava; Skonieczna, Katarzyna; Perkova, Maria; Dobosz, Tadeusz; Grzybowski, Tomasz

    2013-01-01

    To shed more light on the processes leading to crystallization of a Slavic identity, we investigated variability of complete mitochondrial genomes belonging to haplogroups H5 and H6 (63 mtDNA genomes) from the populations of Eastern and Western Slavs, including new samples of Poles, Ukrainians and Czechs presented here. Molecular dating implies formation of H5 approximately 11.5–16 thousand years ago (kya) in the areas of southern Europe. Within ancient haplogroup H6, dated at around 15–28 kya, there is a subhaplogroup H6c, which probably survived the last glaciation in Europe and has undergone expansion only 3–4 kya, together with the ancestors of some European groups, including the Slavs, because H6c has been detected in Czechs, Poles and Slovaks. Detailed analysis of complete mtDNAs allowed us to identify a number of lineages that seem specific for Central and Eastern Europe (H5a1f, H5a2, H5a1r, H5a1s, H5b4, H5e1a, H5u1, some subbranches of H5a1a and H6a1a9). Some of them could possibly be traced back to at least ∼4 kya, which indicates that some of the ancestors of today's Slavs (Poles, Czechs, Slovaks, Ukrainians and Russians) inhabited areas of Central and Eastern Europe much earlier than it was estimated on the basis of archaeological and historical data. We also sequenced entire mitochondrial genomes of several non-European lineages (A, C, D, G, L) found in contemporary populations of Poland and Ukraine. The analysis of these haplogroups confirms the presence of Siberian (C5c1, A8a1) and Ashkenazi-specific (L2a1l2a) mtDNA lineages in Slavic populations. Moreover, we were able to pinpoint some lineages which could possibly reflect the relatively recent contacts of Slavs with nomadic Altaic peoples (C4a1a, G2a, D5a2a1a1). PMID:23342138

  19. Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar.

    PubMed

    Zhang, Donglu; Wang, Lifei; Chandrasena, Gamini; Ma, Li; Zhu, Mingshe; Zhang, Hongjian; Davis, Carl D; Humphreys, W Griffith

    2007-01-01

    Muraglitazar (Pargluva), a dual alpha/gamma peroxisome proliferator-activated receptor activator, has both glucose- and lipid-lowering effects in animal models and in patients with diabetes. The human major primary metabolic pathways of muraglitazar include acylglucuronidation, aliphatic/aryl hydroxylation, and O-demethylation. This study describes the identification of human cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) enzymes involved in the in vitro metabolism of muraglitazar. [(14)C]Muraglitazar was metabolized by cDNA-expressed CYP2C8, 2C9, 2C19, 2D6, and 3A4, but to a very minimal extent by CYP1A2, 2A6, 2B6, 2C18, 2E1, and 3A5. Inhibition of the in vitro metabolism of muraglitazar in human liver microsomes, at a clinically efficacious concentration, by chemical inhibitors and monoclonal antibodies further supported involvement of CYP2C8, 2C9, 2C19, 2D6, and 3A4 in its oxidation. A combination of intrinsic clearance (V(max)/K(m)) and relative concentrations of each P450 enzyme in the human liver was used to predict the contribution of CYP2C8, 2C9, 2C19, 2D6, and 3A4 to the formation of each primary oxidative metabolite and to the overall oxidative metabolism of muraglitazar. Glucuronidation of [(14)C]muraglitazar was catalyzed by cDNA-expressed UGT1A1, 1A3, and 1A9, but not by UGT1A6, 1A8, 1A10, 2B4, 2B7, and 2B15. The K(m) values for muraglitazar glucuronidation by the three active UGT enzymes were similar (2-4 muM). In summary, muraglitazar was metabolized by multiple P450 and UGT enzymes to form multiple metabolites. This characteristic predicts a low potential for the alteration of the pharmacokinetic parameters of muraglitazar via polymorphic drug metabolism enzymes responsible for clearance of the compound or by coadministration of drugs that inhibit or induce relevant metabolic enzymes. PMID:17062778

  20. Adaptive hepatic and intestinal alterations in mice after deletion of NADPH-cytochrome P450 Oxidoreductase (Cpr) in hepatocytes.

    PubMed

    Cheng, Xingguo; Gu, Jun; Klaassen, Curtis D

    2014-11-01

    Cytochrome P450 enzymes (P450) play an important role in first-pass metabolism in both the intestine and liver. NADPH-cytochrome P450 oxidoreductase (Cpr) is an essential electron transfer protein required for microsomal P450 activity. Mice with conditional knockout of Cpr in hepatocytes develop normally and survive even with complete loss of liver microsomal P450 activity. Our current studies were performed to determine whether alternative drug-metabolizing pathways increase in an attempt to maintain whole-body homeostasis. In addition to the liver, Cpr is mainly expressed in tissues such as lung, kidney, and gastrointestinal tract. In livers of H-Cpr-null mice, there is a marked increase in mRNA expression of phase I enzymes (Aldh1a1, 1a7, 3a2; Ces1b2, 2a6, and 2a12), antioxidant enzymes (Ho-1, Nqo1, and epoxide hydrolase), phase II enzymes (Ugt1a9; Gsta1/2, m3, m4, m6, t1, and t3; and Sult1a1 and 1d1), and drug transporters (Oatp1a4, Oct3, Mate1, Mdr1a, and Mrp3 and 4). In addition, glucuronide-conjugated bilirubin concentrations are doubled in serum of H-Cpr-null mice. Both constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2) protein in nuclei are higher in the livers of H-Cpr-null mice, indicating that CAR and Nrf2 are activated. In the small intestine of H-Cpr-null mice, mRNA expression of Cyp3a11 and Mdr1a, two genes critical for intestinal first-pass metabolism, are markedly up-regulated. In addition, nutrient (Pept1) and cholesterol (Npc1l1) transporters are induced in the small intestine of H-Cpr-null mice. In conclusion, in H-Cpr-null mice, adaptive regulation of alternative detoxification genes in liver and small intestine appear to partially compensate for the loss of microsomal P450 function in liver.

  1. Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during sourdough fermentation: identification of novel compounds and long-term effect during storage of wheat bread.

    PubMed

    Coda, Rossana; Cassone, Angela; Rizzello, Carlo G; Nionelli, Luana; Cardinali, Gianluigi; Gobbetti, Marco

    2011-05-01

    This study aimed at investigating the antifungal activity of Wickerhamomyces anomalus and sourdough lactic acid bacteria to extend the shelf life of wheat flour bread. The antifungal activity was assayed by agar diffusion, growth rate inhibition, and conidial germination assays, using Penicillium roqueforti DPPMAF1 as the indicator fungus. Sourdough fermented by Lactobacillus plantarum 1A7 (S1A7) and dough fermented by W. anomalus LCF1695 (D1695) were selected and characterized. The water/salt-soluble extract of S1A7 was partially purified, and several novel antifungal peptides, encrypted into sequences of Oryza sativa proteins, were identified. The water/salt-soluble extract of D1695 contained ethanol and, especially, ethyl acetate as inhibitory compounds. As shown by growth inhibition assays, both water/salt-soluble extracts had a large inhibitory spectrum, with some differences, toward the most common fungi isolated from bakeries. Bread making at a pilot plant was carried out with S1A7, D1695, or a sourdough started with a combination of both strains (S1A7-1695). Slices of the bread manufactured with S1A7-1695 did not show contamination by fungi until 28 days of storage in polyethylene bags at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate. The effect of sourdough fermentation with W. anomalus LCF1695 was also assessed based on rheology and sensory properties.

  2. Inhibition of Human UDP-Glucuronosyltransferase Enzymes by Canagliflozin and Dapagliflozin: Implications for Drug-Drug Interactions.

    PubMed

    Pattanawongsa, Attarat; Chau, Nuy; Rowland, Andrew; Miners, John O

    2015-10-01

    Canagliflozin (CNF) and dapagliflozin (DPF) are the first sodium-glucose cotransporter 2 inhibitors to be approved for clinical use. Although available evidence excludes clinically significant inhibition of cytochromes P450, the effects of CNF and DPF on human UDP-glucuronosyltransferase (UGT) enzymes are unknown. Here, we report the inhibition of human recombinant UGTs by CNF and DPF, along with the Ki values for selected recombinant and human liver microsomal UGTs. CNF inhibited all UGT1A subfamily enzymes, but the greatest inhibition was observed with UGT1A1, UGT1A9, and UGT1A10 (IC50 values ≤ 10 µM). DPF similarly inhibited UGT1A1, UGT1A9, and UGT1A10, with IC50 values ranging from 39 to 66 µM. In subsequent kinetic studies, CNF inhibited recombinant and human liver microsomal UGT1A9; Ki values ranged from 1.4 to 3.0 µM, depending on the substrate (propofol/4-methylumbelliferone) enzyme combination. Ki values for CNF inhibition of UGT1A1 were approximately 3-fold higher. Consistent with the activity screening data, DPF was a less potent inhibitor of UGT1A1 and UGT1A9. The Ki for DPF inhibition of UGT1A1 was 81 µM, whereas the Ki values for inhibition of UGT1A9 ranged from 12 to 15 µM. Based on the in vitro Ki values and plasma concentrations reported in the literature, DPF may be excluded as a perpetrator of DDIs arising from inhibition of UGT enzymes, but CNF inhibition of UGT1A1 and UGT1A9 in vivo cannot be discounted. Since the sodium-glucose cotransporter 2 inhibitors share common structural features, notably a glycoside moiety, investigation of drugs in this class for effects on UGT to identify (or exclude) potential drug-drug interactions is warranted.

  3. Determination of major UDP-glucuronosyltransferase enzymes and their genotypes responsible for 20-HETE glucuronidation[S

    PubMed Central

    Jarrar, Yazun Bashir; Cha, Eun-Young; Seo, Kyung-Ah; Ghim, Jong-Lyul; Kim, Hyo-Ji; Kim, Dong-Hyun; Lee, Su-Jun; Shin, Jae-Gook

    2014-01-01

    The compound 20-HETE is involved in numerous physiological functions, including blood pressure and platelet aggregation. Glucuronidation of 20-HETE by UDP-glucuronosyltransferases (UGTs) is thought to be a primary pathway of 20-HETE elimination in humans. The present study identified major UGT enzymes responsible for 20-HETE glucuronidation and investigated their genetic influence on the glucuronidation reaction using human livers (n = 44). Twelve recombinant UGTs were screened to identify major contributors to 20-HETE glucuronidation. Based on these results, UGT2B7, UGT1A9, and UGT1A3 exhibited as major contributors to 20-HETE glucuronidation. The Km values of 20-HETE glucuronidation by UGT1A3, UGT1A9, and UGT2B7 were 78.4, 22.2, and 14.8 μM, respectively, while Vmax values were 1.33, 1.78, and 1.62 nmol/min/mg protein, respectively. Protein expression levels and genetic variants of UGT1A3, UGT1A9, and UGT2B7 were analyzed in human livers using Western blotting and genotyping, respectively. Glucuronidation of 20-HETE was significantly correlated with the protein levels of UGT2B7 (r2 = 0.33, P < 0.001) and UGT1A9 (r2 = 0.31, P < 0.001), but not UGT1A3 (r2 = 0.02, P > 0.05). A correlation between genotype and 20-HETE glucuronidation revealed that UGT2B7 802C>T, UGT1A9 −118T9>T10, and UGT1A9 1399T>C significantly altered 20-HETE glucuronide formation (P < 0.05–0.001). Increased levels of 20-HETE comprise a risk factor for cardiovascular diseases, and the present data may increase our understanding of 20-HETE metabolism and cardiovascular complications. PMID:25249502

  4. High School Puente Program. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    The "High School Puente Program" aims to help disadvantaged students graduate from high school, become college eligible, and enroll in four-year colleges and universities. The program consists of three components: (1) a 9th- and 10th-grade college preparatory English class that incorporates Mexican-American/Latino and other multicultural…

  5. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans.

    PubMed

    Francke, Stephan; Mamidi, Rao N V S; Solanki, Bhavna; Scheers, Ellen; Jadwin, Andrew; Favis, Reyna; Devineni, Damayanthi

    2015-09-01

    O-glucuronidation is the major metabolic elimination pathway for canagliflozin. The objective was to identify enzymes and tissues involved in the formation of 2 major glucuronidated metabolites (M7 and M5) of canagliflozin and subsequently to assess the impact of genetic variations in these uridine diphosphate glucuronosyltransferases (UGTs) on in vivo pharmacokinetics in humans. In vitro incubations with recombinant UGTs revealed involvement of UGT1A9 and UGT2B4 in the formation of M7 and M5, respectively. Although M7 and M5 were formed in liver microsomes, only M7 was formed in kidney microsomes. Participants from 7 phase 1 studies were pooled for pharmacogenomic analyses. A total of 134 participants (mean age, 41 years; men, 63%; white, 84%) were included in the analysis. In UGT1A9*3 carriers, exposure of plasma canagliflozin (Cmax,ss , 11%; AUCτ,ss , 45%) increased relative to the wild type. An increase in exposure of plasma canagliflozin (Cmax,ss , 21%; AUCt,ss , 18%) was observed in participants with UGT2B4*2 genotype compared with UGT2B4*2 noncarriers. Metabolites further delineate the role of both enzymes. The pharmacokinetic findings in participants carrying the UGT1A9*3 and UGT2B4*2 allele implicate that UGT1A9 and UGT2B4 are involved in the metabolism of canagliflozin to M7 and M5, respectively. PMID:25827774

  6. 50 CFR 222.201 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS GENERAL ENDANGERED AND THREATENED MARINE SPECIES...)(1)(A), 9(a)(1)(E), or 9(a)(1)(F) of the Act. (1) No person shall engage in any activities identified..., transport or ship in interstate or foreign commerce in the course of a commercial activity; or sell or...

  7. 75 FR 59706 - Medicine Bow Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ...' express permission. The proposed project will consist of the following: (1) A 9,200- foot-circumference, 60-foot-high earth or rockfilled embankment; creating an 88-acre upper reservoir with a storage...-foot-high earth and rockfill or concrete-face rockfill dam; creating an 121-acre lower reservoir with...

  8. Quantitative Profiling of Human Renal UDP-glucuronosyltransferases and Glucuronidation Activity: A Comparison of Normal and Tumoral Kidney Tissues

    PubMed Central

    Margaillan, Guillaume; Rouleau, Michèle; Fallon, John K.; Caron, Patrick; Villeneuve, Lyne; Turcotte, Véronique; Smith, Philip C.; Joy, Melanie S.

    2015-01-01

    Renal metabolism by UDP-glucuronosyltransferase (UGT) enzymes is central to the clearance of many drugs. However, significant discrepancies about the relative abundance and activity of individual UGT enzymes in the normal kidney prevail among reports, whereas glucuronidation in tumoral kidney has not been examined. In this study, we performed an extensive profiling of glucuronidation metabolism in normal (n = 12) and tumor (n = 14) kidneys using targeted mass spectrometry quantification of human UGTs. We then correlated UGT protein concentrations with mRNA levels assessed by quantitative polymerase chain reaction and with conjugation activity for the major renal UGTs. Beyond the wide interindividual variability in expression levels observed among kidney samples, UGT1A9, UGT2B7, and UGT1A6 are the most abundant renal UGTs in both normal and tumoral tissues based on protein quantification. In normal kidney tissues, only UGT1A9 protein levels correlated with mRNA levels, whereas UGT1A6, UGT1A9, and UGT2B7 quantification correlated significantly with their mRNA levels in tumor kidneys. Data support that posttranscriptional regulation of UGT2B7 and UGT1A6 expression is modulating glucuronidation in the kidney. Importantly, our study reveals a significant decreased glucuronidation capacity of neoplastic kidneys versus normal kidneys that is paralleled by drastically reduced UGT1A9 and UGT2B7 mRNA and protein expression. UGT2B7 activity is the most repressed in tumors relative to normal tissues, with a 96-fold decrease in zidovudine metabolism, whereas propofol and sorafenib glucuronidation is decreased by 7.6- and 5.2-fold, respectively. Findings demonstrate that renal drug metabolism is predominantly mediated by UGT1A9 and UGT2B7 and is greatly reduced in kidney tumors. PMID:25650382

  9. Photocopy of drawing located at National Archives, San Bruno, California ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing located at National Archives, San Bruno, California (Navy # H-1-A-8). Additions to Naval Hospital Mare Island Cal foundations plans; 1909. - Mare Island Naval Shipyard, Hospital Headquarters, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA

  10. Activity of rat UGT1A1 towards benzo[a]pyrene phenols and dihydrodiols.

    PubMed

    Webb, Laura; Miles, Kristini; Kessler, Fay; Ritter, Joseph K

    2006-05-01

    Four UDP-glucuronosyltransferases from the rat UGT1A family were tested for activity towards benzo[a]pyrene phenols and dihydrodiols. UGT1A1 and UGT1A7 were found to be broadly active towards BaP metabolites. Antisera recognizing rat UGT1A1 and UGT1A7 were used to assess UGT levels in relation to UGT activity towards benzo[a]pyrene-7,8-dihydrodiol (BPD). The rank BPD UGT activities were liver=intestine≫kidney, whereas UGT1A1 was highest in liver and UGT1A7 was highest in intestine. Phenobarbital, an inducer of hepatic UGT1A1, only slightly increased BPD UGT activity, whereas UGT1A7 inducers more potently increased the activity. Inhibition studies using the differential UGT1A1 inhibitor, bilirubin, suggest that UGT1A1 is not a major contributor to the constitutive BPD glucuronidating activity of control rat liver microsomes. These data suggest that multiple UGT1A enzymes contribute to glucuronidation of BPD and other BaP metabolites, and that their relative contributions depend on tissue- and environmental-specific factors. PMID:21783661

  11. Polymorphisms of uridine glucuronosyltransferase gene and irinotecan toxicity: low dose does not protect from toxicity.

    PubMed

    Tziotou, Marianna; Kalotychou, Vassiliki; Ntokou, Anna; Tzanetea, Revekka; Armenis, Iakovos; Varsou, Marianna; Konstantopoulos, Konstantinos; Tsavaris, Nicolas; Rombos, Yannis

    2014-01-01

    Uridine glucuronosyltransferase (UGT) gene polymorphisms have been linked to irinotecan toxicity. Our purpose was to study the association between UGT1A1*28, UGT1A7*2, and UGT1A7*3 polymorphisms and irinotecan toxicity in Greek patients receiving low-dose weekly irinotecan. Blood samples were collected for 46 patients. DNA was extracted and UGT1A1 promoter and UGT1A7 exon 1 genotyping was carried out. Laboratory tests and physical examination were performed on regular basis for the assessment of toxicity. UGT1A1*28 was significantly correlated with both haematologic and non-haematologic toxicity. Moreover, patients carrying UGT1A7 polymorphisms had significant incidence of toxicity. To conclude, UGT polymorphisms play a role in the toxicity of irinotecan, even if the drug is administered in low doses. The genotyping test may be a useful tool for the management of patients who are going to receive irinotecan. PMID:24834123

  12. 17 CFR 270.17g-1 - Bonding of officers and employees of registered management investment companies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... statutes or regulations had it not been named as an insured under a joint insured bond. (e) No premium may... insured bond, (d) a statement as to the period for which premiums have been paid, and (e) a copy of each... governance standards defined in § 270.0-1(a)(7). (k) At the next anniversary date of an existing...

  13. 40 CFR Table 15 to Subpart Wwww of... - Applicability of General Provisions (Subpart A) to Subpart WWWW of Part 63

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... additional information . . . § 63.1(a)(1) General applicability of the general provisions Yes Additional... general provisions Yes § 63.1(a)(5) Reserved No § 63.1(a)(6) General applicability of the general provisions Yes § 63.1(a)(7) through (9) Reserved No § 63.1(a)(10) through (14) General applicability of...

  14. Preclinical evaluation in nonhuman primates of murine monoclonal anti-idiotype antibody that mimics the disialoganglioside GD2.

    PubMed

    Sen, G; Chakraborty, M; Foon, K A; Reisfeld, R A; Bhattacharya-Chatterjee, M

    1997-11-01

    The antiganglioside GD2 monoclonal antibody 14G2a (Ab1) served as an immunogen to generate the anti-idiotype (anti-Id) 1A7 (IgG1,kappa), which mimics GD2 both antigenically and biologically. Anti-Id 1A7 induced anti-GD2 antibodies in mice and rabbits. In this preclinical study, a pair of cynomolgus monkeys, immunized with 1A7 that had been mixed with QS-21 adjuvant, produced anti-anti-Id antibodies (Ab3), which reacted with the GD2-positive melanoma cell line M21/P6 cells but not with GD2-negative LS174-T cells. The Ab3 shared Ids with mAb 14G2a (Ab1), as demonstrated by their ability to inhibit binding of 1A7 to this Ab1. The Ab3 bound specifically to purified GD2 antigen and competed with the Ab1 14G2a in binding to a GD2-positive melanoma cell line or to purified GD2, suggesting that Ab1 and Ab3 may bind to the same epitope and may behave as an Ab1-like antibody (Ab1'). The isotype of the GD2-specific antibodies was mostly IgG in nature. The specificity of the antibodies for GD2 was further confirmed by dot blot analysis. These antisera also specifically lysed GD2-positive target cells in an antibody-dependent cellular cytotoxicity assay. The induction of anti-GD2 responses in monkeys did not cause any apparent side effects, despite the fact that GD2 antigen is expressed by many normal tissues of these animals. Taken together, these results suggest that anti-Id 1A7 can induce GD2-specific antibodies in nonhuman primates and can thus serve as a potential network antigen for triggering active anti-GD2 antibodies in patients with GD2-positive neuroectodermal tumors. PMID:9815586

  15. New isoprenylated flavones, artochamins A--E, and cytotoxic principles from Artocarpus chama.

    PubMed

    Wang, Yong-Hong; Hou, Ai-Jun; Chen, Lei; Chen, Dao-Feng; Sun, Han-Dong; Zhao, Qin-Shi; Bastow, Kenneth F; Nakanish, Yuka; Wang, Xi-Hong; Lee, Kuo-Hsiung

    2004-05-01

    Five new isoprenylated flavones, artochamins A-E (1-5), together with eight known flavones (6-13), were isolated from the roots of Artocarpus chama. All structures were elucidated by spectroscopic methods. Artonin E (12) showed strong cytotoxicity against 1A9 (ovarian), significant activity against MCF-7 (breast adenocarcinoma), and moderate activity against HCT-8 (ileocecal) and MDA-MB-231 (breast adenocarcinoma) tumor cell lines. Artochamin C (3) was more potent against MCF-7, 1A9, HCT-8, and SK-MEL-2 (melanoma) than A549 (lung carcinoma), KB (epidermoid carcinoma of the nasopharynx), and its drug-resistant (KB-VIN) variant. Artocarpin (6) displayed weak but relatively broad inhibitory effects compared with 3 and 12.

  16. 16 CFR 1611.2 - General description of products covered.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sections 2 and 4 of the Flammable Fabrics Act of 1953, as amended in 1954, set out at 16 CFR part 1609 for... at §§ 1611.31(i) and 1611.33(b) (formerly 16 CFR 302.1(a)(9) and 302.3(b)). ... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.2 General description...

  17. 16 CFR 1611.2 - General description of products covered.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sections 2 and 4 of the Flammable Fabrics Act of 1953, as amended in 1954, set out at 16 CFR part 1609 for... at §§ 1611.31(i) and 1611.33(b) (formerly 16 CFR 302.1(a)(9) and 302.3(b)). ... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.2 General description...

  18. 26 CFR 1.6045A-1 - Statements of information required in connection with transfers of securities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... February 1, 2013, Z instructs O to transfer the C stock to C so that ownership is held on the books of the... meaning as in § 1.6045-1(a)(9), (a)(14), (a)(15), (a)(16), and (h)(1). (7) Examples. The following... under § 1.6045-1(c)(3)(i), owns a security in an account with E, a broker. On February 1, 2012,...

  19. 16 CFR 1611.2 - General description of products covered.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sections 2 and 4 of the Flammable Fabrics Act of 1953, as amended in 1954, set out at 16 CFR part 1609 for... at §§ 1611.31(i) and 1611.33(b) (formerly 16 CFR 302.1(a)(9) and 302.3(b)). ... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.2 General description...

  20. 16 CFR 1611.2 - General description of products covered.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sections 2 and 4 of the Flammable Fabrics Act of 1953, as amended in 1954, set out at 16 CFR part 1609 for... at §§ 1611.31(i) and 1611.33(b) (formerly 16 CFR 302.1(a)(9) and 302.3(b)). ... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.2 General description...

  1. The expression of the Sprouty 1 protein inversely correlates with growth, proliferation, migration and invasion of ovarian cancer cells

    PubMed Central

    2014-01-01

    Background Our recent study on a panel of human ovarian cancer cells revealed that SKOV-3 cells barely express the Sprouty isoform 1 (Spry1) while 1A9 cells maintain it at a level similar to normal ovarian cells. Here we investigated the functional outcomes of induced alterations in the expression of Spry1 in the two cell lines in vitro. Methods Using the Spry1 specific plasmid and siRNA, the expression of Spry1 was induced and conversely silenced in SKOV-3 and 1A9 cells, respectively. The functional outcome was investigated by means of proliferation, MTT, scratch-wound, migration and invasion assays and selection of the stable clones. Mechanism of the effect was explored by Western blot. Results In the Spry1-transfected SKOV-3 cells, a significant reduction in growth and proliferation was evident. Stable clones of the Spry1-transfected SKOV-3 were almost undetectable after day 14. The number of migrated and invaded cells and the percentage of the scratch closure were significantly lower in the Spry1-transfected group. Spry1 silencing in 1A9 cells, on the other hand, led to a significant increase in cell growth and proliferation. The number of migrated and invaded cells and the percentage of the scratch closure significantly increased in Spry1-silenced 1A9 group. Mechanistically, overexpression of Bax, activation of caspases 3, 7, 8 and 9, cleavage of PARP and attenuation of Bcl-2 and Bcl-xl were observed along with reduced activation of Erk and Akt and increased amount and activity of PTEN in the Spry1-transfected SKOV-3 cells. Conclusions Here, we report the inverse correlation between the expression of Spry1 and growth, proliferation, invasion and migration of ovarian cancer cells. PMID:24932220

  2. Sorafenib Metabolism Is Significantly Altered in the Liver Tumor Tissue of Hepatocellular Carcinoma Patient

    PubMed Central

    Guo, Enshuang; Chen, Weiying; Lu, Linlin; Wang, Ying; Peng, Xiaojuan; Yan, Tongmeng; Zhou, Fuyan; Liu, Zhongqiu

    2014-01-01

    Background Sorafenib, the drug used as first line treatment for hepatocellular carcinoma (HCC), is metabolized by cytochrome P450 (CYP) 3A4-mediated oxidation and uridine diphosphate glucuronosyl transferase (UGT) 1A9-mediated glucuronidation. Liver diseases are associated with reduced CYP and UGT activities, which can considerably affect drug metabolism, leading to drug toxicity. Thus, understanding the metabolism of therapeutic compounds in patients with liver diseases is necessary. However, the metabolism characteristic of sorafenib has not been systematically determined in HCC patients. Methods Sorafenib metabolism was tested in the pooled and individual tumor hepatic microsomes (THLMs) and adjacent normal hepatic microsomes (NHLMs) of HCC patients (n = 18). Commercial hepatic microsomes (CHLMs) were used as a control. In addition, CYP3A4 and UGT1A9 protein expression in different tissues were measured by Western blotting. Results The mean rates of oxidation and glucuronidation of sorafenib were significantly decreased in the pooled THLMs compared with those in NHLMs and CHLMs. The maximal velocity (Vmax) of sorafenib oxidation and glucuronidation were approximately 25-fold and 2-fold decreased in the pooled THLMs, respectively, with unchanged Km values. The oxidation of sorafenib in individual THLMs sample was significantly decreased (ranging from 7 to 67-fold) than that in corresponding NHLMs sample. The reduction of glucuronidation in THLMs was observed in 15 out of 18 patients’ samples. Additionally, the level of CYP3A4 and UGT1A9 expression were both notably decreased in the pooled THLMs. Conclusions Sorafenib metabolism was remarkably decreased in THLMs. This result was associated with the down regulation of the protein expression of CYP3A4 and UGT1A9. PMID:24797816

  3. 40 CFR Table 2 to Subpart Ssss of... - Applicability of General Provisions to Subpart SSSS

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following table: General provisions reference Applicable to subpart SSSS Explanation § 63.1(a)(1)-(4) Yes § 63.1(a)(5) No Reserved. § 63.1(a)(6)-(8) Yes § 63.1(a)(9) No Reserved. § 63.1(a)(10)-(14) Yes § 63.1(b)(1) No Subpart SSSS specifies applicability. § 63.1(b)(2)-(3) Yes § 63.1(c)(1) Yes §...

  4. 40 CFR Table 1 to Subpart Lll of... - Applicability of General Provisions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Citation Requirement Applies to Subpart LLL Explaination 63.1(a)(1)-(4) Applicability Yes 63.1(a)(5) No 63.1(a)(6)-(8) Applicability Yes 63.1(a)(9) No 63.1(a)(10)-(14) Applicability Yes 63.1(b)(1) Initial... Determination Yes 63.1(c)(1) Applicability After Standard Established Yes 63.1(c)(2) Permit Requirements...

  5. 40 CFR Table 2 to Subpart Jjjj of... - Applicability of 40 CFR Part 63 General Provisions to Subpart JJJJ

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Applicability of 40 CFR Part 63 General... Web Coating Part 63, Subpt. JJJJ, Table 2 Table 2 to Subpart JJJJ of Part 63—Applicability of 40 CFR... Explanation § 63.1(a)(1)-(4) Yes. § 63.1(a)(5) No Reserved. § 63.1(a)(6)-(8) Yes. § 63.1(a)(9) No...

  6. Effect of dapagliflozin on colon cancer cell [Rapid Communication].

    PubMed

    Saito, Tsugumichi; Okada, Shuichi; Yamada, Eijiro; Shimoda, Yoko; Osaki, Aya; Tagaya, Yuko; Shibusawa, Ryo; Okada, Junichi; Yamada, Masanobu

    2015-01-01

    Dapagliflozin is a SGLT2 (Sodium/Glucose cotransporter 2) inhibitor that reduces circulating glucose levels in type 2 diabetic patients by blocking the SGLT2-dependent reabsorption of glucose in the kidney. Dapagliflozin is metabolized by UGT1A9 (UDP Glucuronosyltransferase 1 family, Polypeptidase A9), suppressing its SGLT2 inhibitor activity. However little information is available on whether dapagliflozin acts in the absence of dapagliflozin metabolism. Treatment with 0.5μM dapagliflozin significantly reduced the number of HCT116 cells, which express SGLT2 but not UGT1A9. This was independent of SGLT2 inhibition, as the SGLT2 inhibitor phlorizin had no effect. Dapagliflozin also enhanced Erk phosphorylation but without changing levels of uncleaved and cleaved PPAR and uncleaved caspase-3, suggesting that the cause of the decrease in HCT116 cell number was apoptosis independent cell death. Taken together, these data indicate a new potential role for dapagliflozin as an anticancer reagent in tumor cell populations that do not express UGT1A9. PMID:26522271

  7. Pharmacogenetic study of the effects of raloxifene on negative symptoms of postmenopausal women with schizophrenia: A double-blind, randomized, placebo-controlled trial.

    PubMed

    Labad, Javier; Martorell, Lourdes; Huerta-Ramos, Elena; Cobo, Jesús; Vilella, Elisabet; Rubio-Abadal, Elena; Garcia-Pares, Gemma; Creus, Marta; Núñez, Cristian; Ortega, Laura; Miquel, Eva; Usall, Judith

    2016-10-01

    Several double-blind clinical trials have reported improvement in positive, negative and cognitive symptoms of schizophrenia with raloxifene, a selective receptor estrogen modulator. However, there are some inconsistencies in replicating findings between studies of different countries. The failure to replicate these findings may result from genetic factors that could explain some of the variability in the treatment response. However, pharmacogenetic studies exploring this topic in women with schizophrenia are lacking. We aimed to conduct an exploratory pharmacogenetic analysis of a double-blind, randomized, parallel, placebo-controlled study of 24 weeks' duration of raloxifene aiming to improve negative symptoms in postmenopausal women with schizophrenia. Four single nucleotide polymorphisms (SNPs) were studied: rs9340799, rs2234693 and rs1801132 in the Estrogen Receptor 1 (ESR1) gene, and rs1042597 in the UDP-glucuronosyltransferase 1A8 (UGT1A8) gene. Sixty-five postmenopausal women with schizophrenia (DSM-IV) were randomized to either 60mg/day adjunctive raloxifene (36 women) or adjunctive placebo (29 women). Psychopathological symptoms were assessed at baseline and at weeks 4, 12, and 24 with the Positive and Negative Syndrome Scale (PANSS). Of the four studied SNPs, the rs1042597 variant in the UGT1A8 gene was associated with a different treatment response in negative symptoms with raloxifene treatment, whereas the rs2234693 variant in the ESR1 gene was associated with a distinct response in general psychopathology. In conclusion, our study suggests that genetic variants in UGT1A8 and ESR1 genes modulate the treatment response to adding raloxifene to antipsychotic treatment in postmenopausal women with schizophrenia. PMID:27546373

  8. Autoimmunity in type 1 diabetes mellitus: a rat model

    SciTech Connect

    Liu, Z.

    1987-01-01

    In this study, we have sought to isolate in vitro, from acutely diabetic BB rats, cytotoxic T lymphocytes, which exhibit specific cytotoxicity toward islet cells. Thoracic duct lymphocytes (TDL) from acutely diabetic BB rats cultured with irradiated MHC matched (RT1.u) islet cells and dendritic cells in vitro were shown to be specifically cytotoxic to MHC matched and mismatched allogeneic (RT1.1) and xenogeneic (hamster) islet target cells in a /sup 3/H-leucine release assay. Two cell lines (V1A8 and V1D11) derived from the TDL culture showed similar patterns of non-MHC restricted islet cell killing which could be blocked by islet cells and cultured rat insulinoma cells (RIN5mF) but not by non-islet cells of various tissue origins. Both V1A8 and V1D11 were not cytotoxic to Natural Killer (NK) sensitive target cells, G1TC and YAC-1. Conventional surface markers for rat helper and suppressor/cytotoxic T cells were not detectable on either cell lines. The V1D11 cell line was positive for W 3/13 (rat T/NK marker) on OX-19 (rat T/macrophage marker), whereas the V1A8 cell line was only positive for W 3/13.

  9. Neutropenia exacerbates infection by Acinetobacter baumannii clinical isolates in a murine wound model

    PubMed Central

    Grguric-Smith, Laryssa M.; Lee, Hiu H.; Gandhi, Jay A.; Brennan, Melissa B.; DeLeon-Rodriguez, Carlos M.; Coelho, Carolina; Han, George; Martinez, Luis R.

    2015-01-01

    The Gram negative coccobacillus Acinetobacter baumannii has become an increasingly prevalent cause of hospital-acquired infections in recent years. The majority of clinical A. baumannii isolates display high-level resistance to antimicrobials, which severely compromises our capacity to care for patients with A. baumannii disease. Neutrophils are of major importance in the host defense against microbial infections. However, the contribution of these cells of innate immunity in host resistance to cutaneous A. baumannii infection has not been directly investigated. Hence, we hypothesized that depletion of neutrophils increases severity of bacterial disease in an experimental A. baumannii murine wound model. In this study, the Ly-6G-specific monoclonal antibody (mAb), 1A8, was used to generate neutropenic mice and the pathogenesis of several A. baumannii clinical isolates on wounded cutaneous tissue was investigated. We demonstrated that neutrophil depletion enhances bacterial burden using colony forming unit determinations. Also, mAb 1A8 reduces global measurements of wound healing in A. baumannii-infected animals. Interestingly, histological analysis of cutaneous tissue excised from A. baumannii-infected animals treated with mAb 1A8 displays enhanced collagen deposition. Furthermore, neutropenia and A. baumannii infection alter pro-inflammatory cytokine release leading to severe microbial disease. Our findings provide a better understanding of the impact of these innate immune cells in controlling A. baumannii skin infections. PMID:26528277

  10. Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.).

    PubMed

    Wang, Min; Wang, Qinglian; Zhang, Baohong

    2013-11-01

    Reference genes are critical for normalization of the gene expression level of target genes. The widely used housekeeping genes may change their expression levels at different tissue under different treatment or stress conditions. Therefore, systematical evaluation on the housekeeping genes is required for gene expression analysis. Up to date, no work was performed to evaluate the housekeeping genes in cotton under stress treatment. In this study, we chose 10 housekeeping genes to systematically assess their expression levels at two different tissues (leaves and roots) under two different abiotic stresses (salt and drought) with three different concentrations. Our results show that there is no best reference gene for all tissues at all stress conditions. The reliable reference gene should be selected based on a specific condition. For example, under salt stress, UBQ7, GAPDH and EF1A8 are better reference genes in leaves; TUA10, UBQ7, CYP1, GAPDH and EF1A8 were better in roots. Under drought stress, UBQ7, EF1A8, TUA10, and GAPDH showed less variety of expression level in leaves and roots. Thus, it is better to identify reliable reference genes first before performing any gene expression analysis. However, using a combination of housekeeping genes as reference gene may provide a new strategy for normalization of gene expression. In this study, we found that combination of four housekeeping genes worked well as reference genes under all the stress conditions.

  11. 40 CFR Table 5 to Subpart Kkkk of... - Applicability of General Provisions to Subpart KKKK

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Applicability Yes § 63.1(a)(5) No § 63.1(a)(6) Source Category Listing Yes § 63.1(a)(7)-(9) No § 63.1(a)(10)-(12) Timing and Overlap Clarifications Yes § 63.1(b)(1) Initial Applicability Determination Yes Applicability... Determination Recordkeeping Yes § 63.1(c)(1) Applicability after Standard Established Yes §...

  12. 40 CFR Table 8 to Subpart Aaaaa of... - Applicability of General Provisions to Subpart AAAAA

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...? Explanations § 63.1(a)(1)-(4) Applicability Yes § 63.1(a)(5) No § 63.1(a)(6) Applicability Yes § 63.1(a)(7)-(a)(9) No § 63.1(a)(10)-(a)(14) Applicability Yes § 63.1(b)(1) Initial Applicability Determination Yes....1(b)(3) Initial Applicability Determination Yes § 63.1(c)(1) Applicability After...

  13. Induction of IgG antibodies by an anti-idiotype antibody mimicking disialoganglioside GD2.

    PubMed

    Sen, G; Chakraborty, M; Foon, K A; Reisfeld, R A; Bhattacharya-Chatterjee, M B

    1998-01-01

    The anti-idiotype (Id) monoclonal antibody (mAb) 1A7 immunoglobulin G1 (IgG1, kappa), raised in syngeneic mice against the murine anti-ganglioside GD2 mAb 14G2a mimics a carbohydrate epitope on GD2 and serves as a surrogate protein antigen for this disialoganglioside. Immunization of allogeneic C57BL/6 mice and rabbits with 1A7 induced anti-GD2 antibodies of IgG isotype that recognize purified GD2 by enzyme-linked immunosorbent assay (ELISA) and GD2-positive human melanoma cells (M21/P6) by fluorescence-activated cell sorter (FACS) analysis. The specificity of the antisera for GD2 was further confirmed by dot-blot analysis. These antisera also specifically lyse GD2-positive M21/P6 target cells in an antibody-dependent cellular cytotoxicity assay. Taken together, these results suggest that the anti-Id 1A7 can induce GD2-specific IgG antibodies that can recognize cell surface-associated as well as soluble disialoganglioside GD2. PMID:9456440

  14. Inhibition of UDP-Glucuronosyltransferases (UGTs) Activity by constituents of Schisandra chinensis.

    PubMed

    Song, Jin-Hui; Cui, Li; An, Li-Bin; Li, Wen-Tao; Fang, Zhong-Ze; Zhang, Yan-Yan; Dong, Pei-Pei; Wu, Xue; Wang, Li-Xuan; Gonzalez, Frank J; Sun, Xiao-Yu; Zhao, De-Wei

    2015-10-01

    Structure-activity relationship for the inhibition of Schisandra chinensis's ingredients toward (Uridine-Diphosphate) UDP-glucuronosyltransferases (UGTs) activity was performed in the present study. In vitro incubation system was employed to screen the inhibition capability of S. chinensis's ingredients, and in silico molecular docking method was carried out to explain possible mechanisms. At 100 μM of compounds, the activity of UGTs was inhibited by less than 90% by schisandrol A, schisandrol B, schisandrin, schisandrin C, schisantherin A, gomisin D, and gomisin G. Schisandrin A exerted strong inhibition toward UGT1A1 and UGT1A3, with the residual activity to be 7.9% and 0% of control activity. Schisanhenol exhibited strong inhibition toward UGT2B7, with the residual activity to be 7.9% of control activity. Gomisin J of 100 μM inhibited 91.8% and 93.1% of activity of UGT1A1 and UGT1A9, respectively. Molecular docking prediction indicated different hydrogen bonds interaction resulted in the different inhibition potential induced by subtle structure alteration among schisandrin A, schisandrin, and schisandrin C toward UGT1A1 and UGT1A3: schisandrin A > schisandrin > schisandrin C. The detailed inhibition kinetic evaluation showed the strong inhibition of gomisin J toward UGT1A9 with the inhibition kinetic parameter (Ki ) to be 0.7 μM. Based on the concentrations of gomisin J in the plasma of the rats given with S. chinensis, high herb-drug interaction existed between S. chinensis and drugs mainly undergoing UGT1A9-mediated metabolism. In conclusion, in silico-in vitro method was used to give the inhibition information and possible inhibition mechanism for S. chinensis's components toward UGTs, which guide the clinical application of S. chinensis.

  15. Inhibition of UDP-Glucuronosyltransferases (UGTs) Activity by constituents of Schisandra chinensis.

    PubMed

    Song, Jin-Hui; Cui, Li; An, Li-Bin; Li, Wen-Tao; Fang, Zhong-Ze; Zhang, Yan-Yan; Dong, Pei-Pei; Wu, Xue; Wang, Li-Xuan; Gonzalez, Frank J; Sun, Xiao-Yu; Zhao, De-Wei

    2015-10-01

    Structure-activity relationship for the inhibition of Schisandra chinensis's ingredients toward (Uridine-Diphosphate) UDP-glucuronosyltransferases (UGTs) activity was performed in the present study. In vitro incubation system was employed to screen the inhibition capability of S. chinensis's ingredients, and in silico molecular docking method was carried out to explain possible mechanisms. At 100 μM of compounds, the activity of UGTs was inhibited by less than 90% by schisandrol A, schisandrol B, schisandrin, schisandrin C, schisantherin A, gomisin D, and gomisin G. Schisandrin A exerted strong inhibition toward UGT1A1 and UGT1A3, with the residual activity to be 7.9% and 0% of control activity. Schisanhenol exhibited strong inhibition toward UGT2B7, with the residual activity to be 7.9% of control activity. Gomisin J of 100 μM inhibited 91.8% and 93.1% of activity of UGT1A1 and UGT1A9, respectively. Molecular docking prediction indicated different hydrogen bonds interaction resulted in the different inhibition potential induced by subtle structure alteration among schisandrin A, schisandrin, and schisandrin C toward UGT1A1 and UGT1A3: schisandrin A > schisandrin > schisandrin C. The detailed inhibition kinetic evaluation showed the strong inhibition of gomisin J toward UGT1A9 with the inhibition kinetic parameter (Ki ) to be 0.7 μM. Based on the concentrations of gomisin J in the plasma of the rats given with S. chinensis, high herb-drug interaction existed between S. chinensis and drugs mainly undergoing UGT1A9-mediated metabolism. In conclusion, in silico-in vitro method was used to give the inhibition information and possible inhibition mechanism for S. chinensis's components toward UGTs, which guide the clinical application of S. chinensis. PMID:26084208

  16. Resistance of novel mouse strains different in MHC class I and the NKC domain to the development of experimental tumors.

    PubMed

    Fišerová, Anna; Richter, Jan; Čapková, Katarína; Bieblová, Jana; Mikyšková, Romana; Reiniš, Milan; Indrová, Marie

    2016-08-01

    To elucidate the immunological mechanisms critical for tumor progression, we bred novel mouse strains, different in the NKC and H-2D domains. We used inbreeding to generate hybrids of Balb/c and C57BL/6 of stable H-2Db+d-NK1.1neg and H-2Db-d+NK1.1high phenotypes. We analyzed the growth of three established MHC class I-deficient tumor cell lines: TC-1/A9 tumor (HPV-associated) and B16F10 melanoma, both syngeneic to C57BL/6, and the MCB8 (3-methycholanthrene-induced tumor) syngeneic to Balb/c. Furthermore, we induced colorectal carcinoma by azoxymethane-DSS treatment to test the susceptibility to chemically-induced primary cancer. We found that the novel strains spontaneously regressed the tumor transplants syngeneic to both Balb/c (MCB8) and C57BL/6 (B16F10 and TC-1/A9) mice. The H2-Db+d-NK1.1neg, but not the H2-Db-d+NK1.1high strain was also highly resistant to chemically-induced colorectal cancer in comparison to the parental mice. The immune changes during TC-1/A9 cancer development involved an increase of the NK cell distribution in the peripheral blood and spleen along with higher expression of NKG2D activation antigen; this was in correlation with the time-dependent rise of cytotoxic activity in comparison to C57BL/6 mice. The TC-1/A9 cancer regression was accompanied by higher proportion of B cells in the spleen and B220+/CD86+ activated antigen-presenting B cells distributed in the lymphoid organs, as well as in the periphery. The changes in the T-cell population were represented mainly by the prevalence of T helper cells reflected by grown CD4/CD8 ratio, most prominent in the b+d-NK1.1neg strain. The results of the present study imply usefulness of the two novel mouse strains as an experimental model for further studies of tumor resistance mechanisms. PMID:27279019

  17. 40 CFR Table 2 to Subpart Dd of... - Applicability of Paragraphs in Subpart A of This Part 63-General Provisions to Subpart DD

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Subpart DD Subpart A reference Applies to Subpart DD Explanation 63.1(a)(1) Yes 63.1(a)(2) Yes 63.1(a)(3) Yes 63.1(a)(4) No Subpart DD (this table) specifies applicability of each paragraph in subpart A to subpart DD. 63.1(a)(5)-63.1(a)(9) No 63.1(a)(10) Yes 63.1(a)(11) Yes 63.1(a)(12) Yes 63.1(a)(13) Yes...

  18. 40 CFR Table 1 to Subpart Kk of... - Applicability of General Provisions to Subpart KK

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provisions reference Applicable to subpart KK Comment § 63.1(a)(1)-(a)(4) Yes. § 63.1(a)(5) No Section reserved. § 63.1(a)(6)-(a)(8) No. § 63.1(a)(9) No Section reserved. § 63.1(a)(10)-(a)(14) Yes. § 63.1(b)(1) No Subpart KK specifies applicability. § 63.1(b)(2)-(b)(3) Yes. § 63.1(c)(1) Yes. § 63.1(c)(2)...

  19. 40 CFR Table 1 to Subpart R of... - General Provisions Applicability to Subpart R

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Applicability to Subpart R Reference Applies to subpart R Comment 63.1(a)(1) Yes 63.1(a)(2) Yes 63.1(a)(3) Yes 63.1(a)(4) Yes 63.1(a)(5) No Section reserved 63.1(a)(6)(8) Yes 63.1(a)(9) No Section reserved 63.1(a)(10) Yes 63.1(a)(11) Yes 63.1(a)(12))-(a)(14) Yes 63.1(b)(1) No Subpart R specifies applicability...

  20. Interindividual variability in hepatic drug glucuronidation: studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system.

    PubMed

    Court, Michael H

    2010-02-01

    The human liver bank has provided an invaluable model system for the study of interindividual variability in expression and activity of the major hepatic UGTs, including UGT1A1, 1A4, 1A6, 1A9, 2B7, and 2B15. Based on studies using UGT-isoform-selective probes, the rank order of activity variability is UGT 1A1>1A6>2B15>1A4 = 1A9>2B7, with coefficient of variation values ranging from 92 to 45%. Liver donor age, sex, enzyme inducers, and genetic polymorphism are factors that have been implicated as sources of this variability in UGT activity. The expression of UGTs prior to, and immediately following, birth is quite limited, explaining the susceptibility of neonates to certain drug toxicities. Old age appears to have minimal effect on UGT function. Sex differences in UGT activity are relatively small and are confined to several UGTs, including UGT2B15, which shows higher activity in males, compared with females. Enzyme inducers, including coadministered drugs, smoking, and alcohol, may increase hepatic UGT levels. Human liver bank phenotype-genotype studies, using UGT-isoform-selective probes have identified common genetic polymorphisms that are predictive of glucuronidation activity in vitro and that were subsequently verified as predictors of probe-drug clearance by glucuronidation in vivo.

  1. Time-Dependent Metabolism of Luteolin by Human UDP-Glucuronosyltransferases and Its Intestinal First-Pass Glucuronidation in Mice.

    PubMed

    Wu, Lili; Liu, Junjin; Han, Weichao; Zhou, Xuefeng; Yu, Xiaoming; Wei, Qiang; Liu, Shuwen; Tang, Lan

    2015-10-01

    Luteolin is a well-known flavonoid with various pharmacological properties but has low bioavailability due to glucuronidation. This study investigated the time-course of luteolin glucuronidation by 12 human UDP-glucuronosyltransferases (UGTs) and its intestinal first-pass metabolism in mice. Six metabolites, including two novel abundant diglucuronides [3',7-O-diglucuronide (diG) and 4',7-diG] and four known ones, were identified. UGT1A6 and UGT1A9 generated almost only monoglucuronides (G's). The production of 3',7-diG followed a sequential time-dependent process along with decrease of 3'-G mainly by UGT1A1, indicating that 3',7-diG was produced from 3'-G. Metabolism in mice intestine differed from that in humans. Probenecid, a nonspecific UGT inhibitor, did not affect absorption but significantly inhibited production of 7-, 4'-, and 3'-G, and enhanced the formation of another novel metabolite, 5-G, in mice. In conclusion, diglucuronide formation is time-dependent and isoform-specific. UGT1A1 preferentially generates diG, whereas UGT1A6 and UGT1A9 share a preference for G production.

  2. Infrared laser absorption spectroscopy of the ν7 band of jet-cooled iron pentacarbonyl

    NASA Astrophysics Data System (ADS)

    Loroño, M.; Cruse, H. A.; Davies, P. B.

