Science.gov

Sample records for 1b 5-ht1b receptors

  1. Recombinant saphenous vein 5-HT1B receptors of the rabbit: comparative pharmacology with human 5-HT1B receptors.

    PubMed

    Wurch, T; Palmier, C; Colpaert, F C; Pauwels, P J

    1997-01-01

    1. The rabbit recombinant saphenous vein 5-hydroxytryptamine1B (r 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by measuring adenosine 3':5'-cyclic monophosphate (cycle AMP) formation upon exposure to various 5-HT receptor ligands. The effects of agonists and antagonists were compared with their effects determined previously at the human cloned 5-HT1B (h 5-HT1B) receptor under similar experimental conditions. 2. Intact C6-glial cells expressing rb HT1B receptors exhibited [3H]-5-carboxamidotryptamine (5-CT) binding sites with a Kd of 0.80 +/- 0.13 nM and a Bmax between 225 to 570 fmol mg-1 protein. The binding affinities of a series of 5-HT receptor ligands determined in a membrane preparation with [3H]-5-CT or [3H]-N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-(-4 -pyridyl) benzamide (GR 125,743) were similar. With the exception of ketanserin, ligand affinities were comparable to those determined at the clones h 5-HT1B receptor site. 3. rb 5-HT1B receptors were negatively coupled to cyclic AMP formation upon stimulation with 5-HT agonists. Of the several 5-HT agonists tested, 5-CT was the most potent, the potency rank order being: 5-CT > 5-HT > zolmitriptan > naratriptan > rizatriptan > sumatriptan > R (+)-8-(hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). The maximal responses of these agonists were similar to those induced by 5-HT. The potency of these agonists showed a positive correlation (r2 = 0.87; P < 0.002) with their potency at the cloned h 5-HT1B receptor subtype. 4. 2'-Methyl-4-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carboxylic acid [4-methoxy-e-(4-methyl-piperazin-1-yl)-phenyl]-amide (GR 127,935), methiothepin and ketanserin each behaved as silent, competitive antagonists at rb 5HT1B receptors; pKB values were 8.41, 8.32 and 7.05, respectively when naratriptan was used as an agonist. These estimates accorded with their binding affinities and the potencies found on 5-HT and/or sumatriptan

  2. 5-HT1B receptor modulation of the serotonin transporter in vivo: studies using KO mice.

    PubMed

    Montañez, Sylvia; Munn, Jaclyn L; Owens, W Anthony; Horton, Rebecca E; Daws, Lynette C

    2014-07-01

    The serotonin transporter (SERT) controls the strength and duration of serotonergic neurotransmission by the high-affinity uptake of serotonin (5-HT) from extracellular fluid. SERT is a key target for many psychotherapeutic and abused drugs, therefore understanding how SERT activity and expression are regulated is of fundamental importance. A growing literature suggests that SERT activity is under regulatory control of the 5-HT1B autoreceptor. The present studies made use of mice with a constitutive reduction (5-HT1B+/-) or knockout of 5-HT1B receptors (5-HT1B-/-), as well as mice with a constitutive knockout of SERT (SERT-/-) to further explore the relationship between SERT activity and 5-HT1B receptor expression. High-speed chronoamperometry was used to measure clearance of 5-HT from CA3 region of hippocampus in vivo. Serotonin clearance rate, over a range of 5-HT concentrations, did not differ among 5-HT1B receptor genotypes, nor did [(3)H]cyanoimipramine binding to SERT in this brain region, suggesting that SERT activity is not affected by constitutive reduction or loss of 5-HT1B receptors; alternatively, it might be that other transport mechanisms for 5-HT compensate for loss of 5-HT1B receptors. Consistent with previous reports, we found that the 5-HT1B receptor antagonist, cyanopindolol, inhibited 5-HT clearance in wild-type mice. However, this effect of cyanopindolol was lost in 5-HT1B-/- mice and diminished in 5-HT1B+/- mice, indicating that the 5-HT1B receptor is necessary for cyanopindolol to inhibit 5-HT clearance. Likewise, cyanopindolol was without effect on 5-HT clearance in SERT-/- mice, demonstrating a requirement for the presence of both SERT and 5-HT1B receptors in order for cyanopindolol to inhibit 5-HT clearance in CA3 region of hippocampus. Our findings are consistent with SERT being under the regulatory control of 5-HT1B autoreceptors. Future studies to identify signaling pathways involved may help elucidate novel therapeutic targets for the

  3. Reappraisal of the serotonin 5-HT(1B) receptor gene in alcoholism: of mice and men.

    PubMed

    Gorwood, Philip; Aissi, Franck; Batel, Philippe; Adès, Jean; Cohen-Salmon, Charles; Hamon, Michel; Boni, Claudette; Lanfumey, Laurence

    2002-01-01

    Because pharmacological and genetic data supported the idea that serotonin receptors of the 5-HT(1B) type can play a modulatory role in alcohol consumption in both human and rodents, the 5-HT(1B) receptor gene is considered as a candidate gene for alcohol dependence. However, contradictory results have been reported as a positive association between alcohol dependence, and either the 861C or the 861G allele of the G861C polymorphism of the 5-HT(1B) receptor gene can be found in the literature. Further investigations in a population of 136 male alcoholics compared with 72 male control subjects demonstrated that none of these alleles was actually associated with alcohol dependence. In addition, in contrast with previous results of the literature, ethanol intake under free choice conditions (i.e., ethanol solution vs. water) was found to be similar in 5-HT(1B)-/- knock mice and paired wild-type controls. The 5-HT(1B) receptor gene may thus not be a key component in the genetic background underlying alcohol dependence in human and alcohol preference in rodents, although these results should be considered as preliminary according to the small size of our sample. PMID:11827742

  4. Interaction between 5-HT1B receptors and nitric oxide in zebrafish responses to novelty.

    PubMed

    Maximino, Caio; Lima, Monica Gomes; Batista, Evander de Jesus Oliveira; Oliveira, Karen Renata Herculano Matos; Herculano, Anderson Manoel

    2015-02-19

    Nitric oxide (NO) and serotonin (5-HT) interact at the molecular and systems levels to control behavioral variables, including agression, fear, and reactions to novelty. In zebrafish, the 5-HT1B receptor has been implicated in anxiety and reactions to novelty, while the 5-HT1A receptor is associated with anxiety-like behavior; this role of the 5-HT1A receptor is mediated by NO. This work investigated whether NO also participates in the mediation of novelty responses by the 5-HT1B receptor. The 5-HT1B receptor inverse agonist SB 224,289 decreased bottom-dwelling and erratic swimming in zebrafish; the effects on bottom-dwelling, but not on erratic swimming, were blocked by pre-treatment with the nitric oxide synthase inhibitor L-NAME. These effects underline a novel mechanism by which 5-HT controls zebrafish reactivity to novel environments, with implications for the study of neotic reactions, exploratory behavior, and anxiety-like states. PMID:25545556

  5. Mechanisms of action of the 5-HT1B/1D receptor agonists.

    PubMed

    Tepper, Stewart J; Rapoport, Alan M; Sheftell, Fred D

    2002-07-01

    Recent studies of the pathophysiology of migraine provide evidence that the headache phase is associated with multiple physiologic actions. These actions include the release of vasoactive neuropeptides by the trigeminovascular system, vasodilation of intracranial extracerebral vessels, and increased nociceptive neurotransmission within the central trigeminocervical complex. The 5-HT(1B/1D) receptor agonists, collectively known as triptans, are a major advance in the treatment of migraine. The beneficial effects of the triptans in patients with migraine are related to their multiple mechanisms of action at sites implicated in the pathophysiology of migraine. These mechanisms are mediated by 5-HT(1B/1D) receptors and include vasoconstriction of painfully dilated cerebral blood vessels, inhibition of the release of vasoactive neuropeptides by trigeminal nerves, and inhibition of nociceptive neurotransmission. The high affinity of the triptans for 5-HT(1B/1D) receptors and their favorable pharmacologic properties contribute to the beneficial effects of these drugs, including rapid onset of action, effective relief of headache and associated symptoms, and low incidence of adverse effects. PMID:12117355

  6. Stimulation of 5-HT(1B) receptors enhances cocaine reinforcement yet reduces cocaine-seeking behavior.

    PubMed

    Pentkowski, Nathan S; Acosta, Jazmin I; Browning, Jenny R; Hamilton, Elizabeth C; Neisewander, Janet L

    2009-09-01

    Paradoxically, stimulation of 5-HT(1B) receptors (5-HT(1B)Rs) enhances sensitivity to the reinforcing effects of cocaine but attenuates incentive motivation for cocaine as measured using the extinction/reinstatement model. We revisited this issue by examining the effects of a 5-HT(1B)R agonist, CP94253, on cocaine reinforcement and cocaine-primed reinstatement, predicting that CP94253 would enhance cocaine-seeking behavior reinstated by a low priming dose, similar to its effect on cocaine reinforcement. Rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. For reinstatement experiments, they then underwent daily extinction training to reduce cocaine-seeking behavior (operant responses without cocaine reinforcement). Next, they were pre-treated with CP94253 (3-10 mg/kg, s.c.) and either tested for cocaine-primed (10 or 2.5 mg/kg, i.p.) or cue-elicited reinstatement of extinguished cocaine-seeking behavior. For reinforcement, effects of CP94253 (5.6 mg/kg) across a range of self-administered cocaine doses (0-1.5 mg/kg, i.v.) were examined. Cocaine dose-dependently reinstated cocaine-seeking behavior, but contrary to our prediction, CP94253 reduced reinstatement with both priming doses. Similarly, CP94253 reduced cue-elicited reinstatement. In contrast, CP94253 shifted the self-administration dose-effect curve leftward, consistent with enhanced cocaine reinforcement. When saline was substituted for cocaine, CP94253 reduced response rates (i.e. cocaine-seeking behavior). In subsequent control experiments, CP94253 decreased open-arm exploration in an elevated plus-maze suggesting an anxiogenic effect, but had no effect on locomotion or sucrose reinforcement. These results provide strong evidence that stimulation of 5-HT(1B)Rs produces opposite effects on cocaine reinforcement and cocaine-seeking behavior, and further suggest that 5-HT(1B)Rs may be a novel target for developing medications for cocaine dependence. PMID:19650818

  7. Distinct Circuits Underlie the Effects of 5-HT1B Receptors on Aggression and Impulsivity.

    PubMed

    Nautiyal, Katherine M; Tanaka, Kenji F; Barr, Mary M; Tritschler, Laurent; Le Dantec, Yannick; David, Denis J; Gardier, Alain M; Blanco, Carlos; Hen, René; Ahmari, Susanne E

    2015-05-01

    Impulsive and aggressive behaviors are both modulated by serotonergic signaling, specifically through the serotonin 1B receptor (5-HT1BR). 5-HT1BR knockout mice show increased aggression and impulsivity, and 5-HT1BR polymorphisms are associated with aggression and drug addiction in humans. To dissect the mechanisms by which the 5-HT1BR affects these phenotypes, we developed a mouse model to spatially and temporally regulate 5-HT1BR expression. Our results demonstrate that forebrain 5-HT1B heteroreceptors expressed during an early postnatal period contribute to the development of the neural systems underlying adult aggression. However, distinct heteroreceptors acting during adulthood are involved in mediating impulsivity. Correlating with the impulsivity, dopamine in the nucleus accumbens is elevated in the absence of 5-HT1BRs and normalized following adult rescue of the receptor. Overall, these data show that while adolescent expression of 5-HT1BRs influences aggressive behavior, a distinct set of 5-HT1B receptors modulates impulsive behavior during adulthood. PMID:25892302

  8. Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity

    PubMed Central

    Nautiyal, Katherine M.; Tanaka, Kenji F.; Barr, Mary M.; Tritschler, Laurent; Le Dantec, Yannick; David, Denis J.; Gardier, Alain M.; Blanco, Carlos; Hen, René; Ahmari, Susanne E.

