Science.gov

Sample records for 1alpha il-1alpha il-1beta

  1. Synthesis of IL-1 alpha and IL-1 beta by arterial cells in atherosclerosis.

    PubMed Central

    Moyer, C. F.; Sajuthi, D.; Tulli, H.; Williams, J. K.

    1991-01-01

    Interleukin-1 (IL-1) has been implicated as a regulatory protein in the development and clinical sequelae of atherosclerosis. To determine which cells in the atherosclerotic plaque synthesize IL-1 in situ, the authors evaluated histologic sections of iliac arteries from cynomolgus monkeys using probes for IL-1 alpha and beta. A polyclonal antibody to IL-1 alpha and beta was used to determine if proteins were concomitantly produced. The predominant cells expressing IL-1 alpha and beta mRNA were foam cells in the intima. Adherent leukocytes and vascular smooth muscle cells (VSMCs) expressed mRNA for IL-1 alpha. Microvascular endothelium expressed mRNA for both IL-1 alpha and beta. IL-1 proteins were located frequently in cells expressing IL-1 mRNA. These results indicate that endothelium and VSMCs, in conjunction with macrophages, serve as localized sources of IL-1 protein synthesis. These findings suggest that vascular cells may contribute directly to the pathogenesis of atherosclerotic vascular disease by actively secreting potent biologic mediators that modify vascular and immune cell function. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:2012178

  2. Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy.

    PubMed

    Kanemoto, K; Kawasaki, J; Miyamoto, T; Obayashi, H; Nishimura, M

    2000-05-01

    Proinflammatory cytokines, including interleukin (IL)-1beta, are known to modulate effects of neurotoxic neurotransmitters discharged during excitation or inflammation in the central nervous system (CNS). They also regulate development of glial scars at sites of CNS injury. To elucidate a genetic predisposition of temporal lobe epilepsy with hippocampal sclerosis (TLE-HS+), we studied polymorphisms in the IL-1beta, IL-1alpha, and IL-1 receptor antagonist (IL-1RA) genes in 50 patients with TLE-HS+ and in 112 controls. Fifty-three patients who had TLE without HS were also examined (TLE-HS-) as disease controls. The distribution of the biallelic polymorphism in the promoter region at position -511 of the IL-1beta gene (IL-1B-511) was significantly different both between TLE-HS+ patients and controls and between TLE-HS+ and TLE-HS- patients. The differences were due to overrepresentation of the homozygotes for IL-1B-511*2, which is suggested to be a high producer of IL-1beta, in TLE-HS+ patients compared with both controls and TLE-HS- patients. In contrast, there was no difference between TLE-HS- patients and controls. Our data suggest that, in the homozygotes for IL-IB-511*2, minor events in development such as febrile convulsions could set up a cascade leading to HS.

  3. Alterations in serum levels of inflammatory cytokines (TNF, IL-1alpha, IL-1beta and IL-1Ra) 20 years after sulfur mustard exposure: Sardasht-Iran cohort study.

    PubMed

    Yaraee, Roya; Ghazanfari, Tooba; Ebtekar, Massoumeh; Ardestani, Sussan K; Rezaei, Abbas; Kariminia, Amina; Faghihzadeh, Soghrat; Mostafaie, Ali; Vaez-Mahdavi, Mohammad R; Mahmoudi, Mahmoud; Naghizadeh, Mohammad M; Soroush, Mohammad R; Hassan, Zuhair M

    2009-12-01

    Mustard gas, even in low doses, has the ability to inflict damage in multiple organs especially the skin, eyes, as well as the respiratory tract. This damage may cause many complications which persist during the lifespan of exposed subjects. Pro-inflammatory cytokines including TNF, IL-1alpha, IL-1beta and IL-1Ra cause systemic inflammatory reactions and numerous changes including altered cell signaling and migration, changes in cytokine production and fever. The aim of this study was to determine the serum levels of these cytokines in subjects who were exposed to mustard gas 20 years ago in comparison with an unexposed control group. In this historical cohort study 368 sulfur mustard (SM) exposed participants from Sardasht and 126 age-matched unexposed volunteers from Rabat (a nearby town) as controls were chosen by a random systematic sampling. The serum concentrations of IL-1alpha, IL-1beta, IL-1Ra and TNF were measured by a sandwich ELISA technique. Median of the serum levels of cytokines TNF, IL-1alpha, IL-1beta and IL-1Ra in the control group was 23.79, 1.89, 1.91 and 32.9 pg/ml respectively, while in the SM-exposed participants these values were 11.11, 0.81, 1.73 and 26.7 pg/ml respectively. The serum pro-inflammatory cytokine levels were significantly lower in the exposed group than in controls (p<0.01). There was also significant positive correlation between concentration of all of mentioned cytokines, the strongest being between IL-1beta and TNF (r=0.809 in the control group). The observed down-regulation of pro-inflammatory cytokines should be considered in interpretation of diagnosis and therapeutic measures taken to improve clinical complications.

  4. IL-1 alpha (-889) promoter polymorphism is a risk factor for osteomyelitis.

    PubMed

    Asensi, Víctor; Alvarez, Victoria; Valle, Eulalia; Meana, Alvaro; Fierer, Joshua; Coto, Eliecer; Carton, José Antonio; Maradona, José Antonio; Paz, José; Dieguez, Maria Angeles; de la Fuente, Belén; Moreno, Alfonso; Rubio, Silvino; Tuya, Maria José; Sarasúa, Julián; Llames, Sara; Arribas, José Manuel

    2003-06-01

    As osteomyelitis (OM) induces the synthesis of inflammatory cytokines and IL-1 mediates bone resorption by osteoclasts we determined if there is an association between certain common polymorphisms of the genes encoding proinflammatory cytokines (IL-1 alpha and beta, IL-6, TNF-alpha) and OM in adults. The IL-1 alpha (-889) TT genotype was significantly more frequent among 52 OM patients than in 109 healthy controls (13/52, [25.0%] vs. 9/109, [8.3%], P = 0.0081, chi(2) = 7.01, OR = 3.7, 95% CI, 1.35-10.34). Patients who were homozygous for the T allele were younger than the rest of the OM patients (mean age 35.7 +/- 11.5 vs. 58.1 +/- 18.6 years, P = 0.001). IL-1 beta TT (+3953) polymorphism was also more frequent in OM patients (P = 0.014, chi(2) = 5.12, OR = 5.1, 95% CI, 1.21-52.14), but IL-1 beta is in linkage disequilibrium with the IL-1 alpha *T (P < 0.001). Route of infection, chronicity of the infection, type of microorganism isolated, and frequency of relapses were similar in patients with and without the IL-1 alpha TT genotype. There were no associations between OM and polymorphisms of other cytokines genes. IL-1 alpha serum levels were significantly increased in all the OM patients independently of their IL-1 genotype compared to the controls (P = 0.021). Although IL-1 alpha serum levels were not significantly higher in patients with the IL-1 alpha (-889) polymorphism, this does not exclude a difference in production of IL-1 alpha by osteoclasts or other inflammatory cells at the site of infection.

  5. The efficacy of an IL-1alpha vaccine depends on IL-1RI availability and concomitant myeloid-derived suppressor cell reduction.

    PubMed

    Weiss, Tobias; Vitacolonna, Mario; Zöller, Margot

    2009-01-01

    We recently reported that tumor-derived interleukin (IL)-1beta strongly promotes tumor growth by inducing myeloid-derived suppressor cell (MDSC) and regulatory T-cell (T(reg)) expansion. To see whether redirection of an immune response can be achieved through immune response-supporting IL-1alpha application, IL-1RI competent (IL-1RI(comp)) and IL-1RI-deficient (IL-1RI(-/-)) mice received IL-1alpha cDNA-transformed attenuated Salmonella typhimurium (SL-IL-1alpha) and/or lysates from methycholanthrene-induced IL-1(comp) or IL-1(-/-) fibrosarcoma cells. Vaccination with SL-IL-1alpha and/or tumor lysate exerted only a minor effect on the survival of IL-1alpha/beta(-/-) and none on IL-1alpha(comp) tumor-bearing mice despite induction of a potent antitumor response, that was overridden by intratumoral and systemic expansion of MDSC. Application of all-trans-retinoic acid together with anti-CD25 efficiently coped with MDSC and T(reg) expansion. Vaccination concomitantly with application of all-trans-retinoic acid and anti-CD25 treatment significantly increased the survival time and rate of IL-1alpha/beta(comp), but even of IL-1alpha(-/-)beta(comp) IL-1RI(comp) tumor-bearing mice. Instead, in IL-1RI(-/-) mice, though MDSC expansion was weaker, SL-IL-1alpha application hardly displayed any therapeutic efficacy, which implies signal transduction through IL-1alpha binding to the IL-1RI as an essential component for immune response induction. Taken together, IL-1alpha can efficiently support tumor vaccination, as far as expansion of MDSC and T(reg) is controlled. However, care should be taken to interfere with MDSC expansion/activation not through a blockade of the IL-1RI, which is the preferential target of IL-1alpha.

  6. Pro-gliogenic effect of IL-1alpha in the differentiation of embryonic neural precursor cells in vitro.

    PubMed

    Ajmone-Cat, Maria Antonietta; Cacci, Emanuele; Ragazzoni, Ylenia; Minghetti, Luisa; Biagioni, Stefano

    2010-05-01

    Inflammation is regarded as a main obstacle to brain regeneration. Major detrimental effects are attributed to microglial/macrophagic products, such as TNF-alpha and interleukin (IL)-6. The role of cytokines of the IL-1 family, particularly of IL-1alpha, in the modulation of neural precursor cell (NPC) properties is less characterized. IL-1alpha is one of the most abundant cytokines released upon acute stimulation of microglia with lipopolysaccharide and is down-regulated upon chronic stimulation. As we recently demonstrated, acutely activated microglia reduces NPC survival, prevent neuronal differentiation and promote glial differentiation. Chronically activated microglia are instead permissive to NPC survival and neuronal differentiation, and less effective in promoting astrocytic differentiation. We thus investigated whether IL-1alpha could contribute to the effects of acutely activated microglia on NPC. We found that NPC express functional IL-1 receptors and that exposure to recombinant IL-1alpha strongly enhances NPC differentiation into astrocytes, without affecting cell viability and neuronal differentiation. In the same conditions, recombinant IL-1beta has pro-gliogenic effects at concentrations 10-fold higher than those found in activated microglial conditioned media. Interestingly, immunodepletion of IL-1alpha in activated microglial conditioned media fails to revert microglial pro-gliogenic action and slightly enhances neuronal differentiation, revealing that other microglial-derived factors contribute to the modulation of NPC properties.

  7. Biologic activity of interleukin 1 (IL-1) alpha in patients with refractory malignancies.

    PubMed

    Rosenthal, M A; Dennis, D; Liebes, L; Furmanski, P; Caron, D; Garrison, L; Wiprovnick, J; Peace, D; Oratz, R; Speyer, J; Chachoua, A

    1998-09-01

    Interleukin 1 alpha (IL-1 alpha) is a cytokine with pleiotropic effects, including cytotoxic-cytostatic activity against some tumor cell lines. We have conducted a phase I study of recombinant human IL-1 alpha (rhIL-1 alpha) in 17 patients with refractory malignancies to examine its toxicity and biologic activity. rhIL-1 alpha was given as a 2-h IV infusion daily for 5 days at five dose levels (0.08, 0.2, 0.8, 2.0, and 5.0 micrograms/m2). Seventeen patients with malignancies were treated, with no objective tumor responses noted. Common toxicities included: fever (100%), rigors and/or chills (96%), myalgia (54%), and headache (48%). Three patients developed grade III hypotension. The maximum tolerated dose was 2.0 micrograms/m2. rhIL-1 alpha induced a significant increase in absolute neutrophil count over baseline (p < 0.05), a delayed but significant increase in platelet count over baseline (p < 0.05), and there was a marked increase in the number of progenitors [colony-forming units (CFU)-G, CFU-M, CFU-GM, CFU-GEMM and burst-forming units (BFU-E)] observed in the peripheral blood. Nine of 12 evaluable patients showed an increase in bone marrow cellularity or myeloid:erthyroid ratio. Immunophenotyping did not demonstrate an increase in peripheral blood or bone marrow CD34+ cells. Interferon-gamma-mediated monocyte cytotoxicity (MCCTX) was significantly enhanced from baseline (p < 0.001), although an increase in direct MCCTX did not reach statistical significance. In summary, rhIL-1 alpha administration is well tolerated at a dose of 2.0 micrograms/m2 with fever, rigors, myalgia, and headache being the most frequent toxicities. Although there were no objective tumor responses, we have demonstrated significant biologic activity with increased neutrophil and platelet counts, increased peripheral blood progenitor cells, and enhanced interferon-gamma-mediated MCCTX.

  8. Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

    PubMed

    Koo, Hyun-Na; Hong, Seung-Heon; Song, Bong-Keun; Kim, Cheorl-Ho; Yoo, Young-Hyun; Kim, Hyung-Min

    2004-01-16

    Taraxacum officinale (TO) has been frequently used as a remedy for women's disease (e.g. breast and uterus cancer) and disorders of the liver and gallbladder. Several earlier studies have indicated that TO exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we investigated the effect of TO on the cytotoxicity and production of cytokines in human hepatoma cell line, Hep G2. Our results show that TO decreased the cell viability by 26%, and significantly increased the tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha production compared with media control (about 1.6-fold for TNF-alpha, and 2.4-fold for IL-1alpha, P < 0.05). Also, TO strongly induced apoptosis of Hep G2 cells as determined by flow cytometry. Increased amounts of TNF-alpha and IL-1alpha contributed to TO-induced apoptosis. Anti-TNF-alpha and IL-1alpha antibodies almost abolished it. These results suggest that TO induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

  9. Activation of the endothelium by IL-1 alpha and glucocorticoids results in major increase of complement C3 and factor B production and generation of C3a.

    PubMed Central

    Coulpier, M; Andreev, S; Lemercier, C; Dauchel, H; Lees, O; Fontaine, M; Ripoche, J

    1995-01-01

    Constitutive secretion of complement C3 and factor B by the endothelial cell (EC) is lowered by therapeutic concentrations of glucocorticoids such as hydrocortisone or dexamethasone, whereas regulatory protein factor H production is increased by these hormones. In contrast, the proinflammatory cytokine IL-1 alpha has a stimulatory effect on C3 and factor B secretion by the endothelium and an inhibitory effect on factor H secretion. In this study, we examined the combined effect of IL-1 alpha and glucocorticoids on C3 and factor B expression by the endothelial cell. When dexamethasone or hydrocortisone were added to IL-1 alpha, significant potentialization of IL-1 alpha-induced stimulation of C3 and factor B production was observed, occurring at various concentrations of either stimuli. Dose-response experiments indicate that, in vitro, optimal concentrations are in the range of 10(-7) to 10(-5) M for dexamethasone and 50-200 U for IL-1 alpha. In contrast, dexamethasone counteracts, in an additive way, the inhibitory effect of IL-1 alpha on regulatory complement protein factor H production by EC. Such a potentialization between glucocorticoids and IL-1 alpha was not observed for another marker of endothelial activation, IL-1 alpha-induced stimulation of coagulation tissue factor expression. The association of glucocorticoids and IL-1 alpha therefore appears to be a specific and major stimulus for the secretion of complement C3 and factor B, two acute-phase proteins, by the endothelium. As a result of the in vitro endothelium stimulation by glucocorticoids and IL-1 alpha, C3a is generated in the vicinity of the endothelial cell. This study further suggests that complement activation, with its deleterious consequences, may result from the stimulation of endothelium in situations where high levels of IL-1 alpha and endogenous glucocorticoids coexist, such as in septic shock. Images Fig. 4 Fig. 6 PMID:7621583

  10. IL-1. alpha. increases arachidonyl-CoA: Lysophospholipid acyltransterase activity and stimulates ( sup 3 H) arachidonate incorporation into phospholipids in rat mesangial cells

    SciTech Connect

    Nakazato, Y.; Sedor, J.R. )

    1992-01-01

    The proinflammatory cytokine interleukin-1{alpha} is a potent stimulus of prostaglandin synthesis. The authors have previously shown that IL-1 amplifies mesangial cell prostaglandin synthesis by inducing synthesis of a non-pancreatic phospholipase A{sub 2}. Phospholipase A{sub 2}. Phospholipase A{sub 2} activation results in the formation of lysophospholipids and free fatty acids. They now investigate the effects of IL-1{alpha} on reacylation of lysophospholipids. Incubations with IL-1{alpha} for 24 hours significantly stimulated mesangial cell ({sup 3}H)arachidonic acid incorporation but not ({sup 3}H)oleic acid incorporation into phosphatidylinositol and phosphatidylethanolamine. Lysophospholipid acyltransferase activity was measured in vitro. Cytokine treatment increased enzyme activity when lysophosphatidylcholine, lysophosphatidylethanolamine and lysophosphatidylinositol were used as exogenous substrates. They conclude that IL-1 promotes cellular phospholipid remodeling by stimulating the deacylation and reacylation of phospholipids.

  11. Differential modulation of hippocampal chemical-induced injury response by ebselen, pentoxifylline, and TNFalpha-, IL-1alpha-, and IL-6-neutralizing antibodies.

    PubMed

    Jean Harry, G; Bruccoleri, Alessandra; Lefebvre d'Hellencourt, Christian

    2003-08-15

    The proinflammatory cytokines tumor necrosis factor (TNFalpha), interleukin-1 (IL-1alpha), and interleukin-6 (IL-6) have been associated with various models of hippocampal damage. To examine their role in initiation of an acute hippocampal injury response, 21-day-old male CD-1 mice received an acute intraperitoneal (i.p.) injection of trimethyltin hydroxide (TMT; 2.0 mg/kg) to produce necrosis of dentate granule neurons, astrocyte, and microglia reactivity. Tremors and intermittent seizures were evident at 24 hr. Intercellular adhesion molecule-1 (ICAM-1), glial fibrillary acidic protein (GFAP), anti-apoptotic TNFalpha-inducible early response gene (A-20), macrophage inflammatory protein (MIP)-1alpha, TNFalpha, IL-1alpha, IL-6, and caspase 3 mRNA levels were significantly elevated. Pretreatment with the antioxidant, ebselen, decreased ICAM-1, A-20, and TNFbeta elevations. Pentoxifylline blocked elevations in A-20 and decreased elevations in GFAP mRNA levels. Neither prevented histopathology or behavioral effects. Intracisternal injection of TNFalpha-neutralizing antibody significantly inhibited both behavioral effects and histopathology. RNase protection assays showed that TMT-induced elevations in mRNA levels for ICAM-1, A-20, GFAP, MIP-1alpha, IL-1alpha, TNFalpha, TNFbeta, and caspase 3 were blocked by anti-TNFalpha. These data demonstrate a significant role for TNFalpha in an acute neuro-injury in the absence of contribution from infiltrating cells. The cerebellum shows limited if any damage after TMT; however, in combination with the i.c.v. injection, elevations were seen in GFAP and in EB-22, a murine acute-phase response gene homologous to the alpha (1)-antichymotrypsin gene. Elevations were similar for artificial cerebral spinal fluid and anti-IL-1alpha, and significantly increased with anti-TNFalpha, anti-IL-6, or the combination of antibodies. Responses seen in the cerebellum suggest synergistic interactions between the baseline state of the cell and

  12. A synergistic role for IL-1beta and TNFalpha in monocyte-derived IFNgamma inducing activity.

    PubMed

    Raices, Raquel M; Kannan, Yashaswini; Sarkar, Anasuya; Bellamkonda-Athmaram, Vedavathi; Wewers, Mark D

    2008-11-01

    Although much is known about classic IFNgamma inducers, little is known about the IFNgamma inducing capability of inflammasome-activated monocytes. In this study, supernatants from LPS/ATP-stimulated human monocytes were analyzed for their ability to induce IFNgamma production by KG-1 cells. Unexpectedly, monocyte-derived IFN inducing activity was detected, but it was completely inhibited by IL-1beta, not IL-18 blockade. Moreover, size-fractionation of the monocyte conditioned media dramatically reduced the IFNgamma inducing activity of IL-1beta, suggesting that IL-1beta requires a cofactor to induce IFNgamma production in KG-1 cells. Because TNFalpha is known to synergize with IL-1beta for various gene products, it was studied as the putative IL-1beta synergizing factor. Although recombinant TNFalpha (rTNFalpha) alone had no IFNgamma inducing activity, neutralization of TNFalpha in the monocyte conditioned media inhibited the IFNgamma inducing activity. Furthermore, rTNFalpha restored the IFNgamma inducing activity of the size-fractionated IL-1beta. Finally, rTNFalpha synergized with rIL-1beta, as well as with rIL-1alpha and rIL-18, for KG-1 IFNgamma release. These studies demonstrate a synergistic role between TNFalpha and IL-1 family members in the induction of IFNgamma production and give caution to interpretations of KG-1 functional assays designed to detect functional IL-18.

  13. Interleukin-1 alpha has antiallodynic and antihyperalgesic activities in a rat neuropathic pain model.

    PubMed

    Mika, Joanna; Korostynski, Michal; Kaminska, Dorota; Wawrzczak-Bargiela, Agnieszka; Osikowicz, Maria; Makuch, Wioletta; Przewlocki, Ryszard; Przewlocka, Barbara

    2008-09-15

    Nerve injury and the consequent release of interleukins (ILs) are processes implicated in pain transmission. To study the potential role of IL-1 in the pathogenesis of allodynia and hyperalgesia, IL-1alpha and comparative IL-1beta, IL-6, and IL-10 mRNA levels were quantified using competitive RT-PCR of the lumbar spinal cord and dorsal root ganglia (DRG; L5-L6) three and seven days after chronic constriction injury (CCI) in rats. Microglial and astroglial activation in the ipsilateral spinal cord and DRG were observed after injury. In naive and CCI-exposed rats, IL-1alpha mRNA and protein were not detected in the spinal cord. IL-1beta and IL-6 mRNAs were strongly ipsilaterally elevated on day seven after CCI. In the ipsilateral DRG, IL-1alpha, IL-6, and IL-10 mRNA levels were increased on days three and seven; IL-1beta was elevated only on day seven. Western blot analysis revealed both the presence of IL-1alpha proteins (45 and 31 kDa) in the DRG and the down-regulation of these proteins after CCI. Intrathecal administration of IL-1alpha (50-500 ng) in naive rats did not influence nociceptive transmission, but IL-1beta (50-500 ng) induced hyperalgesia. In rats exposed to CCI, an IL-1alpha or IL-1 receptor antagonist dose-dependently attenuated symptoms of neuropathic pain; however, no effect of IL-1beta was observed. In sum, the first days after CCI showed a high abundance of IL-1alpha in the DRG. Together with the antiallodynic and antihyperalgesic effects observed after IL-1alpha administration, this finding indicates an important role for IL-1alpha in the development of neuropathic pain symptoms.

  14. Passive immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta protects from LPS enhancing glomerular injury in nephrotoxic nephritis in rats.

    PubMed Central

    Karkar, A M; Koshino, Y; Cashman, S J; Dash, A C; Bonnefoy, J; Meager, A; Rees, A J

    1992-01-01

    Glomerular injury caused by injection of heterologous anti-glomerular basement membrane antibodies (anti-GBM Ab) is increased in rats pretreated with small doses of bacterial lipopolysaccharide (LPS). We have investigated the involvement of tumour necrosis factor-alpha (TNF-alpha), IL-1 alpha and IL-1 beta in this phenomenon by passive immunization against these cytokines. Anti-TNF-alpha or anti-IL-1 beta antibodies given 1.5 h before the induction of nephritis significantly decreased injury in this model, whether assessed by the magnitude of albuminuria, the prevalence of glomerular capillary thrombi or the intensity of glomerular neutrophil infiltrate. Albuminuria in anti-GBM Ab alone was 11 +/- 3, LPS/anti-GBM Ab 87 +/- 22, and anti-TNF-alpha antibodies/LPS/anti-GBM Ab 21 +/- 6 mg/24 h (mean +/- s.e.) P < 0.05. Passive immunization with antibodies to IL-1 beta had a similar effect (anti-GBM Ab, 0.6 +/- 0.1, LPS/anti-GBM Ab, 92 +/- 19, anti-IL-1 beta antibodies/LPS/anti-GBM Ab 39 +/- 8 mg/24 h, P < 0.05). The prevalence of glomerular capillary thrombi was also reduced significantly by these treatments; from 22 +/- 5% to 4 +/- 1% in the case of anti-TNF-alpha antibodies and 28 +/- 5% to 13 +/- 4% with anti-IL-1 beta antibodies. Similarly, the glomerular neutrophil infiltrate was also reduced by these treatments; from 42 +/- 3 to 25 +/- 1 in the case of anti-TNF-alpha and 47 +/- 2 to 30 +/- 1 with anti-IL-1 beta antibodies. In contrast, passive immunization against IL-1 alpha had no effect on either albumin excretion (4 +/- 3, 83 +/- 22 and 77 +/- 24 mg/24 h), glomerular capillary thrombi (2 +/- 1; 19 +/- 5 and 16 +/- 3) or glomerular neutrophil infiltrate (22 +/- 3; 47 +/- 5 and 48 +/- 5 from the three groups respectively). These results demonstrate that enhanced antibody mediated injury in the kidney is modulated by TNF-alpha and IL-1 beta but not by IL-1 alpha. PMID:1385027

  15. p-Benzoquinone, a reactive metabolite of benzene, prevents the processing of pre-interleukins-1{alpha} and -1{beta} to active cytokines by inhibition of the processing enzymes, calpain, and interleukin-1{beta} converting enzyme

    SciTech Connect

    Kalf, G.F.; Renz, J.F.; Niculescu, R.

    1996-12-01

    Chronic exposure of humans to benzene affects hematopoietic stem and progenitor cells and leads to aplastic anemia. The stromal macrophage, a target of benzene toxicity, secretes interieukin-1 (IL-1), which induces the stromal fibroblast to synthesize hematopoietic colony-stimulating factors. In a mouse model, benzene causes an acute marrow hypocellularity that can be prevented by the concomitant administration of IL-1{alpha}. The ability of benzene to interfere with the production and secretion of IL-1{alpha} was tested. Stromal macrophages from benzene-treated mice were capable of the transcription of the IL-1{alpha} gene and the translation of the message but showed an inability to process the 34-kDa pre-IL-1{alpha} precursor to the 17-kDa biologically active cytokine. Treatment of normal murine stromal macrophages in culture with hydroquinone (HQ) also showed an inhibition in processing of pre-IL-1{alpha}. Hydroquinone is oxidized by a peroxidase-mediated reaction in the stromal macrophage to p-benzoquinone, which interacts with the sulfhydryl (SH) groups of proteins and was shown to completely inhibit the activity of calpain, the SH-dependent protease that cleaves pre-IL-1{alpha}. In a similar manner, HQ, via peroxidase oxidation to p-benzoquinone, was capable of preventing the IL-1{beta} autocrine stimulation of growth of human B1 myeloid tumor cells by preventing the processing of pre-IL-1{beta} to mature cytokine. Benzoquinone was also shown to completely inhibit the ability of the SH-dependent IL-1{beta} converting enzyme. Thus benzene-induced bone marrow hypocellularity may result from apoptosis of hematopoietic progenitor cells brought about by lack of essential cylokines and deficient IL-1{alpha} production subsequent to the inhibition of calpain by p-benzoquinone and the prevention of pre-IL-1 processing. 34 refs., 8 figs.

  16. Two squamous cell carcinomas not associated with humoral hypercalcemia produce a potent bone resorption-stimulating factor which is interleukin-1 alpha.

    PubMed

    Fried, R M; Voelkel, E F; Rice, R H; Levine, L; Gaffney, E V; Tashjian, A H

    1989-08-01

    Conditioned medium (CM) from two squamous cell carcinoma cell lines, SCC-9 and SCC-13, stimulated bone resorption in neonatal mouse calvariae in organ culture. Enhanced bone resorption induced by CM was associated with an increased production of prostaglandin-E2 (PGE2) by the calvariae. Complete inhibition of stimulated PGE2 synthesis by indomethacin only partially inhibited bone resorption-stimulating activity (BRSA) in the CM. Neither SCC-9 nor SCC-13 CM stimulated cAMP production in rat osteosarcoma cells (ROS 17/2.8). The BRSA in CM was completely inhibited by an antibody to interleukin-1 alpha (IL-1 alpha). Fractionation of SCC-9 CM by gel filtration and HPLC ion exchange chromatography revealed a single peak of BRSA and PGE2 synthesis-stimulating activity at 17-20K (termed SCMII). In mouse calvariae, SCMII increased medium Ca2+ and PGE2 in a dose-dependent manner at concentrations from 20 ng protein/ml to a maximum of 500 ng protein/ml. Preincubation of SCMII with antibody to IL-1 alpha completely inhibited SCMII-induced bone resorption. SCMII also enhanced thymocyte proliferation with activity that was equivalent to 353 U/ml IL-1. Antibodies to IL-1 beta and tumor necrosis factor had no effect on SCMII-induced bone resorption. Using specific enzyme-linked immunosorbent assays for IL-1 alpha and IL-1 beta, IL-1 alpha was measured in high concentrations in both crude and partially purified fractions of SCC-9 and SCC-13 CM. In contrast, IL-1 beta was either undetectable or present in amounts below those that stimulate bone resorption. In addition, SCMII did not enhance cAMP production in bone cells. We conclude that the BRSA produced by the two squamous cell carcinoma cell lines SCC-9 and SCC-13 is IL-1 alpha.

  17. Critical role for interleukin-1beta (IL-1beta) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1beta in mouse macrophages.

    PubMed

    Prantner, Daniel; Darville, Toni; Sikes, James D; Andrews, Charles W; Brade, Helmut; Rank, Roger G; Nagarajan, Uma M

    2009-12-01

    Recent findings have implicated interleukin-1beta (IL-1beta) as an important mediator of the inflammatory response in the female genital tract during chlamydial infection. But how IL-1beta is produced and its specific role in infection and pathology are unclear. Therefore, our goal was to determine the functional consequences and cellular sources of IL-1beta expression during a chlamydial genital infection. In the present study, IL-1beta(-/-) mice exhibited delayed chlamydial clearance and decreased frequency of hydrosalpinx compared to wild-type (WT) mice, implying an important role for IL-1beta both in the clearance of infection and in the mediation of oviduct pathology. At the peak of IL-1beta secretion in WT mice, the major producers of IL-1beta in vivo are F4/80(+) macrophages and GR-1(+) neutrophils, but not CD45(-) epithelial cells. Although elicited mouse macrophages infected with Chlamydia muridarum in vitro secrete minimal IL-1beta, in vitro prestimulation of macrophages by Toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS) purified from Escherichia coli or C. trachomatis L2 prior to infection greatly enhanced secretion of IL-1beta from these cells. By using LPS-primed macrophages as a model system, it was determined that IL-1beta secretion was dependent on caspase-1, potassium efflux, and the activity of serine proteases. Significantly, chlamydia-induced IL-1beta secretion in macrophages required bacterial viability but not growth. Our findings demonstrate that IL-1beta secreted by macrophages and neutrophils has important effects in vivo during chlamydial infection. Additionally, prestimulation of macrophages by chlamydial TLR ligands may account for the elevated levels of pro-IL-1beta mRNA observed in vivo in this cell type.

  18. Mechanical loading prevents the stimulating effect of IL-1{beta} on osteocyte-modulated osteoclastogenesis

    SciTech Connect

    Kulkarni, Rishikesh N.; Bakker, Astrid D.; Everts, Vincent; Klein-Nulend, Jenneke

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Osteocyte incubation with IL-1{beta} stimulated osteocyte-modulated osteoclastogenesis. Black-Right-Pointing-Pointer Conditioned medium from IL-1{beta}-treated osteocytes increased osteoclastogenesis. Black-Right-Pointing-Pointer IL-1{beta} upregulated RANKL and downregulated OPG gene expression by osteocytes. Black-Right-Pointing-Pointer CYR61 is upregulated in mechanically stimulated osteocytes. Black-Right-Pointing-Pointer Mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis. -- Abstract: Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1{beta} (IL-1{beta}), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1{beta} affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanical loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1{beta} (0.1-1 ng/ml) for 24 h. Cells were either or not subjected to mechanical loading by 1 h pulsating fluid flow (PFF; 0.7 {+-} 0.3 Pa, 5 Hz) in the presence of IL-1{beta} (0.1-1 ng/ml). Conditioned medium was collected after 1 h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1{beta}-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1{beta}-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1{beta}, as well as conditioned medium from static IL-1{beta}-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically loaded IL

  19. Contribution of IL-1 to resistance to Streptococcus pneumoniae infection.

    PubMed

    Kafka, Daniel; Ling, Eduard; Feldman, Galia; Benharroch, Daniel; Voronov, Elena; Givon-Lavi, Noga; Iwakura, Yoichiro; Dagan, Ron; Apte, Ron N; Mizrachi-Nebenzahl, Yaffa

    2008-09-01

    The role of IL-1 in susceptibility to Streptococcus pneumoniae infection was studied in mice deficient in genes of the IL-1 family [i.e. IL-1alpha-/-, IL-1beta-/-, IL-1alpha/beta-/- and IL-1R antagonist (IL-1Ra)-/- mice] following intra-nasal inoculation. Intra-nasal inoculation of S. pneumoniae of IL-1beta-/- and IL-1alpha/beta-/- mice displayed significantly lower survival rates and higher nasopharyngeal and lung bacterial load as compared with control, IL-1alpha-/- and IL-1Ra-/- mice. Treatment of IL-1beta-/- mice with rIL-1beta significantly improved their survival. A significant increase in blood neutrophils was found in control, IL-1alpha-/- and IL-1Ra-/- but not in IL-1beta-/- and IL-1alpha/beta-/- mice. Local infiltrates of neutrophils and relatively preserved organ architecture were observed in the lungs of IL-1alpha-/- and control mice. However, S. pneumoniae-infected IL-1beta-/-, IL-1alpha/beta-/- and IL-1Ra-/- mice demonstrated diffuse pneumonia and tissue damage. Altogether, all three isoforms contribute to protection against S. pneumoniae; our results point to differential role of IL-1alpha and IL-1beta in the pathogenesis and control of S. pneumoniae infection and suggest that IL-1beta has a major role in resistance to primary pneumococcal infection while the role of IL-1alpha is less important.

  20. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology.

    PubMed

    Shaftel, Solomon S; Kyrkanides, Stephanos; Olschowka, John A; Miller, Jen-nie H; Johnson, Renee E; O'Banion, M Kerry

    2007-06-01

    Neuroinflammation is a conspicuous feature of Alzheimer disease (AD) pathology and is thought to contribute to the ultimate neurodegeneration that ensues. IL-1 beta has emerged as a prime candidate underlying this response. Here we describe a transgenic mouse model of sustained IL-1 beta overexpression that was capable of driving robust neuroinflammation lasting months after transgene activation. This response was characterized by astrocytic and microglial activation in addition to induction of proinflammatory cytokines. Surprisingly, when triggered in the hippocampus of the APPswe/PS1dE9 mouse model of AD, 4 weeks of IL-1 beta overexpression led to a reduction in amyloid pathology. Congophilic plaque area fraction and frequency as well as insoluble amyloid beta 40 (A beta 40) and A beta 42 decreased significantly. These results demonstrate a possible adaptive role for IL-1 beta-driven neuroinflammation in AD and may help explain recent failures of antiinflammatory therapeutics for this disease.

  1. IL-1{beta} promotes neurite outgrowth by deactivating RhoA via p38 MAPK pathway

    SciTech Connect

    Temporin, Ko; Tanaka, Hiroyuki Kuroda, Yusuke; Okada, Kiyoshi; Yachi, Koji; Moritomo, Hisao; Murase, Tsuyoshi; Yoshikawa, Hideki

    2008-01-11

    Expression of the pro-inflammatory cytokine interleukin-1 beta (IL-1{beta}) is increased following the nervous system injury. Generally IL-1{beta} induces inflammation, leading to neural degeneration, while several neuropoietic effects have also been reported. Although neurite outgrowth is an important step in nerve regeneration, whether IL-1{beta} takes advantages on it is unclear. Now we examine how it affects neurite outgrowth. Following sciatic nerve injury, expression of IL-1{beta} is increased in Schwann cells around the site of injury, peaking 1 day after injury. In dorsal root ganglion (DRG) neurons and cerebellar granule neurons (CGNs), neurite outgrowth is inhibited by the addition of myelin-associated glycoprotein (MAG), activating RhoA. IL-1{beta} overcomes MAG-induced neurite outgrowth inhibition, by deactivating RhoA. Intracellular signaling experiments reveal that p38 MAPK, and not nuclear factor-kappa B (NF-{kappa}B), mediated this effect. These findings suggest that IL-1{beta} may contribute to nerve regeneration by promoting neurite outgrowth following nerve injury.

  2. The cellular and behavioral consequences of interleukin-1 alpha penetration through the blood-brain barrier of neonatal rats: a critical period for efficacy.

    PubMed

    Tohmi, M; Tsuda, N; Zheng, Y; Mizuno, M; Sotoyama, H; Shibuya, M; Kawamura, M; Kakita, A; Takahashi, H; Nawa, H

    2007-11-30

    Proinflammatory cytokines circulating in the periphery of early postnatal animals exert marked influences on their subsequent cognitive and behavioral traits and are therefore implicated in developmental psychiatric diseases such as schizophrenia. Here we examined the relationship between the permeability of the blood-brain barrier to interleukin-1 alpha (IL-1 alpha) in neonatal and juvenile rats and their later behavioral performance. Following s.c. injection of IL-1 alpha into rat neonates, IL-1 alpha immunoreactivity was first detected in the choroid plexus, brain microvessels, and olfactory cortex, and later diffused to many brain regions such as neocortex and hippocampus. In agreement, IL-1 alpha administration to the periphery resulted in a marked increase in brain IL-1 alpha content of neonates. Repeatedly injecting IL-1 alpha to neonates triggered astrocyte proliferation and microglial activation, followed by behavioral abnormalities in startle response and putative prepulse inhibition at the adult stage. Analysis of covariance with a covariate of startle amplitude suggested that IL-1 alpha administration may influence prepulse inhibition. However, adult rats treated with IL-1 alpha as neonates exhibited normal learning ability as measured by contextual fear conditioning, two-way passive shock avoidance, and a radial maze task and had no apparent sign of structural abnormality in the brain. In comparison, when IL-1 alpha was administered to juveniles, the blood-brain barrier permeation was limited. The increases in brain IL-1 alpha content and immunoreactivity were less pronounced following IL-1 alpha administration and behavioral abnormalities were not manifested at the adult stage. During early development, therefore, circulating IL-1 alpha efficiently crosses the blood-brain barrier to induce inflammatory reactions in the brain and influences later behavioral traits.

  3. Cinnamaldehyde reduces IL-1beta-induced cyclooxygenase-2 activity in rat cerebral microvascular endothelial cells.

    PubMed

    Guo, Jian-You; Huo, Hai-Ru; Zhao, Bao-Sheng; Liu, Hong-Bin; Li, Lan-Fang; Ma, Yue-Ying; Guo, Shu-Ying; Jiang, Ting-Liang

    2006-05-10

    Cinnamaldehyde is a principle compound isolated from Guizhi-Tang, which is a famous traditional Chinese medical formula used to treat influenza, common cold and other pyretic conditions. The aim of the present study was to investigate the effects of cinnamaldehyde on expression and activity of cyclooxygenase (COX) and prostaglandin E(2) (PGE(2)) in rat cerebral microvascular endothelial cells (RCMEC). RCMEC were cultured, and identified by immunohistochemistry for von Willebrand factor in cytoplasm of the cells. Then cells were incubated in M199 medium containing interleukin (IL)-1beta in the presence or absence of cinnamaldehyde. After incubation, the medium was collected and the amount of PGE(2) was measured by enzyme-linked immunosorbent assay (ELISA). The cells were harvested, mRNA expression and activity of COX were analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR) with SYBR Green dye and ELISA respectively. Positive immunostaining for von Willebrand factor was present diffusely in the cytoplasm of >95% RCMEC. IL-1beta increased the mRNA expression and activity of COX-2, and production of PGE(2) in a dose- and time-dependent manner in RCMEC, while mRNA and activity of COX-1 were not significantly altered. Cinnamaldehyde significantly decreased IL-1beta-induced COX-2 activity and PGE(2) production in a dose-dependent manner, while it showed no inhibitory effect on IL-1beta-induced COX-2 mRNA expression in cultured RCMEC. In conclusion, cinnamaldehyde reduces IL-1beta-induced COX-2 activity, but not IL-1beta-induced COX-2 mRNA expression, and consequently inhibits production of PGE(2) in cultured RCMEC.

  4. Development and characterization of mouse monoclonal antibodies reactive with chicken IL1 Beta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two mouse monoclonal antibodies (mAbs) specific for chicken interleukin-1 Beta (chIL-1 Beta) were produced and characterized. Both mAbs identified a 66.0 kDa recombinant protein expressed in Escherichia coli by Western blot analysis that corresponded to the expected molecular weight of a recombinant...

  5. Effect of environmental estrogens on IL-1beta promoter activity in a macrophage cell line.

    PubMed

    Ruh, M F; Bi, Y; Cox, L; Berk, D; Howlett, A C; Bellone, C J

    1998-10-01

    Environmental estrogens or estrogen disrupters have recently received a great deal of attention because of their potential health impact on reproductive tissues. Few, if any, studies have been made on the impact of these compounds on the immune system. We sought to determine the activities of various environmental estrogens on the modulation of the interleukin-1beta (IL-1beta) gene in a model monocytic cell line, hER + IL-1beta-CAT+. This cell line stably transfected with the human estrogen receptor, and an IL-1beta promoter construct fused to the CAT reporter gene allows us to monitor the effect of estrogenic compounds on IL-1beta promoter activity. 17beta-estradiol (E2) markedly enhanced lipopolysaccharide- (LPS) induced IL-1beta promoter-driven CAT activity in a dose-dependent manner. The mycotoxins alpha-zearalenol and zearalenone both exhibited full agonist activity, but at lower potencies, with EC50 values of 1.8 and 54 nM, respectively, compared with E2 at 0.5 nM. In addition, genistein was a very low-potency agonist, having an EC50 of 1.5 microM. Similar to the E2 response, the slope factors for alpha-zearalenol, zearalenone, and genistein were close to 3.0, suggesting positive cooperativity in the estrogenic response. The activity of the mycotoxins appeared to be mediated through the estrogen receptor, since both the antiestrogens H1285 and ICI 182,780 effectively inhibited their agonist activity in a dose-dependent manner. Representative environmental estrogenic compounds both from plant and industrial sources were also tested. Unlike the mycoestrogens, none of the compounds, with the exception of genistein, synergized with LPS to enhance IL-1beta promoter activity. When tested for antiestrogenic activity, the industrial compound 4-octylphenol was able to antagonize the response to E2; however, the response was three orders of magnitude less potent than H 1285. Naringenin, a plant flavonoid, showed little or no ability to antagonize the response to E2

  6. Characterization of the cytokine pattern of porcine bone marrow-derived cells treated with 1alpha,25(OH)D.

    PubMed

    Sipos, W; Duvigneau, J C; Schmoll, F; Exel, B; Hofbauer, G; Baravalle, G; Hartl, R T; Dobretsberger, M; Pietschmann, P

    2005-10-01

    The biologically active form of vitamine D(3) [1alpha,25(OH)(2)D(3)] has recently been described not only to influence bone metabolism but also to exert immunomodulating activities, which may have an impact on bone formation/resorption as well. In this study, we analysed the effects of 1alpha,25(OH)(2)D(3) on the cytokine pattern of porcine bone marrow-derived cells from piglets aged 1-3 weeks. After culture for 1 week, the number of osteoclasts was determined, with tartrate-resistant acid phosphatase (TRAP)-positive, multinucleated cells being considered osteoclasts. Cultured bone marrow cell-derived mRNA was subjected to semiquantitative RT-PCR specific for a panel of porcine cytokines (IL-1alpha, IL-6, IL-8, IL-10, and TNF-alpha). In addition, an immunofluorescence analysis using anti-porcine mAbs specific for IL-1beta, IL-2, IL-4, IL-6, IL-12, TNF-alpha, and IFN-gamma was performed. In order to prove the existence of a porcine homologue of the receptor activator of NF-kappaB ligand (RANKL) bone marrow cell- as well as porcine white blood cell-derived mRNA was investigated by RT-PCR using primer pairs specific for murine RANKL. Cell culture supernatant was analysed for soluble RANKL by means of an ELISA designed for quantification of human RANKL. By means of RT-PCR, expression of IL-1alpha, IL-6, IL-8, IL-10 and TNF-alpha mRNA could be found in cells cultured with and without 1alpha,25(OH)(2)D(3). Immunofluorescence analysis revealed that IL-1, IL-6, and TNF-alpha were produced by both stromal cells and osteoclasts. Besides its known osteoclastogenic effects, 1alpha,25(OH)(2)D(3) tended to downregulate the respective cytokines, but significantly upregulated RANKL expression. The homology between the porcine RANKL-specific sequence and the corresponding human RANKL sequence was 79%. The data found support the idea that porcine bone marrow cell cultures may provide a suitable alternative to murine systems in human osteological research.

  7. IL-1beta, IL-6 and IL-8 levels in gyneco-obstetric infections.

    PubMed Central

    Basso, Beatriz; Giménez, Francisco; López, Carlos

    2005-01-01

    OBJECTIVE: During pregnancy cytokines and inflammatory mediators stimulate the expression of prostaglandin, the levels of which determine the onset of labor. The aim of this work was to study interleukin IL-1beta, IL-6 and IL-8 levels in the vaginal discharge, serum and urine of pregnant women with genitourinary infection before and after specific treatment. One hundred and fifty-one patients were studied during the second or third trimester of their pregnancy. METHODS: The selected patients were: healthy or control group (n = 52), those with bacterial vaginosis (n = 47), those with vaginitis (n = 37), those with asymptomatic urinary infection (n = 15) and post-treatment. The level of cytokines was assayed by ELISA test. The Mann-Whitney U-test was used for statistical analysis. RESULTS: The IL-1beta levels in vaginal discharge were: control 103.5 +/- 24.2 pg/ml, bacterial vaginosis 1030 +/- 59.5, vaginitis 749.14 +/- 66.7l ( p < 0.0001), post-treatment 101.4 +/- 28.7. IL-6 values were similar in both control and infected groups, and there were no patients with chorioamnionitis. In vaginal discharge IL-6: control 14.2 +/- 3.9 pg/ml, bacterial vaginosis 13.2 +/- 3.8, vaginitis 13 +/- 4.2. IL-8 levels were: control 1643 +/- 130.3 pg/ml, bacterial vaginosis 2612.7 +/- 257.7, vaginitis 3437 +/- 460 (p < 0.0001), post-treatment 1693 +/- 126.6. In urine the results were: control 40.2 +/- 17 pg/ml, asymptomatic urinary infection 1200.7 +/- 375 (p < 0.0001). In patients with therapeutic success both IL-1beta and IL-8 returned to normal levels. CONCLUSIONS: Genitourinary infections induce a significant increase in IL-1beta and IL-8 levels in vaginal secretions, and IL-8 in urine as well. Both cytokines could be useful as evolutive markers of infection. PMID:16338780

  8. Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity.

    PubMed

    Watanabe, Hideki; Gaide, Olivier; Pétrilli, Virginie; Martinon, Fabio; Contassot, Emmanuel; Roques, Stéphanie; Kummer, Jean A; Tschopp, Jürg; French, Lars E

    2007-08-01

    The inflammasome is a cytosolic protein complex regulating the activation of caspase-1, which cleaves the pro-inflammatory cytokines IL-1beta and IL-18 into their active form. The inflammasome is composed of a NACHT-, LRR- and pyrin (NALP) family member that acts as a sensor for danger signals and the adaptor protein apoptosis-associated speck-like protein containing a CARD domain (ASC), which allows the recruitment of caspase-1 in the complex. In the skin, exposure to contact sensitizers (CS) such as trinitro-chlorobenzene causes an immune response called contact hypersensitivity (CHS) or eczema. In this delayed-type hypersensitivity response, efficient priming of the adaptive immunity depends on the concomitant activation of the innate immune system, including IL-1beta/IL-18 activation in the skin. To determine if the inflammasome contributes to CHS, we have analyzed its capacity to react to CS in vitro and in vivo. We show here that key components of the inflammasome are present in human keratinocytes and that CS like trinitro-chlorobenzene induce caspase-1/ASC dependent IL-1beta and IL-18 processing and secretion. We also show that ASC- and NALP3-deficient mice display an impaired response to CS. These findings suggest that CS act as danger signals that activate the inflammasome in the skin, and reveal a new role of NALP3 and ASC as regulators of innate immunity in CHS.

  9. Interaction of SOCS3 with NonO attenuates IL-1beta-dependent MUC8 gene expression.

    PubMed

    Song, Kyoung Seob; Kim, Kyubo; Chung, Kwang Chul; Seol, Jae Hong; Yoon, Joo-Heon

    2008-12-19

    The intracellular negatively regulatory mechanism which affects IL-1beta-induced MUC8 gene expression remains unclear. We found that SOCS3 overexpression suppressed IL-1beta-induced MUC8 gene expression in NCI-H292 cells, whereas silencing of SOCS3 restored IL-1beta-induced MUC8 gene expression. Sequentially activated ERK1/2, RSK1, and CREB by IL-1beta were not affected by SOCS3, indicating that SOCS3 has an independent mechanism of action. Using immunoprecipitaion and nano LC mass analysis, we found that SOCS3 bound NonO (non-POU-domain containing, octamer-binding domain protein) in the absence of IL-1beta, whereas IL-1beta treatment dissociated the direct binding of SOCS3 and NonO. A dominant-negative SOCS3 mutant (Y204F/Y221F) did not bind to NonO. Interestingly, SOCS3 overexpression dramatically suppressed MUC8 gene expression in cells transfected with wild-type or siRNA of NonO. Moreover, silencing of SOCS3 dramatically increased NonO-mediated MUC8 gene expression caused by IL-1beta compared to NonO overexpression alone, suggesting that SOCS3 acts as a suppressor by regulating the action of NonO.

  10. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra.

    PubMed

    Ferrari, Carina Cintia; Pott Godoy, María Clara; Tarelli, Rodolfo; Chertoff, Mariela; Depino, Amaicha Mara; Pitossi, Fernando Juan

    2006-10-01

    The functional role of the long-lasting inflammation found in the substantia nigra (SN) of Parkinson's disease (PD) patients and animal models is unclear. Proinflammatory cytokines such as interleukin-1beta (IL-1beta) could be involved in mediating neuronal demise. However, it is unknown whether the chronic expression of cytokines such as IL-1beta in the SN can alter neuronal vitality. The aim of this study was to investigate the effects of the chronic expression of IL-1beta in the adult rat SN using a recombinant adenovirus expressing IL-1beta. The chronic expression of IL-1beta for 60 days induced dopaminergic cell death in the SN and unilateral akinesia starting only at 21 days post-injection. Microglial cell activation and inflammatory cell infiltrate were associated with dopaminergic cell death and motor disabilities. Astrocytic activation was delayed and associated with scar formation. The chronic expression of a single proinflammatory cytokine as IL-1beta in the SN elicited most of the characteristics of PD, including progressive dopaminergic cell death, akinesia and glial activation. Our data suggest that IL-1beta per se is able to mediate inflammatory-mediated toxic effects in the SN if its expression is sustained. This model will be helpful to identify possible therapeutic targets related to inflammation-derived neurodegeneration in the SN.

  11. Effects of continuously administered murine interleukin-1 alpha: tolerance development and granuloma formation.

    PubMed Central

    Otterness, I G; Golden, H W; Brissette, W H; Seymour, P A; Daumy, G O

    1989-01-01

    Continuous infusion of murine recombinant interleukin-1 alpha (rIL-1 alpha) into rats by using intraperitoneally implanted osmotic pumps led to marked decreases in body weight, liver enzymes (serum glutamic oxalacetic transaminase, serum glutamic pyruvic transaminase, and sorbitol dehydrogenase), appetite, and mobility and increases in drinking, blood urea nitrogen, and total peripheral blood leukocytes within 3 days. Granuloma formation was found in the local area of rIL-1 alpha release. As early as day 3, a focal infiltrate of polymorphonuclear leukocytes, mononuclear leukocytes, and plasma cells filled the area; by day 6, extensive fibrosis was found. A loss of rIL-1 alpha-induced changes, with the exception of granuloma formation, occurred by day 10. A marked decrease in the response to rIL-1 alpha was also observed when animals were challenged by implantation of new pumps containing rIL-1 alpha, with monitoring of body weight, or by subcutaneous injection of rIL-1 alpha, with monitoring of serum colony-stimulating factor production. We propose that, even in the continuous presence of interleukin-1, replacement of the acute responses to interleukin-1 by restoration of more normal physiology may be advantageous upon acquisition of specific immunity. Images PMID:2788137

  12. Lemongrass effects on IL-1beta and IL-6 production by macrophages.

    PubMed

    Sforcin, J M; Amaral, J T; Fernandes, A; Sousa, J P B; Bastos, J K

    2009-01-01

    Cymbopogon citratus has been widely recognised for its ethnobotanical and medicinal usefulness. Its insecticidal, antimicrobial and therapeutic properties have been reported, but little is known about its effect on the immune system. This work aimed to investigate the in vivo effect of a water extract of lemongrass on pro-inflammatory cytokine (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of lemongrass essential oil on cytokine production by macrophages was also analysed in vitro. The chemical composition of the extract and the oil was also investigated. Treatment of mice with water extract of lemongrass inhibited macrophages to produce IL-1beta but induced IL-6 production by these cells. Lemongrass essential oil inhibited the cytokine production in vitro. Linalool oxide and epoxy-linalool oxide were found to be the major components of lemongrass water extract, and neral and geranial were the major compounds of its essential oil. Taken together, these data suggest an anti-inflammatory action of this natural product.

  13. Allelic polymorphism in IL-1 beta and IL-1 receptor antagonist (IL-1Ra) genes in inflammatory bowel disease.

    PubMed Central

    Bioque, G; Crusius, J B; Koutroubakis, I; Bouma, G; Kostense, P J; Meuwissen, S G; Peña, A S

    1995-01-01

    Recent reports have shown that allele 2 of the IL-1 receptor antagonist (IL-1Ra) gene is over-represented in ulcerative colitis (UC). Healthy individuals carrying allele 2 of this gene have increased production of IL-1Ra protein. Since the final outcome of the biological effects of IL-1 beta may depend on the relative proportion of these two cytokines, we have studied if a TaqI polymorphism in the IL-1 beta gene, which is relevant to IL-1 beta protein production, may be involved in the genetic susceptibility to UC and Crohn's disease (CD), in association with the established IL-1Ra gene polymorphism. Polymorphisms in the closely linked genes for IL-1 beta and IL-1Ra were typed in 100 unrelated Dutch patients with UC, 79 with CD, and 71 healthy controls. The polymorphic regions in exon 5 of the IL-1 beta gene and in intron 2 of the IL-1Ra gene, were studied by polymerase chain reaction (PCR)-based methods. The IL-1 beta allele frequencies in UC and CD patients did not differ from those in healthy controls. In order to study if the IL-1 beta gene polymorphism might participate synergistically with the IL-1Ra gene polymorphism in susceptibility to UC and CD, individuals were distributed into carriers and non-carriers of allele 2 of the genes encoding IL-1 beta and IL-1Ra, in each of the patient groups and controls. Results indicated a significant association of this pair of genes, estimated by the odds ratio (OR) after performing Fisher's exact test, in the UC group (P = 0.023, OR = 2.81), as well as in the CD group (P = 0.01, OR = 3.79). Thus, non-carriers of IL-1 beta allele 2 were more often present in the subgroup of patients carrying the IL-1Ra allele 2. By contrast, no association of these alleles was detected in the group of healthy controls (P = 1.00, OR = 0.92). These results suggest that the IL-1 beta/IL-1Ra allelic cluster may participate in defining the biological basis of predisposition to chronic inflammatory bowel diseases. PMID:7586694

  14. The first cytokine sequence within cartilaginous fish: IL-1 beta in the small spotted catshark (Scyliorhinus canicula).

    PubMed

    Bird, Steve; Wang, Tiehui; Zou, Jun; Cunningham, Charlie; Secombes, Chris J

    2002-04-01

    Cartilaginous fish are considered the most primitive living jawed vertebrates with a complex immune system typical of all jawed vertebrates. Cytokine homologs are found within jawless and bony fish, although no cytokine or cytokine receptor genes have been sequenced in cartilaginous fish. In this study the complete coding sequence of the small spotted catshark (Scyliorhinus canicula) IL-1beta gene is presented that contains a short 5' untranslated region (54 bp), a 903-bp open reading frame, a 379-bp 3' untranslated region, a polyadenylation signal, and eight mRNA instability motifs. The predicted translation (301 amino acids) has highest identity to trout IL-1beta (31.7%), with greatest homology within the putative 12 beta-sheets. The IL-1 family signature is also present, but there is no apparent signal peptide. As with other nonmammalian IL-1beta sequences, the IL-1-converting enzyme cut site is absent. Expression of the IL-1beta transcript is detectable by RT-PCR in the spleen and testes, induced in vivo with LPS. Furthermore, a 7-fold increase of transcript levels in splenocytes incubated for 5 h with LPS was seen. The genomic organization comprises six exons and five introns with highest homology seen in exons encoding the largest amount of secondary structure per amino acid. Southern blot analysis suggests at least two copies of the IL-1beta gene or genes related to the 3' end of the IL-1beta sequence are present in the catshark. The cloning of IL-1beta in S. canicula, the first cytokine sequenced within cartilaginous fish, verifies previous bioactivity evidence for the presence of inflammatory cytokines.

  15. Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1{beta} secretion

    SciTech Connect

    Ellis, Lixia Z.; Liu, Weimin; Luo, Yuchun; Okamoto, Miyako; Qu, Dovina; Dunn, Jeffrey H.; Fujita, Mayumi

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EGCG inhibits melanoma cell growth at physiological doses (0.1-1 {mu}M). Black-Right-Pointing-Pointer EGCG inhibits melanoma cell growth via inflammasomes and IL-1{beta} suppression. Black-Right-Pointing-Pointer Inflammasomes and IL-1{beta} could be potential targets for future melanoma therapeutics. -- Abstract: Epigallocatechin-3-gallate (EGCG), the major polyphenolic component of green tea, has been demonstrated to possess anti-inflammatory, antioxidant, anti-mutagenic and anti-carcinogenic properties. The anti-melanoma effect of EGCG has been previously suggested, but no clear mechanism of action has been established. In this study, we demonstrated that EGCG inhibits melanoma cell growth at physiological doses (0.1-1 {mu}M). In the search for mechanisms of EGCG-mediated melanoma cell suppression, we found that NF-{kappa}B was inhibited, and that reduced NF-{kappa}B activity was associated with decreased IL-1{beta} secretion from melanoma cells. Since inflammasomes are involved in IL-1{beta} secretion, we investigated whether IL-1{beta} suppression was mediated by inflammasomes, and found that EGCG treatment led to downregulation of the inflammasome component, NLRP1, and reduced caspase-1 activation. Furthermore, silencing the expression of NLRP1 abolished EGCG-induced inhibition of tumor cell proliferation both in vitro and in vivo, suggesting a key role of inflammasomes in EGCG efficacy. This paper provides a novel mechanism for EGCG-induced melanoma inhibition: inflammasome downregulation {yields} decreased IL-1{beta} secretion {yields} decreased NF-{kappa}B activities {yields} decreased cell growth. In addition, it suggests inflammasomes and IL-1{beta} could be potential targets for future melanoma therapeutics.

  16. Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice.

    PubMed

    Kuzumaki, Naoko; Ikegami, Daigo; Imai, Satoshi; Narita, Michiko; Tamura, Rie; Yajima, Marie; Suzuki, Atsuo; Miyashita, Kazuhiko; Niikura, Keiichi; Takeshima, Hideyuki; Ando, Takayuki; Ushijima, Toshikazu; Suzuki, Tsutomu; Narita, Minoru

    2010-09-01

    A variety of mechanisms that contribute to the accumulation of age-related damage and the resulting brain dysfunction have been identified. Recently, decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. However, the molecular mechanism of decreased neurogenesis with aging is still unclear. In the present study, we investigated whether aging decreases neurogenesis accompanied by the activation of microglia and astrocytes, which increases the expression of IL-1beta in the hippocampus, and whether in vitro treatment with IL-1beta in neural stem cells directly impairs neurogenesis. Ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were increased in the dentate gyrus of the hippocampus of 28-month-old mice. Furthermore, the mRNA level of IL-1beta was significantly increased without related histone modifications. Moreover, a significant increase in lysine 9 on histone H3 (H3K9) trimethylation at the promoter of NeuroD (a neural progenitor cell marker) was observed in the hippocampus of aged mice. In vitro treatment with IL-1beta in neural stem cells prepared from whole brain of E14.5 mice significantly increased H3K9 trimethylation at the NeuroD promoter. These findings suggest that aging may decrease hippocampal neurogenesis via epigenetic modifications accompanied by the activation of microglia and astrocytes with the increased expression of IL-1beta in the hippocampus.

  17. Involvement of central microsomal prostaglandin E synthase-1 in IL-1beta-induced anorexia.

    PubMed

    Pecchi, E; Dallaporta, M; Thirion, S; Salvat, C; Berenbaum, F; Jean, A; Troadec, J-D

    2006-05-16

    In response to infection or inflammation, individuals develop a set of symptoms referred to as sickness behavior, which includes a decrease in food intake. The characterization of the molecular mechanisms underlying this hypophagia remains critical, because chronic anorexia may represent a significant health risk. Prostaglandins (PGs) constitute an important inflammatory mediator family whose levels increase in the brain during inflammatory states, and their involvement in inflammatory-induced anorexia has been proposed. The microsomal PGE synthase (mPGES)-1 enzyme is involved in the last step of PGE2 biosynthesis, and its expression is stimulated by proinflammatory agents. The present study attempted to determine whether an upregulation of mPGES-1 gene expression may account for the immune-induced anorexic behavior. We focused our study on mPGES-1 expression in the hypothalamus and dorsal vagal complex, two structures strongly activated during peripheral inflammation and involved in the regulation of food intake. We showed that mPGES-1 gene expression was robustly upregulated in these structures after intraperitoneal and intracerebroventricular injections of anorexigenic doses of IL-1beta. This increase was correlated with the onset of anorexia. The concomitant reduction in food intake and central mPGES-1 gene upregulation led us to test the feeding behavior of mice lacking mPGES-1 during inflammation. Interestingly, IL-1beta failed to decrease food intake in mPGES-1(-/-) mice, although these animals developed anorexia in response to a PGE2 injection. Taken together, our results demonstrate that mPGES-1, which is strongly upregulated during inflammation in central structures involved in feeding control, is essential for immune anorexic behavior and thus may constitute a potential therapeutic target.

  18. Avenanthramides, polyphenols from oats, inhibit IL-1 beta-induced NF-kappaB activation in endothelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chronic inflammation of arterial walls is associated with the development of atherosclerosis. Earlier we reported that avenanthramide (Avn)s-enriched extract of oats (AvnsO) significantly suppressed interleukin (IL)-1beta-stimulated secretion of pro-inflammatory cytokines, such as IL-6, IL-8, an...

  19. Two peptides derived from trout IL-1beta have different stimulatory effects on immune gene expression after intraperitoneal administration.

    PubMed

    Hong, Suhee; Secombes, Chris J

    2009-07-01

    The aim of this study was to examine the biological activities of two IL-1beta derivatives on immune gene expression (i.e. IL-1beta, TNF-alpha, IL-8, MX, lysozyme) in fish using RT-PCR analysis, as a means to establish whether such peptides have value as immunostimulants in vivo. Two functional domains (P1 and P3) of the trout IL-1beta molecule were produced as synthetic peptides and tested for biological effects following intraperitoneal administration into rainbow trout (Oncorhynchus mykiss). P1 and P3 showed different regulatory effects on the examined genes. P1 did not stimulate proinflammatory gene expression but induced rapid expression of the antiviral gene MX. In contrast, P3 showed more widespread stimulatory effects, and increased expression of the proinflammatory genes IL-1beta and IL-8, as well as the antibacterial lysozyme gene. Such data confirm that it is possible to produce bioactive peptide derivatives of cytokine molecules, and in addition that it is possible to engineer the peptides for different stimulatory repertoires, that may have value in enhancing particular types of immune response to enhance disease resistance in fish.

  20. Whole-body irradiation transiently diminishes the adrenocorticotropin response to recombinant human interleukin-1{alpha}

    SciTech Connect

    Perlstein, R.S.; Mehta, N.R.; Neta, R.; Whitnall, M.H.; Mougey, E.H.

    1995-03-01

    Recombinant human interleukin-1{alpha} (rhIL-1{alpha}) has significant potential as a radioprotector and/or treatment for radiation-induced hematopoietic injury. Both IL-1 and whole-body ionizing irradiation acutely stimulate the hypothalamic-pituitary-adrenal axis. We therefore assessed the interaction of whole-body irradiation and rhIL-1{alpha} in altering the functioning of the axis in mice. Specifically, we determined the adrenocorticotropin (ACTH) and corticosterone responses to rhIL-1{alpha} administered just before and hours to days after whole-body or sham irradiation. Our results indicate that whole-body irradiation does not potentiate the rhIL-1{alpha}-induced increase in ACTH levels at the doses used. In fact, the rhIL-1{alpha}-induced increase in plasma ACTH is transiently impaired when the cytokine is administered 5 h after, but not 1 h before, exposure to whole-body irradiation. The ACTH response may be inhibited by elevated corticosterone levels after whole-body irradiation, or by other radiation-induced effects on the pituitary gland and hypothalamus. 36 refs., 3 figs.

  1. IL-1beta and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1.

    PubMed

    Elander, Louise; Engström, Linda; Hallbeck, Martin; Blomqvist, Anders

    2007-01-01

    Recent work demonstrated that the febrile response to peripheral immune stimulation with proinflammatory cytokine IL-1beta or bacterial wall lipopolysaccharide (LPS) is mediated by induced synthesis of prostaglandin E(2) by the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). The present study examined whether a similar mechanism might also mediate the anorexia induced by these inflammatory agents. Transgenic mice with a deletion of the Ptges gene, which encodes mPGES-1, and wild-type controls were injected intraperitoneally with IL-1beta, LPS, or saline. Mice were free fed, and food intake was continuously monitored with an automated system for 12 h. Body weight was recorded every 24 h for 4 days. The IL-1beta induced anorexia in wild-type but not knock-out mice, and so it was almost completely dependent on mPGES-1. In contrast, LPS induced anorexia of the same magnitude in both phenotypes, and hence it was independent of mPGES-1. However, when the mice were prestarved for 22 h, LPS induced anorexia and concomitant body weight loss in the knock-out animals that was attenuated compared with the wild-type controls. These data suggest that IL-1beta and LPS induce anorexia by distinct immune-to-brain signaling pathways and that the anorexia induced by LPS is mediated by a mechanism different from the fever induced by LPS. However, nutritional state and/or motivational factors also seem to influence the pathways for immune signaling to the brain. Furthermore, both IL-1beta and LPS caused reduced meal size but not meal frequency, suggesting that both agents exerted an anhedonic effect during these experimental conditions.

  2. IL1{beta}-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    SciTech Connect

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-11-15

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1{beta} in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts with or without stimulation of IL-1{beta}, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1{beta}. Further analysis indicated that the major COX-2 product, prostaglandin E{sub 2}, directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1{beta}. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1{beta} in the fibroblasts.

  3. [The synergistic effect of amygdalin and HSYA on the IL-1beta induced endplate chondrocytes of rat intervertebral discs].

    PubMed

    Niu, Kai; Zhao, Yong-Jian; Zhang, Lei; Li, Chen-Guang; Wang, Yong-Jun; Zheng, Wei-Chao

    2014-08-01

    The effect of amygdalin joint hydroxysafflor yellow A (HSYA) on the endplate chondrocytes derived from intervertebral discs of rats induced by IL-1beta and the possible mechanism were studied and explored. Chondrocytes were obtained from endplate of one-month SD rat intervertebral discs and cultured primary endplate chondrocytes. After identification, they were divided into normal group, induced group, amygdalin group, HSYA group and combined group. CCK-8 kit was adopted to detect the proliferation of the endplate chondrocytes. FCM was measured to detect the apoptosis. Real-time PCR method was adopted to observe the mRNA expression of Aggrecan, Col 2 alpha1, Col 10 alpha1, MMP-13 and the inflammatory cytokines IL-1beta. The protein expression of Col II, Col X was tested through immunofluorescence. Compared with the normal group, the proliferation of the endplate chondrocytes decreased while the apoptosis increased (P < 0.05). With down regulation of the mRNA expressions of Aggrecan, Col 2 alpha1 and up regulation of the mRNA expressions of Col 10 alpha1, MMP-13, IL-1beta (P < 0.05), the protein expression of Col II decreased while the protein expression of Col X increased. Compared with the induced group, amygdalin group, HSYA group, the combined group could inhibit the apoptosis and promote the proliferation (P < 0.05). They could increase the mRNA expressions of Aggrecan and Col 2 alpha1 while decrease the mRNA expressions of Col 10 alpha1, MMP-13 and IL-1beta (P < 0.05). They could also enhance the protein expression of Col II while reduce the protein expression of Col X. The effect of the combined group was significantly better than that of amygdalin and HSYA. Amygdalin joint HSYA could inhibit the degeneration of the endplate chondrocytes derived from intervertebral discs of rats induced by IL-1beta and better than the single use of amygdalin or HSYA.

  4. Mapping of receptor binding sites on IL-1 beta by reconstruction of IL-1ra-like domains.

    PubMed

    Boraschi, D; Bossù, P; Ruggiero, P; Tagliabue, A; Bertini, R; Macchia, G; Gasbarro, C; Pellegrini, L; Melillo, G; Ulisse, E; Visconti, U; Bizzarri, C; Del Grosso, E; Mackay, A R; Frascotti, G; Frigerio, F; Grifantini, R; Grandi, G

    1995-11-15

    Upon structure comparison between IL-1 beta and its antagonist IL-1ra, single or multiple residues along the IL-1 beta sequence were replaced with the corresponding amino acids present in the IL-1ra protein, in the attempt to identify sites important for receptor binding and for biologic activity on the two molecules. Ten of fifteen mutant proteins had activity comparable to that of wild-type IL-1 beta in three different biologic assays and in receptor binding, indicating that the introduced changes did not influence the functional structure of the protein. Conversely, three mutants (SMIL-9: 127/263 R/T-->W/Y; SMIL-10: 125/127/263/265 T/R/T/Q-->R/W/Y/E; SMIL-15:222/227 I/E-->S/S) showed an increased binding capacity for IL-1RI, not paralleled by increased agonist activity, indicating that the introduced IL-1ra residues could be involved in the nonagonist IL-1RI binding site. On the other hand, two mutants showed diminished binding capacity with concomitant decrease in biologic activity. Both mutants (SMIL-1, five substitutions in the loop 202-214; and SMIL-3, total replacement of the loop 164-173 with the IL-1ra stretch 52-55) included substitutions of residues allegedly important for agonist binding to IL-1RI. Mutant SMIL-3 showed the most profound reduction in binding capacity for IL-1RI (CDw121a) and a more than 1,000-fold reduced biologic activity both in vitro and in vivo, but it retained full capacity of binding to IL-1RII (CDw121b) and acted as a selective antagonist of IL-1RII. From these results the following conclusions can be drawn. IL-1 beta binds to IL-1RI and to IL-1RII through different sites, and the loop 164-173 appears as one of the areas involved in the selective interaction with IL-1RI. Agonist (IL-1 beta) and nonagonist (IL-1ra) binding to IL-1RI occur through distinct sites, with loops 164-173 and 202-214 of IL-1 beta identified as two of the sites selectively involved in agonist binding to the activating receptor.

  5. Neutrophil apoptosis in the lung after hemorrhage or endotoxemia: apoptosis and migration are independent of IL-1beta.

    PubMed

    Parsey, M V; Kaneko, D; Shenkar, R; Abraham, E

    1999-05-01

    Hemorrhage and endotoxemia are associated with neutrophil accumulation in the lungs and the development of acute inflammatory lung injury. Because alterations in the rate of apoptosis may affect the number and function of neutrophils in the lungs, we determined the percentage of neutrophils undergoing apoptosis in the lungs of control, hemorrhaged, or endotoxemic mice. In control mice, 18.5 +/- 1.2% of pulmonary neutrophils were apoptotic. The proportion of apoptotic neutrophils in the lungs was significantly decreased 1 h after hemorrhage (6.5 +/- 1.6%, P < 0.01 compared to control) or endotoxemia (7.0 +/- 0.9%, P < 0.01 compared to control). Between 1 and 24 h after endotoxemia or hemorrhage, the proportion of apoptotic neutrophils in the lung remained significantly depressed compared to that in control, unmanipulated mice. By 48 h, the proportion of apoptotic neutrophils returned to baseline levels in the lungs of hemorrhaged (21.4 +/- 1.4%) or endotoxemic (16.4 +/- 1. 6%) mice. Lung neutrophil IL-1beta mRNA was significantly increased from that of control mice [i.e., 0.12 +/- 0.06 relative absorbance units (RAU)] 1 h after hemorrhage (5.19 +/- 0.068 RAU, P < 0.05 compared to control) or endotoxemia (8.90 +/- 1.53 RAU, P < 0.01 compared to control). In IL-1beta-deficient mice, there was no significant difference in lung neutrophil apoptosis or neutrophil entry into the lung after hemorrhage or endotoxemia compared to wild-type mice. Our results show that apoptosis among lung neutrophils is decreased for more than 24 h after hemorrhage or endotoxemia. Although IL-1beta expression is increased in lung neutrophils under these conditions, IL-1beta is not responsible for either the influx of neutrophils into the lung or the reduction of apoptosis in neutrophil populations after hemorrhage or endotoxemia.

  6. Suppressing IL-32 in monocytes impairs the induction of the proinflammatory cytokines TNFalpha and IL-1beta.

    PubMed

    Hong, Jaewoo; Bae, Suyoung; Kang, Youngsun; Yoon, Doyoung; Bai, Xiyuan; Chan, Edward D; Azam, Tania; Dinarello, Charles A; Lee, Siyoung; Her, Erk; Rho, Gyujin; Kim, Soohyun

    2010-02-01

    Targeting major proinflammatory cytokines such as IL-1beta and TNFalpha is of great interest in patients with chronic inflammatory diseases, including rheumatoid arthritis, colitis, and psoriasis. The cytokine Interleukin (IL)-32 induces proinflammatory cytokines such as TNFalpha, IL-1beta, IL-6, and chemokines. We previously used an IL-32 ligand-affinity column to purify proteinase 3, which is abundantly expressed in neutrophil and monocytic leukocytes but not in other cell types, and found that IL-32 is mainly produced by monocytic leukocytes. This evidence suggested that silencing endogenous IL-32 by short hairpin RNA (shRNA) in monocytic cells might reveal the precise function of endogenous IL-32. Indeed, lipopolysaccharide (LPS)- or phorbol myristate acetate (PMA)-induced proinflammatory cytokine production was significantly inhibited in shRNA/IL-32 stable clones as compared to control clones. Furthermore, macrophages in PMA-differentiated shRNA/IL-32 stable clones displayed remarkably impaired LPS- and IL-1beta-induced proinflammatory cytokine production. These data suggest that IL-32 is not only involved in host defense against pathogens, but also might play a role in chronic inflammatory diseases. IL-32 production leads to major proinflammatory cytokine production during the initial immune response.