    2000-02-01

    The ν7 parallel band of Fe(CO) 5 has been measured in the 620 cm -1 region using high-resolution diode laser absorption spectroscopy in a free jet expansion. A comparison with simulated band profiles indicated a rotational temperature of between 2 and 3 K in the jet. At these temperatures the K-structure of the Q-branch is partly resolved. The following molecular parameters were obtained: ν0=619.95747(12) cm -1, B7=0.026743(2) cm -1, A7=0.030721(1) cm -1. Approximate values of the quartic centrifugal distortion constants were also obtained from fitting the spectra.

  3. Rotavirus diarrhea severity is related to the VP4 type in Mexican children.

    PubMed

    Mota-Hernández, Felipe; Calva, Juan José; Gutiérrez-Camacho, Claudia; Villa-Contreras, Sofía; Arias, Carlos F; Padilla-Noriega, Luis; Guiscafré-Gallardo, Héctor; de Lourdes Guerrero, María; López, Susana; Muñoz, Onofre; Contreras, Juan F; Cedillo, Roberto; Herrera, Ismael; Puerto, Fernando I

    2003-07-01

    This report is of a community-based case control study to assess whether the severity of acute diarrhea by rotavirus (RV) in young children is associated with a particular VP7 (G) or VP4 (P) RV serotype. Five hundred twenty children younger than 2 years of age with diarrhea lasting less than 3 days were age and gender matched with 520 children with no diarrhea. The G and P serotypes were determined with specific monoclonal antibodies, and the VP4 serotype specificity in a subgroup was confirmed by genotyping. Infection with a G3 serotype led to a higher risk of diarrhea than infection with a G1 serotype. Infection with a G3-nontypeable-P serotype was associated with more severe gastroenteritis than infection with a G3 (or G1) P1A[8] serotype. A child with diarrhea-associated dehydration was almost five times more likely to be infected with a G3-nontypeable-P serotype than a child without dehydration (P < 0.001). Moreover, the two predominant monotypes within serotype P1A[8] had significantly different clinical manifestations. In this study, the severity of RV-associated diarrhea was related to different P serotypes rather than to G serotypes. The relationship between serotype and clinical outcomes seems to be complex and to vary among different geographic areas.

  4. Rotavirus Diarrhea Severity Is Related to the VP4 Type in Mexican Children

    PubMed Central

    Mota-Hernández, Felipe; José Calva, Juan; Gutiérrez-Camacho, Claudia; Villa-Contreras, Sofía; Arias, Carlos F.; Padilla-Noriega, Luis; Guiscafré-Gallardo, Héctor; Guerrero, María de Lourdes; López, Susana; Muñoz, Onofre; Contreras, Juan F.; Cedillo, Roberto; Herrera, Ismael; Puerto, Fernando I.

    2003-01-01

    This report is of a community-based case control study to assess whether the severity of acute diarrhea by rotavirus (RV) in young children is associated with a particular VP7 (G) or VP4 (P) RV serotype. Five hundred twenty children younger than 2 years of age with diarrhea lasting less than 3 days were age and gender matched with 520 children with no diarrhea. The G and P serotypes were determined with specific monoclonal antibodies, and the VP4 serotype specificity in a subgroup was confirmed by genotyping. Infection with a G3 serotype led to a higher risk of diarrhea than infection with a G1 serotype. Infection with a G3-nontypeable-P serotype was associated with more severe gastroenteritis than infection with a G3 (or G1) P1A[8] serotype. A child with diarrhea-associated dehydration was almost five times more likely to be infected with a G3-nontypeable-P serotype than a child without dehydration (P < 0.001). Moreover, the two predominant monotypes within serotype P1A[8] had significantly different clinical manifestations. In this study, the severity of RV-associated diarrhea was related to different P serotypes rather than to G serotypes. The relationship between serotype and clinical outcomes seems to be complex and to vary among different geographic areas. PMID:12843057

  5. Antifungal activity of Meyerozyma guilliermondii: identification of active compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread.

    PubMed

    Coda, Rossana; Rizzello, Carlo G; Di Cagno, Raffaella; Trani, Antonio; Cardinali, Gianluigi; Gobbetti, Marco

    2013-04-01

    Preliminarily, 146 strains of yeasts were screened for the antifungal activity toward the indicator Penicillium roqueforti DPPMAF1. The strain Meyerozyma guilliermondii LCF1353 was selected and used for dough fermentation. The water/salt soluble extract of the dough was analyzed by HPLC and GC/MS-SPME. The synthesis of the extracellular cell wall-degrading enzyme β-1,3-glucanase and ethyl-acetate was shown. The effect on conidia germination mainly suggested a fungistatic activity. M. guilliermondii LCF1353 was used as starter for dough fermentation in combination with Wickeramomyces anomalus 1695 and Lactobacillus plantarum 1A7, which were previously selected for antifungal activity. The growth of the strains was monitored by plate count and molecular techniques, and competitive or antagonistic interactions among them were excluded. Bread started with the combination of M. guilliermondii LCF1353, W. anomalus LCF1695 and L. plantarum 1A7 showed a more prolonged shelf life compared to the other breads. Fungal growth was delayed at least until 14 days of storage, under conditions of high artificial inoculum. The bread manufactured with the above combination showed good chemical and textural characteristics and, as shown by sensory analysis, it was appreciated for elasticity, color and taste.

  6. Design of a collective scattering system for electron gyroscale turbulence study in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, Woochang; Park, Hyeon; Lee, Dongjae; Leem, Juneeok; Nam, Yongun

    2015-11-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for electron scale turbulence study in KSTAR, which is planned to be installed in 2016, are investigated. A few critical issues are discussed in depth such as effect of the Faraday rotation of the electric field polarization of probing and scattered, the probing wave frequency which is related to the optics for measurement of electron gyro scale turbulence, the wave polarization to minimize absorption of the probing power by electron cyclotron resonant layers, and the probing power. A proper and feasible optics with 300 GHz probing wave, which is based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wave numbers up to 21 cm-1. The upper limit corresponds to the normalized wave number k⊥ρe of 0.2 in KSTAR plasmas. To detect scattered wave power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed. Work supported by NRF Korea under grant numbers NRF-2015M1A7A1A02002627 and NRF-2014M1A7A1A03029865.

  7. Metabolic Activation of Rhein: Insights into the Potential Toxicity Induced by Rhein-Containing Herbs.

    PubMed

    Yuan, Yuan; Zheng, Jiyue; Wang, Meiyu; Li, Yuan; Ruan, Jianqing; Zhang, Hongjian

    2016-07-20

    Rhein is a major component of the many medicinal herbs such as rhubarb. Despite wide use, intoxication cases associated with rhein-containing herbs are often reported. The present work aimed to investigate if rhein was subject to metabolic activation leading to toxicity. Upon incubations with different species of liver microsomes, three monoglucuronides were identified, corresponding to two hydroxyl glucuronides and one acyl glucuronide via the carboxyl group, respectively. Further study revealed that rhein acyl glucuronide was chemically reactive, and showed cytotoxicity toward hepatocarcinoma cells. In addition, significant species differences in glucuronidation of rhein were observed between laboratory animals and humans. Reaction phenotyping experiments demonstrated that rhein acyl glucuronide was catalyzed predominantly by uridine 5'-diphospho-glucuronosyltransferase 1A1, 1A9, and 2B7. Taken together, the present study confirmed that rhein could be metabolically activated via the formation of acyl glucuronide, especially in human. PMID:27362917

  8. Corrective Action Plan for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada

    SciTech Connect

    Bechtel Nevada

    1998-09-30

    This corrective action plan proposes the closure method for the area 9 unexploded Ordnance landfill, corrective action unit 453 located at the Tonopah Test Range. The area 9 UXO landfill consists of corrective action site no. 09-55-001-0952 and is comprised of three individual landfill cells designated as A9-1, A9-2, and A9-3. The three landfill cells received wastes from daily operations at area 9 and from range cleanups which were performed after weapons testing. Cell locations and contents were not well documented due to the unregulated disposal practices commonly associated with early landfill operations. However, site process knowledge indicates that the landfill cells were used for solid waste disposal, including disposal of UXO.

  9. Diagnostics development for the PEP-II B factory

    NASA Astrophysics Data System (ADS)

    Fisher, A. S.; Alzofon, D.; Arnett, D.; Bong, E.; Daly, E.; Gioumousis, A.; Kulikov, A.; Kurita, N.; Langton, J.; Reuter, E.; Seeman, J. T.; Wienands, H. U.; Wright, D.; Chin, M.; Hinkson, J.; Hunt, D.; Kennedy, K.

    1997-01-01

    PEP-II is a 2.2-km collider with a 2.1-A, 3.1-GeV positron ring 1 m above a 1-A, 9-GeV electron ring; both are designed for a maximum of 3 A. Several diagnostics are now in preparation for commissioning the rings. The beam size and pulse duration are measured using visible synchrotron radiation from arc dipoles. Grazing-incidence, water-cooled mirrors that must withstand up to 200 W/cm extract the light. The sum signal from a set of four pickup buttons, normalized to a DC current transformer's measurement of the ring current, is processed to measure the charge in each bunch. This enables us to fill 1658 of the 3492 buckets per ring to a charge that must be equal within ±2%. For diagnostics and machine protection, 100 photomultiplier-based Cherenkov detectors measure the beam-loss distribution.

  10. Multicenter phase II clinical trial of nilotinib for patients with imatinib-resistant or -intolerant chronic myeloid leukemia from the East Japan CML study group evaluation of molecular response and the efficacy and safety of nilotinib

    PubMed Central

    2014-01-01

    Background Nilotinib is a second-generation tyrosine kinase inhibitor that exhibits significant efficacy as first- or second-line treatment in patients with chronic myeloid leukemia (CML). We conducted a multicenter Phase II Clinical Trial to evaluate the safety and efficacy of nilotinib among Japanese patients with imatinib-resistant or -intolerant CML-chronic phase (CP) or accelerated phase (AP). Results We analyzed 49 patients (33 imatinib-resistant and 16 imatinib-intolerant) treated with nilotinib 400 mg twice daily. The major molecular response (MMR) rate was 47.8% at 12 months among 35 patients who did not demonstrate an MMR at study entry. Somatic BCR-ABL1 mutations (Y253H, I418V, and exon 8/9 35-bp insertion [35INS]) were detected in 3 patients at 12 months or upon discontinuation of nilotinib. Although 75.5% of patients were still being treated at 12 months, nilotinib treatment was discontinued because of progressing disease in 1 patient, insufficient effect in 2, and adverse events in 9. There was no statistically significant correlation between MMR and trough concentrations of nilotinib. Similarly, no correlation was observed between trough concentrations and adverse events, except for pruritus and hypokalemia. Hyperbilirubinemia was frequently observed (all grades, 51.0%; grades 2–4, 29%; grades 3–4, 4.1%). Hyperbilirubinemia higher than grade 2 was significantly associated with the uridine diphosphate glucuronosyltransferase (UGT)1A9 I399C/C genotype (P = 0.0086; Odds Ratio, 21.2; 95% Confidence Interval 2.2–208.0). Conclusions Nilotinib was efficacious and well tolerated by patients with imatinib-resistant or -intolerant CML-CP/AP. Hyperbilirubinemia may be predicted before nilotinib treatment, and may be controlled by reducing the daily dose of nilotinib in patients with UGT1A9 polymorphisms. Trial registration clinicaltrials.gov: UMIN000002201 PMID:24650752

  11. Evaluation of the in vitro/in vivo potential of five berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) commonly used as herbal supplements to inhibit uridine diphospho-glucuronosyltransferase.

    PubMed

    Choi, Eu Jin; Park, Jung Bae; Yoon, Kee Dong; Bae, Soo Kyung

    2014-10-01

    In this study, we evaluated inhibitory potentials of popularly-consumed berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) as herbal supplements on UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 in vitro. We also investigated the potential herb-drug interaction via UGT1A1 inhibition by blueberry in vivo. We demonstrated that these berries had only weak inhibitory effects on the five UGTs. Bilberry and elderberry had no apparent inhibitions. Blueberry weakly inhibited UGT1A1 with an IC50 value of 62.4±4.40 μg/mL and a Ki value of 53.1 μg/mL. Blueberry also weakly inhibited UGT2B7 with an IC50 value of 147±11.1 μg/mL. In addition, cranberry weakly inhibited UGT1A9 activity (IC50=458±49.7 μg/mL) and raspberry ketones weakly inhibited UGT2B7 activity (IC50=248±28.2 μg/mL). Among tested berries, blueberry showed the lowest IC50 value in the inhibition of UGT1A1 in vitro. However, the co-administration of blueberry had no effect on the pharmacokinetics of irinotecan and its active metabolite, SN-38, which was mainly eliminated via UGT1A1, in vivo. Our data suggests that these five berries are unlikely to cause clinically significant herb-drug interactions mediated via inhibition of UGT enzymes involved in drug metabolism. These findings should enable an understanding of herb-drug interactions for the safe use of popularly-consumed berries.

  12. Diabetes Mellitus Reduces Activity of Human UDP-Glucuronosyltransferase 2B7 in Liver and Kidney Leading to Decreased Formation of Mycophenolic Acid Acyl-Glucuronide Metabolite

    PubMed Central

    Dostalek, Miroslav; Court, Michael H.; Hazarika, Suwagmani

    2011-01-01

    Mycophenolic acid (MPA) is an immunosuppressive agent commonly used after organ transplantation. Altered concentrations of MPA metabolites have been reported in diabetic kidney transplant recipients, although the reason for this difference is unknown. We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors. Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized. We have found that both diabetic and nondiabetic human liver microsomes and kidney microsomes formed MPAG with similar efficiency; however, AcMPAG formation was significantly lower in diabetic samples. This finding is supported by markedly lower glucuronidation of the UGT2B7 probe zidovudine, UGT2B7 protein, and UGT2B7 mRNA in diabetic tissues. UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation. Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation. These findings suggest that diabetes mellitus is associated with significantly reduced UGT2B7 mRNA expression, protein level, and enzymatic activity of human liver and kidney, explaining in part the relatively low circulating concentrations of AcMPAG in diabetic patients. PMID:21123165

  13. Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in the human hepatoma cell line hep G2.

    PubMed

    Walle, T; Otake, Y; Galijatovic, A; Ritter, J K; Walle, U K

    2000-09-01

    The UDP-glucuronosyltransferases (UGTs) have long been known to be inducible by various chemicals, including drugs, although the extent of induction in general has been modest. In the present study, we determined the ability of the dietary flavonoid chrysin to induce UGT activity, protein and mRNA. When pretreating human hepatoma Hep G2 cells with 25 microM chrysin, the glucuronidation of chrysin itself increased 4.2-fold when measured in the intact cell and 14-fold in the cell homogenate, i.e., autoinduction. Microsomes from chrysin-treated cells probed with specific antibodies in Western analyses showed marked induction of the UGT1A family of proteins. Isoform-specific induction of the important hepatic UGT1A1 protein was observed but not of UGT1A6 or UGT2B7. The strong induction of UGT1A1 was confirmed by Northern analyses of total RNA as well as mRNA, using a specific probe. UGT1A1 message as well as protein was detectable also in untreated Hep G2 cells. In catalytic activity assays with recombinant UGT1A1, 1A4, 1A6 and 1A9, chrysin was found to be a high affinity substrate for UGT1A1 (K(m) 0.35 microM). Catalytic activity was also found for UGT1A9 and 1A6 but not for 1A4. Further studies demonstrated a 20-fold induction of the glucuronidation of bilirubin by the chrysin-treated cells and a 7. 9-fold induction of the glucuronidation of the oral contraceptive drug ethinylestradiol, two of the best known and specific UGT1A1 substrates, demonstrating the potential importance of this induction. In view of these findings, it will be important to extend these studies to other dietary flavonoids. PMID:10950852

  14. In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation.

    PubMed

    Zhang, Donglu; Chando, Theodore J; Everett, Donald W; Patten, Christopher J; Dehal, Shangara S; Humphreys, W Griffith

    2005-11-01

    Several human immunodeficiency virus (HIV) protease inhibitors, including atazanavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir, were tested for their potential to inhibit uridine 5'-diphospho-glucuronosyltransferase (UGT) activity. Experiments were performed with human cDNA-expressed enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) as well as human liver microsomes. All of the protease inhibitors tested were inhibitors of UGT1A1, UGT1A3, and UGT1A4 with IC(50) values that ranged from 2 to 87 microM. The IC50 values found for all compounds for UGT1A6, 1A9, and 2B7 were >100 microM. The inhibition (IC50) of UGT1A1 was similar when tested against the human cDNA-expressed enzyme or human liver microsomes for atazanavir, indinavir, and saquinavir (2.4, 87, and 7.3 microM versus 2.5, 68, and 5.0 microM, respectively). By analysis of the double-reciprocal plots of bilirubin glucuronidation activities at different bilirubin concentrations in the presence of fixed concentrations of inhibitors, the UGT1A1 inhibition by atazanavir and indinavir was demonstrated to follow a linear mixed-type inhibition mechanism (Ki = 1.9 and 47.9 microM, respectively). These results suggest that a direct inhibition of UGT1A1-mediated bilirubin glucuronidation may provide a mechanism for the reversible hyperbilirubinemia associated with administration of atazanavir as well as indinavir. In vitro-in vivo scaling with [I]/Ki predicts that atazanavir and indinavir are more likely to induce hyperbilirubinemia than other HIV protease inhibitors studied when a free Cmax drug concentration was used. Our current study provides a unique example of in vitro-in vivo correlation for an endogenous UGT-mediated metabolic pathway. PMID:16118329

  15. In vitro glucuronidation of five rhubarb anthraquinones by intestinal and liver microsomes from humans and rats.

    PubMed

    Wu, Wenjin; Hu, Nan; Zhang, Qingwen; Li, Yaping; Li, Peng; Yan, Ru; Wang, Yitao

    2014-08-01

    Anthraquinones naturally distribute in many plants including rhubarb and have widespread applications throughout industry and medicine. Recent studies provided new insights in potential applications of these traditional laxative constituents. Glucuronidation was the main metabolic pathway of rhubarb anthraquinones in vivo. This study examined the activity and regioselectivity of glucuronidation of rhubarb anthraquinones (aloe-emodin, emodin, chrysophanol, physcion, rhein) in liver and intestinal microsomes from rats and humans, by comparing with the core structure danthron. All anthraquinones formed mono-glucuronides and, except for rhein, the conjugation sites of the main metabolites were unambiguously identified. Two minor glucuronides of emodin were first reported together with the dominant emodin-3-O-β-D-glucuronide. The substitution on the anthraquinone ring was crucial to the activity and regioselectivity of glucuronidation. In general, the activity was decreased greatly with a β-COOH (rhein), while enhanced dramatically with a β-OH (emodin). Glucuronidation showed an absolute preference towards β-OH, followed by α-OH and β-alcoholic OH. The glucuronidation activity and regioselectivity also varied slightly with organs and species. All glucuronides of aloe-emodin, emodin, chrysophanol and physcion were formed by multiple human UGT isoforms with 1A9 being the most prominent in most cases. The UGT2B subfamily (2B7 and 2B15) only showed high activity towards a β-OH. In conclusion, the substitution at the anthraquinone ring was crucial to the rate and preference of glucuronidation. The high glucuronidation activity of UGT1A9 towards anthraquinones highlighted potential drug interactions.

  16. Roles of UGT, P450, and Gut Microbiota in the Metabolism of Epacadostat in Humans.

    PubMed

    Boer, Jason; Young-Sciame, Ruth; Lee, Fiona; Bowman, Kevin J; Yang, Xiaoqing; Shi, Jack G; Nedza, Frank M; Frietze, William; Galya, Laurine; Combs, Andrew P; Yeleswaram, Swamy; Diamond, Sharon

    2016-10-01

    Epacadostat (EPA, INCB024360) is a first-in-class, orally active, investigational drug targeting the enzyme indoleamine 2,3-dioxygenase 1 (IDO1). In Phase I studies, EPA has demonstrated promising clinical activity when used in combination with checkpoint modulators. When the metabolism of EPA was investigated in humans, three major, IDO1-inactive, circulating plasma metabolites were detected and characterized: M9, a direct O-glucuronide of EPA; M11, an amidine; and M12, N-dealkylated M11. Glucuronidation of EPA to form M9 is the dominant metabolic pathway, and in vitro, this metabolite is formed by UGT1A9. However, negligible quantities of M11 and M12 were detected when EPA was incubated with a panel of human microsomes from multiple tissues, hepatocytes, recombinant human cytochrome P450s (P450s), and non-P450 enzymatic systems. Given the reductive nature of M11 formation and the inability to define its source, the role of gut microbiota was investigated. Analysis of plasma from mice dosed with EPA following pretreatment with either antibiotic (ciprofloxacin) to inhibit gut bacteria or 1-aminobenzotriazole (ABT) to systemically inhibit P450s demonstrated that gut microbiota is responsible for the formation of M11. Incubations of EPA in human feces confirmed the role of gut bacteria in the formation of M11. Further, incubations of M11 with recombinant P450s showed that M12 is formed via N-dealkylation of M11 by CYP3A4, CYP2C19, and CYP1A2. Thus, in humans three major plasma metabolites of EPA were characterized: two primary metabolites, M9 and M11, formed directly from EPA via UGT1A9 and gut microbiota, respectively, and M12 formed as a secondary metabolite via P450s from M11.

  17. Platelet activating factor antagonist design. 2. X-ray structure of dimethyl 2,3,4,5-tetrahydro-5 beta-(3,4-methylenedioxyphenyl)-2-oxo-3 beta-(3,4,5-trimethoxybenzoyl)-3 alpha,4 alpha-furandicarboxylate.

    PubMed

    Peterson, J R; Do, H D; Rogers, R D

    1989-07-15

    C25H24O12, Mr = 516.46, triclinic, P-1, a = 8.780 (3), b = 11.298 (4), c = 13.271 (6) A, alpha = 71.77 (4), beta = 70.31 (3), gamma = 72.66 (3) degrees, V = 1189 A3, Z = 2, Dx = 1.44 g cm-3, lambda (Mo K alpha) = 0.71073 A, mu = 0.74 cm-1, F(000) = 540, T = 293 K, final R = 0.046 for 2495 observed [Fo greater than or equal to 5 sigma (Fo)] reflections. The observed structure reveals a trans disposition for the methoxycarbonyl and aryl substituents at positions 4 and 5 of the heterocycle and a cis-3,4-bis(methoxycarbonyl) relationship. There is no crystallographically imposed symmetry. Several intermolecular van der Waals interactions occur in the cell lattice of this compound. PMID:2610989

  18. Platelet activating factor antagonist design. 2. X-ray structure of dimethyl 2,3,4,5-tetrahydro-5 beta-(3,4-methylenedioxyphenyl)-2-oxo-3 beta-(3,4,5-trimethoxybenzoyl)-3 alpha,4 alpha-furandicarboxylate.

    PubMed

    Peterson, J R; Do, H D; Rogers, R D

    1989-07-15

    C25H24O12, Mr = 516.46, triclinic, P-1, a = 8.780 (3), b = 11.298 (4), c = 13.271 (6) A, alpha = 71.77 (4), beta = 70.31 (3), gamma = 72.66 (3) degrees, V = 1189 A3, Z = 2, Dx = 1.44 g cm-3, lambda (Mo K alpha) = 0.71073 A, mu = 0.74 cm-1, F(000) = 540, T = 293 K, final R = 0.046 for 2495 observed [Fo greater than or equal to 5 sigma (Fo)] reflections. The observed structure reveals a trans disposition for the methoxycarbonyl and aryl substituents at positions 4 and 5 of the heterocycle and a cis-3,4-bis(methoxycarbonyl) relationship. There is no crystallographically imposed symmetry. Several intermolecular van der Waals interactions occur in the cell lattice of this compound.

  19. Effects of co-treatment with sulforaphane and autophagy modulators on uridine 5′-diphospho-glucuronosyltransferase 1A isoforms and cytochrome P450 3A4 expression in Caco-2 human colon cancer cells

    PubMed Central

    WANG, MIN; ZHU, JING-YU; CHEN, SHUO; QING, YING; WU, DONG; LIN, YING-MIN; LUO, JI-ZHUANG; HAN, WEI; LI, YAN-QING

    2014-01-01

    Sulforaphane (SFN), which is highly enriched in cruciferous vegetables, has been investigated for its cancer chemopreventive properties and ability to induce autophagy. Uridine 5′-diphospho (UDP)-glucuronosyltransferase (UGT)1A induction is one of the mechanisms that is responsible for the cancer chemopreventive activity of SFN. The current study demonstrates that rapamycin may enhance the chemopreventive effects of SFN on Caco-2 cells; this may be partially attributed to nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2)- and human pregnane X receptor (hPXR)-mediated UGT1A1, UGT1A8 and UGT1A10 induction. These results indicate that targeting autophagy modulation may be a promising strategy for increasing the chemopreventive effects of SFN in cases of colon cancer. PMID:25364403

  20. Whole-genome analyses reveals the animal origin of a rotavirus G4P[6] detected in a child with severe diarrhea.

    PubMed

    Martinez, Magaly; Galeano, Maria E; Akopov, Asmik; Palacios, Ruth; Russomando, Graciela; Kirkness, Ewen F; Parra, Gabriel I

    2014-10-01

    Group A rotaviruses are a major cause of severe gastroenteritis in children worldwide. Currently, two rotavirus vaccines are being used in vaccination programs, and one of the factors involved in lower vaccine efficacy is the mismatch among the circulating strains and the vaccine strains. Thus, the emergence of animal strains in the human population could affect the efficacy of vaccination programs. Here we report the presence of a G4P[6] strain in a Paraguayan child presenting acute gastroenteritis in 2009. Genomic analyses revealed that the strain presents a porcine-like genome (G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1), suggesting a direct animal-to-human transmission. Continuous surveillance of rotaviruses in humans and animals will help us to better understand rotavirus epidemiology and evolution.

  1. Effects of co-treatment with sulforaphane and autophagy modulators on uridine 5'-diphospho-glucuronosyltransferase 1A isoforms and cytochrome P450 3A4 expression in Caco-2 human colon cancer cells.

    PubMed

    Wang, Min; Zhu, Jing-Yu; Chen, Shuo; Qing, Ying; Wu, Dong; Lin, Ying-Min; Luo, Ji-Zhuang; Han, Wei; Li, Yan-Qing

    2014-12-01

    Sulforaphane (SFN), which is highly enriched in cruciferous vegetables, has been investigated for its cancer chemopreventive properties and ability to induce autophagy. Uridine 5'-diphospho (UDP)-glucuronosyltransferase (UGT)1A induction is one of the mechanisms that is responsible for the cancer chemopreventive activity of SFN. The current study demonstrates that rapamycin may enhance the chemopreventive effects of SFN on Caco-2 cells; this may be partially attributed to nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2)- and human pregnane X receptor (hPXR)-mediated UGT1A1, UGT1A8 and UGT1A10 induction. These results indicate that targeting autophagy modulation may be a promising strategy for increasing the chemopreventive effects of SFN in cases of colon cancer. PMID:25364403

  2. Whole-genome analyses reveals the animal origin of a rotavirus G4P[6] detected in a child with severe diarrhea.

    PubMed

    Martinez, Magaly; Galeano, Maria E; Akopov, Asmik; Palacios, Ruth; Russomando, Graciela; Kirkness, Ewen F; Parra, Gabriel I

    2014-10-01

    Group A rotaviruses are a major cause of severe gastroenteritis in children worldwide. Currently, two rotavirus vaccines are being used in vaccination programs, and one of the factors involved in lower vaccine efficacy is the mismatch among the circulating strains and the vaccine strains. Thus, the emergence of animal strains in the human population could affect the efficacy of vaccination programs. Here we report the presence of a G4P[6] strain in a Paraguayan child presenting acute gastroenteritis in 2009. Genomic analyses revealed that the strain presents a porcine-like genome (G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1), suggesting a direct animal-to-human transmission. Continuous surveillance of rotaviruses in humans and animals will help us to better understand rotavirus epidemiology and evolution. PMID:25075468

  3. Preclinical discovery of candidate genes to guide pharmacogenetics during phase I development: the example of the novel anticancer agent ABT-751

    PubMed Central

    Innocenti, Federico; Ramírez, Jacqueline; Obel, Jennifer; Xiong, Julia; Mirkov, Snezana; Chiu, Yi-Lin; Katz, David A.; Carr, Robert A.; Zhang, Wei; Das, Soma; Adjei, Araba; Moyer, Ann M.; Chen, Pei Xian; Krivoshik, Andrew; Medina, Diane; Gordon, Gary B.; Ratain, Mark J.; Sahelijo, Leonardo; Weinshilboum, Richard M.; Fleming, Gini F.; Bhathena, Anahita

    2013-01-01

    Objective ABT-751, a novel orally available antitubulin agent, is mainly eliminated as inactive glucuronide (ABT-751G) and sulfate (ABT-751S) conjugates. We performed a pharmacogenetic investigation of ABT-751 pharmacokinetics using in-vitro data to guide the selection of genes for genotyping in a phase I trial of ABT-751. Methods UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes were screened for ABT-751 metabolite formation in vitro. Forty-seven cancer patients treated with ABT-751 were genotyped for 21 variants in these genes. Results UGT1A1, UGT1A4, UGT1A8, UGT2B7, and SULT1A1 were found to be involved in the formation of inactive ABT-751 glucuronide (ABT-751G) and sulfate (ABT-751S). SULT1A1 copy number (> 2) was associated with an average 34% increase in ABT-751 clearance (P= 0.044), an 18% reduction in ABT-751 AUC (P = 0.045), and a 50% increase in sulfation metabolic ratios (P=0.025). UGT1A8 rs6431558 was associated with a 28% increase in glucuronidation metabolic ratios (P =0.022), and UGT1A4*2 was associated with a 65% decrease in ABT-751 Ctrough (P = 0.009). Conclusion These results might represent the first example of a clinical pharmacokinetic effect of the SULT1A1 copy number variant on the clearance of a SULT1A1 substrate. A-priori selection of candidate genes guided by in-vitro metabolic screening enhanced our ability to identify genetic determinants of interpatient pharmacokinetic variability. PMID:23670235

  4. Targeted screen for human UDP-glucuronosyltransferases inhibitors and the evaluation of potential drug-drug interactions with zafirlukast.

    PubMed

    Oda, Shingo; Fujiwara, Ryoichi; Kutsuno, Yuki; Fukami, Tatsuki; Itoh, Tomoo; Yokoi, Tsuyoshi; Nakajima, Miki

    2015-06-01

    Inhibition of drug metabolizing enzymes is a major mechanism in drug-drug interactions (DDIs). A number of cases of DDIs via inhibition of UDP-glucuronosyltranseferases (UGTs) have been reported, although the changes in pharmacokinetics are relatively small in comparison with drugs that are metabolized by cytochrome P450s. Most of the past studies have investigated hepatic UGTs, although recent studies have revealed a significant contribution of UGTs in the small intestine to drug clearance. To evaluate potential DDIs caused by inhibition of intestinal UGTs, we assessed inhibitory effects of 578 compounds, including drugs, xenobiotics, and endobiotics, on human UGT1A8 and UGT1A10, which are major contributors to intestinal glucuronidation. We identified 29 inhibitors by monitoring raloxifene glucuronidation with recombinant UGTs. All of the inhibitors potently inhibited UGT1A1 activity, as well. We found that zafirlukast is a potent general inhibitor of UGT1As and a moderate inhibitor of UGT2Bs because it monitors 4-methylumbelliferone glucuronidation by recombinant UGTs. However, zafirlukast did not potently inhibit diclofenac glucuronidation, suggesting that the inhibitory effects might be substrate specific. Inhibitory effects of zafirlukast on some UGT substrates were further investigated in human liver and human small intestine microsomes in order to evaluate potential DDIs. The R values (the ratios of intrinsic clearance with and without an inhibitor) revealed that zafirlukast has potential to cause clinical DDIs in the small intestine. Although we could not identify specific UGT1A8 and UGT1A10 inhibitors, zafirlukast was identified as a general inhibitor for UGTs in vitro. The present study suggests that the inhibition of UGT in the small intestine would be an underlying mechanism for DDIs. PMID:25834030

  5. Milk Thistle Constituents Inhibit Raloxifene Intestinal Glucuronidation: A Potential Clinically Relevant Natural Product-Drug Interaction.

    PubMed

    Gufford, Brandon T; Chen, Gang; Vergara, Ana G; Lazarus, Philip; Oberlies, Nicholas H; Paine, Mary F

    2015-09-01

    Women at high risk of developing breast cancer are prescribed selective estrogen response modulators, including raloxifene, as chemoprevention. Patients often seek complementary and alternative treatment modalities, including herbal products, to supplement prescribed medications. Milk thistle preparations, including silibinin and silymarin, are top-selling herbal products that may be consumed by women taking raloxifene, which undergoes extensive first-pass glucuronidation in the intestine. Key constituents in milk thistle, flavonolignans, were previously shown to be potent inhibitors of intestinal UDP-glucuronosyl transferases (UGTs), with IC50s ≤ 10 μM. Taken together, milk thistle preparations may perpetrate unwanted interactions with raloxifene. The objective of this work was to evaluate the inhibitory effects of individual milk thistle constituents on the intestinal glucuronidation of raloxifene using human intestinal microsomes and human embryonic kidney cell lysates overexpressing UGT1A1, UGT1A8, and UGT1A10, isoforms highly expressed in the intestine that are critical to raloxifene clearance. The flavonolignans silybin A and silybin B were potent inhibitors of both raloxifene 4'- and 6-glucuronidation in all enzyme systems. The Kis (human intestinal microsomes, 27-66 µM; UGT1A1, 3.2-8.3 µM; UGT1A8, 19-73 µM; and UGT1A10, 65-120 µM) encompassed reported intestinal tissue concentrations (20-310 µM), prompting prediction of clinical interaction risk using a mechanistic static model. Silibinin and silymarin were predicted to increase raloxifene systemic exposure by 4- to 5-fold, indicating high interaction risk that merits further evaluation. This systematic investigation of the potential interaction between a widely used herbal product and chemopreventive agent underscores the importance of understanding natural product-drug interactions in the context of cancer prevention.

  6. Milk Thistle Constituents Inhibit Raloxifene Intestinal Glucuronidation: A Potential Clinically Relevant Natural Product–Drug Interaction

    PubMed Central

    Gufford, Brandon T.; Chen, Gang; Vergara, Ana G.; Lazarus, Philip; Oberlies, Nicholas H.

    2015-01-01

    Women at high risk of developing breast cancer are prescribed selective estrogen response modulators, including raloxifene, as chemoprevention. Patients often seek complementary and alternative treatment modalities, including herbal products, to supplement prescribed medications. Milk thistle preparations, including silibinin and silymarin, are top-selling herbal products that may be consumed by women taking raloxifene, which undergoes extensive first-pass glucuronidation in the intestine. Key constituents in milk thistle, flavonolignans, were previously shown to be potent inhibitors of intestinal UDP-glucuronosyl transferases (UGTs), with IC50s ≤ 10 μM. Taken together, milk thistle preparations may perpetrate unwanted interactions with raloxifene. The objective of this work was to evaluate the inhibitory effects of individual milk thistle constituents on the intestinal glucuronidation of raloxifene using human intestinal microsomes and human embryonic kidney cell lysates overexpressing UGT1A1, UGT1A8, and UGT1A10, isoforms highly expressed in the intestine that are critical to raloxifene clearance. The flavonolignans silybin A and silybin B were potent inhibitors of both raloxifene 4′- and 6-glucuronidation in all enzyme systems. The Kis (human intestinal microsomes, 27–66 µM; UGT1A1, 3.2–8.3 µM; UGT1A8, 19–73 µM; and UGT1A10, 65–120 µM) encompassed reported intestinal tissue concentrations (20–310 µM), prompting prediction of clinical interaction risk using a mechanistic static model. Silibinin and silymarin were predicted to increase raloxifene systemic exposure by 4- to 5-fold, indicating high interaction risk that merits further evaluation. This systematic investigation of the potential interaction between a widely used herbal product and chemopreventive agent underscores the importance of understanding natural product–drug interactions in the context of cancer prevention. PMID:26070840

  7. Automated three-dimensional reconstruction of keyhole limpet hemocyanin type 1.

    PubMed

    Mouche, Fabrice; Zhu, Yuanxin; Pulokas, James; Potter, Clinton S; Carragher, Bridget

    2003-12-01

    We have reconstructed a three-dimensional map of keyhole limpet hemocyanin isoform 1 (KLH1), using our automated data collection software, Leginon, integrated with particle selection algorithms, and the SPIDER reconstruction package. KLH1, a 7.9 MDa macromolecule, is an extracellular respiratory pigment composed of two asymmetric decamers, and presents an overall D(5) point-group symmetry. The reconstruction is in agreement with previous data published on molluscan hemocyanins. The reconstructed map (11.3A resolution, 3sigma criterion) was used to fit an available X-ray crystallography structure of Octopus dofleini Odg, solved at 2.3A [J. Mol. Biol. 278 (4) (1998) 855], with satisfactory results. The results validate the approach of automating the cryoEM process and demonstrate that the quality of the images acquired and the particles selected is comparable to those obtained using manual methods. Several problems remain to be solved however before these results can be generalized. PMID:14643198

  8. Synthesis and structure of new light-resistant bactericide bis(nitrilotrismethylenephosphonato)diaquatetrasilver monohydrate {Ag4[NH(CH2PO3H)3]2(H2O)2} · H2O

    NASA Astrophysics Data System (ADS)

    Somov, N. V.; Chausov, F. F.

    2016-01-01

    A new four-core silver complex {Ag4[NH(CH2PO3H)3]2(H2O)2} · H2O has been synthesized and investigated. Its crystallographic characteristics are sp. gr. Pbar 1, Z = 1, a = 7.5806(2) Å, b = 8.4946(2) Å, c = 10.1092(3) Å, α = 81.087(2)°, β = 88.356(2)°, γ = 82.132(2)°. The ligand in the form of zwitterion is hexdentate. The complex is chelating; each silver atom closes an eight-membered cycle Ag-O-P-C-N-C-P-O. Simultaneously, two ligand molecules form six bridge bonds with neighboring formula units. Silver atoms form a polycyclic cluster Ag4O6, the configuration of which is stabilized by coordination and hydrogen bonds.

  9. Molecular beacon-quantum dot-Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells.

    PubMed

    Yeh, Hsiao-Yun; Yates, Marylynn V; Mulchandani, Ashok; Chen, Wilfred

    2010-06-14

    Here we describe a new hybrid fluorescent nanoprobe composed of a nuclease-resistant molecular beacon (MB) backbone, CdSe-ZnS core-shell quantum dots (QDs) as donors, and gold nanoparticles (Au NPs) as quenchers, for the real-time visualization of virus replication in living cells. By using a Au NP-MB to QD ratio of 6 : 1, a 7.3-fold increase in fluorescent signal was achieved upon target binding. For living cell experiments, a hexahistidine-appended Tat peptide was self-assembled onto the QD surface to provide nearly 100% non-invasive delivery of the QD-MB-Au NP probes within 2 h. By directly visualizing the fluorescent complexes formed with the newly synthesized viral RNA, this QD-MB-Au NP probe provided sensitive and real-time detection of infectious viruses as well as the real-time visualization of cell-to-cell virus spreading.

  10. Glucuronidation of the oxidative cytochrome P450-mediated phenolic metabolites of the endocrine disruptor pesticide: methoxychlor by human hepatic UDP-glucuronosyl transferases.

    PubMed

    Hazai, Eszter; Gagne, Peter V; Kupfer, David

    2004-07-01

    Methoxychlor, a currently used pesticide, is a proestrogen exhibiting estrogenic activity in mammals in vivo. Methoxychlor undergoes oxidative metabolism by cytochromes P450, yielding 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M) and 1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane (bis-OH-M) as main metabolites. Since humans may be exposed to these estrogenic metabolites, which are potential substrates of UDP-glucuronosyltransferases (UGTs), their glucuronide conjugation was investigated with human liver preparations and individual UGTs. Incubation of both mono-OH-M and bis-OH-M with human liver microsomes formed monoglucuronides. The structures of the glucuronides were identified by liquid chromatography/tandem mass spectometry. Examination of cDNA-expressed recombinant human hepatic UGTs revealed that several catalyze glucuronidation of both compounds. Among the cDNA-expressed UGT1A enzymes, UGT1A9 seemed to be the main catalyst of formation of mono-OH-M-glucuronide, whereas UGT1A3 seemed to be the most active in bis-OH-M-glucuronide formation. Furthermore, the chiral selectivity of mono-OH-M glucuronidation was examined. The results of the incubation of single enantiomers generally agreed with the chiral analyses of mono-OH-M derived from the glucuronidase digestion of the glucuronides of the racemic mono-OH-M. There was a relatively slight but consistent enantioselective preference of individual UGT1A1, UGT1A3, UGT1A9, and UGT2B15 enzymes for glucuronidation of the S- over the R-mono-OH-M, whereas in human liver microsomes differences were observed among donors in generating the respective R/S-mono-OH-M ratio. Since it was previously shown that human liver microsomes demethylate methoxychlor mainly into S-mono-OH-M, the observation that UGT1A isoforms preferentially glucuronidate the S-mono-OH-M suggests a suitable mechanism for eliminating this major enantiomer. This enantiomeric preference, however, is not extended to all samples of

  11. Simultaneous Screening of Activities of Five Cytochrome P450 and Four Uridine 5'-Diphospho-glucuronosyltransferase Enzymes in Human Liver Microsomes Using Cocktail Incubation and Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Lee, Boram; Ji, Hyeon-Kyeong; Lee, Taeho; Liu, Kwang-Hyeon

    2015-07-01

    Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) are major metabolizing enzymes in the biotransformation of most drugs. Altered P450 and UGT activities are a potential cause of adverse drug-drug interaction. A method for the simultaneous evaluation of the activities of five P450s (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A) and four UGTs (UGT1A1, UGT1A4, UGT1A9, and UGT2B7) was developed using in vitro cocktail incubation and tandem mass spectrometry. The nine probe substrates used in this assay were phenacetin (CYP1A2), diclofenac (CYP2C9), S-mephenytoin (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), 7-ethyl-10-hydroxy-camptothecin (SN-38) (UGT1A1), trifluoperazine (UGT1A4), mycophenolic acid (UGT1A9), and naloxone (UGT2B7). This new method involves incubation of two cocktail doses and single cassette analysis. The two cocktail doses and the concentration of each probe substrate in vitro were determined to minimize mutual drug interactions among substrates. Cocktail A comprised phenacetin, diclofenac, S-mephenytoin, dextromethorphan, and midazolam, whereas cocktail B comprised SN-38, trifluoperazine, mycophenolic acid, and naloxone. In the incubation study of these cocktails, the reaction mixtures were pooled and simultaneously analyzed using liquid chromatography-tandem mass spectrometry. The method was validated by comparing inhibition data obtained from the incubation of each probe substrate alone with data from the cocktail method. The IC50 values obtained in both cocktail and individual incubations were in agreement with values previously reported in the literature. This cocktail method offers a rapid and robust way to simultaneously evaluate phase I and II enzyme inhibition profiles of many new chemical entities. This new method will also be useful in the drug discovery process and for advancing the mechanistic understanding of drug interactions. PMID:25904760

  12. Identification and preliminary characterization of UDP-glucuronosyltransferases catalyzing formation of ethyl glucuronide.

    PubMed

    Schwab, Nicole; Skopp, Gisela

    2014-04-01

    Ethyl glucuronide (EtG), a minor metabolite of ethanol, is used as a marker of alcohol consumption in a variety of clinical and forensic settings. At present there are very few studies of UDP-glucuronosyltransferases (UGT), responsible for catalyzing EtG formation, and the possible effect of nutritional components, e.g. flavonoids, which are extensively glucuronidated, on EtG formation has not been addressed at all. The following incubation conditions were optimized with regard to previously published conditions: buffer, substrate concentration, and incubation time. Isolation of EtG from the incubation mixture was also optimized. Recombinant UGT enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 2B10, 2B15) were screened for their activity towards ethanol, and kinetic data were then established for all enzymes. It was decided to study the effect of the flavonoids quercetin and kaempferol on glucuronidation of ethanol. Isolation was by solid-phase extraction (SPE) to minimize matrix effects. Analysis was performed by liquid chromatography-tandem mass spectrometry (LC-MS-MS), with EtG-d5 as the internal standard. SPE was vital to avoid severe ion suppression after direct injection of the incubation solution. EtG formation was observed for all enzymes under investigation; their kinetics followed the Michaelis-Menten model, meaning the maximum reaction rate achieved at saturating substrate concentrations (V(max)) and the substrate concentration at which the reaction rate is half of V(max) (Michaelis-Menten constant, K(m)) could be calculated. The highest rate of glucuronidation was observed with UGT1A9 and 2B7. After co-incubation with both flavonoids, formation of EtG was significantly reduced for all enzymes except for UGT2B15, whose activity did not seem to be affected. Results reveal that multiple UGT isoforms are capable of catalyzing glucuronidation of ethanol; nevertheless, the effect of UGT polymorphism on glucuronidation of ethanol needs further study. Formation of Et

  13. Detection and genetic characterization of porcine group A rotaviruses in asymptomatic pigs in smallholder farms in East Africa: predominance of P[8] genotype resembling human strains.

    PubMed

    Amimo, J O; Junga, J O; Ogara, W O; Vlasova, A N; Njahira, M N; Maina, S; Okoth, E A; Bishop, R P; Saif, L J; Djikeng, A

    2015-02-25

    Viral enteritis is a serious problem accounting for deaths in neonatal animals and humans worldwide. The absence of surveillance programs and diagnostic laboratory facilities have resulted in a lack of data on rotavirus associated diarrheas in pigs in East Africa. Here we describe the incidence of group A rotavirus (RVA) infections in asymptomatic young pigs in East Africa. Of the 446 samples examined, 26.2% (117/446) were positive for RVA. More nursing piglets (78.7%) shed RVA than weaned (32.9%) and grower (5.8%) pigs. RVA incidence was higher in pigs that were either housed_free-range (77.8%) or tethered_free-range (29.0%) than those that were free-range or housed or housed-tethered pigs. The farms with larger herd size (>10 pigs) had higher RVA prevalence (56.5%) than farms with smaller herd size (24.1-29.7%). This study revealed that age, management system and pig density significantly (p<0.01) influenced the incidence of RVA infections, with housed_free-range management system and larger herd size showing higher risks for RVA infection. Partial (811-1604nt region) sequence of the VP4 gene of selected positive samples revealed that different genotypes (P[6], P[8] and P[13]) are circulating in the study area with P[8] being predominant. The P[6] strain shared nucleotide (nt) and amino acid (aa) sequence identity of 84.4-91.3% and 95.1-96.9%, respectively, with known porcine and human P[6] strains. The P[8] strains shared high nt and aa sequence identity with known human P[8] strains ranging from 95.6-100% to 92-100%, respectively. The P[13] strains shared nt and aa sequence identity of 83.6-91.7% and 89.3-96.4%, respectively, only with known porcine P[13] strains. No P[8] strains yielded RNA of sufficient quality/quantity for full genome sequencing. However analysis of the full genome constellation of the P[6], two P[13] and one untypeable strains revealed that the P[6] strain (Ke-003-5) genome constellation was G26-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1, P[13

  14. Studies of Intercellular Communication and Intracellular Metabolic Responses by Bone Cells to Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Doty, Stephen B.

    1997-01-01

    Spaceflight affects the weight bearing skeletal tissues by reducing the rate of new bone formation. This effect on the long bones of flown rats has been quantitated but the effect at the cellular level and the mechanism(s) involved are not understood. We are applying electron microscopy, coupled with histochemistry and immunocytochemistry to determine the cellular functions most affected by spaceflight. The emphasis for study of these samples from SLS-1, a 9-day mission, is on the histochemical and structural changes of the endosteal and perivascular osteoblasts found in diaphyseal bone of femur and tibia. Work is still in progress but some findings are described: (1) An expected decrease in alkaline phosphatase activity in osteoblasts from flight animals, but an increase in enzyme activity in the stromal stem cells adjacent to the osteoblast. (2) An increase in osteoclastic TRAP activity in the trabecular bone region in response to spaceflight. (3) A large increase in procollagen containing secretory granules in osteoblasts in the recovery group, and a significant decrease in granule numbers in the flight group.

  15. Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension.

    PubMed

    Venitz, Jürgen; Zack, Julia; Gillies, Hunter; Allard, Martine; Regnault, Jean; Dufton, Christopher

    2012-12-01

    The authors review the basic pharmacology and potential for adverse drug-drug interactions (DDIs) of bosentan and ambrisentan, the 2 endothelin receptor antagonists currently approved for pulmonary arterial hypertension (PAH) treatment. Bosentan, an endothelin (ET) receptor-type ET(A) and ET(B) antagonist, is metabolized to active metabolites by and an inducer of cytochrome P450 (CYP)2C9 and CYP3A. Ambrisentan, a selective ET(A) receptor antagonist, is metabolized primarily by uridine 5'diphosphate glucuronosyltransferases (UGTs) 1A9S, 2B7S, and 1A3S and, to a lesser extent, by CYP3A and CYP2C19. Drug interactions observed with bosentan DDI studies have demonstrated a potential for significant clinical implications during PAH management: bosentan is contraindicated with cyclosporine A and glyburide, and additional monitoring/dose adjustments are required when coadministered with hormonal contraceptives, simvastatin, lopinavir/ritonavir, and rifampicin. As bosentan carries a boxed warning regarding risks of liver injury and showed dose-dependant increases in serum aminotransferase abnormalities, drug interactions that increase bosentan exposure are of particular clinical concern. Ambrisentan DDI studies performed to date have shown only one clinically relevant DDI, an interaction with cyclosporine A that requires ambrisentan dose reduction. As the treatment of PAH moves toward multimodal combination therapy, scrutiny should be placed on ensuring that drug combinations achieve maximal clinical benefit while minimizing side effects.