    2015-01-01

    Summary Impulsive and aggressive behaviors are both modulated by serotonergic signaling, specifically through the serotonin 1B receptor (5-HT1BR). 5-HT1BR knockout mice show increased aggression and impulsivity, and 5-HT1BR polymorphisms are associated with aggression and drug addiction in humans. To dissect the mechanisms by which the 5-HT1BR affects these phenotypes, we developed a mouse model to spatially and temporally regulate 5-HT1BR expression. Our results demonstrate that forebrain 5-HT1B heteroreceptors expressed during an early postnatal period contribute to the development of the neural systems underlying adult aggression. However, distinct heteroreceptors acting during adulthood are involved in mediating impulsivity. Correlating with the impulsivity, dopamine in the nucleus accumbens is elevated in the absence of 5-HT1BRs, and normalized following adult rescue of the receptor. Overall, these data show that while adolescent expression of 5-HT1BRs influences aggressive behavior, a distinct set of 5-HT1B receptors modulate impulsive behavior during adulthood. PMID:25892302

  9. Arterial expression of 5-HT2B and 5-HT1B receptors during development of DOCA-salt hypertension

    PubMed Central

    Banes, Amy KL; Watts, Stephanie W

    2003-01-01

    Background 5-hydroxytryptamine (5-HT)2B and 5-HT1B receptors are upregulated in arteries from hypertensive DOCA-salt rats and directly by mineralocorticoids. We hypothesized that increased 5-HT2B and 5-HT1B receptor density and contractile function would precede increased blood pressure in DOCA-high salt rats. We performed DOCA-salt time course (days 1, 3, 5 and 7) studies using treatment groups of: DOCA-high salt, DOCA-low salt, Sham and Sham-high salt rats. Results In isolated-tissue baths, DOCA-high salt aorta contracted to the 5-HT2B receptor agonist BW723C86 on day 1; Sham aorta did not contract. The 5-HT1B receptor agonist CP93129 had no effect in arteries from any group. On days 3, 5 and 7 CP93129 and BW723C86 contracted DOCA-high salt and Sham-high salt aorta; Sham and DOCA-low salt aorta did not respond. Western analysis of DOCA-high salt aortic homogenates revealed increased 5-HT2B receptor levels by day 3; 5-HT1B receptor density was unchanged. Aortic homogenates from the other groups showed unchanged 5-HT2B and 5-HT1B receptor levels. Conclusion These data suggest that functional changes of 5-HT2B but not 5-HT1B receptors may play a role in the development of DOCA-salt hypertension. PMID:12974983

  10. Increased expression of 5-HT1B receptors by Herpes simplex virus gene transfer in septal neurons: new in-vitro and in-vivo models to study 5-HT1B receptor function

    PubMed Central

    Riegert, Céline; Rothmaier, Anna Katharina; Leemhuis, Jost; Sexton, Timothy J.; Neumaier, John F.; Cassel, Jean-Christophe; Jackisch, Rolf

    2009-01-01

    Serotonergic modulation of acetylcholine (ACh) release after neuron-specific increase of the expression of 5-HT1B receptors by gene transfer was studied in-vitro and in-vivo. The increased expression of the 5-HT1B receptor in-vitro was induced by treating rat primary fetal septal cell cultures for 3 days with a viral vector inducing the expression of green fluorescent protein alone (GFP vector), or, in addition, of 5-HT1B receptors (HA1B/GFP vector). The transfection resulted in a high number of GFP-positive cells, part of which being immunopositive for choline acetyltransferase. In HA1B/GFP-cultures (vs. GFP-cultures), electrically-evoked ACh release was significantly more sensitive to the inhibitory action of the 5-HT1B agonist CP-93,129. Increased expression of the 5-HT1B receptor in-vivo was induced by stereotaxic injections of the vectors into the rat septal region. Three days later, electrically-evoked release of ACh in hippocampal slices of HA1B/GFP-treated rats was lower than in their GFP-treated counterparts, showing a higher inhibitory efficacy of endogenous 5-HT on cholinergic terminals after transfection. Moreover, CP-93,129 had a higher inhibitory potency. In conclusion, the HA1B/GFP vector reveals a useful tool to induce a targeted increase of 5-HT1B heteroreceptors on cholinergic neurons in selected CNS regions, which provides interesting perspectives for functional approaches at more integrated levels. PMID:18502320

  11. Pharmacological analysis of G-protein activation mediated by guinea-pig recombinant 5-HT1B receptors in C6-glial cells: similarities with the human 5-HT1B receptor.

    PubMed

    Pauwels, P J; Wurch, T; Palmier, C; Colpaert, F C

    1998-01-01

    1. The guinea-pig recombinant 5-hydroxytryptamine1B (gp 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by monitoring G-protein activation in a membrane preparation with agonist-stimulated [35S]-GTPgammaS binding. The intrinsic activity of 5-HT receptor ligands was compared with that determined previously at the human recombinant 5-HT1B (h 5-HT1B) receptor under similar experimental conditions. 2. Membrane preparations of C6-glial/gp 5-HT1B cells exhibited [3H]-5-carboxamidotryptamine (5-CT) and [3H]-N-[4-methoxy-3,4-methylpiperazin-1-yl) phenyl]-3-methyl-4-(4-pyridinyl)benzamide (GR 125743) binding sites with a pKd of 9.62 to 9.85 and a Bmax between 2.1 to 6.4 fmol mg(-1) protein. The binding affinities of a series of 5-HT receptor ligands determined with [3H]-5-CT and [3H]-GR 125743 were similar. Ligand affinities were comparable to and correlated (r2: 0.74, P<0.001) with those determined at the recombinant h 5-HT1B receptor. 3. [35S]-GTPgammaS binding to membrane preparations of C6-glial/gp 5-HT1B cells was stimulated by the 5-HT receptor agonists that were being investigated. The maximal responses of naratriptan, zolmitriptan, sumatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethyl sulphonamide (CP 122638), rizatriptan and dihydroergotamine were between 0.76 and 0.85 compared to 5-HT. The potency of these agonists showed a positive correlation (r2: 0.72, P=0.015) with their potency at the recombinant h 5-HT1B receptor. 1-naphthylpiperazine, (+/-)-cyanopindolol and (2'-methyl-4'-(5-methyl[1,2,4] oxadiazole-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR 127935) elicited an even smaller response (Emax: 0.32 to 0.63). 4. The ligands 1'-methyl-5-(2'-methyl-4'-(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-carbonyl)-2,3,6,7tetrahydrospiro [furo[2,3-f]indole-3-spiro-4'-piperidine] (SB224289), methiothepin and ritanserin displayed inhibition of basal [35S]-GTPgammaS binding at concentrations

  12. Association Between 5HT1b Receptor Gene and Methamphetamine Dependence

    PubMed Central

    Ujike, H; Kishimoto, M; Okahisa, Y; Kodama, M; Takaki, M; Inada, T; Uchimura, N; Yamada, M; Iwata, N; Iyo, M; Sora, I; Ozaki, N

    2011-01-01

    Several lines of evidence implicate serotonergic dysfunction in diverse psychiatric disorders including anxiety, depression, and drug abuse. Mice with a knock-out of the 5HT1b receptor gene (HTR1B) displayed increased locomotor response to cocaine and elevated motivation to self-administer cocaine and alcohol. Previous genetic studies showed significant associations of HTR1B with alcohol dependence and substance abuse, but were followed by inconsistent results. We examined a case-control genetic association study of HTR1B with methamphetamine-dependence patients in a Japanese population. The subjects were 231 patients with methamphetamine dependence, 214 of whom had a co-morbidity of methamphetamine psychosis, and 248 age- and sex-matched healthy controls. The three single nucleotide polymorphisms (SNPs), rs130058 (A-165T), rs1228814 (A-700C) and rs1228814 (A+1180G) of HTR1B were genotyped. There was no significant difference in allelic and genotypic distributions of the SNPs between methamphetamine dependence and the control. Genetic associations of HTR1B were tested with several clinical phenotypes of methamphetamine dependence and/or psychosis, such as age at first abuse, duration of latency from the first abuse to onset of psychosis, prognosis of psychosis after therapy, and complication of spontaneous relapse of psychotic state. There was, however, no asscocation between any SNP and the clinical phenotypes. Haplotype analyses showed the three SNPs examined were within linkage disequilibrium, which implied that the three SNPs covered the whole HTR1B, and distribution of estimated haplotype frequency was not different between the groups. The present findings may indicate that HTR1B does not play a major role in individual susceptibility to methamphetamine dependence or development of methamphetamine-induced psychosis. PMID:21886584

  13. [Regulation of potential-dependant calcium channels by 5-HT1B serotonin receptors in various populations of hippocampal cells].

    PubMed

    Kononov, A V; Ivanov, S V; Zinchenko, V P

    2013-01-01

    Metabotropic serotonin receptors of 5HT1-type in brain neurons participate in regulation of such human emotional states as aggression, fear and dependence on alcohol. Activated presynaptic 5-HT1B receptors suppress the Ca2+ influx through the potential-dependent calcium channels in certain neurons. The Ca2+ influx into the cells has been measured by increase of calcium ions concentration in cytoplasm in reply to the depolarization caused by 35mM KC1. Using system of image analysis in hippocampal cells culture we found out that Ca2+-signals to depolarization oin various populations of neurons differed in form, speed and amplitude. 5HT1B receptor agonists in 86 +/- 3 % of neurons slightly suppressed the activity of potential-dependent calcium channels. Two minor cell populations (5-8 % of cells each) were found out, that strongly differed in Ca2+ signal desensitization. Calcium signal caused by depolarization in one cells population differed in characteristic delay and high rate of decay. 5HT1B receptor agonists strongly inhibited the amplitude of the Ca2+ response on KCl only in this population of neurons. The calcium signal in second cell population differed by absence desensitization and smaller amplitude which constantly increased during depolarization. 5HT 1 B receptor agonists increased the calcium response amplitude to depolarization in this population of neurons. Thus we show various sensitivity of potential-dependent calcium channels of separate neurons to 5HTB1 receptor agonist. PMID:23659057

  14. Behavioural evidence of agonist-like effect of isoteoline at 5-HT1B serotonergic receptors in mice.

    PubMed

    Zhelyazkova-Savova, Maria D; Zhelyazkov, Delcho K

    2003-01-01

    Isoteoline is a compound of aporphine structure derived from the alkaloid glaucine. Previous studies with isoteoline have shown antagonistic activity at 5-HT(2C) serotonergic receptors. We have investigated whether isoteoline interacts with 5-HT(1B) receptors. An isolation-induced social behavioural deficit test in mice was used as a model of stimulation of these receptors. The deficit in the behaviour of isolated mice in this experimental procedure was reported to be sensitive to 5-HT(1B)-receptor stimulation, since agonists at these receptors are capable of reversing it. In our study, we used N-(3-trifluoromethylphenyl)piperazine (TFMPP) (2 mg kg(-1)) as a reference agonist at these receptor sites. TFMPP completely restored the normal behaviour of the isolated mice. Its effect was prevented by propranolol (4 mg kg(-1)), a beta-adrenergic receptor antagonist with a high affinity for 5-HT(1B) receptors, which was inactive by itself. When isoteoline was given before TFMPP, it did not prevent the effect of the latter. Given alone at doses of 0.25, 1, 4 or 8 mg kg(-1), isoteoline showed an effect of its own to normalize the behaviour of isolated mice. The effect of isoteoline (1 mg kg(-1), i.p.) was antagonized by pretreatment with propranolol, indicating that it was mediated through stimulation of 5-HT(1B) receptors. Repeated treatment with isoteoline (1 mg kg(-1), 2 x 3 days, i.p.) produced tolerance to its effect and significantly attenuated the effect of TFMPP, when animals were tested 16 h after the last injection. In conclusion, the results provided functional evidence of agonist-like activity of isoteoline at the 5-HT(1B) receptors. PMID:12625876

  15. 5-HT1B receptors inhibit glutamate release from primary afferent terminals in rat medullary dorsal horn neurons

    PubMed Central

    Choi, I-S; Cho, J-H; An, C-H; Jung, J-K; Hur, Y-K; Choi, J-K; Jang, I-S

    2012-01-01

    BACKGROUND AND PURPOSE Although 5-HT1B receptors are expressed in trigeminal sensory neurons, it is still not known whether these receptors can modulate nociceptive transmission from primary afferents onto medullary dorsal horn neurons. EXPERIMENTAL APPROACH Primary afferent-evoked EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices using a conventional whole-cell patch clamp technique under a voltage-clamp condition. KEY RESULTS CP93129, a selective 5-HT1B receptor agonist, reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, CP93129 reduced the frequency of spontaneous miniature EPSCs without affecting the current amplitude. The CP93129-induced inhibition of EPSCs was significantly occluded by GR55562, a 5-HT1B/1D receptor antagonist, but not LY310762, a 5-HT1D receptor antagonist. Sumatriptan, an anti-migraine drug, also decreased EPSC amplitude, and this effect was partially blocked by either GR55562 or LY310762. On the other hand, primary afferent-evoked EPSCs were mediated by the Ca2+ influx passing through both presynaptic N-type and P/Q-type Ca2+ channels. The CP93129-induced inhibition of EPSCs was significantly occluded by ω-conotoxin GVIA, an N-type Ca2+ channel blocker. CONCLUSIONS AND IMPLICATIONS The present results suggest that the activation of presynaptic 5-HT1B receptors reduces glutamate release from primary afferent terminals onto medullary dorsal horn neurons, and that 5-HT1B receptors could be, at the very least, a potential target for the treatment of pain from orofacial tissues. LINKED ARTICLE This article is commented on by Connor, pp. 353–355 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01963.x PMID:22462474

  16. Triptan-induced contractile (5-HT1B receptor) responses in human cerebral and coronary arteries: relationship to clinical effect.