  7. Involvement of VAMP-2 in exocytosis of IL-1{beta} in turbot (Scophthalmus maximus) leukocytes after Vibrio anguillarum infection

    SciTech Connect

    Chai Yingmei; Huang Xiaohang . E-mail: xiaohanghuang@yahoo.ca; Cong Bailin; Liu Shenghao; Chen Kui; Li Guangyou; Gaisano, Herbert Y.

    2006-04-07

    Vibrio anguillarum is a major pathogen threatening the fish aquaculture in China. Infection of cultivated turbot (Scophthalmus maximus) with V. anguillarum induced rapid synthesis and secretion of IL-1{beta}, which initiates the innate immune response. SNARE proteins are known to regulate vesicular trafficking and fusion in all eukaryotes. Here, we determined whether SNARE proteins, specifically vesicle-associated membrane protein-2 (VAMP-2), are involved in regulated exocytosis of IL-1{beta} of leukocytes in marine fish. We show that VAMP-2 is present in turbot blood leukocytes, with nucleotide sequence identity of 88.2% and 93.0% to those of zebra fish and sea bass, respectively. After Vibrio infection, turbot leukocyte VAMP-2 was increased at the levels of transcription and translation in a temporal pattern coinciding with leukocyte IL-1{beta} secretion. Confocal microscopy localized VAMP-2 to vesicle structures in leukocytes. Taken together, our results suggest that VAMP-2 is involved in regulated exocytosis of cytokines in immunocytes in fish.

  8. NS-398, a selective COX-2 inhibitor, inhibits proliferation of IL-1{beta}-stimulated vascular smooth muscle cells by induction of {eta}{omicron}-1

    SciTech Connect

    Choi, Hyoung Chul; Kim, Hee Sun; Lee, Kwang Youn; Chang, Ki Churl Kang, Young Jin

    2008-11-28

    We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1{beta}-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE{sub 2} without modulation of expression of COX-2 in IL-1{beta}-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1{beta}-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE{sub 2} production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE{sub 2} and proliferation of IL-1{beta}-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1{beta}-stimulated VSMC. NS-398 inhibited proliferation of IL-1{beta}-stimulated VSMC in a HbO{sub 2}-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1{beta}-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.

  9. Molecular cDNA cloning and analysis of the organization and expression of the IL-1beta gene in the Nile tilapia, Oreochromis niloticus.

    PubMed

    Lee, Dae-Sim; Hong, Su Hee; Lee, Hyun-Jeong; Jun, Lyu Jin; Chung, Joon-Ki; Kim, Ki Hong; Jeong, Hyun Do

    2006-03-01

    The full-length cDNA sequence of interleukin-1beta (IL-1beta) from the Nile tilapia, Oreochromis niloticus, was determined by using PCR with primers designed from known fish IL-1beta sequences followed by elongation of the 5' and 3' ends using Rapid Amplification of cDNA Ends (RACE). The cDNA contains a 92-bp 5' untranslated region (UTR), a single open reading frame (ORF) of 732 bp that translates into a 243-amino acid molecule, a 341-bp 3' UTR with four cytokine RNA instability motifs (ATTTA), and a polyadenylation signal (AATAAA) at 15 nucleotides upstream of the poly(A) tail. The organization of the genomic IL-1beta based on the cDNA sequence appeared to be 4 introns and 5 exons. In comparison with known IL-1beta amino acid sequences, including human, catshark, trout, turbot, carp, sea bream, sea bass and goldfish, the amino acid sequence deduced from the cDNA sequence of Nile tilapia showed different levels of identity ranging from 25.32% to 66.80% and homology ranging from 41.88% to 82.19%. Although the entire cDNA sequence of Nile tilapia IL-1beta showed from 49.45% to 67.05% identity to those of other reported IL-1beta cDNAs, each exon also showed different levels of identity to the corresponding exons of other reported IL-1beta cDNAs. The highest nucleotide sequence identity for exon 1 and exons 2-5 of Nile tilapia IL-1beta was found in the corresponding exons of sea bream and sea bass, respectively. After in vitro stimulation with lipopolysaccharide (LPS), we found an increased level of IL-1beta expression in head kidney cells compared to that of unstimulated cells. However, this difference was no longer apparent after 4 h of stimulation, at which time the levels were similar in stimulated and unstimulated cells. Head kidney cells stimulated in vivo by an intraperitoneal injection of LPS showed a peak level of IL-1beta expression after 1 day and a decreased level after 3 days. At 7 days after stimulation, we were hardly able to detect IL-1beta expression.

  10. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production.

    PubMed

    Saitoh, Tatsuya; Fujita, Naonobu; Jang, Myoung Ho; Uematsu, Satoshi; Yang, Bo-Gie; Satoh, Takashi; Omori, Hiroko; Noda, Takeshi; Yamamoto, Naoki; Komatsu, Masaaki; Tanaka, Keiji; Kawai, Taro; Tsujimura, Tohru; Takeuchi, Osamu; Yoshimori, Tamotsu; Akira, Shizuo

    2008-11-13

    Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.

  11. Evolution of cytokine responses: IL-1beta directly affects intracellular Ca2+ concentration of teleost fish leukocytes through a receptor-mediated mechanism.

    PubMed

    Benedetti, S; Randelli, E; Buonocore, F; Zou, J; Secombes, C J; Scapigliati, G

    2006-04-01

    In this work we studied the biological activities of recombinant IL-1beta from the teleosts sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss) by investigating the effects induced on intracellular Ca2+ concentrations ([Ca2+]i) of spleen leucocytes. Splenocytes were loaded with the Ca2+-permeant Fura-2AM, and then stimulated with rIL-1beta. The emitted fluorescence was read for 5 min at 1 min intervals on a dual excitation fluorescence fluorimeter. Results showed that rIL-1beta induced in both species a rise in [Ca2+]i, and a subsequent decrease until 5 min after stimulation. The stimulating effect was dose-dependent in both species reaching a plateau at 200 ng/ml of rIL-1beta, was abolished by heat-treatment of rIL-1beta, and affected in a dose-dependent fashion by treatment of leucocytes with trypsin. These features suggested a functional IL-1 receptor was involved in the binding. The observed rise in [Ca2+]i was not detected in human PBMC and was species-specific, since rIL-1beta from sea bass, trout, and human were unable to interfere each other in the assay. Moreover, incubation of splenocytes with rIL-1beta induced a rapid tyrosine phosphorylation of a 24 kDa polypeptide in both species. This work represents the first evidence of a direct effect on [Ca2+]i induced by IL-1beta and suggests that in the evolution of IL-1 activities, teleost fishes display a peculiar IL-1-associated behaviour that is lacking in mammals.

  12. Inhibition of IL-1{beta}-mediated inflammatory responses by the I{kappa}B{alpha} super-repressor in human fibroblast-like synoviocytes

    SciTech Connect

    Lee, Young-Rae; Kweon, Suc-Hyun; Kwon, Kang-Beom; Park, Jin-Woo; Yoon, Taek-Rim Park, Byung-Hyun

    2009-01-02

    The IL-1{beta}-NF-{kappa}B axis is a key pathway in the pathogenesis of rheumatoid arthritis (RA) and is central in the production of proinflammatory mediators in the inflamed synovium. Therefore, we examined whether fibroblast-like synoviocytes (FLS) could be spared from IL-1{beta}-induced toxicity by an overexpressing I{kappa}B super-repressor. Infection of FLS with Ad-I{kappa}B{alpha} (S32A, S36A), an adenovirus-containing mutant I{kappa}B{alpha}, inhibited IL-1{beta}-induced nuclear translocation and DNA binding of NF-{kappa}B. In addition, Ad-I{kappa}B{alpha} (S32A, S36A) prevented IL-1{beta}-induced inflammatory responses; namely, the production of chemokines, such as ENA-78 and RANTES, and activation of MMP-1 and MMP-3. Finally, increased cellular proliferation of FLS after IL-1{beta} treatment was significantly reduced by Ad-I{kappa}B{alpha} (S32A, S36A). However, Ad-I{kappa}B{beta} (S19A, S23A), the I{kappa}B{beta} mutant, was not effective in preventing IL-1{beta} toxicity. These results suggest that inhibition of I{kappa}B{alpha} degradation is a potential target for the prevention of joint destruction in patients with RA.

  13. Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a study on IL-6-deficient mice

    PubMed Central

    1996-01-01

    Interleukin (IL)-6, IL-1 beta, and tumor necrosis factor alpha (TNF- alpha) are considered to act as endogenous pyrogens. Because of the complex pattern of cross-inductions between these cytokines, the relative role of the central and peripheral production of these cytokines in eliciting the fever response has not yet been clarified. The purpose of this study was to determine the role of IL-6 in the fever response by making use of mice carrying a null mutation in the IL- 6 gene. The intraperitoneal injections of lipopolysaccharide (LPS) (50 micrograms/kg) and recombinant murine (rm) IL-1 beta (10 micrograms/kg), respectively, failed to evoke fever response in IL-6- deficient mice, whereas the same doses of LPS and rmIL-1 beta caused fever response in wild-type mice. The fever response could be induced in the IL-6-deficient mice by intracerebroventricular injection of recombinant human (rh) IL-6 (500 ng/mouse), whereas intracerebroventricular injection of rmIL-1 beta (100 ng/mouse) failed to produce fever response in the IL-6-deficient mice. These results suggest that central IL-6 is a necessary component of the fever response to both endogenous (IL-1 beta) and exogenous (LPS) pyrogens in mice and that IL-6 acts downstream from both peripheral and central IL- 1 beta. PMID:8551238

  14. Biphasic effect of IL-1beta on the activity of argininosuccinate synthetase in Caco-2 cells. Involvement of nitric oxide production.

    PubMed

    Brasse-Lagnel, Carole; Lavoinne, Alain; Fairand, Alain; Vavasseur, Karine; Deniel, Nicolas; Husson, Annie

    2006-06-01

    The expression of the argininosuccinate synthetase gene (ASS), the limiting enzyme of arginine synthesis, was previously shown to be rapidly induced by a short-term (4 h) exposure to IL-1beta in Caco-2 cells [Biochimie, 2005, 403-409]. The present report shows that, by contrast, a long-term (24 h) exposure to IL-1beta inhibited the ASS activity despite an increase in both specific mRNA level and protein amount, demonstrating a post-translational effect. Concerning the mechanism involved, we demonstrate that the inhibiting effect is linked to the production of nitric oxide (NO) induced by IL-1beta. Indeed, the inhibiting effect of IL-1beta was totally blocked in the presence of l-NMMA, an inhibitor of the inducible nitric oxide synthase, or by culturing the cells in an arginine-deprived medium. Moreover, a decrease in the ASS activity was induced by culturing the cells in the presence of SNAP, a NO donor. Conversely, blocking the action of NO by antioxidant agents, the stimulatory effect of IL-1beta on ASS activity was restored, as measured at 24 h. Finally, such an inhibiting effect of NO on ASS activity may be related, at least in part, to S-nitrosylation of the protein. The physiological relevance of the antagonistic effects of IL-1beta and NO on ASS is discussed.

  15. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    PubMed Central

    Moon, Sung-Kyun; Lee, Haa-Yung; Pan, Huiqi; Takeshita, Tamotsu; Park, Raekil; Cha, Kiweon; Andalibi, Ali; Lim, David J

    2006-01-01

    Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi) and that interleukin 1 alpha (IL-1 alpha) up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization) in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM). Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway. PMID:16433908

  16. Interleukin 1. alpha. inhibits prostaglandin E sub 2 release to suppress pulsatile release of luteinizing hormone but not follicle-stimulating hormone

    SciTech Connect

    Rettori, V.; McCann, S.M. ); Gimeno, M.F. ); Karara, A. ); Gonzalez, M.C. )

    1991-04-01

    Interleukin 1{alpha} (IL-1{alpha}), a powerful endogenous pyrogen released from monocytes and macrophages by bacterial endotoxin, stimulates corticotropin, prolactin, and somatotropin release and inhibits thyrotropin release by hypothalamic action. The authors injected recombinant human IL-1{alpha} into the third cerebral ventricle, to study its effect on the pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in conscious, freely moving, ovariectomized rats. Intraventricular injection of 0.25 pmol of IL-1{alpha} caused an almost immediate reduction of plasma LH concentration. To determine the mechanism of the suppression of LH release, mediobasal hypothalamic fragments were incubated in vitro with IL-1{alpha} (10 pM) and the release of LH-releasing hormone (LHRH) and prostaglandin E{sub 2} into the medium was measured by RIA in the presence or absence of nonrepinephrine. 1{alpha} reduced basal LHRH release and blocked LHRH release induced by nonrepinephrine. In conclusion, IL-1{alpha} suppresses LH but not FSH release by an almost complete cessation of pulsatile release of LH in the castrated rat. The mechanism of this effect appears to be by inhibition of prostaglandin E{sub 2}-mediated release of LHRH.

  17. TLR7 and TLR8 ligands and antiphospholipid antibodies show synergistic effects on the induction of IL-1beta and caspase-1 in monocytes and dendritic cells.

    PubMed

    Hurst, Julia; Prinz, Nadine; Lorenz, Mareike; Bauer, Stefan; Chapman, Joab; Lackner, Karl J; von Landenberg, Philipp

    2009-01-01

    TLRs represent the first line of defense against invading pathogens in the innate immune system. Certain cytokines are important mediators and essentially necessary to assure an appropriately regulated immune response. Recent data gave initial evidence that IL-1beta is one of the most relevant members of these regulating cytokines. We investigated the induction of IL-1beta production in monocytes and pDCs stimulated with ligands for TLR7 and TLR8 and with antiphospholipid antibodies (aPL). Using human monocytes and pDCs for stimulation with specific TLR7 and TLR8 ligands such as resiquimod (R848) and single stranded RNA (RNA42) as well as with a human monoclonal aPL HL5B resulted in a specific upregulation of IL-1beta mRNA and protein in these cells. Determination of expression-levels using real-time RT-PCR showed significantly augmented TLR-dependent IL-1beta and caspase-1 expression. This increase could be substantially enhanced by adding the monoclonal aPL HL5B. To demonstrate the direct dependency between TLR stimulation and IL-1beta production, specific TLR inhibitors were applied and the IL-1beta and caspase-1 secretion could be explicitly decreased. The respective protein levels were determined using Western Blot, FACS analysis or ELISA assays. In conclusion we demonstrated that the downstream signaling pathway of TLR7 and TLR8 in monocytes and pDCs after stimulation with specific ligands included not only the secretion of cytokines such as TNFalpha and IL-1beta but as well the activation of necessary regulating proteins like caspase-1. APL seem to enforce this process hinting that endogenous stimulation of TLRs in the Antiphospholipid Syndrome (APS) patients resulted in enhanced secretion of proinflammatory cytokines.

  18. Bovine serum albumin promotes IL-1beta and TNF-alpha secretion by N9 microglial cells.

    PubMed

    Zhao, Tian-zhi; Xia, Yong-zhi; Li, Lan; Li, Jian; Zhu, Gang; Chen, Shi; Feng, Hua; Lin, Jiang-kai

    2009-10-01

    Bovine serum albumin (BSA) is generally used in biomedical experiments. In the solution of some reagents, BSA is necessary to maintain the stability and concentration of the effective component. Therefore, the potential impact of BSA on experimental results should not be neglected when BSA is used. In this study, we observed that BSA induced significant upregulation of mRNA expression and release of pro-inflammatory cytokines, IL-1beta, and TNF-alpha, by N9 microglial cells. Our results suggest that the effects of BSA should be taken into account in experiments on microglia or the central nervous system when BSA is used. In light of the high similarity and homology among mammalian albumins, our findings also indicate that serum albumin may be a potent trigger of cytokine release by microglia.

  19. IL-1beta stimulates argininosuccinate synthetase gene expression through NF-kappaB in Caco-2 cells.

    PubMed

    Brasse-Lagnel, Carole; Lavoinne, Alain; Fairand, Alain; Vavasseur, Karine; Husson, Annie

    2005-05-01

    Argininosuccinate synthetase (ASS) is limiting the arginine synthesis and can be stimulated by immunostimulants. We previously identified a putative NF-kappaB element in the human ASS gene promoter but its functionality was unknown (Husson et al., Eur. J. Biochem. 270 (2003) 1887). In the present study, using Caco-2 cells, a human enterocyte line, we demonstrate that IL-1beta rapidly induces the expression of the ASS gene at a transcriptional level through NF-kappaB activation. Using gel shift assay and double-strand oligonucleotide sequence of the identified putative NF-kappaB binding site of the ASS promoter, we provide evidence that NF-kappaB may functionally interact with this element.

  20. PGE2, IL-1 beta, and TNF-alpha responses in diabetics as modifiers of periodontal disease expression.

    PubMed

    Salvi, G E; Beck, J D; Offenbacher, S

    1998-07-01

    Diabetes mellitus is a systemic disease that affects more than 12 million people in the United States and represents a risk factor for periodontitis with odds ratios of 2.1 to 3.0. New data support the concept that in diabetes-associated periodontitis, the altered host inflammatory response plays a critical role. We have recently examined the gingival crevicular fluid (GCF) mediator level, monocytic secretion, and clinical presentation of 39 insulin-dependent diabetes mellitus (IDDM) patients and 64 non-diabetic patients with various degrees of periodontal health and disease. First, we found that there was an unexpected high level of GCF mediators among the IDDM subjects, even in the gingivitis and mild periodontitis patients. Furthermore, the GCF and monocytic mediator responses were obviously bimodal in distribution with respect to periodontal status. Gingivitis patients and mild periodontitis patients represented one low response group, and the moderate and severe periodontitis subjects the high response group. Accordingly, these 4 periodontal subgroups were pooled to form 2 main groups for analyses--group A (AAP Types I-II) and group B (AAP Types III-IV). Diabetics had significantly higher GCF levels of both PGE2 and IL-1 beta when compared to non-diabetic controls with similar periodontal status. Within the diabetic group, the GCF levels of these inflammatory mediators were almost 2-fold higher in group B subjects when compared to diabetics from group A. Among diabetics, GCF TNF-alpha levels were only marginally detectable and no significant difference was found between group A and group B patients. Insulin-dependent diabetic patients with gingivitis or mild periodontitis (group A) and moderate to severe periodontitis (group B) have abnormal monocytic inflammatory secretion in response to LPS challenge from Porphyromonas gingivalis (P. gingivalis) as compared to non-diabetic periodontal patients. Data suggest that the diabetic state results in a significantly

  1. [Effect of myelopeptides on reactive oxygen species generation and IL-1beta and TNF-alpha production by peripheral blood cells].

    PubMed

    Chereshnev, V A; Mazunina, L S; Geĭn, S V; Gavrilova, T V; Chereshneva, M V

    2012-01-01

    Myelopeptides MP-3, MP-5, and MP-6 were found to suppress zymosan-induced production of reactive oxygen species by leukocytes both under one-way introduction and under pretreatment. All of myelopeptides under examination in case of one-way introduction in cultures with zymosan demonstrated a decrease in zymosan-stimulated (1500 mkg/ml) production of IL-1beta, and activation of spontaneous production of this cytokine by whole blood cells. TNF-alpha production under myelopeptide effect was lowered in cultures with 150 mkg/ml zymosan. Under pretreatment myelopeptides did not render effect on IL-1beta and TNF-alpha production, with the exception of single stimulating effect of MP-5 on IL-1beta level in spontaneous cultures. Using comparative analysis the difference in direction and expressivity of effects of various myelopeptides was not revealed that suggests the existence of common mechanism of action in this group of peptide bioregulators.

  2. Chemical analysis of Agaricus blazei polysaccharides and effect of the polysaccharides on IL-1beta mRNA expression in skin of burn wound-treated rats.

    PubMed

    Sui, ZhiFu; Yang, RongYa; Liu, Biao; Gu, TingMin; Zhao, Zhili; Shi, Dongfang; Chang, DongQing

    2010-08-01

    Agaricus blazei polysaccharides were analyzed by GC-MS. Results indicated that the polysaccharides contained glucose (93.87%), mannose (3.54%), and arabinose (2.25%). The compositional analysis was completed by the methylation data. These data indicated that Agaricus blazei polysaccharides are glucans. Compared to model rats, rats fed with Agaricus blazei polysaccharides showed a decrease of ratio of IL-1beta/beta-actin and IL-1beta level in skin of burn wound. Recovery rate of wound skin increased with increasing dose of polysaccharides. The results indicated that Agaricus blazei polysaccharides could be useful in promote burn wound healing.

  3. The Alterations of IL-1Beta, IL-6, and TGF-Beta Levels in Hippocampal CA3 Region of Chronic Restraint Stress Rats after Electroacupuncture (EA) Pretreatment.

    PubMed

    Guo, Tianwei; Guo, Zhuo; Yang, Xinjing; Sun, Lan; Wang, Sihan; Yingge, A; He, Xiaotian; Ya, Tu

    2014-01-01

    Immunological reactions induced by proinflammatory cytokines have been involved in the pathogenesis of depressive disorders. Recent studies showed that Electroacupuncture (EA) was able to reduce depressive symptoms; however, the underlying mechanism and its potential targets remain unknown. In the present study, we used a 21-day chronic restraint stress rats as a model to investigate how EA could alleviate depression. Open field test was carried out to evaluate the depressive symptoms at selected time points. At the end of study, immunohistochemistry (IHC) was performed to detect the expressions of IL-1beta, IL-6, and TGF-beta in hippocampal CA3 region. We found that chronic restraint stress significantly decreased behavioral activities, whereas EA stimulation at points Baihui (GV 20) and Yintang (GV 29) showed protective effect during the test period. In addition, the IL-1beta, IL-6, and TGF-beta increased in rats exposed to chronic restraint stress, while EA downregulated the levels of IL-1beta and IL-6. These findings implied that EA pretreatment could alleviate depression through modulating IL-1beta and IL-6 expression levels in hippocampal CA3 region.

  4. The Alterations of IL-1Beta, IL-6, and TGF-Beta Levels in Hippocampal CA3 Region of Chronic Restraint Stress Rats after Electroacupuncture (EA) Pretreatment

    PubMed Central

    Guo, Tianwei; Guo, Zhuo; Yang, Xinjing; Sun, Lan; Wang, Sihan; Yingge, A.; He, Xiaotian; Ya, Tu

    2014-01-01

    Immunological reactions induced by proinflammatory cytokines have been involved in the pathogenesis of depressive disorders. Recent studies showed that Electroacupuncture (EA) was able to reduce depressive symptoms; however, the underlying mechanism and its potential targets remain unknown. In the present study, we used a 21-day chronic restraint stress rats as a model to investigate how EA could alleviate depression. Open field test was carried out to evaluate the depressive symptoms at selected time points. At the end of study, immunohistochemistry (IHC) was performed to detect the expressions of IL-1beta, IL-6, and TGF-beta in hippocampal CA3 region. We found that chronic restraint stress significantly decreased behavioral activities, whereas EA stimulation at points Baihui (GV 20) and Yintang (GV 29) showed protective effect during the test period. In addition, the IL-1beta, IL-6, and TGF-beta increased in rats exposed to chronic restraint stress, while EA downregulated the levels of IL-1beta and IL-6. These findings implied that EA pretreatment could alleviate depression through modulating IL-1beta and IL-6 expression levels in hippocampal CA3 region. PMID:24795767

  5. TNF{alpha} and IL-1{beta} are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS

    SciTech Connect

    Zheng, Wenwen; Zheng, Xuexing; Liu, Shue; Ouyang, Hongsheng; Levitt, Roy C.; Candiotti, Keith A.; Hao, Shuanglin

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer LPS induces proinflammatory cytokine release in HAPI cells. Black-Right-Pointing-Pointer JNK pathway is dependent on TLR4 signaling to release cytokines. Black-Right-Pointing-Pointer NF-{kappa}B pathway is dependent on Nod1 signaling to release cytokines. -- Abstract: A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathways using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-{kappa}B (pNF-{kappa}B), TNF{alpha} and IL-1{beta}. Silencing TLR4 with siRNA reduced the expression of pJNK, TNF{alpha} and IL-1{beta}, but not pNF-{kappa}B in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNF{alpha} and IL-1{beta}. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-{kappa}B. Inhibition of NF-{kappa}B also reduced the expression of TNF{alpha} and IL-1{beta}. Nod1 ligand, DAP induced the upregulation of pNF-{kappa}B which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-{kappa}B is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-{kappa}B pathways is involved in the expression of TNF{alpha} and IL-1{beta}.

  6. Induction of human immunodeficiency virus type 1 replication in human glial cells after proinflammatory cytokines stimulation: effect of IFNgamma, IL1beta, and TNFalpha on differentiation and chemokine production in glial cells.

    PubMed

    Janabi, N; Di Stefano, M; Wallon, C; Hery, C; Chiodi, F; Tardieu, M

    1998-08-01

    Although evidence for human immunodeficiency virus 1 (HIV-1) presence in the central nervous system (CNS) of infected patients is well established, the intensity of viral replication within the brain is not usually known. In vitro, human embryonic microglial cells internalized HIV-1 through a CD4-dependent pathway but were not permissive to viral replication. We observed that HIV replication was induced when CNS cell cultures were stimulated for 14 days by a combination of proinflammatory cytokines including IFNgamma, IL1beta, and TNFalpha. After long-term cytokine stimulation, morphologically differentiated glial cells appeared, in which HIV-1 tat antigen was detected after infection. Thus, variations in the stage of maturation/activation of CNS cells under inflammatory conditions probably play a major role in facilitating massive production of HIV-1. We then studied the effect of prolonged cytokine stimulation on the secretion of inflammatory mediators by glial cells. An early increased secretion of prostaglandin F2alpha and chemokines (RANTES>MIP-1alpha>MIP-1beta) was observed, due to both microglia and astrocytes. In contrast to persistent PGF2alpha production, an extinction of RANTES and MIP-1beta but not of MIP-1alpha secretion occurred during the 14 days of stimulation and was inversely correlated with the ability of glial cells to replicate HIV-1. The study of the secretory factors produced in response to a persistent inflammation could provide a better understanding of the modulation of HIV replication in glial cells.

  7. Urinary interleukin-1 alpha levels are increased by intravesical instillation with keyhole limpet hemocyanin in patients with superficial transitional cell carcinoma of the bladder.

    PubMed

    Jurincic-Winkler, C D; Gallati, H; Alvarez-Mon, M; Sippel, J; Carballido, J; Klippel, K F

    1995-01-01

    Intravesical instillation of keyhole limpet hemocyanin (KLH) is a possible treatment for decreasing tumor recurrence after transurethral resection (TUR) in patients with superficial transitional cell carcinoma of the bladder (stages pTa-pT1, grades 1-3). Our study confirms the theory that instillation of KLH stimulates production of cytokines, resulting in their secretion in urine. Interleukin-1 (IL-1) stimulates the immune cascade through a domino effect and is produced mainly by activated macrophages. The instillation program was started 5-7 days after TUR of primary superficial cell carcinoma. 20 mg KLH in 20 ml of 0.9% NaCl was instilled into the bladder each week for 6 consecutive weeks and then monthly for 1 year. When KLH is instilled into the bladder, IL-1 alpha is secreted in the urine. A specific enzyme-linked immunosorbent assay (ELISA) was used for analysis. The ELISA for IL-1 alpha was established in our laboratory and showed a detection limit of 5 pg/ml. This IL-1 alpha ELISA deviation amounts to 3-7% within a series of measurements, and 5-15% from series to series. In the therapy group the IL-1 alpha secretion ranged from 0 to 30,905 pg/24 h and in the control group from 0 (collection period) to 2,472 pg/4 h. IL-1 alpha production increased significantly after KLH instillation in bladder cancer patients; however, the level varied considerably from patient to patient. Maximum production was achieved within a period of 4-8 h, decreasing within 24 h. There was a striking difference between the amount of IL-1 alpha produced over the 24-hour period in the control group and that of the KLH group. 8 of 14 patients (57%) who responded to KLH therapy had higher urine IL-1 alpha levels after 6 weeks of KLH treatment than those who failed to respond within 12 months, but the levels were not of statistical significance. The secretion of IL-1 alpha in urine is the biological response of the bladder to the antigen stimulus of KLH. No IL-2 was detected in the urine

  8. TC1(C8orf4) is upregulated by IL-1beta/TNF-alpha and enhances proliferation of human follicular dendritic cells.

    PubMed

    Kim, Youngmi; Kim, Jungtae; Park, Juhee; Bang, Seunghyun; Jung, Yusun; Choe, Jongseon; Song, Kyuyoung; Lee, Inchul

    2006-06-12

    Follicular dendritic cells (FDC) play crucial roles in immune regulation. TNF-alpha has been shown to be essential to the FDC network. However, the molecular regulation of FDC proliferation has not been characterized. Here, we show that TC1(C8orf4), a novel positive regulator of the Wnt/beta-catenin pathway in vertebrates, is upregulated by IL-1beta and TNF-alpha in the human FDC-like line HK. TC1 enhances HK cell proliferation, while TC1-knockdown inhibits the proliferation induced by IL-1beta, suggesting a role of TC1 as a regulator of FDC proliferation. The regulation by pro-inflammatory cytokines suggests that TC1 might be implicated in linking local inflammation to immune response by stimulating FDC.

  9. Effect of grepafloxacin on cytokine production in vitro.

    PubMed

    Ono, Y; Ohmoto, Y; Ono, K; Sakata, Y; Murata, K

    2000-07-01

    The effect of a new quinolone antibacterial agent, grepafloxacin, on the production of cytokines was investigated using lipopolysaccharide-stimulated human peripheral blood cells. Grepafloxacin 1-30 mg/L inhibited the production of interleukin 1alpha (IL-1alpha) and IL-1beta, and the expression of IL-1alpha, IL-1beta, tumour necrosis factor alpha (TNFalpha), IL-6 and IL-8 mRNA. These results suggest that the inhibitory effect of grepafloxacin is exerted, in part, at the gene transcription level.

  10. Inhibitory effect of amygdalin on lipopolysaccharide-inducible TNF-alpha and IL-1beta mRNA expression and carrageenan-induced rat arthritis.

    PubMed

    Hwang, Hye-Jeong; Lee, Hye-Jung; Kim, Chang-Ju; Shim, Insop; Hahm, Dae-Hyun

    2008-10-01

    Amygdalin is a cyanogenic glycoside plant compound found in the seeds of rosaceous stone fruits. We evaluated the antiinflammatory and analgesic activities of amygdalin, using an in vitro lipopolysaccharide (LPS)-induced cell line and a rat model with carrageenan-induced ankle arthritis. One mM amygdalin significantly inhibited the expression of TNF-alpha and IL-1beta mRNAs in LPS-treated RAW 264.7 cells. Amygdalin (0.005, 0.05, and 0.1 mg/kg) was intramuscularly injected immediately after the induction of carrageenan-induced arthritic pain in rats, and the anti-arthritic effect of amygdalin was assessed by measuring the weight distribution ratio of the bearing forces of both feet and the ankle circumference, and by analyzing the expression levels of three molecular markers of pain and inflammation (c-Fos, TNF-alpha, and IL-1beta) in the spinal cord. The hyperalgesia of the arthritic ankle was alleviated most significantly by the injection of 0.005 mg/kg amygdalin. At this dosage, the expressions of c-Fos, TNF-alpha, and IL-1beta in the spinal cord were significantly inhibited. However, at dosage greater than 0.005 mg/kg, the painrelieving effect of amygdalin was not observed. Thus, amygdalin treatment effectively alleviated responses to LPStreatment in RAW 264.7 cells and carrageenan-induced arthritis in rats, and may serve as an analgesic for relieving inflammatory pain.

  11. Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8.

    PubMed

    Tha, K K; Okuma, Y; Miyazaki, H; Murayama, T; Uehara, T; Hatakeyama, R; Hayashi, Y; Nomura, Y

    2000-12-01

    The senescence-accelerated mouse (SAM) is known to be a murine model for accelerated aging. The SAMP8 strain shows age-related deterioration of learning and memory at an earlier age than control mice (SAMR1). In the present study, we investigated the changes in expressions of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in the brain of SAMP8. In the hippocampus of 10 months old SAMP8, the expression of IL-1 mRNA was significantly elevated in comparison with that of SAMR1. In both strains of SAMs, increases in IL-1beta protein in the brain were observed at 10 months of age compared with 2 and 5 months. The only differences found between the strain in protein levels were at 10 months and were elevations in IL-1beta in the hippocampus and hypothalamus, and in TNF-alpha and IL-6 in the cerebral cortex and the hippocampus in SAMP8 as compared with SAMR1. However, lipopolysaccharide-induced increases in the expression of these cytokines in brain did not differ between SAMP8 and SAMR1. Increases in expression of proinflammatory cytokines in the brain may be involved in the age-related neural dysfunction and/or learning deficiency in SAMP8.

  12. Dietary phenolic acids attenuate multiple stages of protein glycation and high-glucose-stimulated proinflammatory IL-1beta activation by interfering with chromatin remodeling and transcription in monocytes.

    PubMed

    Wu, Chi-Hao; Yeh, Chi-Tai; Shih, Ping-Hsiao; Yen, Gow-Chin

    2010-07-01

    This study examined the effects of dietary phenolic acids on individual stages of protein glycation and utilized monocyte cultures to assess whether these phytochemicals modulate the activation of proinflammatory cytokine under high glucose (HG, 15 mmol/L) conditions mimicking diabetes. In vitro glycation assays showed that a number of phenolic acids exerted inhibitory effects on the glycation reaction and its subsequent crosslinking. Phenolic acids, especially methoxyphenolic acids, prevented increase in both levels of the interleukin-1beta (IL-1beta) and oxidative stress caused by HG. The effect appeared to be mediated by modulation of the protein kinase C/nuclear factor-kappaB axis. Chromatin immunoprecipitation demonstrated for the first time that HG increased the recruitment of nuclear factor-kappaB p65 and CREB-binding protein to the IL-1beta promoter. Interestingly, HG also increased histone acetylation and methylation within the IL-1beta promoter and decreased histone deacetylase activities in monocytes, thus facilitating chromatin remodeling and transcription. Such inappropriate inflammatory responses were found to be controlled effectively by treatment with methoxyphenolic compounds. In conclusion, this study suggests that phenolic acids could exert their anti-inflammatory activities as antiglycation agents and as modifiers of signaling pathways. It provides evidence for a novel mechanism by which phenolics supplementation might have additional protective effects against diabetic complications.

  13. Association between genetic variants of IL-1beta, IL-6 and TNF-alpha cytokines and cognitive performance in the elderly general population of the MEMO-study.

    PubMed

    Baune, Bernhard T; Ponath, Gerald; Rothermundt, Matthias; Riess, Olaf; Funke, Harald; Berger, Klaus

    2008-01-01

    This study is to investigate the associations between specific polymorphisms in three cytokine genes and domains of cognitive functioning in a population based study in the elderly. In a cross-sectional study of 369 community dwelling elderly subjects we examined the relationships between the polymorphisms IL-1beta-1418C-->T, IL-6-572G-->C and TNF-alpha-308G-->A and the cognitive function domains memory, processing speed and motor function using an extensive neuropsychological test battery. Linear regression models were used in the analysis and results adjusted for multiple comparisons. A significant association between the IL-1beta-1418C-->T polymorphism and memory performance was found with carriers of the T allele (dominant model) having worse memory performance than those with the C allele. In addition, a significant association between the TNF-alpha-308G-->A polymorphism and processing speed was observed, indicating better performance for heterozygous or homozygous carriers of the A allele. These results remained significant after adjustment for known confounders of cognitive function and additional Bonferroni correction for multiple comparisons. Our study provides first results on detrimental effects of the IL-1beta-1418C-->T polymorphism on memory performance and neuroprotective effects of the TNF-alpha-308G-->A polymorphism on processing speed in elderly individuals. Further research is needed to prospectively examine changes in cognitive performance in relation to cytokine genotypes.

  14. Lipopolysaccharide induces the expression of interleukin-1alpha distinctly in different compartments of term and preterm human placentae.

    PubMed

    Huleihel, Mahmoud; Amash, Alaa; Sapir, Olga; Maor, Ester; Levy, Sharon; Katz, Miriam; Dukler, Doron; Myatt, Lesly; Holcberg, Gershon

    2004-01-01

    The aim of the study was to investigate the stimulatory effect of lipopolysaccharide (LPS) on IL-lalpha production in different compartments of term and preterm placental tissues. Homogenates from amnion, chorion, and from fetal (subchorionic placental tissues, maternal decidua, and mid-placental tissue before and after perfusion of isolated placental cotyledons of 5 term placentas and 4 placentas obtained after preterm birth (28-34 W of gestation) were examined. Isolated placental cotyledons were dually perfused LPS (100 ng/kg perfused placental tissue) was perfused into the maternal side during 10 hours. Homogenates of the samples were examined by ELISA for IL-1alpha levels, and paraffin sections of the samples were stained by immunohistochemical staining, to characterize the cellular origin of placental IL-1alpha. Paired t test and ANOVA determined statistical significance. In the homogenates, there was a tendency towards higher IL-lalpha levels in all preterm placental compartments as compared to the term compartments before perfusion. A significant increase was observed only in the chorion compartment (p = 0.035). LPS had significantly increased IL-la levels only in the decidua compartment of term placentas as compared to other placental compartments (p = 0.0004), and had decreased IL-1alpha levels in the mid-placenta (p = 0.034). In preterm placentas, addition of LPS did not affect the expression levels of IL-1alpha in either fetal or maternal compartments as determined by ELISA and immunohistochemical staining. IL-la levels in the chorion compartment of preterm placenta were significantly higher as compared to term placenta. LPS affects placental tissues of term and preterm placentas differently. Also, in the term placentas, LPS affected the different compartments differently. Thus, IL-1alpha may have a key role (as a autocrine/paracrine factor) in the regulation of normal and pathological pregnancy and parturition.

  15. Interleukin-1 receptors in mouse brain: Characterization and neuronal localization

    SciTech Connect

    Takao, T.; Tracey, D.E.; Mitchell, W.M.; De Souza, E.B. )

    1990-12-01

    The cytokine interleukin-1 (IL-1) has a variety of effects in brain, including induction of fever, alteration of slow wave sleep, and alteration of neuroendocrine activity. To examine the potential sites of action of IL-1 in brain, we used iodine-125-labeled recombinant human interleukin-1 (( 125I)IL-1) to identify and characterize IL-1 receptors in crude membrane preparations of mouse (C57BL/6) hippocampus and to study the distribution of IL-1-binding sites in brain using autoradiography. In preliminary homogenate binding and autoradiographic studies, (125I)IL-1 alpha showed significantly higher specific binding than (125I)IL-1 beta. Thus, (125I)IL-1 alpha was used in all subsequent assays. The binding of (125I)IL-1 alpha was linear over a broad range of membrane protein concentrations, saturable, reversible, and of high affinity, with an equilibrium dissociation constant value of 114 +/- 35 pM and a maximum number of binding sites of 2.5 +/- 0.4 fmol/mg protein. In competition studies, recombinant human IL-1 alpha, recombinant human IL-1 beta, and a weak IL-1 beta analog. IL-1 beta +, inhibited (125I)IL-1 alpha binding to mouse hippocampus in parallel with their relative bioactivities in the T-cell comitogenesis assay, with inhibitory binding affinity constants of 55 +/- 18, 76 +/- 20, and 2940 +/- 742 pM, respectively; rat/human CRF and human tumor necrosis factor showed no effect on (125I)IL-1 alpha binding. Autoradiographic localization studies revealed very low densities of (125I)IL-1 alpha-binding sites throughout the brain, with highest densities present in the molecular and granular layers of the dentate gyrus of the hippocampus and in the choroid plexus. Quinolinic acid lesion studies demonstrated that the (125I)IL-1 alpha-binding sites in the hippocampus were localized to intrinsic neurons.

  16. Upregulation of tissue factor in monocytes by cleaved high molecular weight kininogen is dependent on TNF-alpha and IL-1beta.

    PubMed

    Khan, Mohammad M; Liu, Yuchuan; Khan, Munir E; Gilman, Megan L; Khan, Sabina T; Bromberg, Michael; Colman, Robert W

    2010-02-01

    Inflammatory bowel disease and arthritis are associated with contact activation that results in cleavage of kininogen to form high molecular weight kininogen (HKa) and bradykinin. We have previously demonstrated that HKa can stimulate inflammatory cytokine and chemokine secretion from human monocytes. We now show that HKa can upregulate tissue factor antigen and procoagulant activity on human monocytes as a function of time (1-4 h) and HKa concentration (75-900 nM). The amino acid sequence responsible to block HKa effects is G440-H455. The HKa receptor macrophage-1 (Mac-1; CD11b18) is the binding site as shown by inhibition by a monoclonal antibody to CD11b/18. Chemical inhibitors of JNK, ERK, and p38 signaling pathways block cell signaling, as does an inhibitor to the transcription factor NF-kappaB. A combination of monoclonal antibodies to TNF-alpha and IL-1beta but neither alone inhibited the HKa induction of tissue factor. These results suggest that HKa mimics LPS by triggering a paracrine pathway in monocytes that depends on TNF-alpha and IL-1beta. Antibodies to kininogen or peptidomimetics might be a useful and safe therapy in inflammatory diseases or sepsis involving cytokines.

  17. Differential expression of the pro-inflammatory cytokines IL-1beta-1, TNFalpha-1 and IL-8 in vaccinated pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon juveniles.

    PubMed

    Fast, M D; Johnson, S C; Jones, S R M

    2007-04-01

    Laboratory-reared pink and chum salmon juveniles (approximately 2g) received an intraperitoneal injection with a commercial, unadjuvanted Aeromonas salmonicida bacterin or sterile saline. Relative to elongation factor-1A, expression levels of genes encoding the proinflammatory cytokines interleukin-1beta-1 (IL-1beta), tumour necrosis factor-alpha-1 (TNFalpha) and interleukin-8 (IL-8) in pools of kidney and liver were examined 6- and 24-h after injection. Expression of IL-1beta was significantly elevated in pink and chum salmon by 6-h, and declined in pink salmon but not in chum salmon by 24-h. Similarly, expression of TNFalpha was significantly elevated in both species at 6h and only in chum salmon after 24-h. Expression of IL-8 was significantly elevated in both species at 6- and 24-h after injection. Expression of the three proinflammatory cytokine genes differed between salmon species both in the timing and magnitude of their expression. The significance of these differences with respect to immune function in these fish requires further research.

  18. Early-life infection leads to altered BDNF and IL-1beta mRNA expression in rat hippocampus following learning in adulthood.

    PubMed

    Bilbo, Staci D; Barrientos, Ruth M; Eads, Andrea S; Northcutt, Alexis; Watkins, Linda R; Rudy, Jerry W; Maier, Steven F

    2008-05-01

    Neonatal bacterial infection in rats leads to profound hippocampal-dependent memory impairments following a peripheral immune challenge in adulthood. Here, we determined whether neonatal infection plus an immune challenge in adult rats is associated with impaired induction of brain-derived neurotrophic factor (BDNF) within the hippocampus (CA1, CA3, and dentate gyrus) following fear conditioning. BDNF is well characterized for its critical role in learning and memory. Rats injected on postnatal day 4 with PBS (vehicle) or Escherichia coli received as adults either no conditioning or a single 2min trial of fear conditioning. Half of the rats in the conditioned group then received a peripheral injection of 25mug/kg lipopolysaccharide (LPS) and all were sacrificed 1 or 4h later. Basal (unconditioned) BDNF mRNA did not differ between groups. However, following conditioning, neonatal infection with E. coli led to decreased BDNF mRNA induction in all regions compared to PBS-treated rats. This decrease in E. coli-treated rats was accompanied by a large increase in IL-1beta mRNA in CA1. Taken together, these data indicate that early infection strongly influences the induction of IL-1beta and BDNF within distinct regions of the hippocampus, which likely contribute to observed memory impairments in adulthood.

  19. Staurosporine, but not Ro 31-8220, induces interleukin 2 production and synergizes with interleukin 1alpha in EL4 thymoma cells.

    PubMed Central

    Mahon, T M; Matthews, J S; O'Neill, L A

    1997-01-01

    Protein kinase C (PKC) has been implicated in interleukin 1 (IL1) signal transduction in a number of cellular systems, either as a key event in IL1 action or as a negative regulator. Here we have examined the effects of two PKC inhibitors, staurosporine and the more selective agent Ro 31-8220, on IL1 responses in the murine thymoma line EL4.NOB-1. A 1 h pulse of staurosporine was found to strongly potentiate the induction of IL2 by IL1alpha in these cells. In contrast, neither a pulse nor prolonged incubation with Ro 31-8220 affected the response to IL1alpha. Both agents blocked the response to PMA, however. A 1 h pulse of staurosporine was also found to induce IL2 production on its own, activate the transcription factor nuclear factor kappaB (NFkappaB) and increase the expression of a NFkappaB-linked reporter gene. It synergized with IL1alpha in all of these responses. Ro 31-8220 was again without effect, although both staurosporine and Ro 31-8220 blocked the activation of NFkappaB by PMA. Finally, staurosporine caused the translocation of PKC-alpha and -epsilon, and to a lesser extent PKC-beta, but not PKC-θ or -zeta, from the cytosol to the membrane, although a similar effect was observed with Ro 31-8220. The results suggest that PKC is not involved in IL1alpha signalling in EL4 cells. Furthermore, the potentiating effect of staurosporine on IL1alpha action does not involve PKC inhibition, and is likely to be at the level of NFkappaB activation. PMID:9224627

  20. Regulation of prostaglandin production in intact fetal membranes by interleukin-1 and its receptor antagonist.

    PubMed

    Brown, N L; Alvi, S A; Elder, M G; Bennett, P R; Sullivan, M H

    1998-12-01

    There is strong evidence for the involvement of inflammatory mediators such as interleukin (IL)-1 in the biochemical mechanisms of parturition. Therefore the effects of the IL-1 family (IL-1alpha (1 ng/ml), IL-1beta (1 ng/ml) and the IL-1 receptor antagonist (IL-1ra) (10 ng/ml)) on the regulation of prostaglandin synthesis in term human fetal membranes were investigated. It was found that, after 4 h of culture, IL-1beta increased prostaglandin E2 (PGE2) output approximately twofold. This was associated with both a significant increase in cyclo-oxygenase-2 (COX-2) mRNA levels (approximately fourfold compared with control) and translocation of cytoplasmic phospholipase A2 (cPLA2) from the cytosol to the membrane fraction. IL-1alpha was less effective than IL-1beta at stimulating PGE2 production through similar mechanisms. IL-1ra had no effect on PGE2 output. However, in combination treatments, IL-1ra did not inhibit IL-1alpha- or IL-1beta-stimulated PGE2 output, and increased PGE2 production further compared with IL-1beta alone. IL-1ra decreased IL-1beta-induced COX-2 mRNA expression by about half and significantly increased cPLA2 protein levels, as detected by immunoblotting, when used alone and together with IL-1beta. These results suggest that IL-1ra has partial agonist properties when used together with IL-1alpha and IL-1beta in fetal membranes by increasing cPLA2 protein levels, which leads to an increase in the production of prostaglandins.

  1. Interleukin-1alpha and tumor necrosis factor-alpha expression during the early phases of orthodontic tooth movement in rats.

    PubMed

    Bletsa, Athanasia; Berggreen, Ellen; Brudvik, Pongsri

    2006-10-01

    Remodelling of the periodontium after application of mechanical forces constitutes the basis of clinical orthodontics and various immunoregulatory molecules are involved in this process. The aim of this study was to investigate the expression of the cytokines interleukin-1alpha (IL-1alpha) and tumor necrosis factor-alpha (TNF-alpha) in dental tissues during the early phases of orthodontic tooth movement. Eightteen male Wistar rats were used. All maxillary right first molars were moved orthodontically, with a force of 0.5 N, for 3 h, 1 d, and 3 d. The contralateral sides served as untreated controls. Parasagittal sections of the maxillary molars and the surrounding tissues were subjected to immunohistochemical staining for IL-1alpha or TNF-alpha, and were evaluated with light microscopy. IL-1alpha and TNF-alpha were expressed in the bone and periodontal ligament (PDL) along the roots of the orthodontically moved molars and in the gingiva. Increased expression of both cytokines was observed in the aforementioned areas after 1 and 3 d of tooth movement. The pulp tissue exhibited only minor changes in cytokine expression during tooth movement. The results suggest that mechanical stress results in almost immediate inflammatory reactions in various dental tissues.

  2. Enhanced IL-1{beta}-induced IL-8 production in cystic fibrosis lung epithelial cells is dependent of both mitogen-activated protein kinases and NF-{kappa}B signaling

    SciTech Connect

    Muselet-Charlier, Celine; Roque, Telma; Boncoeur, Emilie; Chadelat, Katarina; Clement, Annick; Jacquot, Jacky; Tabary, Olivier . E-mail: olivier.tabary@st-antoine.inserm.fr

    2007-06-01

    Transcription nuclear factor-{kappa}B (NF-{kappa}B) is hyperactivated in cystic fibrosis (CF) lung epithelial cells, and participates in exaggerated IL-8 production in the CF lung. We recently found that rapid activation of NF-{kappa}B occurred in a CF lung epithelial IB3-1 cell line (CF cells) upon IL-1{beta} stimulation, which was not observed in its CFTR-corrected lung epithelial S9 cell line (corrected cells). To test whether other signaling pathways such as that of mitogen-activated protein kinases (MAPKs) could be involved in IL-1{beta}-induced IL-8 production of CF cells, we investigated ERK1/2, JNK, and p38MAP signaling compared to NF-{kappa}B. Within 30 min, exposure to IL-1{beta} caused high activation of NF-{kappa}B, ERK1/2, p38MAP but not JNK in CF cells compared to corrected cells. Treatment of IL-1{beta}-stimulated CF cells with a series of chemical inhibitors of NF-{kappa}B, ERK1/2, and p38MAP, when used separately, reduced slightly IL-8 production. However, when used together, these inhibitors caused a blockade in IL-1{beta}-induced IL-8 production in CF cells. Understanding of the cross-talk between NF-{kappa}B and MAPKs signaling in CF lung epithelial cells may help in developing new therapeutics to reduce lung inflammation in patients with CF.

  3. Properties of a specific interleukin 1 (IL 1) receptor on human Epstein Barr virus-transformed B lymphocytes. Identity of receptor for IL 1-. cap alpha. and IL 1-. beta

    SciTech Connect

    Matsushima, K.; Akahoshi, T.; Yamada, M.; Furutani, Y.; Oppenheim, J.J.

    1986-01-01

    The properties of specific human interleukin 1 (IL 1) receptors on human Epstein Barr virus-transformed B lymphocytes (EBV-B) were studied. Purified human IL 1-..beta.. from a myelomonocytic cell line (THP-1) was labeled with /sup 125/I. Among four EBV-B cell lines tested, a pre-B cell type (VDS-O) specifically bound the highest amount of /sup 125/I-IL 1-..beta... The binding of /sup 125/I-IL 1-..beta.. to VDS-O cells was inhibited by F(ab)'/sub 2/ fragments of anti-human IL 1 and recombinant human IL 1-..cap alpha.., as well as by unlabeled human IL 1-..beta.. but not by recombinant lymphotoxin, recombinant tumor necrosis factor, or phorbol myristic acid, suggesting that IL 1-..cap alpha.. and IL 1-..beta.. bind specifically to the same receptor. The m.w. of IL 1 receptor on human EBV-B cells was estimated to be 60,000 by both the chemical cross-linking method and high pressure liquid chromatography (HPLC). The isoelectric point of solubilized human IL 1 receptor was 7.3 on HPLC chromatofocusing. The evidence of existence of IL 1 receptor on human EBV-B cells additionally supports the hypothesis that IL 1 may be an autocrine signal for these cells.

  4. Subcutaneous administration of collagen-polyvinylpyrrolidone down regulates IL-1beta, TNF-alpha, TGF-beta1, ELAM-1 and VCAM-1 expression in scleroderma skin lesions.

    PubMed

    Furuzawa-Carballeda, J; Krötzsch, E; Barile-Fabris, L; Alcalá, M; Espinosa-Morales, R

    2005-01-01

    In this study the effect of collagen-polyvinylpyrrolidone (collagen-PVP) vs. triamcinolone acetonide (Triam) in scleroderma (SSc) skin lesions was evaluated. Ten SSc patients were treated weekly with subcutaneous injections of 0.2 mL Triam (8 mg/mL) or 0.2 mL collagen-PVP (1.66 mg collagen). Skin biopsies were obtained from lesions before and after treatment. Tissue sections were evaluated by histology and immunohistochemistry (ELAM-1, VCAM-1, IL-1beta, TNF-alpha, TGF-beta1 and PDGF). The corticoid-treated group showed abnormal tissue architecture while the biodrug-treatment restored cutaneous appendages and type I/III collagen proportion. Cytokine and adhesion molecule expression was almost inhibited with Triam, while collagen-PVP down-regulated it. Collagen-PVP improved the tissue architecture of SSc lesions and down-regulated some proinflammatory parameters, without the side effects induced by corticoids.

  5. Exposure-dependent increases in IL-1beta, substance P, CTGF, and tendinosis in flexor digitorum tendons with upper extremity repetitive strain injury.

    PubMed

    Fedorczyk, Jane M; Barr, Ann E; Rani, Shobha; Gao, Helen G; Amin, Mamta; Amin, Shreya; Litvin, Judith; Barbe, Mary F

    2010-03-01

    Upper extremity tendinopathies are associated with performance of forceful repetitive tasks. We used our rat model of repetitive strain injury to study changes induced in forelimb flexor digitorum tendons. Rats were trained to perform a high repetition high force (HRHF) handle-pulling task (12 reaches/min at 60 +/- 5% maximum pulling force [MPF]), or a low repetition negligible force (LRNF) reaching and food retrieval task (three reaches/min at 5 +/- 5% MPF), for 2 h/day in 30 min sessions, 3 days/week for 3-12 weeks. Forelimb grip strength was tested. Flexor digitorum tendons were examined at midtendon at the level of the carpal tunnel for interleukin (IL)-1beta, neutrophil, and macrophage influx, Substance P, connective tissue growth factor (CTGF), and periostin-like factor (PLF) immunoexpression, and histopathological changes. In HRHF rats, grip strength progressively decreased, while IL-1beta levels progressively increased in the flexor digitorum peritendon (para- and epitendon combined) and endotendon with task performance. Macrophage invasion was evident in week 6 and 12 HRHF peritendon but not endotendon. Also in HRHF rats, Substance P immunoexpression increased in week 12 peritendon as did CTGF- and PLF-immunopositive fibroblasts, the increased fibroblasts contributing greatly to peritendon thickening. Endotendon collagen disorganization was evident in week 12 HRHF tendons. LRNF tendons did not differ from controls, even at 12 weeks. Thus, we observed exposure-dependent changes in flexor digitorum tendons within the carpal tunnel, including increased inflammation, nociceptor-related neuropeptide immunoexpression, and fibrotic histopathology, changes associated with grip strength decline.

  6. IL-1beta in the trigeminal subnucleus caudalis contributes to extra-territorial allodynia/hyperalgesia following a trigeminal nerve injury.

    PubMed

    Takahashi, Kouji; Watanabe, Mineo; Suekawa, Yohei; Ito, Goshi; Inubushi, Toshihiro; Hirose, Naoto; Murasaki, Kyoko; Hiyama, Shinji; Uchida, Takashi; Tanne, Kazuo

    2011-05-01

    It has been reported that the whisker pad (WP) area, which is innervated by the second branch of the trigeminal nerve, shows allodynia/hyperalgesia following transection of the mental nerve (MN: the third branch of the trigeminal nerve). However, the mechanisms of this extra-territorial pain induction still remain unclear. Glia and cytokines are known to facilitate perception of noxious input, raising a possibility that these non-neuronal elements are involved in the induction and spread of allodynia/hyperalgesia at non-injured skin territory. One day after MN transection, tactile allodynia/hyperalgesia developed on the ipsilateral WP area, which is in the non-injured skin territory. The tactile allodynia/hyperalgesia lasted for more than 56 days. In response to MN transection, astrocytes and microglia appeared to be in an activated state, and interleukin (IL)-1beta was up-regulated in astrocytes in the trigeminal subnucleus caudalis (Vc). Allodynia/hyperalgesia at WP area induced by MN transection was attenuated dose-dependently by IL-1 receptor antagonist IL-1ra (i.t., 0.05, 0.5, and 5 pg/rat). Fos-like immunoreactive (Fos-Li) neurons were observed in the Vc after non-noxious mechanical stimulation of the WP area in the rats with MN transection. Administration of IL-1ra also attenuated the number of Fos-Li neurons dose-dependently. Administration of a noncompetitive antagonist of NMDA receptors MK-801 (i.t., 5 μg/rat) reversed allodynia/hyperalgesia. IL-1 receptor type I (IL-1RI) was localized in Fos- and phospho NR1-immunoreactive neurons. These results suggest that IL-1beta in the Vc plays an important role in the development of extra-territorial tactile allodynia/hyperalgesia after MN transection.

  7. Analysis of the local kinetics and localization of interleukin-1 alpha, tumour necrosis factor-alpha and transforming growth factor-beta, during the course of experimental pulmonary tuberculosis.

    PubMed Central

    Hernandez-Pando, R; Orozco, H; Arriaga, K; Sampieri, A; Larriva-Sahd, J; Madrid-Marina, V

    1997-01-01

    A mouse model of pulmonary tuberculosis induced by the intratracheal instillation of live and virulent mycobacteria strain H37-Rv was used to examine the relationship of the histopathological findings with the local kinetics production and cellular distribution of tumour necrosis factor-alpha (TNF-alpha), interleukin-1 alpha (IL-1 alpha) and transforming growth factor-beta (TGF-beta). The histopathological and immunological studies showed two phases of the disease: acute or early and chronic or advanced. The acute phase was characterized by inflammatory infiltrate in the alveolar-capillary interstitium, blood vessels and bronchial wall with formation of granulomas. During this acute phase, which lasted from 1 to 28 days, high percentages of TNF-alpha and IL-1 alpha immunostained activated macrophages were observed principally in the interstium-intralveolar inflammatory infiltrate and in granulomas. Electron microscopy studies of these cells, showed extensive rough endoplasmic reticulum, numerous lysosomes and occasional mycobacteria. Double labelling with colloid gold showed that TNF-alpha and IL-1 alpha were present in the same cells, but were confined to separate vacuoles near the Golgi area, and mixed in larger vacuoles near to cell membrane. The concentration of TNF-alpha and IL-1 alpha as well as their respective mRNAs were elevated in the early phase, particularly at day 3 when the bacillary count decreased. A second peak was seen at days 14 and 21-28 when granulomas appeared and evolved to full maturation. In contrast, TGF-beta production and numbers of immunoreactive cells were low in comparison with the advanced phase of the disease. The chronic phase was characterized by histopathological changes indicative of more severity (i.e. pneumonia, focal necrosis and extensive interstitial fibrosis) with a decrease in the TNF-alpha and IL-1 alpha production that coincided with the highest level of TGF-beta. The bacillary counts were highest as the macrophages

  8. Punica granatum L. extract inhibits IL-1beta-induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-kappaB in human chondrocytes in vitro.

    PubMed

    Ahmed, Salahuddin; Wang, Naizhen; Hafeez, Bilal Bin; Cheruvu, Vinay K; Haqqi, Tariq M

    2005-09-01

    Interleukin (IL)-1beta induces the expression of matrix metalloproteinases (MMPs) implicated in cartilage resorption and joint degradation in osteoarthritis (OA). Pomegranate fruit extract (PFE) was recently shown to exert anti-inflammatory effects in different disease models. However, no studies have been undertaken to investigate whether PFE constituents protect articular cartilage. In the present studies, OA chondrocytes or cartilage explants were pretreated with PFE and then stimulated with IL-1beta at different time points in vitro. The amounts of proteoglycan released were measured by a colorimetric assay. The expression of MMPs, phosphorylation of the inhibitor of kappaBalpha (IkappaBalpha) and mitogen-activated protein kinases (MAPKs) was determined by Western immunoblotting. Expression of mRNA was quantified by real-time PCR. MAPK enzyme activity was assayed by in vitro kinase assay. Activation of nuclear factor-kappaB (NF-kappaB) was determined by electrophoretic mobility shift assay. PFE inhibited the IL-1beta-induced proteoglycan breakdown in cartilage explants in vitro. At the cellular level, PFE (6.25-25 mg/L) inhibited the IL-1beta-induced expression of MMP-1, -3, and -13 protein in the medium (P < 0.05) and this was associated with the inhibition of mRNA expression. IL-1beta-induced phosphorylation of p38-MAPK, but not that of c-Jun-N-terminal kinase or extracellular regulated kinase, was most susceptible to inhibition by low doses of PFE, and the addition of PFE blocked the activity of p38-MAPK in a kinase activity assay. PFE also inhibited the IL-1beta-induced phosphorylation of IkappaBalpha and the DNA binding activity of the transcription factor NF-kappaB in OA chondrocytes. Taken together, these novel results indicate that PFE or compounds derived from it may inhibit cartilage degradation in OA and may also be a useful nutritive supplement for maintaining joint integrity and function.

  9. Exposure to di(n-butyl)phthalate and benzo(a)pyrene alters IL-1{beta} secretion and subset expression of testicular macrophages, resulting in decreased testosterone production in rats

    SciTech Connect

    Zheng Shanjun; Tian Huaijun; Cao Jia; Gao Yuqi

    2010-10-01

    Di(n-butyl)phthalate (DBP) and benzo(a)pyrene (BaP) are environmental endocrine disruptors that are potentially hazardous to humans. These chemicals affect testicular macrophage immuno-endocrine function and testosterone production. However, the underlying mechanisms for these effects are not fully understood. It is well known that interleukin-1 beta (IL-1{beta}), which is secreted by testicular macrophages, plays a trigger role in regulating Leydig cell steroidogenesis. The purpose of this study was to reveal the effects of co-exposure to DBP and BaP on testicular macrophage subset expression, IL-1{beta} secretion and testosterone production. Adult male Sprague-Dawley rats were randomly divided into seven groups; two groups received DBP plus BaP (DBP + BaP: 50 + 1 or 250 + 5 mg/kg/day) four groups received DBP or BaP alone (DBP: 50 or 250 mg/kg/day; BaP: 1 or 5 mg/kg/day), and one group received vehicle alone (control). After co-exposure for 90 days, the relative expression of macrophage subsets and their functions changed. ED2{sup +} testicular macrophages (reactive with a differentiation-related antigen present on the resident macrophages) were activated and IL-1{beta} secretion was enhanced. DBP and BaP acted additively, as demonstrated by greater IL-1{beta} secretion relative to each compound alone. These observations suggest that exposure to DBP plus BaP exerted greater suppression on testosterone production compared with each compound alone. The altered balance in the subsets of testicular macrophages and the enhanced ability of resident testicular macrophages to secrete IL-1{beta}, resulted in enhanced production of IL-1{beta} as a potent steroidogenesis repressor. This may represent an important mechanism by which DBP and BaP repress steroidogenesis.

  10. In vitro stimulation of stage-specific deoxyribonucleic acid synthesis in rat seminiferous tubule segments by interleukin-1. alpha

    SciTech Connect

    Parvinen, M.; Soeder, O.M.; Mali, P.; Froeysa, B.R.; Ritzen, E.M. )

    1991-09-01

    Levels of rat testicular interleukin-1-like factor (tIL-1) have been shown to correlate with DNA synthetic activity during the cycle of the rat seminiferous epithelium, suggesting its role as a spermatogonial or meiotic growth factor. To explore this further, a new in vitro model system was developed. Rat seminiferous tubule segments from stages I, V, VIIa, and VIII-IX of the cycle were isolated by transillumination-assisted microdissection, cultured in chemically defined serum-free medium supplemented with human recombinant IL-1 {alpha}, and labeled with (3H)thymidine. During incubation, spontaneous progression of spermatogenesis was noted. Inactive stage VIIa tubule segments differentiated to stage VIII and initiated DNA synthesis, and concomitantly started to secrete IL-1-like factor. DNA synthesis of stages VIII-IX ceased through differentiation of spermatocytes to leptotene-zygotene (stages XII-XIII of the cycle). IL-1 {alpha} stimulated DNA synthesis significantly in spermatogonia of stage I. Meiotic DNA synthesis at stage VIIa was stimulated (48 h/34 C) and maintained at stages VIII-IX (48 h/34 C). IL-1 {alpha} seems to act as a regulator of spermatogenic DNA synthesis in both mitotic and meiotic phases. It has mainly stimulating and maintaining effects, but it may also be inhibitory under certain conditions.

  11. IL-1beta induces stabilization of IL-8 mRNA in malignant breast cancer cells via the 3' untranslated region: Involvement of divergent RNA-binding factors HuR, KSRP and TIAR.

    PubMed

    Suswam, Esther A; Nabors, L Burt; Huang, Yuanyuan; Yang, Xiuhua; King, Peter H

    2005-03-01

    IL-8 plays an integral role in promoting the malignant phenotype in breast cancer, and its production is directly influenced by inflammatory cytokines in the tumor microenvironment. Here, we show that activation of IL-1beta receptors on malignant HS578t and MDA-MB-231 breast cancer cells strongly induces IL-8 expression and that RNA stabilization is persistently activated at least 12-24 hr after stimulation. SB 203580 and rapamycin reversed the RNA stabilization effect of IL-1beta in a dose-dependent manner, suggesting involvement of the p38/MAP kinase and mTOR pathways. A luciferase reporter assay indicated that the stabilization effect was dependent on cis elements in the 3'-untranslated region (UTR) of the IL-8 transcript. By UV cross-linking, we identified multiple cellular factors that interact with the IL-8 3'UTR, ranging 34-76 kDa. Immunoprecipitation analysis indicated that HuR, KSRP and TIAR bound to one or more loci in the 3'UTR. While the cross-linking patterns were similar, quantitative immunoprecipitation of native IL-8 RNA from IL-1beta-stimulated cytoplasmic extract revealed a 20-fold greater association of transcript with the stabilizing factor HuR vs. the destabilizing factor KSRP. In conclusion, IL-1beta is a potent cytokine stimulus for IL-8 RNA stabilization in breast cancer cells, possibly by enhanced binding of cytoplasmic HuR to the 3'UTR.

  12. Social stress enhances IL-1beta and TNF-alpha production by Porphyromonas gingivalis lipopolysaccharide-stimulated CD11b+ cells.

    PubMed

    Bailey, Michael T; Kinsey, Steven G; Padgett, David A; Sheridan, John F; Leblebicioglu, Binnaz

    2009-09-07

    Psychological stress is associated with an increased expression of markers of peripheral inflammation, and there is a growing literature describing a link between periodontal pathogens and systemic inflammation. The hypothesis of the present work is that exposing mice to the social stressor, called social disruption (SDR), would enhance the inflammatory response to lipopolysaccharide (LPS) derived from the oral pathogen, Porphyromonas gingivalis. Mice were exposed to SDR for 2h per day on 6 consecutive days. On the morning following the last cycle of SDR, mice were tested for anxiety-like behavior in the open field test and novel object test. The mice were sacrificed the following day and their spleens harvested. Spleen cells were stimulated with LPS derived from P. gingivalis in the absence or presence of increasing doses of corticosterone. Social disruption resulted in anxiety-like behavior, and the production of IL-1beta and TNF-alpha was significantly higher in spleen cells from mice exposed to SDR in comparison to levels from non-stressed control mice. In addition, the viability of spleen cells from mice exposed to SDR was significantly greater than the viability of cells from non-stressed control mice, even in the presence of high doses of corticosterone. The use of cultures enriched for CD11b+ cells indicated that the stressor was affecting the activity of splenic myeloid cells. This study demonstrates that social stress enhances the inflammatory response to an oral pathogen and could provide a critical clue in the reported associations between stress, inflammation, and oral pathogens.

  13. A unique downstream estrogen responsive unit mediates estrogen induction of proteinase inhibitor-9, a cellular inhibitor of IL-1beta- converting enzyme (caspase 1).

    PubMed

    Krieg, S A; Krieg, A J; Shapiro, D J

    2001-11-01

    Recently, proteinase inhibitor 9 (PI-9) was identified as the first endogenous inhibitor of caspase 1 (IL-1beta-converting enzyme). The regulation of PI-9 expression, therefore, has great importance in the control of inflammatory processes. We reported that PI-9 mRNA and protein are rapidly and directly induced by estrogen in human liver cells. Using transient transfections to assay PI-9 promoter truncations and mutations, we demonstrate that this strong estrogen induction is mediated by a unique downstream estrogen responsive unit (ERU) approximately 200 nucleotides downstream of the transcription start site. Using primers flanking the ERU in chromatin immunoprecipitation assays, we demonstrate estrogen-dependent binding of ER to the cellular PI-9 promoter. The ERU consists of an imperfect estrogen response element (ERE) palindrome immediately adjacent to a direct repeat containing two consensus ERE half-sites separated by 13 nucleotides (DR13). In transient transfections, all four of the ERE half-sites in the imperfect ERE and in the DR13 were important for estrogen inducibility. Transfected chicken ovalbumin upstream transcription factor I and II down-regulated estrogen-mediated expression from the ERU. EMSAs using purified recombinant human ERalpha demonstrate high-affinity binding of two ER complexes to the ERU. Further EMSAs showed that one ER dimer binds to an isolated DR13, supporting the view that one ER dimer binds to the imperfect ERE and one ER dimer binds to DR13. Deoxyribonuclease I footprinting showed that purified ER protected all four of the half-sites in the ERU. Our finding that a direct repeat can function with an imperfect ERE palindrome to confer estrogen inducibility on a native gene extends the repertoire of DNA sequences able to function as EREs.

  14. Alveolar macrophages stimulated with titanium dioxide, chrysotile asbestos, and residual oil fly ash upregulate the PDGF receptor-alpha on lung fibroblasts through an IL-1beta-dependent mechanism.

    PubMed

    Lindroos, P M; Coin, P G; Badgett, A; Morgan, D L; Bonner, J C

    1997-03-01

    Enhanced proliferation of fibroblasts is a primary characteristic of lung fibrosis. Macrophage-secreted platelet-derived growth factor (PDGF) is a potent mitogen and chemoattractant for lung fibroblasts. The magnitude of the fibroblast PDGF response is dependent on the number of PDGF receptor alpha (PDGF-R alpha) relative to PDGF-R beta at the cell surface. We recently reported that upregulation of the PDGF-R alpha subtype by interleukin (IL)-1beta results in enhanced lung fibroblast proliferation in response to PDGF-AA, PDGF-AB, and PDGF-BB whereas transforming growth factor (TGF)-beta1 has the opposite effect. Both IL-1beta and TGF-beta1 are produced by particle-activated macrophages in vivo and in vitro. We studied the net effect of macrophage conditioned medium (MOCM), which contains both IL-1beta and TGF-beta1, on the expression of the lung fibroblast PDGF receptor system. MOCM obtained from unstimulated, titanium dioxide (TiO2)-, chrysotile asbestos-, or residual oil fly ash (ROFA)-exposed macrophages in vitro increased [125I]PDGF-AA binding 3-, 6-, 6-, and 20-fold, respectively. These increases correlated with increased PDGF-R alpha mRNA and protein expression as shown by northern and western assays. PDGF-AB and -BB-stimulated [3H]thymidine incorporation by fibroblasts was enhanced 5-, 5-, 10-, and 20-fold by pretreatment with MOCM from unstimulated, TiO2-, asbestos-, and ROFA-exposed macrophages, respectively. [125I]PDGF-AA binding experiments using the IL-1 receptor antagonist blocked the upregulatory effect of all MOCM samples. Latent TGF-beta1 present in MOCM was activated by acid treatment, inhibiting upregulation by approximately 60%, a result similar to experiments with IL-1beta and TGF-beta1 mixtures. Treatment with a TGF-beta neutralizing antibody restored full upregulatory activity to acidified MOCM. Thus activated macrophages increase lung fibroblast PDGF-R alpha primarily due to the secretion of IL-1beta. Intratracheal instillation of ROFA

  15. Induction of interleukin-1 and -6 in human gingival fibroblast cultures stimulated with Bacteroides lipopolysaccharides.

    PubMed Central

    Takada, H; Mihara, J; Morisaki, I; Hamada, S

    1991-01-01

    Normal human gingival fibroblasts stimulated in vitro by lipopolysaccharides (LPS) from oral Bacteroides species produced cell-free and cell-associated thymocyte-activating factors (TAF). Neutralization assays using antisera to human interleukin-1 alpha (HuIL-1 alpha), HuIL-1 beta, and HuIL-6 revealed that cell-free TAF was attributable mainly to IL-1 beta and that IL-6 augmented the TAF activity of IL-1 beta in the culture supernatant. Another factor(s), however, may also be involved in cell-free TAF. By contrast, the active entity of cell-associated TAF was ascribed to IL-1 alpha alone. Furthermore, IL-6 was detected mainly in the supernatant of fibroblast cultures stimulated with Bacteroides LPS. Fibroblasts pretreated with natural human beta or gamma interferon, but not those pretreated with alpha interferon, synthesized higher levels of cell-associated IL-1 alpha in response to stimulation by Bacteroides LPS; however, no interferons exhibited direct IL-1-inducing activity or synergistic IL-1-inducing activity with LPS. Endogenously induced beta interferon was suggested to be necessary for fibroblasts to produce cell-associated IL-1 alpha in response to Bacteroides LPS. PMID:1702762

  16. Overexpression of IL-1beta by adenoviral-mediated gene transfer in the rat brain causes a prolonged hepatic chemokine response, axonal injury and the suppression of spontaneous behaviour.

    PubMed

    Campbell, Sandra J; Deacon, Rob M J; Jiang, Yanyan; Ferrari, Carina; Pitossi, Fernando J; Anthony, Daniel C

    2007-08-01

    Acute brain injury induces early and transient hepatic expression of chemokines, which amplify the injury response and give rise to movement of leukocytes into the blood and subsequently the brain and liver. Here, we sought to determine whether an ongoing injury stimulus within the brain would continue to drive the hepatic chemokine response and how it impacts on behaviour and CNS integrity. We generated chronic IL-1beta expression in rat brain by adenoviral-mediated gene transfer, which resulted in chronic leukocyte recruitment, axonal injury and prolonged depression of spontaneous behaviour. IL-1beta could not be detected in circulating blood, but a chronic systemic response was established, including extended production of hepatic and circulating chemokines, leukocytosis, liver damage, weight loss, decreased serum albumin and marked liver leukocyte recruitment. Thus, hepatic chemokine synthesis is a feature of active chronic CNS disease and provides an accessible target for the suppression of CNS inflammation.