  16. Synthesis, structure, photoluminescence and antitumour activity of zinc complex based on 2-(2-(1H-benzo-[d]imidazol-2-yl)benzyl)-1H-benzo-[d]imidazole

    NASA Astrophysics Data System (ADS)

    Che, Zhijian; Wang, Shaoxiang; Liu, Shenggui; Li, Guobi; Wu, Qiting; Lin, Chunyu; Kong, Linglang; Wang, Sheng

    2015-01-01

    A new complex [Zn(bbb)Cl2]·DMF, where bbb is 2-(2-(1H-benzo[d]imidazol-2-yl)benzyl)-1H-benzo[d]imidazole, was synthesized and characterized by element analysis, 1H NMR and X-ray single crystal structure analyses. For complex: crystal system, triclinic, space group, P-1, a = 9.4661(13), b = 10.3534(14), c = 13.0025(18) Å, α = 73.477(2), β = 80.743(2), γ = 88.658(2)°, V = 1205.5(3) Å3, Z = 2. In this complex, the Zn2+ distorted tetrahedron geometry is coordinated by two nitrogen atoms from 2-(2-(1H-benzo[d]imidazol-2-yl)benzyl)-1H-benzo[d]imidazole and two Cl-. The complex emits yellow green luminescence with the maximal emission peak at 550 nm in DMF solution. The complex exhibits inhibition on the growth of Eca109 cancer cell with IC50 value of 8.9 ± 1.1 μM, which was lower than that of cisplatin (14.3 ± 1.4 μM). This complex has potential application in treatment of esophageal cancer.

  17. Variations in digestive physiology of rats after short duration flights aboard the US space shuttle.

    PubMed

    Rabot, S; Szylit, O; Nugon-Baudon, L; Meslin, J C; Vaissade, P; Popot, F; Viso, M

    2000-09-01

    The purpose of this work was to assess the influence of microgravity on several endogenous and microbial parameters of digestive physiology. On the occasion of two Spacelab Life Sciences missions, SLS-1 (a 9-day space flight) and SLS-2 (a 14-day space flight), Sprague-Dawley rats flown aboard the US space shuttle were compared to age-matched ground-based controls. In both flights, exposure to microgravity modified cecal fermentation: concentration and profile of short-chain fatty acids were altered, whereas urea and ammonia remained unchanged. Only in SLS-1 was there an induction of intestinal glutathione-S-transferase. Additional analyses in SLS-2 showed a decrease of hepatic CYP450 and of colonic goblet cells containing neutral mucin. After a postflight recovery period equal to the mission length, only modifications of the hepatic and intestinal xenobiotic metabolizing enzymes still persisted. These findings should help to predict the alterations of digestive physiology and detoxification potential likely to occur in astronauts. Their possible influence on health is discussed.

  18. Crystal structures and magnetic properties of the honeycomb-lattice antiferromagnet M2(pymca)3(ClO4), (M = Fe, Co, Ni)

    NASA Astrophysics Data System (ADS)

    Honda, Zentaro; Kodama, Takafumi; Hagiwara, Masayuki; Kida, Takanori; Okutani, Akira; Sakai, Masamichi; Fukuda, Takeshi; Kamata, Norihiko

    2016-09-01

    We report on the syntheses, crystal structures, and magnetic properties of a series of transition metal coordination polymers M2(pymca)3(ClO4), (pymca = pyrimidine-2-carboxylic acid, M = Fe (1), Co (2), and Ni (3)). These compounds are found to crystallize in a trigonal crystal system, space group P31m, with the lattice constants a = 9.727 Å and c = 5.996 Å for 1, a = 9.608 Å and c = 5.996 Å for 2, and a = 9.477 Å and c = 5.958 Å for 3 at room temperature. In these compounds, each pymca ligand connects to two M2+ ions, forming a honeycomb network in the ab plane. The temperature dependences of magnetic susceptibilities in these compounds show broad maxima, indicating antiferromagnetic interactions within two-dimensional honeycomb layers. We also observed an antiferromagnetic phase transition at low temperatures by magnetic susceptibility and heat capacity measurements. From the crystal structures and magnetic properties, we conclude that the compounds 1, 2, and 3 are good realizations of honeycomb-lattice antiferromagnets.

  19. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase—extensive moonlighting in mitochondrial tRNA biogenesis

    PubMed Central

    Vilardo, Elisa; Nachbagauer, Christa; Buzet, Aurélie; Taschner, Andreas; Holzmann, Johann; Rossmanith, Walter

    2012-01-01

    Transfer RNAs (tRNAs) reach their mature functional form through several steps of processing and modification. Some nucleotide modifications affect the proper folding of tRNAs, and they are crucial in case of the non-canonically structured animal mitochondrial tRNAs, as exemplified by the apparently ubiquitous methylation of purines at position 9. Here, we show that a subcomplex of human mitochondrial RNase P, the endonuclease removing tRNA 5′ extensions, is the methyltransferase responsible for m1G9 and m1A9 formation. The ability of the mitochondrial tRNA:m1R9 methyltransferase to modify both purines is uncommon among nucleic acid modification enzymes. In contrast to all the related methyltransferases, the human mitochondrial enzyme, moreover, requires a short-chain dehydrogenase as a partner protein. Human mitochondrial RNase P, thus, constitutes a multifunctional complex, whose subunits moonlight in cascade: a fatty and amino acid degradation enzyme in tRNA methylation and the methyltransferase, in turn, in tRNA 5′ end processing. PMID:23042678

  20. Study of anti-angiogenic drugs by fluorescence imaging and spectroscopy of a contrast agent in mice

    NASA Astrophysics Data System (ADS)

    Valentini, G.; D'Andrea, C.; Ferrari, R.; Pifferi, A.; Cubeddu, R.; Caronia, D.; Martinelli, M.; Giavazzi, R.

    2007-07-01

    We used two fluorescence techniques based on the Indocyanine Green contrast agent to study the effectiveness of antiangionenic drugs in mice. To this purpose, the volume of the active vasculature in different tumor models implanted in mice was assessed by means of a low noise fluorescence imaging setup and by a photon counting system working in transmittance geometry. Using a first tumor model (carcinoma MDA-MB-435) we observed that mice treated with a Vascular Disrupting Agent (ZD6126) showed a reduction in fluorescence emission of the contrast agent with respect to control mice. This was a clear indication of the vascular shutdown that took place in tumors. The effectiveness of the treatment was also confirmed by histological sections. Then, in a second experiment we considered a second tumor model (carcinoma 1A9-VS1) overexpressing the Vascular Endotelial Growth Factor (VEGF121), which is used by tumor cells to promote angiogenesis. We measured the Indocyanine Green fluorescence in mice treated with an antioangiogenic drug (Avastin TM) and in control mice. In tumors of treated mice we observed an ICG emission lower than the one detected in control mice. This demonstrated that VEGF activity was effectively blocked by the treatment with Avastin. In conclusion, ICG fluorescence provides a simple and reliable way to assess the effectiveness of vascular targeting therapies. Measurements of the fluorescence signal can be repeated every 24 hours, thus allowing oncologists to perform longitudinal studies on the same animals.

  1. Phase relations in the K 2W 2O 7-K 2WO 4-KPO 3-Bi 2O 3 system and structure of K 6.5Bi 2.5W 4P 6O 34

    NASA Astrophysics Data System (ADS)

    Terebilenko, K. V.; Zatovsky, I. V.; Baumer, V. N.; Ogorodnyk, I. V.; Slobodyanik, N. S.; Shishkin, O. V.

    2008-09-01

    The phase relations in the cross-section of the K 2W 2O 7-K 2WO 4-KPO 3 containing 15 mol% Bi 2O 3 were undertaken using flux method. Crystallization fields of K 6.5Bi 2.5W 4P 6O 34, K 2Bi(PO 4)(WO 4), Bi 2WO 6, KBi(WO 4) 2 and their cocrystallization areas were identified. Novel phase K 6.5Bi 2.5W 4P 6O 34 was characterized by single-crystal X-ray diffraction: sp. gr. P-1, a=9.4170(5), b=9.7166(4), c=17.6050(7) Å, α=90.052(5)°, β=103.880(5)° and γ=90.125(5)°. It has a layered structure, which contains {K 7Bi 5W 8P 12O 68} ∞ layers stacked parallel to ab plane and sheets composed by potassium atoms separating these layers. Sandwich-like {K 7Bi 5W 8P 12O 68} ∞ layers are assembled from [W 2P 2O 13] ∞ and [BiPO 4] ∞ building units, and are penetrated by tunnels with K/Bi atoms inside. FTIR-spectra of K 2Bi(PO 4)(WO 4) and K 6.5Bi 2.5W 4P 6O 34 were discussed on the basis of factor group theory.

  2. Resolving Bovine viral diarrhea virus subtypes from persistently infected U.S. beef calves with complete genome sequence.

    PubMed

    Workman, Aspen M; Heaton, Michael P; Harhay, Gregory P; Smith, Timothy P L; Grotelueschen, Dale M; Sjeklocha, David; Brodersen, Bruce; Petersen, Jessica L; Chitko-McKown, Carol G

    2016-09-01

    Bovine viral diarrhea virus (BVDV) is classified into 2 genotypes, BVDV-1 and BVDV-2, each of which contains distinct subtypes with genetic and antigenic variation. To effectively control BVDV by vaccination, it is important to know which subtypes of the virus are circulating and how their prevalence is changing over time. Accordingly, the purpose of our study was to estimate the current prevalence and diversity of BVDV subtypes from persistently infected (PI) beef calves in the central United States. Phylogenetic analysis of the 5'-UTR (5' untranslated region) for 119 virus strains revealed that a majority (82%) belonged to genotype 1b, and the remaining strains were distributed between genotypes 1a (9%) and 2 (8%); however, BVDV-2 subtypes could not be confidently resolved. Therefore, to better define the variability of U.S. BVDV isolates and further investigate the division of BVDV-2 isolates into subtypes, complete genome sequences were obtained for these isolates as well as representatives of BVDV-1a and -1b. Phylogenetic analyses of the complete coding sequence provided more conclusive genetic classification and revealed that U.S. BVDV-2 isolates belong to at least 3 distinct genetic groups that are statistically supported by both complete and individual coding gene analyses. These results show that a more complex set of BVDV-2 subtypes has been circulating in this region than was previously thought. PMID:27400958

  3. Carbon-carbon bond cleavage and formation reactions in drug metabolism and the role of metabolic enzymes.

    PubMed

    Bolleddula, Jayaprakasam; Chowdhury, Swapan K

    2015-01-01

    Elimination of xenobiotics from the human body is often facilitated by a transformation to highly water soluble and more ionizable molecules. In general, oxidation-reduction, hydrolysis, and conjugation reactions are common biotransformation reactions that are catalyzed by various metabolic enzymes including cytochrome P450s (CYPs), non-CYPs, and conjugative enzymes. Although carbon-carbon (C-C) bond formation and cleavage reactions are known to exist in plant secondary metabolism, these reactions are relatively rare in mammalian metabolism and are considered exceptions. However, various reactions such as demethylation, dealkylation, dearylation, reduction of alkyl chain, ring expansion, ring contraction, oxidative elimination of a nitrile through C-C bond cleavage, and dimerization, and glucuronidation through C-C bond formation have been reported for drug molecules. Carbon-carbon bond cleavage reactions for drug molecules are primarily catalyzed by CYP enzymes, dimerization is mediated by peroxidases, and C-glucuronidation is catalyzed by UGT1A9. This review provides an overview of C-C bond cleavage and formation reactions in drug metabolism and the metabolic enzymes associated with these reactions.

  4. Design and Initial Commissioning of Beam Diagnostics for the PEP-II B Factory.

    NASA Astrophysics Data System (ADS)

    Fisher, A. S.; Alzofon, D.; Arnett, D.; Bong, E. L.; Brugnoletti, B.; Collins, B.; Daly, E.; Gioumousis, A.; Johnson, R.; Kulikov, A.; Kurita, N.; Langton, J.; McCormick, D.; Noriega, R.; Smith, S.; Smith, V.; Stege, R.; Bjork, M.; Chin, M.; Hinkson, J.; McGill, R.; Suwada, T.

    1997-05-01

    PEP-II is a 2.2-km-circumference collider with a 2.1-A, 3.1-GeV positron ring (the Low-Energy Ring) 1 m above a 1-A, 9-GeV electron ring (the High-Energy Ring); both are designed for 3 A maximum. We will describe the beam diagnostics and present initial measurements from HER commissioning, expected to start in March 1997. LER commissioning will follow in 1998. The beam size and pulse duration are measured using near-UV synchrotron light extracted by grazing-incidence mirrors that must withstand up to 200 W/cm. To measure the charge in every bucket at 60 Hz with an accuracy of ≈0.5%, the sum signal from a set of 4 pickup buttons is digitized and averaged over 256 samples per bucket. The sum is normalized to the ring current, measured by a DC current transformer. The 300 beam-position monitors per ring are multiplexed to share 171 processor modules, which use DSPs for recording positions over 1024 turns and for calibration. For diagnostics and machine protection, 100 photomultiplier-based Cherenkov detectors measure beam losses and abort the beam in case of high loss.

  5. Gene deletions and amplifications in human hepatocellular carcinomas: correlation with hepatocyte growth regulation.

    PubMed

    Nalesnik, Michael A; Tseng, George; Ding, Ying; Xiang, Guo-Sheng; Zheng, Zhong-liang; Yu, YanPing; Marsh, James W; Michalopoulos, George K; Luo, Jian-Hua

    2012-04-01

    Tissues from 98 human hepatocellular carcinomas (HCCs) obtained from hepatic resections were subjected to somatic copy number variation (CNV) analysis. Most of these HCCs were discovered in livers resected for orthotopic transplantation, although in a few cases, the tumors themselves were the reason for the hepatectomies. Genomic analysis revealed deletions and amplifications in several genes, and clustering analysis based on CNV revealed five clusters. The LSP1 gene had the most cases with CNV (46 deletions and 5 amplifications). High frequencies of CNV were also seen in PTPRD (21/98), GNB1L (18/98), KIAA1217 (18/98), RP1-1777G6.2 (17/98), ETS1 (11/98), RSU1 (10/98), TBC1D22A (10/98), BAHCC1 (9/98), MAML2 (9/98), RAB1B (9/98), and YIF1A (9/98). The existing literature regarding hepatocytes or other cell types has connected many of these genes to regulation of cytoskeletal architecture, signaling cascades related to growth regulation, and transcription factors directly interacting with nuclear signaling complexes. Correlations with existing literature indicate that genomic lesions associated with HCC at the level of resolution of CNV occur on many genes associated directly or indirectly with signaling pathways operating in liver regeneration and hepatocyte growth regulation.

  6. Metabolism studies on prim-O-glucosylcimifugin and cimifugin in human liver microsomes by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Jia, Peipei; Zhang, Yuqian; Zhang, Qiaoyue; Sun, Yupeng; Yang, Haotian; Shi, He; Zhang, Xiaoxu; Zhang, Lantong

    2016-09-01

    Prim-O-glucosylcimifugin (PGCN) and cimifugin (CN) are major constituents of Radix Saposhnikoviae that have antipyretic, analgesic and anti-inflammatory pharmacological activities. However, there were few reports with respect to the metabolism of PGCN and CN in vitro. In this paper, we describe a strategy using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) for fast analysis of the metabolic profile of PGCN and CN in human liver microsomes. In total, five phase I metabolites of PGCN, seven phase I metabolites and two phase II metabolites of CN were identified in the incubation of human liver microsomes. The results revealed that the main phase I metabolic pathways of PGCN were hydroxylation and hydrolysis reactions. The phase I metabolic pathways of CN were found to be hydroxylation, demethylation and dehydrogenation. Meanwhile, the results indicated that O-glucuronidation was the major metabolic pathway of CN in phase II metabolism. The specific UDP-glucuronosyltransferase (UGT) enzymes responsible for CN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A9, UGT2B4 and UGT2B7 might play major roles in the glucuronidation of CN. Overall, this study may be useful for the investigation of metabolic mechanism of PGCN and CN, and it can provide reference and evidence for further pharmacodynamic experiments. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Two coordination polymers of manganese(II) isophthalate and their preparation, structures, and magnetic properties

    SciTech Connect

    Chen Jinxi; Wang Jingjing; Ohba, Masaaki

    2012-01-15

    Two manganese coordination polymers, [Mn{sub 2}(ip){sub 2}(dmf)]{center_dot}dmf (1) and [Mn{sub 4}(ip){sub 4}(dmf){sub 6}]{center_dot}2dmf (2) (ip=isophthalate; dmf=N,N-dimethylformamide), have been synthesized and characterized. X-ray crystal structural data reveal that compound 1 crystallizes in triclinic space group P-1, a=9.716(3) A, b=12.193(3) A, c=12.576(3) A, {alpha}=62.19(2) Degree-Sign , {beta}=66.423(17) Degree-Sign , {gamma}=72.72(2) Degree-Sign , Z=2, while compound 2 crystallizes in monoclinic space group Cc, a=19.80(3) A, b=20.20(2) A, c=18.01(3) A, {beta}=108.40(4) Degree-Sign , Z=4. Variable-temperature magnetic susceptibilities of compounds 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent Mn(II) ions. - Graphical abstract: Three-dimensional porous and two-dimensional layered manganese isophthalates have been prepared. Magnetic susceptibility measurements exhibit overall weak antiferromagnetic interactions between the Mn(II) ions in both compounds. Highlights: Black-Right-Pointing-Pointer Two manganese isophthalates have been prepared. Black-Right-Pointing-Pointer Compound 1 adopts a three-dimensional porous structure. Black-Right-Pointing-Pointer Compound 2 adopts a two-dimensional layered structure. Black-Right-Pointing-Pointer Magnetic properties of both compounds are investigated.

  8. Household, hotel and market waste audits for composting in Vietnam and Laos.

    PubMed

    Byer, Philip H; Hoang, Chi Phuong; Nguyen, Thi Thuc Thuy; Chopra, Sangeeta; Maclaren, Virginia; Haight, Murray

    2006-10-01

    In Da Nang and Ha Long, Vietnam and in Vientiane, Laos, there was interest by local authorities in separating and composting waste in order to reduce environmental and health problems at the local landfills and to produce a soil conditioner for local agricultural use. To assist in the planning of composting projects, three studies were carried out to estimate waste quantities and composition. 1. A 9-day audit of waste from 45 vendors in a market in Vientiane, the capital of Laos. The total quantity of waste and the quantity in each of nine categories were estimated for each of six different types of vendors. 2. A 7-day audit of waste disposed by three hotels in the tourist area of Ha Long, Vietnam. Waste quantities were estimated in total, on a per guest basis, and in three main categories: compostables, recyclables and miscellaneous. 3. A 7-day audit of waste collected from 74 households in Da Nang, the fourth largest city in Vietnam. Waste from each household was separated into compostable and non-compostable waste. Over 60% of each waste source comprised compostable waste and this was considered significant enough to warrant further planning of composting operations.

  9. Synthesis and crystal structures of two nickel coordination polymers generated from asymmetric malate ligand

    SciTech Connect

    Guo Yaqin; Xiao Dongrong; Wang Enbo . E-mail: wangenbo@public.cc.jl.cn; Lu Ying; Lue Jian; Xu Xinxin; Xu Lin

    2005-03-15

    Two nickel coordination polymers [Ni(H{sub 2}O)(C{sub 4}H{sub 4}O{sub 5})].H{sub 2}O 1 and [Ni(H{sub 2}O)(mal)(phen)] 2, have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Crystal data for 1: C{sub 4}H{sub 8}O{sub 7}Ni, monoclinic Cc, a=13.156(3)A, b=7.5436(15)A, c=9.6982(19)A, {beta}=130.96(3){sup o}, Z=4. Crystal data for 2: C{sub 16}H{sub 14}N{sub 2}O{sub 6}Ni, orthorhombic Pna2{sub 1}, a=9.6113(19)A, b=19.691(4)A, c=8.0944(16)A, Z=4. Compound 1 is constructed from [Ni(H{sub 2}O)(C{sub 4}H{sub 4}O{sub 5})] sheets pillared through {beta}-carboxylate groups into a 3D framework, which exhibits a diamond-like network. Compound 2 exhibits a 3D supramolecular network. To our knowledge, compound 1 represents the first diamond-like topology in the system of metal-malate. Other characterizations by elemental analysis, IR and TG are also described. The magnetic behavior of compound 1 has been studied.

  10. Stereoselective metabolism of carvedilol by the beta-naphthoflavone-inducible enzyme in human intestinal epithelial Caco-2 cells.

    PubMed

    Ishida, Kazuya; Honda, Mutsuko; Shimizu, Takako; Taguchi, Masato; Hashimoto, Yukiya

    2007-10-01

    Treatment of Caco-2 cells with beta-naphthoflavone (beta-NF) and 1alpha,25-dihydroxyvitamin D(3) (VD(3)) induces UDP-glucuronosyltransferases (UGTs) and cytochrome P450 (CYP) 3A4, respectively. In the present study, we evaluated the metabolism of carvedilol in beta-NF- and VD(3)-treated Caco-2 cells. The metabolism of R-carvedilol was not significant in non-treated Caco-2 cells, whereas S-carvedilol was significantly metabolized in the cells. The metabolism of R- and S-carvedilol was significantly increased by the treatment of Caco-2 cells with 50 microM beta-NF for 3 d. In contrast, the treatment of Caco-2 cells with 250 nM VD(3) for 2 weeks did not induce a significant change in the metabolism of R- and S-carvedilol. The metabolism of carvedilol in beta-NF-treated Caco-2 cells was markedly inhibited by a substrate of UGTs, baicalein. In addition, the expression of UGT1A1, 1A6, and 1A9 mRNA was increased in beta-NF-treated Caco-2 cells as compared with non-treated cells. These findings indicated that carvedilol was metabolized stereoselectively by the beta-NF-inducible enzyme in Caco-2 cells. The UGT1A subfamily in intestinal epithelial cells may be partly responsible for first-pass (presystemic) metabolism of the drug. PMID:17917264

  11. Strong inhibitory effect of medroxyprogesterone acetate (MPA) on UDP-glucuronosyltransferase (UGT) 2B7 might induce drug-drug interactions.

    PubMed

    Huang, T; Fang, Z Z; Yang, L

    2010-12-01

    The aim of the present study was to investigate the inhibitory effects of medroxyprogesterone acetate (MPA) on four important UGT isoforms (UGT1A1, 1A6, 1A9 and 2B7). 4-methylumbelliferone (4-MU) was used as a nonselective substrate, and recombinant UGT isoforms were utilized as an enzyme source. The results showed that MPA exhibited inhibitory effects on UGT2B7 (IC50 = 29.3 +/- 1.5 microM), with a negligible influence on other UGT isoforms. The results obtained from Lineweaver-Burk and Dixon plots showed that MPA competitively inhibited UGT2B7. The Ki value was calculated to be 7.2 microM. Based on the concentration of MPA in human liver, the magnitude of in vivo drug-drug interaction (DDI) was predicted. The [I]/Ki value was calculated to be 0.31, which suggested that DDIs might occur when MPA was co-administered with drugs which mainly undergo UGT2B7-mediated metabolism. PMID:21284263

  12. Naming and categorization in young children: vocal tact training.

    PubMed Central

    Fergus Lowe, C; Horne, Pauline J; Harris, Fay D A; Randle, Valerie R L

    2002-01-01

    In three experiments, 2- to 4-year-old children, following pretraining with everyday objects, were presented with arbitrary stimuli of differing shapes. In Experiment 1A, 9 subjects were trained one common tact response, "zag," to three of these and a second tact, "vek," to another three. In category match-to-sample Test 1, 4 subjects sorted accurately when required only to look at the sample before selecting from five comparisons. The remaining 5 subjects succeeded in Test 2, in which they were required to tact the sample before selecting comparisons. Experiment 1B showed, for 2 of these subjects, that tact training with 12 arbitrary stimuli established two six-member classes that were still intact 6 weeks later. In Experiment 2, 3 new subjects participated in a common tact training procedure that ensured that none of the exemplars from the same class were presented together prior to the test for three-member classes. Two subjects passed category Test 1 and the third passed Test 2. Tests showed subjects' listener behavior in response to hearing /zog/ and /vek/ to be in place. These experiments indicate that common naming is effective in establishing arbitrary stimulus classes and that category match-to-sample testing provides a robust measure of categorization. PMID:12507018

  13. Instrumentation and diagnostics for PEP-II

    NASA Astrophysics Data System (ADS)

    Fisher, Alan S.

    1998-12-01

    PEP-II is a 2.2 km-circumference collider with a 2.1 A, 3.1 GeV positron ring (the low-energy ring) 1 m above a 1 A, 9 GeV electron ring (the high-energy ring); both rings are designed to allow an upgrade to 3 A. Since June 1997, we have had three runs totaling 14 weeks to commission the full HER, reaching a current of 0.75 A. Positrons were transported through the first 90 m of the LER in January 1998, with full-ring tests planned for the summer. This workshop provides a timely opportunity to review the design of the beam diagnostics and their performance, with an emphasis on what works, what doesn't, and what we're doing to improve it. This paper discusses: the synchrotron-light monitor, including both transverse imaging onto a CCD camera and longitudinal measurements with a streak camera; beam position monitors, with processors capable of 1024-turn records, FFTs, and phase-advance measurements; tune measurements with a spectrum analyzer, including software for peak tracking; measurements of both the total ring current and the charge in each bucket, for real-time control of the fill; and beam loss monitors using small Cherenkov detectors for measuring losses from both stored and injected beam.

  14. Traumatic hemipelvectomy in children: report on 2 survivors with urological involvement.

    PubMed

    Calonge, Wenceslao M; Alova, Ilona; Ramos, Manuel R; Martínez, Leopoldo; Lortat-Jacob, Stéphan; Ochoa de Castro, Antonio; Lottmann, Henri

    2010-11-01

    Traumatic hemipelvectomy through the sacroiliac joint is a devastating injury, mainly because of motor vehicle accidents. Recent improvements in prehospital trauma care have increased the chances of survival for victims. Besides amputation of the lower limb, associated complications usually involve digestive and urological systems. We report on 2 pediatric patients from 2 different European countries. PATIENT 1: A 9-year-old boy suffered uprooting of his left lower limb, laceration of the rectum and anal sphincter, as well as an injury to distal urethra with partial loss of cavernous bodies. Initial management included a colostomy and an essay of contention by means of a polypropylene prosthesis that had to be removed in the following months. After several attempts at urethral reconstruction, he underwent a Mitrofanoff derivation. PATIENT 2: An 18-month-old girl lost her left lower limb and suffered severe lacerations of bladder and rectum. Among other measures, management included a colostomy, a skin graft, and 2 attempts at reconstruction of her bladder neck, including a modified Casale procedure (cecum and ileocecal appendix were in a high position that made a Mitrofanoff derivation impossible) and a Malone procedure. To the authors' knowledge, she would be the youngest reported survivor of this kind of injury. PMID:21034958

  15. Using sorafenib for recurrent hepatocellular carcinoma after liver transplantation--interactions between calcineurin inhibitor: two case reports.

    PubMed

    Takahara, T; Nitta, H; Hasegawa, Y; Itou, N; Takahashi, M; Wakabayashi, G

    2011-09-01

    No effective therapeutic approaches have been available for early recurrences following liver transplantation for hepatocellular carcinoma (HCC). The prognosis for such patients has been poor. We encountered two patients with recurrent HCC following liver transplantation, and in the prescribed sorafenib after the failure of various therapeutic approaches. In vitro experiments have shown sorafenib to be metabolized by the drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) and glucuronosyltransferase (UGT1A9). The metabolic pathway is predicted to overlap that of calcineurin inhibitors (CNIs). In the two cases in which we used sorafenib, tacrolimus (FK506) was used in case 1 and cyclosporine, in case 2. We therefore have also reported the blood levels of the CNI at the time of sorafenib use. Patients with recurrent HCC following liver transplantation were less tolerant of sorafenib than advanced HCC patients who had not undergone transplantation. Poor tolerance was believed to be due to pharmacological interactions of sorafenib and CNIs. Likewise in our patients, determining blood levels of sorafenib, including the area under the blood concentration-time curve of at least the CNI, in each case allowed us to determine the optimal sorafenib dose for each patient. In the future, when administering sorafenib to treat recurrent liver cancers following liver transplantation, the dose of sorafenib should be started at 200 mg/d and gradually increased while measuring CNI blood levels.

  16. LIF studies of iodine oxide chemistry. Part 3. Reactions IO + NO3 --> OIO + NO2, I + NO3 --> IO + NO2, and CH2I + O2 --> (products): implications for the chemistry of the marine atmosphere at night.

    PubMed

    Dillon, Terry J; Tucceri, María E; Sander, Rolf; Crowley, John N

    2008-03-21

    The technique of pulsed laser photolysis coupled to LIF detection of IO was used to study IO + NO(3) --> OIO + NO(2); I + NO(3) --> (products); CH(2)I + O(2) --> (products); and O((3)P) + CH(2)I(2) --> IO + CH(2)I, at ambient temperature. was observed for the first time in the laboratory and a rate coefficient of k(1 a) = (9 +/- 4) x 10(-12) cm(3) molecule(-1) s(-1) obtained. For , a value of k(2) (298 K) = (1.0 +/- 0.3) x 10(-10) cm(3) molecule(-1) s(-1) was obtained, and a IO product yield close to unity determined. IO was also formed in a close-to-unity yield in , whereas in an upper limit of alpha(3)(IO) < 0.12 was derived. The implications of these results for the nighttime chemistry of the atmosphere were discussed. Box model calculations showed that efficient OIO formation in was necessary to explain field observations of large OIO/IO ratios.

  17. Benzo(a)pyrene and 7,12-dimethylbenz(a)anthrecene differentially affect bone marrow cells of the lymphoid and myeloid lineages

    SciTech Connect

    Galvan, Noe; Page, Todd J.; Czuprynski, Charles J.; Jefcoate, Colin R. . E-mail: jefcoate@facstaff.wisc.edu

    2006-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants that are carcinogenic and immunosuppressive. Benzo(a)pyrene (BP) and 7,12-dimethylbenz(a)anthracene (DMBA) are two prototypic PAHs known to impair the cell-mediated and humoral immune responses. We have previously shown that, in C57BL/6J mice, total bone marrow (BM) cellularity decreased two-fold following intraperitoneal DMBA treatment but not BP treatment. Here, we have used flow cytometry to demonstrate that BP and DMBA differentially alter the lymphoid and myeloid lineages. Following DMBA treatment, the pro/pre B-lymphocytes (B220{sup lo}/IgM{sup -}) and the immature B-lymphocytes (B220{sup lo}/IgM{sup +}) significantly decreased, while the mature B-lymphocytes (B220{sup hi}/IgM{sup +}) remained unaffected. In contrast, BP treatment decreased the pro/pre B-lymphocytes, and did not affect the immature B-lymphocytes or mature B-lymphocytes. The Gr-1{sup +} cells of the myeloid lineage were depleted 50% following DMBA treatment and only minimally depleted following BP treatment. Interestingly, the monocytes (7/4{sup +}1A8{sup lo}) and neutrophils (7/4{sup +}1A8{sup hi}) within this Gr-1{sup +} population were differentially affected by these PAHs. Monocytes and neutrophils were depleted following DMBA treatment whereas neutrophils decreased and monocytes increased following BP treatment. Although TNF{alpha} and CYP1B1 are implicated as essential mediators of hypocellularity, the similar induction of TNF{alpha} mRNA and CYP1B1 mRNA in the BM by BP and DMBA suggests that they are not limiting factors in mediating the different effects of these PAHs. Given that similar amounts of BP and DMBA reach the BM when administered intraperitoneally, their differential effects on the lymphoid and myeloid lineages probably stem from differences in reactive metabolites such as PAH quinones and PAH-dihydrodiol-epoxides.

  18. In vivo Analysis of Troponin C Knock-in (A8V) Mice: Evidence that TNNC1 Is a Hypertrophic Cardiomyopathy Susceptibility Gene

    PubMed Central

    Feng, Han-Zhong; Bos, J. Martijn; Gonzalez-Martinez, David; Vukmirovic, Milica; Turna, Rajdeep S.; Sanchez-Gonzalez, Marcos A.; Badger, Crystal-Dawn; Zorio, Diego A. R.; Singh, Rakesh K.; Wang, Yingcai; Jin, J.-P.; Ackerman, Michael J.; Pinto, Jose R.

    2015-01-01

    Background Mutations in thin-filament proteins have been linked to hypertrophic cardiomyopathy (HCM), but it has never been demonstrated that variants identified in the TNNC1 (gene encoding troponin C) can evoke cardiac remodeling in-vivo. The goal of this study was to determine whether TNNC1 can be categorized as an HCM susceptibility gene, such that a mouse model can recapitulate the clinical presentation of the proband. Methods and Results The TNNC1-A8V proband diagnosed with severe obstructive HCM at 34-years of age exhibited mild-to-moderate thickening in left and right ventricular walls, decreased left-ventricular dimensions, left-atrial enlargement and hyperdynamic left-ventricular systolic function. Genetically-engineered knock-in mice containing the A8V mutation (heterozygote=KI-TnC-A8V+/−; homozygote=KI-TnC-A8V+/+) were characterized by echocardiography and pressure-volume studies. Three-month-old, KI-TnC-A8V+/+ mice displayed decreased ventricular dimensions, mild diastolic dysfunction, and enhanced systolic function, while KI-TnC-A8V+/− mice displayed cardiac restriction at 14-months of age. KI hearts exhibited atrial enlargement, papillary-muscle hypertrophy and fibrosis. Liquid chromatography-mass spectroscopy was used to determine incorporation of mutant cTnC (~21%) into the KI-TnC-A8V+/− cardiac myofilament. Reduced diastolic sarcomeric length, increased shortening and prolonged Ca2+ and contractile transients were recorded in intact KI-TnC-A8V+/− and KI-TnC-A8V+/+ cardiomyocytes. Ca2+-sensitivity of contraction in skinned fibers increased with mutant gene dose: KI-TnC-A8V+/+ > KI-TnC-A8V+/− > WT, while KI-TnC-A8V+/+ relaxed more slowly upon flash-photolysis of diazo-2. Conclusions The TNNC1-A8V mutant increases the Ca2+-binding affinity of the thin filament, and elicits changes in Ca2+ homeostasis and cellular remodeling, which leads to diastolic dysfunction. These in-vivo alterations further implicate the role of TNNC1 mutations in the

  19. Crystal structures of lazulite-type oxidephosphates Ti IIITi IV3O 3(PO 4) 3 and MIII4Ti IV27O 24(PO 4) 24 ( MIII=Ti, Cr, Fe)

    NASA Astrophysics Data System (ADS)

    Schöneborn, M.; Glaum, R.; Reinauer, F.

    2008-06-01

    Single crystals of the oxidephosphates Ti IIITi IV3O 3(PO 4) 3 (black), Cr III4Ti IV27O 24(PO 4) 24 (red-brown, transparent), and Fe III4Ti IV27O 24(PO 4) 24 (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2 dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [Ti IIITi IV3O 3(PO 4) 3: Z=24, a=7.3261(9) Å, b=22.166(5) Å, c=39.239(8) Å, R1=0.029, w R2=0.084, 6055 independent reflections, 301 variables; Cr III4Ti IV27O 24(PO 4) 24: Z=1, a=7.419(3) Å, b=21.640(5) Å, c=13.057(4) Å, R1=0.037, w R2=0.097, 1524 independent reflections, 111 variables; Fe III4Ti IV27O 24(PO 4) 24: Z=1, a=7.4001(9) Å, b=21.7503(2) Å, c=12.775(3) Å, R1=0.049, w R2=0.140, 1240 independent reflections, 112 variables). For Ti IIITi IVO 3(PO 4) 3 a well-ordered structure built from dimers [Ti III,IV2O 9] and [Ti IV,IV2O 9] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr 4Ti 27O 24(PO 4) 24 and Fe 4Ti 27O 24(PO 4) 24, consisting of dimers [ MIIITi IVO 9] and [Ti IV,IV2O 9], monomeric [Ti IVO 6] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs Ti III4Ti IV27O 24(PO 4) 24 ( a=7.418(2) Å, b=21.933(6) Å, c=12.948(7) Å) is isotypic to the oxidephosphates MIII4Ti IV27O 24(PO 4) 24 ( MIII: Cr, Fe). The UV/vis spectrum of Cr 4Ti 27O 24(PO 4) 24 reveals a rather small ligand-field splitting Δ o=14,370 cm -1 and a very low nephelauxetic ratio β=0.72 for the chromophores [Cr IIIO 6] within the dimers [Cr IIITi IVO 9].

  20. Synthesis, structure, and spectroscopic characterization of three uranyl phosphates with unique structural units

    SciTech Connect

    Wylie, Ernest M.; Dawes, Colleen M.; Burns, Peter C.

    2012-12-15

    Single crystals of Zn{sub 4}(OH){sub 2}[(UO{sub 2})(PO{sub 4}){sub 2}(OH){sub 2}(H{sub 2}O)] (UZnP), Cs[(UO{sub 2})(HPO{sub 4})NO{sub 3}] (UCsP), and In{sub 3}[(UO{sub 2}){sub 2}(PO{sub 4}){sub 4}OH(H{sub 2}O){sub 6}].2H{sub 2}O (UInP) were obtained from hydrothermal reactions and have been structurally and chemically characterized. UZnP crystallizes in space group Pbcn, a=8.8817(7), b=6.6109(5), c=19.569(1) A; UCsP crystallizes in P-1, a=7.015(2), b=7.441(1), c=9.393(2) A, {alpha}=72.974(2), {beta}=74.261(2), {gamma}=79.498(2); and UInP crystallizes in P-1, a=7.9856(5), b=9.159(1), c=9.2398(6) A {alpha}=101.289(1), {beta}=114.642(1), {gamma}=99.203(2). The U{sup 6+} cations are present as (UO{sub 2}){sup 2+} uranyl ions coordinated by five O atoms to give pentagonal bipyramids. The structural unit in UZnP is a finite cluster containing a uranyl pentagonal bipyramid that shares corners with two phosphate tetrahedra. The structural unit in UCsP is composed of uranyl pentagonal bipyramids with one chelating nitrate group that are linked into chains by three bridging hydrogen phosphate tetrahedra. In UInP, the structural unit contains pairs of edge-sharing uranyl pentagonal bipyramids with two chelating phosphate tetrahedra that are linked into chains through two bridging phosphate tetrahedra. Indium octahedra link these uranyl phosphate chains into a 3-dimensional framework. All three compounds exhibit unique structural units that deviate from the typical layered structures observed in uranyl phosphate solid-state chemistry. - Graphical abstract: Three new uranyl phosphates with unique structural units are reported. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Three new uranyl phosphates have been synthesized hydrothermally. Black-Right-Pointing-Pointer Single crystal analyses reveal unique structural units. Black-Right-Pointing-Pointer The dimensionality of these compounds deviate from typical U{sup 6+} layered structures.

  1. IN VITRO GLUCURONIDATION OF APREPITANT: A MODERATE INHIBITOR OF UGT2B7

    PubMed Central

    House, Larry; Ramirez, Jacqueline; Seminerio, Michael; Mirkov, Snezana; Ratain, Mark J.

    2016-01-01

    Aprepitant, an oral antiemetic, commonly used in the prevention of chemotherapy-induced nausea and vomiting, is primarily metabolized by CYP3A4. Aprepitant glucuronidation has yet to be evaluated in humans. The contribution of human UDP-glucuronosyltransferase (UGT) isoforms to the metabolism of aprepitant was investigated by performing kinetic studies, inhibition studies, and correlation analyses. In addition, aprepitant was evaluated as an inhibitor of UGTs.Glucuronidation of aprepitant was catalyzed by UGT1A4 (82%), UGT1A3 (12%), and UGT1A8 (6%) and Kms were 161.6 ± 15.6 µM, 69.4 ± 1.9 µM, and 197.1 ± 28.2 µM, respectively. Aprepitant glucuronidation was significantly correlated with both UGT1A4 substrates anastrazole and imipramine (rs = 0.77, P < 0.0001 for both substrates; n = 44), and with the UGT1A3 substrate thyroxine (rs = 0.58, P < 0.0001; n = 44).We found aprepitant to be a moderate inhibitor of UGT2B7 with a Ki of ~10 µM for 4-MU, morphine, and zidovudine. Our results suggest aprepitant can alter clearance of drugs primarily eliminated by UGT2B7. Given the likelihood for first-pass metabolism by intestinal UGT2B7, this is of particular concern for oral aprepitant co-administered with oral substrates of UGT2B7, such as zidovudine and morphine. PMID:26053558

  2. Biological activity and molecular docking studies of curcumin-related α,β-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Unsal Tan, Oya; Sher, Muhammad; Naeem-Ul-Hassan, M; Qin, Hua-Li

    2014-06-18

    Hyperpigmentation in human skin and enzymatic browning in fruits, which are caused by tyrosinase enzyme, are not desirable. Investigations in the discovery of tyrosinase enzyme inhibitors and search for improved cytotoxic agents continue to be an important line in drug discovery and development. In present work, a new series of 30 compounds bearing α,β-unsaturated carbonyl moiety was designed and synthesized following curcumin as model. All compounds were evaluated for their effects on human cancer cell lines and mushroom tyrosinase enzyme. Moreover, the structure-activity relationships of these compounds are also explained. Molecular modeling studies of these new compounds were carried out to explore interactions with tyrosinase enzyme. Synthetic curcumin-like compounds (2a-b) were identified as potent anticancer agents with 81-82% cytotoxicity. Five of these newly synthesized compounds (1a, 8a-b, 10a-b) emerged to be the potent inhibitors of mushroom tyrosinase, providing further insight into designing compounds useful in fields of food, health, and agriculture.

  3. The synthesis and structure of a chiral 1D aluminophosphate chain compound: d-Co(en) 3[AlP 2O 8]·6.5H 2O

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Li, Jiyang; Yu, Jihong; Wang, Yu; Pan, Qinhe; Xu, Ruren

    2005-06-01

    A new chiral one-dimensional (1D) aluminophosphate chain compound [ d-Co(en) 3][AlP 2O 8]·6.5H 2O (designated AlPO-CJ22) has been hydrothermally synthesized by using the optically pure d-Co(en) 3I 3 complex as the template. Single-crystal structural analysis reveals that its structure is built up from alternating connection of AlO 4 and PO 2(=O 2) tetrahedra to form corner-shared Al 2P 2 four-membered ring (4-MR) chains. The d-Co(en) 33+ complex cations extended along the 2 1 screw axis interact with the inorganic chains through hydrogen-bonds of N⋯O atoms in a helical fashion. Optical rotation measurement shows that AlPO-CJ22 is chiral as with d-Co(en) 33+ complex cations. Crystal data: orthorhombic, I2 12 12 1, a=8.5573(8) Å, b=22.613(2) Å, c=22.605(2) Å, Z=8, R1=0.067, wR2=0.1291, and Flack parameter: -0.02(3). CCDC number: 254179.

  4. Synthesis, structure and electrochemical behavior of a 3D crystalline copper(II) metal-organic framework

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Ye; Fan, Wei-Qiang; Liu, Chun-Bo; Shi, Wei-Dong; Yan, Yong-Sheng

    2014-05-01

    Using an flexible amide-type tripodal ligand N,N‧,N″-tris(3-pyridyl)-1,3,5-benzenetricarboxamide (L) and 1,4-benzenedicarboxylic acid (H2bdc), a three-dimensional copper(II) metal-organic framework (MOF) formulated as [Cu(bdc)(L)]n has been hydrothermally synthesized and structurally characterized by IR, elemental, X-ray single-crystal diffraction and thermal analysis. The complex crystallizes in the triclinic, space group P - 1, a = 8.891(2) Å, b = 11.760(2) Å, c = 15.348(3) Å, α = 96.73(3)°, β = 105.96(3)°, γ = 106.47(3)°, V = 1446.2(5) Å3, Mr = 666.10, Dc = 1.530 g/cm3, Z = 2, F(000) = 682, GOOF = 1.0560, μ(MoKα) = 0.817 mm-1, R = 0.0366 and wR = 0.0885. The structural analyses reveal that the title compound consists of one Cu(II) atom, two halves of bdc, and one L ligand. Each Cu(II) atom is linked by two bdc ligands and three L ligands to form a three-dimensional network. In addition, the electrochemical behavior of title compound has been studied. CCDC No. 990526.

  5. Amphiphilic ferrocenylated alkylpyridinium: the formation of micelles and hydrogels and their disaggregation induced by an external stimulus.

    PubMed

    Suzaki, Yuji; Endo, Hirotaka; Kojima, Takahiro; Osakada, Kohtaro

    2013-12-01

    Ferrocene-containing amphiphiles [py-N-(CH2)nOCH2Fc]Cl (n = 6 (1a), 8 (1b), 10 (1c); py = C5H5N, Fc = Fe(C5H4)(C5H5)) were synthesized. The absorption spectra of 1a-1c in the presence of a small amount of dye (Nile red and pyrene) in aqueous media suggested the formation of micelles which encapsulated the dye molecules. Two critical micelle concentrations were observed at 1.1 mM and 2.3 mM at 20 °C. Compounds 1a and 1c showed a single CMC for each, while the formation of two kinds of micelles, the spherical and rod-like ones, depended on the concentrations. The addition of an oxidant, NaOCl, to the aqueous solution of the micelles of 1b turned ferrocene to ferrocenium and caused the disaggregation of the micelles. The addition of α-cyclodextrin (α-CD) to 2b caused the disaggregation of the micelle and the formation of water-soluble [2]- and [3]pseudorotaxane [{py-N-(CH2)8OCH2Fc}(α-CD)m]Cl (1b(α-CD)m) (m = 1, 2), while mixing 1c and α-CD in water formed the rotaxane gel. The addition of NaOCl to the hydrogel of 1c and α-CD changed the gel to sol. PMID:24141739

  6. Distribution of Hepatitis C virus (HCV) genotypes in seropositive patients in the state of Alagoas, Brazil

    PubMed Central

    Gonzaga, Rosa Maria S.; Rodart, Itatiana F.; Reis, Mitermayer Galvão; Ramalho Neto, Cícero Eduardo; Silva, Denise Wanderlei

    2008-01-01

    We determined the frequency of hepatitis C virus (HCV) genotypes in anti-HCV seropositive patients in the state of Alagoas, Brazil, by means of nested-reverse transcription-polymerase chain reaction (RT-nested-PCR) followed by restriction fragment length polymorphism (RFLP) of amplified fragments of the 5´NCR. The nested-PCR with genotype-specific primers from the core region was carried out when detection was not possible by the first approach. Detectable HCV-RNA was present in 115 (74.7%) of 154 serum samples. Genotype 1 was the most frequent (77.4%), against 20.9% of genotype 3 and 0.8% of genotype 2. Subtype 1b was predominant (65.2%), followed by subtypes 1a (8.7%), and 3a (6.1%). Coinfection (1a/3a) was detected in 0.8% of the samples. Indeed, there was no significant differences in the prevalence of genotype 1 compared to what has been obtained from anti-HCV seropositive patients from other locations in Brazil. Here we report for the first time the genotype 2 in the state of Alagoas. PMID:24031281

  7. Using FLEXPART-WRF to Identify Source Regions Influencing Arctic Trace Gases and Aerosols During the Summer 2014 NETCARE Campaign

    NASA Astrophysics Data System (ADS)

    Thomas, J. L.

    2015-12-01

    In July and August 2014 the Canadian Network on Aerosols and Climate: Addressing Key Uncertainties in Remote Canadian Regions (NETCARE) project conducted aircraft and ship based campaigns with the goal of identifying both emissions and atmospheric processes influencing Arctic trace gas and aerosol concentrations. The aircraft campaign was conducted using the Alfred Wegener Institute's POLAR 6 aircraft (based in Resolute Bay, Canada) and the ship based campaign was conducted onboard the CCGS Amundsen (icebreaker and Arctic Ocean research vessel). Here, we use the Weather Research and Forecasting Model (WRF) to study meteorology and transport patterns that influence airmasses sampled during the aircraft campaign (5-21 July 2012) and research Legs 1a and 1b for Amundsen (1a: 8 - 24 July Quebec City to Resolute and 24 July - 14 August Resolute to Kugluktuk). The FLEXible PARTicle dispersion model driven by WRF meteorology (FLEXPART-WRF) run in backwards mode is used to study source regions that influenced enhanced concentrations in trace gases including DMS and NH3 as well as aerosols. Links between biomass burning in Northern Canada and measurements during the campaign are discussed. Finally FLEXPART-WRF run in forward mode is used to study links between shipping emissions from the Amundsen and enhanced pollution sampled by the POLAR 6 aircraft when both were operating in the same region of Lancaster Sound during the campaigns.

  8. Biological activity and molecular docking studies of curcumin-related α,β-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Unsal Tan, Oya; Sher, Muhammad; Naeem-Ul-Hassan, M; Qin, Hua-Li

    2014-06-18

    Hyperpigmentation in human skin and enzymatic browning in fruits, which are caused by tyrosinase enzyme, are not desirable. Investigations in the discovery of tyrosinase enzyme inhibitors and search for improved cytotoxic agents continue to be an important line in drug discovery and development. In present work, a new series of 30 compounds bearing α,β-unsaturated carbonyl moiety was designed and synthesized following curcumin as model. All compounds were evaluated for their effects on human cancer cell lines and mushroom tyrosinase enzyme. Moreover, the structure-activity relationships of these compounds are also explained. Molecular modeling studies of these new compounds were carried out to explore interactions with tyrosinase enzyme. Synthetic curcumin-like compounds (2a-b) were identified as potent anticancer agents with 81-82% cytotoxicity. Five of these newly synthesized compounds (1a, 8a-b, 10a-b) emerged to be the potent inhibitors of mushroom tyrosinase, providing further insight into designing compounds useful in fields of food, health, and agriculture. PMID:24901506

  9. Full genomic characterization of a novel genotype combination, G4P[14], of a human rotavirus strain from Barbados.

    PubMed

    Tam, Ka Ian; Roy, Sunando; Esona, Mathew D; Jones, Starlene; Sobers, Stephanie; Morris-Glasgow, Victoria; Rey-Benito, Gloria; Gentsch, Jon R; Bowen, Michael D

    2014-12-01

    Since 2004, the Pan American Health Organization (PAHO) has carried out rotavirus surveillance in Latin America and the Caribbean. Here we report the characterization of human rotavirus with the novel G-P combination of G4P[14], detected through PAHO surveillance in Barbados. Full genome sequencing of strain RVA/Human-wt/BRB/CDC1133/2012/G4P[14] revealed that its genotype is G4-P[14]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The possession of a Genogroup 1 (Wa-like) backbone distinguishes this strain from other P[14] rotavirus strains. Phylogenetic analyses suggested that this strain was likely generated by genetic reassortment between human, porcine and possibly other animal rotavirus strains and identified 7 lineages within the P[14] genotype. The results of this study reinforce the potential role of interspecies transmission in generating human rotavirus diversity through reassortment. Continued surveillance is important to determine if rotavirus vaccines will protect against strains that express the P[14] rotavirus genotype.