    PubMed

    Edvinsson, Lars; Uddman, Erik; Wackenfors, Angelica; Davenport, Anthony; Longmore, Jenny; Malmsjö, Malin

    2005-09-01

    Triptans are agonists at 5-HT1B and 5-HT1D (where 5-HT is 5-hydroxytryptamine; serotonin) receptors and cause vasoconstriction of isolated blood vessels. The aim of the present study was to determine vasoconstrictor potency (EC50) of triptans in human coronary and cerebral arteries and to examine whether there was any relationship with the maximal plasma concentrations (Cmax; nM) of the drugs achieved following oral administration of clinically relevant doses to man using values reported in the literature. We also examined the expression of 5-HT1B receptors in atherosclerotic and normal coronary arteries. The vasocontractile responses to sumatriptan, rizatriptan or eletriptan were characterized by in vitro pharmacology. The ratio of Cmax/EC50 was calculated. 5-HT1B and 5-HT1D receptors were visualized by immunohistochemical techniques in coronary arteries. Sumatriptan, rizatriptan and eletriptan were powerful vasoconstrictors in cerebral artery. The rank order of agonist potency was eletriptan=rizatriptan=sumatriptan. In the coronary artery, the triptans were weaker vasoconstrictors. The rank order of potency was similar. In cerebral artery the ratio of Cmax/EC50 was not significantly different from unity, indicating a relationship between these two parameters. In general for the coronary artery, the ratios were significantly less than unity, indicating no direct relationship. Immunohistochemistry showed expression of 5-HT1B receptors in the medial layer, but did not reveal any obvious difference in 5-HT1B receptor expression between normal and atherosclerotic coronary arteries. The results support the notion that triptans are selective vasoconstrictors of cerebral arteries over coronary arteries and that there is a relationship between vasoconstrictor potency in cerebral arteries and clinically relevant plasma levels. PMID:15853772

  17. Gi-protein-coupled 5-HT1B/D receptor agonist sumatriptan induces type I hyperalgesic priming.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-08-01

    We have recently described a novel form of hyperalgesic priming (type II) induced by agonists at two clinically important Gi-protein-coupled receptors (Gi-GPCRs), mu-opioid and A1-adenosine. Like mu-opioids, the antimigraine triptans, which act at 5-HT1B/D Gi-GPCRs, have been implicated in pain chronification. We determined whether sumatriptan, a prototypical 5-HT1B/D agonist, produces type II priming. Characteristic of hyperalgesic priming, intradermal injection of sumatriptan (10 ng) induced a change in nociceptor function such that a subsequent injection of prostaglandin-E2 (PGE2) induces prolonged mechanical hyperalgesia. However, onset to priming was delayed 3 days, characteristic of type I priming. Also characteristic of type I priming, a protein kinase Cε, but not a protein kinase A inhibitor attenuated the prolongation phase of PGE2 hyperalgesia. The prolongation of PGE2 hyperalgesia was also permanently reversed by intradermal injection of cordycepin, a protein translation inhibitor. Also, hyperalgesic priming did not occur in animals pretreated with pertussis toxin or isolectin B4-positive nociceptor toxin, IB4-saporin. Finally, as observed for other agonists that induce type I priming, sumatriptan did not induce priming in female rats. The prolongation of PGE2 hyperalgesia induced by sumatriptan was partially prevented by coinjection of antagonists for the 5-HT1B and 5-HT1D, but not 5-HT7, serotonin receptors and completely prevented by coadministration of a combination of the 5-HT1B and 5-HT1D antagonists. Moreover, the injection of selective agonists, for 5-HT1B and 5-HT1D receptors, also induced hyperalgesic priming. Our results suggest that sumatriptan, which signals through Gi-GPCRs, induces type I hyperalgesic priming, unlike agonists at other Gi-GPCRs, which induce type II priming. PMID:27075428

  18. Stimulation of 5-HT1B receptors enhances cocaine reinforcement yet reduces cocaine-seeking behavior

    PubMed Central

    Pentkowski, Nathan S.; Acosta, Jazmin I.; Browning, Jenny R.; Hamilton, Elizabeth C.; Neisewander, Janet L.

    2010-01-01

    Paradoxically, stimulation of 5-HT1B receptors (5-HT1BRs) enhances sensitivity to the reinforcing effects of cocaine but attenuates incentive motivation for cocaine as measured using the extinction/reinstatement model. We revisited this issue by examining the effects of a 5-HT1BR agonist, CP94253, on cocaine reinforcement and cocaine-primed reinstatement, predicting that CP94253would enhance cocaine-seeking behavior reinstated by a low priming dose, similar to its effect on cocaine reinforcement. Rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. For reinstatement experiments, they then underwent daily extinction training to reduce cocaine-seeking behavior (operant responses without cocaine reinforcement). Next, they were pre-treated with CP94253 (3–10 mg/kg, s.c.) and either tested for cocaine-primed (10 or 2.5 mg/kg, i.p.) or cue-elicited reinstatement of extinguished cocaine-seeking behavior. For reinforcement, effects of CP94253 (5.6 mg/kg) across a range of self-administered cocaine doses (0–1.5 mg/kg, i.v.) were examined. Cocaine dose-dependently reinstated cocaine-seeking behavior, but contrary to our prediction, CP94253 reduced reinstatement with both priming doses. Similarly, CP94253 reduced cue-elicited reinstatement. In contrast, CP94253 shifted the self-administration dose-effect curve leftward, consistent with enhanced cocaine reinforcement. When saline was substituted for cocaine, CP94253 reduced response rates (i.e. cocaine-seeking behavior). In subsequent control experiments, CP94253 decreased open-arm exploration in an elevated plus-maze suggesting an anxiogenic effect, but had no effect on locomotion or sucrose reinforcement. These results provide strong evidence that stimulation of 5-HT1BRs produces opposite effects on cocaine reinforcement and cocaine-seeking behavior, and further suggest that 5-HT1BRs may be a novel target for developing medications for cocaine dependence. PMID:19650818

  19. Involvement of 5-HT1B receptors in triptan-induced contractile responses in guinea-pig isolated iliac artery.

    PubMed

    Jähnichen, S; Radtke, O A; Pertz, H H

    2004-07-01

    Using a series of triptans we characterized in vitro the 5-hydroxytryptamine (5-HT) receptor that mediates the contraction in guinea-pig iliac arteries moderately precontracted by prostaglandin F2alpha (PGF2alpha). Additionally, we investigated by reverse-transcriptase polymerase chain reaction (RT-PCR) which triptan-sensitive receptor is present in this tissue. Frovatriptan, zolmitriptan, rizatriptan, naratriptan, sumatriptan, and almotriptan contracted guinea-pig iliac arteries with pD2 values of 7.52+/-0.04, 6.72+/-0.03, 6.38+/-0.06, 6.22+/-0.05, 5.86+/-0.05 and 5.26+/-0.04 respectively. For comparison, the pD2 values for 5-HT and 5-carboxamidotryptamine (5-CT) were 7.52+/-0.02 and 7.55+/-0.03 respectively. In contrast to all other triptans tested, the concentration-response curve for eletriptan was biphasic (first phase: 0.01-3 microM, pD2 approximately 6.6; second phase: > or = 10 microM). Contractions to 5-HT, 5-CT, frovatriptan, zolmitriptan, rizatriptan, naratriptan, sumatriptan, almotriptan, and eletriptan (first phase) were antagonized by the 5-HT1B/1D receptor antagonist GR127935 (10 nM) and the 5-HT1B receptor antagonist SB216641 (10 nM). RT-PCR studies in guinea-pig iliac arteries showed a strong signal for the 5-HT1B receptor while expression of 5-HT1D and 5-HT1F receptors was not detected in any sample. The present results demonstrate that triptan-induced contraction in guinea-pig iliac arteries is mediated by the 5-HT1B receptor. The guinea-pig iliac artery may be used as a convenient in vitro model to study the (cardio)vascular side-effect potential of anti-migraine drugs of the triptan family. PMID:15185063

  20. 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice.

    PubMed

    Evrard, A; Laporte, A M; Chastanet, M; Hen, R; Hamon, M; Adrien, J

    1999-11-01

    The characteristics of the spontaneous firing of serotoninergic neurons in the dorsal raphe nucleus and its control by serotonin (5-hydroxytryptamine, 5-HT) receptors were investigated in wild-type and 5-HT1B knock-out (5-HT1B-/-) mice of the 129/Sv strain, anaesthetized with chloral hydrate. In both groups of mice, 5-HT neurons exhibited a regular activity with an identical firing rate of 0.5-4.5 spikes/s. Intravenous administration of the 5-HT reuptake inhibitor citalopram or the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced a dose-dependent inhibition of 5-HT neuronal firing which could be reversed by the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xane carboxamide (WAY 100635). Both strains were equally sensitive to 8-OH-DPAT (ED50 approximately 6.3 microgram/kg i.v.), but the mutants were less sensitive than wild-type animals to citalopram (ED50 = 0.49 +/- 0.02 and 0.28 +/- 0.01 mg/kg i.v., respectively, P < 0.05). This difference could be reduced by pre-treatment of wild-type mice with the 5-HT1B/1D antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carbox yli c acid [4-methoxy-3-(4-methyl-piperazine-1-yl)-phenyl]amide (GR 127935), and might be accounted for by the lack of 5-HT1B receptors and a higher density of 5-HT reuptake sites (specifically labelled by [3H]citalopram) in 5-HT1B-/- mice. In wild-type but not 5-HT1B-/- mice, the 5-HT1B agonists 3-(1,2,5, 6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253, 3 mg/kg i.v.) and 5-methoxy-3-(1,2,3, 6-tetrahydropyridin-4-yl)-1H-indole (RU 24969, 0.6 mg/kg i.v.) increased the firing rate of 5-HT neurons (+22.4 +/- 2.8% and +13.7 +/- 6.0%, respectively, P < 0.05), and this effect could be prevented by the 5-HT1B antagonist GR 127935 (1 mg/kg i.v.). Altogether, these data indicate that in the mouse, the firing of 5-HT neurons in the dorsal raphe nucleus is under both an inhibitory control through 5-HT1A

  1. Differential effect of viral overexpression of nucleus accumbens shell 5-HT1B receptors on stress- and cocaine priming-induced reinstatement of cocaine seeking

    PubMed Central

    Nair, Sunila G.; Furay, Amy R.; Liu, Yusha; Neumaier, John F.

    2013-01-01

    5-HT1B receptors are densely expressed on terminals of medium spiny neurons projecting from the nucleus accumbens shell (NAccSh) to the ventral tegmental area, where 5-HT1B receptors modulate GABA release directly, and firing of dopaminergic neurons indirectly. While interactions between NAccSh 5-HT1B receptors and stress have been reported in early stages of psychostimulant-induced neuroadaptations, specifically psychomotor sensitization, the effect of this interaction on later stages of drug seeking is currently unknown. Here, we examined the effect of herpes simplex virus (HSV)-mediated overexpression of NAccSh 5-HT1B receptors on reinstatement of cocaine seeking induced by exposure to stress or a cocaine prime. Rats were trained to self-administer cocaine (0.75 mg/kg/infusion) and the operant response was extinguished. Rats were then injected with viral vector expressing 5-HT1B and green fluorescent protein (GFP) or GFP alone into the NAccSh. The effect of 5-HT1B receptor overexpression was assessed on reinstatement induced by intermittent footshock (0.5 mA for 15 minutes) or a cocaine prime (10 mg/kg, ip). Results indicate that NAccSh 5-HT1B receptor overexpression had no effect on footshock reinstatement while significantly decreasing cocaine priming-induced reinstatement. We also found that NAccSh overexpression of 5-HT1B receptors had no effect on saccharin intake following social defeat stress. These results suggest that the efficacy of pharmacological agents targeting 5-HT1B receptors for the treatment of cocaine relapse will depend largely on the nature of the reinstating stimulus. Taken together with previous results it appears that NAccSh 5-HT1B receptors influence stress responses in early, but not in the later stages of psychostimulant-induced neuroadaptations. PMID:24075973

  2. Endurance training effects on 5-HT(1B) receptors mRNA expression in cerebellum, striatum, frontal cortex and hippocampus of rats.