  17. Activation of ROS/NF-{kappa}B and Ca{sup 2+}/CaM kinase II are necessary for VCAM-1 induction in IL-1{beta}-treated human tracheal smooth muscle cells

    SciTech Connect

    Luo, S.-F.; Chang, C.-C.; Lee, I-T.; Lee, C.-W.; Lin, W.-N.; Lin, C.-C.; Yang, C.-M.

    2009-05-15

    Histone acetylation regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) plays a critical role in the expression of inflammatory genes, such as vascular cell adhesion molecule-1 (VCAM-1). Oxidative processes have been shown to induce VCAM-1 expression. Here, we investigated the mechanisms underlying IL-1{beta}-induced VCAM-1 expression in human tracheal smooth muscle cells (HTSMCs). Our results showed that IL-1{beta} enhanced HTSMCs-monocyte adhesion through up-regulation of VCAM-1, which was inhibited by pretreatment with selective inhibitors of PKC{alpha} (Goe6976), c-Src (PP1), NADPH oxidase [diphenylene iodonium (DPI) and apocynin (APO)], intracellular calcium chelator (BAPTA/AM), PI-PLC (U73122), CaM (calmidazolium chloride), CaM kinase II (KN62), p300 (garcinol), NF-{kappa}B (Bay11-7082), HDAC (trichostatin A), and ROS scavenger [N-acetyl-L-cysteine (NAC)] or transfection with siRNAs of MyD88, PKC{alpha}, Src, p47{sup phox}, p300, and HDAC4. Moreover, IL-1{beta} stimulated NF-{kappa}B and CaMKII phosphorylation through MyD88-dependent PI-PLC/PKC{alpha}/c-Src/ROS and PI-PLC/Ca{sup 2+}/CaM pathways, respectively. Activation of NF-{kappa}B and CaMKII may eventually lead to the acetylation of histone residues and phosphorylation of histone deacetylases. These findings suggested that IL-1{beta} induced VCAM-1 expression via these multiple signaling pathways in HTSMCs. Blockade of these pathways may reduce monocyte adhesion via VCAM-1 suppression and attenuation of the inflammatory responses in airway diseases.

  18. Novel aspects of cytokine action in porcine uterus--endometrial and myometrial production of estrone (E1) in the presence of interleukin 1beta (IL1beta), interleukin 6 (IL6) and tumor necrosis factor (TNFalpha)--in vitro study.

    PubMed

    Franczak, Anita; Wojciechowicz, Bartosz; Kotwica, Genowefa

    2013-01-01

    Interleukin 1beta (IL-1beta), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFalpha) increased (P < 0.05) estrone (E1) release from endometrial explants of pregnant pigs on days 10 to 11 after 12 h of tissue incubation in vitro with cytokines and on days 12 to 13 after 6 h of incubation. After 12 h of incubation on days 12 to 13 and 15 to 16 of pregnancy only IL6 increased E1 release. In non-gravid pigs IL1beta, IL6 and TNFalpha increased endometrial E1 release only on days 12 to 13 of the estrous cycle. The cytokines did not affect myometrial E1 release on days 10 to 11 and 15 to 16 ofpregnancy. On days 12 to 13 of pregnancy myometrial release of E1 was markedly increased in response to IL 1beta and IL6. In cyclic pigs only IL6 after 6 h of in vitro incubation increased myometrial E1 release on days 12 to 13 and 15 to 16. Progesterone (P4) increased both endometrial and myometrial release of E1 during the studied days of pregnancy and the estrous cycle, except for endometrial release on days 10 to 11 and 15 to 16 of the estrous cycle after 6 h of in vitro incubation. The results demonstrated that these cytokines may regulate the release of E1 both from the endometrium and myometrium harvested from gravid and non-gravid pigs. The results showed a pivotal role of IL 1beta, IL6 and TNFalpha in the regulation of E1 release in the porcine uterus in vitro.

  19. Myeloid cell death associated with Toll-like receptor 7/8-mediated inflammatory response. Implication of ASK1, HIF-1 alpha, IL-1 beta and TNF-alpha.

    PubMed

    Nicholas, Sally A; Oniku, Abraham E; Sumbayev, Vadim V

    2010-01-01

    Programmed cell death or apoptosis is an important part of the host innate immune defence, especially against ssRNA viruses (influenza virus, HIV-1, ebola virus, hepatitis C virus and many others). Viral ssRNA is recognised by endosomal Toll-like receptors 7 and 8 (TLR7/8) which induce further stages of immune defence against these pathogens. Some of the immune cells die because of inflammatory stress allowing for the selection of those cells which are resistant to stress-induced apoptosis and which are used in further stages of the host immune response. On the other hand, apoptosis could be used as an instrument to suppress the function of activated inflammatory cells. However, the mechanisms underlying death of the inflammatory cells associated with stress induced by ligands of TLR7/8 remain unclear. In this study we have found that programmed death of human myeloid cells from different cell lines associated with ligand-induced TLR7/8-mediated inflammatory stress depends on activation of apoptosis signal-regulating kinase 1 (ASK1). This enzyme is, however, not required for the production of pro-inflammatory cytokines - TNF-α and IL-1β. We have found that released IL-1β and TNF-α are involved in apoptosis of myeloid cells associated with TLR7/8-mediated inflammatory stress. The pro-apoptotic effect of released TNF-α in this case is much lower compared to that of IL-1β.

  20. Regulation of expression of Sertoli cell glucose transporters 1 and 3 by FSH, IL1 beta, and bFGF at two different time-points in pubertal development.

    PubMed

    Galardo, María Noel; Riera, María Fernanda; Pellizzari, Eliana Herminia; Chemes, Héctor Edgardo; Venara, Marcela Cristina; Cigorraga, Selva Beatriz; Meroni, Silvina Beatriz

    2008-11-01

    Sertoli cells are necessary to provide adequate levels of lactate for germ cell development. Lactate production is hormonally regulated by follicle-stimulating hormone (FSH) and by a large set of intratesticular regulators such as interleukin-1 beta (IL1 beta) and basic fibroblast growth factor (bFGF). Little is known regarding the critical step in the production of this metabolite, viz., the entrance of glucose into the cell as mediated by GLUTs. The aim of the present study was to investigate the expression of the glucose transporters GLUT1 and GLUT3 and its possible regulation by FSH, IL1 beta, and bFGF in Sertoli cells at two different time-points in sexual development. Sertoli cells retaining the ability to undergo mitosis (obtained from 8-day-old rats) and in the process of terminal differentiation (obtained from 20-day-old rats) were examined. Testicular tissue sections and Sertoli cell monolayers obtained from 8- and 20-day-old rats showed positive immunostaining for GLUT1 and GLUT3 proteins. GLUT1 and GLUT3 mRNA levels were detected at the two ages analyzed. Treatment of Sertoli cells obtained from 8- and 20-day-old rats with FSH, IL1 beta, and bFGF for various periods of time (12, 24, and 48 h) increased GLUT1 without changing GLUT3 mRNA levels. Our results thus show that Sertoli cells express GLUT1 and GLUT3 throughout pubertal development, and that, in Sertoli cells, only GLUT1 is regulated by hormones during pubertal development. Hormonal regulation of GLUT1 expression and consequently glucose uptake and lactate production may be a key molecular event in the regulation of spermatogenesis by hormones.

  1. Characterization of the pharmacokinetics of human recombinant erythropoietin in blood and brain when administered immediately after lateral fluid percussion brain injury and its pharmacodynamic effects on IL-1beta and MIP-2 in rats.

    PubMed

    Lieutaud, Thomas; Andrews, Peter J D; Rhodes, Jonathan K J; Williamson, Robert

    2008-10-01

    This study sought to determine the bio-availability of recombinant human erythropoietin (EPO) in the brain and blood and its effects on the cerebral concentrations of the inflammatory mediators interleukin-1beta (IL-1beta) and macrophage-inflammation protein-2 (MIP-2) following lateral fluid percussion brain injury (FPI) in the rat. After induction of moderate FPI (1.6-1.8 atm), EPO was injected intraperitoneally (IP) or intravenously (IV) at doses of 1000-5000 U/kg in a randomized and blinded manner. Animals were then sacrificed at time points (4, 8, 12, 24 h) post-trauma, and the brain concentrations of EPO, IL-1beta, and MIP-2 were determined. EPO administration leads to a dose-dependent increase in the brain concentration of the drug; however, this could only be detected at doses of 3000 and 5000 U/kg. The cerebral concentration peaked in the first 4 h following trauma. EPO concentrations were significantly higher and decreased more slowly in the traumatized cortex compared to the contralateral side (p<0.0125). IV EPO (5000 U/kg) produced slightly higher concentrations of EPO than same doses injected IP; however, this was not significant. At a dose of 5000 U/kg, EPO significantly reduced the increase in IL-1beta at 8 and 12 h in both cortical sides. It also reduced the increase in MIP-2 but only after 8 h, on the contralateral side and after 12 h on the ipsilateral side. Our results suggest that EPO crosses the blood-brain barrier (BBB) by 4 h after trauma and is localized primarily in the traumatized cortex. Further, it has biological efficacy at 8 h on several inflammatory proteins, yet must be employed at high doses to cross the BBB.

  2. Increased intestinal protein synthesis during sepsis and following the administration of tumour necrosis factor alpha or interleukin-1 alpha.

    PubMed Central

    von Allmen, D; Hasselgren, P O; Higashiguchi, T; Frederick, J; Zamir, O; Fischer, J E

    1992-01-01

    The influence of sepsis on intestinal protein synthesis was studied in rats. Sepsis was induced by caecal ligation and puncture (CLP); control rats were sham-operated. Protein synthesis was measured in vivo in the jejunum and ileum following a flooding dose of [14C]leucine. At 8 h after CLP the protein synthesis rate was increased by approx. 15% in jejunal mucosa, and at 16 h after CLP, the protein synthesis rate was increased by 50-60% in the mucosa and seromuscular layer of both jejunum and ileum. In a second series of experiments, rats were treated with recombinant tumour necrosis factor alpha (rTNF alpha) or recombinant interleukin-1 alpha (rIL-1 alpha) administered at a total dose of 300 micrograms/kg body weight over 16 h. Control rats received corresponding volumes of solvent. Treatment with rTNF alpha resulted in an approx. 25% increase in mucosal protein synthesis in jejunum. Following treatment with rIL-1 alpha, protein synthesis increased by 25% in jejunal mucosa and almost doubled in ileal mucosa. The results suggest that sepsis stimulates intestinal protein synthesis and that this response may, at least in part, be mediated by TNF and/or IL-1. PMID:1530589

  3. IL-1: discoveries, controversies and future directions.

    PubMed

    Dinarello, Charles A

    2010-03-01

    Although there has been a great amount of progress in the 25 years since the first reporting of the cDNA for IL-1alpha and IL-1beta, the history of IL-1 goes back to the early 1940s. In fact, the entire field of inflammatory cytokines, TLR and the innate immune response can be found in the story of IL-1. This Viewpoint follows the steps from the identification of the fever-inducing activities of "soluble factors" produced by endotoxin-stimulated leukocytes through to the discovery of cryopyrin and the caspase-1 inflammasome and on to the clinical benefits of anti-IL-1beta-based therapeutics. It also discusses some of the current controversies regarding the activation of the inflammasome. The future of novel anti-inflammatory agents to combat chronic inflammation is based, in part, on the diseases that are uniquely responsive to anti-IL-1beta, which is surely a reason to celebrate the 25th anniversary of the cloning of IL-1alpha and IL-1beta.

  4. Dysregulation of in vitro cytokine production by monocytes during sepsis.

    PubMed Central

    Munoz, C; Carlet, J; Fitting, C; Misset, B; Blériot, J P; Cavaillon, J M

    1991-01-01

    The production by monocytes of interleukin-1 alpha (IL-1 alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF alpha) in intensive care unit (ICU) patients with sepsis syndrome (n = 23) or noninfectious shock (n = 6) is reported. Plasma cytokines, cell-associated cytokines within freshly isolated monocytes and LPS-induced in vitro cytokine production were assessed at admission and at regular intervals during ICU stay. TNF alpha and IL-6 were the most frequently detected circulating cytokines. Despite the fact that IL-1 alpha is the main cytokine found within monocytes upon in vitro activation of cells from healthy individuals, it was very rarely detected within freshly isolated monocytes from septic patients, and levels of cell-associated IL-1 beta were lower than those of TNF alpha. Cell-associated IL-1 beta and TNF alpha were not correlated with corresponding levels in plasma. Upon LPS stimulation, we observed a profound decrease of in vitro IL-1 alpha production by monocytes in all patients, and of IL-1 beta, IL-6, and TNF alpha in septic patients. This reduced LPS-induced production of cytokines was most pronounced in patients with gram-negative infections. Finally, monocytes from survival patients, but not from nonsurvival ones recovered their capacity to produce normal amounts of cytokines upon LPS stimulation. In conclusion, our data indicate an in vivo activation of circulating monocytes during sepsis as well as in noninfectious shock and suggest that complex regulatory mechanisms can downregulate the production of cytokines by monocytes during severe infections. Images PMID:1939659

  5. Phenytoin potentiates interleukin-1-induced prostaglandin biosynthesis in human gingival fibroblasts.

    PubMed Central

    Modéer, T.; Brunius, G.; Iinuma, M.; Lerner, U. H.

    1992-01-01

    1. The effect of phenytoin (PHT) on prostaglandin E2 (PGE2) biosynthesis in human gingival fibroblasts stimulated by interleukin-1 (IL-1 alpha, IL-1 beta) or by tumour necrosis factor alpha (TNF alpha) was studied. 2. IL-1 alpha (1.5-6.0 ng ml-1) and IL-1 beta (30-300 pg ml-1), dose-dependently, stimulated PGE2 formation, in 24 h cultures, with IL-beta being the most potent agonist. 3. PHT (2.5-20 micrograms ml-1) did not induce PGE2 formation itself but potentiated IL-1 alpha- and IL-1 beta-induced PGE2 formation in the gingival fibroblasts in a manner dependent on the concentrations of both IL-1 and PHT. 4. IL-1 beta (0.1-1.0 ng ml-1) induced release of [3H]-arachidonic acid ([3H]-AA) from prelabelled fibroblasts that was potentiated by PHT (20 micrograms ml-1). 5. TNF-alpha (greater than or equal to 0.01 micrograms ml-1) significantly stimulated the biosynthesis of PGE2 by a process that was potentiated by PHT. 6. Addition of exogenous arachidonic acid (AA) (greater than or equal to 1 microM) caused an increase of PGE2 formation in the fibroblasts that was not potentiated by PHT (20 micrograms ml-1). 7. The results indicate that treatment with PHT results in upregulation of prostaglandin biosynthesis in gingival fibroblasts challenged with IL-1 or TNF alpha, at least partly due to enhanced level of phospholipase A2 activity. PMID:1504741

  6. Involvement of pro- and antinociceptive factors in minocycline analgesia in rat neuropathic pain model.

    PubMed

    Rojewska, Ewelina; Popiolek-Barczyk, Katarzyna; Jurga, Agnieszka M; Makuch, Wioletta; Przewlocka, Barbara; Mika, Joanna

    2014-12-15

    In neuropathic pain the repeated minocycline treatment inhibited the mRNA and protein expression of the microglial markers and metalloproteinase-9 (MMP-9). The minocycline diminished the pronociceptive (IL-6, IL-18), but not antinociceptive (IL-1alpha, IL-4, IL-10) cytokines at the spinal cord level. In vitro primary cell culture studies have shown that MMP-9, TIMP-1, IL-1beta, IL-1alpha, IL-6, IL-10, and IL-18 are of microglial origin. Minocycline reduces the production of pronociceptive factors, resulting in a more potent antinociceptive effect. This change in the ratio between pro- and antinociceptive factors, in favour of the latter may be the mechanism of minocycline analgesia in neuropathy.

  7. Interleukin-6 production by peritoneal mesothelial cells and its regulation by inflammatory factors in rats administered carbon tetrachloride intraperitoneally

    SciTech Connect

    Yamaji, Kenzaburo; Ohnishi, Ken-ichi; Zuinen, Ryoji; Ochiai, Yosuke; Chikuma, Toshiyuki; Hojo, Hiroshi

    2008-01-01

    We previously reported that a high level of interleukin-6 (IL-6), which is protective against CCl{sub 4}-induced hepatotoxicity, is produced in the peritoneal cavity in the early period after ip carbon tetrachloride (CCl{sub 4}) administration. The objective of this study was to identify the tissues and cells involved in IL-6 production and clarify the mechanisms underlying its regulation. IL-6 mRNA levels increased significantly in the serous membranes of the mesentery and peritoneum, but not in the parenchymal organs including liver, kidney and spleen, 3 h after ip CCl{sub 4} administration. Peritoneal mesothelial cells (PMCs), a major cell population in serous membranes, were isolated from rat peritoneal walls by trypsin digestion and cultured with peritoneal exudate fluid (PEF) from CCl{sub 4}-administered rats. PMCs produced a high level of IL-6 in the presence of PEF recovered 0.5 h after ip CCl{sub 4} administration. Analyses of PEF revealed that the levels of prostaglandin E{sub 2} (PGE{sub 2}), histamine, IL-1{alpha}, IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) increased immediately after ip CCl{sub 4} administration. These inflammatory factors, except for histamine, stimulated IL-6 production to varying degrees, in the following order: IL-1{alpha} > IL-1{beta} > TNF-{alpha} >> PGE{sub 2}. In summary, the present study indicates that the high level of IL-6 observed in the rat peritoneal cavity after ip CCl{sub 4} administration is at least partially produced by PMCs stimulated cooperatively with IL-1{alpha}, IL-1{beta}, TNF-{alpha} and PGE{sub 2}. These inflammatory factors may be released from tissues or cells either stimulated or injured directly by CCl{sub 4}.

  8. ICAM-1-induced expression of proinflammatory cytokines in astrocytes: involvement of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways.

    PubMed

    Lee, S J; Drabik, K; Van Wagoner, N J; Lee, S; Choi, C; Dong, Y; Benveniste, E N

    2000-10-15

    ICAM-1 is a transmembrane glycoprotein of the Ig superfamily involved in cell adhesion. ICAM-1 is aberrantly expressed by astrocytes in CNS pathologies such as multiple sclerosis, experimental allergic encephalomyelitis, and Alzheimer's disease, suggesting a possible role for ICAM-1 in these disorders. ICAM-1 has been shown to be important for leukocyte diapedesis through brain microvessels and subsequent binding to astrocytes. However, other functional roles for ICAM-1 expression on astrocytes have not been well elucidated. Therefore, we investigated the intracellular signals generated upon ICAM-1 engagement on astrocytes. ICAM-1 ligation by a mAb to rat ICAM-1 induced mRNA expression of proinflammatory cytokines such as IL-1alpha, IL-1beta, IL-6, and TNF-alpha. Examination of cytokine protein production revealed that ICAM-1 ligation results in IL-6 secretion by astrocytes, whereas IL-1beta and IL-1alpha protein is expressed intracellularly in astrocytes. The involvement of mitogen-activated protein kinases (MAPKs) in ICAM-1-mediated cytokine expression in astrocytes was tested, as the MAPK extracellular signal-regulated kinase (ERK) was previously shown to be activated upon ICAM-1 engagement. Our results indicate that ERK1/ERK2, as well as p38 MAPK, are activated upon ligation of ICAM-1. Studies using pharmacological inhibitors demonstrate that both p38 MAPK and ERK1/2 are involved in ICAM-1-induced IL-6 expression, whereas only ERK1/2 is important for IL-1alpha and IL-1beta expression. Our data support the role of ICAM-1 on astrocytes as an inflammatory mediator in the CNS and also uncover a novel signal transduction pathway through p38 MAPK upon ICAM-1 ligation.

  9. IL-1 binds to high affinity receptors on human osteosarcoma cells and potentiates prostaglandin E2 stimulation of cAMP production

    SciTech Connect

    Rodan, S.B.; Wesolowski, G.; Chin, J.; Limjuco, G.A.; Schmidt, J.A.; Rodan, G.A. )

    1990-08-15

    IL-1 is a potent bone resorbing agent. Its mechanism of action is unknown, but the presence of osteoblasts was shown to be necessary for IL-1 stimulation of bone resorption by isolated osteoclasts. This study examines the presence of IL-1R and IL-1 effects in osteoblastic cells from a clonal human osteosarcoma cell line, Saos-2/B-10. We found that the binding affinity and the number of binding sites increases substantially during the postconfluent stage. Scatchard and curve-fitting analysis revealed one class of high affinity binding sites, with Kd/Ki's of 40 +/- 17 pM (mean +/- SD) for IL-1 alpha (n = 5) and 9 +/- 7 pM for IL-1 beta (n = 5) and 2916 +/- 2438 (n = 6) receptors/cell. Incubation of the cells with 125I-IL-1 alpha (100 pM) at 4 degrees C, followed by incubation at 37 degrees C up to 4 h, revealed internalization of receptor-bound IL-1 alpha. Chemical cross-linking studies showed that the IL-1R in Saos-2/B-10 cells had a molecular mass of approximately 80 kDa. To assess the biologic effect of IL-1 in Saos-2/B-10 cells, we determined PGE2 content and adenylate cyclase activity. Although IL-1 had no effect on PGE2 synthesis, both IL-1 alpha and IL-1 beta enhanced PGE2 stimulation of adenylate cyclase two- to four-fold in a dose-dependent manner. The half-maximal effect for IL-1 alpha was seen at 8 to 10 pM and for IL-1 beta at 0.6 to 1.8 pM. IL-1 did not enhance basal adenylate cyclase or stimulation by parathyroid hormone, isoproterenol, or forskolin. IL-1 enhancement of PGE2-stimulated adenylate cyclase was detected between 1 to 2 h, was maximal at 4 to 5 h, was not prevented by cycloheximide treatment, and was seen in membranes from IL-1 pretreated cells. These data show effects of IL-1 on a human osteoblast-like cell line that are mediated by high affinity receptors. These IL-1 effects could contribute to the biologic action of IL-1 on bone.

  10. In vitro induction of nitric oxide by an extract of Plasmodium falciparum.

    PubMed

    Rockett, K A; Kwiatkowski, D; Bate, C A; Awburn, M M; Rockett, E J; Clark, I A

    1996-05-01

    Malarial illness and pathology is generally accepted to be caused by material released when the infected red cells burst at schizogony. The released material has been partially purified and shown to stimulate macrophages to make TNF. We have extended this work to show that these same preparations, isolated from parasitized erythrocytes, induce the mouse macrophage cell line RAW 264.7 to produce inducible nitric oxide synthase and release nitric oxide. By using cytokine-specific antisera we have found that this induction is independent of TNF and IL-1 alpha and partly independent of IL-1 beta.

  11. Double-stranded RNA cooperates with interferon-gamma and IL-1 beta to induce both chemokine expression and nuclear factor-kappa B-dependent apoptosis in pancreatic beta-cells: potential mechanisms for viral-induced insulitis and beta-cell death in type 1 diabetes mellitus.

    PubMed

    Liu, Dongbo; Cardozo, Alessandra K; Darville, Martine I; Eizirik, Décio L

    2002-04-01

    Viral infections may trigger the autoimmune assault leading to type 1 diabetes mellitus. Double-stranded RNA (dsRNA) is produced by many viruses during their replicative cycle. The dsRNA, tested as synthetic poly(IC) (PIC), in synergism with the proinflammatory cytokines interferon-gamma (IFN-gamma) and/or IL-1 beta, results in nitric oxide production, Fas expression, beta-cell dysfunction, and death. Activation of the transcription nuclear factor-kappa B (NF-kappa B) is required for PIC-induced inducible nitric oxide synthase expression in beta-cells, and we hypothesized that this transcription factor may also participate in PIC-induced Fas expression and beta-cell apoptosis. This hypothesis, and the possibility that PIC induces expression of additional chemokines and cytokines (previously reported as NF-kappa B dependent) in pancreatic beta-cells, was investigated in the present study. We observed that the PIC-responsive region in the Fas promoter is located between nucleotides -223 and -54. Site-directed mutations at the NF-kappa B and CCAAT/enhancer binding protein-binding sites prevented PIC-induced Fas promoter activity. Increased Fas promoter activity was paralleled by enhanced susceptibility of PIC + cytokine-treated beta-cells to apoptosis induced by Fas ligand. beta-Cell infection with the NF-kappa B inhibitor AdI kappa B((SA)2) prevented both necrosis and apoptosis induced by PIC + IL-1 beta or PIC + IFN-gamma. Messenger RNAs for several chemokines and one cytokine were induced by PIC, alone or in combination with IFN-gamma, in pancreatic beta-cells. These included IP-10, interferon-gamma-inducible protein-10, IL-15, macrophage chemoattractant protein-1, fractalkine, and macrophage inflammatory protein-3 alpha. There was not, however, induction of IL-1 beta expression. We propose that dsRNA, generated during a viral infection, may contribute for beta-cell demise by both inducing expression of chemokines and IL-15, putative contributors for the build

  12. Stress downregulates lipopolysaccharide-induced expression of proinflammatory cytokines in the spleen, pituitary, and brain of mice.

    PubMed

    Goujon, E; Parnet, P; Laye, S; Combe, C; Kelley, K W; Dantzer, R

    1995-12-01

    Mice injected with LPS (10 mu g/mouse, sc) or saline were submitted to a 15-min restraint stress and sacrificed 1 or 2 h later to assess the effect of stress on the induction of interleukin-1beta (IL-1beta) and other proinflammatory cytokines (IL-1alpha, IL-1ra, IL-6, and tumor necrosis factor-alpha) in the spleen, pituitary, hypothalamus, hippocampus, and striatum. LPS-induced cytokine gene expression, as determined by comparative RT-PCR, was lower in stressed than in nonstressed mice. LPS increased plasma and tissue levels of IL-1beta, as determined by ELISA, but this effect was less marked in stressed than in nonstressed mice. These results are discussed in relation to the modulatory effects of glucocorticoids on cytokine production.

  13. Selective suppression of cytokine secretion in whole blood cell cultures of patients with colorectal cancer.

    PubMed Central

    Lahm, H.; Schindel, M.; Frikart, L.; Cerottini, J. P.; Yilmaz, A.; Givel, J. C.; Fischer, J. R.

    1998-01-01

    We have investigated the secretion of interferon alpha (IFN-alpha), IFN-gamma, interleukin-1alpha (IL-1alpha), IL-1beta, IL-2 and tumour necrosis factor alpha (TNF-alpha) in whole blood cell cultures (WBCCs) of colorectal cancer patients upon mitogen stimulation. Whereas the values for IL-1beta and TNF-alpha remained virtually unchanged in comparison with healthy control subjects, WBCCs of colorectal cancer patients secreted significantly lower amounts of IFN-alpha (P < 0.005), IFN-gamma (P < 0.0001), IL-1alpha (P < 0.0001) and IL-2 (P < 0.05). This reduction correlated with the progression of the disease. The total leucocyte and monocyte population were almost identical in both groups. In contrast, a dramatic depletion of lymphocytes was observed in colorectal cancer patients, which affected both lymphocyte counts (P < 0.0005) and their distribution (P < 0.0001). Our results suggest a selective suppression of cytokines in colorectal cancer patients that is related to tumour burden. Several mechanisms might account for this phenomenon, one of which might be lymphocyte depletion. PMID:9792144

  14. Human mast cells transmigrate through human umbilical vein endothelial monolayers and selectively produce IL-8 in response to stromal cell-derived factor-1 alpha.

    PubMed

    Lin, T J; Issekutz, T B; Marshall, J S

    2000-07-01

    Mature mast cells are generally considered to be less mobile cells residing within tissue sites. However, mast cell numbers are known to increase in the context of inflammation, and mast cells are recognized to be important in regulating local neutrophil infiltration. CXC chemokines may play a critical role in this process. In this study two human mast cell-like lines, HMC-1 and KU812, and human cord blood-derived primary cultured mast cells were employed to examine role of stromal cell-derived factor-1 (SDF-1) in regulating mast cell migration and mediator production. It was demonstrated that human mast cells constitutively express mRNA and protein for CXCR4. Stimulation of human mast cells with SDF-1, the only known ligand for CXCR4, induced a significant increase in intracellular calcium levels. In vitro, SDF-1 alpha mediated dose-dependent migration of human cord blood-derived mast cells and HMC-1 cells across HUVEC monolayers. Although SDF-1 alpha did not induce mast cell degranulation, it selectively stimulated production of the neutrophil chemoattractant IL-8 without affecting TNF-alpha, IL-1beta, IL-6, GM-CSF, IFN-gamma, or RANTES production, providing further evidence of the selective modulation of mast cell function by this chemokine. These findings provide a novel, SDF-1-dependent mechanism for mast cell transendothelial migration and functional regulation, which may have important implications for the local regulation of mast cells in disease.

  15. Protective effect of esculentoside A on radiation-induced dermatitis and fibrosis

    SciTech Connect

    Xiao Zhenyu; Su Ying; Yang Shanmin; Yin Liangjie; Wang Wei; Yi Yanghua; Fenton, Bruce M.; Zhang Lurong; Okunieff, Paul . E-mail: paul_okunieff@urmc.rochester.edu

    2006-07-01

    Purpose: To investigate the effect of esculentoside A (EsA) on radiation-induced cutaneous and fibrovascular toxicity and its possible molecular mechanisms, both in vivo and in vitro. Methods and Materials: Mice received drug intervention 18 hours before 30 Gy to the right hind leg. Alterations in several cytokines expressed in skin tissue 2 days after irradiation were determined by ELISA. Early skin toxicity was evaluated 3 to 4 weeks after irradiation by skin scoring, and both tissue contraction and expression of TGF-{beta}1 were determined for soft-tissue fibrosis 3 months after irradiation. In vitro, the effect of EsA on radiation-induced nitric oxide (NO) and cytokine production in different cell types was measured by application of 2, 4, and 8 Gy. Results: In vivo, EsA reduced levels of IL-1{alpha}, MCP-1, VEGF, and TGF-{beta}1 in cutaneous tissue and reduced soft-tissue toxicity. In vitro, EsA inhibited the IL-1{alpha} ordinarily produced after 4 Gy in A431 cells. In Raw264.7 cells, EsA reduced levels of IL-1{alpha}, IL-1{beta}, and NO production costimulated by radiation and lipopolysaccharide (LPS). In L-929 cells, EsA inhibited VEGF, TNF, and MCP-1 production at 2, 4, and 8 Gy. Conclusions: Esculentoside A protects soft tissues against radiation toxicity through inhibiting the production of several proinflammatory cytokines and inflammatory mediators in epithelial cells, macrophages, fibroblasts, and skin tissue.

  16. The role of tumor necrosis factor-alpha and interleukin-1 in the mammalian testis and their involvement in testicular torsion and autoimmune orchitis.

    PubMed

    Lysiak, Jeffrey J

    2004-03-10

    This review will focus the roles of TNF-alpha, IL-1 alpha, and IL-1 beta in the mammalian testis and in two testicular pathologies, testicular torsion and orchitis. TNF alpha in the testis is produced by round spermatids, pachytene spermatocytes, and testicular macrophages. The type 1 TNF receptor has been found on Sertoli and Leydig cells and numerous studies suggest a paracrine mode of action for TNF alpha in the normal testis. IL-1 alpha has been reported to be produced by Sertoli cells, testicular macrophages, and possibly postmeiotic germ cells. IL-1 receptors have been reported on Sertoli cells, Leydig cells, testicular macrophages, and germ cells suggesting both autocrine and paracrine functions. While these proinflammatory cytokines have important roles in normal testicular homeostasis, an elevation of their expression can lead to testicular dysfunctions. Testicular torsion is a clinical pathology with results in testicular ischemia and surgical intervention is often required for reperfusion. A pivotal role for IL-1beta in the pathology of testicular torsion has been recently described whereby an increase in IL-1beta production after reperfusion of the testis is correlated with the activation of the stress-related kinase, c-jun N-terminal kinase, and ultimately resulting in neutrophil recruitment to the testis and germ cell apoptosis. In autoimmune orchitis, on the other hand, TNF alpha produced by T-lymphocytes and macrophages of the testis has been implicated in the development and progression of the disease. Thus, both proinflammatory cytokines, TNF alpha and IL-1, have significant roles in normal testicular functions as well as in certain testicular pathologies.

  17. IL-1 receptor antagonist improves morphine and buprenorphine efficacy in a rat neuropathic pain model.

    PubMed

    Pilat, Dominika; Rojewska, Ewelina; Jurga, Agnieszka M; Piotrowska, Anna; Makuch, Wioletta; Przewlocka, Barbara; Mika, Joanna

    2015-10-05

    An interesting research and therapeutic problem is the reduced beneficial efficacy of opioids in the treatment of neuropathic pain. The present study sought to investigate the potential role of IL-1 family members in this phenomenon. We studied the time course of changes in IL-1alpha, IL-1beta, IL-1 receptor type I and IL-1 receptor antagonist mRNA and protein levels experienced by rats after chronic constriction injury (CCI) of the sciatic nerve using qRT-PCR and Western blot analysis. In CCI-exposed rats, spinal levels of IL-1alpha mRNA were slightly downregulated on the 7th day, and protein levels were not changed on the 7th and 14th days. Levels of IL-1 receptor antagonist and IL-1 receptor type I were slightly upregulated in the ipsilateral part of the spinal cord on the 7th and 14th days; however, protein levels were not changed at those time points. Interestingly, we observed that IL-1beta mRNA and protein levels were strongly elevated in the ipsilateral part of the dorsal spinal cord on the 7th and 14th days following CCI. Moreover, in rats exposed to a single intrathecal administration of an IL-1 receptor antagonist (100 ng i.t.) on the 7th and 14th day following CCI, symptoms of neuropathic pain were attenuated, and the analgesic effects of morphine (2.5 µg i.t.) and buprenorphine (2.5 µg i.t.) were enhanced. In summary, restoration of the analgesic activity of morphine and buprenorphine by blockade of IL-1 signaling suggests that increased IL-1beta responses may account for the decreased analgesic efficacy of opioids observed in the treatment of neuropathy.

  18. Effects of hemorrhage on cytokine gene transcription.

    PubMed

    Shenkar, R; Abraham, E

    1993-08-01

    Injury and blood loss are often followed by infection and the rapid development of organ system dysfunction, frequently involving mucosal sites, such as the lung and intestine. To examine possible mechanisms contributing to these conditions, we used semiquantitative polymerase chain reactions to determine cytokine mRNA expression among cellular populations isolated from mucosal and systemic anatomic sites of mice at predetermined time points following 30% blood volume hemorrhage with resuscitation 1 hr later. Within 1 hr after hemorrhage, significant increases were observed in mRNA levels for IL-1 alpha, IL-1 beta, IL-5, and TGF-beta in intraparenchymal pulmonary mononuclear cells. The levels of TGF-beta transcripts among alveolar macrophages were increased 1 hr following blood loss, and increase in IL-1 alpha transcripts was found starting 2 hr posthemorrhage. Cells from Peyer's patches showed significant increases in mRNA levels for IL-1 beta, IL-2, IL-5, IL-6, IFN-gamma, and TGF-beta during the 4 hr following hemorrhage. Significant increases in mRNA levels for IL-1 beta, TNF-alpha, and TGF-beta were present within 4 hr of blood loss among cells isolated from mesenteric lymph nodes. The expression of mRNA for most cytokines was not significantly altered in splenocytes or peripheral blood mononuclear cells at any time point following hemorrhage. These experiments demonstrate that blood loss, even if resuscitated, produces significant increases in proinflammatory and immunoregulatory cytokine gene transcription as early as 1 hr following hemorrhage. These posthemorrhage alterations in cytokine mRNA expression were particularly prominent at mucosal sites, suggesting a mechanism for the increased incidence of pulmonary and intestinal involvement in organ system failure following severe blood loss and injury.

  19. Cykotine mRNA expression in mouse retina after laser injury by reverse transcriptase-polymerase chain reaction (RT-PCR)

    NASA Astrophysics Data System (ADS)

    Schuschereba, Steven T.; Bowman, Phillip D.; Ujimore, Veronica; Hoxie, Stephen W.; Pizarro, Jose M.; Cross, Michael E.; Lund, David J.

    1996-04-01

    The purpose of this study was to identify cytokines produced by the retina after laser injury. With the aid of a scanning laser ophthalmoscope (SLO), right eyes of mice received lesions from a continuous wave argon laser. Left eyes served as unirradiated controls. At 2, 4, 6, 12, 24, and 48 hr after laser irradiation groups of 3 mice were euthanized and retinas fixed for histology or isolated for RNA. Messenger RNA (mRNA) was reverse-transcribed into complementary DNA (cDNA) and subjected to polymerase chain reaction for the following cytokines: tumor necrosis factor-(alpha) (TNF-(alpha) ), interleukin-1(alpha) /(Beta) (IL- 1(alpha) /(Beta) ), interleukin-6 (IL-6), transforming growth factor-(Beta) 1 (TGF- (Beta) 1), macrophage colony stimulating factor (M-CSF), inducible nitric oxide synthase (iNOS), and glyceraldehyde 3-phosphate dehydrogenase (G3PDH). Histologically, lesions were confined to the photoreceptors, retinal pigment epithelium, and choroid. In laser-injured retinas, mRNA levels were elevated for IL-1(alpha) , TGF-(Beta) 1, iNOS, and G3PDH, but not TNF-(alpha) , IL-1(Beta) , or IL-6. It appears that the retina, in response to laser injury, upregulates a select number of cytokines in a time-course dependent fashion.

  20. Cytokine induction during T-cell-mediated clearance of mouse hepatitis virus from neurons in vivo.

    PubMed Central

    Pearce, B D; Hobbs, M V; McGraw, T S; Buchmeier, M J

    1994-01-01

    To investigate the mechanism by which viruses are cleared from neurons in the central nervous system, we have utilized a mouse model involving infection with a neurotropic variant of mouse hepatitis virus (OBLV60). After intranasal inoculation, OBLV60 grew preferentially in the olfactory bulbs of BALB/c mice. Using in situ hybridization, we found that viral RNA localized primarily in the outer layers of the olfactory bulb, including neurons of the mitral cell layer. Virus was cleared rapidly from the olfactory bulb between 5 and 11 days. Athymic nude mice failed to eliminate the virus, demonstrating a requirement for T lymphocytes. Immunosuppression of normal mice with cyclophosphamide also prevented clearance. Both CD4+ and CD8+ T-cell subsets were important, as depletion of either of these subsets delayed viral clearance. Gliosis and infiltrates of CD4+ and CD8+ cells were detected by immunohistochemical analysis at 6 days. The role of cytokines in clearance was investigated by using an RNase protection assay for interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, tumor necrosis factor alpha (TNF-alpha), TNF-beta, and gamma interferon (IFN-gamma). In immunocompetent mice there was upregulation of RNA for IL-1 alpha, IL-1 beta, IL-6, TNF-alpha, and IFN-gamma at the time of clearance. Nude mice had comparable increases in these cytokine messages, with the exception of IFN-gamma. Induction of major histocompatibility complex class I (MHC-I) molecules on cells in infected brains was demonstrated by immunohistochemical analyses in normal and nude mice, suggesting that IFN-gamma may not be necessary for induction of MHC-I on neural cells in vivo. Images PMID:8057431

  1. Similar cytokine induction profiles of a novel streptococcal exotoxin, MF, and pyrogenic exotoxins A and B.

    PubMed Central

    Norrby-Teglund, A; Norgren, M; Holm, S E; Andersson, U; Andersson, J

    1994-01-01

    The cytokine production induced by a newly discovered streptococcal exotoxin, MF, and the pyrogenic exotoxins SpeA and SpeB was determined by in vitro stimulation of peripheral blood mononuclear cells (PBMCs) obtained from healthy blood donors. The induction and kinetics of interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-1 receptor antagonist, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-10, gamma interferon, tumor necrosis factor alpha (TNF-alpha), TNF-beta, and granulocyte-macrophage colony-stimulating factor were studied at the single-cell level by use of cytokine-specific monoclonal antibodies and intracellular immunofluorescent juxtanuclear staining. The cytokine-producing cells, with the exception of IL-1-expressing cells, had a characteristic morphology generated by the accumulation of cytokines in the Golgi organelle. MF, SpeA, and SpeB induced a massive gamma interferon and TNF-beta response in 10 to 16% of the PBMCs after 48 to 96 h of cell stimulation. In contrast, IL-2 and TNF-alpha production was detected in only 1 to 3% of the PBMCs. The induction of a lymphocyte TH2 phenotype response, including production of IL-3, IL-4, IL-5, and IL-10, was weak. However, the monokines, IL-1 alpha, IL-1 beta, IL-1 receptor antagonist, and IL-8, were consistently found and gradually produced, peaking at 24 h in approximately 5 to 8% of the PBMCs. MF showed extensive cytokine- and proliferation-inducing capacities equal to those of SpeA and SpeB, which suggests that MF is also a superantigen. A marked interindividual variation could be noted both in the proliferative response and in the cytokine induction of lymphocytes isolated from different individuals, which may be one explanation for the varying clinical severity noticed during group A streptococcal infections. Images PMID:8063387

  2. Expression of proinflammatory cytokines and receptors by human fallopian tubes in organ culture following challenge with Neisseria gonorrhoeae.

    PubMed

    Maisey, Kevin; Nardocci, Gino; Imarai, Monica; Cardenas, Hugo; Rios, Miguel; Croxatto, Horacio B; Heckels, John E; Christodoulides, Myron; Velasquez, Luis A

    2003-01-01

    Infection of the Fallopian tubes (FT) by Neisseria gonorrhoeae can lead to acute salpingitis, an inflammatory condition, which is a major cause of infertility. Challenge of explants of human FT with gonococci induced mRNA expression and protein secretion for the proinflammatory cytokines interleukin (IL)-1alpha, IL-1beta, and tumor necrosis factor alpha (TNF-alpha) but not for granulocyte-macrophage colony-stimulating factor. In contrast, FT expression of IL-6 and of the cytokine receptors IL-6R, TNF receptor I (TNF-RI), and TNF-RII was constitutive and was not increased by gonococcal challenge. These studies suggest that several proinflammatory cytokines are likely to contribute to the cell and tissue damage observed in gonococcal salpingitis.

  3. Structure and expression of elongation factor 1 alpha in tomato.

    PubMed Central

    Pokalsky, A R; Hiatt, W R; Ridge, N; Rasmussen, R; Houck, C M; Shewmaker, C K

    1989-01-01

    A full-length cDNA clone, LeEF-1, has been isolated from tomato for the alpha subunit of elongation factor 1 (EF-1 alpha), a polypeptide which plays a central role in protein synthesis. The 448 amino acid protein encoded by this cDNA appears highly homologous to other EF-1 alpha s having a high degree of similarity (75-78%) to EF1 alpha previously described from both lower eukaryotes and animals. Southern analysis indicated that EF-1 alpha belongs to a small multigene family of 4-8 members in tomato. The pattern of expression of EF-1 alpha mRNA in various tomato tissues was analyzed by Northern analysis, in vitro translation and in situ hybridization. EF-1 alpha mRNA is an abundant species and higher levels of mRNA were found in developing tissues such as young leaves and green fruit compared to the mRNA levels observed in older tissues. The increased levels of EF-1 alpha mRNA therefore appear to correlate with higher levels of protein synthesis in developing tissues. Images PMID:2748335

  4. Murine interleukin 1 receptor. Direct identification by ligand blotting and purification to homogeneity of an interleukin 1-binding glycoprotein

    SciTech Connect

    Bird, T.A.; Gearing, A.J.; Saklatvala, J.

    1988-08-25

    Functional receptors (IL1-R) for the proinflammatory cytokine interleukin 1 (IL1) were solubilized from plasma membranes of the NOB-1 subclone of murine EL4 6.1 thymoma cells using the zwitterionic detergent 3((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS). Membrane extracts were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and ligand blotted with /sup 125/I-labeled recombinant human IL1 alpha in order to reveal proteins capable of specifically binding IL1. A single polydisperse polypeptide of Mr approximately equal to 80,000 was identified in this way, which bound IL1 alpha and IL1 beta with the same affinity as the IL1-R on intact NOB-1 cells (approximately equal to 10(-10) M). The IL1-binding polypeptide was only seen in membranes from IL1-R-bearing cells and did not react with interleukin 2, tumor necrosis factor alpha, or interferon. IL1-R was purified to apparent homogeneity from solubilized NOB-1 membranes by affinity chromatography on wheat germ agglutinin-Sepharose and IL1 alpha-Sepharose. Gel electrophoresis and silver staining of purified preparations revealed a single protein of Mr approximately equal to 80,000 which reacted positively in the ligand-blotting procedure and which we identify as the ligand-binding moiety of the murine IL1-R. Purified IL1-R exhibited the same affinity and specificity as the receptor on intact cells. The relationship of this protein to proteins identified by covalent cross-linking studies is discussed.

  5. Lipopolysaccharide-induced cytokine cascade and lethality in LT alpha/TNF alpha-deficient mice.

    PubMed Central

    Amiot, F.; Fitting, C.; Tracey, K. J.; Cavaillon, J. M.; Dautry, F.

    1997-01-01

    BACKGROUND: Tumor necrosis factor alpha (TNF-alpha) is often considered the main proinflammatory cytokine induced by lipopolysaccharide (LPS) and consequently the critical mediator of the lethality associated with septic shock. MATERIALS AND METHODS: We used mice carrying a deletion of both the lymphotoxin alpha (LT-alpha) and TNF-alpha genes to assess the role of TNF in the cytokine cascade and lethality induced by LPS. RESULTS: Initial production of IL-1 alpha, IL-1 beta, IL-6, and IL-10 is comparable in wild-type and mutant mice. However, at later times, expression of IL-1 alpha, IL-1 beta, and IL-10 is prolonged, whereas that of IL-6 decreases in mutant mice. Expression of IFN-gamma is almost completely abrogated in mutants, which is in agreement with a more significant alteration of the late phase of the cytokine cascade. We measured similar LD50 (600 micrograms) for the intravenous injection of LPS in mice of the three genotypes (+/+, +/-, -/-), demonstrating that the absence of TNF does not confer long-term protection from lethality. However, death occurred much more slowly in mutant mice, who were protected more efficiently from death by CNI 1493, an inhibitor of proinflammatory cytokine production, than were wild-type mice. DISCUSSION: Thus, while TNF-alpha is not required for the induction of these cytokines by LPS, it modulates the kinetics of their expression. The lethality studies simultaneously confirm a role for TNF as a mediator of early lethality and establish that, in the absence of these cytokines, other mediators take over, resulting in the absence of long-term protection from LPS toxicity. Images FIG. 1 FIG. 2 PMID:9440119

  6. Induction of acute phase gene expression by brain irradiation

    SciTech Connect

    Hong, Ji-Hong |; Sun, Ji-Rong; Withers, H.R.

    1995-10-15

    To investigate the in vivo acute phase molecular response of the brain to ionizing radiation, C3Hf/Sed/Kam mice were given midbrain or whole-body irradiation. Cerebral expression of interleukins (IL-1{alpha}, IL-1{beta}, IL-2, IL-3, IL-4, IL-5, IL-6), interferon (IFN-{gamma}), tumor necrosis factors (TNF-{alpha} and TNF-{beta}), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthetase (iNOS), von Willebrand factor (vWF), {alpha}1-antichymotrypsin (EB22/5.3), and glial fibrillary acidic protein (GFAP) was measured at various times after various radiation doses by ribonuclease (RNase) protection assay. The effects of dexamethasone or pentoxifylline treatment of mice on radiation-induced gene expression were also examined. Levels of TNF-{alpha}, IL-1{beta}, ICAM-1, EB22/5.3, and to a lesser extent IL-1{alpha} and GFAP, messenger RNA were increased in the brain after irradiation, whether the dose was delivered to the whole body or only to the midbrain. Responses were radiation dose dependent, but were not found below 7 Gy; the exception being ICAM-1, which was increased by doses as low as 2 Gy. Most responses were rapid, peaking within 4-8 h, but antichymotrypsin and GFAP responses were delayed and still elevated at 24 h, by which time the others had subsided. Pretreatment of mice with dexamethasone or pentoxifylline suppressed radiation-induced gene expression, either partially or completely. Dexamethasone was more inhibitory than pentoxifylline at the doses chosen. The initial response of the brain to irradiation involves expression of inflammatory gene products, which are probably responsible for clinically observed early symptoms of brain radiotherapy. This mechanism explains the beneficial effects of the clinical use of steroids in such circumstances. 64 refs., 4 figs.

  7. IL-1 regulates the Cyp7a1 gene and serum total cholesterol level at steady state in mice.

    PubMed

    Kojima, Misaki; Ashino, Takashi; Yoshida, Takemi; Iwakura, Yoichiro; Sekimoto, Masashi; Degawa, Masakuni

    2009-02-06

    We examined the role of hepatic interleukin (IL)-1alpha/beta in serum total cholesterol homeostasis using male and female IL-1-knockout (KO) mice and wild-type (WT) mice. Serum total cholesterol level was higher in males than in females in WT and KO mice. The difference between sexes was closely correlated with the difference in gene expression level of cholesterol 7alpha-hydroxylase (Cyp7a1), a rate-limiting enzyme for bile acid synthesis. No significant sex difference in gene expression level of 3-hydroxy-3-methylglutaryl-CoA reductase, a rate-limiting enzyme for cholesterol synthesis, was observed in WT mice. Interestingly, the gene expression level of hepatic Cyp7a1 was lower in KO mice than in sex-matched WT mice, while the serum total cholesterol level was the opposite. The present findings demonstrate that IL-1alpha and IL-1beta are positive regulators for the Cyp7a1 gene in steady-state mice and that Cyp7a1 is one of the factors that mediate the difference in serum total cholesterol level between sexes.

  8. The functional importance of a cap site-proximal region of the human prointerleukin 1 beta gene is defined by viral protein trans-activation.

    PubMed Central

    Hunninghake, G W; Monks, B G; Geist, L J; Monick, M M; Monroy, M A; Stinski, M F; Webb, A C; Dayer, J M; Auron, P E; Fenton, M J

    1992-01-01

    Prointerleukin 1 beta (IL-1 beta) is a cytokine that mediates a broad range of biological activities. Genomic sequences that regulate IL-1 beta transcription include both inducible regulatory elements located more than 2,700 bp upstream of the transcriptional start site (cap site) and proximal elements located near the TATA box of this gene. In this study, we focused on the identification and characterization of trans-acting nuclear regulatory proteins that bind to the cap site-proximal region of the human IL-1 beta gene. We identified a protein, termed NFIL-1 beta A (NF beta A), that binds to a highly conserved 12-bp DNA sequence (-49 to -38) located upstream of the TATA box motif in both the human and murine IL-1 beta genes. The IL-1 alpha gene, which lacks a TATA motif, does not possess an NF beta A-binding sequence within the promoter region, suggesting that NF beta A may selectively regulate IL-1 beta expression. Using electrophoretic mobility shift assays, we identified several distinct DNA-protein complexes that are expressed in a cell-type-specific manner. In monocytic cell lines, the relative abundance of these complexes varies rapidly following stimulation of the cells with phorbol esters or lipopolysaccharide. UV cross-linking analysis identified two distinct DNA-binding polypeptides that comprise distinct complexes. The functional role of NF beta A was assessed in transient transfection assays. These data indicate that NF beta A is required for both basal and inducible promoter activity in monocytic cells. Furthermore, the human cytomegalovirus immediate-early 1 gene product requires the presence of NF beta A in order to trans-activate the proximal IL-1 beta promoter in a monocytic cell line. We propose that NF beta A is a factor that mediates either direct or indirect activation by the immediate-early 1 gene product. The proximity of this essential factor to the TATA motif suggests a possible role in transcriptional initiation. Images PMID:1630455

  9. Resveratrol exerts pharmacological preconditioning by activating PGC-1alpha.

    PubMed

    Tan, Lan; Yu, Jin-Tai; Guan, Hua-Shi

    2008-11-01

    Resveratrol (RSV), a polyphenol phytoalexin abundantly found in grape skins and in wines, is currently the focus of intense research as a pharmacological preconditioning agent in kidney, heart, and brain from ischemic injury. However, the exact molecular mechanism of RSV preconditioning remains obscure. The data from current studies indicate that pharmacological preconditioning with RSV were attributed to its role as intracellular antioxidant, anti-inflammatory agent, its ability to induce nitric oxide synthase (NOS) expression, its ability to induce angiogenesis, and its ability to increases sirtuin 1 (SIRT1) activity. Peroxisome proliferators-activated receptor (PPAR) gamma co-activator-1alpha (PGC-1alpha) is a member of a family of transcription coactivators that owns mitochondrial biogenesis, antioxidation, growth factor signaling regulation, and angiogenesis activities. And, almost all the signaling pathways activated by RVS involve in PGC-1alpha activity. Moreover, it has been proofed that RVS could mediate an increase PGC-1alpha activity. These significant conditions support the hypothesis that RSV exerts pharmacological preconditioning by activating PGC-1alpha. Attempts to confirm this hypothesis will provide new directions in the study of pharmaceutical preconditioning and the development of new treatment approaches for reducing the extent of ischemia/reperfusion injury.

  10. Ghrelin may reduce radiation-induced mucositis and anorexia in head-neck cancer.

    PubMed

    Guney, Yildiz; Ozel Turkcu, Ummuhani; Hicsonmez, Ayse; Nalca Andrieu, Meltem; Kurtman, Cengiz

    2007-01-01

    Body weight loss is common in cancer patients, and is often associated with poor prognosis, it greatly impairs quality of life (QOL). Radiation therapy (RT) is used in head and neck cancers (HNC) either as a primary treatment or as an adjuvant therapy to surgery. Patients with HNC are most susceptible to malnutrition especially due to anorexia, which is aggravated by RT. Multiple pro-inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1beta (IL-1beta), interferon (IFN)-gamma and tumor necrosis factor-alpha(TNF-alpha), have been all associated with the development of both anorexia and oral mucositis. Radiation-induced mucositis occurs in almost all patients, who are treated for HNC, it could also cause weight loss. Ghrelin is a novel 28-amino acid peptide, which up-regulates body weight through appetite control, increase food intake, down-regulate energy expenditure and induces adiposity. Furthermore, ghrelin inhibits pro-inflammatory cytokines such as IL-1alpha, IL-1beta, TNF-alpha which may cause oral mucositis and aneroxia, which are the results of weight loss. Thus weight loss during RT is an early indicator of nutritional decline, we propose that recombinant ghrelin used prophylactically could be useful as an appetite stimulant; and preventive of mucositis because of its anti-inflammatory effect, it might help patients maintain weight over the course of curative RT of the HNC and can improve specific aspects of QOL. This issue warrants further studies.

  11. The proinflammatory cytokine network: interactions in the CNS and blood of rhesus monkeys.

    PubMed

    Reyes, T M; Coe, C L

    1998-01-01

    Proinflammatory cytokines [interleukin (IL)-1 and -6 and tumor necrosis factor-alpha] function within a complex network, stimulating the release of one another, as well as other cytokine agonists and antagonists. These interactions have not been as widely studied in vivo. Therefore, the following studies measured cytokines in blood and cerebrospinal fluid (CSF) from juvenile rhesus monkeys after intravenous administration of cytokines. IL-1 alpha and IL-1 beta were equally effective in elevating blood levels of IL-6. In contrast, IL-1 beta was the only cytokine that significantly elevated IL-6 levels in the CSF. Interestingly, both IL-1 and IL-6 increased levels of IL-1 receptor antagonist in the blood and comparably stimulated the release of cortisol. A second study confirmed that the IL-1-induced IL-6 in CSF was brain derived and not a result of diffusion from blood. This research extends studies of the cytokine cascade to the central nervous system (CNS), highlighting the brain response to peripheral activation.

  12. Acute-phase responses in transgenic mice with CNS overexpression of IL-1 receptor antagonist.

    PubMed

    Lundkvist, J; Sundgren-Andersson, A K; Tingsborg, S; Ostlund, P; Engfors, C; Alheim, K; Bartfai, T; Iverfeldt, K; Schultzberg, M

    1999-03-01

    The interleukin-1 (IL-1) receptor antagonist (IL-1ra) is an endogenous antagonist that blocks the effects of the proinflammatory cytokines IL-1alpha and IL-1beta by occupying the type I IL-1 receptor. Here we describe transgenic mice with astrocyte-directed overexpression of the human secreted IL-1ra (hsIL-1ra) under the control of the murine glial fibrillary acidic protein (GFAP) promoter. Two GFAP-hsIL-1ra strains have been generated and characterized further: GILRA2 and GILRA4. These strains show a brain-specific expression of the hsIL-1ra at the mRNA and protein levels. The hsIL-1ra protein was approximated to approximately 50 ng/brain in cytosolic fractions of whole brain homogenates, with no differences between male and female mice or between the two strains. Furthermore, the protein is secreted, inasmuch as the concentration of hsIL-1ra in the cerebrospinal fluid was 13 (GILRA2) to 28 (GILRA4) times higher in the transgenic mice than in the control animals. To characterize the transgenic phenotype, GILRA mice and nontransgenic controls were injected with recombinant human IL-1beta (central injection) or lipopolysaccharide (LPS, peripheral injection). The febrile response elicited by IL-1beta (50 ng/mouse icv) was abolished in hsIL-1ra-overexpressing animals, suggesting that the central IL-1 receptors were occupied by antagonist. The peripheral LPS injection (25 micrograms/kg ip) triggered a fever in overexpressing and control animals. Moreover, no differences were found in LPS-induced (100 and 1,000 micrograms/kg ip; 1 and 6 h after injection) IL-1beta and IL-6 serum levels between GILRA and wild-type mice. On the basis of these results, we suggest that binding of central IL-1 to central IL-1 receptors is not important in LPS-induced fever or LPS-induced IL-1beta and IL-6 plasma levels.

  13. Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration.

    PubMed

    Mori, Ryoichi; Kondo, Toshikazu; Ohshima, Tohru; Ishida, Yuko; Mukaida, Naofumi

    2002-07-01

    To clarify biological roles of tumor necrosis factor receptor p55 (TNF-Rp55) -mediated signals in wound healing, skin excisions were prepared in BALB/c (WT) and TNF-Rp55-deficient (KO) mice. In WT mice, the wound area was reduced to 50% of the original area 6 days after injury, with angiogenesis and collagen accumulation. Histopathologically, reepithelialization rate was approximately 80% 6 days. Myeloperoxidase activity and macrophage recruitment were the most evident 1 and 6 days after injury, respectively. Gene expression of adhesion molecules, interleukin 1alpha (IL-1alpha), IL-1beta, monocyte chemoattractant protein 1, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-2, transforming growth factor beta1 (TGF-beta1) connective tissue growth factor (CTGF), vascular endothelial growth factor (VEGF), Flt-1, and Flk-1 was enhanced at the wound site. In KO mice, an enhancement in angiogenesis, collagen content, and reepithelialization was accelerated with the increased gene expression of TGF-beta1, CTGF, VEGF, Flt-1, and Flk-1 at the wound sites, resulting in accelerated wound healing compared with WT mice. In contrast, leukocyte infiltration, mRNA expression of adhesion molecules, and cytokines were significantly reduced in KO mice. These observations suggest that TNF-Rp55-mediated signals have some role in promoting leukocyte infiltration at the wound site and negatively affect wound healing, probably by reducing angiogenesis and collagen accumulation.

  14. Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends

    PubMed Central

    1996-01-01

    Elongation factor 1 alpha (EF1 alpha) is an abundant protein that binds aminoacyl-tRNA and ribosomes in a GTP-dependent manner. EF1 alpha also interacts with the cytoskeleton by binding and bundling actin filaments and microtubules. In this report, the effect of purified EF1 alpha on actin polymerization and depolymerization is examined. At molar ratios present in the cytosol, EF1 alpha significantly blocks both polymerization and depolymerization of actin filaments and increases the final extent of actin polymer, while at high molar ratios to actin, EF1 alpha nucleates actin polymerization. Although EF1 alpha binds actin monomer, this monomer-binding activity does not explain the effects of EF1 alpha on actin polymerization at physiological molar ratios. The mechanism for the inhibition of polymerization is related to the actin-bundling activity of EF1 alpha. Both ends of the actin filament are inhibited for polymerization and both bundling and the inhibition of actin polymerization are affected by pH within the same physiological range; at high pH both bundling and the inhibition of actin polymerization are reduced. Additionally, it is seen that the binding of aminoacyl-tRNA to EF1 alpha releases EF1 alpha's inhibiting effect on actin polymerization. These data demonstrate that EF1 alpha can alter the assembly of F-actin, a filamentous scaffold on which non- membrane-associated protein translation may be occurring in vivo. PMID:8947553

  15. Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses.

    PubMed

    Kobori, Masuko; Nakayama, Hirosuke; Fukushima, Kenji; Ohnishi-Kameyama, Mayumi; Ono, Hiroshi; Fukushima, Tatsunobu; Akimoto, Yukari; Masumoto, Saeko; Yukizaki, Chizuko; Hoshi, Yoshikazu; Deguchi, Tomoaki; Yoshida, Mitsuru

    2008-06-11

    Bitter gourd ( Momordica charantia L.) is a popular tropical vegetable in Asian countries. Previously it was shown that bitter gourd placenta extract suppressed lipopolysaccharide (LPS)-induced TNFalpha production in RAW 264.7 macrophage-like cells. Here it is shown that the butanol-soluble fraction of bitter gourd placenta extract strongly suppresses LPS-induced TNFalpha production in RAW 264.7 cells. Gene expression analysis using a fibrous DNA microarray showed that the bitter gourd butanol fraction suppressed expression of various LPS-induced inflammatory genes, such as those for TNF, IL1alpha, IL1beta, G1p2, and Ccl5. The butanol fraction significantly suppressed NFkappaB DNA binding activity and phosphorylation of p38, JNK, and ERK MAPKs. Components in the active fraction from bitter gourd were identified as 1-alpha-linolenoyl-lysophosphatidylcholine (LPC), 2-alpha-linolenoyl-LPC, 1-lynoleoyl-LPC, and 2-linoleoyl-LPC. Purified 1-alpha-linolenoyl-LPC and 1-linoleoyl-LPC suppressed the LPS-induced TNFalpha production of RAW 264.7 cells at a concentration of 10 microg/mL.

  16. Plasma leptin, insulin and free tryptophan contribute to cytokine-induced anorexia.

    PubMed

    Sato, Tomoi; Laviano, Alessandro; Meguid, Michael M; Rossi-Fanelli, Filippo

    2003-01-01

    Cytokines contribute to anorexia of diseases. Tumor Necrosis Factor (TNF) and/or interleukin-1 (IL-1) stimulate leptin release, but not insulin. Both affect hypothalamus to decrease food intake (FI). Hypothalamic serotonin (5HT) decreases FI. Its synthesis depends on brain availability of precursor, tryptophan (TRP), which depends on plasma free TRP. Purpose is to test involvement of plasma leptin, insulin, TRP, and thus hypothalamic 5HT in cytokine-induced anorexia in rats. In male rats, IL-1alpha (10 mg/kg/d; n=9), TNFalpha (30 mg/kg/d; n=9), Il-1alpha+TNFalpha (10:30 mg/kg/d; n=9), TRP (100 mg/kg/d, n=8) and saline (n=8; Control) were injected sc for 2 days. FI, BW, plasma free and total TRP, leptin and insulin, and body fat were measured. Data analyzed via ANOVA. IL-1alpha and IL-1alpha+TNFalpha vs others decreased FI and BW. TNFalpha and TRP did not change FI and BW. Plasma total TRP was higher in TRP vs IL-1alpha, TNFalpha, and IL-1alpha+TNFalpha. Plasma free TRP was higher in IL-1alpha and IL-1alpha+TNFalpha vs Control. IL-1alpha and IL-1alpha+TNFalpha decreased leptin and body fat. Insulin in Control was lower than others. Data suggest: i) IL-1alpha increases plasma free TRP, but not total TRP, thus increases hypothalamic 5HT synthesis, resulting in anorexia; ii) leptin does not mediate anorexia, but; iii) insulin may contribute to anorexia induced by cytokines.

  17. Regulation of protein kinase CK1alphaLS by dephosphorylation in response to hydrogen peroxide.

    PubMed

    Bedri, Shahinaz; Cizek, Stephanie M; Rastarhuyeva, Iryna; Stone, James R

    2007-10-15

    Low levels of hydrogen peroxide (H(2)O(2)) are mitogenic to mammalian cells and stimulate the hyperphosphorylation of heterogeneous nuclear ribonucleoprotein C (hnRNP-C) by protein kinase CK1alpha. However, the mechanisms by which CK1alpha is regulated have been unclear. Here it is demonstrated that low levels of H(2)O(2) stimulate the rapid dephosphorylation of CK1alphaLS, a nuclear splice form of CK1alpha. Furthermore, it is demonstrated that either treatment of endothelial cells with H(2)O(2), or dephosphorylation of CK1alphaLS in vitro enhances the association of CK1alphaLS with hnRNP-C. In addition, dephosphorylation of CK1alphaLS in vitro enhances the kinase's ability to phosphorylate hnRNP-C. While CK1alpha appears to be present in all metazoans, analysis of CK1alpha genomic sequences from several species reveals that the alternatively spliced nuclear localizing L-insert is unique to vertebrates, as is the case for hnRNP-C. These observations indicate that CK1alphaLS and hnRNP-C represent conserved components of a vertebrate-specific H(2)O(2)-responsive nuclear signaling pathway.

  18. Elongation factor-1 alpha occurs as two copies in bees: implications for phylogenetic analysis of EF-1 alpha sequences in insects.

    PubMed

    Danforth, B N; Ji, S

    1998-03-01

    We report the complete sequence of a paralogous copy of elongation factor-1 alpha (EF-1 alpha) in the honeybee, Apis mellifera (Hymenoptera: Apidae). This copy differs from a previously described copy in the positions of five introns and in 25% of the nucleotide sites in the coding regions. The existence of two paralogous copies of EF-1 alpha in Drosophila and Apis suggests that two copies of EF-1 alpha may be widespread in the holometabolous insect orders. To distinguish between a single, ancient gene duplication and parallel, independent fly and bee gene duplications, we performed a phylogenetic analysis of hexapod EF-1 alpha sequences. Unweighted parsimony analysis of nucleotide sequences suggests an ancient gene duplication event, whereas weighted parsimony analysis of nucleotides and unweighted parsimony analysis of amino acids suggests the contrary: that EF-1 alpha underwent parallel gene duplications in the Diptera and the Hymenoptera. The hypothesis of parallel gene duplication is supported both by congruence among nucleotide and amino acid data sets and by topology-dependent permutation tail probability (T-PTP) tests. The resulting tree topologies are also congruent with current views on the relationships among the holometabolous orders included in this study (Diptera, Hymenoptera, and Lepidoptera). More sequences, from diverse orders of holometabolous insects, will be needed to more accurately assess the historical patterns of gene duplication in EF-1 alpha.

  19. Assessing functional divergence in EF-1alpha and its paralogs in eukaryotes and archaebacteria.

    PubMed

    Inagaki, Yuji; Blouin, Christian; Susko, Edward; Roger, Andrew J

    2003-07-15

    A number of methods have recently been published that use phylogenetic information extracted from large multiple sequence alignments to detect sites that have changed properties in related protein families. In this study we use such methods to assess functional divergence between eukaryotic EF-1alpha (eEF-1alpha), archaebacterial EF-1alpha (aEF-1alpha) and two eukaryote-specific EF-1alpha paralogs-eukaryotic release factor 3 (eRF3) and Hsp70 subfamily B suppressor 1 (HBS1). Overall, the evolutionary modes of aEF-1alpha, HBS1 and eRF3 appear to significantly differ from that of eEF-1alpha. However, functionally divergent (FD) sites detected between aEF-1alpha and eEF-1alpha only weakly overlap with sites implicated as putative EF-1beta or aminoacyl-tRNA (aa-tRNA) binding residues in EF-1alpha, as expected based on the shared ancestral primary translational functions of these two orthologs. In contrast, FD sites detected between eEF-1alpha and its paralogs significantly overlap with the putative EF-1beta and/or aa-tRNA binding sites in EF-1alpha. In eRF3 and HBS1, these sites appear to be released from functional constraints, indicating that they bind neither eEF-1beta nor aa-tRNA. These results are consistent with experimental observations that eRF3 does not bind to aa-tRNA, but do not support the 'EF-1alpha-like' function recently proposed for HBS1. We re-assess the available genetic data for HBS1 in light of our analyses, and propose that this protein may function in stop codon-independent peptide release.

  20. Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages.

    PubMed

    Bai, Tao; Chen, Chih-Chiun; Lau, Lester F

    2010-03-15

    CCN1 (CYR61) is a matricellular protein that is highly expressed at sites of inflammation and wound repair. In these contexts, CCN1 can modify the activities of specific cytokines, enabling TNF-alpha to be cytotoxic without blocking NF-kappaB activity and enhancing the apoptotic activity of Fas ligand and TRAIL. In this paper, we show that CCN1 supports the adhesion of macrophages through integrin alpha(M)beta(2) and syndecan-4, activates NFkappaB-mediated transcription, and induces a proinflammatory genetic program characteristic of classically activated M1 macrophages that participates in Th1 responses. The effects of CCN1 include upregulation of cytokines (TNF-alpha, IL-1alpha, IL-1beta, IL-6, and IL-12b), chemokines (MIP-1alpha; MCP-3; growth-related oncogenes 1 and 2; and inflammatory protein 10), and regulators of oxidative stress and complement (inducible NO synthase and C3) and downregulation of specific receptors (TLR4 and IL-10Rbeta) and anti-inflammatory factors (TGF-beta1). CCN1 regulates this genetic program through at least two distinct mechanisms: an immediate-early response resulting from direct activation of NF-kappaB by CCN1, leading to the synthesis of cytokines including TNF-alpha and inflammatory protein 10; and a delayed response resulting from CCN1-induced TNF-alpha, which acts as an autocrine/paracrine mediator to activate the expression of other cytokines including IL-1beta and IL-6. These results identify CCN1 as a novel component of the extracellular matrix that activates proinflammatory genes in macrophages, implicating its role in regulating macrophage function during inflammation.

  1. Fate of injected interleukin 1 in rats: Sequestration and degradation in the kidney

    SciTech Connect

    Poole, S.; Bird, T.A.; Selkirk, S.; Gaines-Das, R.E.; Choudry, Y.; Stephenson, S.L.; Kenny, A.J.; Saklatvaa, J. )

    1990-11-01

    The tissue distribution and route of clearance of human recombinant interleukin 1 alpha (IL 1 alpha) injected intravenously in rats was studied. The plasma half-life was approximately 2.5 min, and this was increased after nephrectomy, the kidney being the major organ through which the IL 1 alpha was excreted. Two iodinated fragments of IL 1 alpha, of approximately 5 and 9 kDa, were excreted by the kidneys whereas only intact, 17-kDa IL 1 alpha was detected in plasma, suggesting that the protein was being degraded after uptake by the kidney. The results of in vivo experiments in which surface endopeptidase-24.11 was inhibited with phosphoramidon and in vitro experiments in which rat kidney homogenates were incubated with radiolabeled IL 1 alpha suggest that the cytokine was endocytosed and then hydrolysed by lysosomal proteinases.

  2. Blueberry Improves the Therapeutic Effect of Etanercept on Patients with Juvenile Idiopathic Arthritis: Phase III Study.

    PubMed

    Zhong, Yingjie; Wang, Ye; Guo, Jun; Chu, Haifeng; Gao, Yong; Pang, Limin

    2015-01-01

    Juvenile idiopathic arthritis (JIA) is the most common arthritis in the adolescents under the age of 16. Etanercept, an inhibitor of tumor necrosis factor, is often used to treat JIA despite its significant side effects. Homeopathic remedies, such as blueberries, have anti-inflammatory properties with fewer unwanted effects and should be considered as a primary treatment. We aimed to explore the efficacy and safety of combination therapy of blueberry and etanercept for JIA. Two hundred and one JIA patients were selected, and randomly and evenly assigned to three groups: ETA (50 mg of etanercept twice weekly), ETABJ (matched etanercept and 50 ml blueberry juice daily) and ETAPJ (matched etanercept and placebo juice). The severity of JIA was measured using American College of Rheumatology scales (ACR) 20, 50 and 70. The levels of pro-inflammatory cytokines, interleukin-1 (IL1) alpha and IL1 beta, and interleukin-1 receptor antagonist (IL1RA) were measured by qRT-PCR and ELISA. After a 6-month follow-up, the ACR20, ACR50 and ACR70 in an ETABJ group were higher than those in other two groups (P < 0.05), suggesting clinically meaningful improvement in JIA. Meanwhile, the symptoms and side effects were reduced significantly or absent in an ETABJ group, including mental diseases, retrobulbar optic neuritis, gaining weight, infection, cutaneous vasculitis, diarrhea, uveitis and pancytopenia. Blueberries reduced the levels of IL1 alpha and beta, and increased the level of IL1RA. Thus, a combination therapy of blueberry and etanercept can reduce the severity of JIA and should be developed as a new method for JIA therapy.

  3. Detection of cytokines at the cartilage/pannus junction in patients with rheumatoid arthritis: implications for the role of cytokines in cartilage destruction and repair.

    PubMed

    Chu, C Q; Field, M; Allard, S; Abney, E; Feldmann, M; Maini, R N

    1992-10-01

    Cytokine release at the cartilage/pannus junction (CPJ) may be involved in cartilage destruction and tissue repair in rheumatoid arthritis (RA). Tissue samples of CPJ from 12 RA patients were examined for the presence of cytokines using immunohistochemical techniques with immunoaffinity purified F(ab')2 antibodies raised against recombinant human cytokines. Twenty-four areas of distinct CPJ at which a discrete junction between cartilage and overlying pannus exists were observed. In all specimens, tumour necrosis factor (TNF)-alpha, interleukin (IL)-1 alpha. IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF)-beta 1 were detected in cells in pannus particularly along the surface of cartilage and at the site of cartilage erosion. Double immunofluorescence staining showed that most cytokine containing cells also labelled with a macrophage marker (CD68). About 50% of blood vessel endothelial cells stained for GM-CSF. Twelve areas of diffuse fibroblastic CPJ, at which an indistinct margin is seen between cartilage and pannus were examined. At this site, TGF-beta 1 was the only cytokine detected in fibroblast-like cells. None of these cytokines were detected in synovial tissue at the normal synovium/cartilage junction. Chondrocytes from all 11 normal specimens as well as those from RA patients stained for IL-1 alpha, TNF-alpha, IL-6, GM-CSF and TGF-beta 1, especially those close to subchondral bone. However, IL-1 beta, interferon-gamma and lymphotoxin were not detected in either the normal synovium/cartilage junction or rheumatoid CPJ.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Protein synthesis elongation factor EF-1 alpha expression and longevity in Drosophila melanogaster.