  10. Identification of nor-β-lapachone derivatives as potential antibacterial compounds against Enterococcus faecalis clinical strain.

    PubMed

    Lourenço, André L; Abreu, Paula A; Leal, Bruno; da Silva Júnior, Eufrânio N; Pinto, Antonio V; Pinto, Maria do Carmo F R; Souza, Alessandra M T; Novais, Juliana S; Paiva, Marcela B; Cabral, Lucio M; Rodrigues, Carlos R; Ferreira, Vitor F; Castro, Helena C

    2011-02-01

    A broad-spectrum antibiotic therapy has led to medical complications and emergence of multiresistant bacteria including Enterococcus faecalis. In this study, we designed, synthesized, and evaluated the antibacterial activity of 13 nor-β-lapachone derivatives against a drug resistant E. faecalis strain. Two triazole substituted compounds (1e = 8 μg/ml and 1c = 16 μg/ml) and the non-substituted derivative (1a = 8 μg/ml) were promising compared to chloramphenicol (12 μg/ml), an antibiotic currently available in the market. We also performed a structure-activity relationship analysis using a molecular modeling approach that pointed the low HOMO energy values; HOMO density concentrated on the nor-β-lapachone ring, lipophilicity, solubility and number HBA as important stereoelectronic features for the antibacterial profile. In addition the triazole compounds presented low theoretical toxicity profile, and drug-score higher than commercial antibiotics also fulfilling the Lipinski "Rule of Five", which pointed them as promising candidates for further studies in infections caused by multiresistant E. faecalis hospital strains.

  11. Novel porcine-like human G26P[19] rotavirus identified in hospitalized paediatric diarrhoea patients in Ho Chi Minh City, Vietnam.

    PubMed

    My, Phan Vu Tra; Rabaa, Maia A; Donato, Celeste; Cowley, Daniel; Phat, Voong Vinh; Dung, Tran Thi Ngoc; Anh, Pham Hong; Vinh, Ha; Bryant, Juliet E; Kellam, Paul; Thwaites, Guy; Woolhouse, Mark E J; Kirkwood, Carl D; Baker, Stephen

    2014-12-01

    During a hospital-based diarrhoeal disease study conducted in Ho Chi Minh City, Vietnam from 2009 to 2010, we identified four symptomatic children infected with G26P[19] rotavirus (RV)--an atypical variant that has not previously been reported in human gastroenteritis. To determine the genetic structure and investigate the origin of this G26P[19] strain, the whole genome of a representative example was characterized, revealing a novel genome constellation: G26-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1. The genome segments were most closely related to porcine (VP7, VP4, VP6 and NSP1) and Wa-like porcine RVs (VP1-3 and NSP2-5). We proposed that this G26P[19] strain was the product of zoonotic transmission coupled with one or more reassortment events occurring in human and/or animal reservoirs. The identification of such strains has potential implications for vaccine efficacy in south-east Asia, and outlines the utility of whole-genome sequencing for studying RV diversity and zoonotic potential during disease surveillance. PMID:25121549

  12. Full genomic characterization of a novel genotype combination, G4P[14], of a human rotavirus strain from Barbados.

    PubMed

    Tam, Ka Ian; Roy, Sunando; Esona, Mathew D; Jones, Starlene; Sobers, Stephanie; Morris-Glasgow, Victoria; Rey-Benito, Gloria; Gentsch, Jon R; Bowen, Michael D

    2014-12-01

    Since 2004, the Pan American Health Organization (PAHO) has carried out rotavirus surveillance in Latin America and the Caribbean. Here we report the characterization of human rotavirus with the novel G-P combination of G4P[14], detected through PAHO surveillance in Barbados. Full genome sequencing of strain RVA/Human-wt/BRB/CDC1133/2012/G4P[14] revealed that its genotype is G4-P[14]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The possession of a Genogroup 1 (Wa-like) backbone distinguishes this strain from other P[14] rotavirus strains. Phylogenetic analyses suggested that this strain was likely generated by genetic reassortment between human, porcine and possibly other animal rotavirus strains and identified 7 lineages within the P[14] genotype. The results of this study reinforce the potential role of interspecies transmission in generating human rotavirus diversity through reassortment. Continued surveillance is important to determine if rotavirus vaccines will protect against strains that express the P[14] rotavirus genotype. PMID:25251674

  13. The response of hepatic transcriptome to dietary cholesterol in Prague hereditary hypercholesterolemic (PHHC) rat.

    PubMed

    Vlachová, M; Heczková, M; Jirsa, M; Poledne, R; Kovář, J

    2014-01-01

    To understand the pathogenesis of hypercholesterolemia in Prague hereditary hypercholesterolemic (PHHC) rat, we analyzed the response of hepatic transcriptome to dietary cholesterol in PHHC and control Wistar rats. Male PHHC and Wistar rats were fed chow (C), 5 % fat (palm kernel oil) (CF) or 1 % cholesterol + 5 % fat (CHOL) diet for three weeks. Hepatic transcriptome was analyzed using Affymetrix GeneChip arrays. No differences were found in the effect of both control diets (C and CF) on lipid metabolism and gene expression of 6500 genes. Therefore, these data were pooled for further analysis. Dietary cholesterol induced accumulation of cholesterol and triacylglycerols in the liver in both strains and hypercholesterolemia in PHHC rats. However, there were no differences in response of hepatic transcriptome to CHOL diet. On the other hand, several genes were found to be differently expressed between both strains independently of the diet. Two of those genes, Apof and Aldh1a7, were studied in more detail, and their role in pathogenesis of hypercholesterolemia in PHHC rats could not been corroborated. In conclusion, the hypercholesterolemia in PHHC rats is due to physiological response of hepatic transcriptome to dietary cholesterol in different genetic background.

  14. Serotonin differentially modulates the intrinsic properties of spinal motoneurons from the adult turtle

    PubMed Central

    Perrier, Jean-François; Cotel, Florence

    2008-01-01

    This report considers serotonergic (5-HT) effects on spinal motoneurons, reviewing previous data and presenting a new study showing distinct effects of two 5-HT receptor subtypes. We previously investigated the effects of 5-HT on motoneurons in a slice preparation from the spinal cord of the adult turtle. In agreement with previous studies, we had found that 5-HT applied to the extracellular medium promoted a voltage sensitive plateau potential. However, we also reported that this effect was only observed in half of the motoneurons; 5-HT inhibited the firing of the other half of the motoneurons recorded from. To investigate the reasons for this, we applied 5-HT focally by means of the microiontophoresis technique. Facilitation of plateau potentials was observed when 5-HT was released at sites throughout the somatodendritic region. However, motoneurons were inhibited by 5-HT when selectively applied in the perisomatic region. These two effects could be induced in the same motoneuron. With pharmacological tools, we demonstrate here that the facilitation of plateau potentials is mediated by 5-HT2 receptors and the inhibitory effect is due to the activation of 5-HT1A/7 receptors. PMID:18096602

  15. Breadboard of a Fourier-transform spectrometer for the radiation explorer in the far infrared atmospheric mission.

    PubMed

    Palchetti, Luca; Bianchini, Giovanni; Castagnoli, Francesco; Carli, Bruno; Serio, Carmine; Esposito, Francesco; Cuomo, Vincenzo; Rizzi, Rolando; Maestri, Tiziano

    2005-05-10

    In preparation for a possible space mission, a breadboard version named REFIR-BB of the Radiation Explorer in the Far Infrared (REFIR) instrument has been built. The REFIR is a Fourier-transform spectrometer with a new optical layout operating in the spectral range 100-1100 cm(-1) with a resolution of 0.5 cm(-1), a 7-s acquisition time, and a signal-to-noise ratio of better than 100. Its mission is the spectral measurement in the far infrared of the Earth's outgoing emission, with particular attention to the long-wavelength spectral region, which is not covered by either current or planned space missions. This measurement is of great importance for deriving an accurate estimate of the radiation budget in both clear and cloudy conditions. The REFIR-BB permits the trade-off among all instrument parameters to be studied, the optical layout to be tested, and the data-acquisition strategy to be optimized. The breadboard could be used for high-altitude ground-based campaigns or could be flown for test flights on aircraft or balloon stratospheric platforms. The breadboard's design and the experimental results are described, with particular attention to the acquisition strategy and characterization of the interferometer. Tests were performed both in laboratory conditions and in vacuum. Notwithstanding a loss of efficiency above 700 cm(-1) caused by the poor performance of the photolithographic polarizers used as beam splitters, the results demonstrate the feasibility of using the spectrometer for space applications.

  16. Methylmercury content of eggs in yellow perch related to maternal exposure in four Wisconsin lakes

    USGS Publications Warehouse

    Hammerschmidt, Chad R.; Wiener, James G.; Frazier, Brdaley E.; Rada, Ronald G.

    1999-01-01

    We examined the influence of maternal mercury and selected lacustrine variables on the mercury content of eggs from yellow perch (Perca flavescens). Total mercury, methylmercury, and inorganic mercury were determined in eggs and carcasses (less eggs) from three seepage lakes with a pH range of 6.1a??7.0 and a fourth lake in which pH was experimentally increased from 5.5 to 6.8 by addition of alkaline groundwater. The concentration of total mercury in eggs was strongly correlated with that in the maternal carcass. Concentrations and burdens of mercury in eggs and carcasses were inversely correlated with lake water pH, acid-neutralizing capacity, calcium, and dissolved organic carbon. In eggs containing more than 30 ng/g dry weight (4.5 ng/g wet weight) of total mercury, methylmercury averaged 91% of total mercury and ranged from 85% to 96%. Mean burdens of total mercury in individual eggs varied greatly among lakes (range, 2.3a??63 pg), and the egg mass averaged 1.9% of the whole-body burden. We conclude that exposure of the developing yellow perch embryo to methylmercury is strongly affected by maternal bioaccumulation, which can vary substantially among and within lakes; however, the toxicological significance of the observed exposure of embryos to methylmercury is unclear.

  17. Acute effects of alcohol on brain perfusion monitored with arterial spin labeling magnetic resonance imaging in young adults.

    PubMed

    Marxen, Michael; Gan, Gabriela; Schwarz, Daniel; Mennigen, Eva; Pilhatsch, Maximilian; Zimmermann, Ulrich S; Guenther, Matthias; Smolka, Michael N

    2014-03-01

    While a number of studies have established that moderate doses of alcohol increase brain perfusion, the time course of such an increase as a function of breath alcohol concentration (BrAC) has not yet been investigated, and studies differ about regional effects. Using arterial spin labeling (ASL) magnetic resonance imaging, we investigated (1) the time course of the perfusion increase during a 15-minute linear increase of BrAC up to 0.6 g/kg followed by a steady exposure of 100 minutes, (2) the regional distribution, (3) a potential gender effect, and (4) the temporal stability of perfusion effects. In 48 young adults who participated in the Dresden longitudinal study on alcohol effects in young adults, we observed (1) a 7% increase of global perfusion as compared with placebo and that perfusion and BrAC are tightly coupled in time, (2) that the increase reaches significance in most regions of the brain, (3) that the effect is stronger in women than in men, and (4) that an acute tolerance effect is not observable on the time scale of 2 hours. Larger studies are needed to investigate the origin and the consequences of the effect, as well as the correlates of inter-subject variations.

  18. Glucuronidation of the environmental oestrogen bisphenol A by an isoform of UDP-glucuronosyltransferase, UGT2B1, in the rat liver.

    PubMed Central

    Yokota, H; Iwano, H; Endo, M; Kobayashi, T; Inoue, H; Ikushiro, S; Yuasa, A

    1999-01-01

    Bisphenol A, an environmental oestrogenic chemical, was found to conjugate highly with glucuronic acid in male rat liver microsomes studied in vitro. In the various isoforms tested (1A1, 1A3, 1A5, 1A6, 1A7 and 2B1), glucuronidation of bisphenol A and of diethylstilboestrol, a synthetic crystalline compound possessing oestrogenic activity and known to be glucuronidated by liver microsomes, was catalysed by an isoform of UDP-glucuronosyltransferase (UGT), namely UGT2B1, which glucuronidates some endogenous androgens. UGT activity towards bisphenol A in liver microsomes and in UGT2B1 expressed in yeast AH22 cells (22.9 and 0.58 nmol/min per mg of microsomal proteins respectively) was higher than that towards diethylstilboestrol (75.0 and 4.66 pmol/min per mg of microsomal proteins respectively). UGT activities towards both bisphenol A and diethylstilboestrol were distributed mainly in the liver but were also observed at substantial levels in the kidney and testis. Northern blot analysis disclosed the presence of UGT2B1 solely in the liver, and about 65% of the male rat liver microsomal UGT activities towards bisphenol A were absorbed by the anti-UGT2B1 antibody. These results indicate that bisphenol A, in male rat liver, is glucuronidated by UGT2B1, an isoform of UGT. PMID:10333482

  19. Serotonin directly stimulates luteinizing hormone-releasing hormone release from GT1 cells via 5-HT7 receptors.

    PubMed

    Héry, M; François-Bellan, A M; Héry, F; Deprez, P; Becquet, D

    1997-10-01

    Luteinizing hormone-releasing hormone (LHRH release, which serves as the primary drive to the hypothalamic-pituitary gonadal axis, is controlled by many neuromediators. Serotonin has been implicated in this regulation. However, it is unclear whether the central effect of serotonin on LHRH secretion is exerted directly on LHRH neurosecretory neurons or indirectly via multisynaptic pathways. The present studies were undertaken in order to examine whether LHRH secretion from immortalized LHRH cell lines is directly regulated by serotonin and, if so, to identify the receptor subtype involved. 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A/7 receptor agonist, stimulated LHRH release from GT1-1 cells. This effect was blocked by ritanserin, a 5-HT2/7 receptor antagonist, but not by SDZ-216-525, a 5-HT1A antagonist. Basal LHRH release was not affected by the 5-HT2 agonist DOI. Reverse transcription and polymerase chain reaction technique (RT-PCR) was used in order to identify 5-HT1A and 5-HT7 receptor mRNA in immortalized LHRH cell lines. GT1-1 cells express mRNA for the 5-HT7, but not the 5-HT1A receptor subtypes. These results demonstrate a direct stimulatory effect of serotonin on LHRH release via 5-HT7 receptor.

  20. Effect of dietary eugenol on xenobiotic metabolism and mediation of UDP-glucuronosyltransferase and cytochrome P450 1A1 expression in rat liver.

    PubMed

    Iwano, Hidetomo; Ujita, Wakako; Nishikawa, Miyu; Ishii, Satomi; Inoue, Hiroki; Yokota, Hiroshi

    2014-03-01

    Xenobiotic-metabolizing enzymes (XMEs) play an important role in the elimination and detoxification of xenobiotics and drugs. A variety of natural dietary agents are known to protect against cancer by inducing XME. To elucidate the molecular mechanism of XME induction, we examined the effect of dietary eugenol (4-allyl-1-hydroxy-2-methoxybenzene) on xenobiotic metabolism. In this study, rats were administered dietary eugenol for 4 weeks to investigate the various effects of UDP-glucuronosyltransferase (UGT) and cytochrome P450 (CYP) expression. In rats administered dietary eugenol, expression levels of hepatic CYP1A 1 were reduced to 40% than of the controls, while expression of hepatic UGT1A6, UGT1A7 and UGT2B1 increased to 2-3 times than observed in the controls. Hepatic protein levels of UGT1A6 and 2B1 were also elevated in the eugenol-treated rats. These results suggest that the natural compound eugenol improves the xenobiotic-metabolizing systems that suppress and induce the expression of CYP1A1 and UGT, respectively.

  1. A cytotoxic meroterpenoid benzoquinone from roots of Cordia globosa.

    PubMed

    Alencar de Menezes, Jane Eire; Lemos, Telma Leda; Pessoa, Otília Deusdênia; Braz-Filho, Raimundo; Montenegro, Raquel C; Wilke, Diego Veras; Costa-Lotufo, Letícia V; Pessoa, Cláudia; de Moraes, Manoel Odorico; Silveira, Edilberto R

    2005-01-01

    (1a S*,1b S*,7a S*,8a S*)-4,5-Dimethoxy-1a,7a-dimethyl-1,1a,1b,2,7, 7a,8,8a-octahydrocyclopropa cyclopenta[1,2-b]naphthalene-3,6-dione (1), a new meroterpenoid benzoquinone, and microphyllaquinone (2), a known naphthoquinone, have been isolated from roots of Cordia globosa. Both structure determinations were performed by conventional spectroscopic methods, including inverse detection NMR techniques, and by comparison with data from the literature for related compounds. Compound 1 displayed considerable cytotoxic activity against several cancer cell lines with IC50 values in the range of 1.2 to 5.0 microg/mL. The cytotoxic activity seemed to be related to DNA synthesis inhibition, as revealed by the reduction of 5-bromo-2'-deoxyuridine incorporation, and apoptosis induction, as indicated by the acridine orange/ethidium bromide assay and morphological changes after 24 h of incubation on leukemic cells.

  2. Non-thermal Dupree diffusivity and shielding effects on atomic collisions in Lorentzian turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-05-01

    The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed. This research was supported by Nuclear Fusion Research Program through NRF funded by the Ministry of Science, ICT & Future Planning (Grant No. 2015M1A7A1A01002786).

  3. Passive cigarette smoke exposure during various periods of life, genetic variants, and breast cancer risk among never smokers.

    PubMed

    Anderson, Laura N; Cotterchio, Michelle; Mirea, Lucia; Ozcelik, Hilmi; Kreiger, Nancy

    2012-02-15

    The association between passive cigarette smoke exposure and breast cancer risk is inconclusive and may be modified by genotype. The authors investigated lifetime passive cigarette smoke exposures, 36 variants in 12 carcinogen-metabolizing genes, and breast cancer risk among Ontario, Canada, women who had never smoked (2003-2004). DNA (saliva) was available for 920 breast cancer cases and 960 controls. Detailed information about passive smoke exposure was collected for multiple age periods (childhood, teenage years, and adulthood) and environments (home, work, and social). Adjusted odds ratios and 95% confidence intervals were estimated by multivariable logistic regression, and statistical interactions were assessed using the likelihood ratio test. Among postmenopausal women, most associations between passive smoke and breast cancer risk were null, whereas among premenopausal women, nonsignificant positive associations were observed. Significant interactions were observed between certain types of passive smoke exposure and genetic variants in CYP2E1, NAT2, and UGT1A7. While these interactions were statistically significant, the magnitudes of the effect estimates were not consistent or easily interpretable, suggesting that they were perhaps due to chance. Although the results of this study were largely null, it is possible that premenopausal women exposed to passive smoke or carrying certain genetic variants may be at higher risk of breast cancer.

  4. Crystal structure and magnetic properties of the coupled spin dimer compound SrCu{sub 2}(TeO{sub 3}){sub 2}Cl{sub 2}

    SciTech Connect

    Takagi, Rie . E-mail: takagi@inorg.su.se; Johnsson, Mats . E-mail: matsj@inorg.su.se; Kremer, Reinhard K. . E-mail: rekre@fkf.mpg.de; Lemmens, Peter . E-mail: p.lemmens@tu-bs.de

    2006-12-15

    Single crystals of the strontium copper tellurium oxochloride SrCu{sub 2}(TeO{sub 3}){sub 2}Cl{sub 2} were synthesized via solid-gas reactions in sealed evacuated silica tubes. The compound crystallizes in the monoclinic system, space group P2{sub 1}, a=7.215(2), b=7.2759(15), c=8.239(2) A, {beta}=96.56(4){sup o}, Z=2. The building units are [SrO{sub 6}Cl{sub 2}] irregular polyhedra, [CuO{sub 4}] and [CuO{sub 3}Cl] square planes, [TeO{sub 3}E] tetrahedra and [TeO{sub 3+1}E] trigonal bipyramids; E being the 5s {sup 2} lone pair of Te(IV). The Cu atoms can be regarded as forming a chain of weakly connected dimers. The magnetic susceptibility of the compound shows a broad maximum typical for antiferromagnetic spin fluctuations with a non-magnetic ground state. A Heisenberg spin model with coupled s=1/2 dimers leads to a satisfactory fitting of the experimental data. - Graphical abstract: Corner sharing CuO{sub 3}Cl and CuO{sub 4} square-planes result in strongly coupled Cu-Cu dimers that are connected by weaker couplings to form a distorted honeycomb pattern of Cu atoms.

  5. Genetic data from Y chromosome STR and SNP loci in Ukrainian population.

    PubMed

    Mielnik-Sikorska, Marta; Daca, Patrycja; Woźniak, Marcin; Malyarchuk, Boris A; Bednarek, Jarosław; Dobosz, Tadeusz; Grzybowski, Tomasz

    2013-01-01

    We have tested a sample of 154 unrelated males from Lviv region (Ukraine) for 11 Y-chromosomal single nucleotide polymorphisms (SNPs) and 17 Y-chromosomal STR loci (DYS19, DYS385a, DYS385b, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, YGATA_H4.1). Haplotype and haplogroup diversity values were calculated for the population under study. Genetic distances (R(ST)) to 9 other Slavic populations were calculated based on 12 Y-STR loci. Haplotype frequencies and MDS plots were constructed based on genetic distances. Haplogroup frequency patterns revealed in Ukraine are similar to those characteristic of other European populations. However, it also allowed for identification a specific genetic component in Ukrainian sample which seems to originate from areas dwelled by Western Slavs, i.e. subhaplogroup R1a1a7, at frequency of 13.65%. Analysis of R(ST) distances and AMOVA revealed high level of heterogeneity between Slavic populations inhabiting the south and north part of Europe, determined geographically rather than by linguistic factors. It has also been found a closer similarity (in the values of R(ST)) between Ukrainian and Slovak populations than between Ukrainians and other Slavic population samples. PMID:22673612

  6. Dysregulations of intestinal and colonic UDP-glucuronosyltransferases in rats with type 2 diabetes.

    PubMed

    Xie, Hao; Sun, Shiqing; Cheng, Xuefang; Yan, Tingting; Zheng, Xiao; Li, Feiyan; Qi, Qu; Wang, Guangji; Hao, Haiping

    2013-01-01

    Diabetes mellitus is a chronic disease of complex metabolic disorder associated with various types of complications. UDP-glucuronosyltransferases (UGTs), the major phase II conjugation enzymes, mediate the metabolism of both drugs and endogenous metabolites that may raise great concerns in the condition of diabetes. The aim of this study was to determine whether diabetes could affect UGTs in the intestinal and colonic tract. A high-fat diet combined with low-dose streptozotocin was used to induce a type 2 diabetic model in rats. The mRNA levels and enzymatic activities of UGT1A1, -1A6, and -1A7 in the diabetic intestine and colon were higher than those in nondiabetic rats. In contrast, both the activity and mRNA level of UGT2B1 in diabetic rats were lower than those in nondiabetic rats. Notably, the diabetic intestine and colon exhibited an inflammatory state with increased pro-inflammatory cytokines. Various transcriptional factors involved in UGT regulation were unanimously upregulated in the diabetic intestine and colon. These findings strongly suggest that the regulating pathways of the UGT1 family are adaptively upregulated in the diabetic gastrointestinal tract. Given the essential regulatory role of the gastrointestinal site in drug disposition, such changes in UGTs may have a dynamic and complex impact on therapeutic drugs and endogenous metabolomes. PMID:23545594

  7. Crystal structure of the major peanut allergen Ara h 1.

    PubMed

    Cabanos, Cerrone; Urabe, Hiroyuki; Tandang-Silvas, Mary Rose; Utsumi, Shigeru; Mikami, Bunzo; Maruyama, Nobuyuki

    2011-10-01

    Ara h 1, a 7S globulin, is one of the three major peanut allergens. We previously reported the crystallization of the core region of recombinant Ara h 1. Here, we present the crystal structure of the Ara h 1 core at a resolution of 2.43 Å. We also assayed the Ara h 1 core thermal stability and compared its final structure against other 7S globulins. The Ara h 1 core has a thermal denaturation temperature of 88.3°C and a structure that is very similar to other 7S globulins. Previously identified linear IgE epitopes were also mapped on the three-dimensional structure. Most linear epitopes were found in the extended loop domains and the coils between the N- and C-terminal modules, while others were found in the less accessible β-sheets of the C-terminal core β-barrel domain of each monomer. Most of these epitopes become either slightly or significantly buried upon trimer formation, implying that allergen digestion in the gut is required for these epitopes to be accessible to immunoglobulins. Our findings also suggest that both intact and partially degraded allergens should be employed in future diagnostic and immunotherapeutic strategies. PMID:21903274

  8. New insights into nonradiative heating in late A star chromospheres

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Matthews, Lynn D.; Linsky, Jeffrey L.

    1995-01-01

    Using new and archival spectra from the Goddard High Resolution Spectrograph, we have searched for evidence of chromospheric and transition region emission in six stars of mid to late A spectral type. Two of the stars, alpha Aq1 (A7 IV-V) and alpha Cep (A7 IV-V), show emission in the C II 1335 A doublet, confirming the presence of hot plasma with temperatures comparable to that of the solar transition region. Using radiative equilibrium photospheric models, we estimate the net surface fluxes in the CII emission line to be 9.4 x 10(exp 4) ergs/sq cm/s for alpha Aq1 and 6.5 x 10(exp 4)ergs/sq cm/s for alpha Cep. These are comparable to fluxes observed in stars as hot as approximately 8000 K (B-V = 0.22). We find no evidence for the blueshifted emission reported by Simon et al. (1994). We estimate the basal flux level to be about 30% of that seen in early F stars, and that the bulk of the emission is not basal in origin. We conclude that the basal flux level drops rapidly for B-V approximately less than 0.3, but that magnetic activity may persist to B-v as small as 0.22.

  9. The crystal structure, vibrational spectra, thermal behaviour and second harmonic generation of aminoguanidinium(1+) hydrogen L-tartrate monohydrate

    NASA Astrophysics Data System (ADS)

    Macháčková, Zorka; Němec, Ivan; Teubner, Karel; Němec, Petr; Vaněk, Přemysl; Mička, Zdeněk

    2007-04-01

    Aminoguanidinium(1+) hydrogen L-tartrate monohydrate was prepared by crystallisation from aqueous solution and X-ray structural analysis was carried out. The substance crystallises in the orthorhombic system in space group P2 12 12 1, a = 7.1380(2) Å, b = 9.9700(4) Å, c = 14.0790(6) Å, V = 1001.94(7) Å 3, Z = 4, R = 0.0271 for 2272 observed reflections. The crystal structure consists of a 3D framework formed by hydrogen tartrate anions and water molecules with incorporated aminoguanidinium(1+) cations connected by a system of hydrogen bonds. The FTIR and FT Raman spectra of natural and N,O-deuterated compounds were measured and discussed at laboratory temperature. DSC measurements were carried out in the temperature range from 95 to 380 K. A weak anomaly was observed at a temperature of 268 K. Quantitative measurements of second harmonic generation of powdered aminoguanidinium(1+) hydrogen tartrate monohydrate at 800 nm were performed relative to KDP and a relative efficiency of 14% was observed.

  10. Novel material for second harmonic generation: 3-Amino-1,2,4-triazolinium(1+) hydrogen L-tartrate

    NASA Astrophysics Data System (ADS)

    Matulková, Irena; Němec, Ivan; Císařová, Ivana; Němec, Petr; Mička, Zdeněk

    2007-05-01

    The X-ray structural analysis of 3-amino-1,2,4-triazolinium(1+) hydrogen L-tartrate has been carried out. This organic salt crystallises in the monoclinic space group P2 1, a = 7.7130(2) Å, b = 6.7690(2) Å, c = 9.2170(3) Å, β = 95.726(2)°, V = 478.81(2) Å 3, Z = 2, R = 0.0255 for 5922 observed reflections. The crystal structure is formed by a 3D network of hydrogen L-tartrate anions (interconnected by O-H ⋯O hydrogen bonds) with 3-amino-1,2,4-triazolinium(1+) cations located in the cavities of this network and connected with anions via N-H ⋯O and O-H ⋯N hydrogen bonds. The FTIR and FT Raman spectra were recorded, calculated and discussed. Quantitative measurements of second harmonic generation of powdered 3-amino-1,2,4-triazol-4-ium hydrogen L-tartrate at 800 nm were performed and a relative efficiency of 50% (compared to KDP) was observed.

  11. Psilocybin-induced stimulus control in the rat.

    PubMed

    Winter, J C; Rice, K C; Amorosi, D J; Rabin, R A

    2007-10-01

    Although psilocybin has been trained in the rat as a discriminative stimulus, little is known of the pharmacological receptors essential for stimulus control. In the present investigation rats were trained with psilocybin and tests were then conducted employing a series of other hallucinogens and presumed antagonists. An intermediate degree of antagonism of psilocybin was observed following treatment with the 5-HT(2A) receptor antagonist, M100907. In contrast, no significant antagonism was observed following treatment with the 5-HT(1A/7) receptor antagonist, WAY-100635, or the DA D(2) antagonist, remoxipride. Psilocybin generalized fully to DOM, LSD, psilocin, and, in the presence of WAY-100635, DMT while partial generalization was seen to 2C-T-7 and mescaline. LSD and MDMA partially generalized to psilocybin and these effects were completely blocked by M-100907; no generalization of PCP to psilocybin was seen. The present data suggest that psilocybin induces a compound stimulus in which activity at the 5-HT(2A) receptor plays a prominent but incomplete role. In addition, psilocybin differs from closely related hallucinogens such as 5-MeO-DMT in that agonism at 5-HT(1A) receptors appears to play no role in psilocybin-induced stimulus control.

  12. De Novo-Synthesized Retinoic Acid in Ovarian Antral Follicles Enhances FSH-Mediated Ovarian Follicular Cell Differentiation and Female Fertility.

    PubMed

    Kawai, Tomoko; Yanaka, Noriyuki; Richards, JoAnne S; Shimada, Masayuki

    2016-05-01

    Retinoic acid (RA) is the active form of vitamin A and is synthesized from retinol by two key enzymes, alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). As the physiological precursor of RA, retinol impacts female reproductive functions and fertility. The expression of Adh1 and Adh5 as well as Aldh1a1 and Aldh1a7 are significantly increased in the ovaries of mice treated with equine chorionic gonadotropin/FSH. The RA receptor is expressed and localized in granulosa cells and is activated by endogenous RA as indicated by LacZ expression in granulosa cells of RA-responsive transgene-LacZ transgenic mice (RA reporter mice). Coinjection of the ADH inhibitor, 4-methylpyrazole, with equine chorionic gonadotropin significantly decreases the number and developmental competence of oocytes ovulated in response to human chorionic gonadotropin/LH as compared with controls. Injections of RA completely reverse the effects of the inhibitor of ovulation and oocyte development. When mice were fed a retinol-free, vitamin A-deficient diet that significantly reduced the serum levels of retinol, the expression of the LH receptor (Lhcgr) was significantly lower in the ovaries of the vitamin A-deficient mice, and injections of human chorionic gonadotropin failed to induce genes controlling ovulation. These results indicate that ovarian de novo biosynthesis of RA is required for the follicular expression of Lhcgr in granulosa cells and their ability to respond to the ovulatory LH surge. PMID:27022678

  13. Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms

    PubMed Central

    2013-01-01

    Synopsis Although it is widely appreciated that cats respond differently to certain drugs when compared with other companion animal species, the causes of these differences are poorly understood. This review critically evaluates published evidence for altered drug effects in cats, focusing on pharmacokinetic differences between cats, dogs and humans, and the molecular mechanisms underlying these differences. Pharmacokinetic studies indicate that acetaminophen, propofol, carprofen, and acetylsalicylic acid (aspirin) are cleared significantly more slowly in cats versus dogs and humans. All of these drugs are metabolized by conjugation. Cats lack the major phenol UDP-glucuronosyltransferase (UGT) enzymes, including UGT1A6 and UGT1A9, that glucuronidate acetaminophen and propofol. Deficient glucuronidation may also explain slower carprofen clearance, although there is no direct evidence for this. However, poor aspirin clearance in cats appears to be mainly a consequence of slower glycine conjugation. Cats are also deficient in several other conjugation enzymes, including N-acetyltransferase (NAT) 2 and thiopurine methyltransferase (TMPT). NAT2 deficiency may be the reason cats are more prone to developing methemoglobinemia rather than hepatotoxicity from acetaminophen. TMPT deficiency may predispose cats to azathioprine toxicity. No evidence was found for slower elimination of drugs cleared by oxidation or unchanged into urine or bile. Piroxicam, an oxidized drug, was cleared much more rapidly in cats than humans and dogs, although the mechanism for this difference is unclear. More work is needed to better understand drug metabolism and disposition differences in cats, thereby enabling more rational prescribing of existing medications, and the development of safer drugs for this species. PMID:23890237

  14. Structural characterization and composition of Y-rich hainite from Sakharjok nepheline syenite pegmatite (Kola Peninsula, Russia)

    NASA Astrophysics Data System (ADS)

    Lyalina, L.; Zolotarev, A.; Selivanova, E.; Savchenko, Ye.; Zozulya, D.; Krivovichev, S.; Mikhailova, Yu.

    2015-08-01

    Y-rich hainite occurs in nepheline syenite pegmatite of the Sakharjok massif (Kola Peninsula, Russia). It forms euhedral prismatic crystals up to 2 mm in length as well as rims around an unidentified mineral phase (silicate of Ca, Y, Zr and Ti). The mineral is triclinic, space group P-1, a 9.6054(10), b 5.6928(6), c 7.3344(7) Å, α 89.903(2), β 101.082(2), γ 100.830(2)°, V 386.32(7) Å3, Z = 1. The calculated density is 3.39 g/cm3. Chemical composition of Sakharjok hainite is different from the previously published data by much higher Y and Nb contents up to 0.72 and 0.20 atoms per formula unit, respectively, by the two- to five-fold depletion in the LREEs and by the strong enrichment of the HREEs. From the single-crystal X-ray diffraction data, there is a significant amount of Y in the M1 site associated with the absence of Zr in it. Nb and Zr are concentrated in the M5 site substituting Ti. Combination of single-crystal X-ray diffraction data and electron microprobe data give the empirical formula (Ca1.04Y0.63REE0.24Mn0.02)∑1.93(Na0.92Ca0.77)∑1.69Ca2.00(Na0.65Ca0.10)∑0.75(Ti0.60Zr0.21Nb0.15Fe0.03)∑0.99((Si4.00Al0.02)∑4.02O14) (F2.61O1.39)∑4.00.

  15. Interaction profile of macitentan, a new non-selective endothelin-1 receptor antagonist, in vitro.

    PubMed

    Weiss, Johanna; Theile, Dirk; Rüppell, Maximilian Alexander; Speck, Tobias; Spalwisz, Adriana; Haefeli, Walter Emil

    2013-02-15

    Macitentan is a new non-selective endothelin-1 receptor antagonist under development for the treatment of pulmonary arterial hypertension. Information on the potential for macitentan to influence the pharmacokinetics of concomitantly administered drugs by inhibition or induction of drug metabolising enzymes or drug transporters is sparse. We therefore studied the potential of macitentan to inhibit and induce critical targets of drug metabolism and drug distribution (transporters) in vitro. Induction was quantified at the mRNA level by real-time RT-PCR in LS180 cells and revealed that macitentan significantly induced mRNA expression of cytochrome P450 3A4 (CYP3A4), P-glycoprotein (P-gp, ABCB1), solute carrier of organic anions 1B1 (SLCO1B1), and uridinediphosphate-glucuronosyltransferase 1A3 (UGT1A9). By means of a reporter gene assay our study establishes macitentan as a potent activator of pregnane X receptor (PXR). Inhibition of drug transporters was evaluated by using transporter over-expressing cell lines and fluorescent specific substrates of the respective transporters and revealed that macitentan is an inhibitor of P-gp, breast cancer resistance protein (BCRP), SLCO1B1, and SLCO1B3. Using commercial kits macitentan was demonstrated to be a moderate inhibitor of CYP3A4 and CYP2C19. In conclusion our data provide a comprehensive analysis of the interaction profile of macitentan with drug metabolising and transporting enzymes in vitro. Although macitentan has a similar or higher potency for induction and inhibition of drug metabolising enzymes and transporters than bosentan, its low plasma concentrations and minimal accumulation in the liver suggest that it will be markedly less prone to drug-drug interactions than bosentan.

  16. A windmill-shaped hexacopper(II) molecule built up by template core-controlled expansion of diaquatetrakis(mu2-adeninato-N3,N9)dicopper(II) with aqua(oxydiacetato)copper(II).

    PubMed

    González-Pérez, Josefa María; Alarcón-Payer, Carolina; Castiñeiras, Alfonso; Pivetta, Tiziana; Lezama, Luis; Choquesillo-Lazarte, Duane; Crisponi, Guido; Niclós-Gutiérrez, Juan

    2006-01-23

    The windmill-shaped hexanuclear copper(II) cluster {(H(2)O)(2)Cu(2)(mu(3)-(Ade)(4)[Cu(oda)(H(2)O)](4)}.6H(2)O (1-o) has been synthesized in aqueous medium by in situ core-controlled expansion of the neutral building block Cu(2)(mu(2)-N3,N9-Ade)(4)(H(2)O)(2) (2) with Cu(oda)(H(2)O) (3-o) (Ade = adeninato(1-) and oda = oxydiacetato(2-) ligands). Crystal data for 2-b (2.5H(2)O): triclinic, space group P(-)1; a = 9.374(1), b = 9.440(1), c = 10.326(1) A; alpha = 78.72(1), beta = 76.77(1), gamma = 63.51(1) degrees ; final R(1) = 0.059; T = 100(2) K. Crystal data for 1-o: monoclinic, space group P2(1)/n; a = 15.203(2), b = 10.245(1), c = 19.094(2) A; beta = 101.61(1) degrees ; final R(1) = 0.049; T = 293(2) K. The X-shaped hexanuclear molecule consists of a central core (2) and four terminal arms (3-o) linked together by bridging mu(3)-N3,N7,N9-Ade ligands. There are three crystallographic independent metal atoms (two terminals, one central). All Cu(II) atoms exhibit a 4 + 1 coordination, of which one is an aqua apical ligand. The basal coordination sets complete the CuN(4) + O or CuO(3)N + O chromophores for the central or terminal metal atoms, respectively. Thermal stability and spectral and magnetic properties were also studied. Analogous compounds to 1-o with tridentate or tripodal tetradentate ligands L(2-), instead of oda, have also been synthesized.

  17. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug–Drug Interactions

    PubMed Central

    Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil

    2016-01-01

    Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug–drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug–drug interactions. PMID:26927160

  18. Inhibition of UDP-Glucuronosyltransferase (UGT) Isoforms by Arctiin and Arctigenin.

    PubMed

    Zhang, Hui; Zhao, Zhenying; Wang, Tao; Wang, Yijia; Cui, Xiao; Zhang, Huijuan; Fang, Zhong-Ze

    2016-07-01

    Arctiin is the major pharmacological ingredient of Fructus Arctii, and arctigenin is the metabolite of arctiin formed via the catalysis of human intestinal bacteria. The present study aims to investigate the inhibition profile of arctiin and arctigenin on important phase II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs), indicating the possible herb-drug interaction. In vitro screening experiment showed that 100 μM of arctiin and arctigenin inhibited the activity of UGT1A3, 1A9, 2B7, and 2B15. Homology modeling-based in silico docking of arctiin and arctigenin into the activity cavity of UGT2B15 showed that hydrogen bonds and hydrophobic interactions contributed to the strong binding free energy of arctiin (-8.14 kcal/mol) and arctigenin (-8.43 kcal/mol) with UGT2B15. Inhibition kinetics study showed that arctiin and arctigenin exerted competitive and noncompetitive inhibition toward UGT2B15, respectively. The inhibition kinetic parameters (Ki ) were calculated to be 16.0 and 76.7 μM for the inhibition of UGT2B15 by arctiin and arctigenin, respectively. Based on the plasma concentration of arctiin and arctigenin after administration of 100 mg/kg of arctiin, the [I]/Ki values were calculated to be 0.3 and 0.007 for arctiin and arctigenin, respectively. Based on the inhibition evaluation standard ([I]/Ki  < 0.1, low possibility; 0.1 < [I]/Ki  < 1, medium possibility; [I]/Ki  > 1, high possibility), arctiin might induce drug-drug interaction with medium possibility. Based on these results, clinical monitoring the utilization of Fructus Arctii is very important and necessary. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Interaction of a rhizobial DNA-binding protein with the promoter region of a plant leghemoglobin gene

    SciTech Connect

    Welters, P.; Metz, B.; Felix, G.; Palme, K. ); Szczyglowski, K. ); Bruijn, F.J. de Michigan State Univ., East Lansing, MI )

    1993-08-01

    A nucleotide sequence was identified approximately 650 bp upstream of the Sesbania rostrata leghemoglobin gene Srglb3 start codon, which interacts specifically with a proteinaceous DNA-binding factor found in nodule extracts but not in extracts from leaves or root. The binding site for this factor was delimited using footprinting techniques. The DNA-binding activity of this factor was found to be heat stable, dependent on divalent cations, and derived from the (infecting) Azorhizobium caulinodans bacteria or bacteroids (A. caulinodans bacterial binding factor 1, AcBBF1). A 9- to 10-kD protein was isolated from a free-living culture of A. caulinodans that co-purifies with the DNA-binding activity (A. caulinodans bacterial binding protein 1, AcBBP1) and interacts specifically with its target (S. rostrata bacterial binding site 1, SrBBS1). The amino acid sequence of the N-terminal 27 residues of AcBBP1 was determined and was found to share significant similarity (46% identity; 68% similarity) with a domain of the herpes simplex virus major DNA-binding protein infected cell protein 8(ICP8). An insertion mutation in the SrBBS1 was found to result in a substantial reduction of the expression of a Srglb3-gus reporter gene fusion in nodules of transgenic Lotus corniculatus plants, suggesting a role for this element in Srglb3 promoter activity. Based on these results, the authors propose that (a) bacterial transacting factor(s) may play a role in infected cell-specific expression of the symbiotically induced plant lb genes. 70 refs., 11 figs.

  20. Mutations in the β-tubulin binding site for peloruside A confer resistance by targeting a cleft significant in side chain binding

    PubMed Central

    Begaye, Adrian; Trostel, Shana; Zhao, Zhiming; Taylor, Richard E; Schriemer, David C

    2011-01-01

    Peloruside A is a microtubule-stabilizing macrolide that binds to β-tubulin at a site distinct from the taxol site. The site was previously identified by H-D exchange mapping and molecular docking as a region close to the outer surface of the microtubule and confined in a cavity surrounded by a continuous loop of protein folded so as to center on Y340. We have isolated a series of peloruside A-resistant lines of the human ovarian carcinoma cell line A2780(1A9) to better characterize this binding site and the consequences of altering residues in it. Four resistant lines (Pel A-D) are described with single-base mutations in class I β-tubulin that result in the following substitutions: R306H, Y340S, N337D and A296S in various combinations. The mutations are localized to peptides previously identified by Hydrogen-Deuterium exchange mapping, and center on a cleft in which the drug side chain appears to dock. The Pel lines are 10–15-fold resistant to peloruside A and show cross resistance to laulimalide but not to any other microtubule stabilizers. They show no cross-sensitivity to any microtubule destabilizers, nor to two drugs with targets unrelated to microtubules. Peloruside A induces G2/M arrest in the Pel cell lines at concentrations 10–15 times that required in the parental line. The cells show notable changes in morphology compared with the parental line. PMID:21926482

  1. Metabolism and pharmacokinetics of 8-hydroxypiperidinylmethyl-baicalein (BA-j) as a novel selective CDK1 inhibitor in monkey.

    PubMed

    Guo, Hong-Min; Sun, Yu-Ming; Zhang, Shi-Xuan; Ju, Xiu-Lan; Xie, Ai-Yun; Li, Jing; Zou, Liang; Sun, Xiao-Dan; Li, Hai-Liang; Zheng, Yang

    2015-12-01

    Cyclin-dependent kinase 1 (CDK1) is the only necessary CDK in the cell proliferation process and a new target in the research and development of anti-cancer drugs. 8-Hydroxypiperidinemethyl-baicalein (BA-j) is a Mannich base derivative of baicalein (BA) isolated from Scutellaria baicalensis, as a novel selective CDK1 inhibitor. 12 metabolites of BA-j in the monkey urine were identified by LC-MS-MS and (1)H NMR. The major metabolic pathways of BA-j, by capturing oxygen free radicals ((.)O2(-)) and releasing peroxides (H2O2), are degraded into active intermediate metabolite dihydroflavonol, then into main metabolite M179 by Shiff reaction, second metabolite M264 by sulfation, trace amount of metabolite M559 by glucuronidation UGT1A9, and without metabolism by CYP3A4. The metabolic process of BA-j by regulating intracellular reactive oxygen species (ROS) was related with BA-j selectively inducing apoptosis in cancer cells. Pharmacokinetics of 10mg/kg oral BA-j in monkey by HPLC-UV was best fitted to a two-compartment open model, with t1/2(β) of 4.2h, Cmax 25.4μM at 2h, and Vd 12.6L, meaning the drug distributing widely in body fluids with no special selectivity to certain tissues, and being able to permeate through the blood-brain barrier. The protein binding rate of BA-j was 91.8%. BA-j has excellent druggability for oral administration or injection, and it may be developed into a novel anti-cancer drug as a selective CDK1 inhibitor.

  2. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5'-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    PubMed

    Kwon, Soon-Sang; Kim, Ju-Hyun; Jeong, Hyeon-Uk; Cho, Yong Yeon; Oh, Sei-Ryang; Lee, Hye Suk

    2016-01-01

    Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca(2+)-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes of human liver microsomes to determine if mechanistic aschantin-enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4'-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4'-hydroxylation, and CYP3A4-mediated midazolam 1'-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1'-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4. PMID:27128896

  3. Farnesol is glucuronidated in human liver, kidney and intestine in vitro, and is a novel substrate for UGT2B7 and UGT1A1

    PubMed Central

    2004-01-01

    Farnesol is an isoprenoid found in many aromatic plants and is also produced in humans, where it acts on numerous nuclear receptors and has received considerable attention due to its apparent anticancer properties. Although farnesol has been studied for over 30 years, its metabolism has not been well characterized. Recently, farnesol was shown to be metabolized by cytochromes P450 in rabbit; however, neither farnesol hydroxylation nor glucuronidation in humans have been reported to date. In the present paper, we show for the first time that farnesol is metabolized to farnesyl glucuronide, hydroxyfarnesol and hydroxyfarnesyl glucuronide by human tissue microsomes, and we identify the specific human UGTs (uridine diphosphoglucuronosyltransferases) involved. Farnesol metabolism was examined by a sensitive LC (liquid chromatography)–MS/MS method. Results indicate that farnesol is a good substrate for glucuronidation in human liver, kidney and intestine microsomes (values in nmol/min per mg). Initial analysis using expressed human UGTs indicated that UGTs 1A1 and 2B7 were primarily responsible for glucuronidation in vitro, with significantly lower activity for all the other UGTs tested (UGTs 1A3, 1A4, 1A6, 1A9 and 2B4). Kinetic analysis and inhibition experiments indicate that, in liver microsomes, UGT1A1 is primarily responsible for farnesol glucuronidation; however, in intestine microsomes, UGT2B7 is probably the major isoform involved, with a very-low-micromolar Km. We also show the first direct evidence that farnesol can be metabolized to hydroxyfarnesol by human liver microsomes and that hydroxyfarnesol is metabolized further to hydroxyfarnesyl glucuronide. Thus glucuronidation may modulate the physiological and/or pharmacological properties of this potent signalling molecule. PMID:15320866

  4. Inhibition of UDP-Glucuronosyltransferase (UGT) Isoforms by Arctiin and Arctigenin.

    PubMed

    Zhang, Hui; Zhao, Zhenying; Wang, Tao; Wang, Yijia; Cui, Xiao; Zhang, Huijuan; Fang, Zhong-Ze

    2016-07-01

    Arctiin is the major pharmacological ingredient of Fructus Arctii, and arctigenin is the metabolite of arctiin formed via the catalysis of human intestinal bacteria. The present study aims to investigate the inhibition profile of arctiin and arctigenin on important phase II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs), indicating the possible herb-drug interaction. In vitro screening experiment showed that 100 μM of arctiin and arctigenin inhibited the activity of UGT1A3, 1A9, 2B7, and 2B15. Homology modeling-based in silico docking of arctiin and arctigenin into the activity cavity of UGT2B15 showed that hydrogen bonds and hydrophobic interactions contributed to the strong binding free energy of arctiin (-8.14 kcal/mol) and arctigenin (-8.43 kcal/mol) with UGT2B15. Inhibition kinetics study showed that arctiin and arctigenin exerted competitive and noncompetitive inhibition toward UGT2B15, respectively. The inhibition kinetic parameters (Ki ) were calculated to be 16.0 and 76.7 μM for the inhibition of UGT2B15 by arctiin and arctigenin, respectively. Based on the plasma concentration of arctiin and arctigenin after administration of 100 mg/kg of arctiin, the [I]/Ki values were calculated to be 0.3 and 0.007 for arctiin and arctigenin, respectively. Based on the inhibition evaluation standard ([I]/Ki  < 0.1, low possibility; 0.1 < [I]/Ki  < 1, medium possibility; [I]/Ki  > 1, high possibility), arctiin might induce drug-drug interaction with medium possibility. Based on these results, clinical monitoring the utilization of Fructus Arctii is very important and necessary. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27145339

  5. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes.

    PubMed

    Cho, Yong-Yeon; Jeong, Hyeon-Uk; Kim, Jeong-Han; Lee, Hye Suk

    2014-01-01

    Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA) levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase 2A1 (SULT2A1), were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 μM) increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5-50 μM) did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19) or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1) in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1'-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans.

  6. In vitro characterization of glucuronidation of vanillin: identification of human UDP-glucuronosyltransferases and species differences.