    PubMed

    Chennaoui, M; Drogou, C; Gomez-Merino, D; Grimaldi, B; Fillion, G; Guezennec, C Y

    2001-07-01

    The 5-HT(1B) receptors are the predominant auto- and heteroreceptors located on serotonergic and non-serotonergic terminals where they regulate the neuronal release of neurotransmitters. The present study investigated the effects of a 7 week period of physical training on the expression of cerebral 5-HT(1B) receptors by measuring corresponding mRNA levels in rat. Using RNase protection assay technique, we have observed no change in 5-HT(1B) receptor mRNA levels in the striatum and in the hippocampus after moderate as well as after intensive training. In contrast, a significant decrease in 5-HT(1B) receptor mRNA levels was observed in cerebellum of intensively trained rats. Moreover, in frontal cortex, a significant decrease in 5-HT(1B) receptors mRNA level occurred in both groups of trained rats. These data suggest the existence of regional differences in the effect of physical exercise on the expression of 5-HT(1B) receptors. PMID:11516568

  3. Pharmacological Evidence for an Abstinence-Induced Switch in 5-HT1B Receptor Modulation of Cocaine Self-Administration and Cocaine-Seeking Behavior

    PubMed Central

    2013-01-01

    Studies examining serotonin-1B (5-HT1B) receptor manipulations on cocaine self-administration and cocaine-seeking behavior initially seemed discrepant. However, we recently suggested based on viral-mediated 5-HT1B-receptor gene transfer that the discrepancies are likely due to differences in the length of abstinence from cocaine prior to testing. To further validate our findings pharmacologically, we examined the effects of the selective 5-HT1B receptor agonist CP 94,253 (5.6 mg/kg, s.c.) on cocaine self-administration during maintenance and after a period of protracted abstinence with or without daily extinction training. We also examined agonist effects on cocaine-seeking behavior at different time points during abstinence. During maintenance, CP 94,253 shifted the cocaine self-administration dose–effect function on an FR5 schedule of reinforcement to the left, whereas following 21 days of abstinence CP 94,253 downshifted the function and also decreased responding on a progressive ratio schedule of reinforcement regardless of extinction history. CP 94,253 also attenuated cue-elicited and cocaine-primed drug-seeking behavior following 5 days, but not 1 day, of forced abstinence. The attenuating effects of CP 94,253 on the descending limb of the cocaine dose–effect function were blocked by the selective 5-HT1B receptor antagonist SB 224289 (5 mg/kg, i.p.) at both time points, indicating 5-HT1B receptor mediation. The results support a switch in 5-HT1B receptor modulation of cocaine reinforcement from facilitatory during self-administration maintenance to inhibitory during protracted abstinence. These findings suggest that the 5-HT1B receptor may be a novel target for developing medication for treating cocaine dependence. PMID:24369697

  4. Pharmacological evidence for an abstinence-induced switch in 5-HT1B receptor modulation of cocaine self-administration and cocaine-seeking behavior.

    PubMed

    Pentkowski, Nathan S; Harder, Bryan G; Brunwasser, Samuel J; Bastle, Ryan M; Peartree, Natalie A; Yanamandra, Krishna; Adams, Matt D; Der-Ghazarian, Taleen; Neisewander, Janet L

    2014-03-19

    Studies examining serotonin-1B (5-HT1B) receptor manipulations on cocaine self-administration and cocaine-seeking behavior initially seemed discrepant. However, we recently suggested based on viral-mediated 5-HT1B-receptor gene transfer that the discrepancies are likely due to differences in the length of abstinence from cocaine prior to testing. To further validate our findings pharmacologically, we examined the effects of the selective 5-HT1B receptor agonist CP 94,253 (5.6 mg/kg, s.c.) on cocaine self-administration during maintenance and after a period of protracted abstinence with or without daily extinction training. We also examined agonist effects on cocaine-seeking behavior at different time points during abstinence. During maintenance, CP 94,253 shifted the cocaine self-administration dose-effect function on an FR5 schedule of reinforcement to the left, whereas following 21 days of abstinence CP 94,253 downshifted the function and also decreased responding on a progressive ratio schedule of reinforcement regardless of extinction history. CP 94,253 also attenuated cue-elicited and cocaine-primed drug-seeking behavior following 5 days, but not 1 day, of forced abstinence. The attenuating effects of CP 94,253 on the descending limb of the cocaine dose-effect function were blocked by the selective 5-HT1B receptor antagonist SB 224289 (5 mg/kg, i.p.) at both time points, indicating 5-HT1B receptor mediation. The results support a switch in 5-HT1B receptor modulation of cocaine reinforcement from facilitatory during self-administration maintenance to inhibitory during protracted abstinence. These findings suggest that the 5-HT1B receptor may be a novel target for developing medication for treating cocaine dependence. PMID:24369697

  5. The TRPM8 channel forms a complex with the 5-HT(1B) receptor and phospholipase D that amplifies its reversal of pain hypersensitivity.

    PubMed

    Vinuela-Fernandez, Ignacio; Sun, Liting; Jerina, Helen; Curtis, John; Allchorne, Andrew; Gooding, Hayley; Rosie, Roberta; Holland, Pamela; Tas, Basak; Mitchell, Rory; Fleetwood-Walker, Sue

    2014-04-01

    Effective relief from chronic hypersensitive pain states remains an unmet need. Here we report the discovery that the TRPM8 ion channel, co-operating with the 5-HT(1B) receptor (5-HT(1B)R) in a subset of sensory afferents, exerts an influence at the spinal cord level to suppress central hypersensitivity in pain processing throughout the central nervous system. Using cell line models, ex vivo rat neural tissue and in vivo pain models, we assessed functional Ca(2+) fluorometric responses, protein:protein interactions, immuno-localisation and reflex pain behaviours, with pharmacological and molecular interventions. We report 5-HT(1B)R expression in many TRPM8-containing afferents and direct interaction of these proteins in a novel multi-protein signalling complex, which includes phospholipase D1 (PLD1). We provide evidence that the 5-HT(1B)R activates PLD1 to subsequently activate PIP 5-kinase and generate PIP2, an allosteric enhancer of TRPM8, achieving a several-fold increase in potency of TRPM8 activation. The enhanced activation responses of synaptoneurosomes prepared from spinal cord and cortical regions of animals with a chronic inflammatory pain state are inhibited by TRPM8 activators that were applied in vivo topically to the skin, an effect potentiated by co-administered 5-HT(1B)R agonists and attenuated by 5-HT(1B)R antagonists, while 5-HT(1B)R agents alone had no detectable effect. Corresponding results are seen when assessing reflex behaviours in inflammatory and neuropathic pain models. Control experiments with alternative receptor/TRP channel combinations reveal no such synergy. Identification of this novel receptor/effector/channel complex and its impact on nociceptive processing give new insights into possible strategies for enhanced analgesia in chronic pain. PMID:24269608

  6. Pharmacological analysis of the haemodynamic effects of 5-HT1B/D receptor agonists in the normotensive rat

    PubMed Central

    Pagniez, Fabrice; Valentin, Jean-Pierre; Vieu, Sylvie; Colpaert, Francis C; John, Gareth W

    1998-01-01

    The receptors involved in mediating the haemodynamic effects of three 5-HT1B/D receptor agonists were investigated in pentobarbitone anaesthetized rats (n=6–17 per group).Cumulative intravenous (i.v.) infusions of rizatriptan and sumatriptan (from 0.63 to 2500 μg kg−1; each dose over 5 min) induced dose-dependent and marked hypotension (−42±6 and −34±4 mmHg at the highest dose, respectively; both P<0.05 vs vehicle: +5±3 mmHg) and bradycardia (−85±16 and −44±12 beats min−1 at the highest dose, respectively; both P<0.05 vs vehicle: +16±6 beats min−1). Zolmitriptan evoked only moderate hypotension at the highest dose (−19±9 mmHg; P<0.05 vs vehicle).A high dose of the 5-HT1B/D receptor antagonist, GR 127935 (0.63 mg kg−1, i.v.), failed to antagonize the hypotension and bradycardia evoked by sumatriptan (−35±6 mmHg and −52±19 beats min−1, respectively; both not significant vs sumatriptan in untreated rats), but moderately reduced the hypotension and bradycardia evoked by rizatriptan (−20±5 mmHg and −30±17 beats min−1, respectively; both P<0.05 vs vehicle and vs rizatriptan in untreated rats).The selective 5-HT1A receptor antagonist, WAY 100635 (0.16 and 0.63 mg kg−1, i.v.), dose-dependently attenuated the haemodynamic responses evoked by rizatriptan and sumatriptan, which were almost abolished by the higher dose of WAY 100635 (−4±3 mmHg and −15±8 beats min−1; both not significant vs vehicle and P<0.05 vs rizatriptan in untreated rats). A slight but statistically significant reduction in mean arterial pressure (MAP) persisted at the highest dose of sumatriptan (−13±4 mmHg following the higher dose of WAY 100635; P<0.05 vs vehicle).In pithed rats with MAP normalized by angiotensin II, rizatriptan failed to induce hypotension or bradycardia (+5±4 mmHg and −6±16 beats min−1, respectively; both NS vs vehicle and P<0.05 vs rizatriptan in untreated rats). Similarly, sumatriptan failed

  7. How efficacious are 5-HT1B/D receptor ligands: an answer from GTP gamma S binding studies with stably transfected C6-glial cell lines.

    PubMed

    Pauwels, P J; Tardif, S; Palmier, C; Wurch, T; Colpaert, F C

    1997-01-01

    The intrinsic activity of a series of 5-hydroxytryptamine (serotonin, 5-HT) receptor ligands was analysed at recombinant h5-HT1B and h5-HT1D receptor sites using a [35S]GTP gamma S binding assay and membrane preparations of stably transfected C6-glial cell lines. Compounds either stimulated or inhibited [35S]GTP gamma S binding to a membrane preparation containing either h5-HT1B or h5-HT1D receptors. The potencies observed for most of the compounds at the h5-HT1B receptor subtype correlated with their potencies measured by inhibition of stimulated cAMP formation on intact cells. Apparent agonist potencies in the [35S]GTP gamma S binding assay to C6-glial/h5-HT1D membranes were, with the exception of 2-[5-[3-(4-methylsulphonylamino)benzyl-1 2,4-oxadiazol-5-yl]-1H-indol-3-yl] ethanamine (L694247), 5- to 13-times lower than in the cAMP assay on intact cells. This suggests that receptor coupling in the h5-HT1D membrane preparation is less efficient than that in the intact cell. It further appeared that 6-times more h5-HT1D than h5-HT1B binding sites were required to attain a similar, maximal (73%), 5-HT-stimulated [35S]GTP gamma S binding response: Hence, the h5-HT1B receptor in C6-glial cell membranes could be more efficiently coupled, even though some compounds more readily displayed intrinsic activity at h5-HT1D receptor sites [e.g. dihydroergotamine and (2'-methyl-4'-(5-methyl[1,2,4]oxadiazol-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR127935)]. Efficacy differences were apparent for most of the compounds (sumatriptan, zolmitriptan, rizatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethyl sulfonamide (CP122638), dihydroergotamine, naratriptan and GR127935) that stimulated [35S]GTP gamma S binding compared to the native agonist 5-HT. The observed maximal responses were different for the h5-HT1B and h5-HT1D receptor subtypes. Few compounds behaved as full agonists: L694247, zolmitriptan and sumatriptan did so at

  8. Neurochemical Correlates of Accumbal Dopamine D2 and Amygdaloid 5-HT1B Receptor Densities on Observational Learning of Aggression

    PubMed Central

    Suzuki, Hideo; Lucas, Louis R.

    2015-01-01

    Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called “chronic passive exposure to aggression,” changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, our study used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or non-aggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in the bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased 5-HT1BR density in the bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA in predicting high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms for observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions. PMID:25650085

  9. The effects of aging and chronic fluoxetine treatment on circadian rhythms and suprachiasmatic nucleus expression of neuropeptide genes and 5-HT1B receptors

    PubMed Central

    Duncan, Marilyn J.; Hester, James M.; Hopper, Jason A.; Franklin, Kathleen M.

    2010-01-01

    Age-related changes in circadian rhythms, including attenuation of photic phase shifts, are associated with changes in the central pacemaker in the suprachiasmatic nucleus (SCN). Aging decreases expression of mRNA for vasoactive intestinal peptide (VIP), a key neuropeptide for rhythm generation and photic phase shifts, and increases expression of serotonin transporters and 5-HT1B receptors, whose activation inhibits these phase shifts. Here we describe studies in hamsters showing that aging decreases SCN expression of mRNA for gastrin-releasing peptide, which also modulates photic phase resetting. Because serotonin innervation trophically supports SCN VIP mRNA expression, and serotonin transporters decrease extracellular serotonin, we predicted that chronic administration of the serotonin-selective reuptake inhibitor, fluoxetine, would attenuate the age-related changes in SCN VIP mRNA expression and 5-HT1B receptors. In situ hybridization studies showed that fluoxetine treatment does not alter SCN VIP mRNA expression, in either age group, at zeitgeber time (ZT)6 or 13 (ZT12 corresponds to lights off). However, receptor autoradiographic studies showed that fluoxetine prevents the age-related increase in SCN 5-HT1B receptors at ZT6, and decreases SCN 5-HT1B receptors in both ages at ZT13. Therefore, aging effects on SCN VIP mRNA and SCN 5-HT1B receptors are differentially regulated; the age-related increase in serotonin transporter sites mediates the latter but not the former. The studies also showed that aging and chronic fluoxetine treatment decrease total daily wheel running without altering the phase of the circadian wheel running rhythm, in contrast to previous reports of phase resetting by acute fluoxetine treatment. PMID:20525077

  10. Interaction of 5-HT1B/D ligands with recombinant h 5-HT1A receptors: intrinsic activity and modulation by G-protein activation state.