    PubMed Central

    Shikama, N; Ackermann, R; Brack, C

    1994-01-01

    It has been proposed that the decline in protein synthesis observed in aging organisms may result from a decrease in elongation factor EF-1 alpha. Transgenic Drosophila melanogaster flies carrying an additional copy of the EF-1 alpha gene under control of a heat-inducible promoter have an extended lifespan, further indicating that the EF-1 alpha gene may play an important role in determining longevity. To test this hypothesis, we have quantitated EF-1 alpha mRNA, EF-1 alpha protein, and the EF-1 alpha complex-formation activity in these transgenic flies. Furthermore, we have tested whether the transgene construct is functional--i.e., whether transgenic mRNA is induced when flies are grown at higher temperature. The results show that although there is a clear difference in mean lifespan between the EF-1 alpha transgenic (E) flies and the control transgenic (C) flies, E flies do not express more EF-1 alpha protein or mRNA than C flies kept at the same experimental conditions. Although the transgene can be induced when E flies are heat-shocked at 37 degrees C, transgenic mRNA is not detectable in E flies aged at 29 degrees C. In both lines, the loss in catalytic activity with age is the same. We conclude that the E flies examined here do not live longer because of overexpressing the EF-1 alpha gene. Images PMID:8183891

  5. Pyrithione-zinc Prevents UVB-induced Epidermal Hyperplasia by Inducing HIF-1alpha.

    PubMed

    Cho, Young-Suk; Lee, Kyung-Hoon; Park, Jong-Wan

    2010-04-01

    Epidermal keratinocytes overgrow in response to ultraviolet-B (UVB), which may be associated with skin photoaging and cancer development. Recently, we found that HIF-1alpha controls the keratinocyte cell cycle and thereby contributes to epidermal homeostasis. A further study demonstrated that HIF-1alpha is down-regulated by UVB and that this process is involved in UVB-induced skin hyperplasia. Therefore, we hypothesized that the forced expression of HIF-1alpha in keratinocytes would prevent UVB-induced keratinocyte overgrowth. Among several agents known to induce HIF-1alpha, pyrithione-zinc (Py-Zn) overcame the UVB suppression of HIF-1alpha in cultured keratinocytes. Mechanistically, Py-Zn blocked the degradation of HIF-1alpha protein in keratinocytes, while it did not affect the synthesis of HIF-1alpha. Moreover, the p21 cell cycle inhibitor was down-regulated after UVB exposure, but was robustly induced by Py-Zn. In mice repeatedly irradiated with UVB, the epidermis became hyperplastic and HIF-1alpha disappeared from nuclei of epidermal keratinocytes. However, a cream containing Py-Zn effectively prevented the skin thickening and up-regulated HIF-1alpha to the normal level. These results suggest that Py-Zn is a potential agent to prevent UVB-induced photoaging and skin cancer development. This work also provides insight into a molecular target for treatment of UVB-induced skin diseases.

  6. Identification of novel targets for PGC-1{alpha} and histone deacetylase inhibitors in neuroblastoma cells

    SciTech Connect

    Cowell, Rita M. Talati, Pratik; Blake, Kathryn R.; Meador-Woodruff, James H.; Russell, James W.

    2009-02-06

    Recent evidence suggests that the transcriptional coactivator peroxisome proliferator activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) is involved in the pathology of Huntington's Disease (HD). While animals lacking PGC-1{alpha} express lower levels of genes involved in antioxidant defense and oxidative phosphorylation in the brain, little is known about other targets for PGC-1{alpha} in neuronal cells and whether there are ways to pharmacologically target PGC-1{alpha} in neurons. Here, PGC-1{alpha} overexpression in SH-SY5Y neuroblastoma cells upregulated expression of genes involved in mitochondrial function, glucose transport, fatty acid metabolism, and synaptic function. Overexpression also decreased vulnerability to hydrogen peroxide-induced cell death and caspase 3 activation. Treatment of cells with the histone deacetylase inhibitors (HDACi's) trichostatin A and valproic acid upregulated PGC-1{alpha} and glucose transporter 4 (GLUT4). These results suggest that PGC-1{alpha} regulates multiple pathways in neurons and that HDACi's may be good candidates to target PGC-1{alpha} and GLUT4 in HD and other neurological disorders.

  7. Hypoxia-inducible factor-1alpha regulates the expression of nucleotide excision repair proteins in keratinocytes.

    PubMed

    Rezvani, Hamid Reza; Mahfouf, Walid; Ali, Nsrein; Chemin, Cecile; Ged, Cecile; Kim, Arianna L; de Verneuil, Hubert; Taïeb, Alain; Bickers, David R; Mazurier, Frédéric

    2010-01-01

    The regulation of DNA repair enzymes is crucial for cancer prevention, initiation, and therapy. We have studied the effect of ultraviolet B (UVB) radiation on the expression of the two nucleotide excision repair factors (XPC and XPD) in human keratinocytes. We show that hypoxia-inducible factor-1alpha (HIF-1alpha) is involved in the regulation of XPC and XPD. Early UVB-induced downregulation of HIF-1alpha increased XPC mRNA expression due to competition between HIF-1alpha and Sp1 for their overlapping binding sites. Late UVB-induced enhanced phosphorylation of HIF-1alpha protein upregulated XPC mRNA expression by direct binding to a separate hypoxia response element (HRE) in the XPC promoter region. HIF-1alpha also regulated XPD expression by binding to a region of seven overlapping HREs in its promoter. Quantitative chromatin immunoprecipitation assays further revealed putative HREs in the genes encoding other DNA repair proteins (XPB, XPG, CSA and CSB), suggesting that HIF-1alpha is a key regulator of the DNA repair machinery. Analysis of the repair kinetics of 6-4 photoproducts and cyclobutane pyrimidine dimers also revealed that HIF-1alpha downregulation led to an increased rate of immediate removal of both photolesions but attenuated their late removal following UVB irradiation, indicating the functional effects of HIF-1alpha in the repair of UVB-induced DNA damage.

  8. Identification and characterization of an alternative promoter of the human PGC-1{alpha} gene

    SciTech Connect

    Yoshioka, Toyo; Inagaki, Kenjiro; Noguchi, Tetsuya; Sakai, Mashito; Ogawa, Wataru; Hosooka, Tetsuya; Iguchi, Haruhisa; Watanabe, Eijiro; Matsuki, Yasushi; Hiramatsu, Ryuji; Kasuga, Masato

    2009-04-17

    The transcriptional regulator peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1{alpha} expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1{alpha} transcript (designated PGC-1{alpha}-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1{alpha}-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca{sup 2+}- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated protein kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1{alpha}-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1{alpha} expression in contracting muscle.

  9. Fruit flies with additional expression of the elongation factor EF-1 alpha live longer.

    PubMed Central

    Shepherd, J C; Walldorf, U; Hug, P; Gehring, W J

    1989-01-01

    In Drosophila melanogaster, the decrease in protein synthesis that accompanies aging is preceded by a decrease in elongation factor EF-1 alpha protein and mRNA. Here we show that Drosophila transformed with a P-element vector containing an EF-1 alpha gene under control of hsp70 regulatory sequences have a longer life-span than control flies. Images PMID:2508089

  10. EF-1[alpha] Is Associated with a Cytoskeletal Network Surrounding Protein Bodies in Maize Endosperm Cells.

    PubMed Central

    Clore, A. M.; Dannenhoffer, J. M.; Larkins, B. A.

    1996-01-01

    By using indirect immunofluorescence and confocal microscopy, we documented changes in the distribution of elongation factor-1[alpha] (EF-1[alpha]), actin, and microtubules during the development of maize endosperm cells. In older interphase cells actively forming starch grains and protein bodies, the protein bodies are enmeshed in EF-1[alpha] and actin and are found juxtaposed with a multidirectional array of microtubules. Actin and EF-1[alpha] appear to exist in a complex, because we observed that the two are colocalized, and treatment with cytochalasin D resulted in the redistribution of EF-1[alpa]. These data suggest that EF-1[alpha] and actin are associated in maize endosperm cells and may help to explain the basis of the correlation we found between the concentration of EF-1[alpha] and lysine content. The data also support the hypothesis that the cytoskeleton plays a role in storage protein deposition. The distributions of EF-1[alpha] actin, and microtubules change during development. We observed that in young cells before the accumulation of starch and storage protein, EF-1[alpha], actin, and microtubules are found mainly in the cell cortex or in association with nuclei. PMID:12239373

  11. Castration Therapy of Prostate Cancer Results in Downregulation of HIF-1{alpha} Levels

    SciTech Connect

    Al-Ubaidi, Firas L.T.; Schultz, Niklas; Egevad, Lars; Granfors, Torvald; Helleday, Thomas

    2012-03-01

    Background and Purpose: Neoadjuvant androgen deprivation in combination with radiotherapy of prostate cancer is used to improve radioresponsiveness and local tumor control. Currently, the underlying mechanism is not well understood. Because hypoxia causes resistance to radiotherapy, we wanted to test whether castration affects the degree of hypoxia in prostate cancer. Methods and Materials: In 14 patients with locally advanced prostate cancer, six to 12 prostatic needle core biopsy specimens were taken prior to castration therapy. Bilateral orchidectomy was performed in 7 patients, and 7 were treated with a GnRH-agonist (leuprorelin). After castrationm two to four prostatic core biopsy specimens were taken, and the level of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in cancer was determined by immunofluorescence. Results: Among biopsy specimens taken before castration, strong HIF-1{alpha} expression (mean intensity above 30) was shown in 5 patients, weak expression (mean intensity 10-30) in 3 patients, and background levels of HIF-1{alpha} (mean intensity 0-10) in 6 patients. Downregulation of HIF-1{alpha} expression after castration was observed in all 5 patients with strong HIF-1{alpha} precastration expression. HIF-1{alpha} expression was also reduced in 2 of 3 patients with weak HIF-1{alpha} precastration expression. Conclusions: Our data suggest that neoadjuvant castration decreases tumor cell hypoxia in prostate cancer, which may explain increased radiosensitivity after castration.

  12. Interaction between HP1{alpha} and replication proteins in mammalian cells

    SciTech Connect

    Auth, Tanja . E-mail: tauth@uni-bonn.de; Kunkel, Elisabeth; Grummt, Friedrich . E-mail: grummt@biozentrum.uni-wuerzburg.de

    2006-10-15

    HP1 is an essential heterochromatin-associated protein known to play an important role in the organization of heterochromatin as well as in the transcriptional regulation of heterochromatic and euchromatic genes both in repression and activation. Using the yeast two-hybrid system and immunoprecipitation, we report here that murine HP1{alpha} interacts with the preRC proteins ORC1, ORC2 and CDC6. Immunofluorescence staining and EGFP/DsRed fusion proteins revealed a colocalization of HP1{alpha} with ORC1, ORC2 and CDC6 in heterochromatin, supporting the notion that ORC and probably CDC6 play an important role in murine HP1{alpha} function. Besides that, we also observed a colocalization of HP1{alpha} with {gamma}-tubulin suggesting a centrosomal localization of HP1{alpha} in murine cells. To gain insight into HP1{alpha} function, we applied the RNAi technique. Depletion of HP1{alpha} leads to a slow down of cell proliferation, an aberrant cell cycle progression as well as to multinucleated cells with insufficiently organized microtubule. These results together indicate that HP1{alpha} exerts functions in mitosis and cytokinesis.

  13. Interleukin 1 (IL-1) gene expression, synthesis, and effect of specific IL-1 receptor blockade in rabbit immune complex colitis.

    PubMed Central

    Cominelli, F; Nast, C C; Clark, B D; Schindler, R; Lierena, R; Eysselein, V E; Thompson, R C; Dinarello, C A

    1990-01-01

    Interleukin 1 (IL-1) may be a key mediator of inflammation and tissue damage in inflammatory bowel disease (IBD). In rabbits with immune complex-induced colitis, IL-1 alpha and beta mRNA levels were detectable at 4 h, peaked at 12 but were absent at 96 h after the induction of colitis. Colonic IL-1 tissue levels were measured by specific radioimmunoassays. IL-1 alpha was significantly elevated at 4 h (9.4 +/- 1.5 ng/g colon), progressively increased at 48 h (31 +/- 5.8 ng/g) and then decreased by 96 h (11.5 +/- 3.4 ng/g). IL-1 beta levels were 2.0 +/- 0.5 ng/g colon at 4 h, 5.0 +/- 1.6 ng/g at 48 h and undetectable by 96 h. By comparison, colonic levels of PGE2 and LTB4 were unchanged during the first 12 h and did not become elevated until 24 h. IL-1 alpha levels were highly correlated with inflammation (r = 0.885, P less than 0.0001), edema (r = 0.789, P less than 0.0001) and necrosis (r = 0.752, P less than 0.0005). Treatment with a specific IL-1 receptor antagonist (IL-1 ra) before and during the first 33 h after the administration of immune complexes markedly reduced inflammatory cell infiltration index (from 3.2 +/- 0.4 to 1.4 +/- 0.3, P less than 0.02), edema (from 2.2 +/- 0.4 to 0.6 +/- 0.3, P less than 0.01) and necrosis (from 43 +/- 10% to 6.6 +/- 3.2%, P less than 0.03) compared to vehicle-matched colitis animals. These studies demonstrate that (a) IL-1 gene expression and synthesis occur early in the course of immune complex-induced colitis; (b) are significantly elevated for 12 h before the appearance of PGE2 and LTB4; (c) tissue levels of IL-1 correlate with the degree of tissue inflammation and; (d) specific blockade of IL-1 receptors reduces the inflammatory responses associated with experimental colitis. Images PMID:2168444

  14. IL-1 receptor antagonist attenuates MAP kinase/AP-1 activation and MMP1 expression in UVA-irradiated human fibroblasts induced by culture medium from UVB-irradiated human skin keratinocytes.

    PubMed

    Wang, Xiaoyong; Bi, Zhigang; Chu, Wenming; Wan, Yinsheng

    2005-12-01

    Solar UV light comprises UVB wavelengths (290-320 nm) and UVA wavelengths (320-400 nm). UVB radiation reaches the epidermis and, to a lesser extent, the upper part of the dermis, while UVA radiation penetrates more deeply into human skin. Existing studies have demonstrated that UV-irradiated epidermal keratinocytes release cytokines that indirectly promote MMP-1 production in dermal fibroblasts. In this study, we first investigated the effect of IL-1 on MAPK activity, c-Jun and c-Fos mRNA expression, and MMP-1 and MMP-2 production in UVA-irradiated human dermal fibroblasts. The results showed that UVA irradiation dose-dependently increased MMP-1 but not MMP-2 production in human skin fibroblasts. IL-1alpha and IL-1beta promoted MMP-1 but not MMP-2 production in UVA-irradiated fibroblasts. Both IL-1alpha and IL-1beta activated MAP kinase, significantly elevating c-Jun and c-Fos mRNA expression. We then investigated the indirect effect of UVB-irradiated keratinocyte culture medium on MMP-1 production in UVA-irradiated primary cultured human dermal fibroblasts and the effect of IL-1Ra. The results showed that cell culture medium from UVB-irradiated keratinocytes increased MMP-1 production in UVA-irradiated fibroblasts, and IL-1Ra dose-dependently inhibited MMP-1 production. IL-1Ra dose-dependently inhibited c-Jun mRNA expression of fibroblasts with no significant effect on c-Fos mRNA expression. These results demonstrate that UVB-irradiated keratinocytes promoted MMP-1 production in UVA-irradiated fibroblasts in a paracrine manner while IL-1Ra reduced MMP-1 production through inhibiting c-Jun mRNA expression. Collectively, our data suggest that IL-1 plays an important role in the dermal collagen degradation associated with UV-induced premature aging of the skin and IL-1Ra may be applied for the prevention and treatment of photoaging.

  15. The role of adsorbed endotoxin in particle-induced stimulation of cytokine release.

    PubMed

    Cho, David R; Shanbhag, Arun S; Hong, Chi-Yuan; Baran, George R; Goldring, Steven R

    2002-07-01

    Numerous in vitro models have demonstrated the capacity of wear particles to stimulate the release of soluble pro-inflammatory products with the ability to induce local bone resorption. Recent observations have demonstrated that binding of lipopolysaccharide (LPS) to particulate wear debris can significantly modulate the pattern of cell response in the in vitro models. These findings raise concerns over the possible role of LPS in the pathogenesis of aseptic loosening after total joint replacements, and also indicates the importance of controlling for possible confounding effects of LPS contamination in the in vitro models used to study the reactive nature of wear debris. Our studies were undertaken to rigorously analyze the effects of particle-associated LPS on cell responses and to assess the efficacy of different treatment protocols to inactivate LPS associated with different particulate materials. Particles of cobalt-chrome alloy, titanium-6-aluminum-4-vanadium, titanium nitride and silica were pretreated with LPS and exposed to multiple treatment protocols. When cells were treated with "as-received" particles prepared by washing in ethanol, small amounts of TNF-alpha, IL-1beta. and IL-1alpha were detected. In contrast, all particle species pretreated with LPS produced marked increases in TNF-alpha, IL-1alpha, and IL-1beta release, as well as upregulation of corresponding mRNA levels even after ethanol washing. Boiling the LPS-pretreated particles in 1% acetic acid or autoclaving and baking the particles also markedly reduced and in some instances abolished the effect of the LPS-pretreatment. This indicates that LPS binds to the surface of particles of diverse composition and that the bound LPS is biologically active. Treatment protocols to inactivate particle-associated LPS demonstrated significant differences in efficacy. When the most rigorous treatments were utilized, essentially all LPS activity could be eliminated. Particles treated with these methods

  16. The interaction of force and repetition on musculoskeletal and neural tissue responses and sensorimotor behavior in a rat model of work-related musculoskeletal disorders

    PubMed Central

    2013-01-01

    Background We examined the relationship of musculoskeletal risk factors underlying force and repetition on tissue responses in an operant rat model of repetitive reaching and pulling, and if force x repetition interactions were present, indicative of a fatigue failure process. We examined exposure-dependent changes in biochemical, morphological and sensorimotor responses occurring with repeated performance of a handle-pulling task for 12 weeks at one of four repetition and force levels: 1) low repetition with low force, 2) high repetition with low force, 3) low repetition with high force, and 4) high repetition with high force (HRHF). Methods Rats underwent initial training for 4–6 weeks, and then performed one of the tasks for 12 weeks, 2 hours/day, 3 days/week. Reflexive grip strength and sensitivity to touch were assayed as functional outcomes. Flexor digitorum muscles and tendons, forelimb bones, and serum were assayed using ELISA for indicators of inflammation, tissue stress and repair, and bone turnover. Histomorphometry was used to assay macrophage infiltration of tissues, spinal cord substance P changes, and tissue adaptative or degradative changes. MicroCT was used to assay bones for changes in bone quality. Results Several force x repetition interactions were observed for: muscle IL-1alpha and bone IL-1beta; serum TNFalpha, IL-1alpha, and IL-1beta; muscle HSP72, a tissue stress and repair protein; histomorphological evidence of tendon and cartilage degradation; serum biomarkers of bone degradation (CTXI) and bone formation (osteocalcin); and morphological evidence of bone adaptation versus resorption. In most cases, performance of the HRHF task induced the greatest tissue degenerative changes, while performance of moderate level tasks induced bone adaptation and a suggestion of muscle adaptation. Both high force tasks induced median nerve macrophage infiltration, spinal cord sensitization (increased substance P), grip strength declines and forepaw

  17. PGC-1alpha activates CYP7A1 and bile acid biosynthesis.

    PubMed

    Shin, Dong-Ju; Campos, Jose A; Gil, Gregorio; Osborne, Timothy F

    2003-12-12

    Cholesterol 7-alpha-hydroxylase (CYP7A1) is the key enzyme that commits cholesterol to the neutral bile acid biosynthesis pathway and is highly regulated. In the current studies, we have uncovered a role for the transcriptional co-activator PGC-1alpha in CYP7A1 gene transcription. PGC-1alpha plays a vital role in adaptive thermogenesis in brown adipose tissue and stimulates genes important to mitochondrial function and oxidative metabolism. It is also involved in the activation of hepatic gluconeogenesic gene expression during fasting. Because the mRNA for CYP7A1 was also induced in mouse liver by fasting, we reasoned that PGC-1alpha might be an important co-activator for CYP7A1. Here we show that PGC-1alpha and CYP7A1 are also co-induced in livers of mice in response to streptozotocin induced diabetes. Additionally, infection of cultured HepG2 cells with a recombinant adenovirus expressing PGC-1alpha directly activates CYP7A1 gene expression and increases bile acid biosynthesis as well. Furthermore, we show that PGC-1alpha activates the CYP7A1 promoter directly in transient transfection assays in cultured cells. Thus, PGC-1alpha is a key activator of CYP7A1 and bile acid biosynthesis and is likely responsible for the fasting and diabetes dependent induction of CYP7A1. PGC-1alpha has already been shown to be a critical activator of several other oxidative processes including adaptive thermogenesis and fatty acid oxidation. Our studies provide further evidence of the fundamental role played by PGC-1alpha in oxidative metabolism and define PGC-1alpha as a link between diabetes and bile acid metabolism.

  18. Partnership of PGC-1alpha and HNF4alpha in the regulation of lipoprotein metabolism.

    PubMed

    Rhee, James; Ge, Hongfei; Yang, Wenli; Fan, Melina; Handschin, Christoph; Cooper, Marcus; Lin, Jiandie; Li, Cai; Spiegelman, Bruce M

    2006-05-26

    Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is a transcriptional coactivator involved in several aspects of energy metabolism. It is induced or activated under different stimuli in a highly tissue-specific manner and subsequently partners with certain transcription factors in those tissues to execute various biological programs. In the fasted liver, PGC-1alpha is induced and interacts with hepatocyte nuclear factor 4alpha (HNF4alpha) and other transcription factors to activate gluconeogenesis and increase hepatic glucose output. Given the broad spectrum of liver genes responsive to HNF4alpha, we sought to determine those that were specifically targeted by the combination of PGC-1alpha and HNF4alpha. Coexpression of these two molecules in murine stem cells reveals a high induction of mRNA for apolipoproteins A-IV and C-II. Forced expression of PGC-1alpha in mouse and human hepatoma cells increases the mRNA of a subset of apolipoproteins implicated in very low density lipoprotein and triglyceride metabolism, including apolipoproteins A-IV, C-II, and C-III. Coactivation of the apoC-III/A-IV promoter region by PGC-1alpha occurs through a highly conserved HNF4alpha response element, the loss of which completely abolishes activation by PGC-1alpha and HNF4alpha. Adenoviral infusion of PGC-1alpha into live mice increases hepatic expression of apolipoproteins A-IV, C-II, and C-III and increases serum and very low density lipoprotein triglyceride levels. Conversely, knock down of PGC-1alpha in vivo causes a decrease in both apolipoprotein expression and serum triglyceride levels. These data point to a crucial role for the PGC-1alpha/HNF4alpha partnership in hepatic lipoprotein metabolism.

  19. MIP-1alpha as a critical macrophage chemoattractant in murine wound repair.

    PubMed Central

    DiPietro, L A; Burdick, M; Low, Q E; Kunkel, S L; Strieter, R M

    1998-01-01

    At sites of injury, macrophages secrete growth factors and proteins that promote tissue repair. While this central role of the macrophage has been well studied, the specific stimuli that recruit macrophages into sites of injury are not well understood. This study examines the role of macrophage inflammatory protein 1alpha (MIP-1alpha), a C-C chemokine with monocyte chemoattractant capability, in excisional wound repair. Both MIP-1alpha mRNA and protein were detectable in murine wounds from 12 h through 5 d after injury. MIP-1alpha protein levels peaked 3 d after injury, coinciding with maximum macrophage infiltration. The contribution of MIP-1alpha to monocyte recruitment into wounds was assessed by treating mice with neutralizing anti-MIP-1alpha antiserum before injury. Wounds of mice treated with anti-MIP-1alpha antiserum had significantly fewer macrophages than control (41% decrease, P < 0. 01). This decrease in wound macrophages was paralleled by decreased angiogenic activity and collagen synthesis. When tested in the corneal micropocket assay, wound homogenates from mice treated with anti-MIP-1alpha contained significantly less angiogenic activity than control wound homogenates (27% positive for angiogenic activity versus 91% positive in the control group, P < 0.01). Collagen production was also significantly reduced in the wounds from anti-MIP-1alpha treated animals (29% decrease, P < 0.05). The results demonstrate that MIP-1alpha plays a critical role in macrophage recruitment into wounds, and suggest that appropriate tissue repair is dependent upon this recruitment. PMID:9541500

  20. Combination of therapeutic apheresis and therapeutic ventricular assistance for end-stage heart failure patients.

    PubMed

    Schulte-Eistrup, Sebastian; Ashizawa, Satoshi; Nonaka, Kenji; Ichikawa, Seiji; Motomura, Tadashi; Murai, Noriyuki; Nosé, Yukihiko

    2002-08-01

    Dilated cardiomyopathy is a cardiac disease of unknown origin which is characterized by the gradual development of cardiac failure associated with four-chamber dilatation of the heart. Heart transplantation has been considered as the last resort for this disease. However, some patients who received support with a ventricular assist device (VAD) as a bridge-to-transplantation and then recovered without transplantation have been reported. This new concept of treating heart failure is termed bridge-to-recovery. A VAD can inhibit the heart failure compensatory mechanisms by extreme ventricular unloading. Also, heart failure is a complex neurohormonal/autocrine-paracrine syndrome, and these mechanisms consecutively lead to inflammatory response by proinflammatory cytokines; interleukin-1 alpha (IL-1 alpha), interleukin-1 beta (IL-1 beta), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). Furthermore, the existence of anti-beta1-adrenoceptor autoantibodies (A-beta1-AABs) in a patient with dilated cardiomyopathy has been reported. These proinflammatory cytokines and this antibody accelerate a ventricular remodeling and a contractile dysfunction over the long term. Apheresis can also inhibit the vicious cycle in heart failure by removing the factors that are produced by activated neurohormonal/autocrine-paracrine compensatory mechanisms. Therefore, we propose that the combined therapies, therapeutic VAD and therapeutic apheresis, will provide a prominent outcome for a patient who is suffering from end-stage heart failure.

  1. Modification of palm oil for anti-inflammatory nutraceutical properties.

    PubMed

    Zainal, Zaida; Longman, Andrea J; Hurst, Samantha; Duggan, Katrina; Hughes, Clare E; Caterson, Bruce; Harwood, John L

    2009-07-01

    Palm oil is one of the most important edible oils in the world. Its composition (rich in palmitate and oleate) make it suitable for general food uses but its utility could be increased if its fatty acid quality could be varied. In this study, we have modified a palm olein fraction by transesterification with the n-3 polyunsaturated fatty acids, alpha-linolenate or eicosapentaenoic acid (EPA). Evaluation of the potential nutritional efficacy of the oils was made using chondrocyte culture systems which can be used to mimic many of the degenerative and inflammatory pathways involved in arthritis. On stimulation of such cultures with interleukin-1alpha, they showed increased expression of cyclooxygenase-2, the inflammatory cytokines tumour necrosis factor-alpha (TNF-alpha), IL-1alpha and IL-1beta and the proteinase ADAMTS-4. This increased expression was not affected by challenge of the cultures with palm olein alone but showed concentration-dependent reduction by the modified oil in a manner similar to EPA. These results show clearly that it is possible to modify palm oil conveniently to produce a nutraceutical with effective anti-inflammatory properties.

  2. Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A

    PubMed Central

    1992-01-01

    The protein phosphatase 1 and 2A inhibitor, okadaic acid, has been shown to stimulate many cellular functions by increasing the phosphorylation state of phosphoproteins. In human monocytes, okadaic acid by itself stimulates tumor necrosis factor alpha (TNF-alpha) mRNA accumulation and TNF-alpha synthesis. Calyculin A, a more potent inhibitor of phosphatase 1, has similar effects. TNF-alpha mRNA accumulation in okadaic acid-treated monocytes is due to increased TNF- alpha mRNA stability and transcription rate. The increase in TNF-alpha mRNA stability is more remarkable in okadaic acid-treated monocytes than the mRNA stability of other cytokines, such as interleukin 1 alpha (IL-1 alpha), IL-1 beta, and IL-6. Gel retardation studies show the stimulation of AP-1, AP-2, and NF-kappa B binding activities in okadaic acid-stimulated monocytes. This increase may correlate with the increase in TNF-alpha mRNA transcription rate. In addition to the stimulation of TNF-alpha secretion by monocytes, okadaic acid appears to modulate TNF-alpha precursor processing, as indicated by a marked increase in the cell-associated 26-kD precursor. These results suggest that active basal phosphorylation/dephosphorylation occurs in monocytes, and that protein phosphatase 1 or 2A is important in regulating TNF-alpha gene transcription, translation, and posttranslational modification. PMID:1324971

  3. NF-{kappa}B suppresses HIF-1{alpha} response by competing for P300 binding

    SciTech Connect

    Mendonca, Daniela B.S.; Mendonca, Gustavo; Aragao, Francisco J.L.; Cooper, Lyndon F.

    2011-01-28

    Research highlights: {yields} p65 completely blocked HIF-1{alpha} activity at the HRE on different cell lines. {yields} p65 caused minor changes in HIF-1{alpha} and HIF-1{alpha} target genes mRNA expression. {yields} p65 reduced transcription of VEGF promoter. {yields} p65 competes with HIF-1{alpha} for p300. -- Abstract: Hypoxia has emerged as a key determinant of osteogenesis. HIF-1{alpha} is the transcription factor mediating hypoxia responses that include induction of VEGF and related bone induction. Inflammatory signals antagonize bone repair via the NF-{kappa}B pathway. The present investigation explored the functional relationship of hypoxia (HIF-1{alpha} function) and inflammatory signaling (NF-{kappa}B) in stem like and osteoprogenitor cell lines. The potential interaction between HIF-1{alpha} and NF-{kappa}B signaling was explored by co-transfection studies in hFOB with p65, HIF-1{alpha} and 9x-HRE-luc or HIF-1{alpha} target genes reporter plasmids. Nuclear cross-talk was directly tested using the mammalian Gal4/VP16 two-hybrid, and confirmed by co-immunoprecipitation/western blotting assays. The results show that inflammatory stimulation (TNF-{alpha} treatment) causes a marked inhibition of HIF-1{alpha} function at the HRE in all cell lines studied. Also, co-transfection with p65 expression vector leads to reduced hVEGFp transcription after DFO-induced hypoxia. However, TNF-{alpha} treatment had little effect on HIF-1{alpha} mRNA levels. The functional interaction of Gal4-HIF-1{alpha} and VP16-p300 fusion proteins is effectively blocked by expression of p65 in a dose dependent manner. It was concluded that NF-{kappa}B-mediated inflammatory signaling is able to block HIF-1{alpha} transactivation at HRE-encoding genes by direct competition for p300 binding at the promoter. Inflammation may influence the stem cell niche and tissue regeneration by influencing cellular responses to hypoxia.

  4. Two genes encode related cytoplasmic elongation factors 1 alpha (EF-1 alpha) in Drosophila melanogaster with continuous and stage specific expression.

    PubMed Central

    Hovemann, B; Richter, S; Walldorf, U; Cziepluch, C

    1988-01-01

    We have characterized two previously cloned genes, F1 and F2 (1) that code for elongation factor EF - 1 alpha of Drosophila melanogaster. Genomic Southern blot hybridization revealed that they are the only gene copies present. We isolated cDNA clones of both transcripts from embryonal and pupal stage of development that cover the entire transcription unit. The 5' ends of both genes have been determined by primer extension and for F1 also by RNA sequencing. These start sites have been shown to be used consistently during development. Comparison of cDNA and genomic sequences revealed that EF - 1 alpha,F1 consists of two and EF - 1 alpha,F2 of five exons. The two described elongation factor genes exhibit several regions of strong sequence conservation when compared to five recently cloned eucaryotic elongation factors. Images PMID:3131735

  5. Antisense inhibition of mitochondrial pyruvate dehydrogenase E1alpha subunit in anther tapetum causes male sterility.

    PubMed

    Yui, Rika; Iketani, Satoru; Mikami, Tetsuo; Kubo, Tomohiko

    2003-04-01

    We hypothesized that cytoplasmic male sterility (CMS) in sugar beet may be the consequence of mitochondrial dysfunctions affecting normal anther development. To test the hypothesis, we attempted to mimic the sugar beet CMS phenotype by inhibiting the expression of mitochondrial pyruvate dehydrogenase (PDH), which is essential for the operation of the tricarboxylic acid (TCA) cycle. Screening with a cDNA library of sugar beet flower buds allowed the identification of two PDH E1alpha subunit genes (bvPDH_E1alpha-1 and bvPDH_E1alpha-2). bvPDH_E1alpha-1 was found to be highly expressed in tap roots, whereas bvPDH_E1alpha-2 was expressed most abundantly in flower buds. Green fluorescent protein (GFP) fusion of bvPDH_E1alpha revealed mitochondrial targeting properties. A 300-bp bvPDH_E1alpha-1 cDNA sequence (from +620 to +926) was connected to a tapetum-specific promoter in the antisense orientation and then introduced into tobacco. Antisense expression of bvPDH_E1alpha-1 resulted in conspicuously decreased endogenous bvPDH_E1alpha-1 transcripts and male sterility. The tapetum in the male-sterile anthers showed swelling or abnormal vacuolation. It is also worth noting that in the sterile anthers, cell organelles, such as elaioplasts, tapetosomes and orbicules were poorly formed and microspores exhibited aberrant exine development. These features are shared by sugar beet CMS. The results thus clearly indicate that inhibition of PDH activity in anther tapetum is sufficient to cause male sterility, a phenocopy of the sugar beet CMS.

  6. Macrophage inflammatory protein-1 alpha. A novel chemotactic cytokine for macrophages in rheumatoid arthritis.

    PubMed Central

    Koch, A E; Kunkel, S L; Harlow, L A; Mazarakis, D D; Haines, G K; Burdick, M D; Pope, R M; Strieter, R M

    1994-01-01

    We have shown that human macrophages (m phi s) play an important role in the elaboration of chemotactic cytokines in rheumatoid arthritis (RA) (Koch, A. E., S. L. Kunkel, J. C. Burrows, H. L. Evanoff, G. K. Haines, R. M. Pope, and R. M. Strieter. 1991. J. Immunol. 147:2187; Koch, A. E., S. L. Kunkel, L. A. Harlow, B. Johnson, H. L. Evanoff, G. K. Haines, M. D. Burdick, R. M. Pope, and R. M. Strieter. 1992. J. Clin. Invest. 90:772; Koch, A. E., P. J. Polverini, S. L. Kunkel, L. A. Harlow, L. A. DiPietro, V. M. Elner, S. G. Elner, and R. M. Strieter. 1992. Science (Wash. DC). 258:1798). Recently, m phi inflammatory protein-1 (MIP-1 alpha), a cytokine with chemotactic activity for m phi s and neutrophils (PMNs), has been described. We have examined the production of MIP-1 alpha using sera, synovial fluid (SF), and synovial tissue (ST) from 63 arthritic patients. MIP-1 alpha was higher in RA SF (mean, 29 +/- 8 ng/ml [SE]) compared with other forms of arthritis (2.8 +/- 1.7), or osteoarthritis (0.7 +/- 0.4; P < 0.05). RA SF MIP-1 alpha was greater than that found in either RA or normal peripheral blood (PB) (P < 0.05). Anti-MIP-1 alpha neutralized 36 +/- 3% (mean +/- SE) of the chemotactic activity for m phi s, but not PMNs, found in RA SFs. RA SF and PB mononuclear cells produced antigenic MIP-1 alpha. Mononuclear cell MIP-1 alpha production was augmented with phytohemagglutinin or LPS. Isolated RA ST fibroblast production of antigenic MIP-1 alpha was augmented upon incubation of cells with LPS, and to a lesser extent with tumor necrosis factor-alpha. Isolated RA ST m phi s expressed constitutive MIP-1 alpha mRNA and antigenic MIP-1 alpha. Using ST immunohistochemistry, MIP-1 alpha+ cells from RA compared with normal were predominantly m phi s and lining cells (P < 0.05). These results suggest that MIP-1 alpha plays a role in the selective recruitment of m phi s in synovial inflammation associated with RA. Images PMID:8132778

  7. Combination effect of recombinant human interleukin-1 alpha with antimicrobial agents.

    PubMed Central

    Nakamura, S; Minami, A; Fujimoto, K; Kojima, T

    1989-01-01

    Combination effects of recombinant human interleukin-1 alpha with ceftazidime, moxalactam, gentamicin, enoxacin, amphotericin B, miconazole, or an immunoglobulin preparation were evaluated in systemic infections with Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans in normal mice and systemic infection with P. aeruginosa in mice with leukopenia induced by preadministration of cyclophosphamide. Synergistic effects were generally observed at interleukin-1 alpha doses as low as 1 to 30 ng per mouse with most combinations. The results show the possibility that recombinant human interleukin-1 alpha could be of help for treating obstinate infections not successfully treated with antimicrobial agents alone. PMID:2589847

  8. Elongation factor 1 alpha concentration is highly correlated with the lysine content of maize endosperm.

    PubMed Central

    Habben, J E; Moro, G L; Hunter, B G; Hamaker, B R; Larkins, B A

    1995-01-01

    Lysine is the most limiting essential amino acid in cereals, and for many years plant breeders have attempted to increase its concentration to improve the nutritional quality of these grains. The opaque2 mutation in maize doubles the lysine content in the endosperm, but the mechanism by which this occurs is unknown. We show that elongation factor 1 alpha (EF-1 alpha) is overexpressed in opaque2 endosperm compared with its normal counterpart and that there is a highly significant correlation between EF-1 alpha concentration and the total lysine content of the endosperm. This relationship is also true for two other cereals, sorghum and barley. It appears that genetic selection for genotypes with a high concentration of EF-1 alpha can significantly improve the nutritional quality of maize and other cereals. Images Fig. 1 Fig. 2 PMID:7567989

  9. Hypoxia-inducible factor-1alpha signaling in aquaporin upregulation after traumatic brain injury.

    PubMed

    Ding, Jamie Y; Kreipke, Christian W; Speirs, Susan L; Schafer, Patrick; Schafer, Steven; Rafols, José A

    2009-03-27

    Previous studies have demonstrated that traumatic brain injury (TBI) causes brain edema via aquaporins (AQPs), the water-transporting proteins. In the present study, we determined the role of hypoxia inducible factor-1alpha (HIF-1alpha), which is a transcription factor in response to physiological hypoxia, in regulating expression of AQP4 and AQP9. Adult male Sprague-Dawley rats (400-425g) received a closed head injury using the Marmarou weight drop model with a 450g weight and survived for 1, 4, 24 and 48h. Some animals were administered 30min after injury with 2-methoxyestradiol (2ME2), a naturally occurring metabolite of estradiol which is known to post-transcriptionally down-regulate HIF-1alpha expression, and sacrificed 4h after injury. Real-time PCR and Western blot were used, respectively, to detect gene and protein expressions of manganese superoxide dismutase (MnSOD, showing hypoxic stress), HIF-1alpha, AQP4, and AQP9. ANOVA analysis demonstrated a significant (p<0.05) increase in gene expression of MnSOD, HIF-1alpha, AQP4, and AQP9, starting at 1h after injury through 48h. Western blot analysis further indicated a significant (p<0.05) increase in protein expression of these molecules at the same time points. Pharmacological inhibition of HIF-1alpha by 2ME2 reduced the up-regulated levels of AQP4 and AQP9 after TBI. The present study suggests that hypoxic conditions determined by MnSOD expression after closed head injury contribute to HIF-1alpha expression. HIF-1alpha, in turn, up-regulates expression of AQP4 and AQP9. These results characterize the pathophysiological mechanisms, and suggest possible therapeutic targets for TBI patients.

  10. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha.

    PubMed

    Elson, D A; Thurston, G; Huang, L E; Ginzinger, D G; McDonald, D M; Johnson, R S; Arbeit, J M

    2001-10-01

    Hypoxia-inducible factor-1alpha (HIF-1alpha) transactivates genes required for energy metabolism and tissue perfusion and is necessary for embryonic development and tumor explant growth. HIF-1alpha is overexpressed during carcinogenesis, myocardial infarction, and wound healing; however, the biological consequences of HIF-1alpha overexpression are unknown. Here, transgenic mice expressing constitutively active HIF-1alpha in epidermis displayed a 66% increase in dermal capillaries, a 13-fold elevation of total vascular endothelial growth factor (VEGF) expression, and a six- to ninefold induction of each VEGF isoform. Despite marked induction of hypervascularity, HIF-1alpha did not induce edema, inflammation, or vascular leakage, phenotypes developing in transgenic mice overexpressing VEGF cDNA in skin. Remarkably, blood vessel leakage resistance induced by HIF-1alpha overexpression was not caused by up-regulation of angiopoietin-1 or angiopoietin-2. Hypervascularity induced by HIF-1alpha could improve therapy of tissue ischemia.

  11. Effect of chronic alcohol consumption on Hepatic SIRT1 and PGC-1{alpha} in rats

    SciTech Connect

    Lieber, Charles S. Leo, Maria A.; Wang Xiaolei; DeCarli, Leonore M.

    2008-05-23

    The nuclear genes, NAD-dependent deacetylase Sirtuis 1 (SIRT1) and the peroxisome proliferator-activated receptor-{gamma} coactivator1{alpha} (PGC-1{alpha}) are regulators of energy metabolism. Here, we studied the role of alcohol consumption in expression of these sensing molecules. Alcohol significantly reduced hepatic SIRT1 mRNA by 50% and PGC-1{alpha} mRNA by 46% and it significantly inhibited the protein expression of SIRT1 and PGC-1{alpha}, while the transcription factor PPAR-{gamma} remained unchanged. However, when the lipid composition of the alcohol diet was changed by replacing long-chain triglycerides (LCT) with medium chain triglycerides (MCT), SIRT1 and PGC-1{alpha} mRNA were restored to near control levels. This study demonstrates that alcohol reduces key energy sensing proteins and that replacement of LCT by MCT affects the transcription of these genes. Since there is a pathophysiological link between SIRT1 and PGC-1{alpha} and mitochondrial energy, the implication of the study is that mitochondrial dysfunction due to alcohol abuse can be treated by dietary modifications.

  12. HNF1alpha is involved in tissue-specific regulation of CFTR gene expression.

    PubMed Central

    Mouchel, Nathalie; Henstra, Sytse A; McCarthy, Victoria A; Williams, Sarah H; Phylactides, Marios; Harris, Ann

    2004-01-01

    The CFTR (cystic fibrosis transmembrane conductance regulator) gene shows a complex pattern of expression with tissue-specific and temporal regulation. However, the genetic elements and transcription factors that control CFTR expression are largely unidentified. The CFTR promoter does not confer tissue specificity on gene expression, suggesting that there are regulatory elements outside the upstream region. Analysis of potential regulatory elements defined as DNase 1-hypersensitive sites within introns of the gene revealed multiple predicted binding sites for the HNF1alpha (hepatocyte nuclear factor 1alpha) transcription factor. HNF1alpha, which is expressed in many of the same epithelial cell types as CFTR and shows similar differentiation-dependent changes in gene expression, bound to these sites in vitro. Overexpression of heterologous HNF1alpha augmented CFTR transcription in vivo. In contrast, antisense inhibition of HNF1 alpha transcription decreased the CFTR mRNA levels. Hnf1 alpha knockout mice showed lower levels of CFTR mRNA in their small intestine in comparison with wild-type mice. This is the first report of a transcription factor, which confers tissue specificity on the expression of this important disease-associated gene. PMID:14656222

  13. Statins enhance peroxisome proliferator-activated receptor gamma coactivator-1alpha activity to regulate energy metabolism.

    PubMed

    Wang, Wenxian; Wong, Chi-Wai

    2010-03-01

    Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) serves as an inducible coactivator for a number of transcription factors to control energy metabolism. Insulin signaling through Akt kinase has been demonstrated to phosphorylate PGC-1alpha at serine 571 and downregulate its activity in the liver. Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors that reduce cholesterol synthesis in the liver. In this study, we found that statins reduced the active form of Akt and enhanced PGC-1alpha activity. Specifically, statins failed to activate an S571A mutant of PGC-1alpha. The activation of PGC-1alpha by statins selectively enhanced the expression of energy metabolizing enzymes and regulators including peroxisome proliferator-activated receptor alpha, acyl-CoA oxidase, carnitine palmitoyl transferase-1A, and pyruvate dehydrogenase kinase 4. Importantly, a constitutively active form of Akt partially reduced the statin-enhanced gene expression. Our study thus provides a plausible mechanistic explanation for the hypolipidemic effect of statin through elevating the rate of beta-oxidation and mitochondrial Kreb's cycle capacity to enhance fatty acid utilization while reducing the rate of glycolysis.

  14. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha.

    PubMed

    Qian, David Z; Kachhap, Sushant K; Collis, Spencer J; Verheul, Henk M W; Carducci, Michael A; Atadja, Peter; Pili, Roberto

    2006-09-01

    Hypoxia-inducible factor 1 alpha (HIF-1 alpha) plays a critical role in transcriptional gene activation involved in tumor angiogenesis. A novel class of agents, the histone deacetylase (HDAC) inhibitors, has been shown to inhibit tumor angiogenesis and HIF-1 alpha protein expression. However, the molecular mechanism responsible for this inhibition remains to be elucidated. In the current study, we investigated the molecular link between HIF-1 alpha inhibition and HDAC inhibition. Treatment of the VHL-deficient human renal cell carcinoma cell line UMRC2 with the hydroxamic HDAC inhibitor LAQ824 resulted in a dose-dependent inhibition of HIF-1 alpha protein via a VHL-independent mechanism and reduction of HIF-1 alpha transcriptional activity. HIF-1 alpha inhibition by LAQ824 was associated with HIF-1 alpha acetylation and polyubiquitination. HIF-1 alpha immunoprecipitates contained HDAC activity. Then, we tested different classes of HDAC inhibitors with diverse inhibitory activity of class I versus class II HDACs and assessed their capability of targeting HIF-1 alpha. Hydroxamic acid derivatives with known activity against both class I and class II HDACs were effective in inhibiting HIF-1 alpha at low nanomolar concentrations. In contrast, valproic acid and trapoxin were able to inhibit HIF-1 alpha only at concentrations that are effective against class II HDACs. Coimmunoprecipitation studies showed that class II HDAC4 and HDAC6 were associated with HIF-1 alpha protein. Inhibition by small interfering RNA of HDAC4 and HDAC6 reduced HIF-1 alpha protein expression and transcriptional activity. Taken together, these results suggest that class II HDACs are associated with HIF-1 alpha stability and provide a rationale for targeting HIF-1 alpha with HDAC inhibitors against class II isozymes.

  15. Immunohistochemical detection of hypoxia-inducible factor-1alpha in human renal allograft biopsies.

    PubMed

    Rosenberger, Christian; Pratschke, Johann; Rudolph, Birgit; Heyman, Samuel N; Schindler, Ralf; Babel, Nina; Eckardt, Kai-Uwe; Frei, Ulrich; Rosen, Seymour; Reinke, Petra

    2007-01-01

    Although it generally is accepted that renal hypoxia may occur in various situations after renal transplantation, direct evidence for such hypoxia is lacking, and possible implications on graft pathophysiology remain obscure. Hypoxia-inducible factors (HIF) are regulated at the protein level by oxygen-dependent enzymes and, hence, allow for tissue hypoxia detection. With the use of high-amplification HIF-1alpha immunohistochemistry in renal biopsies, hypoxia is shown at specific time points after transplantation with clinicohistologic correlations. Immediately after engraftment, in primarily functioning grafts, abundant HIF-1alpha is present and correlates with cold ischemic time >15 h and/or graft age >50 yr (P < 0.04). In contrast, a low HIF-1alpha score correlates with primary nonfunction, likely reflecting loss of oxygen consumption for tubular transport. Protocol biopsies at 2 wk show widespread HIF-1alpha induction, irrespective of histology. Beyond 3 mo, both protocol biopsies and indicated biopsies are virtually void of HIF-1alpha, with the only exception being clinical/subclinical rejection. HIF-derived transcriptional adaptation to hypoxia may counterbalance, at least partly, the negative impact of cold preservation and warm reflow injury. Transient hypoxia at 2 wk may be induced by hyperfiltration, hypertrophy, calcineurin inhibitor-induced toxicity, or a combination of these. Lack of detectable HIF-1alpha at 3 mo and beyond suggests that at this time point, graft oxygen homeostasis occurs. The strong correlation between hypoxia and clinical/subclinical rejection in long-term grafts suggests that hypoxia is involved in such graft dysfunction, and HIF-1alpha immunohistochemistry could enhance the specific diagnosis of acute rejection.

  16. Hypoxia-inducible factor-1alpha blocks differentiation of malignant gliomas.

    PubMed

    Lu, Huimin; Li, Yan; Shu, Minfeng; Tang, Jianjun; Huang, Yijun; Zhou, Yuxi; Liang, Yingjie; Yan, Guangmei

    2009-12-01

    Aberrant differentiation is a characteristic feature of neoplastic transformation, while hypoxia in solid tumors is believed to be linked to aggressive behavior and poor prognosis. However, the possible relationship between hypoxia and differentiation in malignancies remains poorly defined. Here we show that rat C6 and primary human malignant glioma cells can be induced to differentiate into astrocytes by the well-known adenylate cyclase activator forskolin. However, hypoxia-inducible factor-1alpha expression stimulated by the hypoxia mimetics cobalt chloride or deferoxamine blocks this differentiation and this effectiveness is reversible upon withdrawal of the hypoxia mimetics. Importantly, knockdown of hypoxia inducible factor-1alpha by RNA interference restores the differentiation capabilities of the cells, even in the presence of cobalt chloride, whereas stabilization of hypoxia-inducible factor-1alpha through retarded ubiquitination by von Hippel-Lindau tumor suppressor gene silence abrogates the induced differentiation. Moreover, targeting of HIF-1 using chetomin, a disrupter of HIF-1 binding to its transcriptional co-activator CREB-binding protein (CBP)/p300, abolishes the differentiation-inhibitory effect of hypoxia-inducible factor-1alpha. Administration of chetomin in combination with forskolin significantly suppresses malignant glioma growth in an in vivo xenograft model. Analysis of 95 human glioma tissues revealed an increase of hypoxia-inducible factor-1alpha protein expression with progressing tumor grade. Taken together, these findings suggest a key signal transduction pathway involving hypoxia-inducible factor-1alpha that contributes to a differentiation defect in malignant gliomas and sheds new light on the differentiation therapy of solid tumors by targeting hypoxia-inducible factor-1alpha.

  17. Hypoxia-inducible factor-1alpha suppresses the expression of macrophage scavenger receptor 1.

    PubMed

    Shirato, Ken; Kizaki, Takako; Sakurai, Takuya; Ogasawara, Jun-Etsu; Ishibashi, Yoshinaga; Iijima, Takehiko; Okada, Chikako; Noguchi, Izumi; Imaizumi, Kazuhiko; Taniguchi, Naoyuki; Ohno, Hideki

    2009-11-01

    Macrophages are distributed in all peripheral tissues and play a critical role in the first line of the innate immune defenses against bacterial infection by phagocytosis of bacterial pathogens through the macrophage scavenger receptor 1 (MSR1). Within tissues, the partial pressure of oxygen (pO2) decreases depending on the distance of cells from the closest O2-supplying blood vessel. However, it is not clear how the expression of MSR1 in macrophages is regulated by low pO2. On the other hand, hypoxia-inducible factor (HIF)-1alpha is well known to control hypoxic responses through regulation of hypoxia-inducible genes. Therefore, we investigated the effects of hypoxia and HIF-1alpha on MSR1 expression and function in the macrophage cell line RAW264. Exposure to 1% O2 or treatment with the hypoxia-mimetic agent cobalt chloride (CoCl2) significantly suppressed the expression of MSR1 mRNA, accompanied by a markedly increase in levels of nuclear HIF-1alpha protein. The overexpression of HIF-1alpha in RAW264 cells suppressed the expression of MSR1 mRNA and protein, transcriptional activity of the MSR1 gene, and phagocytic capacity against the Gram-positive bacteria Listeria monocytogenes. The suppression of MSR1 mRNA by hypoxia or CoCl2 was inhibited by YC-1, an inhibitor of HIF-1alpha, or by the depletion of HIF-1alpha expression by small interference RNA. These results indicate that hypoxia transcriptionally suppresses MSR1 expression through HIF-1alpha.

  18. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1{alpha} expression

    SciTech Connect

    Bian, Chuan-Xiu; Shi, Zhumei; Meng, Qiao; Jiang, Yue; Liu, Ling-Zhi; Jiang, Bing-Hua

    2010-07-30

    Research highlights: {yields} P70S6K1 regulates VEGF expression; {yields} P70S6K1 induces transcriptional activation through HIF-1{alpha} binding site; {yields} P70S6K1 regulates HIF-1{alpha}, but not HIF-1{beta} protein expression; {yields} P70S6K1 mediates tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression. -- Abstract: The 70 kDa ribosomal S6 kinase 1 (p70S6K1), a downstream target of phosphoinositide 3-kinase (PI3K) and ERK mitogen-activated protein kinase (MAPK), is an important regulator of cell cycle progression, and cell proliferation. Recent studies indicated an important role of p70S6K1 in PTEN-negative and AKT-overexpressing tumors. However, the mechanism of p70S6K1 in tumor angiogenesis remains to be elucidated. In this study, we specifically inhibited p70S6K1 activity in ovarian cancer cells using vector-based small interfering RNA (siRNA) against p70S6K1. We found that knockdown of p70S6K1 significantly decreased VEGF protein expression and VEGF transcriptional activation through the HIF-1{alpha} binding site at its enhancer region. The expression of p70S6K1 siRNA specifically inhibited HIF-1{alpha}, but not HIF-1{beta} protein expression. We also found that p70S6K1 down-regulation inhibited ovarian tumor growth and angiogenesis, and decreased cell proliferation and levels of VEGF and HIF-1{alpha} expression in tumor tissues. Our results suggest that p70S6K1 is required for tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression, providing a molecular mechanism of human ovarian cancer mediated by p70S6K1 signaling.

  19. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL.

    PubMed

    Hon, Wai-Ching; Wilson, Michael I; Harlos, Karl; Claridge, Timothy D W; Schofield, Christopher J; Pugh, Christopher W; Maxwell, Patrick H; Ratcliffe, Peter J; Stuart, David I; Jones, E Yvonne

    2002-06-27

    Hypoxia-inducible factor-1 (HIF-1) is a transcriptional complex that controls cellular and systemic homeostatic responses to oxygen availability. HIF-1 alpha is the oxygen-regulated subunit of HIF-1, an alpha beta heterodimeric complex. HIF-1 alpha is stable in hypoxia, but in the presence of oxygen it is targeted for proteasomal degradation by the ubiquitination complex pVHL, the protein of the von Hippel Lindau (VHL) tumour suppressor gene and a component of an E3 ubiquitin ligase complex. Capture of HIF-1 alpha by pVHL is regulated by hydroxylation of specific prolyl residues in two functionally independent regions of HIF-1 alpha. The crystal structure of a hydroxylated HIF-1 alpha peptide bound to VCB (pVHL, elongins C and B) and solution binding assays reveal a single, conserved hydroxyproline-binding pocket in pVHL. Optimized hydrogen bonding to the buried hydroxyprolyl group confers precise discrimination between hydroxylated and unmodified prolyl residues. This mechanism provides a new focus for development of therapeutic agents to modulate cellular responses to hypoxia.

  20. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction.

    PubMed

    Puigserver, Pere; Rhee, James; Donovan, Jerry; Walkey, Christopher J; Yoon, J Cliff; Oriente, Francesco; Kitamura, Yukari; Altomonte, Jennifer; Dong, Hengjiang; Accili, Domenico; Spiegelman, Bruce M

    2003-05-29

    Hepatic gluconeogenesis is absolutely required for survival during prolonged fasting or starvation, but is inappropriately activated in diabetes mellitus. Glucocorticoids and glucagon have strong gluconeogenic actions on the liver. In contrast, insulin suppresses hepatic gluconeogenesis. Two components known to have important physiological roles in this process are the forkhead transcription factor FOXO1 (also known as FKHR) and peroxisome proliferative activated receptor-gamma co-activator 1 (PGC-1alpha; also known as PPARGC1), a transcriptional co-activator; whether and how these factors collaborate has not been clear. Using wild-type and mutant alleles of FOXO1, here we show that PGC-1alpha binds and co-activates FOXO1 in a manner inhibited by Akt-mediated phosphorylation. Furthermore, FOXO1 function is required for the robust activation of gluconeogenic gene expression in hepatic cells and in mouse liver by PGC-1alpha. Insulin suppresses gluconeogenesis stimulated by PGC-1alpha but co-expression of a mutant allele of FOXO1 insensitive to insulin completely reverses this suppression in hepatocytes or transgenic mice. We conclude that FOXO1 and PGC-1alpha interact in the execution of a programme of powerful, insulin-regulated gluconeogenesis.

  1. A homology-derived structural model of the murine macrophage inflammatory protein, MIP-1 alpha.

    PubMed

    McKie, J H; Douglas, K T

    1994-01-01

    Macrophage inflammatory protein 1 alpha (MIP-1 alpha), a monocyte cytokine, has roles postulated for it in neutrophil chemoattraction, the inflammatory response and the control of haemopoietic stem cell proliferation. The three-dimensional structure of MIP-1 alpha has been modelled structurally, based on its sequence similarity to interleukin-8 and related proteins. The predicted dimeric form of MIP-1 alpha contains two symmetry-related antiparallel alpha-helices lying at an angle across a beta-sheet. The interhelical region and the beta-sheet flooring it are discussed as the potential receptor-binding site in terms of the distribution of negatively charged amino-acid side-chains, which contrasts remarkably with the corresponding positively-charged locations for IL-8. The general topographical features of this (alpha + beta) structural family of cytokines and related proteins (including HLA-A2, PF-4) are discussed. The members of this cytokine family fall into two structural groups as the antiparallel helices (N to C directed) mounted across the beta-sheet platform can be located in a clockwise (e.g. HLA-A2) or anticlockwise (e.g. MIP-1 alpha) sense with respect to the beta-floor).

  2. HIF-1{alpha} is necessary to support gluconeogenesis during liver regeneration

    SciTech Connect

    Tajima, Toshihide; Goda, Nobuhito; Fujiki, Natsuko; Hishiki, Takako; Nishiyama, Yasumasa; Senoo-Matsuda, Nanami; Shimazu, Motohide; Soga, Tomoyoshi; Yoshimura, Yasunori; Johnson, Randall S.; Suematsu, Makoto

    2009-10-02

    Coordinated recovery of hepatic glucose metabolism is prerequisite for normal liver regeneration. To examine roles of hypoxia inducible factor-1{alpha} (HIF-1{alpha}) for hepatic glucose homeostasis during the reparative process, we inactivated the gene in hepatocytes in vivo. Following partial hepatectomy (PH), recovery of residual liver weight was initially retarded in the mutant mice by down-regulation of hepatocyte proliferation, but occurred comparably between the mutant and control mice at 72 h after PH. At this time point, the mutant mice showed lowered blood glucose levels with enhanced accumulation of glycogen in the liver. The mutant mice exhibited impairment of hepatic gluconeogenesis as assessed by alanine tolerance test. This appeared to result from reduced expression of PGK-1 and PEPCK since 3-PG, PEP and malate were accumulated to greater extents in the regenerated liver. In conclusion, these findings provide evidence for roles of HIF-1{alpha} in the regulation of gluconeogenesis under liver regeneration.

  3. Cytokine responses in camels (Camelus bactrianus) vaccinated with Brucella abortus strain 19 vaccine.

    PubMed

    Odbileg, Raadan; Purevtseren, Byambaa; Gantsetseg, Dorj; Boldbaatar, Bazartseren; Buyannemekh, Tumurjav; Galmandakh, Zagd; Erdenebaatar, Janchivdorj; Konnai, Satoru; Onuma, Misao; Ohashi, Kazuhiko

    2008-02-01

    In the present study, we determined the levels of cytokines produced by camel (Camelus bactrianus) peripheral blood mononuclear cells (PBMCs) in response to live attenuated Brucella abortus (B. abortus) S19 vaccine. Seven camels were vaccinated with commercial B. abortus S19 vaccine, and their cytokine responses were determined using a real-time PCR assay. Cytokine responses to B. abortus S19 were examined at 6 hr, 48 hr and 1, 2 and 3 weeks post-vaccination. Serological tests were performed to further confirm these immune responses. The results revealed that IFN-gamma and IL-6 were upregulated during the first week post-vaccination. Low level expressions of IL-1alpha, IL-1beta, TNFalpha and IL-10 and no expression of IL-2 and IL-4 were observed compared with the control camels. The findings showed that B. abortus stimulates cell-mediated immunity by directly activating camel Th1 cells to secrete IFN-gamma. This quantification of cytokine expression in camels is essential for understanding of Camelidae disease development and protective immune responses. This is the first report of in vivo camel cytokine quantification after vaccination.

  4. TC1(C8orf4) is a novel endothelial inflammatory regulator enhancing NF-kappaB activity.

    PubMed

    Kim, Jungtae; Kim, Yunlim; Kim, Hyun-Taek; Kim, Dong Wook; Ha, Yunhi; Kim, Jihun; Kim, Cheol-Hee; Lee, Inchul; Song, Kyuyoung

    2009-09-15

    Endothelial inflammation is regulated by a complex molecular mechanism. TC1(C8orf4) is a novel regulator implicated in cancer and inflammation. It is a small protein conserved well among vertebrates. In zebrafish embryos, it is mostly expressed in angio-hematopoietic system and the overexpression induces edema. In human aortic endothelial cells and umbilical vein endothelial cells, TC1 transfection up-regulates key inflammatory cytokines, enzymes, and adhesion proteins including IL-6, IL-1alpha, COX-2, CXCL1, CCL5, CCL2, IL-8, ICAM1, VCAM1, and E-selectin, while TC1 knockdown down-regulates them. TC1 also enhances inflammatory parameters such as monocyte-endothelial adhesion and endothelial monolayer permeability. TC1 is up-regulated by IL-1beta, TNF-alpha, LPS, and phorbol ester, and the up-regulation is inhibited by I-kappaB-kinase inhibitors. TC1, in turn, enhances the nuclear translocation of RelA and the DNA binding activity, suggesting a biological role of amplifying NF-kappaB signaling via a positive feedback. Our findings suggest that TC1 is a novel endothelial inflammatory regulator that might be implicated in inflammatory vascular diseases.

  5. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung.

    PubMed

    Crouzier, D; Follot, S; Gentilhomme, E; Flahaut, E; Arnaud, R; Dabouis, V; Castellarin, C; Debouzy, J C

    2010-06-04

    With the rapid spread of carbon nanotubes (CNTs) applications, the respiratory toxicity of these compounds has attracted the attention of many scientists. Several studies have reported that after lung administration, CNTs could induce granuloma, fibrosis, or inflammation. By comparison with the mechanisms involved with other toxic particles such as asbestos, this effect could be attributed to an increase of oxidative stress. The aim of the present work was to test this hypothesis in vivo. Mice were intranasally instilled with 1.5mg/kg of double walled carbon nanotubes (DWCNTs). Six, 24, or 48h after administration, inflammation and localisation of DWCNTs in lungs were microscopically observed. Local oxidative perturbations were investigated using ESR spin trapping experiments, and systemic inflammation was assessed by measuring the plasma concentration of cytokines TNF-alpha, IL-1alpha, IL-1beta, IL-6, IGF-1, Leptin, G-CSF, and VEGF. Examination of lungs and the elevation of proinflammatory cytokines in the plasma (Leptin and IL-6 at 6h) confirmed the induction of an inflammatory reaction. This inflammatory reaction was accompanied by a decrease in the local oxidative stress. This effect could be attributed to the scavenger capability of pure CNTs.

  6. Differential innate immune responses of a living skin equivalent model colonized by Staphylococcus epidermidis or Staphylococcus aureus.

    PubMed

    Holland, Diana B; Bojar, Richard A; Farrar, Mark D; Holland, Keith T

    2009-01-01

    Staphylococcus epidermidis is a commensal on skin, whereas Staphylococcus aureus is a transient pathogen. The aim was to determine whether the skin's innate defence systems responded differently to these microorganisms. Differential gene expression of a human skin equivalent (SE) model was assessed by microarray technology, in response to colonization by S. epidermidis or S. aureus. Only a small number of transcripts were significantly (P<0.0001) increased (12) or decreased (35) with gene expression changes of >2-fold on SEs colonized with S. epidermidis compared with controls (no colonization). Expression of one innate defence gene, pentraxin 3 (PTX3), was upregulated, while psoriasin, S100A12, S100A15, beta defensin 4, beta defensin 3, lipocalin 2 and peptidoglycan recognition protein 2 were downregulated. In contrast, large numbers of transcripts were significantly increased (480) or decreased (397) with gene expression changes of >2-fold on SEs colonized with S. aureus compared with controls. There was upregulation in gene expression of many skin defence factors including Toll-like receptor 2, beta defensin 4, properdin, PTX3, proinflammatory cytokines tumour necrosis factor-alpha, IL-1 alpha, IL-1 beta, IL-17C, IL-20, IL-23A and chemokines IL-8, CCL4, CCL5, CCL20 and CCL27. These differences may partly explain why S. epidermidis is a normal skin resident and S. aureus is not.

  7. LPS priming potentiates and prolongs proinflammatory cytokine response to the trichothecene deoxynivalenol in the mouse

    SciTech Connect

    Islam, Zahidul; Pestka, James J. . E-mail: pestka@msu.edu

    2006-02-15

    Simultaneous exposure to lipopolysaccharide (LPS) markedly amplifies induction of proinflammatory cytokine expression as well as IL-1-driven lymphocyte apoptosis by trichothecene deoxynivalenol (DON) in the mouse. The purpose of this research was to test the hypothesis that LPS priming will sensitize a host to DON-induced proinflammatory cytokine induction and apoptosis. In mice primed with LPS (1 mg/kg bw) ip. and treated 8 h later with DON po., the minimum DON doses for inducing IL-1{alpha}, IL-1{beta}, IL-6 and TNF-{alpha} serum proteins and splenic mRNAs were significantly lower than the DON doses required for vehicle-primed mice. LPS priming also decreased onset time and dramatically increased magnitude and duration of cytokine responses. LPS-primed mice maintained heightened sensitivity to DON for up to 24 h. LPS priming doses as low as 50 {mu}g/kg bw evoked sensitization. DNA fragmentation analysis and flow cytometry also revealed that mice primed with LPS (1 mg/kg) for 8 h and exposed to DON (12.5 mg/kg) exhibited massive thymocyte loss by apoptosis 12 h later compared to mice exposed to DON or LPS alone. LPS priming decreased DON-induced p38 and ERK 1/2 phosphorylation suggesting that enhanced mitogen-activated protein kinase activation was not involved in increased cytokine responses. Taken together, exposure to LPS rendered mice highly susceptible to DON induction of cytokine expression and this correlated with increased apoptosis in the thymus.

  8. The age-related attenuation in long-term potentiation is associated with microglial activation.

    PubMed

    Griffin, Rebecca; Nally, Rachel; Nolan, Yvonne; McCartney, Yvonne; Linden, James; Lynch, Marina A

    2006-11-01

    It is well established that inflammatory changes contribute to brain ageing, and an increased concentration of proinflammatory cytokine, interleukin-1beta (IL-1beta), has been reported in the aged brain associated with a deficit in long-term potentiation (LTP) in rat hippocampus. The precise age at which changes are initiated is unclear. In this study, we investigate parallel changes in markers of inflammation and LTP in 3-, 9- and 15-month-old rats. We report evidence of increased hippocampal concentrations of the proinflammatory cytokines IL-1alpha, IL-18 and interferon-gamma (IFNgamma), which are accompanied by deficits in LTP in the older rats. We also show an increase in expression of markers of microglial activation, CD86, CD40 and intercellular adhesion molecules (ICAM). Associated with these changes, we observed a significant impairment of hippocampal LTP in the same rats. The importance of microglial activation in the attenuation of long-term potentiation (LTP) was demonstrated using an inhibitor of microglial activation, minocycline; partial restoration of LTP in 15-month-old rats was observed following administration of minocycline. We propose that signs of neuroinflammation are observed in middle age and that these changes, which are characterized by microglial activation, may be triggered by IL-18.

  9. Interleukin 1 induces expression of the human immunodeficiency virus alone and in synergy with interleukin 6 in chronically infected U1 cells: inhibition of inductive effects by the interleukin 1 receptor antagonist.

    PubMed Central

    Poli, G; Kinter, A L; Fauci, A S

    1994-01-01

    In the present study we have observed that interleukin (IL) 1 alpha or IL-1 beta directly induced expression of human immunodeficiency virus (HIV) in the latently infected human promonocytic cell line U1. In addition, IL-1 synergized with IL-6, but not with tumor necrosis factor, in the upregulation of virus expression in U1 cells as measured by accumulation of steady-state mRNAs and production of reverse transcriptase activity. The HIV inductive effect of IL-1 was blocked by transforming growth factor beta, anti-IL-1 antibodies, or monoclonal antibodies directed to the type 1, but not to the type 2, cell surface receptor for IL-1; the latter actually caused enhancement of the IL-1-mediated effect. Unlike tumor necrosis factor alpha, IL-1 either alone or in combination with IL-6 did not induce activation of the transcription activating factor NF-kappa B above the constitutive levels of unstimulated U1 cells. Finally, the IL-1 receptor antagonist effectively blocked IL-1-mediated direct and synergistic inductive effects on virus production. Thus, IL-1 may be an important mediator of HIV expression, and blocking of IL-1 expression and/or its effects may have a potential therapeutic role in the inhibition of HIV expression in infected individuals. Images Fig. 2 Fig. 3 PMID:7506410

  10. IL-1RAcPb signaling regulates adaptive mechanisms in neurons that promote their long-term survival following excitotoxic insults

    PubMed Central

    Gosselin, David; Bellavance, Marc-André; Rivest, Serge

    2012-01-01

    Excitotoxicity is a major component of neurodegenerative diseases and is typically accompanied by an inflammatory response. Cytokines IL-1alpha and IL-1beta are key regulators of this inflammatory response and modulate the activity of numerous cell types, including neurons. IL-1RAcPb is an isoform of IL-1RAcP expressed specifically in neurons and promotes their survival during acute inflammation. Here, we investigated in vivo whether IL-1RAcPb also promotes neuronal survival in a model of excitotoxicity. Intrastriatal injection of kainic acid (KA) in mice caused a strong induction of IL-1 cytokines mRNA in the brain. The stress response of cortical neurons at 12 h post-injection, as measured by expression of Atf3, FoxO3a, and Bdnf mRNAs, was similar in WT and AcPb-deficient mice. Importantly however, a delayed upregulation in the transcription of calpastatin was significantly higher in WT than in AcPb-deficient mice. Finally, although absence of AcPb signaling had no effect on damage to neurons in the cortex at early time points, it significantly impaired their long-term survival. These data suggest that in a context of excitotoxicity, stimulation of IL-1RAcPb signaling may promote the activity of a key neuroprotective mechanism. PMID:23423359

  11. Circulating Cytokines as Biomarkers of Alcohol Abuse and Alcoholism

    PubMed Central

    Achur, Rajeshwara N.; Freeman, Willard M.; Vrana, Kent E.

    2010-01-01

    There are currently no consistent objective biochemical markers of alcohol abuse and alcoholism. Development of reliable diagnostic biomarkers that permit accurate assessment of alcohol intake and patterns of drinking is of prime importance to treatment and research fields. Diagnostic biomarker development in other diseases has demonstrated the utility of both open, systems biology, screening for biomarkers and more rational focused efforts on specific biomolecules or families of biomolecules. Long term alcohol consumption leads to altered inflammatory cell and adaptive immune responses with associated pathologies and increased incidence of infections. This has led researchers to focus attention on identifying cytokine biomarkers in models of alcohol abuse. Alcohol is known to alter cytokine levels in plasma and a variety of tissues including lung, liver, and very importantly brain. A number of cytokine biomarker candidates have been identified, including: TNF alpha, IL1-alpha, IL1-beta, IL6, IL8, IL12 and MCP-1. This is an emerging and potentially exciting avenue of research in that circulating cytokines may contribute to diagnostic biomarker panels and a combination of multiple biomarkers may significantly increase the sensitivity and specificity of the biochemical tests aiding reliable and accurate detection of excessive alcohol intake. PMID:20020329

  12. Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction.

    PubMed

    Netea, Mihai G; Warris, Adilia; Van der Meer, Jos W M; Fenton, Matthew J; Verver-Janssen, Trees J G; Jacobs, Liesbeth E H; Andresen, Tonje; Verweij, Paul E; Kullberg, Bart Jan

    2003-07-15

    Peritoneal macrophages from Toll-like receptor (TLR) 4-deficient ScCr mice produced less tumor necrosis factor, interleukin (IL)-1alpha, and IL-1beta than did macrophages of control mice, when stimulated with conidia, but not with hyphae, of Aspergillus fumigatus, a finding suggesting that TLR4-mediated signals are lost during germination. This hypothesis was confirmed by use of a TLR4-specific fibroblast reporter cell line (3E10) that responded to the conidia, but not to the hyphae, of A. fumigatus. In contrast, macrophages from TLR2-knockout mice had a decreased production of proinflammatory cytokines in response to both Aspergillus conidia and Aspergillus hyphae, and these results were confirmed in 3E10 cells transfected with human TLR2. In addition, Aspergillus hyphae, but not Aspergillus conidia, stimulated production of IL-10 through TLR2-dependent mechanisms. In conclusion, TLR4-mediated proinflammatory signals, but not TLR2-induced anti-inflammatory signals, are lost on Aspergillus germination to hyphae. Therefore, phenotypic switching during germination may be an important escape mechanism of A. fumigatus that results in counteracting the host defense.