    PubMed

    Yu, Jian; Han, Jing-Chun; Hua, Li-Min; Gao, Ya-Jie

    2013-09-01

    Vanillin is a food flavoring agent widely utilized in foods, beverages, drugs, and perfumes and has been demonstrated to exhibit multiple pharmacological activities. Given the importance of glucuronidation in the metabolism of vanillin, the UDP-glucuronosyltransferase conjugation pathway of vanillin was investigated in this study. Vanillin glucuronide was identified by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and a hydrolysis reaction catalyzed by β-glucuronidase. The kinetic study showed that vanillin glucuronidation by HLMs and HIMs followed Michaelis-Menten kinetics and the kinetic parameters were as follows: 134.9 ± 13.5 μM and 81.3 ± 11.3 μM for K(m) of HLMs and HIMs, 63.8 ± 2.0 nmol/min/mg pro and 13.4 ±2.0 nmol/min/mg pro for Vmax of HLMs and HIMs. All UDP-glucuronosyltransferase (UGT) isoforms except UGT1A4, 1A9, and 2B7 showed the capability to glucuronidate vanillin, and UGT1A6 exerted the higher V(max)/K(m) values than other UGT isoforms for the glucuronidation of vanillin when assuming expression of isoforms is similar in recombinant UGTs. Kinetic analysis using liver microsomes from six studied speices indicated that vanillin had highest affinity for the monkey liver microsomes enzyme (K(m)  = 25.6 ± 3.2 μM) and the lowest affinity for the mice liver microsomes enzyme (K(m)  = 149.1 ± 18.4 μM), and intrinsic clearance was in the following order: monkey > dog > minipig > mice > rat ~ human. These data collectively provided important information for understanding glucuronidation of vanillin.

  7. Candidate Gene Polymorphisms in Patients with Acetaminophen-Induced Acute Liver Failure

    PubMed Central

    Peter, Inga; Hazarika, Suwagmani; Vasiadi, Magdalini; Greenblatt, David J.; Lee, William M.

    2014-01-01

    Acetaminophen is a leading cause of acute liver failure (ALF). Genetic differences might predispose some individuals to develop ALF. In this exploratory study, we evaluated genotype frequency differences among patients enrolled by the ALF Study Group who had developed ALF either intentionally from a single-time-point overdose of acetaminophen (n = 78), unintentionally after chronic high doses of acetaminophen (n = 79), or from causes other than acetaminophen (n = 103). The polymorphisms evaluated included those in genes encoding putative acetaminophen-metabolizing enzymes (UGT1A1, UGT1A6, UGT1A9, UGT2B15, SULT1A1, CYP2E1, and CYP3A5) as well as CD44 and BHMT1. Individuals carrying the CYP3A5 rs776746 A allele were overrepresented among ALF patients who had intentionally overdosed with acetaminophen, with an odds ratio of 2.3 (95% confidence interval, 1.1–4.9; P = 0.034) compared with all other ALF patients. This finding is consistent with the enhanced bioactivation of acetaminophen by the CYP3A5 enzyme. Persons homozygous for the CD44 rs1467558 A allele were also overrepresented among patients who had unintentionally developed ALF from chronic acetaminophen use, with an odds ratio of 4.0 (1.0–17.2, P = 0.045) compared with all other ALF subjects. This finding confirms a prior study that found elevated serum liver enzyme levels in healthy volunteers with the CD44 rs1467558 AA genotype who had consumed high doses of acetaminophen for up to 2 weeks. However, both genetic associations were considered relatively weak, and they were not statistically significant after adjustment for multiple comparisons testing. Nevertheless, both CYP3A5 rs776746 and CD44 rs1467558 warrant further investigation as potential genomic markers of enhanced risk of acetaminophen-induced ALF. PMID:24104197

  8. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor.

    PubMed

    Reese, Melinda J; Savina, Paul M; Generaux, Grant T; Tracey, Helen; Humphreys, Joan E; Kanaoka, Eri; Webster, Lindsey O; Harmon, Kelly A; Clarke, James D; Polli, Joseph W

    2013-02-01

    Dolutegravir (DTG; S/GSK1349572) is a potent HIV-1 integrase inhibitor with a distinct resistance profile and a once-daily dose regimen that does not require pharmacokinetic boosting. This work investigated the in vitro drug transport and metabolism of DTG and assessed the potential for clinical drug-drug interactions. DTG is a substrate for the efflux transporters P-glycoprotein (Pgp) and human breast cancer resistance protein (BCRP). Its high intrinsic membrane permeability limits the impact these transporters have on DTG's intestinal absorption. UDP-glucuronosyltransferase (UGT) 1A1 is the main enzyme responsible for the metabolism of DTG in vivo, with cytochrome P450 (P450) 3A4 being a notable pathway and UGT1A3 and UGT1A9 being only minor pathways. DTG demonstrated little or no inhibition (IC(50) values > 30 μM) in vitro of the transporters Pgp, BCRP, multidrug resistance protein 2, organic anion transporting polypeptide 1B1/3, organic cation transporter (OCT) 1, or the drug metabolizing enzymes CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4, UGT1A1, or 2B7. Further, DTG did not induce CYP1A2, 2B6, or 3A4 mRNA in vitro using human hepatocytes. DTG does inhibit the renal OCT2 (IC(50) = 1.9 μM) transporter, which provides a mechanistic basis for the mild increases in serum creatinine observed in clinical studies. These in vitro studies demonstrate a low propensity for DTG to be a perpetrator of clinical drug interactions and provide a basis for predicting when other drugs could result in a drug interaction with DTG. PMID:23132334

  9. Evaluation of the in vitro/in vivo drug interaction potential of BST204, a purified dry extract of ginseng, and its four bioactive ginsenosides through cytochrome P450 inhibition/induction and UDP-glucuronosyltransferase inhibition.

    PubMed

    Zheng, Yu Fen; Bae, Soo Hyeon; Choi, Eu Jin; Park, Jung Bae; Kim, Sun Ok; Jang, Min Jung; Park, Gyu Hwan; Shin, Wan Gyoon; Oh, Euichaul; Bae, Soo Kyung

    2014-06-01

    We evaluated the potential of BST204, a purified dry extract of ginseng, to inhibit or induce human liver cytochrome P450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) in vitro to assess its safety. In vitro drug interactions of four bioactive ginsenosides of BST204, S-Rg3, R-Rg3, S-Rh2, and R-Rh2, were also evaluated. We demonstrated that BST204 slightly inhibited CYP2C8, CYP2D6, CYP2C9, and CYP2B6 activities with IC50 values of 17.4, 26.8, 31.5, and 49.7μg/mL, respectively. BST204 also weakly inhibited UGT1A1, UGT1A9, and UGT2B7 activities with IC50 values of 14.5, 26.6, and 31.5μg/mL, respectively. The potential inhibition by BST204 of the three UGT activities might be attributable to S-Rg3, at least in part, as its inhibitory pattern was similar to that of BST204. However, BST204 showed no time-dependent inactivation of the nine CYPs studied. In addition, BST204 did not induce CYP1A2, 2B6, or 3A4/5. On the basis of an in vivo interaction studies, our data strongly suggest that BST204 is unlikely to cause clinically significant drug-drug interactions mediated via inhibition or induction of most CYPs or UGTs involved in drug metabolism in vivo. Our findings offer a clearer understanding and possibility to predict drug-drug interactions for the safe use of BST204 in clinical practice. PMID:24632066

  10. Metabolic drug-drug interaction potential of macrolactin A and 7-O-succinyl macrolactin A assessed by evaluating cytochrome P450 inhibition and induction and UDP-glucuronosyltransferase inhibition in vitro.

    PubMed

    Bae, Soo Hyeon; Kwon, Min Jo; Park, Jung Bae; Kim, Doyun; Kim, Dong-Hee; Kang, Jae-Seon; Kim, Chun-Gyu; Oh, Euichaul; Bae, Soo Kyung

    2014-09-01

    Macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), polyene macrolides containing a 24-membered lactone ring, show antibiotic effects superior to those of teicoplanin against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. MA and SMA are currently being evaluated as antitumor agents in preclinical studies in Korea. We evaluated the potential of MA and SMA for the inhibition or induction of human liver cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGTs) in vitro to assess their safety as new molecular entities. We demonstrated that MA and SMA are potent competitive inhibitors of CYP2C9, with Ki values of 4.06 μM and 10.6 μM, respectively. MA and SMA also weakly inhibited UGT1A1 activity, with Ki values of 40.1 μM and 65.3 μM, respectively. However, these macrolactins showed no time-dependent inactivation of the nine CYPs studied. In addition, MA and SMA did not induce CYP1A2, CYP2B6, or CYP3A4/5. On the basis of an in vitro-in vivo extrapolation, our data strongly suggested that MA and SMA are unlikely to cause clinically significant drug-drug interactions mediated via inhibition or induction of most of the CYPs involved in drug metabolism in vivo, except for the inhibition of CYP2C9 by MA. Similarly, MA and SMA are unlikely to inhibit the activity of UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 enzymes in vivo. Although further investigations will be required to clarify the in vivo interactions of MA with CYP2C9-targeted drugs, our findings offer a clearer understanding and prediction of drug-drug interactions for the safe use of MA and SMA in clinical practice. PMID:24890600

  11. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes

    PubMed Central

    Cho, Yong-Yeon; Jeong, Hyeon-Uk; Kim, Jeong-Han; Lee, Hye Suk

    2014-01-01

    Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA) levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase 2A1 (SULT2A1), were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 μM) increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5–50 μM) did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19) or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1) in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1′-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans. PMID:25395831

  12. Effects of rifampin, cyclosporine A, and probenecid on the pharmacokinetic profile of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants

    PubMed Central

    Devineni, Damayanthi; Vaccaro, Nicole; Murphy, Joe; Curtin, Christopher; Mamidi, Rao N.V.S.; Weiner, Sveta; Wang, Shean-Sheng; Ariyawansa, Jay; Stieltjes, Hans; Wajs, Ewa; Di Prospero, Nicholas A.; Rothenberg, Paul

    2015-01-01

    Objective: Canagliflozin, a sodium-glucose co-transporter 2 inhibitor, approved for the treatment of type-2 diabetes mellitus (T2DM), is metabolized by uridine diphosphate-glucuronosyltransferases (UGT) 1A9 and UGT2B4, and is a substrate of P-glycoprotein (P-gp). Canagliflozin exposures may be affected by coadministration of drugs that induce (e.g., rifampin for UGT) or inhibit (e.g. probenecid for UGT; cyclosporine A for P-gp) these pathways. The primary objective of these three independent studies (single-center, open-label, fixed-sequence) was to evaluate the effects of rifampin (study 1), probenecid (study 2), and cyclosporine A (study 3) on the pharmacokinetics of canagliflozin in healthy participants. Methods: Participants received; in study 1: canagliflozin 300 mg (days 1 and 10), rifampin 600 mg (days 4 – 12); study 2: canagliflozin 300 mg (days 1 – 17), probenecid 500 mg twice daily (days 15 – 17); and study 3: canagliflozin 300 mg (days 1 – 8), cyclosporine A 400 mg (day 8). Pharmacokinetics were assessed at pre-specified intervals on days 1 and 10 (study 1); on days 14 and 17 (study 2), and on days 2 – 8 (study 3). Results: Rifampin decreased the maximum plasma canagliflozin concentration (Cmax) by 28% and its area under the curve (AUC) by 51%. Probenecid increased the Cmax by 13% and the AUC by 21%. Cyclosporine A increased the AUC by 23% but did not affect the Cmax. Conclusion: Coadministration of canagliflozin with rifampin, probenecid, and cyclosporine A was well-tolerated. No clinically meaningful interactions were observed for probenecid or cyclosporine A, while rifampin coadministration modestly reduced canagliflozin plasma concentrations and could necessitate an appropriate monitoring of glycemic control. PMID:25407255

  13. Metabolic Drug-Drug Interaction Potential of Macrolactin A and 7-O-Succinyl Macrolactin A Assessed by Evaluating Cytochrome P450 Inhibition and Induction and UDP-Glucuronosyltransferase Inhibition In Vitro

    PubMed Central

    Bae, Soo Hyeon; Kwon, Min Jo; Park, Jung Bae; Kim, Doyun; Kim, Dong-Hee; Kang, Jae-Seon; Kim, Chun-Gyu; Oh, Euichaul

    2014-01-01

    Macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), polyene macrolides containing a 24-membered lactone ring, show antibiotic effects superior to those of teicoplanin against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. MA and SMA are currently being evaluated as antitumor agents in preclinical studies in Korea. We evaluated the potential of MA and SMA for the inhibition or induction of human liver cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGTs) in vitro to assess their safety as new molecular entities. We demonstrated that MA and SMA are potent competitive inhibitors of CYP2C9, with Ki values of 4.06 μM and 10.6 μM, respectively. MA and SMA also weakly inhibited UGT1A1 activity, with Ki values of 40.1 μM and 65.3 μM, respectively. However, these macrolactins showed no time-dependent inactivation of the nine CYPs studied. In addition, MA and SMA did not induce CYP1A2, CYP2B6, or CYP3A4/5. On the basis of an in vitro-in vivo extrapolation, our data strongly suggested that MA and SMA are unlikely to cause clinically significant drug-drug interactions mediated via inhibition or induction of most of the CYPs involved in drug metabolism in vivo, except for the inhibition of CYP2C9 by MA. Similarly, MA and SMA are unlikely to inhibit the activity of UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 enzymes in vivo. Although further investigations will be required to clarify the in vivo interactions of MA with CYP2C9-targeted drugs, our findings offer a clearer understanding and prediction of drug-drug interactions for the safe use of MA and SMA in clinical practice. PMID:24890600

  14. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes.

    PubMed

    Cho, Yong-Yeon; Jeong, Hyeon-Uk; Kim, Jeong-Han; Lee, Hye Suk

    2014-01-01

    Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA) levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase 2A1 (SULT2A1), were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 μM) increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5-50 μM) did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19) or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1) in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1'-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans. PMID:25395831

  15. Microbial field pilot study

    SciTech Connect

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.

    1991-01-01

    The objective of this project is to perform a microbially enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions or the reservoir and increase sweep efficiency. Injection of nutrient stimulates the growth and metabolism of reservoir bacteria, which produces beneficial products to enhance oil recovery. Sometimes, chemical treatments are used to clean or condition injection water. Such a chemical treatment has been initiated by Sullivan and Company at the Southeast Vassar Vertz Sand Unit. The unit injection water was treated with a mixture of water, methanol, isopropyl alcohol, and three proprietary chemicals. To determine if the chemicals would have an impact on the pilot, it was important to determine the effects of the chemical additives on the growth and metabolism of the bacteria from wells in this field. Two types of media were used: a mineral salts medium with molasses and nitrate, and this medium with 25 ppm of the treatment chemicals added. Samples were collected anaerobically from each of two wells, 1A-9 and 7-2. A sample from each well was inoculated and cultured in the broth tubes of molasses-nitrate medium with and without the chemicals. Culturing temperature was 35{degrees}C. Absorbance, pressure and cell number were checked to determine if the chemicals affected the growth and metabolism of bacteria in the brine samples. 12 figs.

  16. Species difference in glucuronidation formation kinetics with a selective mTOR inhibitor.

    PubMed

    Berry, Loren M; Liu, Jingzhou; Colletti, Adria; Krolikowski, Paul; Zhao, Zhiyang; Teffera, Yohannes

    2014-04-01

    The mammalian target of rapamycin (mTOR) is a protein kinase that shows key involvement in age-related disease and promises to be a target for treatment of cancer. In the present study, the elimination of potent ATP-competitive mTOR inhibitor 3-(6-amino-2-methylpyrimidin-4-yl)-N-(1H-pyrazol-3-yl)imidazo[1,2-b]pyridazin-2-amine (compound 1) is studied in bile duct-cannulated rats, and the metabolism of compound 1 in liver microsomes is compared across species. Compound 1 was shown to undergo extensive N-glucuronidation in bile duct-catheterized rats. N-glucuronides were detected on positions N1 (M2) and N2 (M1) of the pyrazole moiety as well as on the primary amine (M3). All three N-glucuronide metabolites were detected in liver microsomes of the rat, dog, and human, while primary amine glucuronidation was not detected in cynomolgus monkey. In addition, N1- and N2-glucuronidation showed strong species selectivity in vitro, with rat, dog, and human favoring N2-glucuronidation and monkey favoring N1-glucuronide formation. Formation of M1 in monkey liver microsomes also followed sigmoidal kinetics, singling out monkey as unique among the species with regard to compound 1 N-glucuronidation. In this respect, monkeys might not always be the best animal model for N-glucuronidation of uridine diphosphate glucuronosyltransferase (UGT) 1A9 or UGT1A1 substrates in humans. The impact of N-glucuronidation of compound 1 could be more pronounced in higher species such as monkey and human, leading to high clearance in these species. While compound 1 shows promise as a candidate for investigating the impact of pan-mTOR inhibition in vivo, opportunities may exist through medicinal chemistry efforts to reduce metabolic liability with the goal of improving systemic exposure. PMID:24423753

  17. Biotransformation of the chemopreventive agent 2',4',4-trihydroxychalcone (isoliquiritigenin) by UDP-glucuronosyltransferases.

    PubMed

    Guo, Jian; Liu, Ang; Cao, Hongmei; Luo, Yan; Pezzuto, John M; van Breemen, Richard B

    2008-10-01

    2',4',4-trihydroxychalcone (isoliquiritigenin), a chalcone found in licorice root and shallots, exhibits antioxidant, estrogenic, and antitumor activities. To complement our previous studies concerning the phase 1 metabolism of isoliquiritigenin, the phase 2 transformation of isoliquiritigenin by human hepatocytes and pooled human liver microsomes (HLMs) was investigated using liquid chromatography/tandem mass spectrometry and UV absorbance. Five glucuronides were detected corresponding to monoglucuronides of isoliquiritigenin and liquiritigenin, but no sulfate conjugates were observed. The UDP-glucuronosyltransferases (UGTs) involved in the formation of the major glucuronide conjugates were identified using recombinant human UGTs in combination with liquid chromatography/mass spectrometry. UGT1A1 and UGT1A9 were the major enzymes responsible for the formation of the most abundant conjugate, isoliquiritigenin 4'-O-glucuronide (MG5), with Km values of 4.30+/-0.47 and 3.15+/-0.24 microM, respectively. UGT1A1 and UGT1A10 converted isoliquiritigenin to the next most abundant phase 2 metabolite, isoliquiritigenin 2'-O-glucuronide (MG4), with Km values of 2.98+/-0.8 and 25.8+/-1.3 microM, respectively. In addition, isoliquiritigenin glucuronides MG4 and MG5 were formed by pooled human intestine and kidney microsomes, respectively. Based on the in vitro determination of a 25.3-min half-life for isoliquiritigenin when incubated with HLMs, the intrinsic clearance of isoliquiritigenin was estimated to be 36.4 ml/min/kg. These studies indicate that isoliquiritigenin will be conjugated rapidly in the liver to form up to five monoglucuronides. PMID:18653743

  18. Resveratrol as a Bioenhancer to Improve Anti-Inflammatory Activities of Apigenin

    PubMed Central

    Lee, Jin-Ah; Ha, Sang Keun; Cho, EunJung; Choi, Inwook

    2015-01-01

    The aim of this study was to improve the anti-inflammatory activities of apigenin through co-treatment with resveratrol as a bioenhancer of apigenin. RAW 264.7 cells pretreated with hepatic metabolites formed by the co-metabolism of apigenin and resveratrol (ARMs) in HepG2 cells were stimulated with lipopolysaccharide (LPS). ARMs prominently inhibited (p < 0.05) the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6 and TNF-α. Otherwise no such activity was observed by hepatic metabolites of apigenin alone (AMs). ARMs also effectively suppressed protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Co-administration of apigenin (50 mg/kg) and resveratrol (25 mg/kg) also showed a significant reduction of carrageenan-induced paw edema in mice (61.20% to 23.81%). Co-administration of apigenin and resveratrol led to a 2.39 fold increase in plasma apigenin levels compared to administration of apigenin alone, suggesting that co-administration of resveratrol could increase bioavailability of apigenin. When the action of resveratrol on the main apigenin metabolizing enzymes, UDP-glucuronosyltransferases (UGTs), was investigated, resveratrol mainly inhibited the formation of apigenin glucuronides by UGT1A9 in a non-competitive manner with a Ki value of 7.782 μM. These results suggested that resveratrol helps apigenin to bypass hepatic metabolism and maintain apigenin’s anti-inflammatory activities in the body. PMID:26610561

  19. Metabolism and pharmacokinetics of 8-hydroxypiperidinylmethyl-baicalein (BA-j) as a novel selective CDK1 inhibitor in monkey.

    PubMed

    Guo, Hong-Min; Sun, Yu-Ming; Zhang, Shi-Xuan; Ju, Xiu-Lan; Xie, Ai-Yun; Li, Jing; Zou, Liang; Sun, Xiao-Dan; Li, Hai-Liang; Zheng, Yang

    2015-12-01

    Cyclin-dependent kinase 1 (CDK1) is the only necessary CDK in the cell proliferation process and a new target in the research and development of anti-cancer drugs. 8-Hydroxypiperidinemethyl-baicalein (BA-j) is a Mannich base derivative of baicalein (BA) isolated from Scutellaria baicalensis, as a novel selective CDK1 inhibitor. 12 metabolites of BA-j in the monkey urine were identified by LC-MS-MS and (1)H NMR. The major metabolic pathways of BA-j, by capturing oxygen free radicals ((.)O2(-)) and releasing peroxides (H2O2), are degraded into active intermediate metabolite dihydroflavonol, then into main metabolite M179 by Shiff reaction, second metabolite M264 by sulfation, trace amount of metabolite M559 by glucuronidation UGT1A9, and without metabolism by CYP3A4. The metabolic process of BA-j by regulating intracellular reactive oxygen species (ROS) was related with BA-j selectively inducing apoptosis in cancer cells. Pharmacokinetics of 10mg/kg oral BA-j in monkey by HPLC-UV was best fitted to a two-compartment open model, with t1/2(β) of 4.2h, Cmax 25.4μM at 2h, and Vd 12.6L, meaning the drug distributing widely in body fluids with no special selectivity to certain tissues, and being able to permeate through the blood-brain barrier. The protein binding rate of BA-j was 91.8%. BA-j has excellent druggability for oral administration or injection, and it may be developed into a novel anti-cancer drug as a selective CDK1 inhibitor. PMID:26474673

  20. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug-Drug Interactions.

    PubMed

    Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil

    2016-01-01

    Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug-drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug-drug interactions. PMID:26927160

  1. Conjugation of Synthetic Cannabinoids JWH-018 and JWH-073, Metabolites by Human UDP-Glucuronosyltransferases

    PubMed Central

    Chimalakonda, Krishna C.; Bratton, Stacie M.; Le, Vi-Huyen; Yiew, Kan Hui; Dineva, Anna; Moran, Cindy L.; James, Laura P.; Moran, Jeffery H.

    2011-01-01

    K2, a synthetic cannabinoid (SC), is an emerging drug of abuse touted as “legal marijuana” and marketed to young teens and first-time drug users. Symptoms associated with K2 use include extreme agitation, syncope, tachycardia, and visual and auditory hallucinations. One major challenge to clinicians is the lack of clinical, pharmacological, and metabolic information for the detection and characterization of K2 and its metabolites in human samples. Information on the metabolic pathway of SCs is very limited. However, previous reports have shown the metabolites of these compounds are excreted primarily as glucuronic acid conjugates. Based on this information, this study evaluates nine human recombinant uridine diphosphate-glucuronosyltransferase (UGT) isoforms and human liver and intestinal microsomes for their ability to glucuronidate hydroxylated metabolites of 1-naphthalenyl-1(1-pentyl-1H-indol-3-yl)-methanone (JWH-018) and (1-butyl-1H-indol-3-yl)-1-naphthalenyl-methanone (JWH-073), the two most common SCs found in K2 products. Conjugates were identified and characterized using liquid chromatography/tandem mass spectrometry, whereas kinetic parameters were quantified using high-performance liquid chromatography-UV-visible methods. UGT1A1, UGT1A3, UGT1A9, UGT1A10, and UGT2B7 were shown to be the major enzymes involved, showing relatively high affinity with Km ranging from 12 to 18 μM for some hydroxylated K2s. These UGTs also exhibited a high metabolic capacity for these compounds, which indicates that K2 metabolites may be rapidly glucuronidated and eliminated from the body. Studies of K2 metabolites will help future development and validation of a specific assay for K2 and its metabolites and will allow researchers to fully explore their pharmacological actions. PMID:21746969

  2. Conjugation of synthetic cannabinoids JWH-018 and JWH-073, metabolites by human UDP-glucuronosyltransferases.

    PubMed

    Chimalakonda, Krishna C; Bratton, Stacie M; Le, Vi-Huyen; Yiew, Kan Hui; Dineva, Anna; Moran, Cindy L; James, Laura P; Moran, Jeffery H; Radominska-Pandya, Anna

    2011-10-01

    K2, a synthetic cannabinoid (SC), is an emerging drug of abuse touted as "legal marijuana" and marketed to young teens and first-time drug users. Symptoms associated with K2 use include extreme agitation, syncope, tachycardia, and visual and auditory hallucinations. One major challenge to clinicians is the lack of clinical, pharmacological, and metabolic information for the detection and characterization of K2 and its metabolites in human samples. Information on the metabolic pathway of SCs is very limited. However, previous reports have shown the metabolites of these compounds are excreted primarily as glucuronic acid conjugates. Based on this information, this study evaluates nine human recombinant uridine diphosphate-glucuronosyltransferase (UGT) isoforms and human liver and intestinal microsomes for their ability to glucuronidate hydroxylated metabolites of 1-naphthalenyl-1(1-pentyl-1H-indol-3-yl)-methanone (JWH-018) and (1-butyl-1H-indol-3-yl)-1-naphthalenyl-methanone (JWH-073), the two most common SCs found in K2 products. Conjugates were identified and characterized using liquid chromatography/tandem mass spectrometry, whereas kinetic parameters were quantified using high-performance liquid chromatography-UV-visible methods. UGT1A1, UGT1A3, UGT1A9, UGT1A10, and UGT2B7 were shown to be the major enzymes involved, showing relatively high affinity with K(m) ranging from 12 to 18 μM for some hydroxylated K2s. These UGTs also exhibited a high metabolic capacity for these compounds, which indicates that K2 metabolites may be rapidly glucuronidated and eliminated from the body. Studies of K2 metabolites will help future development and validation of a specific assay for K2 and its metabolites and will allow researchers to fully explore their pharmacological actions.

  3. Expression and Characterization of a Potent Long-Acting GLP-1 Receptor Agonist, GLP-1-IgG2σ-Fc

    PubMed Central

    Yang, Yi; Chen, Fang; Wan, Deyou; Liu, Yunhui; Yang, Li; Feng, Hongru; Cui, Xinling; Gao, Xin; Song, Haifeng

    2016-01-01

    Human GLP-1 (glucagon-like peptide-1) can produce a remarkable improvement in glycemic control in patients with type 2 diabetes. However, its clinical benefits are limited by its short half-life, which is less than 2 min because of its small size and rapid enzymatic inactivation by dipeptidyl peptidase IV. We engineered GLP-1-IgG2σ-Fc, a 68-kDa fusion protein linking a variant human GLP-1 (A8G/G26E/R36G) to a human IgG2σ constant heavy-chain. A stably transfected Chinese hamster ovary cell line was obtained using electroporation. Western blotting showed that the expressed protein was immunoreactive to both GLP-1 and IgG antibodies. GLP-1-IgG2σ-Fc stimulated insulin secretion from INS-1 cells in a dose- and glucose-dependent manner and increased insulin mRNA expression. The half-life of GLP-1-IgG2σ-Fc in cynomolgus monkeys was approximately 57.1 ± 4.5 h. In the KKAy mouse model of diabetes, one intraperitoneal injection of GLP-1-IgG2σ-Fc (1 mg/kg) reduced blood glucose levels for 5 days. A 4-week repeat-administration study identified sustained effects on blood glucose levels. Oral glucose tolerance tests conducted at the beginning and end of this 4-week period showed that GLP-1-IgG2σ-Fc produced a stable glucose lowering effect. In addition, KKAy mice treated with GLP-1-IgG2σ-Fc showed statistically significant weight loss from day 23. In conclusion, these properties of GLP-1-IgG2σ-Fc demonstrated that it represented a potential long-acting GLP-1 receptor agonist for the treatment of type 2 diabetes. PMID:27232339

  4. Mucosal Human Papillomaviruses Encode Four Different E5 Proteins Whose Chemistry and Phylogeny Correlate with Malignant or Benign Growth

    PubMed Central

    Bravo, Ignacio G.; Alonso, Ángel

    2004-01-01

    We performed a phylogenetic study of the E2-L2 region of human mucosal papillomaviruses (PVs) and of the proteins therein encoded. Hitherto, proteins codified in this region were known as E5 proteins. We show that many of these proteins could be spurious translations, according to phylogenetic and chemical coherence criteria between similar protein sequences. We show that there are four separate families of E5 proteins, with different characteristics of phylogeny, chemistry, and rate of evolution. For the sake of clarity, we propose a change in the present nomenclature. E5α is present in groups A5, A6, A7, A9, and A11, PVs highly associated with malignant carcinomas of the cervix and penis. E5β is present in groups A2, A3, A4, and A12, i.e., viruses associated with certain warts. E5γ is present in group A10, and E5δ is encoded in groups A1, A8, and A10, which are associated with benign transformations. The phylogenetic relationships between mucosal human PVs are the same when considering the oncoproteins E6 and E7 and the E5 proteins and differ from the phylogeny estimated for the structural proteins L1 and L2. Besides, the protein divergence rate is higher in early proteins than in late proteins, increasing in the order L1 < L2 < E6 ≈ E7 < E5. Moreover, the same proteins have diverged more rapidly in viruses associated with malignant transformations than in viruses associated with benign transformations. The E5 proteins display, therefore, evolutionary characteristics similar to those of the E6 and E7 oncoproteins. This could reflect a differential involvement of the E5 types in the transformation processes. PMID:15564472

  5. Immune responses elicited against rotavirus middle layer protein VP6 inhibit viral replication in vitro and in vivo.

    PubMed

    Lappalainen, Suvi; Pastor, Ana Ruth; Tamminen, Kirsi; López-Guerrero, Vanessa; Esquivel-Guadarrama, Fernando; Palomares, Laura A; Vesikari, Timo; Blazevic, Vesna

    2014-01-01

    Rotavirus (RV) is a common cause of severe gastroenteritis (GE) in children worldwide. Live oral RV vaccines protect against severe RVGE, but the immune correlates of protection are not yet clearly defined. Inner capsid VP6 protein is a highly conserved, abundant, and immunogenic RV protein, and VP6-specific mucosal antibodies, especially IgA, have been implicated to protect against viral challenge in mice. In the present study systemic and mucosal IgG and IgA responses were induced by immunizing BALB/c mice intranasally with a combination of recombinant RV VP6 protein (subgroup II [SGII]) and norovirus (NoV) virus-like particles (VLPs) used in a candidate vaccine. Following immunization mice were challenged orally with murine RV strain EDIMwt (SG non-I-non-II, G3P10[16]). In order to determine neutralizing activity of fecal samples, sera, and vaginal washes (VW) against human Wa RV (SGII, G1P1A[8]) and rhesus RV (SGI, G3P5B[3]), the RV antigen production was measured with an ELISA-based antigen reduction neutralization assay. Only VWs of immunized mice inhibited replication of both RVs, indicating heterotypic protection of induced antibodies. IgA antibody depletion and blocking experiments using recombinant VP6 confirmed that neutralization was mediated by anti-VP6 IgA antibodies. Most importantly, after the RV challenge significant reduction in viral shedding was observed in feces of immunized mice. These results suggest a significant role for mucosal RV VP6-specific IgA for the inhibition of RV replication in vitro and in vivo. In addition, these results underline the importance of non-serotype-specific immunity induced by the conserved subgroup-specific RV antigen VP6 in clearance of RV infection. PMID:25424814

  6. Neutrophil Extracellular Traps are Involved in the Innate Immune Response to Infection with Leptospira

    PubMed Central

    Scharrig, Emilia; Carestia, Agostina; Ferrer, María F.; Cédola, Maia; Pretre, Gabriela; Drut, Ricardo; Picardeau, Mathieu; Schattner, Mirta; Gómez, Ricardo M.

    2015-01-01

    NETosis is a process by which neutrophils extrude their DNA together with bactericidal proteins that trap and/or kill pathogens. In the present study, we evaluated the ability of Leptospira spp. to induce NETosis using human ex vivo and murine in vivo models. Microscopy and fluorometric studies showed that incubation of human neutrophils with Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 (LIC) resulted in the release of DNA extracellular traps (NETs). The bacteria number, pathogenicity and viability were relevant factors for induction of NETs, but bacteria motility was not. Entrapment of LIC in the NETs resulted in LIC death; however, pathogenic but not saprophytic Leptospira sp. exerted nuclease activity and degraded DNA. Mice infected with LIC showed circulating NETs after 2 days post-infection (dpi). Depletion of neutrophils with mAb1A8 significantly reduced the amount of intravascular NETs in LIC-infected mice, increasing bacteremia at 3 dpi. Although there was a low bacterial burden, scarce neutrophils and an absence of inflammation in the early stages of infection in the kidney and liver, at the beginning of the leptospiruric phase, the bacterial burden was significantly higher in kidneys of neutrophil-depleted-mice compared to non-depleted and infected mice. Surprisingly, interstitial nephritis was of similar intensity in both groups of infected mice. Taken together, these data suggest that LIC triggers NETs, and that the intravascular formation of these DNA traps appears to be critical not only to prevent early leptospiral dissemination but also to preclude further bacterial burden. PMID:26161745

  7. Role of GABA-ergic and serotonergic systems in the anxiolytic-like mechanism of action of a 5-HT-moduline antagonist in the mouse elevated plus maze.

    PubMed

    Clénet, Florence; Hascoët, Martine; Fillion, Gilles; Galons, Hervé; Bourin, Michel

    2005-03-30

    5-HT-moduline is an endogenous tetrapeptide, which acts specifically as an antagonist of 5-HT1B auto- and heteroreceptors. HG1 is an ethyl arylmethyloxypiperidine acetate and an antagonist of 5-HT-moduline, which has no 5-HT-moduline agonist effect. In a pilot study, HG1 has demonstrated an anxiolytic-like profile in three mouse models of anxiety (elevated plus maze, light/dark, four plates). The aim of our study was to examine the mechanism of the anxiolytic-like effects of HG1 in the mouse elevated plus maze. Male Swiss mice were acutely administered HG1 at active doses in association with GABA antagonists such as flumazenil, bicuculline and picrotoxine, then, with 5-HT1A (NAN 190, WAY 100635) and 5-HT1B receptor antagonist (methiothepine). Finally, we tried to potentiate non-active doses of HG1 with 5-HT1A (8-OHDPAT) and 5-HT1B receptor agonists (anpirtoline) in the mouse elevated plus maze. Regarding GABA antagonists, only flumazenil antagonised active doses of HG1 in an incomplete manner. Moreover, non-active doses of HG1 were potentiated by low doses of WAY 100635 and by anpirtoline but not by 8-OHDPAT. Finally, the anxiolytic-like effects of HG1 at active doses were antagonised by all serotonergic antagonists (WAY 100635 at higher dose, NAN 190 and methiothepin). HG1 mechanism of action in the mouse elevated plus maze seems to associate a GABA-ergic component exerting a limited regulation of 5-HT neuronal activity and a major serotonergic component, which seems to implicate presynaptic 5-HT1A and 5-HT1B receptors.

  8. Is ethnicity associated with morphine's side effects in children? morphine pharmacokinetics, analgesic response and side effects in children having tonsillectomy

    PubMed Central

    Jimenez, Nathalia; Anderson, Gail D.; Shen, Danny D.; Nielsen, Susan Searles; Farin, Federico M.; Seidel, Kristy; Lynn, Anne M.

    2012-01-01

    Objectives/Aims To examine whether morphine pharmacokinetics (PK) and/or genetic polymorphisms in opioid-related genes, underlie differences in analgesic response and side effects to morphine in Latino (L) vs non-Latino Caucasian (NL) children. Background Morphine has high interindividual variability in its analgesic response and side effects profile. Earlier studies suggest that morphine response may vary by race and ethnicity. Methods Prospective cohort study in L and NL children, 3–17 years of age comparing pain scores, occurrence of side effects, plasma morphine, morphine-6-and morphine-3-glucuronide concentrations measured after a single morphine IV bolus administration. Non-compartmental pharmacokinetic analysis and genotyping for 28 polymorphisms in 8 genes (UGT1A8, UGT2B7, ABCB1, COMT, STAT6, MC1R, OPRM1, and ARRB2) were done. Results We enrolled 68 children (33 L, 35 NL). There were no differences in pain scores or need for rescue analgesia. Statistically significant differences in the occurrence of side effects were documented: While 58% of L children experienced at least one side effect only 20% of NL did (p=0.001). Pruritus was 4 times (p=0.006) and emesis 7 times (p=0.025) more frequent in L compared to NL. PK parameters were similar between groups. None of the assessed polymorphisms mediated the association between ethnicity and side effects. Conclusions We found statistically significant differences in occurrence of side effects after morphine administration between L and NL children. Neither differences in morphine or metabolite concentrations, nor the genetic polymorphisms examined, explain these findings. Studies are needed to further investigate reasons for the increase in morphine side effects by Latino ethnicity. PMID:22486937

  9. Immune responses elicited against rotavirus middle layer protein VP6 inhibit viral replication in vitro and in vivo

    PubMed Central

    Lappalainen, Suvi; Pastor, Ana Ruth; Tamminen, Kirsi; López-Guerrero, Vanessa; Esquivel-Guadarrama, Fernando; Palomares, Laura A; Vesikari, Timo; Blazevic, Vesna

    2014-01-01

    Rotavirus (RV) is a common cause of severe gastroenteritis (GE) in children worldwide. Live oral RV vaccines protect against severe RVGE, but the immune correlates of protection are not yet clearly defined. Inner capsid VP6 protein is a highly conserved, abundant, and immunogenic RV protein, and VP6-specific mucosal antibodies, especially IgA, have been implicated to protect against viral challenge in mice. In the present study systemic and mucosal IgG and IgA responses were induced by immunizing BALB/c mice intranasally with a combination of recombinant RV VP6 protein (subgroup II [SGII]) and norovirus (NoV) virus-like particles (VLPs) used in a candidate vaccine. Following immunization mice were challenged orally with murine RV strain EDIMwt (SG non-I-non-II, G3P10[16]). In order to determine neutralizing activity of fecal samples, sera, and vaginal washes (VW) against human Wa RV (SGII, G1P1A[8]) and rhesus RV (SGI, G3P5B[3]), the RV antigen production was measured with an ELISA-based antigen reduction neutralization assay. Only VWs of immunized mice inhibited replication of both RVs, indicating heterotypic protection of induced antibodies. IgA antibody depletion and blocking experiments using recombinant VP6 confirmed that neutralization was mediated by anti-VP6 IgA antibodies. Most importantly, after the RV challenge significant reduction in viral shedding was observed in feces of immunized mice. These results suggest a significant role for mucosal RV VP6-specific IgA for the inhibition of RV replication in vitro and in vivo. In addition, these results underline the importance of non-serotype-specific immunity induced by the conserved subgroup-specific RV antigen VP6 in clearance of RV infection. PMID:25424814

  10. Neutrophils Select Hypervirulent CovRS Mutants of M1T1 Group A Streptococcus during Subcutaneous Infection of Mice

    PubMed Central

    Li, Jinquan; Liu, Guanghui; Feng, Wenchao; Zhou, Yang; Liu, Mengyao; Wiley, James A.

    2014-01-01

    Pathogen mutants arise during infections. Mechanisms of selection for pathogen variants are poorly understood. We tested whether neutrophils select mutations in the two-component regulatory system CovRS of group A Streptococcus (GAS) during infection using the lack of production of the protease SpeB (SpeB activity negative [SpeBA−]) as a marker. Depletion of neutrophils by antibodies RB6-8C5 and 1A8 reduced the percentage of SpeBA− variants (SpeBA−%) recovered from mice infected with GAS strain MGAS2221 by >76%. Neutrophil recruitment and SpeBA−% among recovered GAS were reduced by 95% and 92%, respectively, in subcutaneous MGAS2221 infection of CXCR2−/− mice compared with control mice. In air sac infection with MGAS2221, levels of neutrophils and macrophages in lavage fluid were reduced by 49% and increased by 287%, respectively, in CXCR2−/− mice compared with control mice, implying that macrophages play an insignificant role in the reduction of selection for SpeBA− variants in CXCR2−/− mice. One randomly chosen SpeBA− mutant outcompeted MGAS2221 in normal mice but was outcompeted by MGAS2221 in neutropenic mice and had enhancements in expression of virulence factors, innate immune evasion, skin invasion, and virulence. This and nine other SpeBA− variants from a mouse all had nonsynonymous covRS mutations that resulted in the SpeBA− phenotype and enhanced expression of the CovRS-controlled secreted streptococcal esterase (SsE). Our findings are consistent with a model that neutrophils select spontaneous covRS mutations that maximize the potential of GAS to evade neutrophil responses, resulting in variants with enhanced survival and virulence. To our knowledge, this is the first report of the critical contribution of neutrophils to the selection of pathogen variants. PMID:24452689

  11. A Combretastatin-Mediated Decrease in Neutrophil Concentration in Peripheral Blood and the Impact on the Anti-Tumor Activity of This Drug in Two Different Murine Tumor Models

    PubMed Central

    Bohn, Anja Bille; Wittenborn, Thomas; Brems-Eskildsen, Anne Sofie; Laurberg, Tinne; Bertelsen, Lotte Bonde; Nielsen, Thomas; Stødkilde-Jørgensen, Hans; Møller, Bjarne Kuno; Horsman, Michael R.

    2014-01-01

    The vascular disrupting agent combretastatin A-4 disodium phosphate (CA4P) induces fluctuations in peripheral blood neutrophil concentration. Because neutrophils have the potential to induce both vascular damage and angiogenesis we analyzed neutrophil involvement in the anti-tumoral effects of CA4P in C3H mammary carcinomas in CDF1 mice and in SCCVII squamous cell carcinomas in C3H/HeN mice. Flow cytometry analyses of peripheral blood before and up to 144 h after CA4P administration (25 and 250 mg/kg) revealed a decrease 1 h after treatment, followed by an early (3–6 h) and a late (>72 h) increase in the granulocyte concentration. We suggest that the early increase (3–6 h) in granulocyte concentration was caused by the initial decrease at 1 h and found that the late increase was associated with tumor size, and hence independent of CA4P. No alterations in neutrophil infiltration into the C3H tumor after CA4P treatment (25 and 250 mg/kg) were found. Correspondingly, neutrophil depletion in vivo, using an anti-neutrophil antibody, followed by CA4P treatment (25 mg/kg) did not increase the necrotic fraction in C3H tumors significantly. However, by increasing the CA4P dose to 250 mg/kg we found a significant increase of 359% in necrotic fraction when compared to neutrophil-depleted mice; in mice with no neutrophil depletion CA4P induced an 89% change indicating that the presence of neutrophils reduced the effect of CA4P. In contrast, neither CA4P nor 1A8 affected the necrotic fraction in the SCCVII tumors significantly. Hence, we suggest that the initial decrease in granulocyte concentration was caused by non-tumor-specific recruitment of neutrophils and that neutrophils may attenuate CA4P-mediated anti-tumor effect in some tumor models. PMID:25299269

  12. Synthesis, structure determination, and infrared spectroscopy of (NpO{sub 2}){sub 2}(SO{sub 4})(H{sub 2}O){sub 4}: Prevalence of cation-cation interactions and cationic nets in neptunyl sulfate compounds

    SciTech Connect

    Forbes, T.Z. Burns, P.C.

    2009-01-15

    The compound (NpO{sub 2}){sub 2}(SO{sub 4})(H{sub 2}O){sub 4} was synthesized by evaporation of a Np{sup 5+} sulfate solution. The crystal structure was determined using single crystal X-ray diffraction and refined to an R{sub 1}=0.0310. (NpO{sub 2}){sub 2}(SO{sub 4})(H{sub 2}O){sub 4} crystallizes in triclinic space group P-1, a=8.1102(7) A, b=8.7506(7) A, c=16.234(1) A, {alpha}=90.242(2){sup o}, {beta}=92.855(2){sup o}, {gamma}=113.067(2){sup o}, V=1058.3(2) A{sup 3}, and Z=2. The structure contains neptunyl pentagonal bipyramids that share vertices through cation-cation interactions to form a sheet or cationic net. The sheet is decorated on each side by vertex sharing with sulfate tetrahedra, and adjacent sheets are linked together through hydrogen bonding. A graphical representation of (NpO{sub 2}){sub 2}(SO{sub 4})(H{sub 2}O){sub 4} was constructed to facilitate the structural comparison to similar Np{sup 5+} compounds. The prevalence of the cationic nets in neptunyl sulfate compounds related to the overall stability of the structure is also discussed. - Graphical abstract: (NpO{sub 2}){sub 2}(SO{sub 4})(H{sub 2}O){sub 4} was synthesized by hydrothermal methods and its structure determined. A graphical representation of the compound was constructed to facilitate the structural comparison to similar Np{sup 5+} compounds and the prevalence of the cationic nets in neptunyl sulfate compounds related to the overall stability of the structure is discussed.

  13. Frequent promoter hypermethylation of RASSF1A and CASP8 in neuroblastoma

    PubMed Central

    Lázcoz, Paula; Muñoz, Jorge; Nistal, Manuel; Pestaña, Ángel; Encío, Ignacio; Castresana, Javier S

    2006-01-01

    Background Epigenetic alterations and loss of heterozygosity are mechanisms of tumor suppressor gene inactivation. A new carcinogenic pathway, targeting the RAS effectors has recently been documented. RASSF1A, on 3p21.3, and NORE1A, on 1q32.1, are among the most important, representative RAS effectors. Methods We screened the 3p21 locus for the loss of heterozygosity and the hypermethylation status of RASSF1A, NORE1A and BLU (the latter located at 3p21.3) in 41 neuroblastic tumors. The statistical relationship of these data was correlated with CASP8 hypermethylation. The expression levels of these genes, in cell lines, were analyzed by RT-PCR. Results Loss of heterozygosity and microsatellite instability at 3p21 were detected in 14% of the analyzed tumors. Methylation was different for tumors and cell lines (tumors: 83% in RASSF1A, 3% in NORE1A, 8% in BLU and 60% in CASP8; cell lines: 100% in RASSF1A, 50% in NORE1A, 66% in BLU and 92% in CASP8). In cell lines, a correlation with lack of expression was evident for RASSF1A, but less clear for NORE1A, BLU and CASP8. We could only demonstrate a statistically significant association between hypermethylation of RASSF1A and hypermethylation of CASP8, while no association with MYCN amplification, 1p deletion, and/or aggressive histological pattern of the tumor was demonstrated. Conclusion 1) LOH at 3p21 appears in a small percentage of neuroblastomas, indicating that a candidate tumor suppressor gene of neuroblastic tumors is not located in this region. 2) Promoter hypermethylation of RASSF1A and CASP8 occurs at a high frequency in neuroblastomas. PMID:17064406

  14. Pharmacological modulation of amphetamine-induced dyskinesia in transplanted hemi-parkinsonian rats.

    PubMed

    Smith, Gaynor A; Breger, Ludivine S; Lane, Emma L; Dunnett, Stephen B

    2012-10-01

    Foetal cell transplantation in patients with Parkinson's disease can induce motor complications independent of L-DOPA administration, known as graft-induced dyskinesia. In the 6-OHDA lesioned rat model of Parkinson's disease, post-transplantation abnormal movements can develop in response to an amphetamine challenge, a behaviour which is used to model graft-induced dyskinesia. Although L-DOPA-induced dyskinesia has been well characterised pharmacologically, we lack knowledge on the modulation of post-transplantation amphetamine-induced dyskinesia which may shed light on the mechanisms underlying graft-induced dyskinesia. We assessed a series of drugs effective at reducing L-DOPA-induced dyskinesia against post-transplantation amphetamine-induced dyskinesia. Agents include: dopaminergic antagonists (D₁: CP94253; D₂: SCH-22390; D₃: nafadotride), serotonergic agonists (5-HT(1A): 8-OH-DPAT; 5-HT(1B): CP94253), opioid antagonist (μ: naloxone), cannabinoid agonist (CB₁: WIN55, 212-2), adrenergic antagonist (α₁ and α₂: yohimbine) and glutamatergic antagonists (NMDA: amantadine and MK-801; mGluR5: MTEP; AMPA: IEM1460). Abnormal involuntary movements in response to amphetamine were decreased by SCH-22390, raclopride, CP94253 and 8-OH-DPAT, yet were unaltered by naloxone, WIN55, 212-2, yohimbine, amantadine, MTEP and IEM1460. Unusually, MK-801 increased the appearance of amphetamine-induced dyskinesia. The results suggest that dopaminergic, serotoninergic and glutamatergic systems are likely to have a fundamental role in the development of graft-induced dyskinesias, which are mechanistically distinct from L-DOPA-induced behvaviours. Importantly, the expression of D₁ and D₂ receptors was unrelated to the severity of AIMs.

  15. Toxoplasma gondii Profilin Promotes Recruitment of Ly6Chi CCR2+ Inflammatory Monocytes That Can Confer Resistance to Bacterial Infection

    PubMed Central

    Neal, Lori M.; Knoll, Laura J.