    PubMed

    Pauwels, P J; Palmier, C; Dupuis, D S; Colpaert, F C

    1998-05-01

    Many 5-HT1B/D receptor ligands have affinity for 5-HT1A receptors. In the present study, the intrinsic activity of a series of 5-HT1B/D ligands was investigated at human 5-HT1A (h 5-HT1A) receptors by measuring G-protein activation in recombinant C6-glial and HeLa membranes, using agonist-stimulated [35S]GTPgammaS binding. In these two membrane preparations, the density of h 5-HT1A receptors (i.e., 246 to 320 fmol mg(-1) protein) and of their G-proteins, and the receptor: G-protein density ratio (0.08 to 0.18) appeared to be similar. It was found that: (i) the maximal [35S]GTPgammaS binding responses induced by the 5-HT1B/D receptor ligands in the HeLa preparation at 30 microM GDP were comparable to that of the native agonist 5-HT; (ii) as compared to 5-HT (1.00), similar potencies but lower maximal responses were observed in the C6-glial preparation at 0.3 microM GDP for zolmitriptan (0.89), dihydroergotamine (0.81), rizatriptan (0.71), CP122638 (0.69), naratriptan (0.60) and sumatriptan (0.53); and that (iii) maximal [35S]GTPgammaS binding responses induced by 5-HT1B/D ligands in the C6-glial preparation were either unaffected or significantly enhanced by increasing the GDP concentration from 0.3 to 30 microM and higher concentrations. These features differ from those observed with 5-HT1A receptor agonists; the latter display the same rank order of potency and efficacy in both membrane preparations, and increasing the amount of GDP with C6-glial membranes results in an attenuation of both the agonist's maximal effect and the apparent potency of partial agonists. The differential regulation of 5-HT1A and 5-HT1B/D agonist responses by GDP suggests that different G-protein subtypes are involved upon 5-HT1A receptor activation by 5-HT1A and 5-HT1B/D agonists. PMID:9650800

  11. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    PubMed

    Gurbuz, Nilgun; Ashour, Ahmed A; Alpay, S Neslihan; Ozpolat, Bulent

    2014-01-01

    Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa) patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT) contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA), induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT), concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification, and valuable new

  12. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    PubMed

    Gurbuz, Nilgun; Ashour, Ahmed A; Alpay, S Neslihan; Ozpolat, Bulent

    2014-01-01

    Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa) patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT) contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA), induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT), concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification, and valuable new

  13. Role of 5-HT5A and 5-HT1B/1D receptors in the antinociception produced by ergotamine and valerenic acid in the rat formalin test.

    PubMed

    Vidal-Cantú, Guadalupe C; Jiménez-Hernández, Mildred; Rocha-González, Héctor I; Villalón, Carlos M; Granados-Soto, Vinicio; Muñoz-Islas, Enriqueta

    2016-06-15

    Sumatriptan, dihydroergotamine and methysergide inhibit 1% formalin-induced nociception by activation of peripheral 5-HT1B/1D receptors. This study set out to investigate the pharmacological profile of the antinociception produced by intrathecal and intraplantar administration of ergotamine (a 5-HT1B/1D and 5-HT5A/5B receptor agonist) and valerenic acid (a partial agonist at 5-HT5A receptors). Intraplantar injection of 1% formalin in the right hind paw resulted in spontaneous flinching behavior of the injected hindpaw of female Wistar rats. Intrathecal ergotamine (15nmol) or valerenic acid (1 nmol) blocked in a dose dependent manner formalin-induced nociception. The antinociception by intrathecal ergotamine (15nmol) or valerenic acid (1nmol) was partly or completely blocked by intrathecal administration of the antagonists: (i) methiothepin (non-selective 5-HT5A/5B; 0.01-0.1nmol); (ii) SB-699551 (selective 5-HT5A; up to 10nmol); (iii) anti-5-HT5A antibody; (iv) SB-224289 (selective 5-HT1B; 0.1-1nmol); or (v) BRL-15572 (selective 5-HT1D; 0.1-1nmol). Likewise, antinociception by intraplantar ergotamine (15nmol) and valerenic acid (10nmol) was: (i) partially blocked by methiothepin (1nmol), SB-699551 (10nmol) or SB-224289 (1nmol); and (ii) abolished by BRL-15572 (1nmol). The above doses of antagonists (which did not affect per se the formalin-induced nociception) were high enough to completely block their respective receptors. Our results suggest that ergotamine and valerenic acid produce antinociception via 5-HT5A and 5-HT1B/1D receptors located at both spinal and peripheral sites. This provides new evidence for understanding the modulation of nociceptive pathways in inflammatory pain. PMID:27068146

  14. Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTR1B) G861C polymorphism.

    PubMed

    Huang, Yung-yu; Oquendo, Maria A; Friedman, Jill M Harkavy; Greenhill, Lawrence L; Brodsky, Beth; Malone, Kevin M; Khait, Vadim; Mann, J John

    2003-01-01

    The 5-HT(1B) receptor has been implicated in several psychopathologies, including pathological aggression, alcoholism and suicide. To test these and related potential genetic relationships in a single population, the human 5-HT(1B) receptor (h5-HTR(1B)) genotype for the G861C polymorphism was determined in 394 psychiatric patients and 96 healthy volunteers. Structured clinical interviews generated DSM III-R diagnoses. No significant association of the genotype or allele frequencies of the h5-HTR(1B) G861C locus was observed with diagnoses of alcoholism, bipolar disorder, schizophrenia or a history of a suicide attempt. Exploratory analyses indicated an association of the genotype and allele frequencies of the h5-HTR(1B) G861C locus with a history of substance abuse disorder (chi(2) = 9.51, df = 2, p = 0.009; chi(2) = 7.31, df = 1, p = 0.007, respectively) and with a diagnosis of a major depressive episode (chi(2) = 6.83, df = 2, p = 0.033; chi(2) = 5.81, df = 1, p = 0.016, respectively). Significant gene dose effects on the risk for substance abuse disorder and a major depressive episode were observed with the 861C allele (Armitage linearity tendency test: chi(2) = 7.20, df = 1, p = 0.008; chi(2) = 6.80, df = 1, p = 0.009, respectively). Substance abuse disorder and major depression appear to be associated with the h5-HTR(1B) G861C locus in the patient population, but other psychopathologies such as bipolar disorder, schizophrenia, alcoholism, and suicide attempts were not found to be associated with this polymorphism. This preliminary result will need replication, given the limitations of association studies. PMID:12496953

  15. Serotonin 5-HT1B receptor-mediated calcium influx-independent presynaptic inhibition of GABA release onto rat basal forebrain cholinergic neurons.

    PubMed

    Nishijo, Takuma; Momiyama, Toshihiko

    2016-07-01

    Modulatory roles of serotonin (5-HT) in GABAergic transmission onto basal forebrain cholinergic neurons were investigated, using whole-cell patch-clamp technique in the rat brain slices. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by focal stimulation. Bath application of 5-HT (0.1-300 μm) reversibly suppressed the amplitude of evoked IPSCs in a concentration-dependent manner. Application of a 5-HT1B receptor agonist, CP93129, also suppressed the evoked IPSCs, whereas a 5-HT1A receptor agonist, 8-OH-DPAT had little effect on the evoked IPSCs amplitude. In the presence of NAS-181, a 5-HT1B receptor antagonist, 5-HT-induced suppression of evoked IPSCs was antagonised, whereas NAN-190, a 5-HT1A receptor antagonist did not antagonise the 5-HT-induced suppression of evoked IPSCs. Bath application of 5-HT reduced the frequency of spontaneous miniature IPSCs without changing their amplitude distribution. The effect of 5-HT on miniature IPSCs remained unchanged when extracellular Ca(2+) was replaced by Mg(2+) . The paired-pulse ratio was increased by CP93129. In the presence of ω-CgTX, the N-type Ca(2+) channel blocker, ω-Aga-TK, the P/Q-type Ca(2+) channel blocker, or SNX-482, the R-type Ca(2+) channel blocker, 5-HT could still inhibit the evoked IPSCs. 4-AP, a K(+) channel blocker, enhanced the evoked IPSCs, and CP93129 had no longer inhibitory effect in the presence of 4-AP. CP93129 increased the number of action potentials elicited by depolarising current pulses. These results suggest that activation of presynaptic 5-HT1B receptors on the terminals of GABAergic afferents to basal forebrain cholinergic neurons inhibits GABA release in Ca(2+) influx-independent manner by modulation of K(+) channels, leading to enhancement of neuronal activities. PMID:27177433

  16. Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxy-tryptamine (5-HT1B/1D) receptors

    PubMed Central

    Goadsby, Peter J; Knight, Yolande

    1997-01-01

    The observation that 5-hydroxytryptamine (5-HT) is effective in treating acute attacks of migraine when administered intravenously resulted in a research effort that led to the discovery of the 5-HT1B/1D receptor agonist sumatriptan. Clinical experience has shown sumatriptan to be an effective treatment with some limitations, such as relatively poor bioavailability, which naratriptan was developed to address. Increasing bioavailability has been achieved with greater lipophilicity and thus the potential for greater activity in the central nervous system. In this study the increased access to central sites has been exploited in an attempt to characterize the pharmacology of those central receptors with the newer tools available. Trigeminovascular activation was examined in the model of superior sagittal sinus stimulation. Cats were anaesthetized with α-chloralose (60 mg kg−1, intraperitoneal), paralyzed (gallamine 6 mg kg−1, intravenously) and ventilated. The superior sagittal sinus was accessed and isolated for electrical stimulation (250 μs pulses, 0.3 Hz, 100 V) by a mid-line circular craniotomy. The region of the dorsal surface of C2 spinal cord was exposed by a laminectomy and an electrode placed for recording evoked activity from sinus stimulation. Stimulation of the superior sagittal sinus resulted in activation of cells in the dorsal horn of C2. Cells fired with a probability of 0.69±0.1 at a latency of 9.2±0.2 ms. Intravenous (i.v.) administration of naratriptan at clinically relevant doses (30 and 100 μg kg−1), inhibited neuronal activity in trigeminal neurones of the C2 dorsal horn, reducing probability of firing without affecting latency. The effect of naratriptan could be reversed by administration of the selective 5-HT1B/1D receptor antagonist GR127935 (100 μg kg−1, i.v.). These data establish that naratriptan acts on central trigeminal neurones since sagittal sinus stimulation activates axons within the tentorial

  17. Effects of physical training on functional activity of 5-HT1B receptors in rat central nervous system: role of 5-HT-moduline.

    PubMed

    Chennaoui, M; Grimaldi, B; Fillion, M P; Bonnin, A; Drogou, C; Fillion, G; Guezennec, C Y

    2000-06-01

    The effect of physical exercise was examined on the sensitivity of 5-HT1B receptors and on 5-HT-moduline tissue concentration in the central nervous system of rats. Rats were trained for 7 consecutive weeks to run on a treadmill. Three groups of animals were selected: group 1, sedentary rats (controls); group 2, animals running for 1 h at 18 m/min for 5 days per week (moderate training) and group 3, animals running for 2 h, at 30 m/min on a 7% grade for 5 days per week (intensive training). The animals were sacrificed 24 h after the last running. Rat brains were dissected out to obtain hippocampus and substantia nigra and kept at -80 degrees C until use. 5-HT1B receptor activity was determined by studying [35S]GTPgammaS binding in a substantia nigra membrane preparation from individual animals, after stimulation by a selective 5-HT1B receptor agonist (CP 93,129). 5-HT-moduline tissue content in hippocampus from individual animals was determined by ELISA using a polyclonal anti-5-HT-moduline antibody. In moderately trained animals (n=5), the CP 93,129-stimulated [35S]GTPgammaS binding curve was shifted to the right compared with controls (n=6), whereas the binding was totally suppressed in intensely trained animals (n=5). In parallel, 5-HT-moduline tissue concentration in the hippocampus was slightly increased in moderately trained animals (117.3 +/- 8.9%) (n=5), whereas it was significantly increased in intensely trained animals (182.6 +/- 29.5%) (n=5) compared to controls (100 +/- 6.11%) (n=6). These results show that 5-HT1B receptors are slightly desensitized in moderately trained animals and totally desensitized in intensely trained animals; moreover, they suggest that the observed desensitization is related to an increase of 5-HT-moduline tissue content; this mechanism may play a role in various pathophysiological conditions. PMID:10882034

  18. Changes in social instigation- and food restriction-induced aggressive behaviors and hippocampal 5HT1B mRNA receptor expression in male mice from early weaning.