  13. A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types.

    PubMed Central

    McMahan, C J; Slack, J L; Mosley, B; Cosman, D; Lupton, S D; Brunton, L L; Grubin, C E; Wignall, J M; Jenkins, N A; Brannan, C I

    1991-01-01

    cDNA clones corresponding to an Mr approximately 80,000 receptor (type I receptor) for interleukin-1 (IL-1) have been isolated previously by mammalian expression. Here, we report the use of an improved expression cloning method to isolate human and murine cDNA clones encoding a second type (Mr approximately 60,000) of IL-1 receptor (type II receptor). The mature type II IL-1 receptor consists of (i) a ligand binding portion comprised of three immunoglobulin-like domains; (ii) a single transmembrane region; and (iii) a short cytoplasmic domain of 29 amino acids. This last contrasts with the approximately 215 amino acid cytoplasmic domain of the type I receptor, and suggests that the two IL-1 receptors may interact with different signal transduction pathways. The type II receptor is expressed in a number of different tissues, including both B and T lymphocytes, and can be induced in several cell types by treatment with phorbol ester. Both IL-1 receptors appear to be well conserved in evolution, and map to the same chromosomal location. Like the type I receptor, the human type II IL-1 receptor can bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1ra). Vaccinia virus contains an open reading frame bearing strong resemblance to the type II IL-1 receptor. Images PMID:1833184

  14. Optimization of multiplexed bead-based cytokine immunoassays for rat serum and brain tissue.

    PubMed

    Hulse, R E; Kunkler, P E; Fedynyshyn, J P; Kraig, R P

    2004-06-15

    The ability to simultaneously quantify multiple signaling molecule protein levels from microscopic neural tissue samples would be of great benefit to deciphering how they affect brain function. This follows from evidence that indicates signaling molecules can be pleiotropic and can have complex interactive behavior that is regionally and cellularly heterogeneous. Multiplexed examination of tissue proteins has been exceedingly difficult because of the absence of available techniques. This void now has been removed by the commercial availability of bead-based immunoassays for targeted proteins that allow analyses of up to 100 (6-150 kDa) proteins from as little as 12 microl. Thus far used only for sera (human and mouse) and culture media, we demonstrate here that sensitive (as low as 2 pg/ml), wide-ranging (up to 2-32 000 pg/ml), accurate (8% intra-assay covariance) and reliable (4-7% inter-assay covariance) measurements can be made of nine exemplary cytokines (e.g., IL-1alpha, IL-1beta, IL-2, IL-4, IL-6, IL-10, GM-CSF, IFN-gamma, TNF-alpha) simultaneously not only from rat serum but, for the first time, also brain tissue. Furthermore, we describe animal handling procedures that minimize stress as determined by serum glucocorticoid levels since they can influence cytokine expression.

  15. Aging and glial responses to lipopolysaccharide in vitro: greater induction of IL-1 and IL-6, but smaller induction of neurotoxicity.

    PubMed

    Xie, Zhong; Morgan, Todd E; Rozovsky, Irina; Finch, Caleb E

    2003-07-01

    Glial activation during aging was analyzed in primary glia cultured from brain regions sampled across the life span. An initial study showed that phenotypes of activated astrocytes and microglia from aging rat cerebral cortex persisted in primary cultures (Neurobiol. Aging 19 (1998), 97). We extend these findings by examining effects of age on the activation of glial cultures from adult rat brain in response to lipopolysaccharide (LPS), an inflammatory stimulus. Mixed glia from F344 male rats, aged 3 and 24 months, cultured from cerebral cortex (Cx), hippocampus (Hc), and striatum (St), were assayed for cytokines implicated in Alzheimer's disease: IL-1alpha, IL-1beta, IL-6, and TNF-alpha. Regional differences across all age groups included consistently lower expression of these cytokines in glia derived from Cx than Hc and St. Aging increased basal IL-6 mRNA and secretion by >or=3-fold in glia from Cx and Hc. Aging also increased LPS-induced IL-1 and IL-6 in Hc more than in Cx, whereas no significant effects of age were seen in St-derived glial cytokines. TNF-alpha secretion did not differ by donor age (basal or LPS-induced). Nitric oxide production by microglia from Cx of aging brains showed a smaller induction in response to LPS, with proportionately less neurotoxicity. Thus, glial activation during aging shows regional selectivity in cytokine expression, with opposite effects of aging on the increased inducibility of IL-1 and IL-6 vs the decreased production of nitric oxide.

  16. Interleukin-1 and interleukin-6 gene expression in human monocytes stimulated with Salmonella typhimurium porins.

    PubMed Central

    Galdiero, M; Cipollaro de L'ero, G; Donnarumma, G; Marcatili, A; Galdiero, F

    1995-01-01

    The aim of this study was to verify whether Salmonella typhimurium porins can affect the expression of interleukin-1 (IL-1) and interleukin-6 (IL-6) genes. Human monocytes were treated with porins, and total RNAs were analysed by Northern blotting to evaluate the expression of IL-1 alpha, IL-1 beta and IL-6 in both treated and untreated cell cultures. Porins induced a significant increase in IL-1 and IL-6 transcripts. This increase was related to the dose of porins, and it peaked 5 hr after treatment. The same results were obtained when polymyxin B was added to the porin preparation to eliminate eventual traces of lipopolysaccharide (LPS) associated with porins. The porins-mediated increase in interleukin transcripts did not require de novo protein synthesis, and it was because of the enhanced half-life of IL-1 and IL-6 mRNAs, rather an increased rate of gene transcription. These data suggest that porins may affect inflammatory and immunological responses by enhancing the expression of cytokine genes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8567029

  17. CpG oligodeoxynucleotides induce strong up-regulation of interleukin 33 via Toll-like receptor 9.

    PubMed

    Shimosato, Takeshi; Fujimoto, Megumi; Tohno, Masanori; Sato, Takashi; Tateo, Mariko; Otani, Hajime; Kitazawa, Haruki

    2010-03-26

    We previously reported the strong immunostimulatory effects of a CpG oligodeoxynucleotide (ODN), designated MsST, from the lacZ gene of Streptococcus (S.) thermophilus ATCC19258. Here we show that 24h of stimulation with MsST in mouse splenocytes and peritoneal macrophages strongly induces expression of interleukin (IL)-33, a cytokine in the IL-1 superfamily. Other IL-1 superfamily members, including IL-1alpha, IL-1beta and IL-18, are down-regulated after 24h of stimulation of MsST. We also found that MsST-induced IL-33 mRNA expression is inhibited by the suppressive ODN A151, which can inhibit Toll-like receptor 9 (TLR9)-mediated responses. This is the first report to show that IL-33 can be induced by CpG ODNs. The strong induction of IL-33 by MsST suggests that it may be a potential therapeutic ODN for the treatment of inflammatory disease. The presence of a strong CpG ODN in S. thermophilus also suggests that the bacterium may be a good candidate as a starter culture for the development of new physiologically functional foods.

  18. Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice

    SciTech Connect

    Giavazzi, R.; Garofalo, A.; Bani, M.R.; Abbate, M.; Ghezzi, P.; Boraschi, D.; Mantovani, A.; Dejana, E. )

    1990-08-01

    This study has examined the effect of the cytokine interleukin 1 (IL-1) on metastasis formation by the human melanoma A375M in nude mice. We have found that human recombinant IL-1 beta (a single injection greater than 0.01 micrograms per mouse i.v. given before tumor cells) induced an augmentation of experimental lung metastases from the A375M tumor cells in nude mice. This effect was rapidly induced and reversible within 24 h after IL-1 injection. A similar effect was induced by human recombinant IL-1 alpha and human recombinant tumor necrosis factor, but not by human recombinant interleukin 6. 5-(125I)odo-2'-deoxyuridine-radiolabeled A375M tumor cells injected i.v. remained at a higher level in the lungs of nude mice receiving IL-1 than in control mice. In addition, IL-1 injected 1 h, but not 24 h, after tumor cells enhanced lung colonization as well, thus suggesting an effect of IL-1 on the vascular transit of tumor cells. These findings may explain the observation of enhanced secondary localization of tumor cells at inflammatory sites and suggest that modulation of secondary spread should be carefully considered when assessing the ability of this cytokine to complement cytoreductive therapies.

  19. The effects of simultaneous administration of dietary conjugated linoleic acid and telmisartan on cardiovascular risks in rats.

    PubMed

    Abdullah, Mohammad M; Xu, Zuyuan; Pierce, Grant N; Moghadasian, Mohammed H

    2007-09-01

    Dietary conjugated linoleic acid (CLA) and the antihypertensive drug, telmisartan, have both been shown to modify cardiovascular risks. The effects of a combination of these two agents have, however, not been investigated. This 20 week study sought to assess the therapeutic potential of a CLA/telmisartan co-administration in rats fed a high-fructose high-fat diet. Thirty-three male Sprague-Dawley rats were randomly assigned to five experimental groups, including control, losartan, telmisartan, CLA, and CLA + telmisartan-treated animals. Body weight, blood pressure, and blood levels of lipids, glucose, insulin, and inflammatory markers were measured. Co-administration of CLA and telmisartan resulted in significant (P < 0.05) reductions in body weight, visceral fat, serum total cholesterol, triglycerides, glucose, plasma insulin concentrations, and systolic blood pressure compared with those in the control group. Moreover, plasma levels of IL1-alpha and IFN-gamma were reduced and levels of IL1-beta, IL-4, IL-6, and IL-10, plus TNF-alpha were increased in the co-therapy group, compared with controls. In conclusion, this study suggests that a combination of CLA with telmisartan may modify several risk factors of cardiovascular disease commonly seen in metabolic syndrome. This combination of nutraceuticals and pharmaceuticals may be a safe and cost-effective strategy in a number of high-risk subjects. Future studies will further document clinical benefits of such combination therapy.

  20. Quantitative evaluation of 1-alpha-hydroxycholecalciferol as a cholecalciferol substitute for broilers.

    PubMed

    Edwards, H M; Shirley, R B; Escoe, W B; Pesti, G M

    2002-05-01

    Two experiments were conducted using a corn-soybean meal diet that meets or exceeds the NRC (1984) requirements for all nutrients except cholecalciferol (D3) to determine the effectiveness of 1-alpha-hydroxycholecalciferol (1alpha-OHD3) as a substitute for D3 in the diet of young broilers. Ross x Ross mixed-sex, 1-d-old chicks were reared in Petersime battery brooders not exposed to ultraviolet light with feed and water supplied ad libitum for 16 d. In Experiment 1, D3 was fed at 0, 2.5, 5, 10, 20, and 40 microg/kg and one source of 1alpha-OHD3-(Hoffmann-LaRoche, Inc.; HLR) was fed at 0.625, 1.25, 2.5, 5, and 10 microg/kg of diet. In Experiment 2, the D3 was fed at 0, 2.5, 5, and 10 microg and two sources of 1alpha-OHD3-[HLR and Majestic Research Inc. (MRI)] were fed at 0, 0.625, 1.25, and 5 microg/kg of diet. Slope ratio analysis of data from the measurement of 16-d body weight, plasma Ca, rickets, and bone ash indicated bioavailability of the 1alpha-OHD3 as compared to D3 from 1.88 to 21.2. Percentage bone ash gave the most precise values in both experiments. Considering all the data from both experiments, the 1alpha-OHD3 appears to be approximately eight times as effective as D3 for satisfying the requirements of several criteria in two experiments with broiler chickens.

  1. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    NASA Technical Reports Server (NTRS)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  2. Inhibition of HIF-1{alpha} activity by BP-1 ameliorates adjuvant induced arthritis in rats

    SciTech Connect

    Shankar, J.; Thippegowda, P.B.; Kanum, S.A.

    2009-09-18

    Rheumatoid arthritis (RA) is a chronic inflammatory, angiogenic disease. Inflamed synovitis is a hallmark of RA which is hypoxic in nature. Vascular endothelial growth factor (VEGF), one of the key regulators of angiogenesis, is overexpressed in the pathogenesis of RA. VEGF expression is regulated by hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), a master regulator of homeostasis which plays a pivotal role in hypoxia-induced angiogenesis. In this study we show that synthetic benzophenone analogue, 2-benzoyl-phenoxy acetamide (BP-1) can act as a novel anti-arthritic agent in an experimental adjuvant induced arthritis (AIA) rat model by targeting VEGF and HIF-1{alpha}. BP-1 administered hypoxic endothelial cells and arthritic animals clearly showed down regulation of VEGF expression. Further, BP-1 inhibits nuclear translocation of HIF-1{alpha}, which in turn suppresses transcription of the VEGF gene. These results suggest a further possible clinical application of the BP-1 derivative as an anti-arthritic agent in association with conventional chemotherapeutic agents.

  3. HIV-1-infected macrophages induce astrogliosis by SDF-1{alpha} and matrix metalloproteinases

    SciTech Connect

    Okamoto, Mika; Wang, Xin; Baba, Masanori . E-mail: baba@m.kufm.kagoshima-u.ac.jp

    2005-11-04

    Brain macrophages/microglia and astrocytes are known to be involved in the pathogenesis of HIV-1-associated dementia (HAD). To clarify their interaction and contribution to the pathogenesis, HIV-1-infected or uninfected macrophages were used as a model of brain macrophages/microglia, and their effects on human astrocytes in vitro were examined. The culture supernatants of HIV-1-infected or uninfected macrophages induced significant astrocyte proliferation, which was annihilated with a neutralizing antibody to stromal cell-derived factor (SDF)-1{alpha} or a matrix metalloproteinase (MMP) inhibitor. In these astrocytes, CXCR4, MMP, and tissue inhibitors of matrix metalloproteinase mRNA expression and SDF-1{alpha} production were significantly up-regulated. The supernatants of infected macrophages were always more effective than those of uninfected cells. Moreover, the enhanced production of SDF-1{alpha} was suppressed by the MMP inhibitor. These results indicate that the activated and HIV-1-infected macrophages can indirectly induce astrocyte proliferation through up-regulating SDF-1{alpha} and MMP production, which implies a mechanism of astrogliosis in HAD.

  4. EFL GTPase in cryptomonads and the distribution of EFL and EF-1alpha in chromalveolates.

    PubMed

    Gile, Gillian H; Patron, Nicola J; Keeling, Patrick J

    2006-10-01

    EFL (EF-like protein) is a member of the GTPase superfamily that includes several translation factors. Because it has only been found in a few eukaryotic lineages and its presence correlates with the absence of the related core translation factor EF-1alpha, its distribution is hypothesized to be the result of lateral gene transfer and replacement of EF-1alpha. In one supergroup of eukaryotes, the chromalveolates, two major lineages were found to contain EFL (dinoflagellates and haptophytes), while the others encode EF-1alpha (apicomplexans, ciliates, heterokonts and cryptomonads). For each of these groups, this distribution was deduced from whole genome sequence or expressed sequence tag (EST) data from several species, with the exception of cryptomonads from which only a single EF-1alpha PCR product from one species was known. By sequencing ESTs from two cryptomonads, Guillardia theta and Rhodomonas salina, and searching for all GTPase translation factors, we revealed that EFL is present in both species, but, contrary to expectations, we found EF-1alpha in neither. On balance, we suggest the previously reported EF-1alpha from Rhodomonas salina is likely an artefact of contamination. We also identified EFL in EST data from two members of the dinoflagellate lineage, Karlodinium micrum and Oxyrrhis marina, and from an ongoing genomic sequence project from a third, Perkinsus marinus. Karlodinium micrum is a symbiotic pairing of two lineages that would have both had EFL (a dinoflagellate and a haptophyte), but only the dinoflagellate gene remains. Oxyrrhis marina and Perkinsus marinus are early diverging sister-groups to dinoflagellates, and together show that EFL originated early in this lineage. Phylogenetic analysis confirmed that these genes are all EFL homologues, and showed that cryptomonad genes are not detectably related to EFL from other chromalveolates, which collectively form several distinct groups. The known distribution of EFL now includes a third group

  5. PGC-1{alpha} accelerates cytosolic Ca{sup 2+} clearance without disturbing Ca{sup 2+} homeostasis in cardiac myocytes

    SciTech Connect

    Chen, Min; Wang, Yanru; Qu, Aijuan

    2010-06-11

    Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+} transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.

  6. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    SciTech Connect

    Summermatter, Serge; Santos, Gesa

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training

  7. Increase in gene dosage is a mechanism of HIF-1alpha constitutive expression in head and neck squamous cell carcinomas.

    PubMed

    Secades, Pablo; Rodrigo, Juan Pablo; Hermsen, Mario; Alvarez, Cesar; Suarez, Carlos; Chiara, María-Dolores

    2009-05-01

    The HIF-1alpha protein plays a key role in the cellular response to hypoxia via transcriptional regulation of genes involved in erythropoiesis, angiogenesis, and metabolism. Overexpression of HIF-1alpha is commonly found in solid tumors in significant association with increased patient mortality and resistance to therapy. The predominant mode of HIF-1alpha regulation by hypoxia occurs at the level of protein stability. In addition to hypoxia, HIF-1alpha protein stability and synthesis is regulated by nonhypoxic signals such as inactivation of tumor suppressors and activation of oncogenes. Here, we show that an increase in gene dosage may contribute to HIF-1alpha mRNA and protein overexpression in a nonhypoxic environment in head and neck squamous cell carcinomas (HNSCC). Increased HIF-1alpha gene dosage was found in one out of five HNSCC-derived cell lines and three out of 27 HNSCC primary tumors. Significantly, increased gene dosage in those samples was associated with high HIF-1alpha mRNA and protein levels. Normoxic overexpression of HIF-1alpha protein in HNSCC-derived cell lines was also paralleled by higher expression levels of HIF-1alpha target genes. Array CGH analysis confirmed the copy number increase of HIF-1alpha gene and revealed that the gene is contained within a region of amplification at 14q23-q24.2 both in the cell line and primary tumors. In addition, FISH analysis revealed the presence of 11-13 copies on a tetraploid background in SCC2 cells. These data suggest that increased HIF-1alpha gene dosage is a mechanism of HIF-1alpha protein overexpression in HNSCC that possibly prepares the cells for a higher activity in an intratumoral hypoxic environment.

  8. PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease

    PubMed Central

    2011-01-01

    Background Huntington disease (HD) is an inherited neurodegenerative disease caused by an abnormal expansion of a CAG repeat in the huntingtin HTT (HD) gene. The primary genetic determinant of the age at onset (AO) is the length of the HTT CAG repeat; however, the remaining genetic contribution to the AO of HD has largely not been elucidated. Recent studies showed that impaired functioning of the peroxisome proliferator-activated receptor gamma coactivator 1a (PGC-1alpha) contributes to mitochondrial dysfunction and appears to play an important role in HD pathogenesis. Further genetic evidence for involvement of PGC-1alpha in HD pathogenesis was generated by the findings that sequence variations in the PPARGC1A gene encoding PGC-1alpha exert modifying effects on the AO in HD. In this study, we hypothesised that polymorphisms in PGC-1alpha downstream targets might also contribute to the variation in the AO. Results In over 400 German HD patients, polymorphisms in the nuclear respiratory factor 1 gene, NRF-1, and the mitochondrial transcription factor A, encoded by TFAM showed nominally significant association with AO of HD. When combining these results with the previously described modifiers rs7665116 in PPARGC1A and C7028T in the cytochrome c oxidase subunit I (CO1, mt haplogroup H) in a multivariable model, a substantial proportion of the variation in AO can be explained by the joint effect of significant modifiers and their interactions, respectively. Conclusions These results underscore that impairment of mitochondrial function plays a critical role in the pathogenesis of HD and that upstream transcriptional activators of PGC-1alpha may be useful targets in the treatment of HD. PMID:21595933

  9. Oxygen-dependent expression of hypoxia-inducible factor-1alpha in renal medullary cells of rats.

    PubMed

    Zou, A P; Yang, Z Z; Li, P L; Cowley AW, J R

    2001-08-28

    Hypoxia-inducible factor-1alpha (HIF-1alpha) is a transcription factor that regulates the oxygen-dependent expression of a number of genes. This transcription factor may contribute to the abundant expression of many genes in renal medullary cells that function normally under hypoxic conditions. The present study was designed to determine the characteristics of HIF-1alpha cDNA cloned from the rat kidney and the expression profile of HIF-1alpha in different kidney regions and to explore the mechanism activating or regulating HIF-1alpha expression in renal medullary cells. A 3,718-bp HIF-1alpha cDNA from the rat kidney was first cloned and sequenced using RT-PCR and TA cloning technique. It was found that 823 amino acids deduced from this renal HIF-1alpha cDNA had 99%, 96%, and 90% identity with rat, mouse, or human HIF-1alpha deposited in GenBank, respectively. The 3'-untranslated region of HIF-1alpha mRNA from the rat kidney contained seven AUUUA instability elements, five of which were found to be conserved among rat, mouse, and human HIF-1alpha. Northern blot analyses demonstrated a corticomedullary gradient of HIF-1alpha mRNA expression in the kidney, with the greatest abundance in the renal inner medulla. Western blot analyses also detected a higher HIF-1alpha protein level in the nuclear extracts from the renal medulla than the renal cortex. A classic loop diuretic, furosemide (10 mg/kg ip), markedly increased renal medullary Po(2) levels from 22.5 to 52.2 mmHg, which was accompanied by a significant reduction of HIF-1alpha transcripts in renal medullary tissue. In in vitro experiments, low Po(2), but not elevated osmolarity, was found to significantly increase HIF-1alpha mRNA in renal medullary interstitial cells and inner medullary collecting duct cells. These results indicate that HIF-1alpha is more abundantly expressed in the renal medulla compared with the renal cortex. Increased abundance of HIF-1alpha mRNA in the renal medulla may represent an adaptive

  10. Uncoupling of stem cell inhibition from monocyte chemoattraction in MIP-1alpha by mutagenesis of the proteoglycan binding site.

    PubMed

    Graham, G J; Wilkinson, P C; Nibbs, R J; Lowe, S; Kolset, S O; Parker, A; Freshney, M G; Tsang, M L; Pragnell, I B

    1996-12-02

    We have studied the role of proteoglycans in the function of Macrophage Inflammatory Protein-1 alpha (MIP-1alpha), a member of the proteoglycan binding chemokine family. Sequence and peptide analysis has identified a basic region within MIP-1alpha which appears to be the major determinant of proteoglycan binding and we have now produced a mutant of MIP-1alpha lacking the basic charges on two of the amino acids within this proteoglycan binding site. This mutant (Hep Mut) appears to have lost the ability to bind to proteoglycans. Bioassay of Hep Mut indicates that it has retained stem cell inhibitory properties but has a compromised activity as a monocyte chemoattractant, thus suggesting uncoupling of these two properties of MIP-1alpha. Receptor studies have indicated that the inactivity of Hep Mut on human monocytes correlates with its inability to bind to CCR1, a cloned human MIP-1alpha receptor. In addition, studies using proteoglycan deficient cells transfected with CCR1 have indicated that the proteoglycan binding site in MIP-1alpha is a site that is also involved in the docking of MIP-1alpha to the monocyte receptor. The site for interaction with the stem cell receptor must therefore be distinct, suggesting that MIP-1alpha utilizes different receptors for these two different biological processes.

  11. Uncoupling of stem cell inhibition from monocyte chemoattraction in MIP-1alpha by mutagenesis of the proteoglycan binding site.

    PubMed Central

    Graham, G J; Wilkinson, P C; Nibbs, R J; Lowe, S; Kolset, S O; Parker, A; Freshney, M G; Tsang, M L; Pragnell, I B

    1996-01-01

    We have studied the role of proteoglycans in the function of Macrophage Inflammatory Protein-1 alpha (MIP-1alpha), a member of the proteoglycan binding chemokine family. Sequence and peptide analysis has identified a basic region within MIP-1alpha which appears to be the major determinant of proteoglycan binding and we have now produced a mutant of MIP-1alpha lacking the basic charges on two of the amino acids within this proteoglycan binding site. This mutant (Hep Mut) appears to have lost the ability to bind to proteoglycans. Bioassay of Hep Mut indicates that it has retained stem cell inhibitory properties but has a compromised activity as a monocyte chemoattractant, thus suggesting uncoupling of these two properties of MIP-1alpha. Receptor studies have indicated that the inactivity of Hep Mut on human monocytes correlates with its inability to bind to CCR1, a cloned human MIP-1alpha receptor. In addition, studies using proteoglycan deficient cells transfected with CCR1 have indicated that the proteoglycan binding site in MIP-1alpha is a site that is also involved in the docking of MIP-1alpha to the monocyte receptor. The site for interaction with the stem cell receptor must therefore be distinct, suggesting that MIP-1alpha utilizes different receptors for these two different biological processes. Images PMID:8978677

  12. Profile of serum IL-1beta and IL-10 shortly after ovariectomy and estradiol replacement in rats.

    PubMed

    Percegoni, N; Ferreira, A C F; Rodrigues, C F; Rosenthal, D; Castelo Branco, M T L; Rumjanek, V M; Carvalho, D P

    2009-01-01

    Ovariectomy leads to progressive and significant increases in body weight gain and osteoporosis and is related to changes in serum and tissue cytokine profiles, such as observed in other models of overweight. We aimed to evaluate serum interleukin-1beta and interleukin-10 shortly after ovariectomy, before the establishment of overweight in rats. Female Wistar rats were submitted to ovariectomy, ovariectomy and estradiol replacement, or sham operation and compared with intact controls. Rats were killed 3, 6, 9, or 13 d after ovariectomy. Body mass and retroperitoneal fats were significant higher only 13 d after ovariectomy, and estradiol replacement to ovariectomized rats impaired both body mass and retroperitoneal fat gain. Shortly after ovariectomy (at 3 d) serum interleukin-1beta levels significantly increased in ovariectomized rats, treated or not with estradiol, while serum interleukin-10 levels increased only 9 d after ovariectomy. Our results suggest the existence of an important interplay between the immune system and ovarian function. This interplay occurs regardless of significant changes in adipose tissue compartment, as ovarian excision leads to short-term changes in the pattern of interleukin-1beta and interleukin-10 cytokine production that precede body weight gain and are not reverted by estradiol replacement.

  13. IL-1beta induces thymic stromal lymphopoietin and an atopic dermatitis-like phenotype in reconstructed healthy human epidermis.

    PubMed

    Bernard, Marine; Carrasco, Cédric; Laoubi, Léo; Guiraud, Béatrice; Rozières, Aurore; Goujon, Catherine; Duplan, Hélène; Bessou-Touya, Sandrine; Nicolas, Jean-François; Vocanson, Marc; Galliano, Marie-Florence

    2017-02-13

    Atopic dermatitis (AD) is a common skin inflammatory disease characterized by the production of thymic stromal lymphopoietin (TSLP) and a marked TH 2 polarization. Recent studies suggest that IL-1β contributes to the development of AD skin inflammation. Here, we have investigated the impact of IL-1β signalling on the epidermal homeostasis of both healthy subjects and AD patient [with functional filaggrin (FLG) alleles] with particular attention to TSLP production and keratinocyte differentiation. In healthy reconstructed human epidermis (RHE), IL-1β promoted: (i) a robust secretion of TSLP in an NFkB-dependant manner and (ii) a significant decrease in the expression of filaggrin and other proteins of the epidermal differentiation complex. These effects were prevented by treatment of RHE with the anti-IL-1β mAb canakinumab and by the IL-1 receptor antagonist anakinra. Interestingly, RHE generated from AD donors behaved like that of healthy individuals and showed comparable responses to IL-1β signals. Collectively, our results suggest that IL-1β may be an early key mediator for the acquisition of an AD phenotype through induction of TSLP and alteration of the epidermal homeostasis.

  14. Neuropeptide Y modulation of interleukin-1{beta} (IL-1{beta})-induced nitric oxide production in microglia.

    PubMed

    Ferreira, Raquel; Xapelli, Sara; Santos, Tiago; Silva, Ana Paula; Cristóvão, Armando; Cortes, Luísa; Malva, João O

    2010-12-31

    Given the modulatory role of neuropeptide Y (NPY) in the immune system, we investigated the effect of NPY on the production of NO and IL-1β in microglia. Upon LPS stimulation, NPY treatment inhibited NO production as well as the expression of inducible nitric-oxide synthase (iNOS). Pharmacological studies with a selective Y(1) receptor agonist and selective antagonists for Y(1), Y(2), and Y(5) receptors demonstrated that inhibition of NO production and iNOS expression was mediated exclusively through Y(1) receptor activation. Microglial cells stimulated with LPS and ATP responded with a massive release of IL-1β, as measured by ELISA. NPY inhibited this effect, suggesting that it can strongly impair the release of IL-1β. Furthermore, we observed that IL-1β stimulation induced NO production and that the use of a selective IL-1 receptor antagonist prevented NO production upon LPS stimulation. Moreover, NPY acting through Y(1) receptor inhibited LPS-stimulated release of IL-1β, inhibiting NO synthesis. IL-1β activation of NF-κB was inhibited by NPY treatment, as observed by confocal microscopy and Western blotting analysis of nuclear translocation of NF-κB p65 subunit, leading to the decrease of NO synthesis. Our results showed that upon LPS challenge, microglial cells release IL-1β, promoting the production of NO through a NF-κB-dependent pathway. Also, NPY was able to strongly inhibit NO synthesis through Y(1) receptor activation, which prevents IL-1β release and thus inhibits nuclear translocation of NF-κB. The role of NPY in key inflammatory events may contribute to unravel novel gateways to modulate inflammation associated with brain pathology.

  15. Stromal cell-derived factor-1{alpha} (SDF-1{alpha}/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    SciTech Connect

    Porcile, Carola; Bajetto, Adriana . E-mail: bajetto@cba.unige.it; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio . E-mail: florio@cba.unige.it; Schettini, Gennaro

    2005-08-15

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1{alpha} treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1{alpha} induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer.

  16. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1{alpha} survival pathways

    SciTech Connect

    Oommen, Deepu; Prise, Kevin M.

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer KNK437, a benzylidene lactam compound, is a novel radiosensitizer. Black-Right-Pointing-Pointer KNK437 inhibits AKT signaling and abrogates the accumulation of HIF-1{alpha} under hypoxia. Black-Right-Pointing-Pointer KNK437 abrogates hypoxia induced resistance to radiation. -- Abstract: KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1{alpha} (HIF-1{alpha}). HIF-1{alpha} is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1{alpha}. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1{alpha} in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1{alpha} levels in KNK437-treated cells. This suggested that the absence of HIF-1{alpha} in hypoxic cells was not due to the enhanced protein degradation. HIF-1{alpha} is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1{alpha} mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1{alpha} levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.

  17. Role of hypoxia-inducible factor 1{alpha} in modulating cobalt-induced lung inflammation.

    PubMed

    Saini, Yogesh; Kim, Kyung Y; Lewandowski, Ryan; Bramble, Lori A; Harkema, Jack R; Lapres, John J

    2010-02-01

    Hypoxia plays an important role in development, cellular homeostasis, and pathological conditions, such as cancer and stroke. There is also growing evidence that hypoxia is an important modulator of the inflammatory process. Hypoxia-inducible factors (HIFs) are a family of proteins that regulate the cellular response to oxygen deficit, and loss of HIFs impairs inflammatory cell function. There is little known, however, about the role of epithelial-derived HIF signaling in modulating inflammation. Cobalt is capable of eliciting an allergic response and promoting HIF signaling. To characterize the inflammatory function of epithelial-derived HIF in response to inhaled cobalt, a conditional lung-specific HIF1alpha, the most ubiquitously expressed HIF, deletion mouse, was created. Control mice showed classic signs of metal-induced injury following cobalt exposure, including fibrosis and neutrophil infiltration. In contrast, HIF1alpha-deficient mice displayed a Th2 response that resembled asthma, including increased eosinophilic infiltration, mucus cell metaplasia, and chitinase-like protein expression. The results suggest that epithelial-derived HIF signaling has a critical role in establishing a tissue's inflammatory response, and compromised HIF1alpha signaling biases the tissue towards a Th2-mediated reaction.

  18. The Structure of Neurexin 1[alpha] Reveals Features Promoting a Role as Synaptic Organizer

    SciTech Connect

    Chen, Fang; Venugopal, Vandavasi; Murray, Beverly; Rudenko, Gabby

    2014-10-02

    {alpha}-Neurexins are essential synaptic adhesion molecules implicated in autism spectrum disorder and schizophrenia. The {alpha}-neurexin extracellular domain consists of six LNS domains interspersed by three EGF-like repeats and interacts with many different proteins in the synaptic cleft. To understand how {alpha}-neurexins might function as synaptic organizers, we solved the structure of the neurexin 1{alpha} extracellular domain (n1{alpha}) to 2.65 {angstrom}. The L-shaped molecule can be divided into a flexible repeat I (LNS1-EGF-A-LNS2), a rigid horseshoe-shaped repeat II (LNS3-EGF-B-LNS4) with structural similarity to so-called reelin repeats, and an extended repeat III (LNS5-EGF-B-LNS6) with controlled flexibility. A 2.95 {angstrom} structure of n1{alpha} carrying splice insert SS3 in LNS4 reveals that SS3 protrudes as a loop and does not alter the rigid arrangement of repeat II. The global architecture imposed by conserved structural features enables {alpha}-neurexins to recruit and organize proteins in distinct and variable ways, influenced by splicing, thereby promoting synaptic function.

  19. Cloning and characterization of the rat HIF-1 alpha prolyl-4-hydroxylase-1 gene.

    PubMed

    Cobb, Ronald R; McClary, John; Manzana, Warren; Finster, Silke; Larsen, Brent; Blasko, Eric; Pearson, Jennifer; Biancalana, Sara; Kauser, Katalin; Bringmann, Peter; Light, David R; Schirm, Sabine

    2005-08-01

    Prolyl-4-hydroxylase domain-containing enzymes (PHDs) mediate the oxygen-dependent regulation of the heterodimeric transcription factor hypoxia-inducible factor-1 (HIF-1). Under normoxic conditions, one of the subunits of HIF-1, HIF-1alpha, is hydroxylated on specific proline residues to target HIF-1alpha for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, the hydroxylation by the PHDs is attenuated by lack of the oxygen substrate, allowing HIF-1 to accumulate, translocate to the nucleus, and mediate HIF-mediated gene transcription. In several mammalian species including humans, three PHDs have been identified. We report here the cloning of a full-length rat cDNA that is highly homologous to the human and murine PHD-1 enzymes and encodes a protein that is 416 amino acids long. Both cDNA and protein are widely expressed in rat tissues and cell types. We demonstrate that purified and crude baculovirus-expressed rat PHD-1 exhibits HIF-1alpha specific prolyl hydroxylase activity with similar substrate affinities and is comparable to human PHD-1 protein.

  20. Differential regulation of cytokine and cytokine receptor mRNA expression upon infection of bone marrow-derived macrophages with Listeria monocytogenes.

    PubMed Central

    Demuth, A; Goebel, W; Beuscher, H U; Kuhn, M

    1996-01-01

    Cytokine and cytokine receptor mRNA expression was analyzed by PCR-assisted amplification of RNA extracted from bone marrow-derived macrophages (BMM phi) at different time points after infection with Listeria monocytogenes. The mRNAs for the cytokines interleukin-1 alpha (IL-1 alpha), IL-1 beta, and tumor necrosis factor alpha (TNF-alpha) were induced early after infection, whereas IL-6 mRNA appeared later and even nonhemolytic Listeria strains, which are unable to grow inside eukaryotic cells, induced the same cytokine mRNAs at levels similar to those of the wild-type strain. In most cases, the amounts of cytokines determined by various bioassays correlated with the level of mRNA induction. Inhibition of phagocytic uptake of L. monocytogenes by cytochalasin D treatment resulted in adherent bacteria which still induced the proinflammatory cytokines. In BMM phi, the level of IL-1 receptor II mRNA was unaffected, whereas mRNA expression of the two subtypes of tumor necrosis factor receptors (TNF-RI and TNF-RII) was differentially regulated upon infection: transcription of TNF-RI was reduced, and that of TNF-RII mRNA was induced. Similar to the decreased TNF-RI mRNA expression, gamma interferon receptor mRNA was downregulated in L. monocytogenes-infected BMM phi. This dose- and time-dependent induction or downregulation of cytokine receptor mRNA following L. monocytogenes infection of BMM phi was not observed upon infection of established macrophage-like cell lines J774 and P388D1. Induction of IL-6 mRNA as well as IL-1 alpha/beta and TNF-alpha mRNAs upon L. monocytogenes infection of BMM phi occurs independently of autocrine TNF-alpha signaling via TNF-RI or TNF-RII, as shown by infection of TNF-RI- and TNF-RII-deficient macrophages derived from mutant B6 x 129 mice. In contrast to gamma interferon receptor mRNA, both TNF receptor subtype mRNAs were not influenced by L. monocytogenes infection of hybrid (B6 x 129) mouse macrophages. Whereas the proinflammatory

  1. Extended ischemia prevents HIF1alpha degradation at reoxygenation by impairing prolyl-hydroxylation: role of Krebs cycle metabolites.

    PubMed

    Serra-Pérez, Anna; Planas, Anna M; Núñez-O'Mara, Analía; Berra, Edurne; García-Villoria, Judit; Ribes, Antònia; Santalucía, Tomàs

    2010-06-11

    Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that activates the cellular response to hypoxia. The HIF1alpha subunit is constantly synthesized and degraded under normoxia, but degradation is rapidly inhibited when oxygen levels drop. Oxygen-dependent hydroxylation by prolyl-4-hydroxylases (PHD) mediates HIF1alpha proteasome degradation. Brain ischemia limits the availability not only of oxygen but also of glucose. We hypothesized that this circumstance could have a modulating effect on HIF. We assessed the separate involvement of oxygen and glucose in HIF1alpha regulation in differentiated neuroblastoma cells subjected to ischemia. We report higher transcriptional activity and HIF1alpha expression under oxygen deprivation in the presence of glucose (OD), than in its absence (oxygen and glucose deprivation, OGD). Unexpectedly, HIF1alpha was not degraded at reoxygenation after an episode of OGD. This was not due to impairment of proteasome function, but was associated with lower HIF1alpha hydroxylation. Krebs cycle metabolites fumarate and succinate are known inhibitors of PHD, while alpha-ketoglutarate is a co-substrate of the reaction. Lack of HIF1alpha degradation in the presence of oxygen was accompanied by a very low alpha-ketoglutarate/fumarate ratio. Furthermore, treatment with a fumarate analogue prevented HIF1alpha degradation under normoxia. In all, our data suggest that postischemic metabolic alterations in Krebs cycle metabolites impair HIF1alpha degradation in the presence of oxygen by decreasing its hydroxylation, and highlight the involvement of metabolic pathways in HIF1alpha regulation besides the well known effects of oxygen.

  2. Biochemical and cellular characteristics of the four splice variants of protein kinase CK1alpha from zebrafish (Danio rerio).

    PubMed

    Burzio, Veronica; Antonelli, Marcelo; Allende, Catherine C; Allende, Jorge E

    2002-01-01

    Protein kinase CK1 (previously known as casein kinase I) conforms to a subgroup of the great protein kinase family found in eukaryotic organisms. The CK1 subgroup of vertebrates contains seven members known as alpha, beta, gamma1, gamma2, gamma3, delta, and epsilon. The CK1alpha gene can generate four variants (CK1alpha, CK1alphaS, CK1alphaL, and CK1alphaLS) through alternate splicing, characterized by the presence or absence of two additional coding sequences. Exon "L" encodes a 28-amino acid stretch that is inserted after lysine 152, in the center of the catalytic domain. The "S" insert encodes 12 amino acid residues and is located close to the carboxyl terminus of the protein. This work reports some biochemical and cellular properties of the four CK1alpha variants found to be expressed in zebrafish (Danio rerio). The results obtained indicate that the presence of the "L" insert affects several biochemical properties of CK1alpha: (a) it increases the apparent Km for ATP twofold, from approximately 30 to approximately 60 microM; (b) it decreases the sensitivity to the CKI-7 inhibitor, raising the I50 values from 113 to approximately 230 microM; (c) it greatly decreases the heat stability of the enzyme at 40 degrees C. In addition, the insertion of the "L" fragment exerts very important effects on some cellular properties of the enzyme. CK1alphaL concentrates in the cell nucleus, excluding nucleoli, while the CK1alpha variant is predominantly cytoplasmic, although some presence is observed in the nucleus. This finding supports the thesis that the basic-rich region found in the "L" insert acts as a nuclear localization signal. The "L" insert-containing variant was also found to be more rapidly degraded (half-life of 100 min) than the CK1alpha variant (half-life of 400 min) in transfected Cos-7 cells.

  3. Interaction of turnip yellow mosaic virus Val-RNA with eukaryotic elongation factor EF-1 [alpha]. Search for a function.

    PubMed

    Joshi, R L; Ravel, J M; Haenni, A L

    1986-06-01

    The 3'-terminal tRNA-like structure in turnip yellow mosaic virus (TYMV) RNA can be adenylated by tRNA nucleotidyltransferase and subsequently aminoacylated by valyl-tRNA synthetase. Here we present evidence that TYMV Val-RNA can form a stable complex with eukaryotic wheat germ elongation factor EF-1alpha and GTP: the Val-RNA is protected by EF-1alpha.. GTP against digestion by RNase A. By affinity chromatography of TYMV Val-RNA fragments on immobilized EF-1alpha . GTP, it has been established that the valylated aminoacyl RNA domain, which in TYMV RNA is formed by the 3' half of the tRNA-like region, is sufficient for complex formation with EF-1alpha . GTP. The aminoacyl RNA domain is equivalent in tRNAs to the continuous helix formed by the acceptor stem and the T stem and loop. In line with these results, the aminoacyl RNA domain in TYMV Val-RNA complexed to EF-1 alpha . GTP is resistant to digestion by RNase A. It is also shown that the TYMV RNA replicase (RNA-dependent RNA polymerase) isolated from TYMV-infected Chinese cabbage leaves does not contain tRNA nucleotidyltransferase, valyl-tRNA synthetase or EF-1alpha. This suggests that interaction of TYMV RNA with EF-1alpha is not mandatory for replicase activity.

  4. Human eosinophils can express the cytokines tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha.

    PubMed Central

    Costa, J J; Matossian, K; Resnick, M B; Beil, W J; Wong, D T; Gordon, J R; Dvorak, A M; Weller, P F; Galli, S J

    1993-01-01

    By in situ hybridization, 44-100% of the blood eosinophils from five patients with hypereosinophilia and four normal subjects exhibited intense hybridization signals for TNF-alpha mRNA. TNF-alpha protein was detectable by immunohistochemistry in blood eosinophils of hypereosinophilic subjects, and purified blood eosinophils from three atopic donors exhibited cycloheximide-inhibitable spontaneous release of TNF-alpha in vitro. Many blood eosinophils (39-91%) from hypereosinophilic donors exhibited intense labeling for macrophage inflammatory protein-1 alpha (MIP-1 alpha) mRNA, whereas eosinophils of normal donors demonstrated only weak or undetectable hybridization signals for MIP-1 alpha mRNA. Most tissue eosinophils infiltrating nasal polyps were strongly positive for both TNF-alpha and MIP-1 alpha mRNA. By Northern blot analysis, highly enriched blood eosinophils from a patient with the idiopathic hypereosinophilic syndrome exhibited differential expression of TNF-alpha and MIP-1 alpha mRNA. These findings indicate that human eosinophils represent a potential source of TNF-alpha and MIP-1 alpha, that levels of expression of mRNA for both cytokines are high in the blood eosinophils of hypereosinophilic donors and in eosinophils infiltrating nasal polyps, that the eosinophils of normal subjects express higher levels of TNF-alpha than MIP-1 alpha mRNA, and that eosinophils purified from the blood of atopic donors can release TNF-alpha in vitro. Images PMID:8514874

  5. Interaction of SDF-1alpha and CXCR4 plays an important role in pulmonary cellular infiltration in differentiation syndrome.

    PubMed

    Zhou, Jin; Hu, Longhu; Cui, Zhe; Jiang, Xian; Wang, Guifang; Krissansen, Geoffrey W; Sun, Xueying

    2010-03-01

    This study aims to investigate the role of stromal cell-derived factor 1alpha (SDF-1alpha) and its receptor CXCR4 in cellular infiltration of the lung in differentiation syndrome (DS). The acute promyelocytic leukemia (APL) NB4 cells and freshly prepared APL cells from the patients were differentiated by all-trans retinoic acid (ATRA). The expression of SDF-1alpha in human lung tissues was examined by RT-PCR and Western blot analysis. The cells were subjected to adhesion, migration or invasion assays, and co-cultured with human lung tissues in a microgravity rotary cell culture system to examine cellular infiltration in situ. ATRA-differentiated cells expressed high levels of CXCR4, and adhered more strongly to matrigel. Their ability to migrate and invade was enhanced by SDF-1alpha and lung homogenate, and diminished by pre-treatment with an anti-CXCR4 blocking antibody. SDF-1alpha was expressed in the lung tissues of all seven human donors. ATRA-differentiated NB4 cells infiltrated into lung tissues, and this was reduced by pre-treatment with an anti-CXCR4 blocking antibody. The interaction of SDF-1alpha and CXCR4 plays an important role in pulmonary cellular infiltration during DS, suggesting that targeting SDF-1alpha and CXCR4 may provide the basis for potential treatments in the management of DS.

  6. The nectin-1{alpha} transmembrane domain, but not the cytoplasmic tail, influences cell fusion induced by HSV-1 glycoproteins

    SciTech Connect

    Subramanian, Ravi P.; Dunn, Jennifer E.; Geraghty, Robert J. . E-mail: rgeragh@uky.edu

    2005-09-01

    Nectin-1 is a receptor for herpes simplex virus (HSV), a member of the immunoglobulin superfamily, and a cellular adhesion molecule. To study domains of nectin-1{alpha} involved in cell fusion, we measured the ability of nectin-1{alpha}/nectin-2{alpha} chimeras, nectin-1{alpha}/CD4 chimeras, and transmembrane domain and cytoplasmic tail mutants of nectin-1{alpha} to promote cell fusion induced by HSV-1 glycoproteins. Our results demonstrate that only chimeras and mutants containing the entire V-like domain and a link to the plasma membrane conferred cell-fusion activity. The transmembrane domain and cytoplasmic tail of nectin-1 were not required for any viral receptor or cell adhesion function tested. Cellular cytoplasmic factors that bind to the nectin-1{alpha} cytoplasmic tail, therefore, did not influence virus entry or cell fusion. Interestingly, the efficiency of cell fusion was reduced when membrane-spanning domains of nectin-1{alpha} and gD were replaced by glycosylphosphatidylinositol tethers, indicating that transmembrane domains may play a modulatory role in the gD/nectin-1{alpha} interaction in fusion.

  7. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha.

    PubMed

    Rius, Jordi; Guma, Monica; Schachtrup, Christian; Akassoglou, Katerina; Zinkernagel, Annelies S; Nizet, Victor; Johnson, Randall S; Haddad, Gabriel G; Karin, Michael

    2008-06-05

    The hypoxic response is an ancient stress response triggered by low ambient oxygen (O2) (ref. 1) and controlled by hypoxia-inducible transcription factor-1 (HIF-1), whose alpha subunit is rapidly degraded under normoxia but stabilized when O2-dependent prolyl hydroxylases (PHDs) that target its O2-dependent degradation domain are inhibited. Thus, the amount of HIF-1alpha, which controls genes involved in energy metabolism and angiogenesis, is regulated post-translationally. Another ancient stress response is the innate immune response, regulated by several transcription factors, among which NF-kappaB plays a central role. NF-kappaB activation is controlled by IkappaB kinases (IKK), mainly IKK-beta, needed for phosphorylation-induced degradation of IkappaB inhibitors in response to infection and inflammation. IKK-beta is modestly activated in hypoxic cell cultures when PHDs that attenuate its activation are inhibited. However, defining the relationship between NF-kappaB and HIF-1alpha has proven elusive. Using in vitro systems, it was reported that HIF-1alpha activates NF-kappaB, that NF-kappaB controls HIF-1alpha transcription and that HIF-1alpha activation may be concurrent with inhibition of NF-kappaB. Here we show, with the use of mice lacking IKK-beta in different cell types, that NF-kappaB is a critical transcriptional activator of HIF-1alpha and that basal NF-kappaB activity is required for HIF-1alpha protein accumulation under hypoxia in cultured cells and in the liver and brain of hypoxic animals. IKK-beta deficiency results in defective induction of HIF-1alpha target genes including vascular endothelial growth factor. IKK-beta is also essential for HIF-1alpha accumulation in macrophages experiencing a bacterial infection. Hence, IKK-beta is an important physiological contributor to the hypoxic response, linking it to innate immunity and inflammation.

  8. Hypoxia-inducible factor-1alpha suppresses squamous carcinogenic progression and epithelial-mesenchymal transition.

    PubMed

    Scortegagna, Marzia; Martin, Rebecca J; Kladney, Raleigh D; Neumann, Robert G; Arbeit, Jeffrey M

    2009-03-15

    Hypoxia-inducible factor-1 (HIF-1) is a known cancer progression factor, promoting growth, spread, and metastasis. However, in selected contexts, HIF-1 is a tumor suppressor coordinating hypoxic cell cycle suppression and apoptosis. Prior studies focused on HIF-1 function in established malignancy; however, little is known about its role during the entire process of carcinogenesis from neoplasia induction to malignancy. Here, we tested HIF-1 gain of function during multistage murine skin chemical carcinogenesis in K14-HIF-1alpha(Pro402A564G) (K14-HIF-1alphaDPM) transgenic mice. Transgenic papillomas appeared earlier and were more numerous (6 +/- 3 transgenic versus 2 +/- 1.5 nontransgenic papillomas per mouse), yet they were more differentiated, their proliferation was lower, and their malignant conversion was profoundly inhibited (7% in transgenic versus 40% in nontransgenic mice). Moreover, transgenic cancers maintained squamous differentiation whereas epithelial-mesenchymal transformation was frequent in nontransgenic malignancies. Transgenic basal keratinocytes up-regulated the HIF-1 target N-myc downstream regulated gene-1, a known tumor suppressor gene in human malignancy, and its expression was maintained in transgenic papillomas and cancer. We also discovered a novel HIF-1 target gene, selenium binding protein-1 (Selenbp1), a gene of unknown function whose expression is lost in human cancer. Thus, HIF-1 can function as a tumor suppressor through transactivation of genes that are themselves targets for negative selection in human cancers.

  9. Coactivator PGC-1{alpha} regulates the fasting inducible xenobiotic-metabolizing enzyme CYP2A5 in mouse primary hepatocytes

    SciTech Connect

    Arpiainen, Satu; Jaervenpaeae, Sanna-Mari; Manninen, Aki; Viitala, Pirkko; Lang, Matti A.; Pelkonen, Olavi; Hakkola, Jukka

    2008-10-01

    The nutritional state of organisms and energy balance related diseases such as diabetes regulate the metabolism of xenobiotics such as drugs, toxins and carcinogens. However, the mechanisms behind this regulation are mostly unknown. The xenobiotic-metabolizing cytochrome P450 (CYP) 2A5 enzyme has been shown to be induced by fasting and by glucagon and cyclic AMP (cAMP), which mediate numerous fasting responses. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} triggers many of the important hepatic fasting effects in response to elevated cAMP levels. In the present study, we were able to show that cAMP causes a coordinated induction of PGC-1{alpha} and CYP2A5 mRNAs in murine primary hepatocytes. Furthermore, the elevation of the PGC-1{alpha} expression level by adenovirus mediated gene transfer increased CYP2A5 transcription. Co-transfection of Cyp2a5 5' promoter constructs with the PGC-1{alpha} expression vector demonstrated that PGC-1{alpha} is able to activate Cyp2a5 transcription through the hepatocyte nuclear factor (HNF)-4{alpha} response element in the proximal promoter of the Cyp2a5 gene. Chromatin immunoprecipitation assays showed that PGC-1{alpha} binds, together with HNF-4{alpha}, to the same region at the Cyp2a5 proximal promoter. In conclusion, PGC-1{alpha} mediates the expression of CYP2A5 induced by cAMP in mouse hepatocytes through coactivation of transcription factor HNF-4{alpha}. This strongly suggests that PGC-1{alpha} is the major factor mediating the fasting response of CYP2A5.

  10. Selective solid-phase extraction of urinary 2,3-dinor-6-ketoprostaglandin F1 alpha for determination with radioimmunoassay.

    PubMed

    Riutta, A; Nurmi, E; Weber, C; Hansson, G; Vapaatalo, H; Mucha, I

    1994-08-01

    This paper describes a method for selective two-step solid-phase extraction of urinary 2,3-dinor-6-ketoprostaglandin F1 alpha for reliable determination with radioimmunoassay. In the immunoreactivity profile of non-selectively extracted urine after HPLC separation, over 90% of the total 2,3-dinor-6-ketoprostaglandin F1 alpha immunoreactivity consisted of interfering material coeluting with 6-ketoprostaglandin F1 alpha and 2,3-dinor-6-ketoprostaglandin F1 alpha. Among the alkyl silica sorbents studied (methyl, butyl, octyl, and octadecyl), an efficient separation of 2,3-dinor-6-ketoprostaglandin F1 alpha from 6-ketoprostaglandin F1 alpha and the lowest immunoreactive concentration of analyte were achieved in extraction on the methyl silica sorbent by elution of 2,3-dinor-6-ketoprostaglandin F1 alpha with chloroform: hexane (85:15, v/v) from the cartridge. The proportion of specific immunoreactivity could be further increased by two-step extraction of sample on methyl silica cartridges, first at pH 3 and then at pH 10 using diethyl ether:hexane (85:15, v/v) and chloroform as eluent, respectively. After this, a high correlation was found with concentrations of samples determined by radioimmunoassay using three different antisera. A significant correlation of values was also observed between samples measured by radioimmunoassay and those measured by GC-MS. The values of 12-h excretion of 2,3-dinor-6-ketoprostaglandin F1 alpha in eight volunteers (268 +/- 204 ng/g creatinine, mean +/- SD) as well as the inhibitory effect of acetylsalicylic acid (74 +/- 12%) are in accordance with those reported in the literature. This selective extraction procedure provides a high validity in radioimmunoassay without requiring subsequent TLC or HPLC purification.

  11. Synapse loss regulated by matrix metalloproteinases in traumatic brain injury is associated with hypoxia inducible factor-1alpha expression.

    PubMed

    Ding, Jamie Y; Kreipke, Christian W; Schafer, Patrick; Schafer, Steven; Speirs, Susan L; Rafols, José A

    2009-05-01

    The present study assessed the role of matrix metalloproteinase-2 (MMP-2) and -9 in synapse loss after traumatic brain injury (TBI) and the role of hypoxia inducible factor-1alpha (HIF-1alpha), a transcription factor up-regulated during hypoxia, in the regulation of MMP-2 and -9 expression post-TBI. Adult male Sprague-Dawley rats (n=6 per group, 400 g-425 g) were injured using Marmarou's closed-head acceleration impact model and allowed to survive for 1, 4, 24 and 48 h. In another set of experiments, 30 min after TBI, animals were treated with Minocycline (inhibitor of MMPs), or 2-Methoxyestradiol (2ME2, inhibitor of HIF-1alpha) and sacrificed at 4 h after injury. Relative amounts of synaptophysin, a presynaptic vesicular protein, HIF-1alpha, as well as MMP-2 and -9 were assessed by real-time PCR and Western blotting. Activity levels of MMP-2 and -9 were determined by zymography. Synaptophysin expression was significantly (p<0.05) decreased at 1 h through 48 h after TBI. A significant increase in gene and protein expressions of HIF-1alpha, MMP-2 and -9, as well as enzyme activity of MMP-2 and -9 at the same time points was also detected. Inhibition of either MMPs or HIF-1alpha significantly reversed the TBI-induced decrease in synaptophysin. Inhibition of HIF-1alpha reduced expression of MMP-2 and -9. This study showed an early detection of a correlation between synaptic loss and MMP expression after TBI. The data also supports a role for HIF-1alpha in the MMP regulatory cascade in synapse loss after TBI, suggesting potential targets for reducing loss of synaptic terminals.

  12. Interaction of the human cytomegalovirus particle with the host cell induces hypoxia-inducible factor 1 alpha

    SciTech Connect

    McFarlane, Steven; Nicholl, Mary Jane; Sutherland, Jane S.; Preston, Chris M.

    2011-05-25

    The cellular protein hypoxia-inducible factor 1 alpha (HIF-1{alpha}) was induced after infection of human fibroblasts with human cytomegalovirus (HCMV). HCMV irradiated with ultraviolet light (uv-HCMV) also elicited the effect, demonstrating that the response was provoked by interaction of the infecting virion with the cell and that viral gene expression was not required. Although induction of HIF-1{alpha} was initiated by an early event, accumulation of the protein was not detected until 9 hours post infection, with levels increasing thereafter. Infection with uv-HCMV resulted in increased abundance of HIF-1{alpha}-specific RNA, indicating stimulation of transcription. In addition, greater phosphorylation of the protein kinase Akt was observed, and the activity of this enzyme was required for induction of HIF-1{alpha} to occur. HIF-1{alpha} controls the expression of many cellular gene products; therefore the findings reveal new ways in which interaction of the HCMV particle with the host cell may cause significant alterations to cellular physiology.

  13. Persistence of local cytokine production in shigellosis in acute and convalescent stages.

    PubMed Central

    Raqib, R; Lindberg, A A; Wretlind, B; Bardhan, P K; Andersson, U; Andersson, J

    1995-01-01

    Shigella infection is accompanied by an intestinal activation of epithelial cells, T cells, and macrophages within the inflamed colonic mucosa. A prospective study was carried out to elucidate the cytokine pattern in Shigella infection linked to development of immunity and eradication of bacteria from the local site and also to correlate the cytokine profile with histological severity. An indirect immunohistochemical technique was used to determine the production and localization of various cytokines at the single-cell level in cryopreserved rectal biopsies from 24 patients with either Shigella dysenteriae type 1 (n = 18) or Shigella flexneri (n = 6) infection. The histopathological profile included presence of chronic inflammatory cells with or without neutrophils and microulcers in the lamina propria, crypt distortion, branching, and less frequently crypt abscesses. Patients had significantly higher (P < 0.005) numbers of cytokine producing cells for all of the cytokines studied, interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-1ra, tumor necrosis factor alpha (TNF-alpha), IL-6, IL-8, IL-4, IL-10, gamma interferon, TNF-beta, and transforming growth factor beta 1-3, in the biopsies than the healthy controls (n = 13). The cytokine production profile during the study period was dominated by IL-1 beta, transforming growth factor beta 1-3, IL-4, and IL-10. Significantly increased frequencies of cytokine-producing cells (P < 0.05) were observed for IL-1, IL-6, gamma interferon, and TNF-alpha in biopsies with severe inflammation in comparison with those with mild inflammation. During the acute stage of the disease, 20 of 24 patients exhibited acute inflammation in the rectal biopsies and the cellular infiltration was still extensive 30 days after the onset of diarrhea, although the disease was clinically resolved. In accordance with the histological findings, cytokine production was also upregulated during the convalescent phase; there was no significant difference (P

  14. Interleukin-1 stimulates zinc uptake by human thymic epithelial cells

    SciTech Connect

    Coto, J.A.; Hadden, J.W. )

    1991-03-15

    Thymic epithelial cells (TEC) are known to secrete peptides which influence the differentiation and maturation of T-lymphocytes. These peptides include the thymic hormones thymulin, thymosin-{alpha}1, and thymopoietin. The biological activity of thymulin is dependent on the presence of zinc in an equimolar ratio. The authors have shown that both interleukin-1{alpha}(IL-1{alpha}) and interleukin-1{beta}(IL-1{beta}), which stimulate proliferation of TEC, stimulate the uptake of Zn-65 in-vitro independent of this proliferation. Mitomycin-C was used to inhibit the proliferation of TEC. Two other stimulators of proliferation of TEC, bovine pituitary extract (BPE) and epidermal growth factor (EGF), did not stimulate zinc uptake by the TEC independent of proliferation. They have also shown, utilizing in-situ hybridization, that IL-1 and zinc induce metallothionein(MT) mRNA expression in human thymic epithelial cells. The exact role of metallothionein is not clear, but it is thought to be involved in regulation of trace metal metabolism, especially in maintenance of zinc homeostasis. Their current hypothesis is that IL-1 stimulates uptake of zinc into the TEC, followed by its complexing with metallothionein. Zinc is then thought to be transferred from metallothionein to thymulin. Immunostaining, utilizing an antithymulin antibody and a fluoresceinated goat anti-rabbit second antibody, confirms the presence of thymulin in TEC and its dependence on zinc. Upon stimulation, thymulin is then secreted. Known stimulants for thymulin include progesterone, dexamethasone, estradiol, testosterone, and prolactin. None of these secretagogues increase zinc uptake, suggesting the priming of the zinc-thymulin complex is unrelated to the regulation of its secretion.

  15. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure

    NASA Technical Reports Server (NTRS)

    Johnston, C. J.; Finkelstein, J. N.; Gelein, R.; Baggs, R.; Oberdorster, G.; Clarkson, T. W. (Principal Investigator)

    1996-01-01

    Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fischer-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.

  16. High-fat diet induces lung remodeling in ApoE-deficient mice: an association with an increase in circulatory and lung inflammatory factors.

    PubMed

    Naura, Amarjit S; Hans, Chetan P; Zerfaoui, Mourad; Errami, Youssef; Ju, Jihang; Kim, Hogyoung; Matrougui, Khalid; Kim, Jong G; Boulares, A Hamid

    2009-11-01

    Hypercholesterolemia is increasingly considered the basis for not only cardiovascular pathologies but also several complications affecting other organs such as lungs. In this study, we examined the effect of hypercholesterolemia on lung integrity using a mouse model (ApoE(-/-)) of high-fat (HF) diet-induced atherosclerosis. A 12-week HF diet regimen induced systemic production of TNF-alpha, IFN-gamma, GMC-SF, RANTES, IL-1alpha, IL-2 and IL-12 with TNF-alpha as the predominant cytokine in ApoE(-/-) mice. Concomitantly, TNF-alpha, IFN-gamma and MIP-1alpha were detected in brochoalveolar lavage (BAL) fluids of these mice, coinciding with lung inflammation consisting primarily of monocytes/macrophages. Such lung inflammation correlated with marked collagen deposition and an increase in matrix metalloproteinase-9 activity in ApoE(-/-)mice without mucus production. Although TGF-beta1 was undetectable in the BAL fluid of ApoE(-/-) mice on HF diet, it showed a much wider tissue distribution compared with that of control animals. Direct exposure of smooth muscle cells to oxidized-LDL, in vitro, induced a time-dependent expression of TNF-alpha. Direct intratracheal TNF-alpha-administration induced a lung inflammation pattern in wild-type mice that was strikingly similar to that induced by HF diet in ApoE(-/-) mice. TNF-alpha administration induced expression of several factors known to be critically involved in lung remodeling, such as MCP-1, IL-1beta, TGF-beta1, adhesion molecules, collagen type-I and TNF-alpha itself in the lungs of treated mice. These results suggest that hypercholesterolemia may promote chronic inflammatory conditions in lungs that are conducive to lung remodeling potentially through TNF-alpha-mediated processes.

  17. Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Goodwin, T. J.; Terlonge, J.; Ott, C. M.; Buchanan, K. L.; Uicker, W. C.; Emami, K.; LeBlanc, C. L.; Ramamurthy, R.; Clarke, M. S.; Vanderburg, C. R.; Hammond, T.; Pierson, D. L.

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor beta1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction.

  18. Molecular basis of maple syrup urine disease: novel mutations at the E1 alpha locus that impair E1(alpha 2 beta 2) assembly or decrease steady-state E1 alpha mRNA levels of branched-chain alpha-keto acid dehydrogenase complex.

    PubMed Central

    Chuang, J. L.; Fisher, C. R.; Cox, R. P.; Chuang, D. T.

    1994-01-01

    We report the occurrence of three novel mutations in the E1 alpha (BCKDHA) locus of the branched-chain alpha-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1 alpha gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1 alpha subunit. Both the 8-bp deletion and the single C insertion generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1 alpha mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1 alpha subunit impairs its proper assembly with the normal E1 beta. Unassembled as well as misassembled E1 alpha and E1 beta subunits are degraded in the cell. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:8037208

  19. Communication between the ERRalpha homodimer interface and the PGC-1alpha binding surface via the helix 8-9 loop.

    PubMed

    Greschik, Holger; Althage, Magnus; Flaig, Ralf; Sato, Yoshiteru; Chavant, Virginie; Peluso-Iltis, Carole; Choulier, Laurence; Cronet, Philippe; Rochel, Natacha; Schüle, Roland; Strömstedt, Per-Erik; Moras, Dino

    2008-07-18

    Although structural studies on the ligand-binding domain (LBD) have established the general mode of nuclear receptor (NR)/coactivator interaction, determinants of binding specificity are only partially understood. The LBD of estrogen receptor-alpha (ERalpha), for example, interacts only with a region of peroxisome proliferator-activated receptor coactivator (PGC)-1alpha, which contains the canonical LXXLL motif (NR box2), whereas the LBD of estrogen-related receptor-alpha (ERRalpha) also binds efficiently an untypical, LXXYL-containing region (NR box3) of PGC-1alpha. Surprisingly, in a previous structural study, the ERalpha LBD has been observed to bind NR box3 of transcriptional intermediary factor (TIF)-2 untypically via LXXYL, whereas the ERRalpha LBD binds this region of TIF-2 only poorly. Here we present a new crystal structure of the ERRalpha LBD in complex with a PGC-1alpha box3 peptide. In this structure, residues N-terminal of the PGC-1alpha LXXYL motif formed contacts with helix 4, the loop connecting helices 8 and 9, and with the C terminus of the ERRalpha LBD. Interaction studies using wild-type and mutant PGC-1alpha and ERRalpha showed that these contacts are functionally relevant and are required for efficient ERRalpha/PGC-1alpha interaction. Furthermore, a structure comparison between ERRalpha and ERalpha and mutation analyses provided evidence that the helix 8-9 loop, which differs significantly in both nuclear receptors, is a major determinant of coactivator binding specificity. Finally, our results revealed that in ERRalpha the helix 8-9 loop allosterically links the LBD homodimer interface with the coactivator cleft, thus providing a plausible explanation for distinct PGC-1alpha binding to ERRalpha monomers and homodimers.

  20. RANTES, MDC and SDF-1alpha, prevent the HIVgp120-induced food and water intake decrease in rats.

    PubMed

    Guzmán, Khalil; Guevara-Martínez, Marcela; Montes-Rodríguez, Corinne J; Prospéro-García, Oscar

    2006-03-20

    Human immunodeficiency virus (HIV)-wasting syndrome might be facilitated by the HIVgp120 affecting the immunological system. We studied the effect (subchronic administration: 5 days) of HIVgp120, and a few immune-response mediators: regulated upon activation normal T-cell expressed and presumably secreted (RANTES), stromal derived factor-1alpha (SDF-1alpha), macrophage-derived chemokine (MDC), and their combination, on food and water intake in rats, motor control and pain perception. Eighty male adult Wistar rats received an intracerebroventricular (icv) administration of: vehicle 5 microl/day or 0.92 nmol daily of HIVgp120IIIB, RANTES, SDF-1alpha, or MDC, and the combination of RANTES+HIVgp120IIIB, SDF-1alpha+HIVgp120IIIB, or MDC+HIVgp120IIIB. Food and water intake was measured every day during administration, and 24 and 48 h after the last administration. Rats were also weighed the first and the last day of experiment in order to detect the impact of these treatments in the body weight. HIVgp120IIIB significantly decreased food and water intake. These rats gain less weight than the control (vehicle) and chemokines-treated subjects with exception of those treated with SDF-1alpha that also gain less weight. In addition, HIVgp120 deteriorated motor control. HIVgp120IIIB effects on food and water intake, and motor control were prevented by these chemokines. HIVgp120+RANTES, HIVgp120+SDF-1alpha, and SDF-1alpha alone induced hyperalgesia. Results suggest an interaction between HIVgp120 and the chemokine system to generate the HIV-wasting syndrome, the motor abnormalities and changes in pain perception.

  1. The role of hypoxia inducible factor 1alpha in cobalt chloride induced cell death in mouse embryonic fibroblasts.

    PubMed

    Vengellur, A; LaPres, J J

    2004-12-01

    Cobalt has been widely used in the treatment of anemia and as a hypoxia mimic in cell culture and it is known to activate hypoxic signaling by stabilizing the hypoxia inducible transcription factor 1alpha (HIF1alpha). However, cobalt exposure can lead to tissue and cellular toxicity. These studies were conducted to determine the role of HIF1alpha in mediating cobalt-induced toxicity. Mouse embryonic fibroblasts (MEFs) that were null for the HIF1alpha protein were used to show that HIF1alpha protein plays a major role in mediating cobalt-induced cytotoxicity. Previous work from our lab and others has shown that two BH3 domain containing cell death genes, BNip3 and NIX, are targets of hypoxia signaling. These experiments document that BNip3 and NIX expression is HIF1alpha-dependent, and cobalt induces their expression in a time and dose dependent manner. In addition, their expression is correlated with an increase in BNIP3 and NIX protein. Characteristically, the elevated level of BNIP3 was correlated with an increased presence of chromatin condensation, one marker for cell injury. Interestingly, this increased chromosomal condensation was not coupled to caspase-3 activation as usually seen in a typical apoptotic response. These results show that HIF1alpha is playing a major role in mediating cobalt-induced toxicity in mouse embryonic fibroblasts and may offer a possible mechanism for the underlying pathology of injuries seen in workers exposed to environmental contaminants that can influence the hypoxia signaling system, such as cobalt.

  2. The distribution of Elongation Factor-1 Alpha (EF-1alpha), Elongation Factor-Like (EFL), and a non-canonical genetic code in the ulvophyceae: discrete genetic characters support a consistent phylogenetic framework.

    PubMed

    Gile, Gillian H; Novis, Philip M; Cragg, David S; Zuccarello, Giuseppe C; Keeling, Patrick J

    2009-01-01

    The systematics of the green algal class Ulvophyceae have been difficult to resolve with ultrastructural and molecular phylogenetic analyses. Therefore, we investigated relationships among ulvophycean orders by determining the distribution of two discrete genetic characters previously identified only in the order Dasycladales. First, Acetabularia acetabulum uses the core translation GTPase Elongation Factor 1alpha (EF-1alpha) while most Chlorophyta instead possess the related GTPase Elongation Factor-Like (EFL). Second, the nuclear genomes of dasycladaleans A. acetabulum and Batophora oerstedii use a rare non-canonical genetic code in which the canonical termination codons TAA and TAG instead encode glutamine. Representatives of Ulvales and Ulotrichales were found to encode EFL, while Caulerpales, Dasycladales, Siphonocladales, and Ignatius tetrasporus were found to encode EF-1alpha, in congruence with the two major lineages previously proposed for the Ulvophyceae. The EF-1alpha of I. tetrasporus supports its relationship with Caulerpales/Dasycladales/Siphonocladales, in agreement with ultrastructural evidence, but contrary to certain small subunit rRNA analyses that place it with Ulvales/Ulotrichales. The same non-canonical genetic code previously described in A. acetabulum was observed in EF-1alpha sequences from Parvocaulis pusillus (Dasycladales), Chaetomorpha coliformis, and Cladophora cf. crinalis (Siphonocladales), whereas Caulerpales use the universal code. This supports a sister relationship between Siphonocladales and Dasycladales and further refines our understanding of ulvophycean phylogeny.

  3. Sequence analysis of the EF-1 alpha gene family of Mucor racemosus.

    PubMed Central

    Sundstrom, P; Lira, L M; Choi, D; Linz, J E; Sypherd, P S

    1987-01-01

    Our previous studies have shown that Mucor racemosus possesses three genes (TEF-1, -2 and -3) for EF-1 alpha, and that all three genes are transcribed. However, the level of transcription varies markedly between the three genes, with TEF-1 mRNA levels being approximately two fold higher than TEF-3 and 6 fold higher than TEF-2. We have now completed the DNA sequence of both strands of all three genes and have found that these genes are highly homologous. TEF-2 and TEF-3 are more similar to each other than they are to TEF-1. The TEF-2 and the TEF-3 coding regions differ from TEF-1 at 30 and 37 positions respectively out of 1374 nucleotides. Twenty-six of these nucleotide substitutions were common to both TEF-2 and TEF-3, and the majority of the substitutions were clustered in the 5' region of the coding sequences. While the majority of these changes were silent, TEF-2 and TEF-3 differed from TEF-1 by having a lysine instead of a glutamate at amino acid position 41. In addition, TEF-2 and -3, but not TEF-1, each have an intron located near the 5' end of the coding region, although its size and sequence is not conserved between the two genes. All three genes have a conserved intron near the 3' end of the coding region. The sequence data have been analyzed with respect to the structure and function of EF-1 alpha in protein biosynthesis. PMID:3697088

  4. The region of CQQQKPQRRP of PGC-1{alpha} interacts with the DNA-binding complex of FXR/RXR{alpha}

    SciTech Connect

    Kanaya, Eiko; Jingami, Hisato . E-mail: jingami@mfour.med.kyoto-u.ac.jp

    2006-04-14

    PGC-1{alpha} co-activates transcription by several nuclear receptors. To study the interaction among PGC-1{alpha}, RXR{alpha}/FXR, and DNA, we performed electrophoresis mobility shift assays. The RXR{alpha}/FXR proteins specifically bound to DNA containing the IR-1 sequence in the absence of ligand. When the fusion protein of GST-PGC-1{alpha} was added to the mixture of RXR{alpha}/FXR/DNA, the ligand-influenced retardation of the mobility was observed. The ligand for RXR{alpha} (9-cis-retinoic acid) was necessary for this retardation, whereas, the ligand for FXR, chenodeoxycholic acid, barely had an effect. The results obtained using truncated PGC-1{alpha} proteins suggested that two regions are necessary for PGC-1{alpha} to interact with the DNA-binding complex of RXR{alpha}/FXR. One is the region of the second leucine-rich motif, and the other is that of the amino acid sequence CQQQKPQRRP, present between the second and third leucine-rich motifs. The results obtained with the SPQSS mutation for KPQRR suggested that the basic amino acids are important for the interaction.

  5. PDH-E1alpha dephosphorylation and activation in human skeletal muscle during exercise: effect of intralipid infusion.

    PubMed

    Pilegaard, Henriette; Birk, Jesper B; Sacchetti, Massimo; Mourtzakis, Marina; Hardie, D Graham; Stewart, Greg; Neufer, P Darrell; Saltin, Bengt; van Hall, Gerrit; Wojtaszewski, Jorgen F P

    2006-11-01

    To investigate pyruvate dehydrogenase (PDH)-E1alpha subunit phosphorylation and whether free fatty acids (FFAs) regulate PDH activity, seven subjects completed two trials: saline (control) and intralipid/heparin (intralipid). Each infusion trial consisted of a 4-h rest followed by a 3-h two-legged knee extensor exercise at moderate intensity. During the 4-h resting period, activity of PDH in the active form (PDHa) did not change in either trial, yet phosphorylation of PDH-E1alpha site 1 (PDH-P1) and site 2 (PDH-P2) was elevated in the intralipid compared with the control trial. PDHa activity increased during exercise similarly in the two trials. After 3 h of exercise, PDHa activity remained elevated in the intralipid trial but returned to resting levels in the control trial. Accordingly, in both trials PDH-P1 and PDH-P2 decreased during exercise, and the decrease was more marked during intralipid infusion. Phosphorylation had returned to resting levels at 3 h of exercise only in the control trial. Thus, an inverse association between PDH-E1alpha phosphorylation and PDHa activity exists. Short-term elevation in plasma FFA at rest increases PDH-E1alpha phosphorylation, but exercise overrules this effect of FFA on PDH-E1alpha phosphorylation leading to even greater dephosphorylation during exercise with intralipid infusion than with saline.