    2014-01-01

    Ly6C+ inflammatory monocytes are essential to host defense against Toxoplasma gondii, Listeria monocytogenes and other infections. During T. gondii infection impaired inflammatory monocyte emigration results in severe inflammation and failure to control parasite replication. However, the T. gondii factors that elicit these monocytes are unknown. Early studies from the Remington laboratory showed that mice with a chronic T. gondii infection survive lethal co-infections with unrelated pathogens, including L. monocytogenes, but a mechanistic analysis was not performed. Here we report that this enhanced survival against L. monocytogenes is due to early reduction of bacterial burdens and elicitation of Ly6C+ inflammatory monocytes. We demonstrate that a single TLR11/TLR12 ligand profilin (TgPRF) was sufficient to reduce bacterial burdens similar to T. gondii chronic infection. Stimulation with TgPRF was also sufficient to enhance animal survival when administered either pre- or post-Listeria infection. The ability of TgPRF to reduce L. monocytogenes burdens was dependent on TLR11 and required IFN-γ but was not dependent on IL-12 signaling. TgPRF induced rapid production of MCP-1 and resulted in trafficking of Ly6Chi CCR2+ inflammatory monocytes and Ly6G+ neutrophils into the blood and spleen. Stimulation with TgPRF reduced L. monocytogenes burdens in mice depleted with the Ly6G specific MAb 1A8, but not in Ly6C/Ly6G specific RB6-8C5 depleted or CCR2−/− mice, indicating that only inflammatory monocytes are required for TgPRF-induced reduction in bacterial burdens. These results demonstrate that stimulation of TLR11 by TgPRF is a mechanism to promote the emigration of Ly6Chi CCR2+ monocytes, and that TgPRF recruited inflammatory monocytes can provide an immunological benefit against an unrelated pathogen. PMID:24945711

  16. Prediction of lymph node metastasis in patients with apparent early endometrial cancer

    PubMed Central

    Son, Joo-Hyuk; Kong, Tae-Wook; Kim, Su Hyun; Paek, Jiheum; Lee, Eun Ju; Ryu, Hee-Sug

    2015-01-01

    Objective The purpose of this study is to investigate the incidence of lymph node metastasis in early endometrial cancer patients and to evaluate preoperative clinicopathological factors predicting lymph node metastasis. Methods We identified 142 patients with endometrial cancer between January 2000 and February 2013. All patients demonstrated endometrioid adenocarcinoma with grade 1 or 2 on preoperative endometrial biopsy. Preoperative magnetic resonance imaging showed that tumors were confined to the uterine corpus with superficial myometrial invasion (less than 50%), and there were no lymph nodes enlargements. All patients had complete staging procedures and were surgically staged according to the 2009 FIGO (International Federation of Gynecology and Obstetrics) staging system. Clinical and pathological data were obtained from medical records and statistically analyzed. Results Of the 142 patients, 127 patients (89.4%) presented with stage 1A, 8 (5.6%) with stage IB, 3 (2.1%) with stage II, and 4 (2.8%) with stage III disease. Three patients (2.1%) had lymph node metastasis-2 IIIC1 and 1 IIIC2 disease. Age, preoperative tumor grade, and myometrial invasion less than 50% on preoperative MRI were not associated with lymph node metastasis. A high preoperative serum CA-125 level (>35 IU/mL) was a statistically significant factor for predicting lymph node metastasis on univariate and multivariate analyses. Lymph node metastasis was only found in patients with preoperative grade 2 tumors or a high serum CA-125 level. Conclusion Preoperative tumor grade and serum CA-125 level can predict lymph node metastasis in apparent early endometrial cancer patients. PMID:26430663

  17. Uridine Diphosphate-Glucuronosyltransferase (UGT) Xenobiotic Metabolizing Activity and Genetic Evolution in Pinniped Species.

    PubMed

    Kakehi, Mayu; Ikenaka, Yoshinori; Nakayama, Shouta M M; Kawai, Yusuke K; Watanabe, Kensuke P; Mizukawa, Hazuki; Nomiyama, Kei; Tanabe, Shinsuke; Ishizuka, Mayumi

    2015-10-01

    There are various interspecies differences in xenobiotic-metabolizing enzymes. It is known that cats show slow glucuronidation of drugs such as acetaminophen and strong side effects due to the UGT1A6 pseudogene. Recently, the UGT1A6 pseudogene was found in the Northern elephant seal and Otariidae was suggested to be UGT1A6-deficient. From the results of measurements of uridine diphosphate-glucuronosyltransferase (UGT) activity using liver microsomes, the Steller sea lion, Northern fur seal, and Caspian seal showed UGT activity toward 1-hydroxypyrene and acetaminophen as low as in cats, which was significantly lower than in rat and dog. Furthermore, UGT1A6 pseudogenes were found in Steller sea lion and Northern fur seal, and all Otariidae species were suggested to have the UGT1A6 pseudogene. The UGT1 family genes appear to have undergone birth-and-death evolution based on a phylogenetic and synteny analysis of the UGT1 family in mammals including Carnivora. UGT1A2-1A5 and UGT1A7-1A10 are paralogous genes to UGT1A1 and UGTA6, respectively, and their numbers were lower in cat, ferret and Pacific walrus than in human, rat, and dog. Felidae and Pinnipedia, which are less exposed to natural xenobiotics such as plant-derived toxins due to their carnivorous diet, have experienced fewer gene duplications of xenobiotic-metabolizing UGT genes, and even possess UGT1A6 pseudogenes. Artificial environmental pollutants and drugs conjugated by UGT are increasing dramatically, and their elimination to the environment can be of great consequence to cat and Pinnipedia species, whose low xenobiotic glucuronidation capacity makes them highly sensitive to these compounds. PMID:26179383

  18. A new series of chiral metal formate frameworks of [HONH3][M(II)(HCOO)3] (M = Mn, Co, Ni, Zn, and Mg): synthesis, structures, and properties.

    PubMed

    Liu, Bin; Shang, Ran; Hu, Ke-Li; Wang, Zhe-Ming; Gao, Song

    2012-12-17

    We report the synthesis, crystal structures, IR, and thermal, dielectric, and magnetic properties of a new series of ammonium metal formate frameworks of [HONH(3)][M(II)(HCOO)(3)] for M = Mn, Co, Ni, Zn, and Mg. They are isostructural and crystallize in the nonpolar chiral orthorhombic space group P2(1)2(1)2(1), a = 7.8121(2)-7.6225(2) Å, b = 7.9612(3)-7.7385(2) Å, c = 13.1728(7)-12.7280(4) Å, and V = 819.27(6)-754.95(4) Å(3). The structures possess anionic metal formate frameworks of 4(9)·6(6) topology, in which the octahedral metal centers are connected by the anti-anti formate ligands and the hydroxylammonium is located orderly in the channels, forming strong O/N-H···O(formate) hydrogen bonds with the framework. HONH(3)(+) with only two non-H atoms favors the formation of the dense chiral 4(9)·6(6) frameworks, instead of the less dense 4(12)·6(3) perovskite frameworks for other monoammoniums of two to four non-H atoms because of its small size and its ability to form strong hydrogen bonding. However, the larger size of HONH(3)(+) compared to NH(4)(+) resulted in simple dielectric properties and no phase transitions. The three magnetic members (Mn, Co, and Ni) display antiferromagnetic long-range ordering of spin canting, at Néel temperatures of 8.8 K (Mn), 10.9 K (Co), and 30.5 K (Ni), respectively, and small spontaneous magnetizations for the Mn and Ni members but large magnetization for the Co member. Thermal and IR spectroscopic properties are also reported. PMID:23214977

  19. Orickite and coyoteite, two new sulfide minerals from Coyote Peak, Humboldt County, California.

    USGS Publications Warehouse

    Erd, Richard C.; Czamanske, G.K.

    1983-01-01

    Minute quantities of orickite and coyoteite occur with rare alkali iron sulphides in a mafic alkalic diatreme near Orick, Humboldt County. Orickite, NaxKyCu0.95Fe1.06zH2O (x,y < 0.03, z < 0.5), is hexagonal, a 3.695, c 6.16 A, D 4.212 g/cm3, Z = 4. The strongest XRD reflections are 3.08(100), 3.20(90), 2.84(60), 1.73(55), 1.583(30) A. The mineral is brass yellow, opaque, weakly pleochroic, but strongly anisotropic (greyish brown to greyish blue) in reflected light. Orickite is compositionally near to Fe-rich chalcopyrite, but it may be related to synthetic chalcogenides with a distorted wurtzite-(2H) structure. Coyoteite, NaFe3S5.2H2O, is triclinic, P1 or P1, a 7.409(8), b 9.881(6), c 6.441(3) A, alpha 100o25(3)', beta 104o37(5)', gamma 81o29(5)', D 2.879 g/cm3, Z = 2; strongest XRD reflections are 5.12(100), 7.13(90), 3.028(80), 3.080(70), 9.6(60), 5.60(60) A. Coyoteite is black, opaque, weakly pleochroic (pale brownish grey) and strongly anisotropic (grey to dull golden orange) in reflected light. It is unstable under normal atmospheric conditions. -J.A.Z.

  20. Genotype-phenotype correlation of Coffin-Siris syndrome caused by mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A.

    PubMed

    Kosho, Tomoki; Okamoto, Nobuhiko

    2014-09-01

    Coffin-Siris syndrome (CSS) is a rare congenital malformation syndrome, recently found to be caused by mutations in several genes encoding components of the BAF complex. To date, 109 patients have been reported with their mutations: SMARCB1 (12%), SMARCA4 (11%), SMARCE1 (2%), ARID1A (7%), ARID1B (65%), and PHF6 (2%). We review genotype-phenotype correlation of all previously reported patients with mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A through reassessment of their clinical and molecular findings. Cardinal features of CSS included variable degrees of intellectual disability (ID) predominantly affecting speech, sucking/feeding difficulty, and craniofacial (thick eyebrows, long eyelashes), digital (hypoplastic 5th fingers or toes, hypoplastic 5th fingernails or toenails), and other characteristics (hypertrichosis). In addition, patients with SMARCB1 mutations had severe neurodevelopmental deficits including severe ID, seizures, CNS structural abnormalities, and no expressive words as well as scoliosis. Especially, those with a recurrent mutation "p.Lys364del" represented strikingly similar phenotypes including characteristic facial coarseness. Patients with SMARCA4 mutations had less coarse craniofacial appearances and behavioral abnormalities. Patients with SMARCE1 mutations had a wide spectrum of manifestations from severe to moderate ID. Patients with ARID1A also had a wide spectrum of manifestations from severe ID and serous internal complications that could result in early death to mild ID. Mutations in SMARCB1, SMARCA4, and SMARCE1 are expected to exert dominant-negative or gain-of-function effects, whereas those in ARID1A are expected to exert loss-of-function effects.

  1. Effect of Ambient Temperature on the Thermoregulatory and Locomotor Stimulant Effects of 4-Methylmethcathinone in Wistar and Sprague-Dawley Rats

    PubMed Central

    Wright, M. Jerry; Angrish, Deepshikha; Aarde, Shawn M.; Barlow, Deborah J.; Buczynski, Matthew W.; Creehan, Kevin M.; Vandewater, Sophia A.; Parsons, Loren H.; Houseknecht, Karen L.; Dickerson, Tobin J.; Taffe, Michael A.

    2012-01-01

    The drug 4-methylmethcathinone (4-MMC; aka, mephedrone, MMCAT, “plant food”, “bath salts”) is a recent addition to the list of popular recreational psychomotor-stimulant compounds. Relatively little information about this drug is available in the scientific literature, but popular media reports have driven recent drug control actions in the UK and several US States. Online user reports of subjective similarity to 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) prompted the current investigation of the thermoregulatory and locomotor effects of 4-MMC. Male Wistar and Sprague-Dawley rats were monitored after subcutaneous administration of 4-MMC (1–10 mg/kg ) using an implantable radiotelemetry system under conditions of low (23°C) and high (27°C) ambient temperature. A reliable reduction of body temperature was produced by 4-MMC in Wistar rats at 23°C or 27°C with only minimal effect in Sprague-Dawley rats. Increased locomotor activity was observed after 4-MMC administration in both strains with significantly more activity produced in the Sprague-Dawley strain. The 10 mg/kg s.c. dose evoked greater increase in extracellular serotonin, compared with dopamine, in the nucleus accumbens. Follow-up studies confirmed that the degree of locomotor stimulation produced by 10 mg/kg 4-MMC was nearly identical to that produced by 1 mg/kg d-methamphetamine in each strain. Furthermore, hypothermia produced by the serotonin 1A/7 receptor agonist 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) was similar in each strain. These results show that the cathinone analog 4-MMC exhibits thermoregulatory and locomotor properties that are distinct from those established for methamphetamine or MDMA in prior work, despite recent evidence of neuropharmacological similarity with MDMA. PMID:22952999

  2. Effect of ambient temperature on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague-Dawley rats.

    PubMed

    Wright, M Jerry; Angrish, Deepshikha; Aarde, Shawn M; Barlow, Deborah J; Buczynski, Matthew W; Creehan, Kevin M; Vandewater, Sophia A; Parsons, Loren H; Houseknecht, Karen L; Dickerson, Tobin J; Taffe, Michael A

    2012-01-01

    The drug 4-methylmethcathinone (4-MMC; aka, mephedrone, MMCAT, "plant food", "bath salts") is a recent addition to the list of popular recreational psychomotor-stimulant compounds. Relatively little information about this drug is available in the scientific literature, but popular media reports have driven recent drug control actions in the UK and several US States. Online user reports of subjective similarity to 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") prompted the current investigation of the thermoregulatory and locomotor effects of 4-MMC. Male Wistar and Sprague-Dawley rats were monitored after subcutaneous administration of 4-MMC (1-10 mg/kg ) using an implantable radiotelemetry system under conditions of low (23°C) and high (27°C) ambient temperature. A reliable reduction of body temperature was produced by 4-MMC in Wistar rats at 23°C or 27°C with only minimal effect in Sprague-Dawley rats. Increased locomotor activity was observed after 4-MMC administration in both strains with significantly more activity produced in the Sprague-Dawley strain. The 10 mg/kg s.c. dose evoked greater increase in extracellular serotonin, compared with dopamine, in the nucleus accumbens. Follow-up studies confirmed that the degree of locomotor stimulation produced by 10 mg/kg 4-MMC was nearly identical to that produced by 1 mg/kg d-methamphetamine in each strain. Furthermore, hypothermia produced by the serotonin 1(A/7) receptor agonist 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) was similar in each strain. These results show that the cathinone analog 4-MMC exhibits thermoregulatory and locomotor properties that are distinct from those established for methamphetamine or MDMA in prior work, despite recent evidence of neuropharmacological similarity with MDMA.

  3. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression

    PubMed Central

    Zhang, E-b; Yin, D-d; Sun, M; Kong, R; Liu, X-h; You, L-h; Han, L; Xia, R; Wang, K-m; Yang, J-s; De, W; Shu, Y-q; Wang, Z-x

    2014-01-01

    Recently, a novel class of transcripts, long non-coding RNAs (lncRNAs), is being identified at a rapid pace. These RNAs have critical roles in diverse biological processes, including tumorigenesis. Here we report that taurine-upregulated gene 1 (TUG1), a 7.1-kb lncRNA, recruiting and binding to polycomb repressive complex 2 (PRC2), is generally downregulated in non-small cell lung carcinoma (NSCLC) tissues. In a cohort of 192 NSCLC patients, the lower expression of TUG1 was associated with a higher TNM stage and tumor size, as well as poorer overall survival (P<0.001). Univariate and multivariate analyses revealed that TUG1 expression serves as an independent predictor for overall survival (P<0.001). Further experiments revealed that TUG1 expression was induced by p53, and luciferase and chromatin immunoprecipitation (ChIP) assays confirmed that TUG1 was a direct transcriptional target of p53. TUG1 knockdown significantly promoted the proliferation in vitro and in vivo. Moreover, the lncRNA-mediated regulation of the expression of HOX genes in tumorigenesis and development has been recently receiving increased attention. Interestingly, inhibition of TUG1 could upregulate homeobox B7 (HOXB7) expression; ChIP assays demonstrated that the promoter of HOXB7 locus was bound by EZH2 (enhancer of zeste homolog 2), a key component of PRC2, and was H3K27 trimethylated. This TUG1-mediated growth regulation is in part due to specific modulation of HOXB7, thus participating in AKT and MAPK pathways. Together, these results suggest that p53-regulated TUG1 is a growth regulator, which acts in part through control of HOXB7. The p53/TUG1/PRC2/HOXB7 interaction might serve as targets for NSCLC diagnosis and therapy. PMID:24853421

  4. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity.

    PubMed

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2014-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  5. Organic pollutant characterization and toxicity testing of settling particulate matter by nanoinjection in sea trout (Salmo trutta) eggs

    SciTech Connect

    Ishaq, R.; Aakerman, G.; Naef, C.; Balk, L.; Bandh, C.; Broman, D.

    1999-03-01

    A nanoinjection technique was used to expose sea trout (Salmo trutta) eggs to a toluene extract of settling particulate matter (SPM) and fractions thereof from the urban waters of Stockholm, Sweden. Total extract (unfractionated), fractions collected using fractionation on an open Florisil{reg_sign} column (F1-F4), high-performance liquid chromatography (HPLC) aminopropylsilica/2-(1-pyrenyl)ethyldimethylsiluted silica column (A1-A7 and A2/P1-P3), and recombined fractions of Florisil (F-Rec) and HPLC (A-Rec) were injected into fertilized sea trout eggs. Toxicity was evaluated on the basis of deformities at hatching and in larval stages and on the basis of larvae mortality. Chemical analysis, using gas chromatography-mass spectrometry, was performed on all HPLC fractions and indicated that major components of fractions A2/P1 and A3 through A7 were polycyclic aromatic hydrocarbons (PAHs) or their alkylated derivatives. Fraction A2/P2 contained non-ortho-chlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans, and some Cl-substituted PAHs. Deformities at hatching were observed mainly in the larvae exposed to fraction A-Rec. F2 showed the highest effect on larvae mortality, and both F-Rec and A-Rec showed antagonistic mechanisms. The frequency of deformities in larvae was highest in fractions A2/P2, F4, and A-Rec. Fractions A2/P1 and F1, which partly contained similar substances, showed similar effects on deformity at hatching and larvae mortality; however, F1 showed no effect on larvae abnormality compared with A2/P1. This could have been due to antagonistic mechanisms acting in F1.

  6. Genetic Map of Triticale Integrating Microsatellite, DArT and SNP Markers

    PubMed Central

    Tyrka, Mirosław; Tyrka, Dorota; Wędzony, Maria

    2015-01-01

    Triticale (×Triticosecale Wittm) is an economically important crop for fodder and biomass production. To facilitate the identification of markers for agronomically important traits and for genetic and genomic characteristics of this species, a new high-density genetic linkage map of triticale was constructed using doubled haploid (DH) population derived from a cross between cultivars ‘Hewo’ and ‘Magnat’. The map consists of 1615 bin markers, that represent 50 simple sequence repeat (SSR), 842 diversity array technology (DArT), and 16888 DArTseq markers mapped onto 20 linkage groups assigned to the A, B, and R genomes of triticale. No markers specific to chromosome 7R were found, instead mosaic linkage group composed of 1880 highly distorted markers (116 bins) from 10 wheat chromosomes was identified. The genetic map covers 4907 cM with a mean distance between two bins of 3.0 cM. Comparative analysis in respect to published maps of wheat, rye and triticale revealed possible deletions in chromosomes 4B, 5A, and 6A, as well as inversion in chromosome 7B. The number of bin markers in each chromosome varied from 24 in chromosome 3R to 147 in chromosome 6R. The length of individual chromosomes ranged between 50.7 cM for chromosome 2R and 386.2 cM for chromosome 7B. A total of 512 (31.7%) bin markers showed significant (P < 0.05) segregation distortion across all chromosomes. The number of 8 the segregation distorted regions (SDRs) were identified on 1A, 7A, 1B, 2B, 7B (2 SDRs), 5R and 6R chromosomes. The high-density genetic map of triticale will facilitate fine mapping of quantitative trait loci, the identification of candidate genes and map-based cloning. PMID:26717308

  7. Possible mechanisms of thyroid hormone disruption in mice by BDE 47, a major polybrominated diphenyl ether congener

    SciTech Connect

    Richardson, Vicki M. Staskal, Daniele F.; Ross, David G.; Diliberto, Janet J.; DeVito, Michael J.; Birnbaum, Linda S.

    2008-02-01

    Polybrominated diphenyl ethers (PBDEs) are a class of polyhalogenated aromatic compounds commercially used as fire retardants in consumer products. These compounds have been shown to decrease thyroid hormone concentrations in rodents after acute exposures. This study examines the ability of 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) to decrease circulating thyroid hormone concentrations and pairs this with BDE 47-induced effects on genes involved in thyroid hormone homeostasis. Female C57BL/6 mice (9 weeks old) were orally administered 3, 10, or 100 mg/kg/day of BDE 47 for 4 days. Animals were euthanized 24 h after the final dose (day 5) and liver, kidney, and serum were collected for analysis. BDE 47 caused a significant 43% decrease at 100 mg/kg/day in serum total thyroxine (T{sub 4}) concentrations. There was no increase in hepatic T{sub 4}-glucuronidation activity, but significant increases in hepatic Ugt1a1, Ugt1a7, and Ugt2b5 mRNA expression accompany significant decreases in T{sub 4} concentrations at 100 mg/kg/day of BDE 47. Induction of PROD activity occurred at the lowest dose (3 mg/kg/day). Cyp2b10 mRNA expression also increased significantly at 10 and 100 mg/kg/day. These key findings show that BDE activates the nuclear receptor, CAR. Decreases in Mdr1a mRNA expression also occurred at the lowest dose administered (3 mg/kg/day BDE 47). BDE 47 exposure also decreased hepatic transthyretin and monocarboxylate transporter 8 (Mct8) mRNA expression, suggesting that while induction of UGTs may be partly responsible for T{sub 4} decreases, other mechanisms are also involved. No effects were seen in the kidney. We conclude that changes in hepatic UGTs and transporters may be involved in decreases in circulating T{sub 4} following BDE 47 exposure.

  8. Uridine Diphosphate-Glucuronosyltransferase (UGT) Xenobiotic Metabolizing Activity and Genetic Evolution in Pinniped Species.

    PubMed

    Kakehi, Mayu; Ikenaka, Yoshinori; Nakayama, Shouta M M; Kawai, Yusuke K; Watanabe, Kensuke P; Mizukawa, Hazuki; Nomiyama, Kei; Tanabe, Shinsuke; Ishizuka, Mayumi

    2015-10-01

    There are various interspecies differences in xenobiotic-metabolizing enzymes. It is known that cats show slow glucuronidation of drugs such as acetaminophen and strong side effects due to the UGT1A6 pseudogene. Recently, the UGT1A6 pseudogene was found in the Northern elephant seal and Otariidae was suggested to be UGT1A6-deficient. From the results of measurements of uridine diphosphate-glucuronosyltransferase (UGT) activity using liver microsomes, the Steller sea lion, Northern fur seal, and Caspian seal showed UGT activity toward 1-hydroxypyrene and acetaminophen as low as in cats, which was significantly lower than in rat and dog. Furthermore, UGT1A6 pseudogenes were found in Steller sea lion and Northern fur seal, and all Otariidae species were suggested to have the UGT1A6 pseudogene. The UGT1 family genes appear to have undergone birth-and-death evolution based on a phylogenetic and synteny analysis of the UGT1 family in mammals including Carnivora. UGT1A2-1A5 and UGT1A7-1A10 are paralogous genes to UGT1A1 and UGTA6, respectively, and their numbers were lower in cat, ferret and Pacific walrus than in human, rat, and dog. Felidae and Pinnipedia, which are less exposed to natural xenobiotics such as plant-derived toxins due to their carnivorous diet, have experienced fewer gene duplications of xenobiotic-metabolizing UGT genes, and even possess UGT1A6 pseudogenes. Artificial environmental pollutants and drugs conjugated by UGT are increasing dramatically, and their elimination to the environment can be of great consequence to cat and Pinnipedia species, whose low xenobiotic glucuronidation capacity makes them highly sensitive to these compounds.

  9. Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats.

    PubMed

    Brower, Christopher S; Rosen, Connor E; Jones, Richard H; Wadas, Brandon C; Piatkov, Konstantin I; Varshavsky, Alexander

    2014-11-18

    The arginyltransferase Ate1 is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. At least six isoforms of mouse Ate1 are produced through alternative splicing of Ate1 pre-mRNA. We identified a previously uncharacterized mouse protein, termed Liat1 (ligand of Ate1), that interacts with Ate1 but does not appear to be its arginylation substrate. Liat1 has a higher affinity for the isoforms Ate1(1A7A) and Ate1(1B7A). Liat1 stimulated the in vitro N-terminal arginylation of a model substrate by Ate1. All examined vertebrate and some invertebrate genomes encode proteins sequelogous (similar in sequence) to mouse Liat1. Sequelogs of Liat1 share a highly conserved ∼30-residue region that is shown here to be required for the binding of Liat1 to Ate1. We also identified non-Ate1 proteins that interact with Liat1. In contrast to Liat1 genes of nonprimate mammals, Liat1 genes of primates are subtelomeric, a location that tends to confer evolutionary instability on a gene. Remarkably, Liat1 proteins of some primates, from macaques to humans, contain tandem repeats of a 10-residue sequence, whereas Liat1 proteins of other mammals contain a single copy of this motif. Quantities of these repeats are, in general, different in Liat1 of different primates. For example, there are 1, 4, 13, 13, 17, and 17 repeats in the gibbon, gorilla, orangutan, bonobo, neanderthal, and human Liat1, respectively, suggesting that repeat number changes in this previously uncharacterized protein may contribute to evolution of primates. PMID:25369936

  10. Paternal lineages signal distinct genetic contributions from British Loyalists and continental Africans among different Bahamian islands.

    PubMed

    Simms, Tanya M; Martinez, Emanuel; Herrera, Kristian J; Wright, Marisil R; Perez, Omar A; Hernandez, Michelle; Ramirez, Evelyn C; McCartney, Quinn; Herrera, Rene J

    2011-12-01

    Over the past 500 years, the Bahamas has been influenced by a wide array of settlers, some of whom have left marked genetic imprints throughout the archipelago. To assess the extent of each group's genetic contributions, high-resolution Y-chromosome analyses were performed, for the first time, to delineate the patriarchal ancestry of six islands in the Northwest (Abaco and Grand Bahama) and Central (Eleuthera, Exuma, Long Island, and New Providence) Bahamas and their genetic relationships with previously published reference populations. Our results reveal genetic signals emanating primarily from African and European sources, with the predominantly sub-Saharan African and Western European haplogroups E1b1a-M2 and R1b1b1-M269, respectively, accounting for greater than 75% of all Bahamian patrilineages. Surprisingly, we observe notable discrepancies among the six Bahamian populations in their distribution of these lineages, with E1b1a-M2 predominating Y-chromosomes in the collections from Abaco, Exuma, Eleuthera, Grand Bahama, and New Providence, whereas R1b1b1-M269 is found at elevated levels in the Long Island population. Substantial Y-STR haplotype variation within sub-haplogroups E1b1a7a-U174 and E1b1ba8-U175 (greater than any continental African collection) is also noted, possibly indicating genetic influences from a variety of West and Central African groups. Furthermore, differential European genetic contributions in each island (with the exception of Exuma) reflect settlement patterns of the British Loyalists subsequent to the American Revolution.

  11. Synthesis and Characterization of New Iron Phosphatooxalates: [( - 5H 14N 2] [Fe 4(C 2O 4) 3(HPO 4) 2(H 2O) 2] and [( - 5H 14N 2] [Fe 4(C 2O 4) 3(HPO 4) 2

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Jung; Lin, Hsiu-Mei; Lii, Kwang-Hwa

    2001-02-01

    Two new organically templated iron(II) phosphatooxalates, [(S)-C5H14N2] [Fe4(C2O4)3(HPO4)2(H2O)2] (1) and [(S)-C5H14 N2] [Fe4(C2O4)3(HPO4)2] (2), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and Mössbauer spectroscopy. Crystal data are as follows: compound 1, triclinic, P1 (No. 1), a=7.6999(4) Å, b=7.9542(4) Å, c=9.8262(5) Å, α=74.8444(7)°, β=81.7716(8)°, γ=85.4075(8)°, V=574.34(8) Å3, Z=1, and R1=0.0255; compound 2, monoclinic, P21 (No. 4), a=7.5943(8) Å, b=7.8172(8) Å, c=18.318(2) Å, β=99.111(2)°, V=1073.8(3) Å3, Z=2, and R1=0.0281. The structure of 1 consists of dimers of edge-sharing FeO6 octahedra that are linked by phosphate and oxalate groups to generate a three-dimensional framework with intersecting tunnels parallel to the [100] and [010] directions. Diprotonated (S)-2-methylpiperazinium cations are located at the intersections of these tunnels. Compound 1 crystallizes as a minor product when a racemic mixture of 2-methylpiperazine is used in the synthesis, and can be prepared as a major product with a small amount of 2 if optically pure (S)-2-methylpiperzine is used. The structure of 2 is similar to that of 1 except that the coordination around the iron centers in the dimer are square pyramidal and octahedral. The two compounds are the first 3-dimensional phosphatooxalates containing a chiral amine.

  12. Crustal velocities near Coalinga, California, modeled from a combined earthquake/explosion refraction profile

    USGS Publications Warehouse

    Macgregor-Scott, N.; Walter, A.

    1988-01-01

    Crustal velocity structure for the region near Coalinga, California, has been derived from both earthquake and explosion seismic phase data recorded along a NW-SE seismic-refraction profile on the western flank of the Great Valley east of the Diablo Range. Comparison of the two data sets reveals P-wave phases in common which can be correlated with changes in the velocity structure below the earthquake hypocenters. In addition, the earthquake records reveal secondary phases at station ranges of less than 20 km that could be the result of S- to P-wave conversions at velocity interfaces above the earthquake hypocenters. Two-dimensional ray-trace modeling of the P-wave travel times resulted in a P-wave velocity model for the western flank of the Great Valley comprised of: 1) a 7- to 9-km thick section of sedimentary strata with velocities similar to those found elsewhere in the Great Valley (1.6 to 5.2 km s-1); 2) a middle crust extending to about 14 km depth with velocities comparable to those reported for the Franciscan assemblage in the Diablo Range (5.6 to 5.9 km s-1); and 3) a 13- to 14-km thick lower crust with velocities similar to those reported beneath the Diablo Range and the Great Valley (6.5 to 7.30 km s-1). This lower crust may have been derived from subducted oceanic crust that was thickened by accretionary underplating or crustal shortening. -Authors

  13. On-sky low order non-common path correction of the GPI calibration unit

    NASA Astrophysics Data System (ADS)

    Hartung, Markus; Macintosh, Bruce; Langlois, Paul; Sadakuni, Naru; Gavel, Don; Wallace, J. K.; Palmer, Dave; Poyneer, Lisa; Savransky, Dmitry; Thomas, Sandrine; Dillon, Daren; Dunn, Jennifer; Hibon, Pascale; Rantakyrö, Fredrik; Goodsell, Stephen

    2014-08-01

    The Gemini Planet Imager (GPI) entered on-sky commissioning phase, and had its First Light at the Gemini South telescope in November 2013. Meanwhile, the fast loops for atmospheric correction of the Extreme Adaptive Optics (XAO) system have been closed on many dozen stars at different magnitudes (I=4-8), elevation angles and a variety of seeing conditions, and a stable loop performance was achieved from the beginning. Ultimate contrast performance requires a very low residual wavefront error (design goal 60 nm RMS), and optimization of the planet finding instrument on different ends has just begun to deepen and widen its dark hole region. Laboratory raw contrast benchmarks are in the order of 10-6 or smaller. In the telescope environment and in standard operations new challenges are faced (changing gravity, temperature, vibrations) that are tackled by a variety of techniques such as Kalman filtering, open-loop models to keep alignment to within 5 mas, speckle nulling, and a calibration unit (CAL). The CAL unit was especially designed by the Jet Propulsion Laboratory to control slowly varying wavefront errors at the focal plane of the apodized Lyot coronagraph by the means of two wavefront sensors: 1) a 7x7 low order Shack-Hartmann SH wavefront sensor (LOWFS), and 2) a special Mach-Zehnder interferometer for mid-order spatial frequencies (HOWFS) - atypical in that the beam is split in the focal plane via a pinhole but recombined in the pupil plane with a beamsplitter. The original design goal aimed for sensing and correcting on a level of a few nm which is extremely challenging in a telescope environment. This paper focuses on non-common path low order wavefront correction as achieved through the CAL unit on sky. We will present the obtained results as well as explain challenges that we are facing.

  14. Comparison of the in vitro metabolism of psoralidin among different species and characterization of its inhibitory effect against UDP- glucuronosyltransferase (UGT) or cytochrome p450 (CYP450) enzymes.

    PubMed

    Shi, Xianbao; Zhang, Gang; Mackie, Brianna; Yang, Shuman; Wang, Jian; Shan, Lina

    2016-09-01

    Psoralidin has shown a variety of biological and pharmacological activities such as anti-tumor anti-oxidant, anti-bacterial, anti-depressant and anti-inflammatory activities. Herein, we reported the metabolism of psoralidin among different species and its inhibitory effect against UGTs and CYP450s. Liquid chromatography was used to investigate the inhibitory activity of psoralidin against ten different UGTs and eight distinct CYP450 isoforms. In addition, we characterized the CYP450 isoforms involved in the psoralidin metabolism on the basis of chemical inhibition studies and screening assays with recombinant human cytochrome P450s. In vitro metabolic profiles and metabolites of psoralidin from varying liver microsomes obtained from human (HLMs), monkey (MLMs), rat (RLMs), dog (DLMs), minipig (PLMs) and rabbit (RAMs) were determined by LC-MS/MS. In vivo pharmacokinetic profiles were investigated by injecting psoralidin (2mg/kg) into the tail vein of Wistar rats. Molecular modeling studies were carried out in order to assess the binding profile and recognition motif between psoralidin and the enzymes. Psoralidin showed potent and noncompetitive inhibition against UGT1A1, UGT1A7, CYP1A2 and CYP2C8 with IC50 values of 6.12, 0.38, 1.81, 0.28μM, respectively. The metabolism of psoraldin exhibited significant differences among humans, monkeys, dogs, minipigs, rabbits and rats; however, monkeys showed the highest similarity to humans. Furthermore, eleven metabolites were observed among these species and their structures were characterized by LC-MS/MS. CYP2C19 played a key role in the metabolism of psorslidin in human liver microsomes. These findings could be used to advance the understanding of psoralidin. PMID:27428458

  15. Differential prevalence of hepatitis C virus subtypes in healthy blood donors, patients on maintenance hemodialysis, and patients with hepatocellular carcinoma in Surabaya, Indonesia.

    PubMed Central

    Soetjipto; Handajani, R; Lusida, M I; Darmadi, S; Adi, P; Soemarto; Ishido, S; Katayama, Y; Hotta, H

    1996-01-01

    Determination of the prevalence of liver disease caused by hepatitis C virus (HCV) of various genotypes helps provide an understanding of the virulences of these genotypes. Differences in the prevalences of these genotypes are known to exist in the various geographical regions of the world. Hence, we performed seroepidemiological and molecular epidemiological analyses of HCV in Surabaya, Indonesia. The prevalences of anti-HCV antibodies were 2.3, 76.3 and 64.7% in healthy blood donors, patients on maintenance hemodialysis, and patients with hepatocellular carcinoma (HCC), respectively. HCV-2a was the most common (52%) among the HCV clones obtained from blood donors; this was followed by HCV-1b (15%), HCV-1a (7%), and HCV-1d (7%), a unique Indonesian subtype. The high prevalence of HCV-2a in blood donors was further supported by serotyping analysis that could discriminate HCV type 2 (HCV-2a and -2b) from HCV type 1 (HCV-1a, -1b, and -1d). HCV-1a, -1b, and -1d were strongly associated with elevated serum alanine aminotransferase (ALT) levels in blood donors, suggesting a possibly more pathogenic feature of those subtypes than HCV-2a. In patients on maintenance hemodialysis, HCV-1a and -1b (each 31%) were among the most common subtypes, and in contrast to the case with blood donors, HCV-1a, -1b, and -1d were found in those with normal ALT as well as those with elevated ALT levels. Impaired immune responses of hemodialyzed patients might be responsible for the apparently decreased hepatocytic injury caused by infection with HCV type 1. In patients with HCC, HCV-1b (57%) was the most common; this was followed by HCV-1d (19%) and HCV-2a (5%). Subtype prevalence was not different between HCC patients with advanced liver cirrhosis and those without advanced cirrhosis. PMID:8940415

  16. Effect of chronic renal insufficiency on hepatic and renal udp-glucuronyltransferases in rats.

    PubMed

    Yu, Chuanhui; Ritter, Joseph K; Krieg, Richard J; Rege, Bhaskar; Karnes, Thomas H; Sarkar, Mohamadi A

    2006-04-01

    Significant evidence exists regarding altered CYP450 enzymes in chronic renal insufficiency (CRI), although none exists for the phase II enzymes. The objective of this study was to investigate the effect of CRI on hepatic and renal UDP-glucuronyltransferase (UGT) enzymes. Three groups of rats were included: CRI induced by the 5/6th nephrectomy model, control, and control pair-fed (CPF) rats. UGT activities were determined in liver and kidney microsomes by the 3- and 17-glucuronidation of beta-estradiol (E2-3G and E2-17G), glucuronidation of 4-methylumbelliferone (4-MUG), and 3-glucuronidation of morphine (M3G). UGT isoforms responsible for these catalytic activities were screened using recombinant rat UGT1A1, UGT1A2, UGT1A3, UGT1A7, UGT2B2, UGT2B3, and UGT2B8. UGT protein levels were examined by Western blot analysis using polyclonal antibodies. There was no significant difference between CRI and CPF rats in hepatic and/or renal E2-3G (UGT1A1), E2-17G (UGT2B3), 4-MUG (UGT1A6), and M3G (UGT2B1) formation. Formation of E2-17G and 4-MUG in the liver and E2-3G and 4-MUG in the kidney was significantly reduced (p < 0.05) in CPF and CRI rats compared with control rats. The down-regulated glucuronidation activities were accompanied by corresponding reductions in protein content of specific UGT isoforms. These results suggest that CRI does not seem to influence the protein levels or catalytic activity of most of the major hepatic or renal UGT enzymes. The observed down-regulation of hepatic and renal UGTs in CRI and CPF rats could be caused by restricted food intake in these groups of rats.

  17. Relationship between pulmonary function and indoor air pollution from coal combustion among adult residents in an inner-city area of southwest China

    PubMed Central

    Jie, Y.; Houjin, H.; Xun, M.; Kebin, L.; Xuesong, Y.; Jie, X.

    2014-01-01

    Few studies evaluate the amount of particulate matter less than 2.5 mm in diameter (PM2.5) in relation to a change in lung function among adults in a population. The aim of this study was to assess the association of coal as a domestic energy source to pulmonary function in an adult population in inner-city areas of Zunyi city in China where coal use is common. In a cross-sectional study of 104 households, pulmonary function measurements were assessed and compared in 110 coal users and 121 non-coal users (≥18 years old) who were all nonsmokers. Several sociodemographic factors were assessed by questionnaire, and ventilatory function measurements including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), the FEV1/FVC ratio, and peak expiratory flow rate (PEFR) were compared between the 2 groups. The amount of PM2.5 was also measured in all residences. There was a significant increase in the relative concentration of PM2.5 in the indoor kitchens and living rooms of the coal-exposed group compared to the non-coal-exposed group. In multivariate analysis, current exposure to coal smoke was associated with a 31.7% decrease in FVC, a 42.0% decrease in FEV1, a 7.46% decrease in the FEV1/FVC ratio, and a 23.1% decrease in PEFR in adult residents. The slope of lung function decrease for Chinese adults is approximately a 2-L decrease in FVC, a 3-L decrease in FEV1, and an 8 L/s decrease in PEFR per count per minute of PM2.5 exposure. These results demonstrate the harmful effects of indoor air pollution from coal smoke on the lung function of adult residents and emphasize the need for public health efforts to decrease exposure to coal smoke. PMID:25296361

  18. Solvent free synthesis, crystal studies, docking studies and antibacterial properties of some novel fluorinated pyridazinone derivatives

    NASA Astrophysics Data System (ADS)

    Sowmya, H. B. V.; Suresha Kumara, T. H.; Nagendrappa, G.; Jasinski, Jerry P.; Millikan, Sean P.; Jose, Gilish; R, Dileep; Sujan Ganapathy, P. S.

    2013-12-01

    The solvent free synthesis of six 6-(3,5-difluorophenyl)-4,5-dihydropyridazin-3(2H)-one derivatives was carried out by microwave irradiation of a pulverized mixture of 4-(3,5-difluorophenyl)-4-oxobutanoic acid and substituted hydrazine hydrochloride in presence of catalytic amount of acetic acid at 150 °C/75 W for 5 min. Single crystals of two derivatives, C16H12N2OF2 [3a] and C16H11N2OF3 [3f] were formed allowing for structural analysis. [C16H12N2OF2]: orthorhombic, Pbcn; a = 17.1583(5) Å, b = 11.3751(3) Å, c = 13.7704(4) Å, V = 2687.67(13) Å3, Z = 8, 173(2) K, μ(Cu Kα) = 0.920 mm-1, Dcalc = 1.415 g/mm3, 16553 reflections, 2651 unique (Rint = 0.0298); R1 = 0.0394 (I > 2σ(I)) and wR2 = 0.1118 (all data). [C16H11N2OF3]: triclinic, P-1, a = 7.4837(4) Å, b = 13.3707(10) Å, c = 13.7194(9) Å, α = 76.622(6)°, β = 88.771(5)°, γ = 81.453(5)°, V = 1320.60(16) Å3, Z = 4, 173(2) K, μ(Cu Kα) = 1.087 mm-1, Dcalc = 1.530 g/mm3, 8522 reflections, 5092 unique (Rint = 0.0277); R1 = 0.0441 (I > 2σ(I)) and wR2 = 0.1289 (all data). Preliminary antibacterial properties and docking studies are described for all the six derivatives.

  19. Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains.

    PubMed

    Sagvolden, T; Pettersen, M B; Larsen, M C

    1993-12-01

    Childhood hyperkinesis or attention-deficit hyperactivity disorder (ADHD) is a behavior disorder of which the main symptoms are attention problems and hyperactivity. The main objective of the present study was to investigate whether the spontaneously hypertensive rat (SHR) strain is a useful animal model of ADHD. Five different rat strains were tested: SHR, Wistar-Kyoto (WKY), Wistar, Sprague-Dawley (SPRD), and PVG (hooded) rats. The protocol consisted of three different test procedures: 1) A 7.5-min free-exploration open-field test (home cage accessible), where the SHR was less active than Wistar and SPRD but more active than WKY; SHR showed longer latencies to leave the home cage than both Wistar and SPRD rats, spending less time in the field, ambulating and rearing less than Wistar and SPRD but more than WKY. Within session, the SHR tended to be more active at the end of the session than at the start, while the opposite tended to be the case in the other groups. 2) A 7.5-min forced exploration open-field test (home cage not accessible), where the results showed that the SHR is less active than both the Wistar and Sprague-Dawley strains, but more active than PVG and WKY. 3) A two-component multiple schedule of reinforcement with a fixed interval 2 min signalled by houselight on and a 5-min extinction signalled by houselight off. Lever pressing by SHR was markedly different from that of the other four strains, which were quite Except early in the interval, SHR pressed the lever more than any of the other groups.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Design, synthesis and biological evaluation of novel benzimidazole-2-substituted phenyl or pyridine propyl ketene derivatives as antitumour agents.

    PubMed

    Wu, Lin-tao; Jiang, Zhi; Shen, Jia-jia; Yi, Hong; Zhan, Yue-chen; Sha, Ming-quan; Wang, Zhen; Xue, Si-tu; Li, Zhuo-rong

    2016-05-23

    A series of novel benzimidazole-2-subsituted phenyl or pyridine propyl ketene derivatives were designed and synthesized. The biological activities of these derivatives were then evaluated as potential antitumour agents. These compounds were assayed for growth-inhibitory activity against HCT116, MCF-7 and HepG2 cell lines in vitro. The IC50 values of compounds A1 and A7 against the cancer cells were 0.06-3.64 μM and 0.04-9.80 μM, respectively. Their antiproliferative activities were significantly better than that of 5-Fluorouracil (IC50: 56.96-174.50 μM) and were close to that of Paclitaxel (IC50: 0.026-1.53 μM). The activity of these derivatives was over 100 times more effective than other reported structures of chalcone analogues (licochalcone A). A preliminary mechanistic study suggested that these compounds inhibit p53-MDM2 binding. Compounds A1, A7 and A9 effectively inhibited tumour growth in BALB/c mice with colon carcinoma HCT116 cells. The group administered 200 mg/kg of compound A7 showed a 74.6% tumour growth inhibition with no signs of toxicity at high doses that was similar to the inhibition achieved with the 12.5 mg/kg irinotecan positive control (70.2%). Therefore, this class of benzimidazole-2-subsituted phenyl or pyridine propyl ketene derivatives represents a promising lead structure for the development of possible p53-MDM2 inhibitors as new antitumour agents. PMID:27017265

  1. High-resolution sonography for distinguishing neoplastic gallbladder polyps and staging gallbladder cancer.

    PubMed

    Kim, Jung Hoon; Lee, Jae Young; Baek, Jee Hyun; Eun, Hyo Won; Kim, Young Jae; Han, Joon Koo; Choi, Byung Ihn

    2015-02-01

    OBJECTIVE. The purposes of this study were to compare staging accuracy of high-resolution sonography (HRUS) with combined low- and high-MHz transducers with that of conventional sonography for gallbladder cancer and to investigate the differences in the imaging findings of neoplastic and nonneoplastic gallbladder polyps. MATERIALS AND METHODS. Our study included 37 surgically proven gallbladder cancer (T1a = 7, T1b = 2, T2 = 22, T3 = 6), including 15 malignant neoplastic polyps and 73 surgically proven polyps (neoplastic = 31, nonneoplastic = 42) that underwent HRUS and conventional transabdominal sonography. Two radiologists assessed T-category and predefined polyp findings on HRUS and conventional transabdominal sonography. Statistical analyses were performed using chi-square and McNemar tests. RESULTS. The diagnostic accuracy for the T category was T1a = 92-95%, T1b = 89-95%, T2 = 78-86%, and T3 = 84-89%, all with good agreement (κ = 0.642) using HRUS. The diagnostic accuracy for differentiating T1 from T2 or greater than T2 was 92% and 89% on HRUS and 65% and 70% with conventional transabdominal sonography. Statistically common findings for neoplastic polyps included size greater than 1 cm, single lobular surface, vascular core, hypoechoic polyp, and hypoechoic foci (p < 0.05). The value of HRUS in the differential diagnosis of a gallbladder polyp was more clearly depicted internal echo foci than conventional transabdominal sonography (39 vs 21). A polyp size greater than 1 cm was independently associated with a neoplastic polyp (odds ratio = 7.5, p = 0.02). The AUC of a polyp size greater than 1 cm was 0.877. The sensitivity and specificity were 66.67% and 89.13%, respectively. CONCLUSION. HRUS is a simple method that enables accurate T categorization of gallbladder carcinoma. It provides high-resolution images of gallbladder polyps and may have a role in stratifying the risk for malignancy.

  2. Mapping, Complementation, and Targets of the Cysteine Protease Actinidin in Kiwifruit1[C][W][OA

    PubMed Central

    Nieuwenhuizen, Niels J.; Maddumage, Ratnasiri; Tsang, Gianna K.; Fraser, Lena G.; Cooney, Janine M.; De Silva, H. Nihal; Green, Sol; Richardson, Kim A.; Atkinson, Ross G.

    2012-01-01

    Cysteine proteases (CPs) accumulate to high concentration in many fruit, where they are believed to play a role in fungal and insect defense. The fruit of Actinidia species (kiwifruit) exhibit a range of CP activities (e.g. the Actinidia chinensis variety YellowA shows less than 2% of the activity of Actinidia deliciosa variety Hayward). A major quantitative trait locus for CP activity was mapped to linkage group 16 in a segregating population of A. chinensis. This quantitative trait locus colocated with the gene encoding actinidin, the major acidic CP in ripe Hayward fruit encoded by the ACT1A-1 allele. Sequence analysis indicated that the ACT1A locus in the segregating A. chinensis population contained one functional allele (A-2) and three nonfunctional alleles (a-3, a-4, and a-5) each containing a unique frameshift mutation. YellowA kiwifruit contained two further alleles: a-6, which was nonfunctional because of a large insertion, and a-7, which produced an inactive enzyme. Site-directed mutagenesis of the act1a-7 protein revealed a residue that restored CP activity. Expression of the functional ACT1A-1 cDNA in transgenic plants complemented the natural YellowA mutations and partially restored CP activity in fruit. Two consequences of the increase in CP activity were enhanced degradation of gelatin-based jellies in vitro and an increase in the processing of a class IV chitinase in planta. These results provide new insight into key residues required for CP activity and the in vivo protein targets of actinidin. PMID:22039217

  3. Genetic Map of Triticale Integrating Microsatellite, DArT and SNP Markers.

    PubMed

    Tyrka, Mirosław; Tyrka, Dorota; Wędzony, Maria

    2015-01-01

    Triticale (×Triticosecale Wittm) is an economically important crop for fodder and biomass production. To facilitate the identification of markers for agronomically important traits and for genetic and genomic characteristics of this species, a new high-density genetic linkage map of triticale was constructed using doubled haploid (DH) population derived from a cross between cultivars 'Hewo' and 'Magnat'. The map consists of 1615 bin markers, that represent 50 simple sequence repeat (SSR), 842 diversity array technology (DArT), and 16888 DArTseq markers mapped onto 20 linkage groups assigned to the A, B, and R genomes of triticale. No markers specific to chromosome 7R were found, instead mosaic linkage group composed of 1880 highly distorted markers (116 bins) from 10 wheat chromosomes was identified. The genetic map covers 4907 cM with a mean distance between two bins of 3.0 cM. Comparative analysis in respect to published maps of wheat, rye and triticale revealed possible deletions in chromosomes 4B, 5A, and 6A, as well as inversion in chromosome 7B. The number of bin markers in each chromosome varied from 24 in chromosome 3R to 147 in chromosome 6R. The length of individual chromosomes ranged between 50.7 cM for chromosome 2R and 386.2 cM for chromosome 7B. A total of 512 (31.7%) bin markers showed significant (P < 0.05) segregation distortion across all chromosomes. The number of 8 the segregation distorted regions (SDRs) were identified on 1A, 7A, 1B, 2B, 7B (2 SDRs), 5R and 6R chromosomes. The high-density genetic map of triticale will facilitate fine mapping of quantitative trait loci, the identification of candidate genes and map-based cloning. PMID:26717308

  4. Delta(9)-tetrahydrocannabinol prolongs the immobility time in the mouse forced swim test: involvement of cannabinoid CB(1) receptor and serotonergic system.