    PubMed

    Nakamura, Kayo; Kikusui, Takefumi; Takeuchi, Yukari; Mori, Yuji

    2008-03-01

    The time of weaning has numerous effects on neurobehavioral development. Previous findings suggest that the early weaning influences development of aggressive behaviors. Behavioral and neuroendocrine responsiveness to stressors in the adulthood are also influenced by maternal care received early in life, and early-weaned male mice and rats show higher responsiveness to acute stresses than do normally weaned males. Therefore, it is conceivable that early weaning influences stress-related aggressive behaviors. We investigated the effects of early weaning on aggressive behaviors under two stress conditions: social stress (social instigation) and ecological stress (food restriction), both of which augment aggression. Male ICR mice were divided into two groups based on weaning period. Normally weaned mice (weaned PD21) showed twice the baseline level of attack bites after 5 min of social instigation, whereas early-weaned animals (weaned PD14) were not more aggressive following social instigation. However, the early-weaned mice were more aggressive after food restriction stress than were the normally weaned mice, suggesting lower threshold for aggressive behavior after food shortage. We also measured 5HT1A and 5HT1B receptor mRNA expression in the hippocampus which involved in aggression using real-time PCR. Early-weaned mice had lower 5HT1B expression levels than did normally weaned mice; no effect was found for 5HT1A expression. These results suggest that manipulation of weaning time modulates adult aggressive behavior depending on the stressors imposed and that this change may involve the 5HT1B receptor system in the hippocampus. PMID:18022705

  19. The opposite effect of a 5-HT1B receptor agonist on 5-HT synthesis, as well as its resistant counterpart, in an animal model of depression

    PubMed Central

    Skelin, Ivan; Kovačević, Tomislav; Sato, Hiroki; Diksic, Mirko

    2013-01-01

    Flinders Sensitive Line (FSL) rat is as an animal model of depression with altered parameters of the serotonergic (5-HT) system function (5-HT synthesis rates, tissue concentrations, release, receptor density and affinity), as well as an altered sensitivity of these parameters to different 5-HT based antidepressants. The effects of acute and chronic treatments with the 5-HT1B agonist, CP-94253 on 5-HT synthesis, in the FSL rats and the Flinders Resistant Line (FRL) controls were measured using α-[14C]methyl-L-tryptophan (α-MTrp) autoradiography. CP-94253 (5 mg/kg), or an adequate volume of saline, was injected i.p. as a single dose in the acute experiment or delivered via the subcutaneously implanted osmotic minipump (5 mg/kg/day for 14 days) in the chronic experiment. The acute treatment with CP-94253 significantly decreased the 5-HT synthesis in both the FRL and FSL rats, with a more widespread effect in the FRL rats. Chronic treatment with CP-94253 significantly decreased 5-HT synthesis in the FRL rats, while 5-HT synthesis in the FSL rats was significantly increased throughout the brain. In both the acute and chronic experiment, the FRL rats had higher brain 5-HT synthesis rates, relative to the FSL rats. The shift in the direction of the treatment effect from acute to chronic, using the 5-HT1B agonist, CP-94253, on 5-HT synthesis in the FSL model of depression, with an opposite effect on the control FRL rats, suggests the differential adaptation of the 5-HT system in the FSL and FRL rats to chronic stimulation of 5-HT1B receptors. PMID:22542420

  20. [Suppressing effect of the serotonin 5HT1B/D receptor agonist rizatriptan on calcitonin gene-related peptide (CGRP) concentration in migraine attacks].

    PubMed

    Stepień, Adam; Jagustyn, Piotr; Trafny, Elzbieta Anna; Widerkiewicz, Krzysztof

    2003-01-01

    Calcitonin gene-related peptide (CGRP) is one of the neuropeptides most abundant in the nervous tissue. Recent studies indicate that local cranial release of CGRP from the trigeminal nerve perivascular endings within arachnoidea plays an important role in the pathophysiology of migraine attacks and cluster headaches. Elevated CGRP levels in cranial venous blood (in the jugular vein) during an acute spontaneous migraine attack have been reported in rather few studies so far. Sumatriptan--a selective serotonin 5HT1B/D receptor agonist, highly effective in terminating migraine attacks, decreases the elevated CGRP level back to normal. The aim of our study was to determine the effect of rizatriptan (a drug from a new generation of triptans) on CGRP release in migraine attacks. In 45 patients suffering from migraine attacks with and without aura, plasma CGRP levels were assessed during an attack twice: before treatment and two hours after rizatriptan administration. In the group under study the plasma CGRP level before treatment was significantly higher than that measured two hours after rizatriptan administration. The decrease in CGRP levels was associated with subsidence of the migraine attack. There was no difference between migraine patients with and without aura. These results suggest that triptans as serotonin 5HT1B/D receptor agonists decrease CGRP plasma concentration in migraine attacks. PMID:15174248

  1. The involvement of intracellular Ca2+ in 5-HT1B/1D receptor-mediated contraction of the rabbit isolated renal artery

    PubMed Central

    Hill, P B; Dora, K A; Hughes, A D; Garland, C J

    2000-01-01

    5-Hydroxytryptamine1B/1D (5-HT1B/1D) receptor coupling to contraction was investigated in endothelium-denuded rabbit isolated renal arteries, by simultaneously measuring tension and intracellular [Ca2+], and tension in permeabilized smooth muscle cells.In intact arterial segments, 1 nM–10 μM 5-HT failed to induce contraction or increase the fura-2 fluorescence ratio (in the presence of 1 μM ketanserin and prazosin to block 5-HT2 and α1-adrenergic receptors, respectively). However, in vessels pre-exposed to either 20 mM K+ or 30 nM U46619, 5-HT stimulated concentration-dependent increases in both tension and intracellular [Ca2+].1 nM–10 μM U46619 induced concentration-dependent contractions. In the presence of nifedipine (0.3 and 1 μM) the maximal contraction to U46619 (10 μM) was reduced by around 70%. The residual contraction was abolished by the putative receptor operated channel inhibitor, SKF 96365 (2 μM).With 0.3 μM nifedipine present, 100 nM U46619 evoked similar contraction to 30 nM U46619 in the absence of nifedipine, but contraction to 5-HT (1 nM–10 μM) was abolished.In permeabilized arterial segments, 10 mM caffeine, 1 μM IP3 or 100 μM phenylephrine, each evoked transient contractions by releasing Ca2+ from intracellular stores, whereas 5-HT had no effect. In intact arterial segments pre-stimulated with 20 mM K+, 5-HT-evoked contractions were unaffected by 1 μM thapsigargin, which inhibits sarco- and endoplasmic reticulum calcium-ATPases.In vessels permeabilized with α-toxin and then pre-contracted with Ca2+ and GTP, 5-HT evoked further contraction, reflecting increased myofilament Ca2+-sensitivity.Contraction linked to 5-HT1B/1D receptor stimulation in the rabbit renal artery can be explained by an influx of external Ca2+ through voltage-dependent Ca2+ channels and sensitization of the contractile myofilaments to existing levels of Ca2+, with no release of Ca2+ from intracellular stores. PMID

  2. Confirmation of fenfluramine effect on 5-HT1B receptor binding of [11C]AZ10419369 using an equilibrium approach

    PubMed Central

    Finnema, Sjoerd J; Varrone, Andrea; Hwang, Tzung-Jeng; Halldin, Christer; Farde, Lars

    2012-01-01

    Assessment of serotonin release in the living brain with positron emission tomography (PET) may have been hampered by the lack of suitable radioligands. We previously reported that fenfluramine caused a dose-dependent reduction in specific binding in monkeys using a classical displacement paradigm with bolus administration of [11C]AZ10419369. The aim of this study was to confirm our previous findings using an equilibrium approach in monkey. A total of 24 PET measurements were conducted using a bolus infusion protocol of [11C]AZ10419369 in three cynomolgus monkeys. Initial PET measurements were performed to assess suitable Kbol values. The fenfluramine effect on [11C]AZ10419369 binding was evaluated in a displacement and pretreatment paradigm. The effect of fenfluramine on [11C]AZ10419369 binding potential (BPND) was dose-dependent in the displacement paradigm and confirmed in the pretreatment paradigm. After pretreatment administration of fenfluramine (5.0 mg/kg), the mean BPND of the occipital cortex decreased by 39%, from 1.38±0.04 to 0.84±0.09. This study confirms that the new 5-HT1B receptor radioligand [11C]AZ10419369 is sensitive to fenfluramine-induced changes in endogenous serotonin levels in vivo. The more advanced methodology is suitable for exploring the sensitivity limit to serotonin release as measured using [11C]AZ10419369 and PET. PMID:22167236

  3. Altered serotonin and dopamine metabolism in the CNS of serotonin 5-HT(1A) or 5-HT(1B) receptor knockout mice.

    PubMed

    Ase, A R; Reader, T A; Hen, R; Riad, M; Descarries, L

    2000-12-01

    Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts. PMID:11080193

  4. Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: Implications for medications development

    PubMed Central

    Neisewander, Janet L.; Cheung, Timothy H. C.; Pentkowski, Nathan S.

    2014-01-01

    Addiction to psychostimulants, including cocaine and amphetamine, is associated with dysregulation of dopamine and serotonin (5-HT) neurotransmitter systems. Neuroadaptations in these systems vary depending on the stage of the drug taking-abstinence-relapse cycle. Consequently, the effects of potential treatments that target these systems may vary depending on whether they are given during abstinence or relapse. In this review, we discuss evidence that dopamine D3 receptors (D3Rs) and 5-HT1B receptors (5-HT1BRs) are dysregulated in response to both chronic psychostimulant use and subsequent abstinence. We then review findings from preclinical self-administration models which support targeting D3Rs and 5-HT1BRs as potential medications for psychostimulant dependence. Potential side effects of the treatments are discussed and attention is given to studies reporting positive treatment outcomes that depend on: 1) whether testing occurs during abstinence versus relapse, 2) whether escalation of drug self-administration has occurred, 3) whether the treatments are given repeatedly, and 4) whether social factors influence treatment outcomes. We conclude that D3/D2 agonists may decrease psychostimulant intake; however, side effects of D3/D2R full agonists may limit their therapeutic potential, whereas D3/D2R partial agonists likely have fewer undesirable side effects. D3-selective antagonists may not reduce psychostimulant intake during relapse, but nonetheless, may decrease motivation for seeking psychostimulants with relatively few side-effects. 5-HT1BR agonists provide a striking example of treatment outcomes that are dependent on the stage of the addiction cycle. Specifically, these agonists initially increase cocaine’s reinforcing effects during maintenance of self-administration, but after a period of abstinence they reduce psychostimulant seeking and the resumption of self-administration. In conclusion, we suggest that factors contributing to dysregulation of

  5. Effects of 5-HT1B/1D receptor agonist rizatriptan on cerebral blood flow and blood volume in normal circulation.

    PubMed

    Okazawa, Hidehiko; Tsuchida, Tatsuro; Pagani, Marco; Mori, Tetsuya; Kobayashi, Masato; Tanaka, Fumiko; Yonekura, Yoshiharu

    2006-01-01

    To investigate the vasoconstrictor effect of 5-hydroxytryptamine (5-HT1B/1D) receptor agonists for migraine treatment, changes in cerebral blood flow (CBF) and blood volume induced by rizatriptan were assessed by positron emission tomography (PET). Eleven healthy volunteers underwent PET studies before and after rizatriptan administration. Dynamic PET data were acquired after bolus injection of H2(15)O to analyze CBF and arterial-to-capillary blood volume (V0) images using the three-weighted integral method. After a baseline scan, three further acquisitions were performed at 40 to 50, 60 and 70 to 80 mins after drug administration. Global and regional differences in CBF and V0 between conditions were compared using absolute values in the whole brain and cortical regions, as well as statistical parametric mapping (SPM) analysis. The global and regional values for CBF and V0 decreased significantly after rizatriptan administration compared with the baseline condition. However, both values recovered to baseline within 80 mins after treatment. The maximal reduction in global CBF and V0 was approximately 13% of baseline value. The greatest decrease in CBF was observed approximately 60 mins after drug administration, whereas the maximal reduction in V0 was observed approximately 5 mins earlier. Statistical parametric mapping did not highlight any regional differences between conditions. Thus, in brain circulation, rizatriptan caused significant CBF and V0 decreases, which are consistent with the vasoconstrictor effect of triptans on the large cerebral arteries. The gradual recovery in the late phase from the maximal CBF and V0 decrease suggests that rizatriptan does not affect the cerebral autoregulatory response in small arteries induced by CBF reduction. PMID:15944648

  6. Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: Implications for medications development.