  6. Persistent induction of HIF-1alpha and -2alpha in cardiomyocytes and stromal cells of ischemic myocardium.

    PubMed

    Jürgensen, Jan Steffen; Rosenberger, Christian; Wiesener, Michael S; Warnecke, Christina; Hörstrup, Jan H; Gräfe, Michael; Philipp, Sebastian; Griethe, Wanja; Maxwell, Patrick H; Frei, Ulrich; Bachmann, Sebastian; Willenbrock, Roland; Eckardt, Kai-Uwe

    2004-09-01

    Hypoxia-inducible factor (HIF)-1alpha and -2alpha are key regulators of the transcriptional response to hypoxia and pivotal in mediating the consequences of many disease states. In the present work, we define their temporo-spatial accumulation after myocardial infarction and systemic hypoxia. Rats were exposed to hypoxia or underwent coronary artery ligation. Immunohistochemistry was used for detection of HIF-1alpha and -2alpha proteins and target genes, and mRNA levels were determined by RNase protection. Marked nuclear accumulation of HIF-1alpha and -2alpha occurred after both systemic hypoxia and coronary ligation in cardiomyocytes as well as interstitial and endothelial cells (EC) without pronounced changes in HIF mRNA levels. While systemic hypoxia led to widespread induction of HIF, expression after coronary occlusion occurred primarily at the border of infarcted tissue. This expression persisted for 4 wk, included infiltrating macrophages, and colocalized with target gene expression. Subsets of cells simultaneously expressed both HIF-alpha subunits, but EC more frequently induced HIF-2alpha. A progressive increase of HIF-2alpha but not HIF-1alpha occurred in areas remote from the infarct, including the interventricular septum. Cardiomyocytes and cardiac stromal cells exhibit a marked potential for a prolonged transcriptional response to ischemia mediated by HIF. The induction of HIF-1alpha and -2alpha appears to be complementary rather than solely redundant.

  7. Involvement of phosphatidylinositol 3-kinase in stromal cell-derived factor-1 alpha-induced lymphocyte polarization and chemotaxis.

    PubMed

    Vicente-Manzanares, M; Rey, M; Jones, D R; Sancho, D; Mellado, M; Rodriguez-Frade, J M; del Pozo, M A; Yáñez-Mó, M; de Ana, A M; Martínez-A, C; Mérida, I; Sánchez-Madrid, F

    1999-10-01

    The role of phosphatidylinositol 3-kinase (PI3-kinase), an important enzyme involved in signal transduction events, has been studied in the polarization and chemotaxis of lymphocytes induced by the chemokine stromal cell-derived factor-1 alpha (SDF-1 alpha). This chemokine was able to directly activate p85/p110 PI3-kinase in whole human PBL and to induce the association of PI3-kinase to the SDF-1 alpha receptor, CXCR4, in a pertussis toxin-sensitive manner. Two unrelated chemical inhibitors of PI3-kinase, wortmannin and Ly294002, prevented ICAM-3 and ERM protein moesin polarization as well as the chemotaxis of PBL in response to SDF-1 alpha. However, they did not interfere with the reorganization of either tubulin or the actin cytoskeleton. Moreover, the transient expression of a dominant negative form of the PI3-kinase 85-kDa regulatory subunit in the constitutively polarized Peer T cell line inhibited ICAM-3 polarization and markedly reduced SDF-1 alpha-induced chemotaxis. Conversely, overexpression of a constitutively activated mutant of the PI3-kinase 110-kDa catalytic subunit in the round-shaped PM-1 T cell line induced ICAM-3 polarization. These results underline the role of PI3-kinase in the regulation of lymphocyte polarization and motility and indicate that PI3-kinase plays a selective role in the regulation of adhesion and ERM proteins redistribution in the plasma membrane of lymphocytes.

  8. Fasting induces basolateral uptake transporters of the SLC family in the liver via HNF4alpha and PGC1alpha.

    PubMed

    Dietrich, Christoph G; Martin, Ina V; Porn, Anne C; Voigt, Sebastian; Gartung, Carsten; Trautwein, Christian; Geier, Andreas

    2007-09-01

    Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.

  9. Detection of pyruvate dehydrogenase E1 alpha-subunit deficiencies in females by immunohistochemical demonstration of mosaicism in cultured fibroblasts.

    PubMed

    Lib, Margarita Y; Brown, Ruth M; Brown, Garry K; Marusich, Michael F; Capaldi, Roderick A

    2002-07-01

    Deficiency of the E1 alpha-subunit of the pyruvate dehydrogenase (PDH) complex is an X-linked inborn error of metabolism and one of the major causes of lactic acidosis in children. Although most heterozygous females manifest symptoms of the disease, it is often difficult to establish the diagnosis as results based on measurement of total PDH activity, and E1 alpha-immunoreactive protein in patient fibroblasts may be ambiguous because of the variability in the pattern of X chromosome inactivation. We report the development of a set of monoclonal antibodies (MAbs) specific to four subunits of the PDH complex that can be used for detection of PDH E1 alpha deficiency. We also show that anti-E1 alpha and anti-E2 MAbs, when used in immunocytochemical analysis, can detect mosaicism in cell cultures from female patients in which as few as 2-5% of cells express the deficiency. This immunocytochemical approach, which is fast, reliable, and quantitative, will be particularly useful in identifying females with PDH E1 alpha-subunit deficiency as a precursor to mutation analysis.

  10. In cultured astrocytes, p53 and MDM2 do not alter hypoxia-inducible factor-1alpha function regardless of the presence of DNA damage.

    PubMed

    Rempe, David A; Lelli, Katherine M; Vangeison, Grace; Johnson, Randall S; Federoff, Howard J

    2007-06-01

    A principal molecular mechanism by which cells respond to hypoxia is by activation of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha). Several studies describe a binding of p53 to HIF-1alpha in a protein complex, leading to attenuated function, half-life, and abundance of HIF-1alpha. However, these reports almost exclusively utilized transformed cell lines, and many employed transfection of p53 or HIF-1alpha plasmid constructs and/or p53 and HIF-1alpha reporter constructs as surrogates for endogenous protein activity and target expression, respectively. Thus, it remains an open and important question as to whether p53 inhibits HIF-1alpha-mediated transactivation of endogenous HIF-1alpha targets in nontransformed cells. After determining in primary astrocyte cultures the HIF-1alpha targets that were most dependent on HIF-1alpha function, we examined the effect of the loss of p53 function either alone or in combination with MDM2 on expression of these targets. Although p53 null astrocyte cultures resulted in markedly increased HIF-1alpha-dependent target expression compared with controls, this altered expression was determined to be the result of increased cell density of p53 null cultures and the accompanying acidosis, not loss of p53 protein. Although activation of p53 by DNA damage induced p53 target expression in astrocytes, it did not alter hypoxia-induced HIF-1alpha target expression. Finally, a combined loss of MDM2 and p53 did not alter HIF-1alpha target expression compared with loss of p53 alone. These data strongly suggest that p53 and MDM2 do not influence the hypoxia-induced transactivation of HIF-1alpha targets, regardless of p53 activation, in primary astrocytes.

  11. Contrasting effects of rh-MIP-1 alpha and TGF-beta 1 on chronic myeloid leukemia progenitors in vitro.

    PubMed

    Holyoake, T L; Freshney, M G; Sproul, A M; Richmond, L J; Alcorn, M J; Steward, W P; Fitzsimons, E; Dunlop, D J; Franklin, I M; Pragnell, I B

    1993-10-01

    In chronic myeloid leukemia (CML) an abnormality at the stem cell level results in unregulated expansion of myeloid progenitors. The mechanism underlying this uncontrolled proliferation remains unclear. An in vitro clonogenic assay which detects the human counterpart of the murine colony forming unit (CFU) CFU-A/CFU-S day 12 was described in a report of our recent findings. CML bone marrow samples were found to proliferate in the CFU-A assay, producing colonies morphologically indistinguishable from normal controls. The bcr/abl transcripts were sought in the RNA from individual colonies using the polymerase chain reaction (PCR). For the five CML samples tested to date, the majority of CFU-A colonies at diagnosis or in early chronic phase were found to be bcr/abl positive. For normal controls both macrophage inflammatory protein-1 alpha (MIP-1 alpha) and transforming growth factor-beta 1 (TGF-beta 1) inhibited the proliferation of CFU-A colonies when directly added to the assay. In contrast, CML progenitors responded normally to TGF-beta 1, but showed no response to MIP-1 alpha. In suicide assays, for five normal bone marrow samples, CFU-A progenitors induced into S-phase returned to a quiescent state after treatment with MIP-1 alpha. CML progenitors demonstrated inherently high cycle status which showed no definite response to MIP-1 alpha. However, TGF-beta 1 resulted in quiescence of CML progenitor cycling. In conclusion, the primitive progenitors from CML samples were inhibited normally by TGF-beta 1 but showed no response to MIP-1 alpha.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Prognostic Significance of Tumor Hypoxia Inducible Factor-1{alpha} Expression for Outcome After Radiotherapy in Oropharyngeal Cancer

    SciTech Connect

    Silva, Priyamal; Slevin, Nick J.; Sloan, Philip; Valentine, Helen; Cresswell, Jo; Ryder, David; Price, Patricia; Homer, Jarrod J.; West, Catharine

    2008-12-01

    Purpose: Head-and-neck squamous cell carcinoma (HNSCC) represents a heterogeneous group of patients in terms of subsite, treatment, and biology. Currently most management decisions are based on clinical parameters with little appreciation of patient differences in underlying tumor biology. We investigated the prognostic significance of clinicopathologic features and tumor hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) expression in a homogeneous series of patients who underwent radiotherapy. Methods and Materials: An audit identified 133 consecutive patients with histologically proven squamous cell carcinoma of the tonsil or tongue base. All patients received primary radiotherapy between 1996 and 2001. Tumor HIF-1{alpha} expression was examined in 79 patients. Results: Features associated with poor locoregional control were low Hb level (p = 0.05) and advancing T (p = 0.008), N (p = 0.03), and disease (p = 0.008) stage. HIF-1{alpha} expression was a more significant adverse prognostic factor in the tonsil (hazard ratio [HR], 23.1; 95% confidence interval [CI]. 3.04-176.7) than the tongue-base tumor (HR, 2.86; 95% CI, 1.14-7.19) group (p = 0.03, test for interaction). High tumor HIF-1{alpha} expression was associated with low blood Hb levels (p = 0.03). In a multivariate analysis HIF-1{alpha} expression retained prognostic significance for locoregional control (HR, 7.10; 95% CI, 3.07-16.43) and cancer-specific survival (HR, 9.19; 95% CI, 3.90-21.6). Conclusions: There are significant differences in radiation therapy outcome within a homogeneous subsite of the oropharynx related to molecular marker expression. The work highlights the importance of studying homogeneous groups of patients in HNSCC, and the complex interrelationships between tumor biology and clinicopathologic factors. The establishment of tumor-type specific markers would represent a major advance in this area.

  13. Functional response to SDF1 alpha through over-expression of CXCR4 on adult subventricular zone progenitor cells.

    PubMed

    Liu, Xian Shuang; Chopp, Michael; Santra, Manoranjan; Hozeska-Solgot, Ann; Zhang, Rui Lan; Wang, Lei; Teng, Hua; Lu, Mei; Zhang, Zheng Gang

    2008-08-21

    The chemokine receptor CXCR4 and its ligand, stromal cell derived factor-1 alpha (SDF1 alpha) regulate neuroblast migration towards the ischemic boundary after stroke. Using loss- and gain-function, we investigated the biological effect of CXCR4/SDF1 alpha on neural progenitor cells. Neural progenitor cells, from the subventricular zone (SVZ) of the adult rat, were transfected with rat CXCR4-pLEGFP-C1 and pSIREN-RetroQ-CXCR4-siRNA retroviral vectors. Migration assay analysis showed that inhibition of CXCR4 by siRNA significantly reduced cell migration compared to the empty vector, indicating that CXCR4 mediated neural progenitor cell motility. When neural progenitor cells were cultured in growth medium containing bFGF (20 ng/ml), over-expression of CXCR4 significantly reduced the cell proliferation as measured by the number of bromodeoxyuridine+ (BrdU+) cells (26.4%) compared with the number in the control group (54.0%). Addition of a high concentration of SDF1 alpha (500 ng/ml) into the progenitor cells with over-expression of CXCR4 reversed the cell proliferation back to the control levels (57.6%). Immunostaining analysis showed that neither over-expression nor inhibition of CXCR4 altered the population of neurons and astrocytes, when neural progenitor cells were cultured in differentiation medium. These in vitro results suggest that CXCR4/SDF1 alpha primarily regulates adult neural progenitor cell motility but not differentiation, while over-expression of CXCR4 in the absence of SDF1 alpha decreases neural progenitor cell proliferation.

  14. Dissociation between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet.

    PubMed

    Higashida, Kazuhiko; Higuchi, Mitsuru; Terada, Shin

    2009-12-01

    It has recently been reported that a 4-wk high-fat diet gradually increases skeletal muscle peroxisome proliferator activated receptor (PPAR) gamma coactivator-1alpha (PGC-1alpha) protein content, which has been suggested to regulate GLUT-4 gene transcription. However, it has not been reported that a high-fat diet enhances GLUT-4 mRNA expression and protein content in skeletal muscle, suggesting that an increase in PGC-1alpha protein content is not sufficient to induce muscle GLUT-4 biogenesis in a high-fat fed animal. Therefore, we first evaluated the relationship between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet for 4 wk. The PGC-1alpha protein content in rat epitrochlearis muscle significantly increased by twofold after the 4-wk high-fat diet feeding. However, the high-fat diet had no effect on GLUT-4 protein content and induced a 30% decrease in GLUT-4 mRNA expression in rat skeletal muscle (p<0.05). To clarify the mechanism by which a high-fat diet downregulates GLUT-4 mRNA expression, we next examined the effect of PPARdelta activation, which is known to occur in response to a high-fat diet, on GLUT-4 mRNA expression in L6 myotubes. Incubation with 500 nM GW501516 (PPARdelta activator) for 24 h significantly decreased GLUT-4 mRNA in L6 myotubes. Taken together, these findings suggest that a high-fat diet downregulates GLUT-4 mRNA, possibly through the activation of PPARdelta, despite an increase in PGC-1alpha protein content in rat skeletal muscle, and that a posttranscriptional regulatory mechanism maintains GLUT-4 protein content in skeletal muscle of rats fed a high-fat diet.

  15. Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 alpha.

    PubMed

    Wakisaka, Naohiro; Kondo, Satoru; Yoshizaki, Tomokazu; Murono, Shigeyuki; Furukawa, Mitsuru; Pagano, Joseph S

    2004-06-01

    Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix transcription factor composed of HIF-1 alpha and HIF-1 beta that is the central regulator of responses to hypoxia. The specific binding of HIF-1 to the hypoxia-responsive element (HRE) induces the transcription of genes that respond to hypoxic conditions, including vascular endothelial growth factor (VEGF). Here we report that expression of HIF-1 alpha is increased in diverse Epstein-Barr virus (EBV)-infected type II and III cell lines, which express EBV latent membrane protein 1 (LMP1), the principal EBV oncoprotein, as well as other latency proteins, but not in the parental EBV-negative cell lines. We show first that transfection of an LMP1 expression plasmid into Ad-AH cells, an EBV-negative nasopharyngeal epithelial cell line, induces synthesis of HIF-1 alpha protein without increasing its stability or mRNA level. The mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059 markedly reduces induction of HIF-1 alpha by LMP1. Catalase, an H(2)O(2) scavenger, strongly suppresses LMP1-induced production of H(2)O(2), which results in a decrease in the expression of HIF-1 alpha induced by LMP1. Inhibition of the NF-kappa B, c-jun N-terminal kinase, p38 MAPK, and phosphatidylinositol 3-kinase pathways did not affect HIF-1 alpha expression. Moreover, LMP1 induces HIF-1 DNA binding activity and upregulates HRE and VEGF promoter transcriptional activity. Finally, LMP1 increases the appearance of VEGF protein in extracellular fluids; induction of VEGF is suppressed by PD98059 or catalase. These results suggest that LMP1 increases HIF-1 activity through induction of HIF-1 alpha protein expression, which is controlled by p42/p44 MAPK activity and H(2)O(2). The ability of EBV, and specifically its major oncoprotein, LMP1, to induce HIF-1 alpha along with other invasiveness and angiogenic factors reported previously discloses additional oncogenic properties of this tumor virus.

  16. Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1{alpha}

    SciTech Connect

    Qin, Weiping; Pan, Jiangping; Wu, Yong; Bauman, William A.; Cardozo, Christopher

    2010-12-17

    Research highlights: {yields} In rat gastrocnemius muscle, dexamethasone reduced PGC-1{alpha} cellular and nuclear levels without altering mRNA levels for this factor. {yields} Dexamethasone reduced phosphorylating of p38 MAPK, which stabilizes PGC-1{alpha} and promotes its nuclear entry. {yields} Co-administration of testosterone with dexamethasone increased cellular and nuclear levels of PGC-1{alpha} protein without changing its mRNA levels. {yields} Co-administration of testosterone restored p38 MAPK levels to those of controls. -- Abstract: Glucocorticoid-induced muscle atrophy results from muscle protein catabolism and reduced protein synthesis, associated with increased expression of two muscle-specific ubiquitin ligases (MAFbx and MuRF1), and of two inhibitors of protein synthesis, REDD1 and 4EBP1. MAFbx, MuRF1, REDD1 and 4EBP1 are up-regulated by the transcription factors FOXO1 and FOXO3A. The transcriptional co-activator PGC-1{alpha} has been shown to attenuate many forms of muscle atrophy and to repress FOXO3A-mediated transcription of atrophy-specific genes. Dexamethasone-induced muscle atrophy can be prevented by testosterone, which blocks up-regulation by dexamethasone of FOXO1. Here, an animal model of dexamethasone-induced muscle atrophy was used to further characterize effects of testosterone to abrogate adverse actions of dexamethasone on FOXO1 levels and nuclear localization, and to determine how these agents affect PGC-1{alpha}, and its upstream activators, p38 MAPK and AMPK. In rat gastrocnemius muscle, testosterone blunted the dexamethasone-mediated increase in levels of FOXO1 mRNA, and FOXO1 total and nuclear protein. Dexamethasone reduced total and nuclear PGC-1{alpha} protein levels in the gastrocnemius; co-administration of testosterone with dexamethasone increased total and nuclear PGC-1{alpha} levels above those present in untreated controls. Testosterone blocked dexamethasone-induced decreases in activity of p38 MAPK in the gastrocnemius

  17. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1{alpha} expression

    SciTech Connect

    Xu, Wei; Guo, Ting; Zhang, Yan; Jiang, Xiaohong; Zhang, Yongxian; Zen, Ke; Yu, Bo; Zhang, Chen-Yu

    2011-05-01

    Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPAR{gamma}) coactivator-1 alpha (PGC-1{alpha}) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1{alpha} in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1{alpha} expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1{alpha} mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1{alpha} expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1{alpha} by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1{alpha} had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1{alpha} decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPAR{gamma} activation by a PPAR{gamma} antagonist GW9662 abolished the suppressive effects of PGC-1{alpha} on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1{alpha} were enhanced by a PPAR{gamma} agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1{alpha} expression. PGC-1{alpha} suppresses PDGF-induced VSMC migration through PPAR{gamma} coactivation and, consequently, p38 MAPK inhibition.

  18. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha activation of CYP7A1 during food restriction and diabetes is still inhibited by small heterodimer partner.

    PubMed

    Shin, Dong-Ju; Osborne, Timothy F

    2008-05-30

    Cholesterol 7alpha-hydroxylase (CYP7A1) catalyzes the rate-limiting step in the classic pathway of hepatic bile acid biosynthesis from cholesterol. During fasting and in type I diabetes, elevated levels of peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1alpha) induce expression of the Cyp7A1 gene and overexpression of PGC-1alpha in hepatoma cells stimulates bile acid synthesis. Using Ad-PGC-1alpha-RNA interference to induce acute disruption of PGC-1alpha in mice, here we show that PGC-1alpha is necessary for fasting-mediated induction of CYP7A1. Co-immunoprecipitation and promoter activation studies reveal that the induction of CYP7A1 is mediated by direct interaction between PGC-1alpha and the AF2 domain of liver receptor homolog-1 (LRH-1). In contrast, the very similar PGC-1beta could not substitute for PGC-1alpha. We also show that transactivation of PGC-1alpha and LRH-1 is repressed by the small heterodimer partner (SHP). Treatment of mice with GW4064, a synthetic agonist for farnesoid X receptor, induced SHP expression and decreased both the recruitment of PGC-1alpha to the Cyp7A1 promoter and the fasting-induced expression of CYP7A1 mRNA. These data suggest that PGC-1alpha is an important co-activator for LRH-1 and that SHP targets the interaction between LRH-1 and PGC-1alpha to inhibit CYP7A1 expression. Overall, these studies provide further evidence for the important role of PGC-1alpha in bile acid homeostasis and suggest that pharmacological targeting of farnesoid X receptor in vivo can be used to reverse the increase in CYP7A1 associated with adverse metabolic conditions.

  19. Elongation factor 1-alpha is released into the culture medium during growth of Giardia intestinalis trophozoites.

    PubMed

    Skarin, Hanna; Ringqvist, Emma; Hellman, Ulf; Svärd, Staffan G

    2011-04-01

    The molecular pathogenesis of the intestinal parasite Giardia intestinalis is still not fully understood but excretory-secretory products have been suggested to be important during host-parasite interactions. Here we used SDS-PAGE gels and MALDI-TOF analysis to identify proteins released by Giardia trophozoites during in vitro growth. Serum proteins (mainly bovine serum albumin) in the growth medium, bind to the parasite surface and they are continuously released, which interfere with parasite secretome characterization. However, we identified two released Giardia proteins: elongation factor-1 alpha (EF-1α) and a 58 kDa protein, identified as arginine deiminase (ADI). This is the first description of EF-1α as a released/secreted Giardia protein, whereas ADI has been identified in an earlier secretome study. Two genes encoding EF-1α were detected in the Giardia WB genome 35 kbp apart with almost identical coding sequences but with different promoter and 3' regions. Promoter luciferase-fusions showed that both genes are transcribed in trophozoites. The EF-1α protein localizes to the nuclear region in trophozoites but it relocalizes to the cytoplasm during host-cell interaction. Recombinant EF-1α is recognized by serum from giardiasis patients. Our results suggest that released EF-1α protein can be important during Giardia infections.

  20. Stromal Cell-Derived Factor-1 Alpha is Cardioprotective After Myocardial Infarction

    PubMed Central

    Saxena, Ankur; Fish, Jason E.; White, Michael D.; Yu, Sangho; Smyth, James WP; Shaw, Robin M.; DiMaio, J. Michael; Srivastava, Deepak

    2009-01-01

    Background Heart disease is a leading cause of mortality throughout the world. Tissue damage from vascular occlusive events results in the replacement of contractile myocardium by nonfunctional scar tissue. The potential of new technologies to regenerate damaged myocardium is significant, although cell-based therapies must overcome several technical barriers. One possible cell-independent alternative is the direct administration of small proteins to damaged myocardium. Methods and Results Here we show that the secreted signaling protein stromal cell-derived factor-1 alpha (SDF-1α), which activates the cell-survival factor protein kinase B (PKB/Akt) via the G-protein-coupled receptor CXCR4, protected tissue after an acute ischemic event in mice and activated Akt within endothelial cells and myocytes of the heart. Significantly better cardiac function than in control mice was evident as early as 24 hours post-infarction as well as at 3, 14 and 28 days post-infarction. Prolonged survival of hypoxic myocardium was followed by an increase in levels of vascular endothelial growth factor (VEGF) protein and neo-angiogenesis. Consistent with improved cardiac function, mice exposed to SDF-1α demonstrated significantly decreased scar formation than control mice. Conclusions These findings suggest that SDF-1α may serve a tissue-protective and regenerative role for solid organs suffering a hypoxic insult. PMID:18427137

  1. Sesquiterpenes and an intermediate 1alpha, 6beta, 11-eudesmanetriol in the biosynthesis of geosmin from Streptomyces sp.

    PubMed

    Yang, Ya-Bin; Yang, Zhi; Yang, Xue-Qiong; Zhang, Yong; Zhao, Li-Xing; Xu, Li-Hua; Ding, Zhong-Tao

    2012-03-01

    One new sesquiterpene was isolated from the fermentation broth of Streptomyces sp. and the structure was elucidated by spectral analysis as caryolane-1, 6beta-diol (1). An intermediate 1alpha, 6beta, 11-eudesmanetriol (2) in the biosynthesis of geosmin was also found in this strain which proved sequence for the reactions, especially bicyclization preceding dealkylation.

  2. Activation of JAK2/STAT1-alpha-dependent signaling events during Mycobacterium tuberculosis-induced macrophage apoptosis.

    PubMed

    Rojas, Mauricio; Olivier, Martin; García, Luis F

    2002-01-01

    Induction of apoptosis by Mycobacterium tuberculosis in murine macrophage involves TNF-alpha and nitric oxide (NO) production and caspase cascade activation; however, the intracellular signaling pathways implicated remain to be established. Our results indicate that infection of the B10R murine macrophage line with M. tuberculosis induces apoptosis independent of mycobacterial phagocytosis and that M. tuberculosis induces protein tyrosine kinase (PTK) activity, JAK2/STAT1-alpha phosphorylation, and STAT1-alpha nuclear translocation. Inhibitors of PTK (AG-126), or JAK2 (AG-490) inhibited TNF-alpha and NO production, caspase 1 activation and apoptosis, suggesting that M. tuberculosis-induction of these events depends on JAK2/STAT1-alpha activation. In addition, we have obtained evidence that ManLAM capacity to inhibit M. tuberculosis-induced apoptosis involves the activation of the PTP SHP-1. The finding that M. tuberculosis infection activate JAK2/STAT1-alpha pathway suggests that M. tuberculosis might mimic macrophage-activating stimuli.

  3. An amino acid substitution in the pyruvate dehydrogenase E1{alpha} gene, affecting mitochondrial import of the precursor protein

    SciTech Connect

    Takakubo, F.; Thorburn, D.R.; Dahl, H.H.M.

    1995-10-01

    A mutation in the mitochondrial targeting sequence was characterized in a male patient with X chromosome-linked pyruvate dehydrogenase E1{alpha} deficiency. The mutation was a base substitution of G by C at nucleotide 134 in the mitochondrial targeting sequence of the PDHA1 gene, resulting in an arginine-to-proline substitution at codon 10 (R10P). Pyruvate dehydrogenase activity in cultured skin fibroblasts was 28% of the control value, and immunoblot analysis revealed a decreased level of pyruvate dehydrogenase E1{alpha}immunoreactivity. Chimeric constructs in which the normal and mutant pyruvate dehydrogenase E1{alpha} targeting sequences were attached to the mitochondrial matrix protein ornithine transcarbamylase were synthesized in a cell free translation system, and mitochondrial import of normal and mutant proteins was compared in vitro. The results show that ornithine transcarbamylase targeted by the mutant pyruvate dehydrogenase E1{alpha} sequence was translocated into the mitochondrial matrix at a reduced rate, suggesting that defective import is responsible for the reduced pyruvate dehydrogenase level in mitochondria. The mutation was also present in an affected brother and the mildly affected mother. The clinical presentations of this X chromosome-linked disorder in affected family members are discussed. To our knowledge, this is the first report of an amino acid substitution in a mitochondrial targeting sequence resulting in a human genetic disease. 58 refs., 5 figs., 1 tab.

  4. Cloning, expression and evolution of the gene encoding the elongation factor 1alpha from a low thermophilic Sulfolobus solfataricus strain.

    PubMed

    Masullo, Mariorosario; Cantiello, Piergiuseppe; Lamberti, Annalisa; Longo, Olimpia; Fiengo, Antonio; Arcari, Paolo

    2003-01-28

    The gene encoding the elongation factor 1alpha (EF-1alpha) from the archaeon Sulfolobus solfataricus strain MT3 (optimum growth temperature 75 degrees C) was cloned, sequenced and expressed in Escherichia coli. The structural and biochemical properties of the purified enzyme were compared to those of EF-1alpha isolated from S. solfataricus strain MT4 (optimum growth temperature 87 degrees C). Only one amino acid change (Val15-->Ile) was found. Interestingly, the difference was in the first guanine nucleotide binding consensus sequence G(13)HIDHGK and was responsible for a reduced efficiency in protein synthesis, which was accompanied by an increased affinity for both guanosine diphosphate (GDP) and guanosine triphosphate (GTP), and an increased efficiency in the intrinsic GTPase activity. Despite the different thermophilicities of the two microorganisms, only very marginal effects on the thermal properties of the enzyme were observed. Molecular evolution among EF-1alpha genes from Sulfolobus species showed that the average rate of nucleotide substitution per site per year (0.0312x10(-9)) is lower than that reported for other functional genes.

  5. Insufficient renal 1-alpha hydroxylase and bone homeostasis in aged rats with insulin resistance or type 2 diabetes mellitus.

    PubMed

    Chang-Quan, Huang; Bi-Rong, Dong; Ping, He; Zhen-Chan, Lu

    2008-01-01

    This study aimed to explore the relationship between insufficient renal 1-alpha hydroxylase (IRH) and bone homeostasis in type 2 diabetes mellitus (T2DM) or insulin resistance (IR) and to investigate whether IR plays a major role in the pathogenesis of both IRH and bone loss in T2DM. The experimental animal models of T2DM, IR, IR treated with vitamin D (VD), IR treated with 1-alpha hydroxyvitamin D (1alpha(OH) D, the product of renal 1-alpha hydroxylase), T2DM treated with VD, and T2DM treated with 1alpha(OH) D were established on 18-month-old male Wistar rats. For rats in each animal model and normal control rats, IR was detected by euglycemic insulin clamp technique (EICT) and glucose infusion rate (GIR, an index of IR) was calculated. Levels of serum 25-hydroxyvitamin D (25(OH)D) and serum active vitamin D (1,25(OH)(2)D) were determined by radioimmunoassay (RIA), and 1,25(OH)(2)D/25(OH)D ratio (1,25-25-R, an index of renal 1-alpha hydroxylase activity in vivo) was calculated; and bone mineral density (BMD) in femoral bone and lumbar vertebrae was measured by dual-energy X-ray absorption (DEXA). No significant difference was observed among the levels of 25(OH)D in all the rats. In IR rats, 1,25(OH)(2)D level, 1,25-25-R, and BMD level were significantly higher than those in T2DM rats and were lower than those in normal control rats. In the aged rats with T2DM or IR, administration of VD had no effect on 25(OH)D level, 1,25(OH)(2)D level, 1,25-25-R, and BMD level. Administration of 1alpha(OH) D had also no effect on 25(OH)D level but increased 1,25(OH)(2)D level, 1,25-25-R, and BMD level. For the aged rats with T2DM or IR, GIR positively correlated with both levels of 1,25(OH)(2)D and BMD, and 1,25-25-R positively and significantly correlated with levels of BMD. In T2DM or IR, IRH is a precipitating factor for bone loss. IR seems to play a major role in the pathogenesis of both IRH and bone loss in T2DM.

  6. The involvement of hypoxia-inducible factor-1alpha in the susceptibility to gamma-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells.

    PubMed

    Sasabe, Eri; Zhou, Xuan; Li, Dechao; Oku, Naohisa; Yamamoto, Tetsuya; Osaki, Tokio

    2007-01-15

    The transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) is the key regulator that controls the hypoxic response of mammalian cells. The overexpression of HIF-1alpha has been demonstrated in many human tumors. However, the role of HIF-1alpha in the therapeutic efficacy of chemotherapy and radiotherapy in cancer cells is poorly understood. In this study, we investigated the influence of HIF-1alpha expression on the susceptibility of oral squamous cell carcinoma (OSCC) cells to chemotherapeutic drugs (cis-diamminedichloroplatinum and 5-fluorouracil) and gamma-rays. Treatment with chemotherapeutic drugs and gamma-rays enhanced the expression and nuclear translocation of HIF-1alpha, and the susceptibility of OSCC cells to the drugs and gamma-rays was negatively correlated with the expression level of HIF-1alpha protein. The overexpression of HIF-1alpha induced OSCC cells to become more resistant to the anticancer agents, and down-regulation of HIF-1alpha expression by small interfering RNA enhanced the susceptibility of OSCC cells to them. In the HIF-1alpha-knockdown OSCC cells, the expression of P-glycoprotein, heme oxygenase-1, manganese-superoxide dismutase and ceruloplasmin were downregulated and the intracellular levels of chemotherapeutic drugs and reactive oxygen species were sustained at higher levels after the treatment with the anticancer agents. These results suggest that enhanced HIF-1alpha expression is related to the resistance of tumor cells to chemo- and radio-therapy and that HIF-1alpha is an effective therapeutic target for cancer treatment.

  7. F-actin sequesters elongation factor 1alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction

    PubMed Central

    1996-01-01

    The machinery of eukaryotic protein synthesis is found in association with the actin cytoskeleton. A major component of this translational apparatus, which is involved in the shuttling of aa-tRNA, is the actin- binding protein elongation factor 1alpha (EF-1alpha). To investigate the consequences for translation of the interaction of EF-1alpha with F- actin, we have studied the effect of F-actin on the ability of EF- 1alpha to bind to aa-tRNA. We demonstrate that binding of EF-1alpha:GTP to aa-tRNA is not pH sensitive with a constant binding affinity of approximately 0.2 microM over the physiological range of pH. However, the sharp pH dependence of binding of EF-1alpha to F-actin is sufficient to shift the binding of EF-1alpha from F-actin to aa-tRNA as pH increases. The ability of EF-1alpha to bind either F-actin or aa- tRNA in competition binding experiments is also consistent with the observation that EF-1alpha's binding to F-actin and aa-tRNA is mutually exclusive. Two pH-sensitive actin-binding sequences in EF-1alpha are identified and are predicted to overlap with the aa-tRNA-binding sites. Our results suggest that pH-regulated recruitment and release of EF- 1alpha from actin filaments in vivo will supply a high local concentration of EF-1alpha to facilitate polypeptide elongation by the F-actin-associated translational apparatus. PMID:8922379

  8. SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1 alpha ubiquitination and degradation.

    PubMed

    Tan, M; Gu, Q; He, H; Pamarthy, D; Semenza, G L; Sun, Y

    2008-02-28

    SAG (sensitive to apoptosis gene) or ROC2/RBX2 is the second family member of ROC1/RBX1, a component of SCF (Skp1, Cullin, F-box protein) and VCB (von Hippel-Lindau (VHL), Cullin and Elongin B/C) E3 ubiquitin ligases. SAG protected cells from hypoxia-induced apoptosis when overexpressed. We report here that SAG was subjected to hypoxia induction at the levels of mRNA and protein. Hypoxia induction of SAG was largely HIF-1alpha dependent. A consensus HIF-1-binding site, GCGTG was identified in the first intron of the SAG gene. In response to hypoxia, HIF-1 bound to this site and transactivated SAG expression. SAG transactivation required both the intact binding site in cis and HIF-1alpha in trans. On the other hand, like its family member, ROC1, SAG promoted VHL-mediated HIF-1alpha ubiquitination and degradation, which was significantly inhibited upon small interfering RNA silencing of SAG or ROC1. Furthermore, the endogenous HIF-1alpha at both basal and hypoxia-induced levels was significantly increased upon SAG silencing. Finally, SAG forms in vivo complex with Cul-5 and VHL under hypoxia condition. These results suggest an HIF-1-SAG feedback loop in response to hypoxia, as follows: hypoxia induces HIF-1 to transactivate SAG. Induced SAG then promotes HIF-1alpha ubiquitination and degradation. This feedback loop may serve as a cellular defensive mechanism to reduce potential cytotoxic effects of prolonged HIF-1 activation under hypoxia.

  9. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    SciTech Connect

    Campos, D; Peeters, W; Nickel, K; Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M

    2015-06-15

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response.

  10. High glucose concentrations attenuate hypoxia-inducible factor-1{alpha} expression and signaling in non-tumor cells

    SciTech Connect

    Dehne, Nathalie; Bruene, Bernhard

    2010-04-15

    Hypoxia-inducible factor (HIF) is the major transcription factor mediating adaption to hypoxia e.g. by enhancing glycolysis. In tumor cells, high glucose concentrations are known to increase HIF-1{alpha} expression even under normoxia, presumably by enhancing the concentration of tricarboxylic acid cycle intermediates, while reactions of non-tumor cells are not well defined. Therefore, we analyzed cellular responses to different glucose concentrations in respect to HIF activation comparing tumor to non-tumor cells. Using cells derived from non-tumor origin, we show that HIF-1{alpha} accumulation was higher under low compared to high glucose concentrations. Low glucose allowed mRNA expression of HIF-1 target genes like adrenomedullin. Transfection of C{sub 2}C{sub 12} cells with a HIF-1{alpha} oxygen-dependent degradation domaine-GFP fusion protein revealed that prolyl hydroxylase (PHD) activity is impaired at low glucose concentrations, thus stabilizing the fusion protein. Mechanistic considerations suggested that neither O{sub 2} redistribution nor an altered redox state explains impaired PHD activity in the absence of glucose. In order to affect PHD activity, glucose needs to be metabolized. Amino acids present in the medium also diminished HIF-1{alpha} expression, while the addition of fatty acids did not. This suggests that glucose or amino acid metabolism increases oxoglutarate concentrations, which enhances PHD activity in non-tumor cells. Tumor cells deprived of glutamine showed HIF-1{alpha} accumulation in the absence of glucose, proposing that enhanced glutaminolysis observed in many tumors enables these cells to compensate reduced oxoglutarate production in the absence of glucose.

  11. Cobalt chloride-induced estrogen receptor alpha down-regulation involves hypoxia-inducible factor-1alpha in MCF-7 human breast cancer cells.

    PubMed

    Cho, Jungyoon; Kim, Dukkyung; Lee, SeungKi; Lee, YoungJoo

    2005-05-01

    The estrogen receptor (ER) is down-regulated under hypoxia via a proteasome-dependent pathway. We studied the mechanism of ERalpha degradation under hypoxic mimetic conditions. Cobalt chloride-induced ERalpha down-regulation was dependent on the expression of newly synthesized protein(s), one possibility of which was hypoxia-inducible factor-1alpha (HIF-1alpha). To examine the role of HIF-1alpha expression in ERalpha down-regulation under hypoxic-mimetic conditions, we used a constitutively active form of HIF-1alpha, HIF-1alpha/herpes simplex viral protein 16 (VP16), constructed by replacing the transactivation domain of HIF-1alpha with that of VP16. Western blot analysis revealed that HIF-1alpha/VP16 down-regulated ERalpha in a dose-dependent manner via a proteasome-dependent pathway. The kinase pathway inhibitors PD98059, U0126, wortmannin, and SB203580 did not affect the down-regulation. A mammalian two-hybrid screen and immunoprecipitation assays indicated that ERalpha interacted with HIF-1alpha physically. These results suggest that ERalpha down-regulation under hypoxia involves protein-protein interactions between the ERalpha and HIF-1alpha.

  12. Hypoxia Inducible Factor 1 Alpha Is Expressed in Germ Cells throughout the Murine Life Cycle.

    PubMed

    Takahashi, Natsumi; Davy, Philip M C; Gardner, Lauren H; Mathews, Juanita; Yamazaki, Yuki; Allsopp, Richard C

    2016-01-01

    Pluripotent stem cells of the early embryo, and germ line cells, are essential to ensure uncompromised development to adulthood as well as species propagation, respectively. Recently, the transcription factor hypoxia inducible factor 1 alpha (Hif1α) has been shown to have important roles in embryonic stem cells; in particular, regulation of conversion to glycolytic metabolism and, as we have shown, maintenance of functional levels of telomerase. In the present study, we sought to assess whether Hif1α was also expressed in the primitive cells of the murine embryo. We observed expression of Hif1α in pre-implantation embryos, specifically the 2-cell stage, morula, and blastocyst. Robust Hif1α expression was also observed in male and female primordial germ cells. We subsequently assessed whether Hif1α was expressed in adult male and female germ cells. In the testis, Hif1α was robustly expressed in spermatogonial cells, in both juvenile (6-week old) and adult (3-month old) males. In the ovaries, Hif1α was expressed in mature oocytes from adult females, as assessed both in situ and in individual oocytes flushed from super-ovulated females. Analysis of Hif1α transcript levels indicates a mechanism of regulation during early development that involves stockpiling of Hif1α protein in mature oocytes, presumably to provide protection from hypoxic stress until the gene is re-activated at the blastocyst stage. Together, these observations show that Hif1α is expressed throughout the life-cycle, including both the male and female germ line, and point to an important role for Hif1α in early progenitor cells.

  13. Hypoxia Inducible Factor 1 Alpha Is Expressed in Germ Cells throughout the Murine Life Cycle

    PubMed Central

    Gardner, Lauren H.; Mathews, Juanita; Yamazaki, Yuki; Allsopp, Richard C.

    2016-01-01

    Pluripotent stem cells of the early embryo, and germ line cells, are essential to ensure uncompromised development to adulthood as well as species propagation, respectively. Recently, the transcription factor hypoxia inducible factor 1 alpha (Hif1α) has been shown to have important roles in embryonic stem cells; in particular, regulation of conversion to glycolytic metabolism and, as we have shown, maintenance of functional levels of telomerase. In the present study, we sought to assess whether Hif1α was also expressed in the primitive cells of the murine embryo. We observed expression of Hif1α in pre-implantation embryos, specifically the 2-cell stage, morula, and blastocyst. Robust Hif1α expression was also observed in male and female primordial germ cells. We subsequently assessed whether Hif1α was expressed in adult male and female germ cells. In the testis, Hif1α was robustly expressed in spermatogonial cells, in both juvenile (6-week old) and adult (3-month old) males. In the ovaries, Hif1α was expressed in mature oocytes from adult females, as assessed both in situ and in individual oocytes flushed from super-ovulated females. Analysis of Hif1α transcript levels indicates a mechanism of regulation during early development that involves stockpiling of Hif1α protein in mature oocytes, presumably to provide protection from hypoxic stress until the gene is re-activated at the blastocyst stage. Together, these observations show that Hif1α is expressed throughout the life-cycle, including both the male and female germ line, and point to an important role for Hif1α in early progenitor cells. PMID:27148974

  14. Increased production of proinflammatory cytokines following infection with porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae.

    PubMed

    Thanawongnuwech, Roongroje; Thacker, Brad; Halbur, Patrick; Thacker, Eileen L

    2004-09-01

    Induction of the proinflammatory cytokines interleukin-1 (IL-1) (alpha and beta), IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor alpha (TNF-alpha) in pulmonary alveolar macrophages (PAMs) was assessed following experimental infection with porcine reproductive and respiratory syndrome virus (PRRSV) and/or Mycoplasma hyopneumoniae by using in vivo and in vitro models. The in vivo model consisted of pigs infected with PRRSV and/or M. hyopneumoniae and necropsied at 10, 28, or 42 days postinfection. Pigs infected with both pathogens had a greater percentage of macroscopic lung lesions, increased clinical disease, and slower viral clearance than pigs infected with either pathogen alone. The pigs infected with both PRRSV and M. hyopneumoniae had significantly increased levels of mRNA for many proinflammatory cytokines in PAMs collected by bronchoalveolar lavage (BAL) at all necropsy dates compared to those in uninfected control pigs. Increased levels of IL-1beta, IL-8, IL-10, and TNF-alpha proteins in BAL fluid, as measured by enzyme-linked immunosorbent assay, confirmed the increased cytokine induction induced by the pathogens. An in vitro model consisted of M. hyopneumoniae-inoculated tracheal ring explants cultured with PRRSV-infected PAMs. PAMs were harvested at 6 or 15 h postinfection with either or both pathogens. The in vitro study detected increased IL-10 and IL-12 mRNA levels in PAMs infected with PRRSV at all time periods. In addition, IL-10 protein levels were significantly elevated in the culture supernatants in the presence of M. hyopneumoniae-inoculated tracheal ring explants. The increased production of proinflammatory cytokines in vivo and in vitro associated with concurrent M. hyopneumoniae and PRRSV infection may play a role in the increased rates of pneumonia associated with PRRSV infection. The increased levels of IL-10 may be a possible mechanism that PRRSV and M. hyopneumoniae use to exacerbate the severity and duration of pneumonia induced by

  15. Identification and characterization of two members of a novel class of the interleukin-1 receptor (IL-1R) family. Delineation of a new class of IL-1R-related proteins based on signaling.

    PubMed

    Born, T L; Smith, D E; Garka, K E; Renshaw, B R; Bertles, J S; Sims, J E

    2000-09-29

    Two novel members of the interleukin-1 receptor (IL-1R) family, identified by homology searches of human genomic sequence data bases, are described. The genes have been named according to their structural features: TIGIRR-1 (three immunoglobulin domain-containing IL-1 receptor-related) and TIGIRR-2. TIGIRR-2 has recently been identified as causing mental retardation when mutated (Carrie, A., Jun, L., Bienvenu, T., Vinet, M. C., McDonell, N., Couvert, P., Zemni, R., Cardona, A., Van Buggenhout, G., Frints, S., Hamel, B., Moraine, C., Ropers, H. H., Strom, T., Howell, G. R., Whittaker, A., Ross, M. T., Kahn, A., Fryns, J. P., Beldjord, C., Marynen, P., and Chelly, J. (1999) Nat. Genet. 23, 25-31) and called IL1RAPL, a name we will also use henceforth. Neither receptor alone was able to mediate transcriptional activation of NF-kappaB in response to IL-1alpha, IL-1beta, or IL-18. In order to begin to elucidate the function of these and other orphan IL-1R family members, we have developed a functional assay utilizing a panel of chimeric receptors containing the extracellular and transmembrane domains of either type I IL-1R or IL-1R accessory protein (AcP) coupled to the cytoplasmic domains of all family members. Coexpression of each IL-1R chimera with each AcP chimera and an NF-kappaB-responsive reporter demonstrated that the cytoplasmic domains could be classified as IL-1R-like, AcP-like, or neither. Any IL-1R-like cytoplasmic domain could cooperate with any AcP-like cytoplasmic domain. The TIGIRR-1 and IL1RAPL cytoplasmic domains, however, were unable to signal as either IL-1R-like or AcP-like components, suggesting that they function as a new class of receptors within this family.

  16. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes

    SciTech Connect

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Hartmann, Enno; Kalies, Kai-Uwe; Moeller, Steffen; Suganthan, P.N.; Martinetz, Thomas

    2010-01-15

    Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).

  17. Role of very-late antigen-4 (VLA-4) in myelin basic protein-primed T cell contact-induced expression of proinflammatory cytokines in microglial cells.

    PubMed

    Dasgupta, Subhajit; Jana, Malabendu; Liu, Xiaojuan; Pahan, Kalipada

    2003-06-20

    The presence of neuroantigen-primed T cells recognizing self-myelin antigens within the CNS is necessary for the development of demyelinating autoimmune disease like multiple sclerosis. This study was undertaken to investigate the role of myelin basic protein (MBP)-primed T cells in the expression of proinflammatory cytokines in microglial cells. MBP-primed T cells alone induced specifically the microglial expression of interleukin (IL)-1beta, IL-1alpha tumor necrosis factor alpha, and IL-6, proinflammatory cytokines that are primarily involved in the pathogenesis of MS. This induction was primarily dependent on the contact between MBP-primed T cells and microglia. The activation of microglial NF-kappaB and CCAAT/enhancer-binding protein beta (C/EBPbeta) by MBP-primed T cell contact and inhibition of contact-mediated microglial expression of proinflammatory cytokines by dominant-negative mutants of p65 and C/EBPbeta suggest that MBP-primed T cells induce microglial expression of cytokines through the activation of NF-kappaB and C/EBPbeta. In addition, we show that MBP-primed T cells express very late antigen-4 (VLA-4), and functional blocking antibodies to alpha4 chain of VLA-4 (CD49d) inhibited the ability of MBP-primed T cells to induce microglial proinflammatory cytokines. Interestingly, the blocking of VLA-4 impaired the ability of MBP-primed T cells to induce microglial activation of only C/EBPbeta but not that of NF-kappaB. This study illustrates a novel role of VLA-4 in regulating neuroantigen-primed T cell-induced activation of microglia through C/EBPbeta

  18. In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines.

    PubMed

    Marcus, Hani J; Carpenter, Keri L H; Price, Stephen J; Hutchinson, Peter J

    2010-03-01

    Microdialysis enables measurement of the chemistry of the cerebral extracellular fluid. This study's objective was to utilise microdialysis to monitor levels of glucose, lactate, pyruvate, glutamate and glycerol in patients following surgery for intrinsic brain tumours, and to assess the concentration of growth factors, cytokines and other proteins involved in the pathogenesis of high-grade gliomas in vivo. Eight patients with suspected high-grade gliomas were studied. Seven of these underwent resection with one microdialysis catheter placed at the tumour resection margin and, in six of these seven cases, a second microdialysis catheter in macroscopically normal peritumour tissue. The remaining glioma patient had an image-guided biopsy with a single catheter inserted stereotactically at the tumour margin. Histology demonstrated WHO IV glioblastoma in five cases, WHO III anaplastic astrocytoma in two cases, and one cerebral lymphoma. In the high-grade gliomas (WHO IV and III), tumour margin microdialysates consistently showed significantly lower glucose, higher lactate/pyruvate (L/P) ratio, higher glutamate and higher glycerol, relative to peritumour microdialysates (P < 0.05). These results indicate that malignant glioma margin tissue is metabolically extremely active. There was great variability in the microdialysate concentrations of growth factors (TGFalpha, EGF, VEGF), cytokines (IL-1alpha, IL-1beta, IL-1ra, IL-6, IL-8), matrix metalloproteinases (MMP-2, MMP-9) and their endogenous inhibitors (TIMP-1, TIMP-2). Notably, microdialysates from the glioma resection margin demonstrated significantly higher IL-8 concentration and higher MMP-2/TIMP-1 ratio when compared to peritumour microdialysates (P < 0.05), suggesting an environment favouring invasion and angiogenesis at the tumour margin. Microdialysis is a promising technique to study in vivo glioma metabolism, and may assist in the development of new therapies.

  19. Inhibition of sup 125 I organification and thyroid hormone release by interleukin-1, tumor necrosis factor-alpha, and interferon-gamma in human thyrocytes in suspension culture

    SciTech Connect

    Sato, K.; Satoh, T.; Shizume, K.; Ozawa, M.; Han, D.C.; Imamura, H.; Tsushima, T.; Demura, H.; Kanaji, Y.; Ito, Y. )

    1990-06-01

    To elucidate the mechanism of decreased 131I uptake by the thyroid gland in patients with subacute thyroiditis and painless thyroiditis, human thyroid follicles were cultured with interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF alpha), and/or interferon-gamma (IFN gamma), and the effects of these cytokines on thyroid function were studied in vitro. When human thyrocytes were cultured in RPMI-1640 medium containing 0.5% fetal calf serum and TSH for 5-8 days, the cells incorporated 125I, synthesized de novo (125I)iodotyrosines and (125I)iodothyronines, and secreted (125I)T4 and (125I)T3 into the medium. IL-1 alpha and IL-1 beta inhibited 125I incorporation and (125I)iodothyronine release in a concentration-dependent manner. The minimal inhibitory effect was detected at 10 pg/ml. Electron microscopic examination revealed a marked decrease in lysosome formation in IL-1-treated thyrocytes. TNF alpha and IFN gamma also inhibited thyroid function in a concentration-dependent manner. Furthermore, when thyrocytes were cultured with IL-1, TNF alpha and IFN gamma, these cytokines more than additively inhibited thyroid function. Although the main mechanism of 131I uptake suppression in the thyroid gland in subacute thyroiditis is due to cellular damage and suppression of TSH release, our present findings suggest that IL-1, TNF alpha, and IFN gamma produced in the inflammatory process within the thyroid gland further inhibit iodine incorporation and at least partly account for the decreased 131I uptake by the thyroid gland in destruction-induced hyperthyroidism.

  20. Gene-inducing program of human dendritic cells in response to BCG cell-wall skeleton (CWS), which reflects adjuvancy required for tumor immunotherapy.

    PubMed

    Ishii, Kazuo; Kurita-Taniguchi, Mitsue; Aoki, Mikio; Kimura, Toru; Kashiwazaki, Yasuo; Matsumoto, Misako; Seya, Tsukasa

    2005-05-15

    Adjuvants induce the expression of a number of genes in dendritic cells (DCs), which facilitate effective antigen-presentation and cytokine/chemokine liberation. It has been accepted that the toll-like receptor (TLR) family governs the adjuvant activity in DCs. An adjuvant with a long history is mycobacteria in an oil-in-water emulsion, namely Freund's complete adjuvant. Since the active center for the adjuvancy in mycobacteria is the cell-wall skeleton (CWS), we used the bacillus Calmette-Guerin cell-wall skeleton (BCG-CWS) to test DC maturation by GeneChip analysis. We identified the genes supporting an efficient DC response and output. Approximately 2000 genes were up-regulated by BCG-CWS stimulation. BCG-CWS-, peptidoglycan (PGN)- and lipopolysaccharide (LPS)-stimulation generally up-regulated some gene clusters including genes for inflammatory cytokines (TNF, IL1alpha, IL1beta, IL6, IL12 p40, IL23 p19, etc.), chemokines (CCL20, IL8, etc.), cell adhesion molecules (ICAM-1, etc.), apoptosis-related proteins (GADD45B, BCL2A1, etc.), metabolic enzymes (PTGS2, SOD2, etc.) and miscellaneous proteins (EHD1, TNFAIP6, etc.). LPS-stimulation, but not BCG-CWS- or PGN-stimulation, up-regulated the interferon-inducible antiviral proteins, including IFIT1, IFIT2, IFIT4, CXCL10, ISG15, OASL, IFITM1 and MX1. We also found that the BCG-CWS- or PGN-stimulation up-regulated CXCL5, MMP1, etc. We discussed their properties in association with TLRs and recently discovered TLR adapters.

  1. Regulation of cytokine production by soluble CD23: costimulation of interferon gamma secretion and triggering of tumor necrosis factor alpha release

    PubMed Central

    1994-01-01

    Soluble CD23 (sCD23) has multiple IgE-independent biological activities. In the present study, we examined the regulatory effect of sCD23 on cytokine production by human peripheral blood mononuclear cells (PBMC). We show that sCD23 enhances by about 80-fold the interleukin 2 (IL-2)-induced interferon gamma (IFN-gamma) production and by about 10-fold the response to IL-12. This potentiating activity is time and dose dependent and is not associated with a significant effect on DNA synthesis. The sCD23 costimulatory activity for IFN-gamma synthesis is drastically reduced in monocyte-depleted PBMC, suggesting that monocytes may be the target for sCD23. This hypothesis was supported by the following observations. First, sCD23 alone is a potent inducer of tumor necrosis factor alpha (TNF-alpha) production by PBMC and this effect disappears after monocyte depletion. The triggering of TNF-alpha release is specifically inhibited by neutralizing anti-CD23 monoclonal antibody (mAb). In addition, IL-2 and IL-12 synergize with sCD23 to induce TNF-alpha production. Second, sCD23 triggers the release of other inflammatory mediators such as IL-1 alpha, IL-1 beta, and IL-6. Finally, TNF-alpha production in response to IL-2 and sCD23 precedes IFN-gamma and IFN-gamma secretion is significantly inhibited by anti-TNF-alpha mAb, indicating that the sCD23 costimulatory signal for IFN-gamma production may be partially mediated by TNF-alpha release. It is proposed that sCD23 is a proinflammatory cytokine that, in addition, may play an important role in the control of the immune response via the enhancement of IFN-gamma production. PMID:8064221

  2. Macrophage response to cross-linked and conventional UHMWPE.

    PubMed

    Sethi, Rajiv K; Neavyn, Mark J; Rubash, Harry E; Shanbhag, Arun S

    2003-07-01

    To prevent wear debris-induced osteolysis and aseptic loosening, cross-linked ultra-high molecular weight polyethylene's (UHMWPE) with improved wear resistance have been developed. Hip simulator studies have demonstrated very low wear rates with these new materials leading to their widespread clinical use. However, the biocompatibility of this material is not known. We studied the macrophage response to cross-linked UHMWPE (XLPE) and compared it to conventional UHMWPE (CPE) as well as other clinically used orthopaedic materials such as titanium-alloy (TiAlV) and cobalt-chrome alloy (CoCr). Human peripheral blood monocytes and murine macrophages, as surrogates for cells mediating peri-implant inflammation, were cultured onto custom designed lipped disks fabricated from the test materials to isolate cells. Culture supernatants were collected at 24 and 48h and analyzed for cytokines such as IL-1alpha, IL-1beta, TNF-alpha and IL-6. Total RNA was extracted from adherent cells and gene expression was analyzed using qualitative RT-PCR. In both in vitro models, macrophages cultured on cross-linked and conventional polyethylene released similar levels of cytokines, which were also similar to levels on control tissue culture dishes. Macrophages cultured on TiAlV and CoCr-alloy released significantly higher levels of cytokines. Human monocytes from all donors varied in the magnitude of cytokines released when cultured on identical surfaces. The variability in individual donor responses to TiAlV and CoCr surfaces may reflect how individuals respond differently to similar stimuli and perhaps reveal a predisposed sensitivity to particular materials.

  3. Macrophage and T-cell gene expression in a model of early infection with the protozoan Leishmania chagasi.

    PubMed

    Ettinger, Nicholas A; Wilson, Mary E

    2008-06-25

    Visceral leishmaniasis is a potentially fatal infectious disease caused by the protozoan parasite Leishmania infantum/chagasi in the New World, or by L. donovani or L. infantum/chagasi in the Old World. Infection leads to a variety of outcomes ranging from asymptomatic infection to active disease, characterized by fevers, cachexia, hepatosplenomegaly and suppressed immune responses. We reasoned that events occurring during the initial few hours when the parasite encounters cells of the innate and adaptive immune systems are likely to influence the eventual immune response that develops. Therefore, we performed gene expression analysis using Affymetrix U133Plus2 microarray chips to investigate a model of early infection with human monocyte-derived macrophages (MDMs) challenged with wild-type L. chagasi parasites, with or without subsequent co-culture with Leishmania-naïve, autologous T-cells. Microarray data generated from total RNA were analyzed with software from the Bioconductor Project and functional clustering and pathway analysis were performed with DAVID and Gene Set Enrichment Analysis (GSEA), respectively. Many transcripts were down-regulated by infection in cultures containing macrophages alone, and the pattern indicated a lack of a classically activated phenotype. By contrast, the addition of autologous Leishmania-naïve T cells to infected macrophages resulted in a pattern of gene expression including many markers of type 1 immune cytokine activation (IFN-gamma, IL-6, IL-1alpha, IL-1beta). There was simultaneous up-regulation of a few markers of immune modulation (IL-10 cytokine accumulation; TGF-beta Signaling Pathway). We suggest that the initial encounter between L. chagasi and cells of the innate and adaptive immune system stimulates primarily type 1 immune cytokine responses, despite a lack of classical macrophage activation. This local microenvironment at the site of parasite inoculation may determine the initial course of immune T

  4. Hemorrhage induces rapid in vivo activation of CREB and NF-kappaB in murine intraparenchymal lung mononuclear cells.

    PubMed

    Shenkar, R; Abraham, E

    1997-02-01

    Increased expression of proinflammatory cytokines appears to be an important factor contributing to the development of acute lung injury. In murine models, mRNA levels of proinflammatory and immunoregulatory cytokines, including IL-1alpha, IL-1beta, TGF-beta1, and TNF-alpha, are increased in intraparenchymal lung mononuclear cells 1 h after hemorrhage. Binding elements for the nuclear transcriptional regulatory factors, nuclear factor kappaB (NF-kappaB), CCAAT/enhancer binding protein beta (C/EBPbeta), serum protein 1 (Sp1), activator protein 1 (AP-1), and the cyclic AMP response-element binding protein (CREB) are present in the promoter regions of numerous cytokine genes, including those whose expression is increased after blood loss. To investigate early transcriptional mechanisms which may be involved in regulating pulmonary cytokine expression after hemorrhage, we examined in vivo activation of these five nuclear transcriptional factors among intraparenchymal lung mononuclear cells obtained in the immediate post-hemorrhage period. Activation of NF-kappaB and CREB, but not C/EBPbeta, Sp1, or AP-1, was present in lung mononuclear cells isolated from mice 15 min after hemorrhage. Inhibition of xanthine oxidase by prior feeding with either an allopurinol-supplemented or a tungsten-enriched diet prevented hemorrhage-induced activation of CREB, but not NF-kappaB. These results demonstrate that hemorrhage leads to rapid in vivo activation in the lung of CREB through a xanthine oxidase-dependent mechanism and of NF-kappaB through other pathways, and suggest that the activation of these transcriptional factors may have an important role in regulating pulmonary cytokine expression and the development of acute lung injury after blood loss.

  5. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    SciTech Connect

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Fan, Guo-Huang; Richmond, Ann

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP-2 or

  6. Enhanced immune response with foot and mouth disease virus VP1 and interleukin-1 fusion genes.

    PubMed

    Park, Jong Hyeon; Kim, Sun Jin; Oem, Jae Ku; Lee, Kwang Nyeong; Kim, Yong Joo; Kye, Soo Jeong; Park, Jee Yong; Joo, Yi Seok

    2006-09-01

    The capsid of the foot and mouth disease (FMD) virus carries the epitopes that are critical for inducing the immune response. In an attempt to enhance the specific immune response, plasmid DNA was constructed to express VP1/interleukin-1alpha (IL-1alpha) and precursor capsid (P1) in combination with 2A (P1-2A)/IL-1alpha under the control of the human cytomegalovirus (HCMV) immediateearly promoter and intron. After DNA transfection into MA104 (monkey kidney) cells, Western blotting and an immunofluorescence assay were used to confirm the expression of VP1 or P1-2A and IL-1alpha. Mice were inoculated with the encoding plasmids via the intradermal route, and the IgG1 and IgG2a levels were used to determine the immune responses. These results show that although the immunized groups did not carry a high level of neutralizing antibodies, the plasmids encoding the VP1/ IL-1alpha, and P1-2A /IL-1alpha fused genes were effective in inducing an enhanced immune response.

  7. PfEMP1-DBL1alpha amino acid motifs in severe disease states of Plasmodium falciparum malaria.

    PubMed

    Normark, Johan; Nilsson, Daniel; Ribacke, Ulf; Winter, Gerhard; Moll, Kirsten; Wheelock, Craig E; Bayarugaba, Justus; Kironde, Fred; Egwang, Thomas G; Chen, Qijun; Andersson, Björn; Wahlgren, Mats

    2007-10-02

    An infection with Plasmodium falciparum may lead to severe malaria as a result of excessive binding of infected erythrocytes in the microvasculature. Vascular adhesion is mediated by P. falciparum erythrocyte membrane protein-1 (PfEMP1), which is encoded for by highly polymorphic members of the var-gene family. Here, we profile var gene transcription in fresh P. falciparum trophozoites from Ugandan children with malaria through var-specific DBL1alpha-PCR amplification and sequencing. A method for subsectioning region alignments into homology areas (MOTIFF) was developed to examine collected sequences. Specific PfEMP1-DBL1alpha amino acid motifs correlated with rosetting and severe malaria, with motif location corresponding to distinct regions of receptor interaction. The method is potentially applicable to other families of variant proteins and may be useful in identifying sequence-phenotype relationships. The results suggest that certain PfEMP1 sequences are predisposed to inducing severe malaria.

  8. 15-Deoxy-Delta(12,14)-prostaglandin-J(2) reveals a new pVHL-independent, lysosomal-dependent mechanism of HIF-1alpha degradation.

    PubMed

    Olmos, Gemma; Arenas, María I; Bienes, Raquel; Calzada, María Jose; Aragonés, Julián; Garcia-Bermejo, Maria Laura; Landazuri, Manuel O; Lucio-Cazaña, Javier

    2009-07-01

    Hypoxia-inducible factor-1alpha (HIF-1alpha) protein is degraded under normoxia by its association to von Hippel-Lindau protein (pVHL) and further proteasomal digestion. However, human renal cells HK-2 treated with 15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) accumulate HIF-1alpha in normoxic conditions. Thus, we aimed to investigate the mechanism involved in this accumulation. We found that 15d-PGJ(2) induced an over-accumulation of HIF-1alpha in RCC4 cells, which lack pVHL and in HK-2 cells treated with inhibitors of the pVHL-proteasome pathway. These results indicated that pVHL-proteasome-independent mechanisms are involved, and therefore we aimed to ascertain them. We have identified a new lysosomal-dependent mechanism of HIF-1alpha degradation as a target for 15d-PGJ(2) based on: (1) HIF-1alpha colocalized with the specific lysosomal marker Lamp-2a, (2) 15d-PGJ(2) inhibited the activity of cathepsin B, a lysosomal protease, and (3) inhibition of lysosomal activity did not result in over-accumulation of HIF-1alpha in 15d-PGJ(2)-treated cells. Therefore, expression of HIF-1alpha is also modulated by lysosomal degradation.

  9. Molecular architecture of leishmania EF-1alpha reveals a novel site that may modulate protein translation: a possible target for drug development.

    PubMed

    Lopez, Martin; Cherkasov, Artem; Nandan, Devki

    2007-05-18

    Elongation factor-1alpha plays an essential role in eukaryotic protein biosynthesis. Recently, we have shown by protein structure modeling the presence of a hairpin-loop of 12 amino acids in mammalian EF-1alpha that is absent in the leishmania homologue [D. Nandan, A. Cherkasov, R. Sabouti, T. Yi, N.E. Reiner, Molecular cloning, biochemical and structural analysis of elongation factor-1 alpha from Leishmania donovani: comparison with the mammalian homologue, Biochem. Biophys. Res. Commun. 302 (2003) 646-652]. As a consequence of this deletion, an exposed region is available on the main body of leishmania EF-1alpha. Here we report the generation of an anti-EF-1alpha antibody (DN-3) which bound selectively to the exposed region of leishmania EF-1alpha, with no reactivity with human EF-1alpha. In a leishmania cell-free protein translation system, DN-3 substantially inhibited protein translation. A similar inhibitory effect was observed when a specific peptide based on the exposed region was used in the cell-free protein translation assay. The application of structure-based in silico methods to identify potential ligands to target the exposed region identified a small molecule that selectively attenuated in vitro translation using leishmania extracts. Moreover, this small molecule showed selective suppressive effect on multiplication of leishmania in culture. Taken together, these findings identify a novel, exposed region in leishmania EF-1alpha that may be involved in protein synthesis and a potential site for drug targeting.

  10. Differential association of SMC1alpha and SMC3 proteins with meiotic chromosomes in wild-type and SPO11-deficient male mice.

    PubMed

    James, Rosalina D; Schmiesing, John A; Peters, Antoine H F M; Yokomori, Kyoko; Disteche, Christine M

    2002-01-01

    SMC proteins are components of cohesin complexes that function in chromosome cohesion. We determined that SMC1alpha and SMC3 localized to wild-type mouse meiotic chromosomes, but with distinct differences in their patterns. Anti-SMC3 coincided with axial elements of the synaptonemal complex, while SMC1alpha was observed mainly in regions where homologues were synapsed. This pattern was especially visible in pachytene sex vesicles where SMC1alpha localized only weakly to the asynapsed regions. At diplotene, SMC3, but not SMC1alpha, remained bound along axial elements of desynapsed chromosomes. SMC1alpha and SMC3 were also found to localize along meiotic chromosome cores of Spo11 null spermatocytes, in which double-strand break formation required for DNA recombination and homologous pairing were disrupted. In Spo11 -/- cells, SMC1alpha localization differed from SMC3 again, confirming that SMC1alpha is mainly associated with homologous or non-homologous synapsed regions, whereas SMC3 localized throughout the chromosomes. Our results suggest that the two cohesin proteins may not always be associated in a dimer and may function as separate complexes in mammalian meiosis, with SMC1alpha playing a more specific role in synapsis. In addition, our results indicate that cohesin cores can form independently of double-strand break formation and homologous pairing.

  11. Nutrition-induced catch-up growth increases hypoxia inducible factor 1alpha RNA levels in the growth plate.

    PubMed

    Even-Zohar, N; Jacob, J; Amariglio, N; Rechavi, G; Potievsky, O; Phillip, M; Gat-Yablonski, G

    2008-03-01

    Although catch-up growth is a well-known phenomenon, the local pathways at the epiphyseal growth plate that govern this process remain poorly understood. To study the mechanisms governing catch-up growth in the growth plate, we subjected prepubertal rats to 10 days of 40% food restriction, followed by a renewal of the regular food supply to induce catch-up growth. The animals were weighed daily, and their humeral length was measured at sacrifice. The proximal tibial epiphyseal growth plates (EGPs) were studied, and findings were compared with EGPs from animals fed ad libitum and animals under food restriction. The gene expression profile in the growth plates was examined using DNA microarrays, and the expression levels of selected genes were validated by real-time polymerase chain reaction. To localize gene expression in different growth plate zones, microdissection was used. Protein levels and localization were examined using immunohistochemistry. We showed that the expression level of 550 genes decreased during food restriction and increased during catch-up growth, starting already one day after refeeding. HIF-1alpha, as well as several of its downstream targets, was found among these genes. Immunohistochemistry showed a similar pattern for HIF-1alpha protein abundance. Additionally, HIF-1alpha mRNA and protein levels were higher in the proliferating than in the hypertrophic zone, and this distribution was unaffected by nutritional status. These findings indicate that nutrition has a profound effect on gene expression level during growth plate growth, and suggest an important role for HIF-1alpha in the growth plate and its response to nutritional manipulation.

  12. The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import.

    PubMed Central

    Weis, K; Ryder, U; Lamond, A I

    1996-01-01

    Nuclear proteins are targeted through the nuclear pore complex (NPC) in an energy-dependent reaction. The import reaction is mediated by nuclear localization sequences (NLS) in the substrate which are recognized by heterodimeric cytoplasmic receptors. hSRP1 alpha is an NLS-binding subunit of the human NLS receptor complex and is complexed in vivo with a second subunit of 97 kDa (p97). We show here that a short amino-terminal domain in hSRP1 alpha is necessary and sufficient for its interaction with p97. This domain is conserved in other SRP1-like proteins and its fusion to a cytoplasmic reporter protein is sufficient to promote complete nuclear import, circumventing the usual requirement for an NLS receptor interaction. The same amino-terminal domain inhibits import of NLS-containing proteins when added to an in vitro nuclear transport assay. While full-length hSRP alpha is able to leave the nucleus, the amino-terminal domain alone is not sufficient to promote exit. We conclude that hSRP1 alpha functions as an adaptor to tether NLS-containing substrates to the protein import machinery. Images PMID:8617227

  13. Diagnosis of HNF-1alpha mutations on a PNA zip-code microarray by single base extension.

    PubMed

    Song, Jae Yang; Park, Hyun Gyu; Jung, Sung-Ouk; Park, JaeChan

    2005-02-01

    In the present study, we exploited the superior features of peptide nucleic acids (PNAs) to develop an efficient PNA zip-code microarray for the detection of hepatocyte nuclear factor-1alpha (HNF-1alpha) mutations that cause type 3 maturity onset diabetes of the young (MODY). A multi-epoxy linker compound was synthesized and used to achieve an efficient covalent linking of amine-modified PNA to an aminated glass surface. PCR was performed to amplify the genomic regions containing the mutation sites. The PCR products were then employed as templates in a subsequent multiplex single base extension reaction using chimeric primers with 3' complementarity to the specific mutation site and 5' complementarity to the respective PNA zip-code sequence on the microarray. The primers were extended by a single base at each corresponding mutation site in the presence of biotin-labeled ddNTPs, and the products were hybridized to the PNA microarray. Compared to the corresponding DNA, the PNA zip-code sequence showed a much higher duplex specificity for the complementary DNA sequence. The PNA zip-code microarray was finally stained with streptavidin-R-phycoerythrin to generate a fluorescent signal. Using this strategy, we were able to correctly diagnose several mutation sites in exon 2 of HNF-1alpha with a wild-type and mutant samples including a MODY3 patient. This work represents one of the few successful applications of PNA in DNA chip technology.

  14. Studies on the 1alpha, 25-dihydroxycholecalciferol-like activity in a calcinogenic plant. Cestrum diurnum, in the chick.

    PubMed

    Wasserman, R H; Corradino, R A; Krook, L; Hughes, M R; Haussler, M R

    1976-04-01

    Cestrum diurnum (day-blooming jessamine) has been proposed to cause calcinosis in horses and cattle in Florida. The present studies investigated some physiological properties of the plant, using the chick as the experimental animal. The inclusion of dried leaf powder in a rachitogenic diet restored intestinal calcium-binding protein synthesis (CaBP) and increased calcium absorption in the cholecalciferol-deficient chick. The estimated level of cholecalciferol-equivalents in the dried leaf was about 30,000 to 35,000 IU/kg. Most of the activity was extractable with methanol:chloroform (2:1), indicating that the major cholecalciferol-like component in C. diurnum was different from the water soluble factor(s) in Solanum malacoxylon. The time course of effect of C. diurnum extract in rachitic chicks was similar to that ot 1,25-dihydroxycholecalciferol but the former had a longer lag time. The strontium fed chick, in which the kidney 25-hydroxycholecalciferol-1alpha-hydroxylase is inhibited, responded to C. diurnum extract, confirming the 1alpha,25-dihydroxycholecalciferol-like character of the Cestrum factor. The extract also appeared to interact with the intestinal 1 alpha,25-dihydroxycholecalciferol cytosol receptor although this observation is preliminary. These findings indicate that the l alpha,25-dihydroxycholecalciferol-like principle in C. diurnum many cause excessive calcium and phosphate absorption leading to calcinosis.

  15. [Expression of elongation factor-1 alpha-A and beta-actin promoters in embryos of transgenic Medaka (Oryzias latipes)].

    PubMed

    Long, Hua

    2003-06-01

    Two expression vectors with the promoter of either Medaka (Oryzias latipes) elongation factor gene or beta-actin gene were constructed based on pBluescript SK+. Both of them are linked with green-fluorescent protein (GFP) gene. And they are named as pB-EF and pB-BA, respectively. The microinjection experiments were conducted with fertilized Medaka eggs at one-cell stage. The expression of two vectors, pB-EF and pB-BA, was observed under stereo-fluorescence microscope. The detection results showed that both EF-1 alpha-A promoter and beta-actin promoter are strong. In the process of embryo development, the activity of beta-actin promoter became stronger while that of EF-1 alpha-A promoter weaker gradually. beta-actin promoter was but EF-1 alpha-A promoter distributed throughout fish body uniformly. The expression rate of two vectors, pB-EF and pB-BA, are 8.23% and 6.10%, respectively.

  16. Phytase and 1alpha-hydroxycholecalciferol supplementation of broiler chickens during the starting and growing/finishing phases.