    PubMed

    Egashira, Nobuaki; Matsuda, Tomomi; Koushi, Emi; Higashihara, Fuminori; Mishima, Kenichi; Chidori, Shozo; Hasebe, Nobuyoshi; Iwasaki, Katsunori; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-07-28

    In the present study, we investigated the effect of Delta(9)-tetrahydrocannabinol (THC), the principal psychoactive component of marijuana, on immobility time during the forced swim test. THC (2 and 6 mg/kg, i.p.) significantly prolonged the immobility time. In addition, THC at the same doses did not significantly affect locomotor activity in the open-field test. The selective cannabinoid CB(1) receptor antagonist rimonabant (3 mg/kg, i.p.) significantly reduced the enhancement of immobility by THC (6 mg/kg). Similarly, the selective serotonin (5-HT) reuptake inhibitor (SSRI) citalopram (10 mg/kg, i.p.) and 5-HT(1A/7) receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT, 0.3 mg/kg, i.p.) significantly reduced this THC-induced effect. Moreover, the selective 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide dihydrochloride (WAY100635, 1 mg/kg, i.p.) and the postsynaptic 5-HT(1A) receptor antagonist MM-77 (0.1 mg/kg, i.p.) reversed this reduction effect of 8-OH-DPAT (0.3 mg/kg). In contrast, the selective 5-HT(7) receptor antagonist (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulfonyl]phenol hydrochloride (SB269970) had no effect on this reduction effect of 8-OH-DPAT. WAY100635 (1 mg/kg) also reversed the reduction effect of citalopram (10 mg/kg). These findings suggest that the 5-HT(1A) receptors are involved in THC-induced enhancement of immobility.

  5. Modeling cell elongation during germ band retraction: cell autonomy versus applied anisotropic stress

    NASA Astrophysics Data System (ADS)

    Lynch, Holley E.; Veldhuis, Jim; Brodland, G. Wayne; Hutson, M. Shane

    2014-05-01

    The morphogenetic process of germ band retraction in Drosophila embryos involves coordinated movements of two epithelial tissues—germ band and amnioserosa. The germ band shortens along its rostral-caudal or head-to-tail axis, widens along its perpendicular dorsal-ventral axis, and uncurls from an initial ‘U’ shape. The amnioserosa mechanically assists this process by pulling on the crook of the U-shaped germ band. The amnioserosa may also provide biochemical signals that drive germ band cells to change shape in a mechanically autonomous fashion. Here, we use a finite-element model to investigate how these two contributions reshape the germ band. We do so by modeling the response to laser-induced wounds in each of the germ band’s spatially distinct segments (T1-T3, A1-A9) during the middle of retraction when segments T1-A3 form the ventral arm of the ‘U’, A4-A7 form its crook, and A8-A9 complete the dorsal arm. We explore these responses under a range of externally applied stresses and internal anisotropy of cell edge tensions—akin to a planar cell polarity that can drive elongation of cells in a direction parallel to the minimum edge tension—and identify regions of parameter space (edge-tension anisotropy versus stress anisotropy) that best match previous experiments for each germ band segment. All but three germ band segments are best fit when the applied stress anisotropy and the edge-tension anisotropy work against one another—i.e., when the isolated effects would elongate cells in perpendicular directions. Segments in the crook of the germ band (A4-A7) have cells that elongate in the direction of maximum external stress, i.e., external stress anisotropy is dominant. In most other segments, the dominant factor is internal edge-tension anisotropy. These results are consistent with models in which the amnioserosa pulls on the crook of the germ band to mechanically assist retraction. In addition, they suggest a mechanical cue for edge

  6. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver.

    PubMed

    Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J; Cook, Edwin; Das, Soma; Ratain, Mark J

    2014-10-15

    The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P < 0.05) associated with mRNA expression and/or activities of UGT1A1, UGT1A3 and UGT2B17. We found novel SNPs in the UGT2B17 CNV region accounting for variability in UGT2B17 gene transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs.

  7. Lithium-bearing fluor-arfvedsonite from Hurricane Mountain, New Hampshire: A crystal-chemical study

    USGS Publications Warehouse

    Hawthorne, F.C.; Oberti, R.; Ottolini, L.; Foord, E.E.

    1996-01-01

    The structures of two crystals of Li-bearing fluor-arfvedsonite (1) (K0.32Na0.68)Na2(Li0.48Fe 2+2.83Mn2+0.10Zn 0.06Fe3+1.46Ti0.07) (Si7.88Al0.12)O22[Fu1.15(OH) 0.85] and (2) (K0.25Na0.75)Na2(Li0.48Fe 2+2.84Mn2+0.11Zn 0.05Fe3+1.45Ti0.07)(Si 7.89Al0.11)O22[F1.35(OH) 0.65] from a granitic pegmatite, Hurricane Mountain, New Hampshire, have been refined to R indices of 1.5(1.6)% based on 1380(1387) reflections measured with MoK?? X-radiation. The unit cell parameters are (1) a 9.838(4), b 17.991(6), c 5.315(2) A??, 103.78(3)??, V 913.7 A??3 and (2) a 9.832(3), b 17.990(7), c 5.316(3) A??, ?? 103.79(3)??, V 913.2 A??3. Site-scattering refinement shows Li to be completely ordered at the M(3) site in these crystals. The amphibole composition is intermediate between fluor-arfvedsonite and fluor-ferro-leakeite with a small component (???10%) of fluor-ferro-ferri-nybo??ite. These amphibole crystals project into miarolitic cavities in a pegmatitic phase of a riebeckite granite. The early-crystallizing amphibole is close to fluor-ferro-leakeite in composition, but becomes progressively depleted in Li and F as crystals project out into miarolitic cavities; the final amphibole to crystallize is a fibrous Li-poor riebeckite. Li plays a significant role in late-stage fractionation involving the crystallization of alkali amphibole in peralkaline granitic environments.

  8. In Vitro Inhibition of Human UDP-Glucuronosyl-Transferase (UGT) Isoforms by Astaxanthin, β-Cryptoxanthin, Canthaxanthin, Lutein, and Zeaxanthin: Prediction of in Vivo Dietary Supplement-Drug Interactions.

    PubMed

    Zheng, Yu Fen; Min, Jee Sun; Kim, Doyun; Park, Jung Bae; Choi, Sung-Wook; Lee, Eun Seong; Na, Kun; Bae, Soo Kyung

    2016-01-01

    Despite the widespread use of the five major xanthophylls astaxanthin, β-cryptoxanthin, canthaxanthin, lutein, and zeaxanthin as dietary supplements, there have been no studies regarding their inhibitory effects on hepatic UDP-glucuronosyltransferases (UGTs). Here, we evaluated the inhibitory potential of these xanthophylls on the seven major human hepatic UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7 and UGT2B15) in vitro by LC-MS/MS using specific marker reactions in human liver microsomes (except UGT2B15) or recombinant supersomes (UGT2B15). We also predicted potential dietary supplement-drug interactions for β-cryptoxanthin via UGT1A1 inhibition. We demonstrated that astaxanthin and zeaxanthin showed no apparent inhibition, while the remaining xanthophylls showed only weak inhibitory effects on the seven UGTs. β-Cryptoxanthin mildly inhibited UGT1A1, UGT1A3, and UGT1A4, with IC50 values of 18.8 ± 2.07, 28.3 ± 4.40 and 34.9 ± 5.98 μM, respectively. Canthaxanthin weakly inhibited UGT1A1 and UGT1A3, with IC50 values of 38.5 ± 4.65 and 41.2 ± 3.14 μM, respectively; and lutein inhibited UGT1A1 and UGT1A4, with IC50 values of 45.5 ± 4.01 and 28.7 ± 3.79 μM, respectively. Among the tested xanthophyll-UGT pairs, β-cryptoxanthin showed the strongest competitive inhibition of UGT1A1 (Ki, 12.2 ± 0.985 μM). In addition, we predicted the risk of UGT1A1 inhibition in vivo using the reported maximum plasma concentration after oral administration of β-cryptoxanthin in humans. Our data suggests that these xanthophylls are unlikely to cause dietary supplement-drug interactions mediated by inhibition of the hepatic UGTs. These findings provide useful information for the safe clinical use of the tested xanthophylls. PMID:27529203

  9. Structural investigation of a high-affinity MnII binding site in the hammerhead ribozyme by EPR spectroscopy and DFT calculations. Effects of neomycin B on metal-ion binding.

    PubMed

    Schiemann, Olav; Fritscher, Jörg; Kisseleva, Natalja; Sigurdsson, Snorri Th; Prisner, Thomas F

    2003-10-01

    Electron paramagnetic resonance spectroscopy and density functional theory methods were used to study the structure of a single, high-affinity Mn(II) binding site in the hammerhead ribozyme. This binding site exhibits a dissociation constant Ke of 4.4 microM in buffer solutions containing 1 M NaCl, as shown by titrations monitored by continuous wave (cw) EPR. A combination of electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) experiments revealed that the paramagnetic manganese(II) ion in this binding site is coupled to a single nitrogen atom with a quadrupole coupling constant kappa of 0.7 MHz, an asymmetry parameter eta of 0.4, and an isotropic hyperfine coupling constant of Aiso(14N)=2.3 MHz. All three EPR parameters are sensitive to the arrangement of the Mn(II) ligand sphere and can therefore be used to determine the structure of the binding site. A possible location for this binding site may be at the G10.1, A9 site found to be occupied by Mn(II) in crystals (MacKay et al., Nature 1994, 372, 68 and Scott et al., Science 1996, 274, 2065). To determine whether the structure of the binding site is the same in frozen solution, we performed DFT calculations for the EPR parameters, based on the structure of the Mn(II) site in the crystal. Computations with the BHPW91 density function in combination with a 9s7p4d basis set for the manganese(II) center and the Iglo-II basis set for all other atoms yielded values of kappa(14N)=+0.80 MHz, eta=0.324, and Aiso(14N)=+2.7 MHz, in excellent agreement with the experimentally obtained EPR parameters, which suggests that the binding site found in the crystal and in frozen solution are the same. In addition, we demonstrated by EPR that Mn(II) is released from this site upon binding of the aminoglycoside antibiotic neomycin B (Kd=1.2 microM) to the hammerhead ribozyme. Neomycin B has previously been shown to inhibit the catalytic activity of this ribozyme (Uhlenbeck et al., Biochemistry

  10. Clinical Pharmacokinetic, Pharmacodynamic, and Drug-Drug Interaction Profile of Canagliflozin, a Sodium-Glucose Co-transporter 2 Inhibitor.

    PubMed

    Devineni, Damayanthi; Polidori, David

    2015-10-01

    The sodium-glucose co-transporter 2 (SGLT2) inhibitors represent novel therapeutic approaches in the management of type 2 diabetes mellitus; they act on kidneys to decrease the renal threshold for glucose (RTG) and increase urinary glucose excretion (UGE). Canagliflozin is an orally active, reversible, selective SGLT2 inhibitor. Orally administered canagliflozin is rapidly absorbed achieving peak plasma concentrations in 1-2 h. Dose-proportional systemic exposure to canagliflozin has been observed over a wide dose range (50-1600 mg) with an oral bioavailability of 65 %. Canagliflozin is glucuronidated into two inactive metabolites, M7 and M5 by uridine diphosphate-glucuronosyltransferase (UGT) 1A9 and UGT2B4, respectively. Canagliflozin reaches steady state in 4 days, and there is minimal accumulation observed after multiple dosing. Approximately 60 % and 33 % of the administered dose is excreted in the feces and urine, respectively. The half-life of orally administered canagliflozin 100 or 300 mg in healthy participants is 10.6 and 13.1 h, respectively. No clinically relevant differences are observed in canagliflozin exposure with respect to age, race, sex, and body weight. The pharmacokinetics of canagliflozin remains unaffected by mild or moderate hepatic impairment. Systemic exposure to canagliflozin is increased in patients with renal impairment relative to those with normal renal function; however, the efficacy is reduced in patients with renal impairment owing to the reduced filtered glucose load. Canagliflozin did not show clinically relevant drug interactions with metformin, glyburide, simvastatin, warfarin, hydrochlorothiazide, oral contraceptives, probenecid, and cyclosporine, while co-administration with rifampin modestly reduced canagliflozin plasma concentrations and thus may necessitate an appropriate monitoring of glycemic control. Canagliflozin increases UGE and suppresses RTG in a dose-dependent manner, thereby lowering the plasma glucose

  11. Novel 3D bismuth-based coordination polymers: Synthesis, structure, and second harmonic generation properties

    SciTech Connect

    Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; Loye, Hans-Conrad zur

    2012-11-15

    Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi{sub 2}O{sub 2}(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P2{sub 1} (a=9.6479(9) A, b=4.2349(4) A, c=11.9615(11) A, {beta}=109.587(1) Degree-Sign ), which contains Bi{sub 2}O{sub 2} chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P2{sub 1} (a=19.0855(7) A, b=13.7706(5) A, c=19.2429(7) A, {beta}=90.701(1) Degree-Sign ) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi{sup 3+}, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer. - Graphical Abstract: Structures of two new, polar, 3D Bismuth(III)-based coordination polymers: Bi{sub 2}O{sub 2}(pydc) (compound 1), and Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (compound 2). Highlights: Black-Right-Pointing-Pointer New, polar, 3D Bismuth(III)-based coordination polymers. Black-Right-Pointing-Pointer First polar bismuth-based coordination polymers synthesized via a 'hybrid' strategy. Black-Right-Pointing-Pointer Combination of stereochemically-active lone pairs and unsymmetrical or chiral ligands. Black-Right-Pointing-Pointer Synthesis of class C-SHG materials based on Kurtz-Perry categories.

  12. Modeling cell elongation during germ band retraction: cell autonomy versus applied anisotropic stress

    PubMed Central

    Lynch, Holley E.; Veldhuis, Jim; Brodland, G. Wayne; Hutson, M. Shane

    2014-01-01

    The morphogenetic process of germ band retraction in Drosophila embryos involves coordinated movements of two epithelial tissues – germ band and amnioserosa. The germ band shortens along its rostral-caudal or head-to-tail axis, widens along its perpendicular dorsal-ventral axis, and uncurls from an initial ‘U’ shape. The amnioserosa mechanically assists this process by pulling on the crook of the U-shaped germ band. The amnioserosa may also provide biochemical signals that drive germ band cells to change shape in a mechanically autonomous fashion. Here, we use a finite-element model to investigate how these two contributions reshape the germ band. We do so by modeling the response to laser-induced wounds in each of the germ band’s spatially distinct segments (T1-T3, A1-A9) during the middle of retraction when segments T1-A3 form the ventral arm of the ‘U’, A4-A7 form its crook, and A8-A9 complete the dorsal arm. We explore these responses under a range of externally applied stresses and internal anisotropy of cell edge tensions – akin to a planar cell polarity that can drive elongation of cells in a direction parallel to the minimum edge tension – and identify regions of parameter space (edge-tension anisotropy versus stress anisotropy) that best match previous experiments for each germ band segment. All but three germ band segments are best fit when the applied stress anisotropy and the edge-tension anisotropy work against one another – i.e., when the isolated effects would elongate cells in perpendicular directions. Segments in the crook of the germ band (A4-A7) have cells that elongate in the direction of maximum external stress, i.e., external stress anisotropy is dominant. In most other segments, the dominant factor is internal edge-tension anisotropy. These results are consistent with models in which the amnioserosa pulls on the crook of the germ band to mechanically assist retraction. In addition, they suggest a mechanical cue for edge

  13. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver.

    PubMed

    Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J; Cook, Edwin; Das, Soma; Ratain, Mark J

    2014-10-15

    The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P < 0.05) associated with mRNA expression and/or activities of UGT1A1, UGT1A3 and UGT2B17. We found novel SNPs in the UGT2B17 CNV region accounting for variability in UGT2B17 gene transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs. PMID:24879639

  14. Stereospecific Metabolism of the Tobacco-Specific Nitrosamine, NNAL.

    PubMed

    Kozlovich, Shannon; Chen, Gang; Lazarus, Philip

    2015-11-16

    Among the most potent carcinogens in tobacco are the tobacco-specific nitrosamines (TSNAs), with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) being the most potent as well as one of the most abundant. NNK is extensively metabolized to the equally carcinogenic 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). Of the two NNAL enantiomers, (S)-NNAL not only appears to be preferentially glucuronidated and excreted in humans but also exhibits higher stereoselective tissue retention in mice and humans and has been shown to be more carcinogenic in mice than its (R) counterpart. Due to the differential carcinogenic potential of the NNAL enantiomers, it is increasingly important to know which UGT enzyme targets the specific NNAL enantiomers for glucuronidation. To examine this, a chiral separation method was developed to isolate enantiomerically pure (S)- and (R)-NNAL. Comparison of NNAL glucuronides (NNAL-Glucs) formed in reactions of UGT2B7-, UGT2B17-, UGT1A9-, and UGT2B10-overexpressing cell microsomes with pure NNAL enantiomers showed large differences in kinetics for (S)- versus (R)-NNAL, indicating varying levels of enantiomeric preference for each enzyme. UGT2B17 preferentially formed (R)-NNAL-O-Gluc, and UGT2B7 preferentially formed (S)-NNAL-O-Gluc. When human liver microsomes (HLM) were independently incubated with each NNAL enantiomer, the ratio of (R)-NNAL-O-Gluc to (S)-NNAL-O-Gluc formation in HLM from subjects exhibiting the homozygous deletion UGT2B17 (*2/*2) genotype was significantly lower (p = 0.012) than that with HLM from wild-type (*1/*1) subjects. There was a significant trend (p = 0.015) toward a decreased (R)-NNAL-O-Gluc/(S)-NNAL-O-Gluc ratio as the copy number of the UGT2B17*2 deletion allele increased. These data demonstrate that variations in the expression or activity of specific UGTs may affect the clearance of specific NNAL enantiomers known to induce tobacco-related cancers.

  15. Synthesis, structural characterization, superoxide dismutase and antimicrobial activities studies of copper (II) complexes with 2-(E)-(2-(2-aminoethylamino) methyl)-4-bromophenol and (19E, 27E)-N1, N2-bis (phenyl (pyridine-2-yl)-methylene)-ethane-1, 2-diamine as ligands

    NASA Astrophysics Data System (ADS)

    Choudhary, Mukesh; Patel, R. N.; Rawat, S. P.

    2014-07-01

    Three new copper (II) complexes, [Cu(L)(H2O)]ClO4 (1), [Cu(L1)(ClO4)]+ (2) and [Cu(L1)]2+ (3), where HL = 2-(E)-(2-(2-aminoethylamino)methyl)-4-bromophenol, L1 =(19E, 27E)-N1,N2-bis(phenyl(pyridine-2-yl)-methylene)-ethane-1, 2-diamine, have been synthesized and characterized by using various physic-chemical and spectroscopic methods. The solid-state structures of 1 and 2 were determined by single crystal X-ray crystallography. Infrared spectra, ligand field spectra and magnetic susceptibility measurements agree with the observed crystal structures. The molecular structure of copper complexes showed that the ligands occupies the basal plane of square pyramidal geometry with the H2O of 1 or the ClO4 of 2 occupying the remaining apical position. Complexes 1 and 2 crystallize in the monoclinic system of the space group P21/c, a = 10.5948(6)Å, b = 19.6164(11)Å, c = 8.6517(5)Å, α = 90°, β = 108.213(2)°, γ = 90° and Z = 4 for 1, a = 9.5019(3)Å, b = 11.3 801(3)Å, c = 25.3168(14)Å, α = 90°, β = 100.583(4)°, γ = 90°, and Z = 4 for 2. The synthesized Schiff base (HL/L1) was behaves as tetradentate ON3/N4 ligands with donor groups suitable placed for forming 2 or 3 five membered chelate rings. Copper (II) complexes display X-band EPR spectra in 100% DMSO at 77 K giving g|| > g⊥ > 2.0023 indicating dx2-y2 ground state. The half-wave potential values for Cu (II)/Cu (I) redox couple obtained in the reaction of the copper (II) complexes with molecular oxygen and superoxide radical (O2-) electronegated in DMSO are in agreement with the SOD-like activity of the copper (II) complexes. In vitro antimicrobial activities of the complexes against the two bacteria (Escherichia coli, Salmonella typhi) and the two fungi (Penicillium, Aspergillus sp.) have been investigated comparing with the Schiff base ligands.

  16. Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro.

    PubMed

    Weiss, Johanna; Haefeli, Walter Emil

    2013-05-01

    The objective of this study was to assess the drug-drug interaction potential of the new non-nucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine in vitro. The following were evaluated: P-glycoprotein (P-gp/ABCB1) inhibition by calcein assay; breast cancer resistance protein (BCRP/ABCG2) inhibition by pheophorbide A efflux; and inhibition of organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 by 8-fluorescein-cAMP uptake. Inhibition of cytochrome P450 enzymes was assessed using commercially available kits. Substrate characteristics were evaluated by growth inhibition assays in MDCKII cells overexpressing particular ABC transporters. Induction of drug-metabolising enzymes and transporters was quantified by real-time RT-PCR in LS180 cells, and activation of pregnane X receptor (PXR) by a reporter gene assay. Rilpivirine significantly inhibited P-gp (IC(50) = 13.1 ± 6.8 μmol/L), BCRP (IC(50) = 1.5 ± 0.3 μmol/L), OATP1B1 (IC(50) = 4.1 ± 1.8 μmol/L), OATP1B3 (IC(50) = 6.1 ± 0.9 μmol/L), CYP3A4 (IC(50) = 1.3 ± 0.6 μmol/L), CYP2C19 (IC(50) = 2.7 ± 0.3 μmol/L) and CYP2B6 (IC(50) = 4.2 ± 1.6 μmol/L). Growth inhibition assays indicate that rilpivirine is not a substrate of P-gp, BCRP, or multidrug resistance-associated proteins 1 and 2. In LS180 cells, rilpivirine induced mRNA expression of ABCB1, CYP3A4 and UGT1A3, whereas ABCC1, ABCC2, ABCG2, OATP1B1 and UGT1A9 were not induced. Moreover, rilpivirine was a PXR activator. In conclusion, rilpivirine inhibits and induces several relevant drug-metabolising enzymes and drug transporters, but owing to its low plasma concentrations it is most likely less prone to drug-drug interactions than older NNRTIs.

  17. Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrates.

    PubMed

    Miersch, L; Rüffer, T; Schlesinger, M; Lang, H; Mehring, M

    2012-09-01

    Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) Å, b = 13.4298(9) Å, c = 17.8471(14) Å, β = 94.531(6)°, V = 2210.5(3) Å(3); 2, a = 9.0149(3) Å, b = 16.9298(4) Å, c = 15.6864(4) Å, β = 90.129(3)°, V = 2394.06(12) Å(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1 both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) Å, b = 20.3871(9) Å, c = 34.9715(15) Å, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) Å(3); 5, a = 20.0329(4) Å, b = 20.0601(4) Å, c = 34.3532(6) Å, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) Å(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.

  18. Novel one-dimensional lanthanide acrylic acid complexes: an alternative chain constructed by hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Hu, Chang Wen

    2004-12-01

    Novel one-dimensional (1D) chains of three lanthanide complexes La(L 1) 3(CH 3OH)]·CH 3OH (L 1=(E)-3-(2-hydroxyl-phenyl)-acrylic acid) 1, La(L 2) 3(H 2O) 2]·2.75H 2O (L 2=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) 2, and La(L 3) 3(CH 3OH) 2(H 2O)]·CH 3OH (L 3=(E)-3-(4-hydroxyl-phenyl)-acrylic acid) 3 are reported. The crystal structure data are as follows for 1: C 29H 29LaO 11, monoclinic, P2 1/ n, a=15.4289(12) Å, b=7.9585(6) Å, c=23.041(2) Å, β=99.657(2)°, Z=4, R1=0.0637, w R2=0.0919; for 2: C 27H 30.50LaO 13.75, triclinic, P-1, a=8.4719(17) Å, b=13.719(3) Å, c=14.570(3) Å, α=62.19(3)°, β=99.657(2)°, γ=78.22(3)°, Z=2, R1=0.0384, w R2=0.0820; and for 3: C 30H 35LaO 13, monoclinic, P2(1)/ c, a=9.5667(6) Å, b=24.3911(15) Å, c=14.0448(9) Å, β=109.245(2)°, Z=4, R1=0.0374, w R2=0.0630. All the three structure data were collected using graphite monochromated molybdenum Kα radiation and refined using full-matrix least-squares techniques on F 2. These structures show that four kinds of the carboxylato bridge modes are included in these chains to link the La(III) ions. It is the first time that it has been found that the intra-chain hydrogen bonding can construct an alternative chain even, when the coordination bridge mode is the same along the chain (complex 2). There are 2D and 3D hydrogen bonding in the crystal lattices of complexes 1- 3.

  19. Multiple Introduction and Naturally Occuring Drug Resistance of HCV among HIV-Infected Intravenous Drug Users in Yunnan: An Origin of China’s HIV/HCV Epidemics

    PubMed Central

    Chen, Min; Ma, Yanling; Chen, Huichao; Luo, Hongbing; Dai, Jie; Song, Lijun; Yang, Chaojun; Mei, Jingyuan; Yang, Li; Dong, Lijuan; Jia, Manhong; Lu, Lin

    2015-01-01

    Background The human immunodeficiency virus 1 (HIV-1) epidemic in China historically stemmed from intravenous drug users (IDUs) in Yunnan. Due to a shared transmission route, hepatitis C virus (HCV)/HIV-1 co-infection is common. Here, we investigated HCV genetic characteristics and baseline drug resistance among HIV-infected IDUs in Yunnan. Methods Blood samples of 432 HIV-1/HCV co-infected IDUs were collected from January to June 2014 in six prefectures of Yunnan Province. Partial E1E2 and NS5B genes were sequenced. Phylogenetic, evolutionary and genotypic drug resistance analyses were performed. Results Among the 293 specimens successfully genotyped, seven subtypes were identified, including subtypes 3b (37.9%, 111/293), 3a (21.8%, 64/293), 6n (14.0%, 41/293), 1b (10.6%, 31/293), 1a (8.2%, 24/293), 6a (5.1%, 15/293) and 6u (2.4%, 7/293). The distribution of HCV subtypes was mostly related to geographic location. Subtypes 3b, 3a, and 6n were detected in all six prefectures, however, the other four subtypes were detected only in parts of the six prefectures. Phylogeographic analyses indicated that 6n, 1a and 6u originated in the western prefecture (Dehong) and spread eastward and showed genetic relatedness with those detected in Burmese. However, 6a originated in the southeast prefectures (Honghe and Wenshan) bordering Vietnam and was transmitted westward. These subtypes exhibited different evolutionary rates (between 4.35×10−4 and 2.38×10−3 substitutions site-1 year-1) and times of most recent common ancestor (tMRCA, between 1790.3 and 1994.6), suggesting that HCV was multiply introduced into Yunnan. Naturally occurring resistance-associated mutations (C316N, A421V, C445F, I482L, V494A, and V499A) to NS5B polymerase inhibitors were detected in direct-acting antivirals (DAAs)-naïve IDUs. Conclusion This work reveals the temporal-spatial distribution of HCV subtypes and baseline HCV drug resistance among HIV-infected IDUs in Yunnan. The findings enhance our

  20. Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq (registered)

    SciTech Connect

    Matthijnssens, Jelle; Joelsson, Daniel B.; Warakomski, Donald J.; Zhou, Tingyi; Mathis, Pamela K.; Maanen, Marc-Henri van; Ranheim, Todd S.; Ciarlet, Max

    2010-08-01

    RotaTeq (registered) is a pentavalent rotavirus vaccine that contains five human-bovine reassortant strains (designated G1, G2, G3, G4, and P1) on the backbone of the naturally attenuated tissue culture-adapted parental bovine rotavirus (BRV) strain WC3. The viral genomes of each of the reassortant strains were completely sequenced and compared pairwise and phylogenetically among each other and to human rotavirus (HRV) and BRV reference strains. Reassortants G1, G2, G3, and G4 contained the VP7 gene from their corresponding HRV parent strains, while reassortants G1 and G2 also contained the VP3 gene (genotype M1) from the HRV parent strain. The P1 reassortant contained the VP4 gene from the HRV parent strain and all the other gene segments from the BRV WC3 strain. The human VP7s had a high level of overall amino acid identity (G1: 95-99%, G2: 94-99% G3: 96-100%, G4: 93-99%) when compared to those of representative rotavirus strains of their corresponding G serotypes. The VP4 of the P1 reassortant had a high identity (92-97%) with those of serotype P1A[8] HRV reference strains, while the BRV VP7 showed identities ranging from 91% to 94% to those of serotype G6 HRV strains. Sequence analyses of the BRV or HRV genes confirmed that the fundamental structure of the proteins in the vaccine was similar to those of the HRV and BRV references strains. Sequences analyses showed that RotaTeq (registered) exhibited a high degree of genetic stability as no mutations were identified in the material of each reassortant, which undergoes two rounds of replication cycles in cell culture during the manufacturing process, when compared to the final material used to fill the dosing tubes. The infectivity of each of the reassortant strains of RotaTeq (registered) , like HRV strains, did not require the presence of sialic acid residues on the cell surface. The molecular and biologic characterization of RotaTeq (registered) adds to the significant body of clinical data supporting the

  1. [H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3}]{sub 2}[Al{sub 4}(C{sub 2}O{sub 4})(H{sub 2}PO{sub 4}){sub 2}(PO{sub 4}){sub 4}].4[H{sub 2}O]: A new layered aluminum phosphate-oxalate

    SciTech Connect

    Peng Li; Li Jiyang; Yu Jihong . E-mail: jihong@mail.jlu.edu.cn; Li Guanghua; Fang Qianrong; Xu Ruren . E-mail: rrxu@mail.jlu.edu.cn

    2005-09-15

    A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3}]{sub 2}[Al{sub 4}(C{sub 2}O{sub 4})(H{sub 2}PO{sub 4}){sub 2}(PO{sub 4}){sub 4}].4[H{sub 2}O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, {sup 31}P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) A, b=8.8608(8) A, c=13.2224(11) A, {alpha}=80.830(6) deg. , {beta}=74.965(5) deg. , {gamma}=78.782(6) deg. , Z=2, R {sub 1[} {sub I} {sub >2} {sub {sigma}} {sub (} {sub I} {sub )]}=0.0511 and wR {sub 2(alldata)}=0.1423. The alternation of AlO{sub 4} tetrahedra and PO{sub 4} tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO{sub 6} octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO{sub 6}, and bridging the adjacent AlO{sub 6} octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions. -- Graphical abstract: The alternation of AlO{sub 4} tetrahedra and PO{sub 4} tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO{sub 6} octahedra to form the layered structure with 4,6-net sheet. Oxalate ions are bis-bidentately boned by participating in the coordination of AlO{sub 6}, and bridging the adjacent AlO{sub 6} octahedra.

  2. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    SciTech Connect

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  3. New examples of ternary rare-earth metal boride carbides containing finite boron carbon chains: The crystal and electronic structure of RE15B6C20 (RE=Pr, Nd)

    NASA Astrophysics Data System (ADS)

    Babizhetskyy, Volodymyr; Mattausch, Hansjürgen; Simon, Arndt; Hiebl, Kurt; Ben Yahia, Mouna; Gautier, Régis; Halet, Jean-François

    2008-08-01

    The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6-)3([C3]4-)2(C4-)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.

  4. H2 genotypes of G4P[6], G5P[7], and G9[23] porcine rotaviruses show super-short RNA electropherotypes.

    PubMed

    Nagai, Makoto; Shimada, Saya; Fujii, Yoshiki; Moriyama, Hiromitsu; Oba, Mami; Katayama, Yukie; Tsuchiaka, Shinobu; Okazaki, Sachiko; Omatsu, Tsutomu; Furuya, Tetsuya; Koyama, Satoshi; Shirai, Junsuke; Katayama, Kazuhiko; Mizutani, Tetsuya

    2015-04-17

    During group A rotavirus (RVA) surveillance of pig farms in Japan, we detected three RVA strains (G4P[6], G5P[7], and G9P[23] genotypes), which showed super-short RNA patterns by polyacrylamide gel electrophoresis, in samples from a healthy eight-day-old pig and two pigs of seven and eight days old with diarrhea from three farms. Reverse transcription PCR and sequencing revealed that the full-length NSP5 gene of these strains contained 952 or 945 nucleotides, which is consistent with their super-short electropherotypes. Due to a lack of whole genome data on Japanese porcine RVAs, we performed whole genomic analyses of the three strains. The genomic segments of these RVA strains showed typical porcine RVA constellations, except for H2 NSP5 genotype, (G4,5,9-P[6,7,23]-I5-R1-C1-M1-A8-N1-T1-E1-H2 representing VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes). In phylogenetic analyses, these porcine RVA strains clustered with porcine and porcine-like human RVA strains and showed a typical porcine RVA backbone, except for the NSP5 gene; however, intra-genotype reassortment events among porcine and porcine-like human RVA strains were observed. The NSP5 gene segments of these strains were clustered within the H2b genotype with super-short human RVA strains. The H2 genotype has to date only been identified in human and lapine RVA strains. Thus, to our knowledge, this report presents the first case of H2 NSP5 genotype showing a super-short RNA pattern in porcine RVA. These data suggest the possibility of interspecies transmission between pigs and humans and imply that super-short porcine RVA strains possessing H2 genotype are circulating among both asymptomatic and diarrheic porcine populations in Japan. PMID:25724331

  5. Genomic characterization of G3P[6], G4P[6] and G4P[8] human rotaviruses from Wuhan, China: Evidence for interspecies transmission and reassortment events.

    PubMed

    Zhou, Xuan; Wang, Yuan-Hong; Ghosh, Souvik; Tang, Wei-Feng; Pang, Bei-Bei; Liu, Man-Qing; Peng, Jin-Song; Zhou, Dun-Jin; Kobayashi, Nobumichi

    2015-07-01

    We report here the whole genomic analyses of two G4P[6] (RVA/Human-wt/CHN/E931/2008/G4P[6], RVA/Human-wt/CHN/R1954/2013/G4P[6]), one G3P[6] (RVA/Human-wt/CHN/R946/2006/G3P[6]) and one G4P[8] (RVA/Human-wt/CHN/E2484/2011/G4P[8]) group A rotavirus (RVA) strains detected in sporadic cases of diarrhea in humans in the city of Wuhan, China. All the four strains displayed a Wa-like genotype constellation. Strains E931 and R1954 shared a G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1 constellation, whilst the 11 gene segments of strains R946 and E2484 were assigned to G3-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and G4-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 genotypes, respectively. Phylogenetically, the VP7 gene of R946, NSP3 gene of E931, and 10 of 11 gene segments of E2484 (except for VP7 gene) belonged to lineages of human RVAs. On the other hand, based on available data, it was difficult to ascertain porcine or human origin of VP3 genes of strains E931 and R946, and NSP2 genes of strains R946 and R1954. The remaining genes of E2484, E931, R946 and R1954 were close to those of porcine RVAs from China, and/or porcine-like human RVAs. Taken together, our observations suggested that strain R1954 might have been derived from porcine RVAs, whilst strains R946 and E931 might be reassortants possessing human RVA-like gene segments on a porcine RVA genetic backbone. Strain E2484 might be derived from reassortment events involving acquisition of a porcine-like VP7 gene by a Wa-like human RVA strain. The present study provided important insights into zoonotic transmission and complex reassortment events involving human and porcine RVAs, reiterating the significance of whole-genomic analysis of RVA strains. PMID:25891280

  6. Partial Attenuation of Respiratory Syncytial Virus with a Deletion of a Small Hydrophobic Gene Is Associated with Elevated Interleukin-1β Responses

    PubMed Central

    Russell, Ryan F.; McDonald, Jacqueline U.; Ivanova, Maria; Zhong, Ziyun; Bukreyev, Alexander

    2015-01-01

    ABSTRACT The small hydrophobic (SH) gene of respiratory syncytial virus (RSV), a major cause of infant hospitalization, encodes a viroporin of unknown function. SH gene knockout virus (RSV ΔSH) is partially attenuated in vivo, but not in vitro, suggesting that the SH protein may have an immunomodulatory role. RSV ΔSH has been tested as a live attenuated vaccine in humans and cattle, and here we demonstrate that it protected against viral rechallenge in mice. We compared the immune response to infection with RSV wild type and RSV ΔSH in vivo using BALB/c mice and in vitro using epithelial cells, neutrophils, and macrophages. Strikingly, the interleukin-1β (IL-1β) response to RSV ΔSH infection was greater than to wild-type RSV, in spite of a decreased viral load, and when IL-1β was blocked in vivo, the viral load returned to wild-type levels. A significantly greater IL-1β response to RSV ΔSH was also detected in vitro, with higher-magnitude responses in neutrophils and macrophages than in epithelial cells. Depleting macrophages (with clodronate liposome) and neutrophils (with anti-Ly6G/1A8) demonstrated the contribution of these cells to the IL-1β response in vivo, the first demonstration of neutrophilic IL-1β production in response to viral lung infection. In this study, we describe an increased IL-1β response to RSV ΔSH, which may explain the attenuation in vivo and supports targeting the SH gene in live attenuated vaccines. IMPORTANCE There is a pressing need for a vaccine for respiratory syncytial virus (RSV). A number of live attenuated RSV vaccine strains have been developed in which the small hydrophobic (SH) gene has been deleted, even though the function of the SH protein is unknown. The structure of the SH protein has recently been solved, showing it is a pore-forming protein (viroporin). Here, we demonstrate that the IL-1β response to RSV ΔSH is greater in spite of a lower viral load, which contributes to the attenuation in vivo. This

  7. Naturally Occurring Resistance-Associated Variants of Hepatitis C Virus Protease Inhibitors in Poor Responders to Pegylated Interferon-Ribavirin.

    PubMed

    Larrat, Sylvie; Vallet, Sophie; David-Tchouda, Sandra; Caporossi, Alban; Margier, Jennifer; Ramière, Christophe; Scholtes, Caroline; Haïm-Boukobza, Stéphanie; Roque-Afonso, Anne-Marie; Besse, Bernard; André-Garnier, Elisabeth; Mohamed, Sofiane; Halfon, Philippe; Pivert, Adeline; LeGuillou-Guillemette, Hélène; Abravanel, Florence; Guivarch, Matthieu; Mackiewicz, Vincent; Lada, Olivier; Mourez, Thomas; Plantier, Jean-Christophe; Baazia, Yazid; Alain, Sophie; Hantz, Sebastien; Thibault, Vincent; Gaudy-Graffin, Catherine; Bouvet, Dorine; Mirand, Audrey; Henquell, Cécile; Gozlan, Joel; Lagathu, Gisèle; Pronier, Charlotte; Velay, Aurélie; Schvoerer, Evelyne; Trimoulet, Pascale; Fleury, Hervé; Bouvier-Alias, Magali; Brochot, Etienne; Duverlie, Gilles; Maylin, Sarah; Gouriou, Stéphanie; Pawlotsky, Jean-Michel; Morand, Patrice

    2015-07-01

    The pretherapeutic presence of protease inhibitor (PI) resistance-associated variants (RAVs) has not been shown to be predictive of triple-therapy outcomes in treatment-naive patients. However, they may influence the outcome in patients with less effective pegylated interferon (pegIFN)-ribavirin (RBV) backbones. Using hepatitis C virus (HCV) population sequence analysis, we retrospectively investigated the prevalence of baseline nonstructural 3 (NS3) RAVs in a multicenter cohort of poor IFN-RBV responders (i.e., prior null responders or patients with a viral load decrease of <1 log IU/ml during the pegIFN-RBV lead-in phase). The impact of the presence of these RAVs on the outcome of triple therapy was studied. Among 282 patients, the prevalances (95% confidence intervals) of baseline RAVs ranged from 5.7% (3.3% to 9.0%) to 22.0% (17.3% to 27.3%), depending to the algorithm used. Among mutations conferring a >3-fold shift in 50% inhibitory concentration (IC50) for telaprevir or boceprevir, T54S was the most frequently detected mutation (3.9%), followed by A156T, R155K (0.7%), V36M, and V55A (0.35%). Mutations were more frequently found in patients infected with genotype 1a (7.5 to 23.6%) than 1b (3.3 to 19.8%) (P = 0.03). No other sociodemographic or viroclinical characteristic was significantly associated with a higher prevalence of RAVs. No obvious effect of baseline RAVs on viral load was observed. In this cohort of poor responders to IFN-RBV, no link was found with a sustained virological response to triple therapy, regardless of the algorithm used for the detection of mutations. Based on a cross-study comparison, baseline RAVs are not more frequent in poor IFN-RBV responders than in treatment-naive patients and, even in these difficult-to-treat patients, this study demonstrates no impact on treatment outcome, arguing against resistance analysis prior to treatment. PMID:25926499

  8. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives.

    PubMed

    De Angelis, Maria; Campanella, Daniela; Cosmai, Lucrezia; Summo, Carmine; Rizzello, Carlo Giuseppe; Caponio, Francesco

    2015-12-01

    This study aimed to utilize an "omics" approach to evaluate the ability of selected lactobacilli and yeasts to improve the fermentation process of Bella di Cerignola table olives. Four types of fermentations were performed at the pilot-plant scale: un-started fermented olives used as a control (Ctrl); olives started with a commercial Lactobacillus plantarum strain (S); commercial L. plantarum strain and autochthonous yeast Wickeramomyces anomalus DiSSPA73 (SY); and L. plantarum, W. anomalus DiSSPA73, autochthonous L. plantarum DiSSPA1A7 and Lactobacillus pentosus DiSSPA7 (SYL). Compared to Ctrl, S, SY, SYL showed a higher acidification (P < 0.05) of the brine, which reached a pH value of 4.49 after one day of fermentation. The microbiota of unfermented olives and brine after one day of fermentation was primarily composed of Enterobacteria that belonged to Hafnia alvei and Methylobacterium. However, L. plantarum and L. pentosus dominated the total and metabolically active microbiota of the Ctrl brines and olives at the end of the fermentation. The use of lactobacilli and W. anomalus DiSSPA73 as a starter culture markedly affected the microbiota of the brines after one day of fermentation. The number of species (OTU) and the results of an alpha diversity analysis indicated that the microbial diversity of the brines was markedly simplified by the S, SY and, in particular, SYL fermentations. According to the lowest biodiversity, S, SY and SYL samples showed the lowest abundance of Proteobacteria, including Enterobacteriacea, Lactococcus lactis, Propionibacterium acidipropionici and Clostridium. The lactobacilli and W. anomalus DiSSPA73 used in this study markedly affected the amounts of free amino acids, phenolic and volatile organic compounds. Both a texture profile analysis and a sensory evaluation showed the highest appreciation for all of the started table olives. As shown through microbiological, biochemical, and sensory analyses, an accelerated

  9. Effect of age on anthropometric and physical performance measures in professional baseball players.

    PubMed

    Mangine, Gerald T; Hoffman, Jay R; Fragala, Maren S; Vazquez, Jose; Krause, Matthew C; Gillett, Javair; Pichardo, Napoleon

    2013-02-01

    The purpose of this study was to investigate age-related changes in anthropometric and performance variables in professional baseball players. Baseball players (n = 1,157) from several professional baseball organizations were categorized into 7 cohorts based upon age. All adolescent athletes were categorized as age group 1 (AG1), whereas the next 5 groups (AG2-AG6) consisted of players 20-22, 23-25, 26-28, 29-31, and 31-34 years, respectively. The final group (AG7) comprised athletes ≥35 years. All performance assessments were part of the athlete's normal preseason training camp testing routine. Field assessments were used to analyze lower-body power, speed, agility, grip strength, and body composition. The players were heaviest between the ages of 29 and 31 (AG5), and their body mass in that age group was 10.1% (p = 0.004) greater than that of AG1. A 7.0% increase (p = 0.000) in lean body mass occurred between AG1 and AG5. No differences in 10-yd sprint times or agility were seen across any age group or position. A 2.0 seconds (p = 0.001) slower run time for the 300-yd shuttle was seen between AG4 and AG5 for all positions combined. Elevations in grip strength were seen at AG4 compared with AG1 (p = 0.001) and AG2 (p = 0.007) for all positions combined. No other differences were noted. Lower-body power was increased for all positions combined from AG1 to AG3 (p = 0.007). This pattern was similar to that observed in position players, but a 12.4% decrease (p = 0.024) in VJMP was seen between AG7 and AG5 in pitchers. Results of this study indicate that lower-body power is maintained in baseball players until the age of 29-31, whereas speed, agility, and grip strength are maintained in players able to play past the age of 35 years. Age-related differences observed in this study suggest that athletes focus on their strength and conditioning programs to extend the length of their professional careers.

  10. Distribution of serotonin 5-HT1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia).

    PubMed

    dos Santos, Tiago Souza; Krüger, Jéssica; Melleu, Fernando Falkenburger; Herold, Christina; Zilles, Karl; Poli, Anicleto; Güntürkün, Onur; Marino-Neto, José

    2015-12-15

    Serotonin 1A receptors (5-HT1ARs), which are widely distributed in the mammalian brain, participate in cognitive and emotional functions. In birds, 5-HT1ARs are expressed in prosencephalic areas involved in visual and cognitive functions. Diverse evidence supports 5-HT1AR-mediated 5-HT-induced ingestive and sleep behaviors in birds. Here, we describe the distribution of 5-HT1ARs in the hypothalamus and brainstem of birds, analyze their potential roles in sleep and ingestive behaviors, and attempt to determine the involvement of auto-/hetero-5-HT1ARs in these behaviors. In 6 pigeons, the anatomical distribution of [(3)H]8-OH-DPAT binding in the rostral brainstem and hypothalamus was examined. Ingestive/sleep behaviors were recorded (1h) in 16 pigeons pretreated with MM77 (a heterosynaptic 5-HT1AR antagonist; 23 or 69 nmol) for 20 min, followed by intracerebroventricular ICV injection of 5-HT (N:8; 150 nmol), 8-OH-DPAT (DPAT, a 5-HT1A,7R agonist, 30 nmol N:8) or vehicle. 5-HT- and DPAT-induced sleep and ingestive behaviors, brainstem 5-HT neuronal density and brain 5-HT content were examined in 12 pigeons, pretreated by ICV with the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (N:6/group). The distribution of brainstem and diencephalic c-Fos immunoreactivity after ICV injection of 5-HT, DPAT or vehicle (N:5/group) into birds provided with or denied access to water is also described. 5-HT1ARs are concentrated in the brainstem 5-HTergic areas and throughout the periventricular hypothalamus, preoptic nuclei and circumventricular organs. 5-HT and DPAT produced a complex c-Fos expression pattern in the 5-HT1AR-enriched preoptic hypothalamus and the circumventricular organs, which are related to drinking and sleep regulation, but modestly affected c-Fos expression in 5-HTergic neurons. The 5-HT-induced ingestivebehaviors and the 5-HT- and DPAT-induced sleep behaviors were reduced by MM77 pretreatment. 5,7-DHT increased sleep per se, decreased tryptophan

  11. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    SciTech Connect

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  12. Long-Lasting Effects of Sepsis on Circadian Rhythms in the Mouse

    PubMed Central

    O'Callaghan, Emma K.; Anderson, Sean T.; Moynagh, Paul N.; Coogan, Andrew N.

    2012-01-01

    Daily patterns of activity and physiology are termed circadian rhythms and are driven primarily by an endogenous biological timekeeping system, with the master clock located in the suprachiasmatic nucleus. Previous studies have indicated reciprocal relationships between the circadian and the immune systems, although to date there have been only limited explorations of the long-term modulation of the circadian system by immune challenge, and it is to this question that we addressed ourselves in the current study. Sepsis was induced by peripheral treatment with lipopolysaccharide (5 mg/kg) and circadian rhythms were monitored following recovery. The basic parameters of circadian rhythmicity (free-running period and rhythm amplitude, entrainment to a light/dark cycle) were unaltered in post-septic animals compared to controls. Animals previously treated with LPS showed accelerated re-entrainment to a 6 hour advance of the light/dark cycle, and showed larger phase advances induced by photic stimulation in the late night phase. Photic induction of the immediate early genes c-FOS, EGR-1 and ARC was not altered, and neither was phase-shifting in response to treatment with the 5-HT-1a/7 agonist 8-OH-DPAT. Circadian expression of the clock gene product PER2 was altered in the suprachiasmatic nucleus of post-septic animals, and PER1 and PER2 expression patterns were altered also in the hippocampus. Examination of the suprachiasmatic nucleus 3 months after treatment with LPS showed persistent upregulation of the microglial markers CD-11b and F4/80, but no changes in the expression of various neuropeptides, cytokines, and intracellular signallers. The effects of sepsis on circadian rhythms does not seem to be driven by cell death, as 24 hours after LPS treatment there was no evidence for apoptosis in the suprachiasmatic nucleus as judged by TUNEL and cleaved-caspase 3 staining. Overall these data provide novel insight into how septic shock exerts chronic effects on the

  13. Evaluation of Meteorology Data for MOPITT Operational Processing

    NASA Astrophysics Data System (ADS)

    Ziskin, D.; Deeter, M. N.; Worden, H. M.; Mao, D.; Dean, V.

    2015-12-01

    Measurements Of Pollution In The Troposphere[1] (MOPITT) is an instrument flying aboard NASA's Terra satellite[2]. It measures CO using correlated spectroscopy[3]. As part of its processing it uses surface temperature, an atmospheric temperature profile and a water vapor profile from analysis. Since there are many analysis products on the market (e.g. GMAO, NCEP, ECMWF etc.) that meet MOPITT's operational requirements, the question arises as to which product is most apt? There is a collection of "validation data" that MOPITT compares its CO retrievals against[4]. The validation dataset has been acquired by in situ air samples taken by aircraft at a series of altitudes. We can run our processing system in "validation mode" which processes the satellite data for only the days that validation data exists and for a spatial subset that corresponds to the region where the validation data has been collected. We will run the MOPITT retrievals in validation mode separately using each variety of analysis data. We will create a cost function that will provide a scalar estimate of the retrieved CO profile error relative to the validation dataset which is assumed to be "the truth". The retrieval errors of each of the input datasets will be compared to each other to provide insight into the best choice for use in operational MOPITT processing. [1] Drummond, J.R., "Measurements of Pollution in the Troposphere (MOPITT)," in The Use of EOS for Studies of Atmospheric Physics, J. C. Gille, G. Visconti, eds. (North Holland, Amsterdam), pp. 77-101, 1992. [2] 1999 EOS Reference Handbook: A Guide to NASA's Earth Science Enterprise and the Earth Observing System; Eds. Michael D. King and Reynold Greenstone; NASA, Greenbelt, MD, 1999. [3] Drummond, J.R., G. P. Brasseur, G. R. Davis, J. C. Gille, J. C. McConnell, G. D. Pesket, H. G. Reichle, N. Roulet, MOPITT Mission Description Document (Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7), 1993. [4] Deeter, M. N

  14. Diphosphine- and CO-Induced Fragmentation of Chloride-bridged Dinuclear Complex and Cp*Ir(mu-Cl)(3)Re(CO)(3) and Attempted Synthesis of Cp*Ir(mu-Cl)(3)Mn(CO)(3): Spectroscopic Data and X-ray Diffraction Structures of the Pentamethylcyclopentadienyl Compounds [Cp*IrCl{(Z)-Ph2PCH = CHPPh2}][Cl]center dot 2CHCl(3) and Cp*Ir(CO)Cl-2

    SciTech Connect

    Hammons, Casey; Wang, Xiaoping; Nesterov, Vladimir; Richmond, Michael G.