    PubMed

    Neisewander, Janet L; Cheung, Timothy H C; Pentkowski, Nathan S

    2014-01-01

    Addiction to psychostimulants, including cocaine and amphetamine, is associated with dysregulation of dopamine and serotonin (5-HT) neurotransmitter systems. Neuroadaptations in these systems vary depending on the stage of the drug taking-abstinence-relapse cycle. Consequently, the effects of potential treatments that target these systems may vary depending on whether they are given during abstinence or relapse. In this review, we discuss evidence that dopamine D3 receptors (D3Rs) and 5-HT1B receptors (5-HT1BRs) are dysregulated in response to both chronic psychostimulant use and subsequent abstinence. We then review findings from preclinical self-administration models which support targeting D3Rs and 5-HT1BRs as potential medications for psychostimulant dependence. Potential side effects of the treatments are discussed and attention is given to studies reporting positive treatment outcomes that depend on: 1) whether testing occurs during self-administration versus abstinence, 2) whether escalation of drug self-administration has occurred, 3) whether the treatments are given repeatedly, and 4) whether social factors influence treatment outcomes. We conclude that D3/D2 agonists may decrease psychostimulant intake; however, side effects of D3/D2R full agonists may limit their therapeutic potential, whereas D3/D2R partial agonists have fewer undesirable side effects. D3-selective antagonists may not reduce psychostimulant intake during relapse, but nonetheless, may decrease motivation for seeking psychostimulants with relatively few side-effects. 5-HT1BR agonists provide a striking example of treatment outcomes that are dependent on the stage of the addiction cycle. Specifically, these agonists initially increase cocaine's reinforcing effects during maintenance of self-administration, but after a period of abstinence they reduce psychostimulant seeking and the resumption of self-administration. In conclusion, we suggest that factors contributing to dysregulation of

  7. Characterisation of the 5-HT receptor binding profile of eletriptan and kinetics of [3H]eletriptan binding at human 5-HT1B and 5-HT1D receptors.

    PubMed

    Napier, C; Stewart, M; Melrose, H; Hopkins, B; McHarg, A; Wallis, R

    1999-03-01

    The affinity of eletriptan ((R)-3-(1-methyl-2-pyrrolidinylmethyl)-5-[2-(phenylsulphonyl )ethyl]-1H-indole) for a range of 5-HT receptors was compared to values obtained for other 5-HT1B/1D receptor agonists known to be effective in the treatment of migraine. Eletriptan, like sumatriptan, zolmitriptan, naratriptan and rizatriptan had highest affinity for the human 5-HT1B, 5-HT1D and putative 5-ht1f receptor. Kinetic studies comparing the binding of [3H]eletriptan and [3H]sumatriptan to the human recombinant 5-HT1B and 5-HT1D receptors expressed in HeLa cells revealed that both radioligands bound with high specificity (>90%) and reached equilibrium within 10-15 min. However, [3H]eletriptan had over 6-fold higher affinity than [3H]sumatriptan at the 5-HT1D receptor (K(D)): 0.92 and 6.58 nM, respectively) and over 3-fold higher affinity than [3H]sumatriptan at the 5-HT1B receptor (K(D): 3.14 and 11.07 nM, respectively). Association and dissociation rates for both radioligands could only be accurately determined at the 5-HT1D receptor and then only at 4 degrees C. At this temperature, [3H]eletriptan had a significantly (P<0.05) faster association rate (K(on) 0.249 min(-1) nM(-1)) than [3H]sumatriptan (K(on) 0.024 min(-1) nM(-1)) and a significantly (P<0.05) slower off-rate (K(off) 0.027 min(-1) compared to 0.037 min(-1) for [3H]sumatriptan). These data indicate that eletriptan is a potent ligand at the human 5-HT1B, 5-HT1D, and 5-ht1f receptors and are consistent with its potent vasoconstrictor activity and use as a drug for the acute treatment of migraine headache. PMID:10193663

  8. Synthesis and serotonergic activity of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives: novel antagonists for the vascular 5-HT(1B)-like receptor.

    PubMed

    Moloney, G P; Martin, G R; Mathews, N; Milne, A; Hobbs, H; Dodsworth, S; Sang, P Y; Knight, C; Williams, M; Maxwell, M; Glen, R C

    1999-07-15

    The synthesis and vascular 5-HT(1B)-like receptor activity of a novel series of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives are described. Modifications to the 5-ethylene-linked heterocycle and to substituents on the 2-benzylamide side chain have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B)-like receptor of pK(B) > 7.0, up to 100-fold selectivity over alpha(1)-adrenoceptor affinity and 5-HT(2A) receptor affinity, and which exhibited a favorable pharmacokinetic profile. N-Benzyl-3-[2-(dimethylamino)ethyl]-5-[2-(4,4-dimethyl-2, 5-dioxo-1-imidazolidinyl)ethyl]-1H-indole-2-carboxamide (23) was identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B)-like receptor-mediated agonist activity in the rabbit femoral artery), and competitive vascular 5-HT(1B)-like receptor antagonist with a plasma elimination half-life of approximately 4 h in dog plasma and with good oral bioavailability. The selectivity of compounds from this series for the vascular 5-HT(1B)-like receptors over other receptor subtypes is discussed as well as a proposed mode of binding to the receptor pharmacophore. It has been proposed that the aromatic ring of the 2, N-benzylcarboxamide group can occupy an aromatic binding site rather than the indole ring. The resulting conformation allows an amine-binding site to be occupied by the ethylamine nitrogen and a hydrogen-bonding site to be occupied by one of the hydantoin carbonyls. The electronic nature of the 2,N-benzylcarboxamide aromatic group as well as the size of substituents on this aromatic group is crucial for producing potent and selective antagonists. The structural requirement on the 3-ethylamine side chain incorporating the protonatable nitrogen is achieved by the bulky 2, N-benzylcarboxamide group and its close proximity to the 3-side chain. PMID:10411472

  9. The 5-HT1-like receptors mediating inhibition of sympathetic vasopressor outflow in the pithed rat: operational correlation with the 5-HT1A, 5-HT1B and 5-HT1D subtypes

    PubMed Central

    Villalón, Carlos M; Centurión, David; Rabelo, Gonzalo; de Vries, Peter; Saxena, Pramod R; Sánchez-López, Araceli

    1998-01-01

    It has been suggested that the inhibition of sympathetically-induced vasopressor responses produced by 5-hydroxytryptamine (5-HT) in pithed rats is mediated by 5-HT1-like receptors. The present study has re-analysed this suggestion with regard to the classification schemes recently proposed by the NC-IUPHAR subcommittee on 5-HT receptors.Intravenous (i.v.) continuous infusions of 5-HT and the 5-HT1 receptor agonists, 8-OH-DPAT (5-HT1A), indorenate (5-HT1A), CP 93,129 (5-HT1B) and sumatriptan (5-HT1B/1D), resulted in a dose-dependent inhibition of sympathetically-induced vasopressor responses.The sympatho-inhibitory responses induced by 5-HT, 8-OH-DPAT, indorenate, CP 93,129 or sumatriptan were analysed before and after i.v. treatment with blocking doses of the putative 5-HT receptor antagonists, WAY 100635 (5-HT1A), cyanopindolol (5-HT1A/1B) or GR 127935 (5-HT1B/1D). Thus, after WAY 100635, the responses to 5-HT and indorenate, but not to 8-OH-DPAT, CP 93,129 and sumatriptan, were blocked. After cyanopindolol, the responses to 5-HT, indorenate and CP 93,129 were abolished, whilst those to 8-OH-DPAT and sumatriptan (except at the lowest frequency of stimulation) remained unaltered. In contrast, after GR 127935, the responses to 5-HT, CP 93,129 and sumatriptan, but not to 8-OH-DPAT and indorenate, were abolished.In additional experiments, the inhibition induced by 5-HT was not modified after 5-HT7 receptor blocking doses of mesulergine.The above results suggest that the 5-HT1-like receptors, which inhibit the sympathetic vasopressor outflow in pithed rats, display the pharmacological profile of the 5-HT1A, 5-HT1B and 5-HT1D, but not that of 5-HT7, receptors. PMID:9692787

  10. Protracted withdrawal from cocaine self-administration flips the switch on 5-HT1B receptor modulation of cocaine-abuse related behaviors

    PubMed Central

    Pentkowski, Nathan S.; Cheung, Tim H.C.; Toy, William A.; Adams, Matthew D.; Neumaier, John F.; Neisewander, Janet L.

    2014-01-01

    Background The role of serotonin-1B receptors (5-HT1BRs) in modulating cocaine abuse-related behaviors has been controversial due to discrepancies between pharmacological and gene knockout approaches, and opposite influences on cocaine selfadministration versus cocaine-seeking behavior. We hypothesized that modulation of these behaviors via 5-HT1BRs in the mesolimbic pathway may vary depending on the stage of the addiction cycle. Methods To test this hypothesis, we examined the effects of increasing 5-HT1BR production by microinfusing a viral vector expressing either green fluorescent protein (GFP) and 5-HT1BR or GFP alone into the medial nucleus accumbens shell of rats either during maintenance of cocaine self-administration (i.e. active drug use) or during protracted withdrawal. Results 5-HT1BR-gene transfer during maintenance shifted the dose–response curve for cocaine self-administration upward and to the left and increased break points and cocaine intake on a progressive ratio (PR) schedule, consistent with enhanced reinforcing effects of cocaine. In contrast, following 21 days of forced abstinence 5-HT1BR-gene transfer attenuated break points and cocaine intake on a PR schedule of reinforcement, as well as cue- and cocaine-primed reinstatement of cocaineseeking behavior. Conclusions This unique pattern of effects suggests that mesolimbic 5-HT1BRs differentially modulate cocaine abuse-related behaviors, with a facilitative influence during periods of active drug use in striking contrast to an inhibitory influence during protracted withdrawal. These findings suggest that targeting 5-HT1BRs may lead to a novel treatment for cocaine dependence and that the therapeutic efficacy of these treatments may vary depending on the stage of the addiction cycle. PMID:22541946

  11. Testosterone and its metabolites modulate 5HT1A and 5HT1B agonist effects on intermale aggression.

    PubMed

    Simon, N G; Cologer-Clifford, A; Lu, S F; McKenna, S E; Hu, S

    1998-01-01

    Our understanding of the neurochemical and neuroendocrine systems' regulating the display of offensive intermale aggression has progressed substantially over the past twenty years. Pharmacological studies have shown that serotonin, via its action at 5HT1A and/or 5HT1B receptor sites, modulates the display of intermale aggressive behavior and that its effects serve to decrease behavioral expression. Neuroendocrine investigations, in turn, have demonstrated that male-typical aggression is testosterone-dependent and studies of genetic effects, metabolic function and steroid receptor binding have shown that facilitation of behavioral displays can occur via independent androgen-sensitive or estrogen-sensitive pathways. Remarkably, there have been virtually no studies that examined the interrelationship between these facilitative and inhibitory systems. As an initial step toward characterizing the interaction between the systems, studies were conducted that assessed hormonal modulation of serotonin function at 5HT1A and 5HT1B receptor sites. They demonstrated: (1) that the androgenic and estrogenic metabolites of testosterone differentially modulate the ability of systemically administered 8-OH-DPAT (a 5HT1A agonist) and CGS12066B (a 5HT1B agonist) to decrease offensive aggression; and (2) when microinjected into the lateral septum (LS) or medial preoptic area (MPO), the aggression-attenuating effects of 1A and 1B agonists differ regionally and vary with the steroidal milieu. In general, the results suggest that estrogens establish a restrictive environment for attenuation of T-dependent aggression by 8-OH-DPAT and CGS 12066B, while androgens either do not inhibit, or perhaps even facilitate, the ability of 5HT1A and 5HT1B agonists to reduce aggression. Potential mechanisms involved in the production of these steroidal effects are discussed and emerging issues that may impact on efforts to develop an integrative neurobiological model of offensive, intermale aggression

  12. Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation.