    PubMed

    Driver, J P; Pesti, G M; Bakalli, R I; Edwards, H M

    2005-10-01

    Supplemental 1alpha-hydroxycholecalciferol (1alpha-OHD3) has been shown to have qualitatively similar and quantitatively additive effects to exogenous phytase. Two experiments were conducted from 0 to 35 d in floor pens to determine the additive effect of phytase and 1alpha-OHD3 when supplemented to Ca- and P-deficient diets. In both experiments, at least 4 replicates per treatment (50 chicks per replicate) were used. Corn-soybean-meal-and soybean-oil-based diets were fed and birds were raised in a house impervious to ultraviolet light. During the starter phase (ST), from 0 to 18 d, chicks were fed a 23% CP diet containing 0.60% Ca and 0.47% total P (tP). During the grower/finisher phase (GF), from 19 to 35 d, birds were fed a 19% CP diet containing 0.30% Ca and 0.37% tP. A combination of 1,000 phytase units/kg of Natuphos phytase and 5 microg/kg of 1alpha-OHD3 (P+1A) was supplemented to some of the feed during the ST and GF. Diets containing adequate Ca and P were also fed during the ST (0.90% Ca, 0.68% tP) and GF (0.80% Ca, 0.67% tP). Performance characteristics and the incidence of rickets and tibial dyschondroplasia were measured at 18 and 35 d. In experiment 1, unsupplemented chicks performed well but had considerable leg problems. Chicks fed P+1A during the ST or GF did not perform as well as birds fed P+1A throughout. Birds fed P+1A throughout performed as well birds fed the adequate diets without any indication of leg problems. In experiment 2, unsupplemented birds performed similarly to unsupplemented birds in experiment 1. However, chicks fed the supplements or the control diets did not perform as well or accumulate as much bone ash as birds in experiment 1, although the diets were formulated identically in both experiments. Diets with as little as 0.30% Ca and 0.37% tP appear to be adequate for broilers older than 18 d if supplemented with the correct amounts of phytase and 1alpha-OHD3. However, there are unknown variables that may limit the potential of

  17. Mutant HNF-1{alpha} and mutant HNF-1{beta} identified in MODY3 and MODY5 downregulate DPP-IV gene expression in Caco-2 cells

    SciTech Connect

    Gu Ning; Adachi, Tetsuya; Matsunaga, Tetsuro; Takeda, Jun; Tsujimoto, Gozoh; Ishihara, Akihiko; Yasuda, Koichiro; Tsuda, Kinsuke . E-mail: jinkan@tom.life.h.kyoto-u.ac.jp

    2006-08-04

    Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1{alpha} and HNF-1{beta}, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1{alpha} and mutant HNF-1{beta} in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1{alpha} and 13 mutant HNF-1{alpha}, as well as wild HNF-1{beta} and 2 mutant HNF-1{beta}, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1{alpha} and wild HNF-1{beta} significantly transactivated DPP-IV promoter, but mutant HNF-1{alpha} and mutant HNF-1{beta} exhibited low transactivation activity. Moreover, to study whether mutant HNF-1{alpha} and mutant HNF-1{beta} change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1{alpha} or wild HNF-1{beta}, or else respective dominant-negative mutant HNF-1{alpha}T539fsdelC or dominant-negative mutant HNF-1{beta}R177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1{alpha} cells and wild HNF-1{beta} cells, whereas they decreased in HNF-1{alpha}T539fsdelC cells and HNF-1{beta}R177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1{alpha} and wild HNF-1{beta} have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1{alpha} and mutant HNF-1{beta} attenuate the stimulatory effect.

  18. Functional defect of truncated hepatocyte nuclear factor-1{alpha} (G554fsX556) associated with maturity-onset diabetes of the young

    SciTech Connect

    Kooptiwut, Suwattanee; Sujjitjoon, Jatuporn; Plengvidhya, Nattachet; Boonyasrisawat, Watip; Chongjaroen, Nalinee; Jungtrakoon, Prapapron; Semprasert, Namoiy; Furuta, Hiroto; Nanjo, Kishio; Banchuin, Napatawn; Yenchitsomanus, Pa-thai

    2009-05-22

    A novel frameshift mutation attributable to 14-nucleotide insertion in hepatocyte nuclear factor-1{alpha} (HNF-1{alpha}) encoding a truncated HNF-1{alpha} (G554fsX556) with 76-amino acid deletion at its carboxyl terminus was identified in a Thai family with maturity-onset diabetes of the young (MODY). The wild-type and mutant HNF-1{alpha} proteins were expressed by in vitro transcription and translation (TNT) assay and by transfection in HeLa cells. The wild-type and mutant HNF-1{alpha} could similarly bind to human glucose-transporter 2 (GLUT2) promoter examined by electrophoretic mobility shift assay (EMSA). However, the transactivation activities of mutant HNF-1{alpha} on human GLUT2 and rat L-type pyruvate kinase (L-PK) promoters in HeLa cells determined by luciferase reporter assay were reduced to approximately 55-60% of the wild-type protein. These results suggested that the functional defect of novel truncated HNF-1{alpha} (G554fsX556) on the transactivation of its target-gene promoters would account for the {beta}-cell dysfunction associated with the pathogenesis of MODY.

  19. CPT1{alpha} over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    SciTech Connect

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika . E-mail: monika.leonhardt@inw.agrl.ethz.ch

    2005-12-16

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.

  20. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  1. Toxic effects of cobalt in primary cultures of mouse astrocytes. Similarities with hypoxia and role of HIF-1alpha.

    PubMed

    Karovic, Olga; Tonazzini, Ilaria; Rebola, Nelson; Edström, Erik; Lövdahl, Cecilia; Fredholm, Bertil B; Daré, Elisabetta

    2007-03-01

    Cobalt is suspected to cause memory deficit in humans and was reported to induce neurotoxicity in animal models. We have studied the effects of cobalt in primary cultures of mouse astrocytes. CoCl(2) (0.2-0.8mM) caused dose-dependent ATP depletion, apoptosis (cell shrinkage, phosphatidylserine externalization and chromatin rearrangements) and secondary necrosis. The mitochondria appeared to be a main target of cobalt toxicity, as shown by the loss of mitochondrial membrane potential (DeltaPsi(m)) and release from the mitochondria of apoptogenic factors, e.g. apoptosis inducing factor (AIF). Pre-treatment with bongkrekic acid reduced ATP depletion, implicating the involvement of the mitochondrial permeability transition (MPT) pore. Cobalt increased the generation of oxygen radicals, but antioxidants did not prevent toxicity. There was also an impaired response to ATP stimulation, evaluated as a lower raise in intracellular calcium. Similarly to hypoxia and dymethyloxallyl glycine (DMOG), cobalt triggered stabilization of the alpha-subunit of hypoxia-inducible factor HIF-1 (HIF-1alpha). This early event was followed by an increased expression of HIF-1 regulated genes, e.g. stress protein HO-1, pro-apoptotic factor Nip3 and iNOS. Although all of the three stimuli activated the HIF-1alpha pathway and decreased ATP levels, the downstream effects were different. DMOG only inhibited cell proliferation, whereas the other two conditions caused cell death by apoptosis and necrosis. This points to cobalt and hypoxia not only inducing HIF-1alpha regulated genes but also affecting similarly other cellular functions, including metabolism.

  2. Genistein regulates the IL-1 beta induced activation of MAPKs in human periodontal ligament cells through G protein-coupled receptor 30.

    PubMed

    Luo, Li-Jun; Liu, Feng; Lin, Zhi-Kai; Xie, Yu-Feng; Xu, Jia-Li; Tong, Qing-Chun; Shu, Rong

    2012-06-01

    Periodontal ligament (PDL) cells are fibroblasts that play key roles in tissue integrity, periodontal inflammation and tissue regeneration in the periodontium. The periodontal tissue destruction in periodontitis is mediated by host tissue-produced inflammatory cytokines, including interleukin-1β (IL-1β). Here, we report the expression of G protein-coupled receptor 30 (GPR30, also known as G protein-coupled estrogen receptor 1 GPER) in human PDL cells and its regulation by IL-1β. IL-1β-induced GPR30 expression in human PDL cells leads to the activation of multiple signaling pathways, including MAPK, NF-κB and PI3K. In contrast, genistein, an estrogen receptor ligand, postpones the activation of MAPKs induced by IL-1β. Moreover, the inhibition of GPR30 by G15, a GPR30-specific antagonist, eliminates this delay. Thus, genistein plays a role in the regulation of MAPK activation via GPR30, and GPR30 represents a novel target regulated by steroid hormones in PDL cells.

  3. ATP Induces Disruption of Tight Junction Proteins via IL-1 Beta-Dependent MMP-9 Activation of Human Blood-Brain Barrier In Vitro.

    PubMed

    Yang, Fuxing; Zhao, Kai; Zhang, Xiufeng; Zhang, Jun; Xu, Bainan

    2016-01-01

    Disruption of blood-brain barrier (BBB) follows brain trauma or central nervous system (CNS) stress. However, the mechanisms leading to this process or the underlying neural plasticity are not clearly known. We hypothesized that ATP/P2X7R signaling regulates the integrity of BBB. Activation of P2X7 receptor (P2X7R) by ATP induces the release of interleukin-1β (IL-1β), which in turn enhances the activity of matrix metalloproteinase-9 (MMP-9). Degradation of tight junction proteins (TJPs) such as ZO-1 and occludin occurs, which finally contributes to disruption of BBB. A contact coculture system using human astrocytes and hCMEC/D3, an immortalized human brain endothelial cell line, was used to mimic BBB in vitro. Permeability was used to evaluate changes in the integrity of TJPs. ELISA, Western blot, and immunofluorescent staining procedures were used. Our data demonstrated that exposure to the photoreactive ATP analog, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP), induced a significant decrease in ZO-1 and occludin expression. Meanwhile, the decrease of ZO-1 and occludin was significantly attenuated by P2X7R inhibitors, as well as IL-1R and MMP antagonists. Further, the induction of IL-1β and MMP-9 was closely linked to ATP/P2X7R-associated BBB leakage. In conclusion, our study explored the mechanism of ATP/P2X7R signaling in the disruption of BBB following brain trauma/stress injury, especially focusing on the relationship with IL-1β and MMP-9.

  4. α-Melanocyte-stimulating hormone (α-MSH) reverses impairment of memory reconsolidation induced by interleukin-1 beta (IL-1 beta) hippocampal infusions.

    PubMed

    Machado, Ivana; González, Patricia; Schiöth, Helgi Birgir; Lasaga, Mercedes; Scimonelli, Teresa Nieves

    2010-11-01

    Interleukin-1 beta (IL-1β) significantly influences cognitive processes. Treatments which raise the level of IL-1β in the brain impair memory consolidation in contextual fear conditioning. However, the effect of IL-1β on memory reconsolidation has not yet been established. The melanocortin α-melanocyte-stimulating hormone (α-MSH) exerts potent anti-inflammatory actions by antagonizing the effect of proinflammatory cytokines. Five subtypes of melanocortin receptors (MC1R-MC5R) have been identified, of which MC3R and MC4R are predominant in the central nervous system. The present experiments show that the injection of IL-1β (5 ng/0.25 μl) in dorsal hippocampus up to 30 min after re-exposition to the context decreases freezing during the contextual fear test. Impairment of memory reconsolidation was reversed by treatment with α-MSH (0.05 μg/0.25 μl). Administration of the MC4 receptor antagonist HS014 (0.5 μg/0.25 μl) blocked the effect of α-MSH. These results suggest that IL-1β may influence memory reconsolidation and that activation of central MC4R could lead to improve cognitive performance.

  5. TNF-ALPHA AND IL-1 BETA ARE NOT ESSENTIAL TO THE INFLAMMATORY RESPONSE IN LPS-INDUCED AIRWAY DISEASE. (R826711C001)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Silver wire amplifies the signaling mechanism for IL-1beta production more than silver submicroparticles in human monocytic THP-1 cells.

    PubMed

    Jung, Hye Jin; Pak, Pyo June; Park, Sung Hyo; Ju, Jae Eun; Kim, Joong-Su; Lee, Hoi-Seon; Chung, Namhyun

    2014-01-01

    Silver materials have been widely used in diverse fields. However, their toxicity and their mechanism, especially in different forms, have not been studied sufficiently. Thus, cytotoxicity, apoptosis, and interleukin-1beta (IL-1β) production were investigated using macrophage-like THP-1 cells in the presence of Ag microparticles (AgMPs, 2.7 µm), Ag submicroparticles (AgSMPs, 150 nm), and Ag wires (AgWs, 274 nm×5.3 µm). The levels of cytotoxicity, apoptosis, and IL-1β production by AgWs were higher than those by the other two AgSMPs and AgMPs. This trend was also observed with each step of the signaling mechanism for IL-1β production, which is a single pathway affiliated with ROS generation or lysosomal rupture or both, cathepsin B, caspase-1 (NALP3 inflammasome), and finally IL-1β production in THP-1 cells. All these results suggest that, for development of safe and effective silver materials, the shape or form of silver materials should be considered, especially for macrophage cell lines because epithelial cell lines are not overly sensitive to silver materials.

  7. ATP Induces Disruption of Tight Junction Proteins via IL-1 Beta-Dependent MMP-9 Activation of Human Blood-Brain Barrier In Vitro

    PubMed Central

    Zhao, Kai

    2016-01-01

    Disruption of blood-brain barrier (BBB) follows brain trauma or central nervous system (CNS) stress. However, the mechanisms leading to this process or the underlying neural plasticity are not clearly known. We hypothesized that ATP/P2X7R signaling regulates the integrity of BBB. Activation of P2X7 receptor (P2X7R) by ATP induces the release of interleukin-1β (IL-1β), which in turn enhances the activity of matrix metalloproteinase-9 (MMP-9). Degradation of tight junction proteins (TJPs) such as ZO-1 and occludin occurs, which finally contributes to disruption of BBB. A contact coculture system using human astrocytes and hCMEC/D3, an immortalized human brain endothelial cell line, was used to mimic BBB in vitro. Permeability was used to evaluate changes in the integrity of TJPs. ELISA, Western blot, and immunofluorescent staining procedures were used. Our data demonstrated that exposure to the photoreactive ATP analog, 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate (BzATP), induced a significant decrease in ZO-1 and occludin expression. Meanwhile, the decrease of ZO-1 and occludin was significantly attenuated by P2X7R inhibitors, as well as IL-1R and MMP antagonists. Further, the induction of IL-1β and MMP-9 was closely linked to ATP/P2X7R-associated BBB leakage. In conclusion, our study explored the mechanism of ATP/P2X7R signaling in the disruption of BBB following brain trauma/stress injury, especially focusing on the relationship with IL-1β and MMP-9. PMID:27795859

  8. Noscapine inhibits hypoxia-mediated HIF-1alpha expression andangiogenesis in vitro: a novel function for an old drug.

    PubMed

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Schnee, Tona; Ali, M Aktar; Lan, Li; Zagzag, David

    2006-05-01

    Overexpression of hypoxia-inducible factor-1 (HIF-1) is a common feature in solid malignancies related to oxygen deficiency. Since increased HIF-1 expression correlates with advanced disease stage, increased angiogenesis and poor prognosis, HIF-1 and its signaling pathway have become targets for cancer chemotherapy. In this study, we identified noscapine to be a novel small molecule inhibitor of the HIF-1 pathway based on its structure-function relation-ships with HIF-1 pathway inhibitors belonging to the benzylisoquinoline class of plant metabolites and/or to microtubule binding agents. We demonstrate that noscapine treatment of human glioma U87MG and T98G cell lines exposed to the hypoxic mimetic agent, CoCl2, inhibits hypoxia-mediated HIF-1alpha expression and transcriptional activity as measured by decreased secretion of VEGF, a HIF-1 target gene. Inhibition of hypoxia-mediated HIF-1alpha expression was due, in part, to its ability to inhibit accumulation of HIF-1alpha in the nucleus and target it for degradation via the proteasome. One mechanism of action of microtubule binding agents is their antiangiogenic activity associated with disruption of endothelial tubule formation. We show that noscapine has similar properties in vitro. Thus, noscapine may possess novel antiangiogenic activity associated with two broad mechanisms of action: first, by decreasing HIF-1alpha expression in hypoxic tumor cells, upregulation of target genes, such as VEGF, would be decreased concomitant with its associated angiogenic activity; second, by inhibiting endothelial cells from forming blood vessels in response to VEGF stimulation, it may limit the process of neo-vascularization, correlating with antitumor activity in vivo. For more than 75 years, noscapine has traditionally been used as an oral cough suppressant with no known toxic side effects in man. Thus, the studies reported here have found a novel function for an old drug. Given its low toxicity profile, its demonstrated

  9. Bacterial cell wall products increases stabilization of HIF-1 alpha in an oligodendrocyte cell line preconditioned by cobalt chloride or desferrioxamine.

    PubMed

    Yao, Song-yi; Soutto, Mohammed; Sriram, Subramaniam

    2008-08-30

    We examined the effect of lipopolysaccharide (LPS) or lipotechoic acid (LTA) on the regulation of hypoxia inducible factor (HIF-1) alpha on the MO3.13 cells, a human oligodendroglial cell line. Our study shows that MO3.13 cells express the toll like receptors (TLR's) but do not increase cellular levels of HIF-1 alpha following exposure to bacterial cell wall products. When MO3.13 cells were preconditioned by desferrioxamine (DFO) or cobalt chloride (CoCl(2)) and then treated with either LPS or LTA, HIF-1 alpha levels were higher than that induced by DFO or CoCl(2) alone. The increase in HIF-1 alpha was due to increased protein stability that was mediated by activation of the ERK-MAP kinase pathway.

  10. Effect of doxercalciferol (1alpha-hydroxyvitamin D2) on PTH, bone turnover and bone mineral density in a hemodialysis patient with persistent secondary hyperparathyroidism post parathyroidectomy.

    PubMed

    Parisi, M S; Oliveri, B; Somoza, J; Mautalen, C

    2003-06-01

    The efficacy and safety of the vitamin D analog, doxercalciferol (1alpha-hydroxyvitamin D2, 1alphaD2) in the treatment of secondary hyperparathyroidism in hemodialysis patients has been previously reported. We report these effect of 16-week 1alphaD2 treatment on mineral metabolism and bone mineral density (BMD) in a hemodialysis patient with persistent secondary hyperparathyroidism post parathyroidectomy, resistant to previous calcitriol treatment. Levels of iPTH, bone-specific alkaline phosphatase and serum type I collagen C telopeptide were above normal at baseline and were substantially decreased with 1alphaD2 treatment (-92%, -63% and -53%, respectively). BMD increased in all areas: total skeleton (+6.5%), lumbar spine (+6.9%) and total femur (+4.3%). The patient showed no hypercalcemia, and phosphorus levels remained between 3.3 and 6.2 mg/dl.

  11. Evolution of translational elongation factor (EF) sequences: reliability of global phylogenies inferred from EF-1 alpha(Tu) and EF-2(G) proteins.

    PubMed Central

    Creti, R; Ceccarelli, E; Bocchetta, M; Sanangelantoni, A M; Tiboni, O; Palm, P; Cammarano, P

    1994-01-01

    The EF-2 coding genes of the Archaea Pyrococcus woesei and Desulfurococcus mobilis were cloned and sequenced. Global phylogenies were inferred by alternative tree-making methods from available EF-2(G) sequence data and contrasted with phylogenies constructed from the more conserved but shorter EF-1 alpha(Tu) sequences. Both the monophyly (sensu Hennig) of Archaea and their subdivision into the kingdoms Crenarchaeota and Euryarchaeota are consistently inferred by analysis of EF-2(G) sequences, usually at a high bootstrap confidence level. In contrast, EF-1 alpha(Tu) phylogenies tend to be inconsistent with one another and show low bootstrap confidence levels. While evolutionary distance and DNA maximum parsimony analyses of EF-1 alpha(Tu) sequences do show archaeal monophyly, protein parsimony and DNA maximum-likelihood analyses of these data do not. In no case, however, do any of the tree topologies inferred from EF-1 alpha(Tu) sequence analyses receive significant bootstrap support. PMID:8159735

  12. 1alpha,25(OH)2D3 causes a rapid increase in phosphatidylinositol-specific PLC-beta activity via phospholipase A2-dependent production of lysophospholipid.

    PubMed

    Schwartz, Z; Shaked, D; Hardin, R R; Gruwell, S; Dean, D D; Sylvia, V L; Boyan, B D

    2003-05-01

    1alpha,25(OH)(2)D(3) activates protein kinase C (PKC) in rat growth plate chondrocytes via mechanisms involving phosphatidylinositol-specific phospholipase C (PI-PLC) and phospholipase A(2) (PLA(2)). The purpose of this study was to determine if 1alpha,25(OH)(2)D(3) activates PI-PLC directly or through a PLA(2)-dependent mechanism. We determined which PLC isoforms are present in the growth plate chondrocytes, and determined which isoform(s) of PLC is(are) regulated by 1alpha,25(OH)(2)D(3). Inhibitors and activators of PLA(2) were used to assess the inter-relationship between these two phospholipid-signaling pathways. PI-PLC activity in lysates of prehypertrophic and upper hypertrophic zone (growth zone) cells that were incubated with 1alpha,25(OH)(2)D(3), was increased within 30s with peak activity at 1-3 min. PI-PLC activity in resting zone cells was unaffected by 1alpha,25(OH)(2)D(3). 1beta,25(OH)(2)D(3), 24R,25(OH)(2)D(3), actinomycin D and cycloheximide had no effect on PLC in lysates of growth zone cells. Thus, 1alpha,25(OH)(2)D(3) regulation of PI-PLC enzyme activity is stereospecific, cell maturation-dependent, and nongenomic. PLA(2)-activation (mastoparan or melittin) increased PI-PLC activity to the same extent as 1alpha,25(OH)(2)D(3); PLA(2)-inhibition (quinacrine, oleyloxyethylphosphorylcholine (OEPC), or AACOCF(3)) reduced the effect of 1alpha,25(OH)(2)D(3). Neither arachidonic acid (AA) nor its metabolites affected PI-PLC. In contrast, lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) activated PI-PLC (LPE>LPC). 1alpha,25(OH)(2)D(3) stimulated PI-PLC and PKC activities via Gq; GDPbetaS inhibited activity, but pertussis toxin did not. RT-PCR showed that the cells express PLC-beta1a, PLC-beta1b, PLC-beta3 and PLC-gamma1 mRNA. Antibodies to PLC-beta1 and PLC-beta3 blocked the 1alpha,25(OH)(2)D(3) effect; antibodies to PLC-delta and PLC-gamma did not. Thus, 1alpha,25(OH)(2)D(3) regulates PLC-beta through PLA(2)-dependent production of

  13. Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1alpha accumulation and activity by disrupting microtubule function.

    PubMed

    Escuin, Daniel; Kline, Erik R; Giannakakou, Paraskevi

    2005-10-01

    We have recently identified a mechanistic link between disruption of the microtubule cytoskeleton and inhibition of tumor angiogenesis via the hypoxia-inducible factor-1 (HIF-1) pathway. Based on this model, we hypothesized that other microtubule-targeting drugs may have a similar effect on HIF-1alpha. To test that hypothesis, we studied the effects of different clinically relevant microtubule-disrupting agents, including taxotere, epothilone B, discodermolide, vincristine, 2-methoxyestradiol, and colchicine. In all cases, HIF-1alpha protein, but not mRNA, was down-regulated in a drug dose-dependent manner. In addition, HIF-1alpha transcriptional activity was also inhibited by all drugs tested. To further examine whether these effects were dependent on microtubule network disruption, we tested the ability of epothilone B to inhibit HIF-1alpha protein in the human ovarian cancer cell line 1A9 and its beta-tubulin mutant epothilone-resistant subclone 1A9/A8. Our data showed that epothilone B treatment down-regulated HIF-1alpha protein in the parental 1A9 cells but had no effect in the resistant 1A9/A8 cells. These observations were confirmed by confocal microscopy, which showed impaired nuclear accumulation of HIF-1alpha in parental 1A9 cells at epothilone B concentrations that induced extensive microtubule stabilization. In contrast, epothilone B treatment had no effect on either microtubules or HIF-1alpha nuclear accumulation in the resistant 1A9/A8 cells. Furthermore, epothilone B inhibited HIF-1 transcriptional activity in 1A9 cells, as evidenced by a hypoxia response element-luciferase reporter assay, but had no effect on HIF-1 activity in the resistant 1A9/A8 cells. These data directly link beta-tubulin drug binding with HIF-1alpha protein inhibition. Our results further provide a strong rationale for testing taxanes and epothilones in clinical trials targeting HIF-1 in cancer patients.

  14. Preparation and biological activity of 24-epi-26,26,26,27,27,27-hexafluoro- 1 alpha,25-dihydroxyvitamin D2.

    PubMed

    Iseki, K; Oishi, S; Namba, H; Taguchi, T; Kobayashi, Y

    1995-11-01

    A new fluorinated analog of vitamin D2, 24-epi-26,26,26,27,27,27-hexafluoro- 1 alpha,25-dihydroxyvitamin D2, was efficiently synthesized starting from (R)-4-isopropyl-3-propionyl-2- oxazolidinone with high stereochemical control. In all four physiological test systems, the fluorinate vitamin D2 analog was found to be slightly less active than 1 alpha,25-dihydroxyvitamin D3.

  15. Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1alpha-dependent expression of thrombospondin-1.

    PubMed

    Osada-Oka, Mayuko; Ikeda, Takako; Akiba, Satoshi; Sato, Takashi

    2008-08-01

    The migration of vascular smooth muscle cells from the media to intima and their subsequent proliferation are critical causes of arterial wall thickening. In atherosclerotic lesions increases in the thickness of the vascular wall and the impairment of oxygen diffusion capacity result in the development of hypoxic lesions. We investigated the effect of hypoxia on the migration of human coronary artery smooth muscle cells (CASMCs) via HIF-1alpha-dependent expression of thrombospondin-1 (TSP-1). When the cells were cultured under hypoxic conditions, mRNA and protein levels of TSP-1, and mRNA levels of integrin beta(3) were increased with the increase in HIF-1alpha protein. DNA synthesis and migration of the cells were stimulated under the conditions, and a neutralizing anti-TSP-1 antibody apparently suppressed the migration, but not DNA synthesis. The migration was also inhibited by RGD peptide that binds to integrin beta(3). Furthermore, the migration was completely suppressed in HIF-1alpha-knockdown cells exposed to hypoxia, while it was significantly enhanced in HIF-1alpha-overexpressing cells. These results suggest that the hypoxia induces the migration of CASMCs, and that the migration is elicited by TSP-1 of which induction is fully dependent on the stabilization of HIF-1alpha, in autocrine regulation. Thus we suggest that HIF-1alpha plays an important role in the pathogenesis of atherosclerosis.

  16. Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma.

    PubMed

    Abe, Masahiro; Hiura, Kenji; Wilde, Javier; Moriyama, Keiji; Hashimoto, Toshihiro; Ozaki, Shuji; Wakatsuki, Shingo; Kosaka, Masaaki; Kido, Shinsuke; Inoue, Daisuke; Matsumoto, Toshio

    2002-09-15

    Multiple myeloma (MM) cells cause devastating bone destruction by activating osteoclasts in the bone marrow milieu. However, the mechanism of enhanced bone resorption in patients with myeloma is poorly understood. In the present study, we investigated a role of C-C chemokines, macrophage inflammatory protein (MIP)-1alpha and MIP-1beta, in MM cell-induced osteolysis. These chemokines were produced and secreted by a majority of MM cell lines as well as primary MM cells from patients. Secretion of MIP-1alpha and MIP-1beta correlated well with the ability of myeloma cells to enhance osteoclastic bone resorption both in vitro and in vivo as well as in MM patients. In osteoclastogenic cultures of rabbit bone cells, cocultures with myeloma cells as well as addition of myeloma cell-conditioned media enhanced both formation of osteoclastlike cells and resorption pits to an extent comparable to the effect of recombinant MIP-1alpha and MIP-1beta. Importantly, these effects were mostly reversed by neutralizing antibodies against MIP-1alpha and MIP-1beta, or their cognate receptor, CCR5, suggesting critical roles of these chemokines. We also demonstrated that stromal cells express CCR5 and that recombinant MIP-1alpha and MIP-1beta induce expression of receptor activator of nuclear factor-kappaB (RANK) ligand by stromal cells, thereby stimulating osteoclast differentiation of preosteoclastic cells. These results suggest that MIP-1alpha and MIP-1beta may be major osteoclast-activating factors produced by MM cells.

  17. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    SciTech Connect

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  18. Blood to brain transport of interleukin links the immune and central nervous systems

    SciTech Connect

    Banks, W.A.; Kastin, A.J. Tulane Univ. School of Medicine, New Orleans, LA )

    1991-01-01

    Interleukins (IL) are naturally occurring proteins that regulate, and thus link, both the immune system and the central nervous system (CNS). Since proteins are assumed not to be able to cross the blood-brain barrier (BBB), it is controversial how this linkage could occur. The authors show here that after iv injection of {sup 125}I-hIL-1{alpha}, radioactivity in the brain eluted on HPLC in the position of the labeled cytokine. In addition, entry was inhibited by unlabeled hIL-1{alpha}. The authors demonstration of a saturable, carrier-mediated system that transports recombinant human IL-1{alpha} in intact form from the blood into the CNS indicates a direct immune-CNS connection.

  19. SDF-1alpha is expressed in astrocytes and neurons in the AIDS dementia complex: an in vivo and in vitro study.

    PubMed

    Rostasy, Kevin; Egles, Christophe; Chauhan, Ashok; Kneissl, Michelle; Bahrani, Padmanabhan; Yiannoutsos, Constantin; Hunter, Dale D; Nath, Avindra; Hedreen, John C; Navia, Bradford A

    2003-06-01

    Recent in vitro studies suggest that the alpha chemokine stromal-derived factor-1alpha (SDF-1alpha) and its receptor CXCR-4 may contribute to neuronal apoptosis in HIV infection of the brain. The cellular and regional expression of this chemokine and its relationship to the AIDS dementia complex (ADC), however, have remained undetermined. Using immunohistochemistry and semiquantitative RT-PCR, we examined the expression of SDF-1alpha in the frontal cortex (FC), the adjacent deep white matter (DWM). and the basal ganglia (BG) of 17 patients with ADC and 5 normal controls, and the FC and temporal cortex of 6 patients with Alzheimer disease (AD). Additionally, SDF-1alpha expression was studied in 3 different neuronal cultures: differentiated SK-N-MC cells, primary human fetal neuronal, and mouse hippocampal cultures. SDF-1alpha staining was predominantly localized to astrocytes in all 3 groups in the gray matter of the FC and the BG, often in the vicinity of cortical and basal ganglia neurons, but was generally absent in the DWM. Further, the number of positive neurons was significantly greater in the BG of AIDS subjects with advanced brain disease compared to subjects with lesser disease (p = 0.029). All cultures showed prominent SDF-1alpha staining of neurons within the cytoplasm and in neurites, whereas preferential expression in GABA-ergic neurons was found in hippocampal cultures. This is the first study to show that SDF-1alpha is constitutively expressed in astrocytes of the deep and cortical gray matter as well as in neurons of the human brain. Its increased expression in basal ganglia neurons of patients with advanced HIV CNS disease suggests it may also contribute to pathogenesis.

  20. Synthesis and biological activity of 22-iodo- and (E)-20(22)-dehydro analogues of 1alpha,25-dihydroxyvitamin D3.

    PubMed

    Sicinski, R R; DeLuca, H F

    1999-12-01

    Construction of 25-hydroxy-steroidal side chain substituted with iodine at C-22 was elaborated on a model PTAD-protected steroidal 5,7-diene and applied to a synthesis of (22R)- and (22S)-22-iodo-1alpha,25-dihydroxyvitamin D3. Configuration at C-22 in the iodinated vitamins, obtained by nucleophilic substitution of the corresponding 22S-tosylates with sodium iodide, was determined by comparison of their iodine-displacement processes and cyclizations leading to isomeric five-membered (22,25)-epoxy-1alpha-hydroxyvitamin D3 compounds. Also, 20(22)-dehydrosteroids have been obtained and their structures established by 1H NMR spectroscopy. When compared to the natural hormone, (E)-20(22)-dehydro-1alpha,25-dihydroxyvitamin D3 was found 4 times less potent in binding to the porcine intestinal vitamin D receptor (VDR) and 2 times less effective in differentiation of HL-60 cells. 22-Iodinated vitamin D analogues showed somewhat lower in vitro activity, whereas (22,25)-epoxy analogues were inactive. Interestingly, it was established that (22S)-22-iodo-1alpha,25-dihydroxyvitamin D3 was 3 times more potent than its (22R)-isomer in binding to VDR and four times more effective in HL-60 cell differentiation assay. The restricted mobility of the side chain of both 22-iodinated vitamin D compounds was analyzed by a systematic conformational search indicating different spatial regions occupied by their 25-oxygen atoms. Preliminary data on the in vivo calcemic activity of the synthesized vitamin D analogues indicate that (E)-20(22)-dehydro-1alpha,25-dihydroxyvitamin D3 and 22-iodo-1alpha,25-dihydroxyvitamin D3 isomers were ca. ten times less potent than the natural hormone 1alpha,25-(OH)2D3 both in intestinal calcium transport and bone calcium mobilization.

  1. 1alpha,25(OH)2D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60 activated matrix vesicle metalloproteinases.

    PubMed

    Boyan, Barbara D; Wong, Kevin L; Fang, Mimi; Schwartz, Zvi

    2007-03-01

    Growth plate chondrocytes produce proteoglycan-rich type II collagen extracellular matrix (ECM). During cell maturation and hypertrophy, ECM is reorganized via a process regulated by 1alpha,25(OH)(2)D(3) and involving matrix metalloproteinases (MMPs), including MMP-3 and MMP-2. 1alpha,25(OH)(2)D(3) regulates MMP incorporation into matrix vesicles (MVs), where they are stored until released. Like plasma membranes (PM), MVs contain the 1alpha,25(OH)(2)D(3)-binding protein ERp60, phospholipase A(2) (PLA(2)), and caveolin-1, but appear to lack nuclear Vitamin D receptors (VDRs). Chondrocytes produce 1alpha,25(OH)(2)D(3) (10(-8)M), which binds ERp60, activating PLA(2), and resulting lysophospholipids lead to MV membrane disorganization, releasing active MMPs. MV MMP-3 activates TGF-beta1 stored in the ECM as large latent TGF-beta1 complexes, consisting of latent TGF-beta1 binding protein, latency associated peptide, and latent TGF-beta1. Others have shown that MMP-2 specifically activates TGF-beta2. TGF-beta1 regulates 1alpha,25(OH)(2)D(3)-production, providing a mechanism for local control of growth factor activation. 1alpha,25(OH)(2)D(3) activates PKCalpha in the PM via ERp60-signaling through PLA(2), lysophospholipid production, and PLCbeta. It also regulates distribution of phospholipids and PKC isoforms between MVs and PMs, enriching the MVs in PKCzeta. Direct activation of MMP-3 in MVs requires ERp60. However, when MVs are treated with 1alpha,25(OH)(2)D(3), PKCzeta activity is decreased and PKCalpha is unaffected, suggesting a more complex feedback mechanism, potentially involving MV lipid signaling.

  2. Nonstructural protein 1{alpha} subunit-based inhibition of NF-{kappa}B activation and suppression of interferon-{beta} production by porcine reproductive and respiratory syndrome virus

    SciTech Connect

    Song Cheng; Krell, Peter; Yoo, Dongwan

    2010-11-25

    Induction of type I interferon (IFN-{alpha}/{beta}) is an early antiviral response of the host, and porcine reproductive and respiratory syndrome virus (PRRSV) has been reported to downregulate the IFN response during infection in cells and pigs. We report that the PRRSV nonstructural protein 1{alpha} (Nsp1{alpha}) subunit of Nsp1 is a nuclear-cytoplasmic protein distributed to the nucleus and contains a strong suppressive activity for IFN-{beta} production that is mediated through the retinoic acid-inducible gene I (RIG-I) signaling pathway. Nsp1{alpha} suppressed the activation of nuclear factor (NF)-{kappa}B when stimulated with dsRNA or tumor necrosis factor (TNF)-{alpha}, and NF-{kappa}B suppression was RIG-I-dependent. The suppression of NF-{kappa}B activation was associated with the poor production of IFN-{beta} during PRRSV infection. The C-terminal 14 amino acids of the Nsp1{alpha} subunit were critical in maintaining immunosuppressive activity of Nsp1{alpha} for both IFN-{beta} and NF-{kappa}B, suggesting that the newly identified zinc finger configuration comprising of Met180 may be crucial for inhibitory activities. Nsp1{alpha} inhibited I{kappa}B phosphorylation and as a consequence NF-{kappa}B translocation to the nucleus was blocked, leading to the inhibition of NF-{kappa}B stimulated gene expression. Our results suggest that PRRSV Nsp1{alpha} is a multifunctional nuclear protein participating in the modulation of the host IFN system.

  3. Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2.

    PubMed

    Toschi, Alfredo; Lee, Evan; Gadir, Noga; Ohh, Michael; Foster, David A

    2008-12-12

    Constitutive expression of hypoxia-inducible factor (HIF) has been implicated in several proliferative disorders. Constitutive expression of HIF1 alpha and HIF2 alpha has been linked to a number of human cancers, especially renal cell carcinoma (RCC), in which HIF2 alpha expression is the more important contributor. Expression of HIF1 alpha is dependent on the mammalian target of rapamycin (mTOR) and is sensitive to rapamycin. In contrast, there have been no reports linking HIF2 alpha expression with mTOR. mTOR exists in two complexes, mTORC1 and mTORC2, which are differentially sensitive to rapamycin. We report here that although there are clear differences in the sensitivity of HIF1 alpha and HIF2 alpha to rapamycin, both HIF1 alpha and HIF2 alpha expression is dependent on mTOR. HIF1 alpha expression was dependent on both Raptor (a constituent of mTORC1) and Rictor (a constitutive of mTORC2). In contrast, HIF2 alpha was dependent only on the mTORC2 constituent Rictor. These data indicate that although HIF1 alpha is dependent on both mTORC1 and mTORC2, HIF2 alpha is dependent only on mTORC2. We also examined the dependence of HIF alpha expression on the mTORC2 substrate Akt, which exists as three different isoforms, Akt1, Akt2, and Akt3. Interestingly, the expression of HIF2 alpha was dependent on Akt2, whereas that of HIF1 alpha was dependent on Akt3. Because HIF2 alpha is apparently more critical in RCC, this study underscores the importance of targeting mTORC2 and perhaps Akt2 signaling in RCC and other proliferative disorders in which HIF2 alpha has been implicated.

  4. Follicular dendritic cell tumor of the mediastinum: expression of fractalkine and SDF-1alpha as mast cell chemoattractants.

    PubMed

    Guettier, Catherine; Validire, Pierre; Emilie, Dominique; Tricottet, Viviane; Sebagh, Mylène; Anjo, Aurora; Misset, Jean-Louis; Reynes, Michel

    2006-02-01

    Follicular dendritic cell tumor (FDCT) is a rare tumor mainly located in laterocervical lymph nodes. We report one case of mediastinal FDCT associated with a history of bullous skin disease and clinically obvious immunosuppression. This tumor was characterized by heavy mast cell infiltration. Mast cells were in close relationship with tumor cells as demonstrated by ultrastructural examination and their presence are probably related with the strong expression of mast cell chemoattractants as fraktalkine and stromal cell-derived factor-1alpha by tumor cells. The long follow-up period of more than 17 years allowed to us assess the relatively indolent evolution of this tumor characterized by three slowly growing local recurrences without metastasis.

  5. Ovine cardiac Na,K-ATPase: isolation by means of selective solubilization in Lubrol and the effect of 1 alpha,2 alpha-epoxyscillirosidin on this enzyme.

    PubMed

    Venter, P A; Naudé, R J; Oelofsen, W; Swan, G E

    1997-01-01

    The inhibition of cardiac Na,K-ATPase by 1 alpha,2 alpha-epoxyscillirosidin is the principal cause of poisoning of cattle by the tulip, Homeria pallida. The ultimate goals of this study were to study the interaction between 1 alpha,2 alpha-epoxyscillirosidin and ovine Na,K-ATPase by means of inhibition and displacement binding studies. Ovine cardiac Na,K-ATPase was isolated in membrane-bound form by means of deoxycholate treatment, high-speed ultracentrifugation, NaI treatment and selective solubilization in Lubrol. The inhibition of ovine cardiac and commercial porcine cerebral cortex Na,K-ATPase by 1 alpha,2 alpha-epoxyscilirosidin and ouabain was studied using a discontinuous Na,K-ATPase assay. The binding of 1 alpha,2 alpha-epoxyscillirosidin, ouabain and digoxin to the above enzymes was compared using a displacement binding assay with [3H] oubain. The Lubrol-solubilized ovine cardiac Na,K-ATPase showed a specific activity of 0.3 U/mg with no ouabain insensitive activity. I50 values of 2.1 x 10(-8) and 2.7 x 10(-8) were obtained for the inhibition of this enzyme by 1 alpha,2 alpha-epoxyscillirosidin and ouabain, respectively. 1 alpha,2 alpha-Epoxyscillirosidin has a much higher KD value (1.5 x 10(-7) M), however, than ouabain (9.5 x 10(-9) M) and digoxin (1.7 x 10(-8) M) in displacement binding studies with [3H]ouabain. 1 alpha,2 alpha-Epoxyscillirosidin is a potent inhibitor of ovine cardiac Na,K-ATPase and is a slightly stronger inhibitor of the enzyme than ouabain. The anomalous result for the displacement of 1 alpha,2 alpha-epoxyscillirosidin from its receptor is either a result of different affinities that K+ has for the enzyme ouabain and enzyme-1 alpha,2 alpha-epoxyscillirosidin complexes or because of different complex stabilities of these complexes.

  6. Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression.

    PubMed

    Deshmane, Satish L; Mukerjee, Ruma; Fan, Shongshan; Del Valle, Luis; Michiels, Carine; Sweet, Thersa; Rom, Inna; Khalili, Kamel; Rappaport, Jay; Amini, Shohreh; Sawaya, Bassel E

    2009-04-24

    The detection of biomarkers of oxidative stress in brain tissue and cerebrospinal fluid of patients with human immunodeficiency virus, type 1 (HIV)-associated dementia indicates the involvement of stress pathways in the neuropathogenesis of AIDS. Although the biological importance of oxidative stress on events involved in AIDS neuropathogenesis and the HIV-1 proteins responsible for oxidative stress remain to be elucidated, our results point to the activation of hypoxia-inducible factor 1 (HIF-1) upon HIV-1 infection and its elevation in brain cells of AIDS patients with dementia. HIF-1 is a transcription factor that is responsive to oxygen. Under hypoxic conditions, HIF-1alpha becomes stable and translocates to the nucleus where it dimerizes with aryl hydrocarbon receptor nuclear translocator and modulates gene transcription. Activation of HIF-1 can also be mediated by the HIV-1 accessory protein Vpr. In addition, cellular components, including reactive oxygen species, contribute to the induction of HIF-1alpha. Our results show that Vpr induces reactive oxygen species by increasing H(2)O(2) production, which can contribute to HIF-1alpha accumulation. Interestingly, increased levels of HIF-1alpha stimulated HIV-1 gene transcription through HIF-1 association with HIV-1 long terminal repeat. These observations point to the existence of a positive feedback interplay between HIF-1alpha and Vpr and that, by inducing oxidative stress via activation of HIF-1, Vpr can induce HIV-1 gene expression and dysregulate multiple host cellular pathways.

  7. HIF-1alpha mediates the induction of IL-8 and VEGF expression on infection with Afa/Dr diffusely adhering E. coli and promotes EMT-like behaviour.

    PubMed

    Cane, Gaëlle; Ginouvès, Amandine; Marchetti, Sandrine; Buscà, Roser; Pouysségur, Jacques; Berra, Edurne; Hofman, Paul; Vouret-Craviari, Valérie

    2010-05-01

    Microbes regulate a large panel of intracellular signalling events that can promote inflammation and/or enhance tumour progression. Indeed, it has been shown that infection of human intestinal cells with the Afa/Dr diffusely adhering E. coli C1845 strain induces expression of pro-angiogenic and pro-inflammatory genes. Here, we demonstrate that exposure of cryptic-like intestinal epithelial cells to C1845 bacteria induces HIF-1alpha protein levels. This effect depends on the binding of F1845 adhesin to the membrane-associated DAF receptor that initiates signalling cascades promoting translational mechanisms. Indeed, inhibition of MAPK and PI-3K decreases HIF-1alpha protein levels and blocks C1845-induced phosphorylation of the ribosomal S6 protein. Using RNA interference we show that bacteria-induced HIF-1alpha regulates the expression of IL-8, VEGF and Twist1, thereby pointing to a role for HIF-1 in angiogenesis and inflammation. In addition, infection correlates with a loss of E-cadherin and cytokeratin 18 and a rise in fibronectin, suggesting that bacteria may induce an epithelial to mesenchymal transition-like phenotype. Since HIF-1alpha silencing results in reversion of bacteria-induced EMT markers, we speculate that HIF-1alpha plays a key role linking bacterial infection to angiogenesis, inflammation and some aspects of cancer initiation.

  8. Kaposi's sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor-1 alpha to induce vascular endothelial growth factor expression.

    PubMed

    Shin, Young C; Joo, Chul-Hyun; Gack, Michaela U; Lee, Hye-Ra; Jung, Jae U

    2008-03-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Hypoxia-inducible factor-1 (HIF-1) is the master regulator of both developmental and pathologic angiogenesis, composed of an oxygen-sensitive alpha-subunit and a constitutively expressed beta-subunit. HIF-1 activity in tumors depends on the availability of the HIF-1 alpha subunit, the levels of which are increased under hypoxic conditions. Recent studies have shown that HIF-1 plays an important role in KSHV reactivation from latency and pathogenesis. Here, we report a novel mechanism by which KSHV activates HIF-1 activity. Specific interaction between KSHV viral IFN regulatory factor 3 (vIRF3) and the HIF-1 alpha subunit led to the HIF-1 alpha stabilization and transcriptional activation, which induced vascular endothelial growth factor expression and ultimately facilitated endothelial tube formation. Remarkably, the central domain of vIRF3, containing double alpha-helix motifs, was sufficient not only for binding to HIF-1 alpha but also for blocking its degradation in normoxic conditions. This indicates that KSHV has developed a unique mechanism to enhance HIF-1 alpha protein stability and transcriptional activity by incorporating a viral homologue of cellular IRF gene into its genome, which may contribute to viral pathogenesis.

  9. Analysis of PGC-1{alpha} variants Gly482Ser and Thr612Met concerning their PPAR{gamma}2-coactivation function

    SciTech Connect

    Nitz, Inke . E-mail: initz@molnut.uni-kiel.de; Ewert, Agnes; Klapper, Maja; Doering, Frank

    2007-02-09

    Peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) is a cofactor involved in adaptive thermogenesis, fatty acid oxidation, and gluconeogenesis. Dysfunctions of this protein are likely to contribute to the development of obesity and the metabolic syndrome. This is in part but not definitely confirmed by results of population studies. The aim of this study was to investigate if common genetic variants rs8192678 (Gly482Ser) and rs3736265 (Thr612Met) in the PGC-1{alpha} gene lead to a functional consequence in cofactor activity using peroxisome proliferator-activated receptor-{gamma} 2 (PPAR{gamma}2) as interacting transcription factor. Reporter gene assays in HepG2 cells with wildtype and mutant proteins of both PGC1{alpha} and PPAR{gamma}2 (Pro12Ala, rs1801282) using the acyl-CoA-binding protein (ACBP) promoter showed no difference in coactivator activity. This is First study implicating that the Gly482Ser and Thr612Met polymorphisms in PGC-1{alpha} and Pro12Ala polymorphism in PPAR{gamma}2 do not affect the functional integrity of these proteins.

  10. Effect of elongation factor 1alpha promoter and SUMF1 over in vitro expression of N-acetylgalactosamine-6-sulfate sulfatase.

    PubMed

    Alméciga-Díaz, Carlos J; Rueda-Paramo, Maria A; Espejo, Angela J; Echeverri, Olga Y; Montaño, Adriana; Tomatsu, Shunji; Barrera, Luis A

    2009-09-01

    Morquio A is an autosomal recessive disease caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to the lysosomal accumulation of keratan-sulfate and chondroitin-6-sulfate. We evaluated in HEK293 cells the effect of the cytomegalovirus immediate early enhancer/promoter (CMV) or the elongation factor 1alpha (EF1alpha) promoters, and the coexpression with the sulfatase modifying factor 1 (SUMF1) on GALNS activity. Four days postransfection GALNS activity in transfected cells with CMV-pIRES-GALNS reached a plateau, whereas in cells transfected with EF1alpha-pIRES-GALNS continued to increase until day 8. Co-transfection with pCXN-SUMF1 showed an increment up to 2.6-fold in GALNS activity. Finally, computational analysis of transcription factor binding-sites and CpG islands showed that EF1alpha promoter has long CpG islands and high-density binding-sites for Sp1 compared to CMV. These results show the advantage of the SUMF1 coexpression on GALNS activity and indicate a considerable effect on the expression stability using EF1alpha promoter compared to CMV.

  11. Panaxynol protects cortical neurons from ischemia-like injury by up-regulation of HIF-1alpha expression and inhibition of apoptotic cascade.

    PubMed

    Yang, Zhi-Hui; Sun, Ke; Yan, Zhong-Hong; Suo, Wen-Hao; Fu, Guo-Hui; Lu, Yang

    2010-01-05

    Apoptosis is one of the major characteristics of delayed neuronal degeneration in neuronal injury following cerebral ischemia. Hypoxia-induced apoptosis may be co-regulated by HIF-1alpha as well as many other factors. In recent years, numerous studies concerning panaxynol (PNN) have been reported. However, whether PNN can show anti-hypoxia properties is still unknown. In this study, the protective effects of PNN on OGD-induced neuronal apoptosis and potential mechanisms were investigated. Pretreatment of the cells with PNN for 24h following exposure to OGD resulted in a significant elevation of cell survival determined by MTT assay, LDH assay, Hoechst staining and flow cytometric assessment. In addition to enhancing the expression of HIF-1alpha, PNN also normalized the caspase-3 expression/activation and increased the Bcl-2/Bax ratio. In our study, the increased level of HIF-1alpha with decreased cellular apoptosis suggested an important role for HIF-1alpha in hypoxic neurons. These results indicated that the neuroprotective effects of PNN on hypoxic neurons were at least partly due to up-regulation of HIF-1alpha and raised the possibility that PNN might reduce neurodegenerative disorders and ischemic brain diseases.

  12. Duodenal active transport of calcium and phosphate in vitamin D-deficient rats: effects of nephrectomy, Cestrum diurnum, and 1alpha,25-dihydroxyvitamin D3.

    PubMed

    Walling, M W; Kimberg, D V; Wasserman, R H; Feinberg, R R

    1976-05-01

    Both the methanol:chloroform extractable material from the leaves of the Solanaceous plant, Cestrum diurnum (C.d.), and a 270 ng dose of 1alpha, 25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3) increased the active absorption of calcium and phosphate across the proximal duodenum, studied in vitro, from sham-operated and nephrectomized (NPX) vitamin D-deficient rats. In these studies, conducted 24 h after surgery, the uremic state in the NPX animals markedly diminished the intestinal transport response to 1alpha,25-(OH)2D3 and also lowered baseline transport values across duodenum from the NPX vitamin D-deficient controls. Both C.d. and 1alpha, 25-(OH)2D3 elevated plasma Ca levels equally well in the sham-operated and NPX groups. The stimulation of intestinal Ca absorption in NPX animals indicates that, like the leaves of the South American plant, Solanum glaucophyllum, C.d. contains materials which can function in an analogous manner to compounds in the vitamin D group that have either a 1alpha hydroxyl group or its steric equivalent.

  13. Effects of antirheumatic drugs on the interleukin-1 alpha induced synthesis and activation of proteinases in articular cartilage explants in culture.

    PubMed

    Arsenis, C; McDonnell, J

    1989-06-01

    Three human cytokines (interleukin-1 alpha, interleukin-1 beta and tumor necrosis factor-alpha), added into the medium of bovine or rabbit articular cartilage explant cultures, stimulated the synthesis and activation of various proteinases. Proteoglycan degradation, measured by assaying for sulfated glycosaminoglycans released into the medium, was correlated with the proteinase stimulation. Several antirheumatic drugs were tested in a similar tissue culture system as potential inhibitors of the interleukin-1 alpha mediated stimulation of proteinase and PGE2 syntheses. Arteparon, Dexamethasone, Ibuprofen, Indomethacin, Levamisole, Naproxen, Phenylbutazone, Prednisolone, Piroxicam, Rumalon, Tamoxifen and Diclofenac were essentially ineffective in inhibiting the interleukin-1 alpha mediated induction of proteinase synthesis and sulfated glycosaminoglycan release, although some of them inhibited PGE2 synthesis. Two antimalarial drugs showed some inhibition, but only at higher concentrations.

  14. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    PubMed

    Gupta, Sanjeev; Deepti, Ayswaria; Deegan, Shane; Lisbona, Fernanda; Hetz, Claudio; Samali, Afshin

    2010-07-06

    Endoplasmic reticulum (ER) stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR). Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  15. Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1alpha.

    PubMed

    Ji, Lei; Liu, Yu-xiao; Yang, Chao; Yue, Wen; Shi, Shuang-shuang; Bai, Ci-xian; Xi, Jia-fei; Nan, Xue; Pei, Xue-Tao

    2009-10-01

    Human embryonic stem (hES) cells are typically maintained on mouse embryonic fibroblast (MEF) feeders or with MEF-conditioned medium. However, these xenosupport systems greatly limit the therapeutic applications of hES cells because of the risk of cross-transfer of animal pathogens. The stem cell niche is a unique tissue microenvironment that regulates the self-renewal and differentiation of stem cells. Recent evidence suggests that stem cells are localized in the microenvironment of low oxygen. We hypothesized that hypoxia could maintain the undifferentiated phenotype of embryonic stem cells. We have co-cultured a human embryonic cell line with human fetal liver stromal cells (hFLSCs) feeder cells stably expressing hypoxia-inducible factor-1 alpha (HIF-1alpha), which is known as the key transcription factor in hypoxia. The results suggested HIF-1alpha was critical for preventing differentiation of hES cells in culture. Consistent with this observation, hypoxia upregulated the expression of Nanog and Oct-4, the key factors expressed in undifferentiated stem cells. We further demonstrated that HIF-1alpha could upregulate the expression of some soluble factors including bFGF and SDF-1alpha, which are released into the microenvironment to maintain the undifferentiated status of hES cells. This suggests that the targets of HIF-1alpha are secreted soluble factors rather than a cell-cell contact mechanism, and defines an important mechanism for the inhibition of hESCs differentiation by hypoxia. Our findings developed a transgene feeder co-culture system and will provide a more reliable alternative for future therapeutic applications of hES cells.

  16. Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing.

    PubMed

    Elson, D A; Ryan, H E; Snow, J W; Johnson, R; Arbeit, J M

    2000-11-01

    Both carcinogenesis and wound healing proceed through stages of proliferation and tissue remodeling. Here, using either a model of multistage epidermal carcinogenesis in K14-HPV16 transgenic mice or creation of full-thickness back wounds in nontransgenic mice, we determined patterns of expression of hypoxia inducible factor (HIF)-1alpha, and three targets of the heterodimeric transcription factor HIF-1, glucose transporter (GLUT)-1, phosphoglycerate kinase (PGK)-1, and vascular endothelial growth factor (VEGF) in skin. Neither HIF-1alpha, GLUT-1, PGK-1, nor VEGF mRNA was detectable in unwounded nontransgenic skin. In epidermal carcinogenesis, HIF-1alpha, GLUT-1, PGK-1, and VEGF mRNAs were just detectable in early-stage hyperplasia, markedly increased in high-grade epidermal chest dysplasias, and further increased in invasive squamous carcinomas. In neoplastic skin, HIF-1alpha, GLUT-1, and PGK-1 mRNAs localized in the basal and immediate suprabasal epidermal layers, whereas VEGF mRNA was predominantly expressed in the more superior spinous and granular epidermal layers. Immediately after wounding, HIF-1alpha, GLUT-1, and PGK-1 mRNAs were detectable in basal keratinocytes at the wound edge. Expression of all three genes increased to maximum levels in reepithelializing basal keratinocytes and then diminished to near undetectable levels after wound epithelialization. Although VEGF mRNA similarly increased and decreased during wound healing, its expression pattern was more punctate; the most intense hybridization signals were detected in the upper spinous and granular layers of reepithelializing keratinocytes and in dermal cells morphologically similar to macrophages. These data suggest stage-specific and spatio-temporal control of HIF-1alpha and HIF-1 target gene expression in both multistage epithelial carcinogenesis and wound healing.

  17. Caveolae and caveolin-1 are implicated in 1alpha,25(OH)2-vitamin D3-dependent modulation of Src, MAPK cascades and VDR localization in skeletal muscle cells.

    PubMed

    Buitrago, Claudia; Boland, Ricardo

    2010-07-01

    We previously reported that 1alpha,25(OH)2D3 induces non-transcriptional rapid responses through activation of MAPKs in C2C12 skeletal muscle cells. However, there is little information on the molecular mechanism underlying the initiation of 1alpha,25(OH)2D3 signaling through this pathway. Plasma membrane components have been involved in some non-genomic effects. In this work, we investigated the role of caveolae and caveolin-1 (cav-1) in 1alpha,25(OH)2D3-stimulation of c-Src and MAPKs. When proliferating cells were pretreated with methyl beta cyclodextrin (MbetaCD), a caveolae disrupting agent, under conditions in which cell morphology is not affected and no signs of apoptosis are observed, 1alpha,25(OH)2D3-dependent activation of ERK1/2, p38 MAPK and c-Src was suppressed. Similar results were obtained by siRNA technology whereby silencing of cav-1 expression abolished activation of c-Src and MAPKs induced by the hormone. By confocal immunocytochemistry it was observed that cav-1 colocalizes with c-Src in the periplasma membrane zone at basal conditions. Hormone treatment disrupted the colocalization of these proteins and redistributed them into cytoplasm and nucleus. Co-immunoprecipitation assays corroborated these observations. Changes in VDR localization after 1alpha,25(OH)2D3 exposure were also investigated. Confocal microscopy images showed that the hormone induces VDR translocation to the plasma membrane, and this effect is abolished by MbetaCD. Altogether, these data suggest that caveolae is involved upstream in c-Src-MAPKs activation by 1alpha,25(OH)2D3 and that VDR and cav-1 participate in the rapid signaling elicited by the hormone.

  18. Endotoxin activation of endothelium for polymorphonuclear leucocyte transendothelial migration and modulation by interferon-gamma.

    PubMed Central

    Issekutz, A C; Lopes, N

    1993-01-01

    Endotoxin [lipopolysaccharide (LPS)] is a potent inflammatory stimulus and can activate human umbilical vein endothelium (HUVE) for leucocyte adhesiveness and transendothelial migration. Here we investigated the role of HUVE-secreted cytokines in this process. When HUVE monolayers were grown on filters and preincubated for 3 hr with LPS, 51Cr-labelled polymorphonuclear leucocytes (PMNL) migrated across the HUVE in a dose- and time-dependent manner. Maximal PMNL transmigration with LPS (1 ng/ml) was 26 +/- 3% of added PMNL in 75 min. Neutralizing antibodies to interleukin-1 alpha (IL-1 alpha) and IL-1 beta, tumour necrosis factor-alpha (TNF-alpha), IL-8 or recombinant IL-1 receptor antagonist had no effect on the activation by LPS of the HUVE for supporting migration of PMNL. The HUVE 'activated state' declined with prolonged (22 hr) exposure to LPS, as reflected by a decrease in PMNL transendothelial migration to 5.5 +/- 1% and in the expression of the endothelial cell adhesion molecule, E-selectin, as compared to stimulation with LPS for 3 hr. However, simultaneous exposure to interferon-gamma (IFN-gamma) (200 IU/ml) and LPS maintained maximal PMNL transendothelial migration (28 +/- 4%) for at least 24 hr, prolonged E-selectin expression by HUVE and superinduced intracellular adhesion molecule-1 (ICAM-1) expression. The PMNL transendothelial migration was blocked by > 90% by monoclonal antibody (mAb) to CD18 with either 3 hr of LPS or 22 hr LPS + IFN-gamma stimulation. Migration was partially inhibited by mAb to E-selectin (30-40%) or to ICAM-1 (35-45%) and by a combination of both reagents (50-60%) under both stimulation conditions. Thus, LPS activation of HUVE for PMNL transendothelial migration: (a) does not require secretion of IL-1, TNF-alpha or IL-8 by the endothelium, (b) IFN-gamma enhances and prolongs endothelial activation by LPS and may increase leucocyte infiltration in LPS or bacterial inflammatory reactions, and (c) CD18-dependent mechanisms are

  19. Genetic polymorphisms of interleukin-1 alpha and the vitamin d receptor in mexican mestizo patients with intervertebral disc degeneration.

    PubMed

    Cervin Serrano, Salvador; González Villareal, Dalia; Aguilar-Medina, Maribel; Romero-Navarro, Jose Guillermo; Romero Quintana, Jose Geovanni; Arámbula Meraz, Eliakym; Osuna Ramírez, Ignacio; Picos-Cárdenas, Veronica; Granados, Julio; Estrada-García, Iris; Sánchez-Schmitz, Guzman; Ramos-Payán, Rosalío

    2014-01-01

    Intervertebral disc degeneration (IDD) is the most common diagnosis in patients with back pain, a leading cause of musculoskeletal disability worldwide. Several conditions, such as occupational activities, gender, age, and obesity, have been associated with IDD. However, the development of this disease has strong genetic determinants. In this study, we explore the possible association between rs1800587 (c.-949C>T) of interleukin-1 alpha (IL1A) and rs2228570 (c.2T>V) and rs731236 (c.1056T>C) of vitamin D receptor (VDR) gene polymorphisms and the development of IDD in northwestern Mexican Mestizo population. Gene polymorphisms were analyzed by polymerase chain reaction followed by restriction fragment length polymorphism, in two groups matched by age and gender: patients with symptomatic lumbar IDD (n = 100) and subjects with normal lumbar-spine MRI-scans (n = 100). Distribution of the mutated alleles in patients and controls was 27.0% versus 28.0% (P = 0.455) for T of rs1800587 (IL1A); 53.0% versus 58.0% (P = 0.183) for V of rs2228570 (VDR); and 18.0% versus 21.0% (P = 0.262) for C of rs731236 (VDR). Our results showed no association between the studied polymorphisms and IDD in this population. This is the first report on the contribution of gene polymorphisms on IDD in a Mexican population.

  20. Effects of wortmannin on alpha-1/alpha-2 adrenergic receptor-mediated contractile responses in rabbit vascular tissues.

    PubMed

    Waen-Safranchik, V I; Deth, R C

    1994-06-01

    The inhibitory effect of wortmannin (WO), a fungus-derived protein kinase inhibitor, was assessed on contractile responses elicited by phenylephrine-induced alpha 1-(alpha 1 R) and UK 14304-induced alpha 2-adrenergic receptor (alpha 2R) stimulation in the rabbit aorta and saphenous vein, respectively. In agonist dose-response studies, WO caused a noncompetitive inhibition of both alpha 1R and alpha 2R responses, but was more potent against alpha 2R. Maximally effective single-dose responses at both receptors were less sensitive to WO. The initial alpha 1R contractile response, associated with intracellular Ca2+ release and myosin light chain kinase activation, was relatively insensitive to WO, while the Ca2+ influx-dependent tonic contraction was more sensitive. Contractions induced by high K+ buffer were relatively insensitive to WO in both the aorta and saphenous vein. These results indicate that WO inhibits receptor-initiated Ca2+ influx-dependent contractile responses such as those caused by alpha 2R stimulation and the sustained phase of alpha 1R stimulation more readily than Ca2+ release-dependent responses.

  1. 1alpha,25(OH)2-vitamin D3 membrane-initiated calcium signaling modulates exocytosis and cell survival.

    PubMed

    Xiaoyu, Zhang; Payal, Biswas; Melissa, Owraghi; Zanello, Laura P

    2007-03-01

    1alpha,25(OH)(2)-vitamin D(3) (1,25D) is considered a bone anabolic hormone. 1,25D actions leading to bone formation involve gene transactivation, on one hand, and modulation of cytoplasmic signaling, on the other. In both cases, a functional vitamin D receptor (VDR) appears to be required. Here we study 1,25D-stimulated calcium signaling that initiates at the cell membrane and leads to exocytosis of bone materials and increased osteoblast survival. We found that rapid 1,25D-induction of exocytosis couples to cytoplasmic calcium increase in osteoblastic ROS 17/2.8 cells. In addition, we found that elevation of cytoplasmic calcium concentration is involved in 1,25D anti-apoptotic effects via Akt activation in ROS 17/2.8 cells and non-osteoblastic CV-1 cells. In both cases, 1,25D-stimulated elevation of intracellular calcium is due in part to activation of L-type Ca(2+) channels. We conclude that 1,25D bone anabolic effects that involve increased intracellular Ca(2+) concentration in osteoblasts can be explained at two levels. At the single-cell level, 1,25D promotes Ca(2+)-dependent exocytotic activities. At the tissue level, 1,25D protects osteoblasts from apoptosis via a Ca(2+)-dependent Akt pathway. Our studies contribute to the understanding of the molecular basis of bone diseases characterized by decreased bone formation and mineralization.

  2. Tissue-specific metallothionein gene expression in liver and intestine by dexamethasone, interleukin-1. alpha. and elevated zinc status

    SciTech Connect

    Hempe, J.M.; Carlson, J.M.; Cousins, R.J. )

    1990-02-26

    Intestinal metallothionein has been implicated in the regulation of zinc absorption. Glucocorticoids and cytokines mediate hepatic metallothionein gene expression but the effects of these hormones in the small intestine are unclear. In this experiment, rats were injected ip with dexamethasone (DEX), recombinant human interleukin-1{alpha} (ILK-1), or ZnSO{sub 4}. Data collected 0. 3, 6,9, or 12 hour post-injection showed tissue specific regulation of metallothionein gene expression. Liver metallothionein mRNA (determined by hybridization analysis) were increased by DEX, IL-1 and ZnSO{sub 4}. In contrast, the intestine was completely refractory to IL-1. DEX did not affect intestinal metallothionein but did enhance mucosal accumulation of {sup 65}Zn by ligated duodenal loops. Absorption of {sup 65}Zn was not affected by IL-1 or DEX but was inversely related to elevated intestinal metallothionein protein induced in response to ZnSO. Plasma zinc was depressed by DEX and IL-1 and elevated in rats injected with ZnSO{sub 4} but was not related to {sup 54}Zn absorption. Tissue-specific induction of metallothionein may constitute a mechanism for independently regulating both tissue zinc distribution and zinc absorption.

  3. Genetic Polymorphisms of Interleukin-1 Alpha and the Vitamin D Receptor in Mexican Mestizo Patients with Intervertebral Disc Degeneration

    PubMed Central

    Cervin Serrano, Salvador; González Villareal, Dalia; Aguilar-Medina, Maribel; Romero-Navarro, Jose Guillermo; Romero Quintana, Jose Geovanni; Arámbula Meraz, Eliakym; Osuna Ramírez, Ignacio; Picos-Cárdenas, Veronica; Granados, Julio; Estrada-García, Iris; Sánchez-Schmitz, Guzman; Ramos-Payán, Rosalío

    2014-01-01

    Intervertebral disc degeneration (IDD) is the most common diagnosis in patients with back pain, a leading cause of musculoskeletal disability worldwide. Several conditions, such as occupational activities, gender, age, and obesity, have been associated with IDD. However, the development of this disease has strong genetic determinants. In this study, we explore the possible association between rs1800587 (c.-949C>T) of interleukin-1 alpha (IL1A) and rs2228570 (c.2T>V) and rs731236 (c.1056T>C) of vitamin D receptor (VDR) gene polymorphisms and the development of IDD in northwestern Mexican Mestizo population. Gene polymorphisms were analyzed by polymerase chain reaction followed by restriction fragment length polymorphism, in two groups matched by age and gender: patients with symptomatic lumbar IDD (n = 100) and subjects with normal lumbar-spine MRI-scans (n = 100). Distribution of the mutated alleles in patients and controls was 27.0% versus 28.0% (P = 0.455) for T of rs1800587 (IL1A); 53.0% versus 58.0% (P = 0.183) for V of rs2228570 (VDR); and 18.0% versus 21.0% (P = 0.262) for C of rs731236 (VDR). Our results showed no association between the studied polymorphisms and IDD in this population. This is the first report on the contribution of gene polymorphisms on IDD in a Mexican population. PMID:25506053

  4. [1 alpha(OH) D3 (Alfarol) is effective for the treatment of chronic B cell leukemia: a case report].

    PubMed

    Hashimoto, E; Takeuchi, H; Saitou, M; Hirashima, K

    1989-10-01

    We reported a case of chronic B-cell leukemia reacted to the administration of 1 alpha (OH)D3 (Alfarol-CHUGAI Pharm. Co.), The patient showed pancytopenia with IgM-kappa type monoclonal protein in the serum. The bone marrow aspiration was failed due to a dry tap, but the biopsied specimen showed a marked infiltration of small sized lymphoid cells with wide cytoplasm. The leukemic cells from peripheral blood showed a morphology of atypical hairy cells, Surface markers of the leukemic cells were IgM, D(kappa)+, CD 19+, CD 20+, CD 21- and HLADR+, The leukemic cells showed no L-tartrate resistant acid phosphatase sensitivity. This case was diagnosed as a chronic B-cell leukemia closely related to a hairy cell leukemia. The treatment with estrogen-chlorambucil compound (Bestrabucil-KUREHA Chem, Co.) or splenic irradiation was not effective. However, after two months' administration of Alfarol the regular blood transfusion was not needed because of increment of the Hb concentration. After eight months of its administration, the bone marrow aspirate showed a marked decrease in the number of the leukemic cells and a restoration of normal hematopoietic cells. This experience suggested that Alfarol in usefull for the treatment of chronic B cell leukemia including hairy cell leukemia and chronic lymphocytic leukemia.

  5. Partial Oxygen Pressure Affects the Expression of Prognostic Biomarkers HIF-1 Alpha, Ki67, and CK20 in the Microenvironment of Colorectal Cancer Tissue

    PubMed Central

    Zhang, Lirong; Hu, Yu; Xi, Ning; Song, Jie; Huang, Wenjing; Song, Shanshan; Liu, Yiting

    2016-01-01

    Hypoxia is prognostically important in colorectal cancer (CRC) therapy. Partial oxygen pressure (pO2) is an important parameter of hypoxia. The correlation between pO2 levels and expression levels of prognostic biomarkers was measured in CRC tissues. Human CRC tissues were collected and pO2 levels were measured by OxyLite. Three methods for tissue fixation were compared, including formalin, Finefix, and Finefix-plus-microwave. Immunohistochemistry (IHC) staining was conducted by using the avidin-biotin complex technique for detecting the antibodies to hypoxia inducible factor-1 (HIF-1) alpha, cytokeratin 20 (CK20), and cell proliferation factor Ki67. The levels of pO2 were negatively associated with the size of CRC tissues. Finefix-plus-microwave fixation has the potential to replace formalin. Additionally, microwave treatment improved Finefix performance in tissue fixation and protein preservation. The percentage of positive cells and gray values of HIF-1 alpha, CK20, and Ki67 were associated with CRC development (P < 0.05). The levels of pO2 were positively related with the gray values of Ki67 and negatively related with the values of HIF-1 alpha and CK20 (P < 0.05). Thus, the levels of microenvironmental pO2 affect the expression of predictive biomarkers HIF-1 alpha, CK20, and Ki67 in the development of CRC tissues. PMID:27974949

  6. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    SciTech Connect

    Adachi, Naoki; Kubota, Yoshitaka; Kosaka, Kentarou; Akita, Shinsuke; Sasahara, Yoshitarou; Kira, Tomoe; Kuroda, Masayuki; Mitsukawa, Nobuyuki; Bujo, Hideaki; Satoh, Kaneshige

    2015-08-07

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDR may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings.

  7. Characterization and phylogeny of entomopathogenic Isaria spp. (Ascomycota: Hypocreales) using ITS1-5.8X-ITS2 and elongation factor 1-alpha sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The elongation factor 1-alpha (EF1-a) and the internal transcribed spacer regions ITS1 and ITS2 (ITS1-5.8S-ITS2) sequences were used to characterize and identify Isaria isolates from Argentina and Brazil, as well as to study the phylogenetic relationships among these isolates and other related fungi...

  8. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1{alpha}-mediated signaling

    SciTech Connect

    Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su; Wu, Wen-Chuan; Chang, Long-Sen; Kao, Ying-Hsien; Wang, Jeh-Jeng

    2011-09-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrial membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1{alpha} (SDF-1{alpha}) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1{alpha}-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1{alpha}-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1{alpha}-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research Highlights: > A novel carboxylate-PBD hybrid as anti-melanoma drug. > IN4CPBD interrupts melanoma cell

  9. Dual modulation of both lipid oxidation and synthesis by peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -1beta in cultured myotubes.

    PubMed

    Espinoza, Daniel O; Boros, Laszlo G; Crunkhorn, Sarah; Gami, Hiral; Patti, Mary-Elizabeth

    2010-04-01

    The peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family is a key regulator of mitochondrial function, and reduced mRNA expression may contribute to muscle lipid accumulation in obesity and type 2 diabetes. To characterize the effects of PGC-1 on lipid metabolism, we overexpressed PGC-1alpha and PGC-1beta in C2C12 myotubes using adenoviral vectors. Both PGC-1alpha and -1beta increased palmitate oxidation [31% (P<0.01) and 26% (P<0.05), respectively] despite reductions in cellular uptake [by 6% (P<0.05) and 21% (P<0.001)]. Moreover, PGC-1alpha and -1beta increased mRNA expression of genes regulating both lipid oxidation (e.g., CPT1b and ACADL/M) and synthesis (FAS, CS, ACC1/2, and DGAT1). To determine the net effect, we assessed lipid composition in PGC-1-expressing cells. Total lipid content decreased by 42% in palmitate-loaded serum-starved cells overexpressing PGC-1alpha (P<0.05). In contrast, in serum-replete cells, total lipid content was not significantly altered, but fatty acids C14:0, C16:0, C18:0, and C18:1 were increased 2- to 4-fold for PGC-1alpha/beta (P<0.05). Stable isotope-based dynamic metabolic profiling in serum-replete cells labeled with (13)C substrates revealed both increased de novo fatty acid synthesis from glucose and increased fatty acid synthesis by chain elongation with either PGC-1alpha or -1beta expression. These results indicate that PGC-1 can promote both lipid oxidation and synthesis, with net balance determined by the nutrient/hormonal environment.-Espinoza, D. O., Boros, L. G., Crunkhorn, S., Gami, H., Patti, M.-E. Dual Modulation of both lipid oxidation and synthesis by peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -1beta in cultured myotubes.