    2010-01-01

    The confacial bioctahedral compound Cp*Ir(mu-Cl)(3)Re(CO)(3) (1) undergoes rapid fragmentation in the presence of the unsaturated diphosphine ligand (Z)-Ph2PCH = CHPPh2 to give the mononuclear compounds [Cp*IrCl {(Z)-Ph2PCH = CHPPh2}][Cl] (2) and fac-ClRe(CO)(3)[(Z)-Ph2PCH = CHPPh2] (3). 2 has been characterized by H-1 and P-31 NMR spectroscopy and X-ray diffraction analysis. 2 center dot 2CHCl(3) crystallizes in the monoclinic space group C2/c, a = 35.023 (8) angstrom, b = 10.189 (2) angstrom, c = 24.003 (6) angstrom, b = 103.340 (3), V = 8,335 (3) angstrom 3, Z = 8, and d(calc) = 1.647 Mg/m(3); R = 0.0383, R-w = 0.1135 for 8,178 reflections with I> 2 sigma(I). The Ir(III) center in 2 exhibits a six-coordinate geometry and displays a chelating diphosphine group. Compound 1 reacts with added CO with fragmentation to yield the known compounds Cp*Ir(CO)Cl-2 (4) and ClRe(CO)(5) (5) in near quantitative yield by IR spectroscopy. Using the protocol established by our groups for the synthesis of 1, we have explored the reaction of [Cp*IrCl2](2) with ClMn(CO)(5) as a potential route to Cp*Ir(mu-Cl)(3)Mn(CO)(3); unfortunately, 4 was the only product isolated from this reaction. The solid-state structure of 4 was determined by X-ray diffraction analysis. 4 crystallizes in the triclinic space group P-1, a = 7.4059 (4) angstrom, b = 7.8940 (4) angstrom, c = 11.8488 (7) angstrom, alpha = 80.020 (1), beta = 79.758 (1), gamma = 68.631 (1), V = 630.34 (6) angstrom(3), Z = 2, and d(calc) = 2.246 Mg/m(3); R = 0.0126, R-w = 0.0329 for 2,754 reflections with I> 2 sigma(I). The expected three-legged piano-stool geometry in 4 has been crystallographically confirmed.

  15. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion

    PubMed Central

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of

  16. Development of new rat monoclonal antibodies with different selectivities and sensitivities for 2,4,6-trinitrotoluene (TNT) and other nitroaromatic compounds.

    PubMed

    Krämer, Petra M; Kremmer, Elisabeth; Weber, Cristina M; Ciumasu, Ioan M; Forster, Stephan; Kettrup, Antonius A

    2005-08-01

    Five new rat monoclonal antibodies (mAbs) for 2,4,6-trinitrotoluene (TNT) and other nitroaromatic compounds, including, especially, the metabolite 2-amino-4,6-dinitrotoluene (2-ADNT), are described. Five heterogeneous, competitive enzyme-linked immunosorbent assays (ELISAs) were developed. Assay 1 uses mAb DNT4 3F6 as recognition element and gives a standard curve for TNT in 40 mmol L(-1) phosphate buffered saline (PBS) with a test midpoint (IC50) of 0.26+/-0.08 microg L(-1) (n=20). Assay 2 (mAb DNT4 4G4) has an IC50 of 0.35+/-0.07 microg L(-1) (n=18), assay 3 (mAb DNT4 1A3) has an IC50 of 0.73+/-0.14 microg L(-1) (n=15), and assay 4 (mAb DNT4 1A7) has an IC50 of 2.32+/-0.70 microg L(-1) (n=15). Assay 5 (mAb DNT2 4B4) is very selective for 2-ADNT and has an IC50 of 8.5+/-1.7 microg L(-1) (n=15) in PBS. These antibodies for nitroaromatic compounds differ not only in their sensitivity but also in their selectivity. Major cross-reactants are 1,3,5-trinitrobenzene, 2-ADNT, 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-dinitroaniline, 3,5-dinitroaniline, and 2,6-dinitroaniline. Although assay 5 is not highly sensitive, the mAb DNT2 4B4 in this assay is highly selective for 2-ADNT. Of all the compounds tested, only 2,4-dinitroaniline and 3,5-dinitroaniline had relevant cross reactivities, 18% and about 26%, respectively. Two ELISAs, using mAbs DNT4 3F6 and DNT2 4B4, were used to analyze different concentrations of TNT and 2-ADNT, respectively, in three different surface water matrices (river and lake water). Both assays were affected by the matrix, but usually performed well (recovery within the range 70-120%). In addition, these ELISAs were used to analyze mixtures of TNT, 2-ADNT, and 4-ADNT, at three different concentrations, in the same water matrices. A different recognition pattern was clearly visible with both assays and depended on the cross reactivities of the corresponding mAb.

  17. Excision of uranium oxide chains and ribbons in the novel one-dimensional uranyl iodates K(2)[(UO(2))3(IO(3))(4)O(2)] and Ba[(UO(2)2(IO(3))(2)O(2)](H(2)O).

    PubMed

    Bean, A C; Ruf, M; Albrecht-Schmitt, T E

    2001-07-30

    The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.

  18. Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: Structures and properties of Th(SeO{sub 3})(SeO{sub 4}), Th(IO{sub 3}){sub 2}(SeO{sub 4})(H{sub 2}O){sub 3}.H{sub 2}O, and Th(CrO{sub 4})(IO{sub 3}){sub 2}

    SciTech Connect

    Sullens, Tyler A.; Almond, Philip M.; Byrd, Jessica A.; Beitz, James V.; Bray, Travis H.; Albrecht-Schmitt, Thomas E. . E-mail: albreth@auburn.edu

    2006-04-15

    Three novel Th(IV) compounds containing heavy oxoanions, Th(SeO{sub 3})(SeO{sub 4}) (1), Th(IO{sub 3}){sub 2}(SeO{sub 4})(H{sub 2}O){sub 3}.H{sub 2}O (2), and Th(CrO{sub 4})(IO{sub 3}){sub 2} (3), have been synthesized under mild hydrothermal conditions. Each of these three distinct structures contain trigonal pyramidal and tetrahedral oxoanions. Compound 1 adopts a three-dimensional structure formed from ThO{sub 9} tricapped trigonal prisms, trigonal pyramidal selenite, SeO{sub 3}{sup 2-}, anions containing Se(IV), and tetrahedral selenate, SeO{sub 4}{sup 2-}, anions containing Se(VI). The structure of 2 contains two-dimensional porous sheets and occluded water molecules. The Th centers are found as isolated ThO{sub 9} tricapped trigonal prisms and are bound by four trigonal pyramidal iodate anions, two tetrahedral selenate anions, and three coordinating water molecules. In the structure of 3, the Th(IV) cations are found as ThO{sub 9} tricapped trigonal prisms. Each Th center is bound by six IO{sub 3}{sup 1-} anions and three CrO{sub 4}{sup 2-} anions forming a chiral three-dimensional structure. Second-harmonic generation of 532nm light from 1064nm radiation by a polycrystalline sample of 3 was observed. Crystallographic data (193K, MoK{alpha}, {lambda}=0.71073): 1; monoclinic, P2{sub 1}/c; a=7.0351(5)A, b=9.5259(7)A, c=9.0266(7)A, {beta}=103.128(1), Z=4, R(F)=2.47% for 91 parameters with 1462 reflections with I>2{sigma}(I); 2, monoclinic, P2{sub 1}/n, a=7.4889(9)A, b=8.002(1)A, c=20.165(3)A, {beta}=100.142(2), Z=4, R(F)=4.71% for 158 parameters with 2934 reflections with I>2{sigma}(I); 3, orthorhombic, P2{sub 1}2{sub 1}2{sub 1}, a=7.3672(5)A, b=9.3617(6)A, c=11.9201(7)A, Z=4, R(F)=2.04% for 129 parameters with 2035 reflections with I>2{sigma}(I)

  19. Mixed-metal uranium(VI) iodates: hydrothermal syntheses, structures, and reactivity of Rb[UO(2)(CrO(4))(IO(3))(H(2)O)], A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K, Rb, Cs), and K(2)[UO(2)(MoO(4))(IO(3))(2)].

    PubMed

    Sykora, Richard E; McDaniel, Steven M; Wells, Daniel M; Albrecht-Schmitt, Thomas E

    2002-10-01

    The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.

  20. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives.

    PubMed

    De Angelis, Maria; Campanella, Daniela; Cosmai, Lucrezia; Summo, Carmine; Rizzello, Carlo Giuseppe; Caponio, Francesco

    2015-12-01

    This study aimed to utilize an "omics" approach to evaluate the ability of selected lactobacilli and yeasts to improve the fermentation process of Bella di Cerignola table olives. Four types of fermentations were performed at the pilot-plant scale: un-started fermented olives used as a control (Ctrl); olives started with a commercial Lactobacillus plantarum strain (S); commercial L. plantarum strain and autochthonous yeast Wickeramomyces anomalus DiSSPA73 (SY); and L. plantarum, W. anomalus DiSSPA73, autochthonous L. plantarum DiSSPA1A7 and Lactobacillus pentosus DiSSPA7 (SYL). Compared to Ctrl, S, SY, SYL showed a higher acidification (P < 0.05) of the brine, which reached a pH value of 4.49 after one day of fermentation. The microbiota of unfermented olives and brine after one day of fermentation was primarily composed of Enterobacteria that belonged to Hafnia alvei and Methylobacterium. However, L. plantarum and L. pentosus dominated the total and metabolically active microbiota of the Ctrl brines and olives at the end of the fermentation. The use of lactobacilli and W. anomalus DiSSPA73 as a starter culture markedly affected the microbiota of the brines after one day of fermentation. The number of species (OTU) and the results of an alpha diversity analysis indicated that the microbial diversity of the brines was markedly simplified by the S, SY and, in particular, SYL fermentations. According to the lowest biodiversity, S, SY and SYL samples showed the lowest abundance of Proteobacteria, including Enterobacteriacea, Lactococcus lactis, Propionibacterium acidipropionici and Clostridium. The lactobacilli and W. anomalus DiSSPA73 used in this study markedly affected the amounts of free amino acids, phenolic and volatile organic compounds. Both a texture profile analysis and a sensory evaluation showed the highest appreciation for all of the started table olives. As shown through microbiological, biochemical, and sensory analyses, an accelerated

  1. N,N'-dialkylimidazolium chloroplatinate(II), chloroplatinate(IV), and chloroiridate(IV) salts and an N-heterocyclic carbene complex of platinum(II): synthesis in ionic liquids and crystal structures.

    PubMed

    Hasan, M; Kozhevnikov, I V; Siddiqui, M R; Femoni, C; Steiner, A; Winterton, N

    2001-02-12

    The first imidazole-type carbene complex of platinum(II), cis-(C2H4)(1-ethyl-3-methylimidazol-2-ylidene)PtCl2, has been obtained by reacting PtCl2 and PtCl4 with ethylene in the basic [EMIM]Cl/AlCl3 (1.3:1) ionic liquid (where [EMIM]+ = 1-ethyl-3-methylimidazolium) at 200 degrees C and structurally characterized (monoclinic P21/c space group, a = 10.416(2) A, b = 7.3421(9) A, c = 15.613(2) A, beta = 101.53(2) degrees, Z = 4). This complex can be regarded as a stable analogue of the pi-alkene-Pd(II)-carbene intermediate in the Heck reaction. In addition, a series of new N,N'-dialkylimidazolium salts of platinum group metals of the type [RMIM]2[MCln], where [RMIM+] = 1-alkyl-3-methylimidazolium and M = Pt(II), Pt(IV), or Ir(IV), have been prepared and characterized. The salts [EMIM]2[PtCl6] (1) and [EMIM]2[PtCl4] (2) were prepared in the ionic liquid [EMIM]Cl/AlCl3 and the salts [BMIM]2[PtCl4] (3) and [BMIM]2[PtCl6] (4) (where [BMIM]+ = 1-n-butyl-3-methylimidazolium) and [EMIM]2-[IrCl6] (5) in aqueous or acetonitrile media. From TGA measurements, salts 1-5 decompose in air in several steps eventually to form the corresponding metal, the onset of decomposition being observed at (degree C) 260 (1), 220 (2), 200 (3), 215 (4), and 210 (5). The structures of 1, 2, and 5 were determined by single-crystal X-ray analysis. The three salts crystallize in the monoclinic P21/n space group (1, a = 7.6433(9) A, b = 16.353(2) A, c = 9.213(1) A, beta = 113.56(1) degrees, Z = 2; 2, a = 8.601(1) A, b = 8.095(2) A, c = 13.977(2) A, beta = 91.75(2) degrees, Z = 2; 5, a = 10.353(2) A, b = 9.759(2) A, c = 10.371(2) A, beta = 92.98(3) degrees, Z = 2).

  2. [Frequency of sensitization to pollens of the subclass Rosidae in patients with respiratory allergy].

    PubMed

    Bedolla-Barajas, Martín; Valdez-López, Francisco; Arceo-Barba, Julieta; Bedolla-Pulido, Tonatiuh Ramses; Hernández-Colín, Dante; Morales-Romero, Jaime

    2014-01-01

    Antecedentes: los estudios relacionados con los patrones de sensibilización a especies de aeroalergenos poco comunes son infrecuentes. Objetivo: determinar la frecuencia de sensibilización a pólenes de relevancia alergológica provenientes de la subclase Rosidae en pacientes con alergia respiratoria. Pacientes y método: estudio descriptivo y transversal en el que se incluyeron pacientes de manera consecutiva a un grupo con rinitis alérgica y a otro con asma. Se estudiaron mediante historia clínica, exploración física y reactividad cutánea a un panel de alergenos, que incluyó a las especies Prosopis, Schinus, Acacia y Eucalyptus. Se determinaron las frecuencias de sensibilización y sus intervalos de confianza a 95% (IC 95%) respectivos. Resultados: se estudiaron 104 pacientes con rinitis alérgica y 99 con asma; en ambos grupos la media de edad se ubicó en la cuarta década de la vida y hubo predomino de mujeres. En los pacientes con rinitis alérgica se observó la siguiente frecuencia de sensibilización: mezquite 26.2% (IC 95%: 17.7 a 34.6%), pirul 11.5% (IC 95%: 5.4 a 17.6%), eucalipto 6.7% (IC 95%: 1.9 a 11.5%) y acacia 3% (IC 95%: 0.3 a 6.3%). En los sujetos con asma la conducta fue la siguiente: mezquite 13.1% (IC 95%: 6.5 a 19.7%), pirul 7.1% (IC 95%: 2 a 12.2%), eucalipto 4 (IC 95%: 0.1 a 7.9%) y acacia 3% (IC 95%: 0.4 a 6.4%). Los dos grupos manifestaron un predominio de sensibilización por los fresnos y encinos; al final se encontraron eucalipto, pino y acacia. Conclusión: la capacidad de sensibilización de los árboles analizados, con excepción del mezquite, es menor.

  3. Crystal structures of lazulite-type oxidephosphates Ti{sup III}Ti{sup IV}{sub 3}O{sub 3}(PO{sub 4}){sub 3} and M{sup III}{sub 4}Ti{sup IV}{sub 27}O{sub 24}(PO{sub 4}){sub 24} (M{sup III}=Ti, Cr, Fe)

    SciTech Connect

    Schoeneborn, M.; Glaum, R. Reinauer, F.

    2008-06-15

    Single crystals of the oxidephosphates Ti{sup III}Ti{sup IV}{sub 3}O{sub 3}(PO{sub 4}){sub 3} (black), Cr{sup III}{sub 4}Ti{sup IV}{sub 27}O{sub 24}(PO{sub 4}){sub 24} (red-brown, transparent), and Fe{sup III}{sub 4}Ti{sup IV}{sub 27}O{sub 24}(PO{sub 4}){sub 24} (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [Ti{sup III}Ti{sup IV}{sub 3}O{sub 3}(PO{sub 4}){sub 3}: Z=24, a=7.3261(9) A, b=22.166(5) A, c=39.239(8) A, R{sub 1}=0.029, wR{sub 2}=0.084, 6055 independent reflections, 301 variables; Cr{sup III}{sub 4}Ti{sup IV}{sub 27}O{sub 24}(PO{sub 4}){sub 24}: Z=1, a=7.419(3) A, b=21.640(5) A, c=13.057(4) A, R{sub 1}=0.037, wR{sub 2}=0.097, 1524 independent reflections, 111 variables; Fe{sup III}{sub 4}Ti{sup IV}{sub 27}O{sub 24}(PO{sub 4}){sub 24}: Z=1, a=7.4001(9) A, b=21.7503(2) A, c=12.775(3) A, R{sub 1}=0.049, wR{sub 2}=0.140, 1240 independent reflections, 112 variables). For Ti{sup III}Ti{sup IV}O{sub 3}(PO{sub 4}){sub 3} a well-ordered structure built from dimers [Ti{sup III,IV}{sub 2}O{sub 9}] and [Ti{sup IV,IV}{sub 2}O{sub 9}] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr{sub 4}Ti{sub 27}O{sub 24}(PO{sub 4}){sub 24} and Fe{sub 4}Ti{sub 27}O{sub 24}(PO{sub 4}){sub 24}, consisting of dimers [M{sup III}Ti{sup IV}O{sub 9}] and [Ti{sup IV,IV}{sub 2}O{sub 9}], monomeric [Ti{sup IV}O{sub 6}] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs Ti{sup III}{sub 4}Ti{sup IV}{sub 27}O{sub 24}(PO{sub 4}){sub 24} (a=7.418(2) A, b=21.933(6) A, c=12.948(7) A) is isotypic to the oxidephosphates M{sup III}{sub 4}Ti{sup IV}{sub 27}O{sub 24}(PO{sub 4

  4. On the existence of a high-temperature polymorph of Na2Ca6Si4O15—implications for the phase equilibria in the system Na2O-CaO-SiO2

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Maier, Matthias

    2016-06-01

    Singe crystals of a new high-temperature polymorph of Na2Ca6Si4O15 have been obtained from solid state reactions performed at 1300 °C. The basic crystallographic data of this so-called β-phase at ambient conditions are as follows: space group P1c1, a = 9.0112(5) Å, b = 7.3171(5) Å, c = 10.9723(6) Å, β = 107.720(14)°, V = 689.14(7) Å3, Z = 2. The crystals showed twinning by reticular merohedry (mimicking an orthorhombic C-centred unit cell) which was accounted for during data processing and structure solution. Structure determination was accomplished by direct methods. Least-squares refinements resulted in a residual of R(|F|) = 0.043 for 5811 observed reflections with I > 2σ(I). From a structural point of view β-Na2Ca6Si4O15 can be attributed to the group of mixed-anion silicates containing [Si2O7]-dimers as well as isolated [SiO4]-tetrahedra in the ratio 1:2, i.e. more precisely the formula can be written as Na2Ca6[SiO4]2[Si2O7]. The tetrahedral groups are arranged in layers parallel to (100). Sodium and calcium cations are located between the silicate anions for charge compensation and are coordinated by six to eight nearest oxygen ligands. Alternatively, the structure can be described as a mixed tetrahedral-octahedral framework based on kröhnkite-type [Ca(SiO4)2O2]-chains in which the CaO6-octahedra are corner-linked to bridging SiO4-tetrahedra. The infinite chains are running parallel to [001] and are concentrated in layers parallel to (010). Adjacent layers are shifted relative to each other by an amount of +δ or -δ along a*. Consequently, a …ABABAB… stacking sequence is created. A detailed comparison with related structures such as α-Na2Ca6Si4O15 and other A2B6Si4O15 representatives including topological as well as group theoretical aspects is presented. There are strong indications that monoclinic Na2Ca3Si2O8 mentioned in earlier studies is actually misinterpreted β-Na2Ca6Si4O15. In addition to the detailed crystallographic analysis of the

  5. Outer continental shelf oil and gas activities in the Pacific (Southern California) and their onshore impacts: a summary report, May 1980

    USGS Publications Warehouse

    Macpherson, George S.; Bernstein, Janis

    1980-01-01

    Outer Continental Shelf (OCS) oil and gas exploration and development have been under way in the Pacific (Southern California) Region since 1966. During that time, there have been four Federal lease sales: in 1966, 1968, 1975 (Sale 35), and 1979 (Sale 48). Oil and gas production from three leases has been going on since 1968. It peaked in 1971 and now averages around 31,400 barrels of oil and 15.4 million cubic feet of gas per day. Discoveries on areas leased in the 1968 and 1975 sales have led to plans for eight new platforms to begin production in the early 1980's. Five platforms are in the eastern end of Santa Barbara Channel, one is in the western Channel, and two are in San Pedro Bay, south of Long Beach. Three rigs are doing exploratory drilling in the Region. The most recent estimates by the U.S. Geological Survey of remaining reserves for all identified fields in the Southern California Region are 695 million barrels of oil and 1,575 billion cubic feet of gas (January 1979). The USGS has also made risked estimates of economically recoverable oil and gas resources for all the leased tracts in the Region (March 1980). These risked estimates of economically recoverable resources are 394 billion barrels of oil and 1,295 billion cubic feet of gas. The USGS estimates of undiscovered recoverable resources for the entire Southern California OCS Region (January 1980) are 3,200 million barrels of oil and 3,400 billion cubic feet of gas. Because of the long history of oil and gas production in Southern California from wells onshore and in State waters, there are many existing facilities for the transportation, processing, and refining of oil and gas. Some of the expected new OCS production can be accommodated in these facilities. Four new onshore projects will be required. Two of these are under construction: (1) a 9.6-km (6-mi) onshore oil pipeline (capacity: 60,000 bpd) between Carpinteria (Santa Barbara County) and the existing Mobil-Rincon separation and treatment

  6. Mild hydrothermal synthesis, crystal structure, spectroscopic and magnetic properties of the [M{sub x}{sup II}M{sub 2.5-x}{sup III}(H{sub 2}O){sub 2}(HP{sup III}O{sub 3}){sub y}(P{sup V}O{sub 4}){sub 2-y}F; M=Fe, x=2.08, y=1.58; M=Co, Ni, x=2.5, y=2] compounds

    SciTech Connect

    Orive, Joseba

    2009-08-15

    The [M{sub x}{sup II}M{sub 2.5-x}{sup III}(H{sub 2}O){sub 2}(HP{sup III}O{sub 3}){sub y}(P{sup V}O{sub 4}){sub 2-y}F; M=Fe (1), x=2.08, y=1.58; M=Co (2), x=2.5, y=2; Ni (3), x=2.5, y=2] compounds have been synthesized using mild hydrothermal conditions at 170 deg. C during five days. Single-crystals of (1) and (2), and polycrystalline sample of (3) were obtained. These isostructural compounds crystallize in the orthorhombic system, space group Aba2, with a=9.9598(2), b=18.8149(4) and c=8.5751(2) A for (1), a=9.9142(7), b=18.570(1) and c=8.4920(5) A for (2) and a=9.8038(2), b=18.2453(2) and c=8.4106(1) A for (3), with Z=8 in the three phases. An X-ray diffraction study reveals that the crystal structure is composed of a three-dimensional skeleton formed by [MO{sub 5}F] and [MO{sub 4}F{sub 2}] (M=Fe, Co and Ni) octahedra and [HPO{sub 3}] tetrahedra, partially substituted by [PO{sub 4}] tetrahedra in phase (1). The IR spectra show the vibrational modes of the water molecules and those of the (HPO{sub 3}){sup 2-} tetrahedral oxoanions. The thermal study indicates that the limit of thermal stability of these phases is 195 deg. C for (1) and 315 deg. C for (2) and (3). The electronic absorption spectroscopy shows the characteristic bands of the Fe(II), Co(II) and Ni(II) high-spin cations in slightly distorted octahedral geometry. Magnetic measurements indicate the existence of global antiferromagnetic interactions between the metallic centers with a ferromagnetic transition in the three compounds at 28, 14 and 21 K for (1), (2) and (3), respectively. Compound (1) exhibits a hysteresis loop with remnant magnetization and coercive field values of 0.72 emu/mol and 880 Oe, respectively. - Abstract: Polyhedral view of the crystal structure of the [M{sub x}{sup II}M{sub 2.5-x}{sup III}(H{sub 2}O){sub 2}(HP{sup III}O{sub 3}){sub y}(P{sup IV}O{sub 4}){sub 2-y}F; M=Fe, x=2.08, y=1.58; M=Co, Ni, x=2.5, y=2] compounds showing the sheets along the [001] direction.

  7. UDP-Glucuronosyltransferase-mediated Metabolic Activation of the Tobacco Carcinogen 2-Amino-9H-pyrido[2,3-b]indole*

    PubMed Central

    Tang, Yijin; LeMaster, David M.; Nauwelaërs, Gwendoline; Gu, Dan; Langouët, Sophie; Turesky, Robert J.

    2012-01-01

    2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine (HAA) that arises in tobacco smoke. UDP-glucuronosyltransferases (UGTs) are important enzymes that detoxicate many procarcinogens, including HAAs. UGTs compete with P450 enzymes, which bioactivate HAAs by N-hydroxylation of the exocyclic amine group; the resultant N-hydroxy-HAA metabolites form covalent adducts with DNA. We have characterized the UGT-catalyzed metabolic products of AαC and the genotoxic metabolite 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC) formed with human liver microsomes, recombinant human UGT isoforms, and human hepatocytes. The structures of the metabolites were elucidated by 1H NMR and mass spectrometry. AαC and HONH-AαC underwent glucuronidation by UGTs to form, respectively, N2-(β-d-glucosidurony1)-2-amino-9H-pyrido[2,3-b]indole (AαC-N2-Gl) and N2-(β-d-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HON2-Gl). HONH-AαC also underwent glucuronidation to form a novel O-linked glucuronide conjugate, O-(β-d-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HN2-O-Gl). AαC-HN2-O-Gl is a biologically reactive metabolite and binds to calf thymus DNA (pH 5.0 or 7.0) to form the N-(deoxyguanosin-8-yl)-AαC adduct at 20–50-fold higher levels than the adduct levels formed with HONH-AαC. Major UGT isoforms were examined for their capacity to metabolize AαC and HONH-AαC. UGT1A4 was the most catalytically efficient enzyme (Vmax/Km) at forming AαC-N2-Gl (0.67 μl·min−1·mg of protein−1), and UGT1A9 was most catalytically efficient at forming AαC-HN-O-Gl (77.1 μl·min−1·mg of protein−1), whereas UGT1A1 was most efficient at forming AαC-HON2-Gl (5.0 μl·min−1·mg of protein−1). Human hepatocytes produced AαC-N2-Gl and AαC-HN2-O-Gl in abundant quantities, but AαC-HON2-Gl was a minor product. Thus, UGTs, usually important enzymes in the detoxication of many procarcinogens, serve as a mechanism of bioactivation of

  8. Recent changes detected on two glaciers at the northern part of James Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Nývlt, Daniel; Kopačková, Veronika; Láska, Kamil; Engel, Zbyněk.

    2010-05-01

    2009 repeated mapping of the Davies Dome was carried out and the results showed that the largest retreat ranging from 10 to 20 m occurred in the NW flat part of the glacier. Digital elevation models calculated on bases of aerial stereo-photographs from 1979 and 2006 allowed us to define mass-balance changes of the studied glaciers. Ground Penetrating Radar measurements taken on both glaciers helped with mass-balance investigations, furthermore, made it possible to increase the accuracy of the 3-D models. Annual mass balance measurements on the Davies Dome indicated a mean ablation about 20 cm between 2006 and 2009. On the Whisky Glacier, a network of 20 ablation stakes was established just recently (February 2009). Therefore, another 3-year investigation is necessary to bring comparable results. Acknowledgments: This research has been undertaken within a framework of the project No. 205/09/1876 funded by the Czech Science Foundation and by the R & D project VaV SP II 1a9/23/07.

  9. Seasonal variation of meteorological variables and recent surface ablation / accumulation rates on Davies Dome and Whisky Glacier, James Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Láska, K.; Nývlt, D.; Engel, Z.; Budík, L.

    2012-04-01

    Dome and in 2009 on Whisky Glacier. Since 2009 the surveys cover the whole surface area of both glaciers. The height and position of measurement stakes were measured each year. Preliminary results of mass balance changes suggest the net positive volume balance of the glaciers. Between 2009 and 2010 mass gain was observed on the whole surface of Davies Dome, whereas in 2010-2011 the loss up to 0.25 m took place along southeastern limit of the dome. The net mass gain was identified on the whole Whisky Glacier except for the terminus below 280 m a.s.l., where the surface mass decreased by up to 0.14 m. The repeated measurements reveal the asymmetric pattern of the mass changes with higher accumulation rate on the eastern part of the valley glacier. Acknowledgments: This research is supported by the project of the Czech Grant Agency 205/09/1876 and by the R & D project VaV SP II 1a9/23/07.

  10. The first organic-templated vanadyl(IV) gallophosphates with ambient (51)V hyperfine structure, {V(2)Ga(2)O(14)} cluster or heterometal 12-ring channels.

    PubMed

    Huang, Li-Hsun; Lai, Yi-Chun; Lai, Hui-Chun; Chiang, Yun-Wei; Huang, Jin-Hua; Wang, Sue-Lein

    2009-12-21

    Three new vanadyl gallium phosphates, (H(2)dap)(3)[(VO)(2)(GaO)(2)(PO(4))(4)].H(2)O (1), (H(2)dap)(1.5)[(VO)(2)(GaO)(2)(PO(4))(3)].3H(2)O (2), and (H(2)dap)[(VO)(2)Ga(4)(PO(4))(6)(H(2)O)(4)].2H(2)O (3) (dap = 1,3-diaminopropane), have been prepared under mild solvothermal conditions and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, magnetic susceptibility, and EPR spectroscopy. They are the first examples of an organic/V(4+)/Ga/P/O system that displays three different dimensional structures with a common template. The 1D chain structure of 1 and the 2D layered 2 are both built up with a PO(4) and {V(2)Ga(2)O(14)} cluster which contains a syn-square pyramidal {V(2)O(8)} dimer and two GaO(4) tetrahedra. The tetrameric cluster and V-O-Ga therein are observed in a metal phosphate system. Compound 3 is composed of VO(5)(H(2)O) octahedra, GaO(4)(H(2)O) trigonal bipyramids, and GaO(4) and PO(4) tetrahedra from which a unique 3D structure containing one-dimensional 12-ring channels is constructed. The channel aperture uncommonly comprises heterometal (V, Ga) polyhedra. Magnetic susceptibility data for 1-3 are consistent with V(4+) and show a T(N) of 12 K for 3. The unusual syn-{V(2)O(8)} dimers in 1 and 2 induce superexchange interactions, while isolated VO(5)(H(2)O) octahedra in 3 display super-super-exchange interaction. Electron paramagnetic resonance spectra with (51)V hyperfine structures were distinctly observed at 300 K for 1, while they started emerging at 30 K for 2 and 7 K for 3. The average hyperfine constant, 85.56 Gauss, was obtained via spectral simulations and nonlinear least-squares fittings for 1 and 2. Crystal data for 1 are triclinic, P1, a = 9.1754(4) A, b = 10.7853(5) A, c = 15.6519(7) A, alpha = 93.251(1) degrees , beta = 92.530(1) degrees , gamma = 95.106(1) degrees , V = 1538.4(1) A(3), and Z = 2; for 2, monoclinic, P2(1)/n, a = 8.9195(3) A, b = 14.6374(5) A, c = 17.8608(6) A, beta = 97.272(1) degrees , V = 2313

  11. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking.

    PubMed

    Monti, Jaime M; Jantos, Héctor

    2008-01-01

    Based on electrophysiological, neurochemical and neuropharmacological approaches, it is currently accepted that serotonin (5-HT) and dopamine (DA) function to promote waking (W) and to inhibit slow wave sleep (SWS) and/or rapid-eye-movement sleep (REMS). Serotonergic neurons of the dorsal raphe nucleus (DRN) fire at a steady rate during W, decrease their firing during SWS and virtually cease activity during REMS. On the other hand, DA cells in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) do not change their mean firing rate across the sleep-wake cycle. It has been proposed that DA cells in the midbrain show a change in temporal pattern rather than firing rate during the sleep-wake cycle. Available evidence tends to indicate that during W and REMS an increase of burst firing activity of DA neurons occurs together with an enhanced release of DA in the VTA, the nucleus accumbens and several forebrain structures. Recently, DA neurons were characterised in the ventral periaqueductal grey matter (VPAG) that express Fos protein during W. Lesioning of these cells resulted in an increase of SWS and REMS, which led to the proposal that VPAG DA neurons may play a role in the promotion of W. Systemic injection of full agonists at postsynaptic 5-HT(1A) (8-OH-DPAT, flesinoxan), 5-HT(1B) (CGS 12066B, CP-94,253), 5-HT(2A/2C) (DOI, DOM) and 5-HT(3) (m-chlorophenylbiguanide) receptors increases W and reduces SWS and REMS. On the other hand, microdialysis perfusion or direct infusion of 8-OH-DPAT or flesinoxan into the DRN, where somatodendritic 5-HT(1A) receptors are located, significantly increases REMS. Systemic administration of the selective DA D(1) receptor agonist SKF 38393 induces behavioural arousal together with an increase of W and a reduction of sleep. On the other hand, injection of a DA D(2) receptor agonist (apomorphine, bromocriptine, quinpirole) gives rise to biphasic effects, such that low doses reduce W and augment SWS and REMS

  12. Syntheses, structures, characterizations and charge-density matching of novel amino-templated uranyl selenates

    SciTech Connect

    Ling Jie; Sigmon, Ginger E.; Burns, Peter C.

    2009-02-15

    Five hybrid organic-inorganic uranyl selenates have been synthesized, characterized and their structures have been determined. The structure of (C{sub 2}H{sub 8}N){sub 2}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3}(H{sub 2}O)] (EthylAUSe) is monoclinic, P2{sub 1}, a=8.290(1), b=12.349(2), c=11.038(2) A, {beta}=104.439(4){sup o}, V=1094.3(3) A{sup 3}, Z=2, R{sub 1}=0.0425. The structure of (C{sub 7}H{sub 10}N){sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)]H{sub 2}O (BenzylAUSe) is orthorhombic, Pna2{sub 1}, a=24.221(2), b=11.917(1), c=7.4528(7) A, V=2151.1(3) A{sup 3}, Z=4, R{sub 1}=0.0307. The structure of (C{sub 2}H{sub 10}N{sub 2})[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}O){sub 2} (EDAUSe) is monoclinic, P2{sub 1}/c, a=11.677(2), b=7.908(1), c=15.698(2) A, {beta}=98.813(3){sup o}, V=1432.4(3) A{sup 3}, Z=4, R{sub 1}=0.0371. The structure of (C{sub 6}H{sub 22}N{sub 4})[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}O) (TETAUSe) is monoclinic, P2{sub 1}/n, a=13.002(2), b=7.962(1), c=14.754(2) A, {beta}=114.077(2){sup o}, V=1394.5(3) A{sup 3}, Z=4, R{sub 1}=0.0323. The structure of (C{sub 6}H{sub 21}N{sub 4})[(UO{sub 2})(SeO{sub 4}){sub 2}(HSeO{sub 4})] (TAEAUSe) is monoclinic, P2{sub 1}/m, a=9.2218(6), b=12.2768(9), c=9.4464(7) A, {beta}=116.1650(10){sup o}, V=959.88(12) A{sup 3}, Z=2, R{sub 1}=0.0322. The inorganic structural units in these compounds are composed of uranyl pentagonal bipyramids and selenate tetrahedra. In each case, tetrahedra link bipyramids through vertex-sharing, resulting in chain or sheet topologies. The charge-density matching principle is discussed relative to the orientations of the organic molecules between the inorganic structural units. - Graphical abstract: The structures of five new inorganic-organic hybrid uranyl selenates present new structural topologies based upon chains and sheets of uranyl pentagonal bipyramids and selenate tetrahedra.

  13. Fragmentation of doubly-protonated peptide ion populations labeled by H/D exchange with CD3OD

    NASA Astrophysics Data System (ADS)

    Herrmann, Kristin A.; Kuppannan, Krishna; Wysocki, Vicki H.

    2006-03-01

    Doubly-protonated bradykinin (RPPGFSPFR) and an angiotensin III analogue (RVYIFPF) were subjected to hydrogen/deuterium (H/D) exchange with CD3OD in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. A bimodal distribution of deuterium incorporation was present for bradykinin after H/D exchange for 90 s at a CD3OD pressure of 4 × 10-7 Torr, indicating the existence of at least two distinct populations. Bradykinin ion populations corresponding to 0-2 and 5-11 deuteriums (i.e., D0, D1, D2, D5, D6, D7, D8, D9, D10, and D11) were each monoisotopically selected and fragmented via sustained off-resonance irradiation (SORI) collision-induced dissociation (CID). The D0-D2 ion populations, which correspond to the slower exchanging population, consistently require lower SORI amplitude to achieve a similar precursor ion survival yield as the faster-reacting (D5-D11) populations. These results demonstrate that conformation/protonation motif has an effect on fragmentation efficiency for bradykinin. Also, the partitioning of the deuterium atoms into fragment ions suggests that the C-terminal arginine residue exchanges more rapidly than the N-terminal arginine. Total deuterium incorporation in the b1/y8 and b2/y7 ion pairs matches very closely the theoretical values for all ion populations studied, indicating that the ions of a complementary pair are likely formed during the same fragmentation event, or that no scrambling occurs upon SORI. Deuterium incorporation into the y1/a8 pseudo-ion pair does not closely match the expected theoretical values. The other peptide, doubly-protonated RVYIFPF, has a trimodal distribution of deuterium incorporation upon H/D exchange with CD3OD at a pressure of 1 × 10-7 Torr for 600 s, indicating at least three distinct ion populations. After 90 s of H/D exchange where at least two distinct populations are detected, the D0-D7 ion populations were monoisotopically selected and fragmented via SORI-CID over a range of SORI

  14. New open-framework in the uranyl vanadates A{sub 3}(UO{sub 2}){sub 7}(VO{sub 4}){sub 5}O (A=Li, Ag) with intergrowth structure between A(UO{sub 2}){sub 4}(VO{sub 4}){sub 3} and A{sub 2}(UO{sub 2}){sub 3}(VO{sub 4}){sub 2}O

    SciTech Connect

    Obbade, S. Renard, C.; Abraham, F.

    2009-03-15

    New uranyl vanadates A{sub 3}(UO{sub 2}){sub 7}(VO{sub 4}){sub 5}O (M=Li (1), Na (2), Ag (3)) have been synthesized by solid-state reaction and their structures determined from single-crystal X-ray diffraction data for 1 and 3. The tetragonal structure results of an alternation of two types of sheets denoted S for {sub {infinity}}{sup 2}[UO{sub 2}(VO{sub 4}){sub 2}]{sup 4-} and D for {sub {infinity}}{sup 2}[(UO{sub 2}){sub 2}(VO{sub 4}){sub 3}]{sup 5-} built from UO{sub 6} square bipyramids and connected through VO{sub 4} tetrahedra to {sub {infinity}}{sup 1}[U(3)O{sub 5}-U(4)O{sub 5}]{sup 8-} infinite chains of edge-shared U(3)O{sub 7} and U(4)O{sub 7} pentagonal bipyramids alternatively parallel to a- and b-axis to construct a three-dimensional uranyl vanadate arrangement. It is noticeable that similar {sub {infinity}}[UO{sub 5}]{sup 4-} chains are connected only by S-type sheets in A{sub 2}(UO{sub 2}){sub 3}(VO{sub 4}){sub 2}O and by D-type sheets in A(UO{sub 2}){sub 4}(VO{sub 4}){sub 3}, thus A{sub 3}(UO{sub 2}){sub 7}(VO{sub 4}){sub 5}O appears as an intergrowth structure between the two previously reported series. The mobility of the monovalent ion in the mutually perpendicular channels created in the three-dimensional arrangement is correlated to the occupation rate of the sites and by the geometry of the different sites occupied by either Na, Ag or Li. Crystallographic data: 293 K, Bruker X8-APEX2 X-ray diffractometer equipped with a 4 K CCD detector, MoK{alpha}, {lambda}=0.71073 A, tetragonal symmetry, space group P4-bar m2, Z=1, full-matrix least-squares refinement on the basis of F{sup 2}; 1,a=7.2794(9) A, c=14.514(4) A, R1=0.021 and wR2=0.048 for 62 parameters with 782 independent reflections with I{>=}2{sigma}(I); 3, a=7.2373(3) A, c=14.7973(15) A, R1=0.041 and wR2=0.085 for 60 parameters with 1066 independent reflections with I{>=}2{sigma}(I). - Abstract: A view of the three-dimensional structure of Li{sub 3}(UO{sub 2}){sub 7}(VO{sub 4}){sub 5}O

  15. Detection, enumeration and characterization of Yersinia enterocolitica 4/O:3 in pig tonsils at slaughter in Northern Italy.

    PubMed

    Bonardi, Silvia; Alpigiani, Irene; Pongolini, Stefano; Morganti, Marina; Tagliabue, Silvia; Bacci, Cristina; Brindani, Franco

    2014-05-01

    Tonsils from 150 pigs slaughtered at 270 days or older were tested for Yersinia enterocolitica with different cultural methods. Samples were collected in three different abattoirs of Northern Italy between April and November 2012 and were analysed by direct plating on cefsulodin-irgasan-novobiocin (CIN) agar and by enrichment procedures following the ISO 10273:2003 reference method. Twenty-three (15.3%) samples were positive: 22 tonsils (14.7%) were positive for human pathogenic Y. enterocolitica bio-serotype 4/O:3 and one tonsil (0.7%) for Y. enterocolitica bio-serotype 1A/7,8-8,8,19. Seventeen samples out of 23 (73.9%) were positive by direct plating method. Among the enrichment procedures, the best recovery rate (8 positives out of 23; 34.8%) was obtained by the two-day enrichment in peptone-sorbitol-bile (PSB) broth followed by plating on CIN agar plates. The two-day enrichment in PSB followed by potassium hydroxide (KOH) treatment before plating onto CIN agar gave 7 positives out of 23 (30.4%), decreasing to 3 positives (13.0%) without KOH treatment. The worst results were obtained by prolonged (five days) enrichment in PSB, with or without KOH treatment, followed by plating on CIN agar: 4.3% (1 out of 23) and 0.0% recovery rates, respectively. The mean concentration was 1.9 × 10(4)CFU/g, with a minimum of 1.0 × 10(2)CFU/g and a maximum of 5.8 × 10(4)CFU/g, thus demonstrating that tonsils may play an important role in contamination of pluck sets, carcasses, and slaughterhouse environment. Prevalence of virulence genes among the Y. enterocolitica 4/O:3 isolates was as follows: 12/22 (54.5%) for yadA, 21/22 (95.5%) for ail, 21/22 (95.5%) for inv and 22/22 (100%) for ystA. All Y. enterocolitica 4/O:3 isolates were sensitive to amoxicillin/clavulanic acid, ciprofloxacin and ceftazidime and resistant to ampicillin and cephalotin. High proportions of 4/O:3 isolates (95%) were sensitive to cefotaxime, gentamicin, kanamicin and nalidixic acid. High levels of

  16. Synthesis, Hematological, Biochemical, and Neurotoxicity Screening of Some Mannich Base Hydrochlorides

    PubMed Central

    Lahbib, Karima; Aouani, Iyadh; Abdelmelek, Hafedh; Touil, Soufiane

    2013-01-01

    Background: Mannich bases are an important class of compounds in medicinal chemistry with a wide spectrum of biological activities, however, knowledge on their toxicity is limited. Materials and Methods: Two Mannich base hydrochlorides 1a (2-thienyl-β-dimethylaminoethyl ketone hydrochloride) and 1b (β-dimethylaminopropiophenone hydrochloride) were synthesized and characterized on the basis of their infrared and nuclear magnetic resonance spectral data. The potential effects of the synthesized compounds (5 mg/kg, i.p, during 30 days) on relative weight, hematological parameters, biochemical parameters, and neurotoxicity were tested using male Wistar rat. Results: The results showed that compound 1b alters body weight on the first 10 days (182%, P < 0.01) and on the last 10 days (107%, P < 0.01) of treatment. The same treatment decreases food intake (P < 0.01) and increases water intake (P < 0.05). Both compounds induced a deficit on rotarod test manifested by a decrease of grasping time (1a: 65.33%, P < 0.01; 1b: 60.55%, P < 0.01) and fall time (1a: 59.75%, P < 0.01; 1b: 56.81%, P < 0.01) only on the last day of training. Moreover, Mannich base 1b decreases the liver relative weight (22.24%, P < 0.01). It was also observed that both products decrease the total serum cholesterol (Ch) levels (1a: 52.87%, P < 0.01; 1b: 64.70%, P < 0.01). Interestingly, compounds 1a and 1b affect hematological parameters manifested by an increase of the number of white blood cells (1a: 32.29%, P < 0.05; 1b: 20.64%, P < 0.05) and red blood cells (RBCs) (1a: 12.57%, P < 0.05; 1b: 20.11%, P < 0.05), an increase of red cell hemoglobin concentration (1a: 10.48%, P < 0.05; 1b: 16.12%, P < 0.05) and of the volume occupied by RBCs or hematocrit (1a: 18.28%, P < 0.05; 1b: 15.56%, P < 0.05), and an increase of the number of platelets (1a: 16.80%, P < 0.05; 1b: 39.96%, P < 0.05) accompanied by a decrease in hemoglobin level only with the compound 1a (7.41%, P < 0.05). Conclusion: These results

  17. Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, a new mineral from nepheline syenite pegmatite in the Sakharjok massif, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Lyalina, L. M.; Zolotarev, A. A.; Selivanova, E. A.; Savchenko, Ye. E.; Krivovichev, S. V.; Mikhailova, Yu. A.; Kadyrova, G. I.; Zozulya, D. R.

    2016-05-01

    Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, is a new mineral found in nepheline syenite pegmatite in the Sakharjok alkaline massif, Western Keivy, Kola Peninsula, Russia. The pegmatite mainly consists of nepheline, albite, alkali pyroxenes, amphiboles, biotite and zeolites. Batievaite-(Y) is a late-pegmatitic or hydrothermal mineral associated with meliphanite, fluorite, calcite, zircon, britholite-group minerals, leucophanite, gadolinite-subgroup minerals, titanite, smectites, pyrochlore-group minerals, zirkelite, cerianite-(Ce), rutile, behoite, ilmenite, apatite-group minerals, mimetite, molybdenite, and nickeline. Batievaite-(Y) is pale-cream coloured with white streak and dull, greasy or pearly luster. Its Mohs hardness is 5-5.5. No cleavage or parting was observed. The measured density is 3.45(5) g/cm3. Batievaite-(Y) is optically biaxial positive, α 1.745(5), β 1.747(5), γ 1.752(5) (λ 589 nm), 2V meas. = 60(5)°, 2V calc. = 65°. Batievaite-(Y) is triclinic, space group P-1, a 9.4024(8), b 5.5623(5), c 7.3784(6) Å, α 89.919(2), β 101.408(2), γ 96.621(2)°, V 375.65(6) Å3 and Z = 1. The eight strongest lines of the X-ray powder diffraction pattern [d(Å)(I)(hkl)] are: 2.991(100)(11-2), 7.238(36)(00-1), 3.061(30)(300), 4.350(23)(0-1-1), 9.145(17)(100), 4.042(16)(11-1), 2.819(16)(3-10), 3.745(13)(2-10). The chemical composition determined by electron probe microanalysis (EPMA) is (wt.%): Nb2O5 2.25, TiO2 8.01, ZrO2 2.72, SiO2 29.96, Al2O3 0.56, Fe2O3 0.43, Y2O3 11.45, La2O3 0.22, Ce2O3 0.33, Nd2O3 0.02, Gd2O3 0.07, Dy2O3 0.47, Er2O3 1.07, Tm2O3 0.25, Yb2O3 2.81, Lu2O3 0.45, CaO 24.98, MnO 1.31, MgO 0.01, Na2O 1.13, K2O 0.02, F 2.88, Cl 0.19, H2O 6.75 (determined on the basis of crystal structure data), O = (F,Cl) -1.25, total 97.09 wt.%. The empirical formula based on the EPMA and single-crystal structure analyses is (Y0.81Ca0.65Mn0.15Zr0.12Yb0.11Er0.04Fe3+ 0.04Ce0.02Dy0.02Lu0.02La0.01Tm0.01)Σ2.00((H2O)0.75Ca0.70□0.55)Σ2.00Ca2.00(□0.61Na0.25( H2O

  18. Obstetrical Anal Sphincter Injuries (OASIS): Prevention, Recognition, and Repair.

    PubMed

    Harvey, Marie-Andrée; Pierce, Marianne; Alter, Jens-Erik W; Chou, Queena; Diamond, Phaedra; Epp, Annette; Geoffrion, Roxana; Harvey, Marie-Andrée; Larochelle, Annick; Maslow, Kenny; Neustaedter, Grace; Pascali, Dante; Pierce, Marianne; Schulz, Jane; Wilkie, David; Sultan, Abdul; Thakar, Ranee

    2015-12-01

    être prescrits à la suite de la réparation primaire d’une lésion obstétricale du sphincter anal puisqu’ils sont associés à des premières selles moins douloureuses et survenant plus rapidement, et à l’obtention plus rapide du congé de l’hôpital. L’utilisation d’agents constipants et d’agents de gonflement n’est pas recommandée. (I-A) 8. Les anti-inflammatoires non stéroïdiens et l’acétaminophène sont les analgésiques de première intention. Les opioïdes ne devraient être utilisés qu’avec précaution. La constipation devrait être évitée au moyen d’un laxatif ou d’un émollient fécal. (1-A) 9. À la suite de la constatation d’une lésion obstétricale du sphincter anal, les fournisseurs de soins devraient divulguer à leurs patientes le degré de la lésion subie et prendre les dispositions nécessaires à la mise en œuvre d’un suivi. Il est nécessaire de procéder à la documentation détaillée de la lésion et de sa réparation. (III-L) 10. Les femmes qui connaissent une incontinence anale après avoir subi une lésion obstétricale du sphincter anal devraient être orientées vers des services de physiothérapie du plancher pelvien. (I-A).