  10. MDM2 and HIF1alpha expression levels in different histologic subtypes of malignant pleural mesothelioma: correlation with pathological and clinical data

    PubMed Central

    Mencoboni, Manlio; Grosso, Federica; Ceresoli, Giovanni Luca; Lunardi, Francesca; Vuljan, Stefania Edith; Bertorelle, Roberta; Sacchetto, Valeria; Ciminale, Vincenzo; Rea, Federico; Favaretto, Adolfo; Conte, PierFranco; Calabrese, Fiorella

    2015-01-01

    Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis and limited treatment options. Sarcomatoid/biphasic mesotheliomas are characterized by more aggressive behaviour and a poorer prognosis compared with the epithelioid subtype. To date prognostic and tailored therapeutic biomarkers are lacking. The present study analyzed the expression levels of MDM2 and HIF1alpha in different histologic subtypes from chemonaive MPM patients. Diagnostic biopsies of MPM patients from four Italian cancer centers were centrally collected and analyzed. MDM2 and HIF1alpha expression levels were investigated through immunohistochemistry and RT-qPCR. Pathological assessment of necrosis, inflammation and proliferation index was also performed. Molecular markers, pathological features and clinical characteristics were correlated to overall survival (OS) and progression free survival (PFS). Sixty MPM patients were included in the study (32 epithelioid and 28 non-epithelioid). Higher levels of MDM2 (p < 0.001), HIF1alpha (p = 0.013), necrosis (p = 0.013) and proliferation index (p < 0.001) were seen mainly in sarcomatoid/biphasic subtypes. Higher levels of inflammation were significantly associated with epithelioid subtype (p = 0.044). MDM2 expression levels were correlated with HIF1alpha levels (p = 0.0001), necrosis (p = 0.008) and proliferation index (p = 0.009). Univariate analysis showed a significant correlation of non-epithelioid histology (p = 0.04), high levels of necrosis (p = 0.037) and proliferation index (p = 0.0002) with shorter PFS. Sarcomatoid/biphasic and epithelioid mesotheliomas showed different MDM2 and HIF1alpha expression levels and were characterized by different levels of necrosis, proliferation and inflammation. Further studies are warranted to confirm a prognostic and predictive role of such markers and features. PMID:26544728

  11. Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1alpha/Sp4.

    PubMed

    Tsai, Wen-Bin; Aiba, Isamu; Lee, Soo-yong; Feun, Lynn; Savaraj, Niramol; Kuo, Macus Tien

    2009-12-01

    Arginine deiminase (ADI)-based arginine depletion is a novel strategy under clinical trials for the treatment of malignant melanoma with promising results. The sensitivity of melanoma to ADI treatment is based on its auxotrophy for arginine due to a lack of argininosuccinate synthetase (AS) expression, the rate-limiting enzyme for the de novo biosynthesis of arginine. We show here that AS expression can be transcriptionally induced by ADI in melanoma cell lines A2058 and SK-MEL-2 but not in A375 cells, and this inducibility was correlated with resistance to ADI treatment. The proximal region of the AS promoter contains an E-box that is recognized by c-Myc and HIF-1alpha and a GC-box by Sp4. Through ChIP assays, we showed that under noninduced conditions, the E-box was bound by HIF-1alpha in all the three melanoma cell lines. Under arginine depletion conditions, HIF-1alpha was replaced by c-Myc in A2058 and SK-MEL-2 cells but not in A375 cells. Sp4 was constitutively bound to the GC-box regardless of arginine availability in all three cell lines. Overexpressing c-Myc by transfection upregulated AS expression in A2058 and SK-MEL-2 cells, whereas cotransfection with HIF-1alpha suppressed c-Myc-induced AS expression. These results suggest that regulation of AS expression involves interplay among positive transcriptional regulators c-Myc and Sp4, and negative regulator HIF-1alpha that confers resistance to ADI treatment in A2058 and SK-MEL-2 cells. Inability of AS induction in A375 cells under arginine depletion conditions was correlated by the failure of c-Myc to interact with the AS promoter.

  12. A novel partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro.

    PubMed

    Burgermeister, Elke; Schnoebelen, Astride; Flament, Angele; Benz, Jörg; Stihle, Martine; Gsell, Bernard; Rufer, Arne; Ruf, Armin; Kuhn, Bernd; Märki, Hans Peter; Mizrahi, Jacques; Sebokova, Elena; Niesor, Eric; Meyer, Markus

    2006-04-01

    Partial agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma), also termed selective PPARgamma modulators, are expected to uncouple insulin sensitization from triglyceride (TG) storage in patients with type 2 diabetes mellitus. These agents shall thus avoid adverse effects, such as body weight gain, exerted by full agonists such as thiazolidinediones. In this context, we describe the identification and characterization of the isoquinoline derivative PA-082, a prototype of a novel class of non-thiazolidinedione partial PPARgamma ligands. In a cocrystal with PPARgamma it was bound within the ligand-binding pocket without direct contact to helix 12. The compound displayed partial agonism in biochemical and cell-based transactivation assays and caused preferential recruitment of PPARgamma-coactivator-1alpha (PGC1alpha) to the receptor, a feature shared with other selective PPARgamma modulators. It antagonized rosiglitazone-driven transactivation and TG accumulation during de novo adipogenic differentiation of murine C3H10T1/2 mesenchymal stem cells. The latter effect was mimicked by overexpression of wild-type PGC1alpha but not its LXXLL-deficient mutant. Despite failing to promote TG loading, PA-082 induced mRNAs of genes encoding components of insulin signaling and adipogenic differentiation pathways. It potentiated glucose uptake and inhibited the negative cross-talk of TNFalpha on protein kinase B (AKT) phosphorylation in mature adipocytes and HepG2 human hepatoma cells. PGC1alpha is a key regulator of energy expenditure and down-regulated in diabetics. We thus propose that selective recruitment of PGC1alpha to favorable PPARgamma-target genes provides a possible molecular mechanism whereby partial PPARgamma agonists dissociate TG accumulation from insulin signaling.

  13. Melatonin Improves Mitochondrial Function by Promoting MT1/SIRT1/PGC-1 Alpha-Dependent Mitochondrial Biogenesis in Cadmium-Induced Hepatotoxicity In Vitro

    PubMed Central

    Guo, Pan; Pi, Huifeng; Xu, Shangcheng; Zhang, Lei; Li, Yuming; Li, Min; Cao, Zhengwang; Tian, Li; Xie, Jia; Li, Renyan; He, Mindi; Lu, Yonghui; Liu, Chuan; Duan, Weixia; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Melatonin is an indolamine synthesized in the pineal gland that has a wide range of physiological functions, and it has been under clinical investigation for expanded applications. Increasing evidence demonstrates that melatonin can ameliorate cadmium-induced hepatotoxicity. However, the potentially protective effects of melatonin against cadmium-induced hepatotoxicity and the underlying mechanisms of this protection remain unclear. This study investigates the protective effects of melatonin pretreatment on cadmium-induced hepatotoxicity and elucidates the potential mechanism of melatonin-mediated protection. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10μM) for 12 h. We found that Cd stimulated cytotoxicity, disrupted the mitochondrial membrane potential, increased reactive oxygen species production, and decreased mitochondrial mass and mitochondrial DNA content. Consistent with this finding, Cd exposure was associated with decreased Sirtuin 1 (SIRT1) protein expression and activity, thus promoted acetylation of PGC-1 alpha, a key enzyme involved in mitochondrial biogenesis and function, although Cd did not disrupt the interaction between SIRT1 and PGC-1 alpha. However, all cadmium-induced mitochondrial oxidative injuries were efficiently attenuated by melatonin pretreatment. Moreover, Sirtinol and SIRT1 siRNA each blocked the melatonin-mediated elevation in mitochondrial function by inhibiting SIRT1/ PGC-1 alpha signaling. Luzindole, a melatonin receptor antagonist, was found to partially block the ability of melatonin to promote SIRT1/ PGC-1 alpha signaling. In summary, our results indicate that SIRT1 plays an essential role in the ability of moderate melatonin to stimulate PGC-1 alpha and improve mitochondrial biogenesis and function at least partially through melatonin receptors in cadmium-induced hepatotoxicity. PMID:25159133

  14. Double bond in the side chain of 1alpha,25-dihydroxy-22-ene-vitamin D(3) is reduced during its metabolism: studies in chronic myeloid leukemia (RWLeu-4) cells and rat kidney.

    PubMed

    Sunita Rao, D; Balkundi, D; Uskokovic, M R; Tserng, K; Clark, J W; Horst, R L; Satyanarayana Reddy, G

    2001-08-01

    1alpha,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is mainly metabolized via the C-24 oxidation pathway and undergoes several side chain modifications which include C-24 hydroxylation, C-24 ketonization, C-23 hydroxylation and side chain cleavage between C-23 and C-24 to form the final product, calcitroic acid. In a recent study we reported that 1alpha,25-dihydroxyvitamin D(2) [1alpha,25(OH)(2)D(2)] like 1alpha,25(OH)(2)D(3), is also converted into the same final product, calcitroic acid. This finding indicated that 1alpha,25(OH)(2)D(2) also undergoes side chain cleavage between C-23 and C-24. As the side chain of 1alpha,25(OH)(2)D(2) when compared to the side chain of 1alpha,25(OH)(2)D(3), has a double bond between C-22 and C-23 and an extra methyl group at C-24 position, it opens the possibility for both (a) double bond reduction and (b) demethylation to occur during the metabolism of 1alpha,25(OH)(2)D(2). We undertook the present study to establish firmly the possibility of double bond reduction in the metabolism of vitamin D(2) related compounds. We compared the metabolism of 1alpha,25-dihydroxy-22-ene-vitamin D(3) [1alpha,25(OH)(2)-22-ene-D(3)], a synthetic vitamin D analog whose side chain differs from that of 1alpha,25(OH)(2)D(3) only through a single modification namely the presence of a double bond between C-22 and C-23. Metabolism studies were performed in the chronic myeloid leukemic cell line (RWLeu-4) and in the isolated perfused rat kidney. Our results indicate that both 1alpha,25(OH)(2)-22-ene-D(3) and 1alpha,25(OH)(2)D(3) are converted into common metabolites namely, 1alpha,24(R),25-trihydroxyvitamin D(3) [1alpha,24(R),25(OH)(3)D(3)], 1alpha,25-dihydroxy-24-oxovitamin D(3) [1alpha,25(OH)(2)-24-oxo-D(3)], 1alpha,23(S),25-trihydroxy-24-oxovitamin D(3) and 1alpha,23-dihydroxy-24,25,26,27-tetranorvitamin D(3). This finding indicates that the double bond in the side chain of 1alpha,25(OH)(2)-22-ene-D(3) is reduced during its metabolism. Along with

  15. Interleukin 1 alpha stimulates hemopoiesis but not tumor cell proliferation and protects mice from lethal total body irradiation

    SciTech Connect

    Constine, L.S.; Harwell, S.; Keng, P.; Lee, F.; Rubin, P.; Siemann, D. )

    1991-03-01

    Interleukin 1 alpha (IL-1) is a polypeptide/glycoprotein growth factor with multiple functions including the modulation of hematopoietic cell proliferation and differentiation. In vivo studies were performed with C57BL/6J mice injected with 0, 0.2, or 2.0 micrograms of IL-1 24 hr before or after lethal total body irradiation (TBI) (9.5 Gy). More mice in the groups administered IL-1 before TBI survived (90% of the 2.0 micrograms group) than those treated 2 or 24 hr after TBI, which was still slightly superior to the uninjected group, which all died within 15 days (p = .0001). Proliferation of bone marrow granulocyte/macrophage colonies following split dose TBI was also greatest for mouse groups treated with IL-1 prior to TBI. These experiments support data from other investigators that IL-1 stimulation of BM is related to IL-1 timing with respect to TBI. Stimulation of hemopoiesis was also assessed in terms of changes in peripheral blood and BM cell numbers and cell cycle kinetics using an electronic particle counter and flow cytometric techniques. Mice injected with 2 micrograms of IL-1 showed an initial decline (at 3-6 hr) and then a selective proliferation (24-48 hr) of early and more committed progenitor cells to 125% and 200% of control values, respectively. Peripheral blood counts rose accordingly. Cells in S and G2/M phases increased over 10 hr and then declined in number. It thus appeared that some synchronization of cell cycling occurred, which might place cells in a more radioresistant phase of the cell cycle. The glutathione (GSH) content and synthesis in BM cells were measured by isocratic paired-ion high performance liquid chromatography and 35S-labelled cysteine incorporation into the GSH tripeptide. An increase in cellular GSH content and synthesis was demonstrated following IL-1 which lasted 24 hr.

  16. Toxoplasma gondii Elongation Factor 1-Alpha (TgEF-1α) Is a Novel Vaccine Candidate Antigen against Toxoplasmosis.

    PubMed

    Wang, Shuai; Zhang, Zhenchao; Wang, Yujian; Gadahi, Javaid A; Xu, Lixin; Yan, Ruofeng; Song, Xiaokai; Li, Xiangrui

    2017-01-01

    Toxoplasma gondii (T. gondii) is an obligate intracellular parasite which can infect almost all warm-blood animals, leading to toxoplasmosis. Screening and discovery of an effective vaccine candidate or new drug target is crucial for the control of this disease. In this study, the recombinant T. gondii elongation factor 1-alpha (rTgEF-1α) was successfully expressed in in Escherichia coli. Passive immunization of mice with anti-rTgEF-1α polyclonal antibody following challenge with a lethal dose of tachyzoites significantly increased the survival time compared with PBS control group. The survival time of mice challenged with tachyzoites pretreated with anti-rTgEF-1α PcAb also was significantly increased. Invasion of tachyzoites into mouse macrophages was significantly inhibited in the anti-rTgEF-1α PcAb pretreated group. Mice vaccinated with rTgEF-1α induced a high level of specific anti-T. gondii antibodies and production of IFN-gamma, interleukin-4. The expression levels of MHC-I and MHC-II molecules as well as the percentages of CD4(+) and CD8(+) T cells in mice vaccinated with rTgEF-1α was significantly increased, respectively (P < 0.05), compared with all the controls. Immunization with rTgEF-1α significantly (P < 0.05) prolonged survival time (14.53 ± 1.72 days) after challenge infection with the virulent T. gondii RH strain. These results indicate that T. gondii EF-1α plays an essential role in mediating host cell invasion by the parasite and, as such, could be a candidate vaccine antigen against toxoplasmosis.

  17. Mathematically-Engineered Stromal Cell-Derived Factor 1alpha Stem Cell Cytokine Analogue Enhances Mechanical Properties of Infarcted Myocardium

    PubMed Central

    Jr, John W. MacArthur; Trubelja, Alen; Shudo, Yasuhiro; Hsiao, Philip; Fairman, Alex; Yang, Elaine; Hiesinger, William; Atluri, Pavan; Woo, Y Joseph

    2014-01-01

    Background The biomechanical response to a myocardial infarction consists of ventricular remodeling that leads to dilation, loss of contractile function, abnormal stress patterns and ultimately heart failure. We hypothesized that intramyocardial injection of our previously designed pro-angiogenic chemokine, an engineered stromal cell derived factor 1alpha analogue(ESA), improves mechanical properties of the heart post-infarction. Methods Male rats (n=54) underwent either sham surgery (n=17) with no coronary artery ligation or ligation of the LAD (n=37). Rats in the MI group were then randomized to receive either saline (0.1cc, n=18) or ESA (6μg/kg, n=19) injected into the myocardium at 4 predetermined spots around the borderzone. Echocardiograms were performed preoperatively and before the terminal surgery. After 4 weeks the hearts were explanted and longitudinally sectioned. Uniaxial tensile testing was completed using an Instron 5543 Microtester. Optical strain was evaluated utilizing custom image acquisition software, Digi-Velpo, and analyzed in MATLAB. Results Compared to the saline control group at 4 weeks, the ESA injected hearts had higher ejection fractions (71.8% ± 9.0 vs. 55.3% ± 12.6, p= 0.0004) smaller end-diastolic left ventricular internal dimensions (0.686cm ± 0.110 vs. 0.763cm ± 0.160, p= 0.04), higher cardiac output (36ml/min ± 11.6 vs. 26.9ml/min ± 7.3, p= 0.05) and the tensile modulus was lower(251kPa ± 56 vs. 301kPa ± 81, p= 0.04). The tensile modulus for the sham group was 195kPa ± 56, indicating ESA injection results in a less stiff ventricle. Conclusions Direct injection of ESA alters the biomechanical response to MI, improving the mechanical properties in the post-infarct heart. PMID:23244259

  18. Treatment with anti-LFA-1 alpha monoclonal antibody selectively interferes with the maturation of CD4- 8+ thymocytes.

    PubMed

    Revilla, C; González, A L; Conde, C; López-Hoyos, M; Merino, J

    1997-04-01

    Maturation of T lymphocytes in the thymus is driven by signals provided by soluble factors and by the direct interaction between thymocytes and stromal cells. Although the interaction between T-cell receptor (TCR) and major histocompalibility complex (MHC) molecules on stromal cells is crucial for T-cell development, other accessory molecules seem to play a role in this process. In order to better understand the role of lymphocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) molecules in thymocyte maturation, mice were treated from birth with saturating doses of non-cytolytic-specific monoclonal antibodies. The effect of this treatment on thymocyte subpopulations and the expression of CD3 and TCR-alpha beta by these cells was investigated by flow cytometry. Our data demonstrated that the effective saturation of LFA-1 alpha chain in the thymus, but not ICAM-I or LFA-I beta chain, selectively interfered with the maturation of CD8+ T cells, as manifested by a marked reduction in the frequency of CD4-8+ thymocytes expressing high levels of CD3 and TCR-alpha beta. This selective reduction was also observed in peripheral blood mononuclear cells and spleen cells. The analysis of the frequencies of various V beta TCR showed that CD4-8+ thymocytes were globally affected by the treatment. These results underline the importance of the interaction between LFA-1 and its ligands in the maturation of CD8+ T cells and document the existence of different molecular requirements for the differentiation of CD4+ and CD8+ T cells.

  19. Polymorphisms in the hypoxia-inducible factor 1 alpha gene in Mexican patients with preeclampsia: A case-control study

    PubMed Central

    2011-01-01

    Background Although the etiology of preeclampsia is still unclear, recent work suggests that changes in circulating angiogenic factors play a key role in its pathogenesis. In the trophoblast of women with preeclampsia, hypoxia-inducible factor 1 alpha (HIF-1α) is over-expressed, and induces the expression of non-angiogenic factors and inhibitors of trophoblast differentiation. This observation prompted the study of HIF-1α and its relation to preeclampsia. It has been described that the C1772T (P582S) and G1790A (A588T) polymorphisms of the HIF1A gene have significantly greater transcriptional activity, correlated with an increased expression of their proteins, than the wild-type sequence. In this work, we studied whether either or both HIF1A variants contribute to preeclampsia susceptibility. Results Genomic DNA was isolated from 150 preeclamptic and 105 healthy pregnant women. Exon 12 of the HIF1A gene was amplified by PCR, and the genotypes of HIF1A were determined by DNA sequencing. In preeclamptic women and controls, the frequencies of the T allele for C1772T were 4.3 vs. 4.8%, and the frequencies of the A allele for G1790A were 0.0 vs. 0.5%, respectively. No significant differences were found between groups. Conclusion The frequency of the C1772T and G1790A polymorphisms of the HIF1A gene is very low, and neither polymorphism is associated with the development of preeclampsia in the Mexican population. PMID:21414224

  20. Antiproliferative effects of 1alpha,25-dihydroxyvitamin D(3) and vitamin D analogs on tumor-derived endothelial cells.

    PubMed

    Bernardi, Ronald J; Johnson, Candace S; Modzelewski, Ruth A; Trump, Donald L

    2002-07-01

    Although there is abundant evidence that 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] inhibits the growth of several cancer cell types, inhibition of angiogenesis may also play a role in mediating the antitumor effects of 1,25-(OH)(2)D(3.) We examined the ability of 1,25-(OH)(2)D(3) to inhibit the growth of tumor-derived endothelial cells (TDECs) and normal endothelial cells and to modulate angiogenic signaling. 1,25-(OH)(2)D(3) inhibited the growth of TDECs from two tumor models at nanomolar concentrations, but was less potent against normal aortic or yolk sac endothelial cells. The vitamin D analogs Ro-25-6760, EB1089, and ILX23-7553 were also potent inhibitors of TDEC proliferation. Furthermore, the combination of 1,25-(OH)(2)D(3) and dexamethasone had greater activity than either agent alone. 1,25-(OH)(2)D(3) increased vitamin D receptor and p27(Kip1) protein levels in TDECs, whereas phospho-ERK1/2 and phospho-Akt levels were reduced. These changes were not observed in normal aortic endothelial cells. In squamous cell carcinoma and radiation-induced fibrosarcoma-1 cells, 1,25-(OH)(2)D(3) treatment caused a reduction in the angiogenic signaling molecule, angiopoietin-2. In conclusion, 1,25-(OH)(2)D(3) and its analogs directly inhibit TDEC proliferation at concentrations comparable to those required to inhibit tumor cells. Further, 1,25-(OH)(2)D(3) modulates cell cycle and survival signaling in TDECs and affects angiogenic signaling in cancer cells. Thus, our work supports the hypothesis that angiogenesis inhibition plays a role in the antitumor effects of 1,25-(OH)(2)D(3).

  1. Toxoplasma gondii Elongation Factor 1-Alpha (TgEF-1α) Is a Novel Vaccine Candidate Antigen against Toxoplasmosis

    PubMed Central

    Wang, Shuai; Zhang, Zhenchao; Wang, Yujian; Gadahi, Javaid A.; Xu, Lixin; Yan, Ruofeng; Song, Xiaokai; Li, Xiangrui

    2017-01-01

    Toxoplasma gondii (T. gondii) is an obligate intracellular parasite which can infect almost all warm-blood animals, leading to toxoplasmosis. Screening and discovery of an effective vaccine candidate or new drug target is crucial for the control of this disease. In this study, the recombinant T. gondii elongation factor 1-alpha (rTgEF-1α) was successfully expressed in in Escherichia coli. Passive immunization of mice with anti-rTgEF-1α polyclonal antibody following challenge with a lethal dose of tachyzoites significantly increased the survival time compared with PBS control group. The survival time of mice challenged with tachyzoites pretreated with anti-rTgEF-1α PcAb also was significantly increased. Invasion of tachyzoites into mouse macrophages was significantly inhibited in the anti-rTgEF-1α PcAb pretreated group. Mice vaccinated with rTgEF-1α induced a high level of specific anti-T. gondii antibodies and production of IFN-gamma, interleukin-4. The expression levels of MHC-I and MHC-II molecules as well as the percentages of CD4+ and CD8+ T cells in mice vaccinated with rTgEF-1α was significantly increased, respectively (P < 0.05), compared with all the controls. Immunization with rTgEF-1α significantly (P < 0.05) prolonged survival time (14.53 ± 1.72 days) after challenge infection with the virulent T. gondii RH strain. These results indicate that T. gondii EF-1α plays an essential role in mediating host cell invasion by the parasite and, as such, could be a candidate vaccine antigen against toxoplasmosis. PMID:28243226

  2. Ethacrynic acid and 1 alpha,25-dihydroxyvitamin D3 cooperatively inhibit proliferation and induce differentiation of human myeloid leukemia cells.

    PubMed

    Makishima, M; Honma, Y

    1996-09-01

    The active form of vitamin D, 1 alpha,25-dihydroxyvitamin D3 (VD3), inhibits proliferation and induces differentiation of leukemia cells, but its clinical use is limited by the adverse effect of hypercalcemia. In this study we found that the loop diuretic ethacrynic acid, which is used to treat hypercalcemia, enhanced the differentiation of human leukemia cells induced by VD3. Ethacrynic acid alone inhibited the proliferation of human promyelocytic HL-60 cells while only slightly increasing differentiation markers such as nitroblue tetrazolium (NBT)-reducing and lysozyme activities. Ethacrynic acid effectively enhanced the growth-inhibiting action of VD3. In the presence of ethacrynic acid, VD3 increased the NBT-reducing and lysozyme activities and the CD11b expression of HL-60 cells more effectively than VD3 alone. Other loop diuretics, furosemide and bumetanide, also enhanced the differentiation of HL-60 cells induced by VD3, but to a lesser extent than ethacrynic acid. The differentiation of HL-60 cells induced by all-trans retinoic acid, dimethyl sulfoxide or phorbol-12-myristate 13-acetate was also enhanced by ethacrynic acid with increasing NBT-reducing and lysozyme activities and the expression of CD11b or CD14 surface antigen. Morphologically, ethacrynic acid enhanced the monocytic differentiation of HL-60 cells induced by VD3 and phorbol ester and the granulocytic differentiation by retinoic acid and dimethyl sulfoxide. Other human myelomonocytic leukemia ML-1, U937, P39/TSU and P31/FUJ cells were induced to differentiate by VD3 and this was also enhanced by ethacrynic acid. The long-term culture of HL-60 cells showed that ethacrynic acid plus VD3 induced the complete growth arrest of HL-60 cells. Therefore ethacrynic acid, which is used to treat hypercalcemia, enhanced the proliferation-inhibiting and differentiation-inducing activities of VD3 and the combination of ethacrynic acid and VD3 may be useful in therapy for myeloid leukemia.

  3. Engineering and characterization of a stabilized alpha1/alpha2 module of the class I major histocompatibility complex product Ld.

    PubMed

    Jones, Lindsay L; Brophy, Susan E; Bankovich, Alexander J; Colf, Leremy A; Hanick, Nicole A; Garcia, K Christopher; Kranz, David M

    2006-09-01

    The major histocompatibility complex (MHC) is the most polymorphic locus known, with thousands of allelic variants. There is considerable interest in understanding the diversity of structures and peptide-binding features represented by this class of proteins. Although many MHC proteins have been crystallized, others have not been amenable to structural or biochemical studies due to problems with expression or stability. In the present study, yeast display was used to engineer stabilizing mutations into the class I MHC molecule, Ld. The approach was based on previous studies that showed surface levels of yeast-displayed fusion proteins are directly correlated with protein stability. To engineer a more stable Ld, we selected Ld mutants with increased surface expression from randomly mutated yeast display libraries using anti-Ld antibodies or high affinity, soluble T-cell receptors (TCRs). The most stable Ld mutant, Ld-m31, consisted of a single-chain MHC module containing only the alpha1 and alpha2 domains. The enhanced stability was in part due to a single mutation (Trp-97 --> Arg), shown previously to be present in the allele Lq. Mutant Ld-m31 could bind to Ld peptides, and the specific peptide.Ld-m31 complex (QL9.Ld-m31) was recognized by alloreactive TCR 2C. A soluble form of the Ld-m31 protein was expressed in Escherichia coli and refolded from inclusion bodies at high yields. Surface plasmon resonance showed that TCRs bound to peptide.Ld-m31 complexes with affinities similar to those of native full-length Ld. The TCR and QL9.Ld-m31 formed complexes that could be resolved by native gel electrophoresis, suggesting that stabilized alpha1/alpha2 class I platforms may enable various structural studies.

  4. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice.

    PubMed

    Tsuji, Kiyomi; Maeda, Toyonobu; Kawane, Tetsuya; Matsunuma, Ayako; Horiuchi, Noboru

    2010-08-01

    Leptin is the LEP (ob) gene product secreted by adipocytes. We previously reported that leptin decreases renal expression of the 25-hydroxyvitamin D(3) 1alpha-hydroxylase (CYP27B1) gene through the leptin receptor (ObRb) by indirectly acting on the proximal tubules. This study focused on bone-derived fibroblast growth factor 23 (FGF-23) as a mediator of the influence of leptin on renal 1alpha-hydroxylase mRNA expression in leptin-deficient ob/ob mice. Exposure to leptin (200 ng/mL) for 24 hours stimulated FGF-23 expression by primary cultured rat osteoblasts. Administration of leptin (4 mg/kg i.p. at 12-hour intervals for 2 days) to ob/ob mice markedly increased the serum FGF-23 concentration while significantly reducing the serum levels of calcium, phosphate, and 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. Administration of FGF-23 (5 microg i.p. at 12-hour intervals for 2 days) to ob/ob mice suppressed renal 1alpha-hydroxylase mRNA expression. The main site of FGF-23 mRNA expression was the bone, and leptin markedly increased the FGF-23 mRNA level in ob/ob mice. In addition, leptin significantly reduced 1alpha-hydroxylase and sodium-phosphate cotransporters (NaP(i)-IIa and NaP(i)-IIc) mRNA levels but did not affect Klotho mRNA expression in the kidneys of ob/ob mice. Furthermore, the serum FGF-23 level and renal expression of 1alpha-hydroxylase mRNA were not influenced by administration of leptin to leptin receptor-deficient (db/db) mice. These results indicate that leptin directly stimulates FGF-23 synthesis by bone cells in ob/ob mice, suggesting that inhibition of renal 1,25(OH)(2)D(3) synthesis in these mice is at least partly due to elevated bone production of FGF-23.

  5. Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse.

    PubMed

    Jain, S; Maltepe, E; Lu, M M; Simon, C; Bradfield, C A

    1998-04-01

    The basic helix-loop-helix-PAS (bHLH-PAS) protein ARNT is a dimeric partner of the Ah receptor (AHR) and hypoxia inducible factor 1 alpha(HIF1 alpha). These dimers mediate biological responses to xenobiotic exposure and low oxygen tension. The recent cloning of ARNT and HIF1(homologues (ARNT2 and HIF2 alpha) indicates that at least six distinct bHLH-PAS heterodimeric combinations can occur in response to a number of environmental stimuli. In an effort to understand the biological relevance of this combinatorial complexity, we characterized their relative expression at a number of developmental time points by parallel in situ hybridization of adjacent tissue sections. Our results reveal that in general there is limited redundancy in the expression of these six transcription factors and that each of these bHLH-PAS members displays a unique pattern of developmental expression emerging as early as embryonic day 9.5.

  6. Synthesis of gamma- and delta-lactones from 1alpha-hydroxy-5,6-trans-vitamin D3 by ring-closing metathesis route and their reduction with metal hydrides.

    PubMed

    Wojtkielewicz, Agnieszka; Morzycki, Jacek W

    2007-06-01

    New synthetic pathway towards 19-functionalized derivatives of 1alpha-hydroxy-5,6-trans-vitamin D3 was described. Ring-closing metathesis (RCM) of 1alpha-hydroxy-5,6-trans-vitamin D3 1-omega-alkenoates was a key-step. Hydride reduction of resulting lactones led to the new vitamin D3 analogues.

  7. Three-dimensional MR mapping of angiogenesis with alpha5beta1(alpha nu beta3)-targeted theranostic nanoparticles in the MDA-MB-435 xenograft mouse model.

    PubMed

    Schmieder, Anne H; Caruthers, Shelton D; Zhang, Huiying; Williams, Todd A; Robertson, J David; Wickline, Samuel A; Lanza, Gregory M

    2008-12-01

    Our objectives were 1) to characterize angiogenesis in the MDA-MB-435 xenograft mouse model with three-dimensional (3D) MR molecular imaging using alpha(5)beta(1)(RGD)- or irrelevant RGS-targeted paramagnetic nanoparticles and 2) to use MR molecular imaging to assess the antiangiogenic effectiveness of alpha(5)beta(1)(alpha(nu)beta(3))- vs. alpha(nu)beta(3)-targeted fumagillin (50 mug/kg) nanoparticles. Tumor-bearing mice were imaged with MR before and after administration of either alpha(5)beta(1)(RGD) or irrelevant RGS-paramagnetic nanoparticles. In experiment 2, mice received saline or alpha(5)beta(1)(alpha(nu)beta(3))- or alpha(nu)beta(3)-targeted fumagillin nanoparticles on days 7, 11, 15, and 19 posttumor implant. On day 22, MRI was performed using alpha(5)beta(1)(alpha(nu)beta(3))-targeted paramagnetic nanoparticles to monitor the antiangiogenic response. 3D reconstructions of alpha(5)beta(1)(RGD)-signal enhancement revealed a sparse, asymmetrical pattern of angiogenesis along the tumor periphery, which occupied <2.0% tumor surface area. alpha(5)beta(1)-targeted rhodamine nanoparticles colocalized with FITC-lectin corroborated the peripheral neovascular signal. alpha(5)beta(1)(alpha(nu)beta(3))-fumagillin nanoparticles decreased neovasculature to negligible levels relative to control; alpha(nu)beta(3)-targeted fumagillin nanoparticles were less effective (P>0.05). Reduction of angiogenesis in MDA-MB-435 tumors from low to negligible levels did not decrease tumor volume. MR molecular imaging may be useful for characterizing tumors with sparse neovasculature that are unlikely to have a reduced growth response to targeted antiangiogenic therapy.

  8. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations.

    PubMed

    Pollard, P J; Brière, J J; Alam, N A; Barwell, J; Barclay, E; Wortham, N C; Hunt, T; Mitchell, M; Olpin, S; Moat, S J; Hargreaves, I P; Heales, S J; Chung, Y L; Griffiths, J R; Dalgleish, A; McGrath, J A; Gleeson, M J; Hodgson, S V; Poulsom, R; Rustin, P; Tomlinson, I P M

    2005-08-01

    The nuclear-encoded Krebs cycle enzymes, fumarate hydratase (FH) and succinate dehydrogenase (SDHB, -C and -D), act as tumour suppressors. Germline mutations in FH predispose individuals to leiomyomas and renal cell cancer (HLRCC), whereas mutations in SDH cause paragangliomas and phaeochromocytomas (HPGL). In this study, we have shown that FH-deficient cells and tumours accumulate fumarate and, to a lesser extent, succinate. SDH-deficient tumours principally accumulate succinate. In situ analyses showed that these tumours also have over-expression of hypoxia-inducible factor 1alpha (HIF1alpha), activation of HIF1alphatargets (such as vascular endothelial growth factor) and high microvessel density. We found no evidence of increased reactive oxygen species in our cells. Our data provide in vivo evidence to support the hypothesis that increased succinate and/or fumarate causes stabilization of HIF1alpha a plausible mechanism, inhibition of HIF prolyl hydroxylases, has previously been suggested by in vitro studies. The basic mechanism of tumorigenesis in HPGL and HLRCC is likely to be pseudo-hypoxic drive, just as it is in von Hippel-Lindau syndrome.

  9. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels.

    PubMed

    Flamme, I; Fröhlich, T; von Reutern, M; Kappel, A; Damert, A; Risau, W

    1997-04-01

    Transcription factors of the bHLH-PAS protein family are important regulators of developmental processes such as neurogenesis and tracheal development in invertebrates. Recently a bHLH-PAS protein, named trachealess (trl) was identified as a master regulator of tracheogenesis. Hypoxia-inducible factor, HIF-1 alpha, is a vertebrate relative of trl which is likely to be involved in growth of blood vessels by the induction of vascular endothelial growth factor (VEGF) in response to hypoxia. In the present study we describe mRNA cloning and mRNA expression pattern of mouse HIF-related factor (HRF), a novel close relative of HIF-1 alpha which is expressed most prominently in brain capillary endothelial cells and other blood vessels as well as in bronchial epithelium in the embryo and the adult. In addition, smooth muscle cells of the uterus, neurons, brown adipose tissue and various epithelial tissues express HRF mRNA as well. High expression levels of HRF mRNA in embryonic choroid plexus and kidney glomeruli, places where VEGF is highly expressed, suggest a role of this factor in VEGF gene activation similar to that of HIF-1 alpha. Given the similarity between morphogenesis of the tracheal system and the vertebrate vascular system, the expression pattern of HRF in the vasculature and the bronchial tree raises the possibility that this family of transcription factors may be involved in tubulogenesis.

  10. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.

    PubMed

    Lee, Kyung Sun; Kim, So Ri; Park, Hee Sun; Park, Seoung Ju; Min, Kyung Hoon; Lee, Ka Young; Choe, Yeong Hun; Hong, Sang Hyun; Han, Hyo Jin; Lee, Young Rae; Kim, Jong Suk; Atlas, Daphne; Lee, Yong Chul

    2007-12-31

    Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease.

  11. Roles for the heliodynamic hormones, all trans retinoic acid and 1 alpha, 25-dihydroxyvitamin D3, in control of the hematopoietic cell cycle.

    PubMed

    Blazsek, I; Comisso, M; Farabos, C; Misset, J L

    1991-01-01

    It is now well established that the production of primary hematopoietic cells is controlled at different levels of the biological organization. Bone marrow (BM) stromal cells, the extracellular matrix (ECM), polypeptide hematopoietic growth factors (HGF) as well as endogenous cell-division cycle (CDC) related factors play a dominant role in this control. Recent information suggest that the 2 lipophilic hormones, transRA and 1 alpha,25D3, depending on and/or perhaps mediating solar energy, play a role in the maintenance of BM homeostasis. Here we show that both transRA and 1 alpha,25D3: a) modulate the growth and/or stimulate the adipocytic differentiation of fibroblastic stromal cells (F-CFU); b) inhibit the synthesis and extracellular processing but stimulate the solubilization of matrix collagen; c) modulate the clonal growth of myeloid progenitor cells (GM-CFU) in synergy with HGFs; and d) inhibit the production of lactic acid in standard, normal long-term BM cultures (LTBMC). Comparative analysis of normal, preleukemic and leukemic BM cells in LTBMC indicated a positive correlation between the induction of terminal differentiation and reduced lactate production elicited by transRA or 1 alpha,25D3. These results raise a hypothesis according to which the terminal differentiation induced by the helicodynamic hormones is dependent on the mitochondrial aerobic ATP-generating system whose impairment may be a critical step during the process of leukemic transformation.

  12. Aqueous Extract of Paris polyphylla (AEPP) Inhibits Ovarian Cancer via Suppression of Peroxisome Proliferator-Activated Receptor-Gamma Coactivator (PGC)-1alpha.

    PubMed

    Wang, Chia-Woei; Tai, Cheng-Jeng; Choong, Chen-Yen; Lin, Yu-Chun; Lee, Bao-Hong; Shi, Yeu-Ching; Tai, Chen-Jei

    2016-06-03

    Chemotherapy, a major approach was used in carcinoma treatment, always involves the development of drug resistance as well as side-effects that affect the quality of patients' lives. An association between epithelial-mesenchymal transition (EMT) and chemotherapy resistance was established recently. We demonstrate in this paper that the aqueous extract of Paris polyphylla (AEPP)-a traditional Chinese medicine-can be used in various cancer types for suppression of carcinogenesis. We evaluated the suppressions of EMT and mitochondrial activity by AEPP treatment in a high-glucose (HG) induced-human ovarian carcinoma cell line (OVCAR-3 cells). The mitochondrial morphology was investigated using MitoTracker Deep Red FM staining. Our results indicated that AEPP reduced the viability of OVCAR-3 cells considerably through induction of apoptosis. However, this inhibitory potential of AEPP was attenuated by HG induction in OVCAR-3 cells. The levels of estrogen-related receptor (ERR)-alpha activator and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha were elevated by HG induction, but were suppressed by AEPP treatment. Down-regulations of cell survival and EMT were oberved in OVCAR-3 cells through suppression of PGC-1alpha by AEPP treatment. These results were confirmed through PGC-1alpha knockdown and overexpression in OVCAR-3 cells. Thus, AEPP can be beneficial for treating ovarian cancer and has potential for development of an integrative cancer therapy against ovarian cancer proliferation, metastasis, and migration.

  13. Myelin basic protein-primed T cells of female but not male mice induce nitric-oxide synthase and proinflammatory cytokines in microglia: implications for gender bias in multiple sclerosis.

    PubMed

    Dasgupta, Subhajit; Jana, Malabendu; Liu, Xiaojuan; Pahan, Kalipada

    2005-09-23

    Females are more susceptible than males to multiple sclerosis (MS). However, the underlying mechanism behind this gender difference is poorly understood. Because the presence of neuroantigen-primed T cells within the CNS is necessary for the development of MS, the present study was undertaken to investigate the activation of microglia by myelin basic protein (MBP)-primed T cells of male, female, and castrated male mice. Interestingly, MBP-primed T cells isolated from female and castrated male but not from male mice induced the expression of inducible nitric-oxide synthase (iNOS) and proinflammatory cytokines (interleukin-1beta (IL-1beta), IL-1alpha, IL-6, and tumor necrosis factor-alpha) in microglia by cell-cell contact. Again there was no apparent defect in male microglia, because MBP-primed T cells isolated from female and castrated male but not male mice were capable of inducing the production of NO in male primary microglia. Inhibition of female T cell contact-mediated microglial expression of proinflammatory molecules by dominant-negative mutants of p65 and C/EBPbeta suggest that female MBP-primed T cells induce microglial expression of proinflammatory molecules through the activation of NF-kappaB and C/EBPbeta. Interestingly, MBP-primed T cells of male, female, and castrated male mice were able to induce microglial activation of NF-kappaB. However, MBP-primed T cells of female and castrated male but not male mice induced microglial activation of C/EBPbeta. These studies suggest that microglial activation of C/EBPbeta but not NF-kappaB by T cell:microglial contact is a gender-specific event and that male MBP-primed T cells are not capable of inducing microglial expression of proinflammatory molecules due to their inability to induce the activation of C/EBPbeta in microglia. This novel gender-sensitive activation of microglia by neuroantigen-primed T cell contact could be one of the mechanisms behind the female-loving nature of MS.

  14. Multiplex analyte assays to characterize different dementias: brain inflammatory cytokines in poststroke and other dementias.

    PubMed

    Chen, Aiqing; Oakley, Arthur E; Monteiro, Maria; Tuomela, Katri; Allan, Louise M; Mukaetova-Ladinska, Elizabeta B; O'Brien, John T; Kalaria, Raj N

    2016-02-01

    Both the inflammatory potential and cognitive function decline during aging. The association between the repertoire of inflammatory biomarkers and cognitive decline is unclear. Inflammatory cytokines have been reported to be increased, decreased, or unchanged in the cerebrospinal fluid and sera of subjects with dementia. We assessed 112 postmortem brains from subjects diagnosed with poststroke dementia (PSD), vascular dementia, mixed dementia, and Alzheimer's disease (AD), comparing those to poststroke nondemented (PSND) subjects and age-matched controls. We analyzed 5 brain regions including the gray and white matter from the frontal and temporal lobes for a panel of cytokine and/or chemokine analytes using multiplex-array assays. Of the 37 analytes, 14 were under or near the detection limits, 7 were close to the lowest detection level, and 16 cytokines were within the linear range of the assay. We observed widely variable concentrations of C-reactive protein (CRP) and serum amyloid A at the high end (1-150 ng/mg protein), whereas several of the interleukins (IL, interferon-gamma and tumor necrosis factor) at the low end (1-10 pg/mg). There were also regional variations; most notable being high concentrations of some cytokines (e.g., CRP and angiogenesis panel) in the frontal white matter. Overall, we found decreased concentrations of several cytokines, including IL-1 beta (p = 0.000), IL-6 (p = 0.000), IL-7 (p = 0.000), IL-8 (p = 0.000), IL-16 (p = 0.001), interferon-inducible protein-10 (0.044), serum amyloid A (p = 0.011), and a trend in IL-1 alpha (p = 0.084) across all dementia groups compared to nondemented controls. IL-6 and IL-8 were significantly lower in dementia subjects than in nondemented subjects in every region. In particular, lower levels of IL-6 and IL-8 were notable in the PSD compared to PSND subjects. Because these 2 stroke groups had comparable degree of vascular pathology, the lower production of IL-6 and IL-8 in PSD reaffirms a

  15. Monocyte-induced downregulation of nitric oxide synthase in cultured aortic endothelial cells.

    PubMed

    Marczin, N; Antonov, A; Papapetropoulos, A; Munn, D H; Virmani, R; Kolodgie, F D; Gerrity, R; Catravas, J D

    1996-09-01

    Since endothelium-dependent vasodilation is altered in atherosclerosis and enhanced monocyte/endothelial interactions are implicated in early atherosclerosis, we evaluated the effects of monocytes on the endothelial nitric oxide (NO) pathway by estimating release of biologically active NO from cultured endothelial cells and levels of constitutive NO synthase (ecNOS). NO release was estimated in a short-term bioassay using endothelial cell-induced cGMP accumulation in vascular smooth muscle (SM) cells. Exposure of SM cells to porcine aortic endothelial cells (PAECs) and human aortic endothelial cells (HAECs) produced large increases in SM cGMP content; this increase was prevented by NG-nitro-L-arginine methyl ester, the inhibitor of endothelial NOS. Confluent monolayers of PAECs and HAECs cocultured with monocytes also stimulated SM cGMP formation; however, NO release from these cultures was attenuated in a coculture time (2 to 48 hours)- and monocyte concentration (20 to 200 x 10(3) per well)-dependent manner. This effect of monocyte adhesion appeared to be selective for NO release since other biochemical pathways, such as atriopeptin-and isoproterenol-induced cyclic nucleotide accumulation within the endothelial cells, were not altered by monocytes. The effects of adherent monocytes on NO release were mimicked by monocyte-derived cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 alpha. Furthermore, the conditioned medium of monocytes contained significant quantities of these cytokines. Conditioned medium, as well as monocytes physically separated from the endothelial cells, attenuated NO release, suggesting that soluble factors may mediate the effects of monocytes. An IL-1 beta neutralizing antibody fully prevented the NO dysfunction in response to directly adherent monocytes. Superoxide dismutase, catalase, 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron), and exogenous L-arginine failed to improve NO release, suggesting that oxidant stress

  16. A potential alpha-helix motif in the amino terminus of LANA encoded by Kaposi's sarcoma-associated herpesvirus is critical for nuclear accumulation of HIF-1alpha in normoxia.

    PubMed

    Cai, Qiliang; Murakami, Masanao; Si, Huaxin; Robertson, Erle S

    2007-10-01

    Hypoxia-inducible factor 1 (HIF-1) is a ubiquitously expressed transcriptional regulator involved in induction of numerous genes associated with angiogenesis and tumor growth. Kaposi's sarcoma, associated with increased angiogenesis, is a highly vascularized, endothelial cell-derived tumor. Previously, we have shown that the latency-associated nuclear antigen (LANA) encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) targets the HIF-1alpha suppressors von Hippel-Lindau protein and p53 for degradation via its suppressor of cytokine signaling-box motif, which recruits the EC5S ubiquitin complex. Here we further show that HIF-1alpha was aberrantly accumulated in KSHV latently infected primary effusion lymphoma (PEL) cells, as well as HEK293 cells infected with KSHV, and also show that a potential alpha-helical amino-terminal domain of LANA was important for HIF-1alpha nuclear accumulation in normoxic conditions. Moreover, we have now determined that this association was dependent on the residues 46 to 89 of LANA and the oxygen-dependent degradation domain of HIF-1alpha. Introduction of specific small interfering RNA against LANA into PEL cells also resulted in a diminished nuclear accumulation of HIF-1alpha. Therefore, these data show that LANA can function not only as an inhibitor of HIF-1alpha suppressor proteins but can also induce nuclear accumulation of HIF-1alpha during KSHV latent infection.

  17. Effects of 1 alpha,25- and 24R,25-dihydroxyvitamin D3 on aluminum-induced rickets in growing uremic rats.

    PubMed

    Vukicević, S; Krempien, B; Stavljenić, A

    1987-12-01

    Rats were subjected to a two-stage subtotal nephrectomy or sham operation, and treated with aluminum (Al) or both aluminum and vitamin D3 metabolites for 5 weeks with a cumulative dose of 13.6 mg aluminum. Animals were injected with 3H-thymidine and 3H-proline. The following analyses were performed: quantitative histology of tibial metaphyses and cytomorphometric electron microscopy of osteoclasts, quantitative (ICP-spectroscopy) and qualitative determination (histochemical staining) of aluminum within organs, and serum biochemistry (Ca, P, Mg, vitamin D3 metabolites, alkaline phosphatase, urea). The following new facts of the aluminum-related bone disease became evident: (a) Application of aluminum to growing uremic rats induced rickets, whose major epiphyseal growth plate changes were 1 alpha,25(OH)2D3-dependent. Addition of 1 alpha,25(OH)2D3 prevented the formation of rachitic metaphysis, but failed to prevent osteoid accumulation on epiphyseal and metaphyseal trabecular surfaces. Moreover, calcitriol produced hyperosteoidosis and osteosclerosis in the same rats. Aluminum did not alter the function of osteoblasts, while osteoclasts seemed inactivated. (b) The development of rickets was associated with suppressed serum levels of 1,25(OH)2D3, reduced phosphorus level and the high content of aluminum in the bone, kidney, and liver. The addition of 24R,25(OH)2D3 markedly exaggerated the reduction of serum levels of calcitriol. We suggested that aluminum induces rickets in growing uremic rats, which consists of two components: vitamin D refractory osteomalacia and 1 alpha,25(OH)2D3-dependent epiphyseal growth plate changes.

  18. Estrogen decreases chemokine levels in murine mammary tissue: implications for the regulatory role of MIP-1 alpha and MCP-1/JE in mammary tumor formation.

    PubMed

    Fanti, Peter; Nazareth, Michael; Bucelli, Robert; Mineo, Michael; Gibbs, Kathleen; Kumin, Michael; Grzybek, Kevin; Hoeltke, Janice; Raiber, Lisa; Poppenberg, Kristin; Janis, Kelly; Schwach, Catherine; Aronica, Susan M

    2003-11-01

    Estrogen contributes to the development of breast cancer through mechanisms that are not completely understood. Estrogen influences the function of immune effector cells, primarily through alterations in cytokine expression. Chemokines are proinflammatory cytokines that attract various immune cells to the site of tissue injury or inflammation, and activate many cell types, including T lymphocytes and monocytes. As an initial step toward ultimately determining whether regulation of chemokine expression and/or biological activity by estrogen could potentially be a contributing factor to the development and progression of mammary tumors, we evaluated the effect of estrogen on the expression of specific chemokines in murine mammary tissue. We also evaluated whether exposure of female mice to various chemokines could alter the growth of mammary tumors in the presence of estrogen. We report here that estrogen significantly decreases levels of the chemokines MIP-1alpha and MCP-1/JE in murine mammary tissue. Co-treatment with 4-hydroxytamoxifen partially reverses the suppressive effect of estrogen on MIP-1alpha levels. Estrogen increases the growth of CCL- 51 cell-based tumors in the mammary glands of female mice. Co-treatment with the chemokine MIP-1alpha or MCP- 1/JE substantially decreases the ability of estrogen to stimulate the formation of CCL-51 cell-based tumors. Our results show that estrogen might influence the bioactivity of specific chemokines through alteration of chemokine expression in mammary tissue, and further suggest that decreases in murine chemokines evoked by estrogen exposure could contribute to the promotion of mammary tumor growth.

  19. Inhibitory effects of 1alpha, 25dihydroxyvitamin D3 and Ajuga iva extract on oxidative stress, toxicity and hypo-fertility in diabetic rat testes.

    PubMed

    Hamden, K; Carreau, S; Jamoussi, K; Ayadi, F; Garmazi, F; Mezgenni, N; Elfeki, A

    2008-09-01

    The aim of the current study is to investigate the therapeutic and preventive effects of 1alpha, 25dihydroxyvitaminD3 (1,25 (OH)2 D3) and Afuga iva (AI) extract on diabetes toxicity in rats testes. Thus diabetic rats were treated with 1alpha, 25dihydroxyvitaminD3 or Ajuga iva extract as both therapeutic and preventive treatments on diabetes toxicity in rats testes. Our results showed that diabetes induced a decrease in testosterone and 17beta-estradiol levels in testes and plasma. Besides, a fall in testicular antioxidant capacity appeared by a decrease in both antioxidant (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities) and nonenzymatic antioxidant (copper (Cu), magnesium (Mg) and iron (Fe) levels). All theses changes enhanced testicular toxicity (increase in testicular aspartate amino transaminase (AST), alanine amino transaminase (ALT), lactate dehydrogenase (LDH) activities and the lipid peroxidation and triglyceride (TG) levels). In addition, a decrease in testicular total cholesterol (TCh) level was observed in diabetic rats testes. All the changes lead to a decrease in the total number and mobility of epididymal spermatozoa. The administration of 1alpha,25dihydroxyvitaminD3 and Ajuga iva extract three weeks before and after diabetes induction interfered and prevented diabetes toxicity in the reproductive system. 1,25 (OH)2 D3 and Ajuga iva extract blunted all changes observed in diabetic rats. To sum up, the data suggested that 1,25 (OH)2 D3 and Ajuga iva extract have a protective effect on alloxan-induced damage in reproductive system by enhancing the testosterone and 17beta-estradiol levels, consequently protecting from oxidative stress, cellular toxicity and maintaining the number and motility of spermatozoids.

  20. Expression of SCM-1alpha/lymphotactin and SCM-1beta in natural killer cells is upregulated by IL-2 and IL-12.

    PubMed

    Hennemann, B; Tam, Y K; Tonn, T; Klingemann, H G

    1999-07-01

    Recruitment of lymphocytes is an important feature of the host immune response against pathogens. However, the mechanisms by which lymphocytes are attracted are not yet fully understood. Recently, the cDNA of a lymphocyte-specific chemokine, lymphotactin (Lptn), was isolated from murine and human T cells and was also found to be expressed in murine NK cells and human NK cell clones. This study investigated the influence of interleukin (IL)-2 and IL-12 on the expression of Lptn, also known as SCM (single cysteine motif)-1alpha, and SCM-1beta, a 97% homolog of Lptn, in freshly isolated human NK cells and the human NK cell line NK-92. Northern blot analysis and RT-PCR confirmed that nonactivated human NK cells expressed both genes at low level. After activation with IL-2 or IL-12, the expression of both Lptn and SCM-1beta was upregulated within hours. NK-92 cells maintained in medium supplemented with IL-2 constitutively expressed SCM-1 mRNA. However, after 24 h of IL-2 starvation and subsequent culturing at various IL-2 concentrations, the expression of Lptn/SCM-1alpha was upregulated in a dose-dependent manner, whereas the expression of SCM-1beta remained consistently high. These observations indicate that NK cells, in addition to T lymphocytes, express Lptn/SCM-1alpha and SCM-1beta after cytokine activation. The upregulation of these chemokines in NK cells on activation likely acts to increase the number of effector cells reaching the site of an immune response such as inflammation.

  1. Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1alpha and AP-1 and iNOS signaling.

    PubMed

    Xi, Lei; Taher, Mohiuddin; Yin, Chang; Salloum, Fadi; Kukreja, Rakesh C

    2004-12-01

    Acute systemic hypoxia induces delayed cardioprotection against ischemia (I)-reperfusion (R) injury via inducible nitric oxide synthase (iNOS)-dependent mechanism. Because CoCl2 is known to elicit hypoxia-like responses, we hypothesized that this chemical would mimic the delayed preconditioning effect in the heart. Adult male mice were pretreated with CoCl2 or saline. The hearts were isolated 24 h later and subjected to 20 min of global I and 30 min of R in Langendorff mode. Myocardial infarct size (% of risk area; mean +/- SE, n=6-8/group) was reduced in mice pretreated with 30 mg/kg CoCl2 (16.1 +/- 3.1% vs. 27.6 +/- 3.3% with saline control; P <0.05) without compromising postischemic cardiac function. Higher doses of CoCl2 failed to induce similar protection. Electrophoretic mobility gel shift assay demonstrated significant enhancement in DNA binding activity of hypoxia-inducible factor 1alpha (HIF-1alpha) and activator protein 1 (AP-1) in nuclear extracts from CoCl2-treated hearts. Activation of HIF-1alpha and AP-1 was evident at 30 min and sustained for the next 4 h after CoCl2 injection. In contrast, CoCl2-induced protection was independent of NF-kappaB activation because no DNA binding or p65 translocation was observed in nuclear extracts. Also, CoCl2-induced cardioprotection was preserved in p50 subunit NF-kappaB-knockout (KO) mice (11.1 +/- 3.0% vs. 25.1 +/- 5.0% in saline-treated p50-KO mice; P <0.05). The infarct-limiting effect of CoCl2 was absent in iNOS-KO mice (20.9 +/- 3.0%). We conclude that in vivo administration of CoCl2 preconditions the heart against I/R injury. The delayed protective effect of CoCl2 is achieved through a distinctive signaling mechanism involving HIF-1alpha, AP-1, and iNOS but independent of NF-kappaB activation.

  2. Analysis of Claviceps africana and C. sorghi from India using AFLPs, EF-1alpha gene intron 4, and beta-tubulin gene intron 3.

    PubMed

    Tooley, Paul W; Bandyopadhyay, Ranajit; Carras, Marie M; Pazoutová, Sylvie

    2006-04-01

    Isolates of Claviceps causing ergot on sorghum in India were analysed by AFLP analysis, and by analysis of DNA sequences of the EF-1alpha gene intron 4 and beta-tubulin gene intron 3 region. Of 89 isolates assayed from six states in India, four were determined to be C. sorghi, and the rest C. africana. A relatively low level of genetic diversity was observed within the Indian C. africana population. No evidence of genetic exchange between C. africana and C. sorghi was observed in either AFLP or DNA sequence analysis. Phylogenetic analysis was conducted using DNA sequences from 14 different Claviceps species. A multigene phylogeny based on the EF-1alpha gene intron 4, the beta-tubulin gene intron 3 region, and rDNA showed that C. sorghi grouped most closely with C. gigantea and C. africana. Although the Claviceps species we analysed were closely related, they colonize hosts that are taxonomically very distinct suggesting that there is no direct coevolution of Claviceps with its hosts.

  3. Hypoxia up-regulates the angiogenic cytokine secretoneurin via an HIF-1alpha- and basic FGF-dependent pathway in muscle cells.

    PubMed

    Egger, Margot; Schgoer, Wilfried; Beer, Arno G E; Jeschke, Johannes; Leierer, Johannes; Theurl, Markus; Frauscher, Silke; Tepper, Oren M; Niederwanger, Andreas; Ritsch, Andreas; Kearney, Marianne; Wanschitz, Julia; Gurtner, Geoffrey C; Fischer-Colbrie, Reiner; Weiss, Guenter; Piza-Katzer, Hildegunde; Losordo, Douglas W; Patsch, Josef R; Schratzberger, Peter; Kirchmair, Rudolf

    2007-09-01

    Expression of angiogenic cytokines like vascular endothelial growth factor is enhanced by hypoxia. We tested the hypothesis that decreased oxygen levels up-regulate the angiogenic factor secretoneurin. In vivo, muscle cells of mouse ischemic hind limbs showed increased secretoneurin expression, and inhibition of secretoneurin by a neutralizing antibody impaired the angiogenic response in this ischemia model. In a mouse soft tissue model of hypoxia, secretoneurin was increased in subcutaneous muscle fibers. In vitro, secretoneurin mRNA and protein were up-regulated in L6 myoblast cells after exposure to low oxygen levels. The hypoxia-dependent regulation of secretoneurin was tissue specific and was not observed in endothelial cells, vascular smooth muscle cells, or AtT20 pituitary tumor cells. The hypoxia-dependent induction of secretoneurin in L6 myoblasts is regulated by hypoxia-inducible factor-1alpha, since inhibition of this factor using si-RNA inhibited up-regulation of secretoneurin. Induction of secretoneurin by hypoxia was dependent on basic fibroblast growth factor in vivo and in vitro, and inhibition of this regulation by heparinase suggests an involvement of low-affinity basic fibroblast growth factor binding sites. In summary, our data show that the angiogenic cytokine secretoneurin is up-regulated by hypoxia in muscle cells by hypoxia-inducible factor-1alpha- and basic fibroblast growth factor-dependent mechanisms.

  4. Increased concentrations of arachidonic acid, prostaglandins E2, D2, and 6-oxo-F1 alpha, and histamine in human skin following UVA irradiation

    SciTech Connect

    Hawk, J.L.; Black, A.K.; Jaenicke, K.F.; Barr, R.M.; Soter, N.A.; Mallett, A.I.; Gilchrest, B.A.; Hensby, C.N.; Parrish, J.A.; Greaves, M.W.

    1983-06-01

    The buttock skin of clinically normal human subjects was subjected to approximately 2.5 minimal erythema doses of ultraviolet A irradiation. Deep red erythema developed during irradiation, faded slightly within the next few hours, increased to maximum intensity between 9-15 h, and decreased gradually thereafter although still persisting strongly at 48 h. Suction blister exudates were obtained at 0, 5, 9, 15, 24, and 48 h after irradiation as well as suction blister exudates from a contralateral control site and assayed for arachidonic acid, prostaglandins D2 and E2, and the prostacyclin breakdown product 6-oxo-prostaglandin F1 alpha by gas chromatography-mass spectrometry, and for histamine by radioenzyme assay. Increased concentrations of arachidonic acid and prostaglandins D2, E2, and 6-oxo-prostaglandin F1 alpha were found maximally between 5-9 h after irradiation, preceding the phase of maximal erythema. Elevations of histamine concentration occurred 9-15 h after irradiation, preceding and coinciding with the phase of maximal erythema. At 24 h, still at the height of the erythemal response, all values had returned to near control levels. Hence increased concentrations of arachidonic acid and its products from the cyclooxygenase pathway, and of histamine, accompany the early stages up to 24 h. A causal role in production of the erythema seems likely for these substances although other mediators are almost certainly involved.

  5. Endometrial receptivity: expression of alpha3beta1, alpha4beta1 and alphaVbeta1 endometrial integrins in women with impaired fertility.

    PubMed

    Skrzypczak, J; Mikołajczyk, M; Szymanowski, K

    2001-11-01

    Advances in immunohistochemical methods with the specificity of poly- and monoclonal antibodies allow the description of the endometrial receptivity, which is characterized by the ability of secretion of phase specific proteins and glikoproteins by epithelial and stromal cells. We studied the differences in the expression of alpha3beta1, alpha4beta1 and alphaVbeta1 integrins in endometrium of women with recurrent miscarriages and women with unexplained infertility. The endometrial tissue was collected during hysteroscopy performed between 7th and 9th day after ovulation. The immunohistochemical evaluation of alpha3beta1, alpha4beta1 and alphaVbeta1 integrin expression was determined in all endometrial biopsies. Staining intensity of alpha3beta1 in glandular epithelium and endometrial stroma was similar in both groups. In women with recurrent miscarriages we noted a lower concentrations of the alpha4beta1 and alphaVbeta1 integrins during the midluteal phase than in women with unexplained infertility. Moreover, integrins alpha4beta1 and alphaVbeta1 were expressed more frequently in glandular epithelium and endometrial stroma of women with unexplained infertility than those of women with recurrent miscarriages. However, alphaV(2)1 staining in endometrial stroma was stronger than that of alpha4beta1. It can be concluded, that these integrins may play an important role in the implantation process.

  6. High production of RANTES and MIP-1alpha in the tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM).

    PubMed

    Montanheiro, Patricia; Vergara, Maria Paulina Posada; Smid, Jerusa; da Silva Duarte, Alberto José; de Oliveira, Augusto César Penalva; Casseb, Jorge

    2007-08-01

    Human T cell lymphotropic virus type 1 (HTLV-1) infection is associated with progressive neurological disorders and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). The pathogenesis of TSP/HAM is considered as immune mediated, involving cytotoxic T cell (CTL) responses to a number of viral proteins and notably the regulation protein Tax. T CD8+ cells produce beta-chemokines, which are important in the anti-viral response. In the present study, we have analyzed the CC chemokines (RANTES, MIP-1beta and MIP-1alpha) production in retrovirus-infected subjects. A total of 191 subjects were studied: 52 healthy controls, 72 asymptomatic HTLV-1-infected carriers and 67 TSP/HAM patients. Peripheral blood mononuclear cells were maintained in the presence or absence of PHA, and supernatant fluids were assayed using EIA. MIP-1beta concentration was not significantly different across groups, but RANTES and MIP-1alpha concentrations showed significant differences when the three groups were compared. In TSP/HAM patients, the increase in the production of chemokines may lead to a recruitment of pro-inflammatory factors, contributing to the membrane's myelin damage.

  7. Tannin 1-alpha-O-galloylpunicalagin induces the calcium-dependent activation of endothelial nitric-oxide synthase via the phosphatidylinositol 3-kinase/Akt pathway in endothelial cells.

    PubMed

    Chen, Lih-Geeng; Liu, Yen-Chin; Hsieh, Chia-Wen; Liao, Being-Chyuan; Wung, Being-Sun

    2008-10-01

    Many polyphenols have been found to increase endothelial nitric oxide (NO) production. In our present study, we investigated the effects of 1-alpha-O-galloylpunicalagin upon endothelial nitric oxide synthase (eNOS) activity in endothelial cells (ECs). Both 1-alpha-O-galloylpunicalagin and punicalagin induced NO production in a dose-dependent manner in ECs. Despite having similar chemical structures, punicalagin induced lower levels of NO production than 1-alpha-O-galloylpunicalagin. After 1-alpha-O-galloylpunicalagin addition, a rise in the intracellular Ca(2+) concentration preceded NO production. The Ca(2+) ionophore A23187 stimulated eNOS phosphorylation and augmented NO production. Pretreatment with Ca(2+) chelators inhibited 1-alpha-O-galloylpunicalagin-induced eNOS phosphorylation and NO production. Treatment with 1-alpha-O-galloylpunicalagin did not alter the eNOS protein levels but, unlike punicalagin, induced a sustained activation of eNOS Ser(1179) phosphorylation. 1-alpha-O-galloylpunicalagin was also found to activate ERK1/2, JNK and Akt in ECs. Moreover, simultaneous treatment of these cells with specific phosphatidylinositol-3-kinase inhibitors significantly inhibited the observed increases in eNOS activity and phosphorylation levels. In contrast, the inhibition of (ERK)1/2, JNK and p38 had no influence on eNOS Ser(1179) phosphorylation. Our present results thus indicate that the 1-alpha-O-galloylpunicalagin-induced calcium-dependent activation of eNOS is primarily mediated via a phosphatidylinositol 3-kinase/Akt-dependent increase in eNOS activity, and occurs independently of the eNOS protein content.

  8. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    SciTech Connect

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX-2098

  9. Immunohistochemical detection of osteopontin in advanced head-and-neck cancer: Prognostic role and correlation with oxygen electrode measurements, hypoxia-inducible-factor-1{alpha}-related markers, and hemoglobin levels

    SciTech Connect

    Bache, Matthias; Reddemann, Rolf; Said, Harun M.; Holzhausen, Hans-Juergen; Taubert, Helge; Becker, Axel; Kuhnt, Thomas; Haensgen, Gabriele; Dunst, Juergen; Vordermark, Dirk . E-mail: vordermark_d@klinik.uni-wuerzburg.de

    2006-12-01

    Purpose: The tumor-associated glycoprotein osteopontin (OPN) is discussed as a plasma marker of tumor hypoxia. However, the association of immunohistochemical OPN expression in tumor sections with tumor oxygenation parameters (HF5, median pO{sub 2}), the hypoxia-related markers hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) and carbonic anhydrase IX (CAIX), or hemoglobin and systemic vascular endothelial growth factor (VEGF) levels has not been investigated. Methods and Materials: Tumor tissue sections of 34 patients with advanced head-and-neck cancer treated with radiotherapy were assessed by immunochemistry for the expression of OPN, HIF-1{alpha}, and CA IX. Relationship of OPN expression with tumor oxygenation parameters (HF5, median pO{sub 2}), HIF-1{alpha} and CA IX expression, hemoglobin and serum VEGF level, and clinical parameters was studied. Results: Bivariate analysis showed a significant correlation of positive OPN staining with low hemoglobin level (p = 0.02), high HIF-1{alpha} expression (p = 0.02), and high serum vascular endothelial growth factor level (p = 0.02) for advanced head-and-neck cancer. Furthermore, considering the 31 Stage IV patients, the median pO{sub 2} correlated significantly with the OPN expression (p = 0.02). OPN expression alone had only a small impact on prognosis. However, in a univariate Cox proportional hazard regression model, the expression of either OPN or HIF-1{alpha} or CA IX was associated with a 4.1-fold increased risk of death (p = 0.02) compared with negativity of all three markers. Conclusion: Osteopontin expression detected immunohistochemically is associated with oxygenation parameters in advanced head-and-neck cancer. When the results of OPN, HIF-1{alpha}, and CA IX immunohistochemistry are combined into a hypoxic profile, a strong and statistically significant impact on overall survival is found.

  10. Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1.1 {alpha}/{beta} TCR-double positive cells in vitro

    SciTech Connect

    Nozaki, Hirofumi; Itonori, Saki; Sugita, Mutsumi; Nakamura, Kimihide; Ohba, Kiyoshi; Suzuki, Akemi; Kushi, Yasunori

    2008-08-29

    Interferon (IFN)-{gamma} and interleukin (IL)-4 regulate many types of immune responses. Here we report that acidic glycosphingolipids (AGLs) of Hypsizigus marmoreus and Pleurotus eryngii induced secretion of IFN- {gamma} and IL-4 from T cells in a CD11c-positive cell-dependent manner similar to that of {alpha}-galactosylceramide ({alpha}-GalCer) and isoglobotriaosylceramide (iGb3), although activated T cells by AGLs showed less secretion of cytokine than those activated by {alpha}-GalCer. In addition, stimulation of these mushroom AGLs induced proliferation of NK1.1 {alpha}/{beta} TCR-double positive cells in splenocytes. Administration of a mixture of {alpha}-GalCer and AGLs affected the stimulation of {alpha}-GalCer and generally induced a subtle Th1 bias for splenocytes but induced an extreme Th2 bias for thymocytes. These results suggested that edible mushroom AGLs contribute to immunomodulation.

  11. Expression and hypoxic regulation of hif1alpha and hif2alpha during early blood and endothelial cell differentiation in chick.

    PubMed

    Ota, Kanako; Nagai, Hiroki; Sheng, Guojun

    2007-08-01

    HIF1 and HIF2 are major mediators for hypoxia sensing and response. Their roles in early differentiation of two key cell types involved in oxygen supply in amniotes, the primitive blood cells and endothelial cells, are unclear. We show that, in pre-circulation avian embryos, hif1alpha and hif2alpha are expressed in embryonic and extraembryonic tissues, respectively. hif2alpha, first identified as epas1, is not present in endothelial cells at any pre-circulation stage under either normoxia or hypoxia conditions. Differentiating blood cells express low levels of hif2alpha under normoxia, but show a strong and rapid upregulation under hypoxia. Blood cell differentiation, however, is not affected under either hypoxia or hyperoxia conditions.

  12. Tick saliva inhibits the chemotactic function of MIP-1alpha and selectively impairs chemotaxis of immature dendritic cells by down-regulating cell-surface CCR5.

    PubMed

    Oliveira, Carlo José F; Cavassani, Karen A; Moré, Daniela D; Garlet, Gustavo P; Aliberti, Julio C; Silva, João S; Ferreira, Beatriz R

    2008-05-01

    Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1alpha, while it did not affect RANTES, MIP-1beta and MIP-3beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host.

  13. Integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance

    SciTech Connect

    Sansing, Hope A.; Sarkeshik, Ali; Yates, John R.; Patel, Vyomesh; Gutkind, J. Silvio; Yamada, Kenneth M.; Berrier, Allison L.

    2011-03-11

    Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomics screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.

  14. Mitochondrial-related gene expression profiles suggest an important role of PGC-1alpha in the compensatory mechanism of endemic dilated cardiomyopathy

    SciTech Connect

    He, Shu-Lan; Tan, Wu-Hong; Zhang, Zeng-Tie; Zhang, Feng; Qu, Cheng-Juan; Lei, Yan-Xia; Zhu, Yan-He; Yu, Han-Jie; Xiang, You-Zhang; and others

    2013-10-15

    Keshan disease (KD) is an endemic dilated cardiomyopathy with unclear etiology. In this study, we compared mitochondrial-related gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from 16 KD patients and 16 normal controls in KD areas. Total RNA was isolated, amplified, labeled and hybridized to Agilent human 4×44k whole genome microarrays. Mitochondrial-related genes were screened out by the Third-Generation Human Mitochondria-Focused cDNA Microarray (hMitChip3). Quantitative real-time PCR, immunohistochemical and biochemical parameters related mitochondrial metabolism were conducted to validate our microarray results. In KD samples, 34 up-regulated genes (ratios≥2.0) were detected by significance analysis of microarrays and ingenuity systems pathway analysis (IPA). The highest ranked molecular and cellular functions of the differentially regulated genes were closely related to amino acid metabolism, free radical scavenging, carbohydrate metabolism, and energy production. Using IPA, 40 significant pathways and four significant networks, involved mainly in apoptosis, mitochondrion dysfunction, and nuclear receptor signaling were identified. Based on our results, we suggest that PGC-1alpha regulated energy metabolism and anti-apoptosis might play an important role in the compensatory mechanism of KD. Our results may lead to the identification of potential diagnostic biomarkers for KD in PBMCs, and may help to understand the pathogenesis of KD. Highlights: • Thirty-four up-regulated genes were detected in KD versus health controls. • Forty pathways and four networks were detected in KD. • PGC-1alpha regulated energy metabolism and anti-apoptosis in KD.

  15. Recombinant fusion protein of cholera toxin B subunit with YVAD secreted by Lactobacillus casei inhibits lipopolysaccharide-induced caspase-1 activation and subsequent IL-1 beta secretion in Caco-2 cells

    PubMed Central

    2014-01-01

    Background Lactobacillus species are used as bacterial vectors to deliver functional peptides to the intestine because they are delivered live to the intestine, colonize the mucosal surface, and continue to produce the desired protein. Previously, we generated a recombinant Lactobacillus casei secreting the cholera toxin B subunit (CTB), which can translocate into intestinal epithelial cells (IECs) through GM1 ganglioside. Recombinant fusion proteins of CTB with functional peptides have been used as carriers for the delivery of these peptides to IECs because of the high cell permeation capacity of recombinant CTB (rCTB). However, there have been no reports of rCTB fused with peptides expressed or secreted by Lactobacillus species. In this study, we constructed L. casei secreting a recombinant fusion protein of CTB with YVAD (rCTB–YVAD). YVAD is a tetrapeptide (tyrosine–valine–alanine–aspartic acid) that specifically inhibits caspase-1, which catalyzes the production of interleukin (IL)-1β, an inflammatory cytokine, from its inactive precursor. Here, we examined whether rCTB–YVAD secreted by L. casei binds to GM1 ganglioside and inhibits caspase-1 activation in Caco-2 cells used as a model of IECs. Results We constructed the rCTB–YVAD secretion vector pSCTB–YVAD by modifying the rCTB secretion vector pSCTB. L. casei secreting rCTB–YVAD was generated by transformation with pSCTB–YVAD. Both the culture supernatant of pSCTB–YVAD-transformed L. casei and purified rCTB–YVAD bound to GM1 ganglioside, as did the culture supernatant of pSCTB-transformed L. casei and purified rCTB. Interestingly, although both purified rCTB–YVAD and rCTB translocated into Caco-2 cells, regardless of lipopolysaccharide (LPS), only purified rCTB–YVAD but not rCTB inhibited LPS-induced caspase-1 activation and subsequent IL-1β secretion in Caco-2 cells, without affecting cell viability. Conclusions The rCTB protein fused to a functional peptide secreted by L. casei can bind to GM1 ganglioside, like rCTB, and recombinant YVAD secreted by L. casei may exert anti-inflammatory effects in the intestine. Therefore, rCTB secreted by L. casei has potential utility as a vector for the delivery of YVAD to IECs. PMID:24884459

  16. Localized External Beam Radiation Therapy (EBRT) to the Pelvis Induces Systemic IL-1Beta and TNF-Alpha Production: Role of the TNF-Alpha Signaling in EBRT-Induced