    PubMed

    Kim, Joung Min; Jeong, Seong Wook; Yang, Jihoon; Lee, Seong Heon; Kim, Woon Mo; Jeong, Seongtae; Bae, Hong Beom; Yoon, Myung Ha; Choi, Jeong Il

    2015-07-23

    Previous electrophysiological studies demonstrated a limited role of 5-hydroxytryptamine 3 receptor (5-HT3R), but facilitatory role of 5-HT1AR and 5-HT1BR in spinal nociceptive processing of carrageenan-induced inflammatory pain. The release of spinal 5-HT was shown to peak in early-phase and return to baseline in late-phase of carrageenan inflammation. We examined the role of the descending serotonergic projections involving 5-HT1AR, 5-HT1BR, and 5-HT3R in mechanical allodynia of early- (first 4h) and late-phase (24h after) carrageenan-induced inflammation. Intrathecal administration of 5-HT produced a significant anti-allodynic effect in late-phase, but not in early-phase. Similarly, intrathecal 5-HT1AR agonist (8-OH-DPAT) attenuated the intensity of late-phase allodynia in a dose dependent fashion which was antagonized by 5-HT1AR antagonist (WAY-100635), but produced no effect on the early-phase allodynia. However, other agonists or antagonists of 5-HT1BR (CP-93129, SB-224289) and 5-HT3R (m-CPBG, ondansetron) did not produce any anti- or pro-allodynic effect in both early- and late- phase allodynia. These results suggest that spinal 5-HT1A, but not 5-HT1B or 5-HT3 receptors mediate descending serotonergic inhibition on nociceptive processing of late-phase mechanical allodynia in carrageenan-induced inflammation. PMID:26037417

  13. Profiles of 5-HT 1B/1D agonists in acute migraine with special reference to second generation agents.

    PubMed

    Deleu, D; Hanssens, Y

    1999-06-01

    The efficacy of 5-hydroxytryptamine 1B/1D (5-HT 1B/1D) agonists is related to their inhibitory effects on neurogenic inflammation, mediated through serotoninergic control mechanisms. Recently, a series of oral second generation 5-HT 1B/1D agonists (eletriptan, naratriptan, rizatriptan and zolmitriptan) have been developed and are reviewed in this paper. Their in vitro and in vivo pharmacological properties, clinical efficacy, drug interactions, and adverse effects are evaluated and compared to the gold standard in the treatment of acute migraine, sumatriptan. PMID:10427351

  14. Diurnal variation in 5-HT1B autoreceptor function in the anterior hypothalamus in vivo: effect of chronic antidepressant drug treatment

    PubMed Central

    Sayer, Tamsin J O; Hannon, Serina D; Redfern, Peter H; Martin, Keith F

    1999-01-01

    Intracerebral microdialysis was used to examine the function of the terminal 5-hydroxytryptamine (5-HT) autoreceptor in the anterior hypothalamus of anaesthetized rats at two points in the light phase of the light–dark cycle.Infusion of the 5-HT1A/1B agonist 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridyl)-1H-indole (RU24969) 0.1, 1.0 and 10 μM through the microdialysis probe led to a concentration-dependent decrease (49, 56 and 65% respectively) in 5-HT output. The effect of RU24969 (1 and 5 μM) was prevented by concurrent infusion of methiothepin (1 and 10 μM) into the anterior hypothalamus via the microdialysis probe. Infusion of methiothepin alone (1.0 and 10 μM) increased (15 and 142% respectively) 5-HT output.Infusion of RU24969 (5 μM) through the probe at mid-light and end-light resulted in a quantitatively greater decrease in 5-HT output at end-light compared with mid-light.Following treatment with either paroxetine hydrochloride (10 mg kg−1 i.p.) or desipramine hydrochloride (10 mg kg−1 i.p.) for 21 days the function of the terminal 5-HT1B autoreceptor was more markedly attenuated at end-light.The data show that, as defined by the response to RU24969, the function of the 5-HT1B receptors that control 5-HT output in the anterior hypothalamus is attenuated following chronic desipramine or paroxetine treatment in a time-of-day-dependent manner. PMID:10372820

  15. (/sup 3/H)dihydroergotamine as a high-affinity, slowly dissociating radioligand for 5-HT1B binding sites in rat brain membranes: evidence for guanine nucleotide regulation of agonist affinity states

    SciTech Connect

    Hamblin, M.W.; Ariani, K.; Adriaenssens, P.I.; Ciaranello, R.D.

    1987-12-01

    (/sup 3/H)Dihydroergotamine (DE) labels a population of binding sites in rat brain membranes with an affinity of approximately 70 pM in both hippocampus (maximal binding at saturation (Bmax) = 340 fmol/mg of protein) and cerebral cortex (Bmax = 250 fmol/mg of protein). Specific binding typically comprises about 97% of total binding at the Kd of the radioligand when nonspecific binding is determined in the presence of 100 nM unlabeled DE. Association kinetics at 37 degrees C are consistent with a uniform association rate constant for all sites labeled. Specific binding is completely reversible with addition of excess unlabeled DE, but dissociation does not proceed with simple first-order kinetics, suggesting the presence of more than one discrete binding site. Competition studies with selective drugs reveal alpha adrenergic, 5-HT1A and 5-HT1B components of (/sup 3/H)DE specific binding. When phentolamine (500 nM) is included to block alpha receptors and DPAT (100 nM) or spiroxatrine (500 nM) is included to block 5-HT1A receptors, specific binding is exclusively to sites with drug affinities characteristic of 5-HT1B receptors. Under these 5-HT1B-selective conditions, (/sup 3/H)DE binding is about 90% specific, with a Kd of about 50 to 60 pM and a Bmax of 96 fmol/mg of protein in hippocampus and 77 fmol/mg of protein in cortex. (/sup 3/H)DE binding to 5-HT1B sites is very slowly dissociable, with a T1/2 of greater than 2 h at 37 degrees C. 5-HT1B antagonists and DE itself yield competition curves at (/sup 3/H)DE-labeled 5-HT1B sites that are adequately fit assuming a single site in nonlinear regression analysis. Addition of 100 microM guanylyl 5'-imidodiphosphate appears to convert nearly all 5-HT1B sites to those having low affinity for agonists while having a much smaller effect on the binding of (/sup 3/H)DE.

  16. The effects of moclobemide on the pharmacokinetics of the 5-HT1B/1D agonist rizatriptan in healthy volunteers

    PubMed Central

    van Haarst, A D; van Gerven, J M A; Cohen, A F; De Smet, M; Sterrett, A; Birk, K L; Fisher, A L; De Puy, M E; Goldberg, M R; Musson, D G

    1999-01-01

    Aims The new 5-HT1B/1D agonist rizatriptan (MK-0462) has recently been registered for the treatment of migraine. Its primary route of metabolism is via monoamine oxidase-A (MAO-A). Antidepressants such as the MAO-A inhibitor moclobemide may be used in patients with chronic headache syndromes. Hence, this study aimed to investigate the interactions between rizatriptan and moclobemide. Methods In a double-blind, randomized, placebo-controlled, two-period cross-over study 12 healthy, young volunteers (six males, six females) were treated with moclobemide (150 mg twice daily) or placebo for 4 days. On the fourth day, a single dose of rizatriptan (10 mg) was administered, and subsequently blood and urine samples were collected for assay of rizatripan and N-monodesmethyl rizatriptan. Plasma concentrates of 3,4-dihydroxyphenylglycol (DHPG), a marker of MAO-A inhibition, were also assessed. Supine and standing blood pressure were measured regularly. Results Both treatments were well tolerated. During moclobemide, the increase in supine diastolic blood pressure following rizatriptan administration was augmented. Inhibition of MAO by moclobemide was inferred from a persistent decrease in DHPG level (43% on average). When rizatriptan was coadministered with moclobemide, the area under the plasma drug concentration-time profiles for rizatriptan and its N-monodesmethyl metabolite increased 2.2-fold (90% CI, 1.93–2.47) and 5.3-fold (90% CI, 4.81–5.91), respectively, when compared with placebo. Peak plasma drug concentrations for rizatriptan and its n-monodesmethyl metabolite increased 1.4-fold (90% CI, 1.11–1.80) and 2.6-fold (90% CI, 2.23–3.14), respectively, and half-lives of both were prolonged. Conclusions Moclobemide inhibited the metabolism of rizatriptan and its active N-monodesmethyl metabolite through inhibition of MAO-A. Thus, moclobemide may considerably potentiate rizatriptan action. Concurrent administration of moclobemide and rizatriptan is not recommended

  17. Influence of β-adrenoceptor antagonists on the pharmacokinetics of rizatriptan, a 5-HT1B/1D agonist: differential effects of propranolol, nadolol and metoprolol

    PubMed Central

    Goldberg, Michael R; Sciberras, David; De Smet, Marina; Lowry, Richard; Tomasko, Lisa; Lee, Yih; Olah, Timothy V; Zhao, Jamie; Vyas, Kamlesh P; Halpin, Rita; Kari, Prasad H; James (deceased), Ian

    2001-01-01

    Aims Patients with migraine may receive the 5-HT1B/1D agonist, rizatriptan (5 or 10 mg), to control acute attacks. Patients with frequent attacks may also receive propranolol or other β-adrenoceptor antagonists for migraine prophylaxis. The present studies investigated the potential for pharmacokinetic or pharmacodynamic interaction between β-adrenoceptor blockers and rizatriptan. Methods Four double-blind, placebo-controlled, randomized crossover investigations were performed in a total of 51 healthy subjects. A single 10 mg dose of rizatriptan was administered after 7 days' administration of propranolol (60 and 120 mg twice daily), nadolol (80 mg twice daily), metoprolol (100 mg twice daily) or placebo. Rizatriptan pharmacokinetics were assessed. In vitro incubations of rizatriptan and sumatriptan with various β-adrenoceptor blockers were performed in human S9 fraction. Production of the indole-acetic acid-MAO-A metabolite of each triptan was measured. Results Administration of rizatriptan during propranolol treatment (120 mg twice daily for 7.5 days) increased the AUC(0,∞) for rizatriptan by approximately 67% and the Cmax by approximately 75%. A reduction in the dose of propranolol (60 mg twice daily) and/or the incorporation of a delay (1 or 2 h) between propranolol and rizatriptan administration did not produce a statistically significant change in the effect of propranolol on rizatriptan pharmacokinetics. Administration of rizatriptan together with nadolol (80 mg twice daily) or metoprolol (100 mg twice daily) for 7 days did not significantly alter the pharmacokinetics of rizatriptan. No untoward adverse experiences attributable to the pharmacokinetic interaction between propranolol and rizatriptan were observed, and no subjects developed serious clinical, laboratory, or other significant adverse experiences during coadministration of rizatriptan with any of the β-adrenoceptor blockers. In vitro incubations showed that propranolol, but not other

  18. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials.

    PubMed

    Ferrari, M D; Goadsby, P J; Roon, K I; Lipton, R B

    2002-10-01

    The triptans, selective serotonin 5-HT1B/1D agonists, are very effective acute migraine drugs. Soon, seven different triptans will be clinically available at 13 different oral doses, making evidence-based selection guidelines necessary. Triptan trials have similar designs, facilitating meta-analysis. We wished to provide an evidence-based foundation for using triptans in clinical practice, and to review the methodological issues surrounding triptan trials. We asked pharmaceutical companies and the principal investigators of company-independent trials for the 'raw patient data' of all double-blind, randomized, controlled, clinical trials with oral triptans in migraine. All data were cross-checked with published or presented data. We calculated summary estimates across studies for important efficacy and tolerability parameters, and compared these with those from direct, head-to-head, comparator trials. Out of 76 eligible clinical trials, 53 (12 not yet published) involving 24089 patients met the criteria for inclusion. Mean results (and 95% confidence intervals) for sumatriptan 100 mg, the first available and most widely prescribed oral triptan, are 59% (57-60) for 2 h headache response (improvement from moderate or severe to mild or no pain); 29% (27-30) for 2 h pain free (improvement to no pain); 20% (18-21) for sustained pain free (pain free by 2 h and no headache recurrence or use of rescue medication 2-24 h post-dose), and 67% (63-70) for consistency (response in at least two out of three treated attacks); placebo-subtracted proportions for patients with at least one adverse event (AE) are 13% (8-18), for at least one central nervous system AE 6% (3-9), and for at least one chest AE 1.9% (1.0-2.7). Compared with these data: rizatriptan 10 mg shows better efficacy and consistency, and similar tolerability; eletriptan 80 mg shows better efficacy, similar consistency, but lower tolerability; almotriptan 12.5 mg shows similar efficacy at 2 h but better sustained

  19. Circadian variation in the activity of the 5-HT1B autoreceptor in the region of the suprachiasmatic nucleus, measured by microdialysis in the conscious freely-moving rat

    PubMed Central

    Garabette, M L; Martin, K F; Redfern, P H

    2000-01-01

    Intracerebral microdialysis was used to examine the function of the terminal 5-hydroxytryptamine1B (5-HT1B) autoreceptor in the region of the suprachiasmatic nuclei (SCN) of freely moving conscious rats at six time points or zeitgeber times (ZTs) across the light:dark cycle. Infusion of the 5-HT1A/1B agonist 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridyl)-1H-indole (RU24969) (1 μM) via the microdialysis probe produced a decrease in 5-HT output when applied at ZTs 3, 6, 15 and 21 (69.8±11.9, 59±11.7, 43.9±17.2 and 45.7±17.0% respectively). At ZTs 9 and 18 RU24969 (1 μm) failed to affect the 5-HT output significantly (28.0±11 and 32.8±24.6% decrease respectively). The profile of inhibition of 5-HT output following infusion of RU24969 (1 μM) at ZT 6 was unaffected by concurrent infusion of the specific 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635) (1 μM) (52.48±17.5% decrease). The data demonstrate a circadian rhythm in the activity of the 5-HT1B autoreceptor in the region of the SCN. PMID:11139433

  20. Rizatriptan, a novel 5-HT1B/1D agonist for migraine: single- and multiple-dose tolerability and pharmacokinetics in healthy subjects.

    PubMed

    Goldberg, M R; Lee, Y; Vyas, K P; Slaughter, D E; Panebianco, D; Ermlich, S J; Shadle, C R; Brucker, M J; McLoughlin, D A; Olah, T V

    2000-01-01

    Rizatriptan is a novel 5-HT1D/1B agonist for relief of migraine headache. The pharmacokinetics, metabolite profiles, and tolerability of rizatriptan were examined in a multiple-dose study in healthy subjects. Rizatriptan (N = 24) (or placebo, N = 12) was administered as a single 10 mg dose, followed 48 hours later by administration of one 10 mg dose every 2 hours for three doses on 4 consecutive days, corresponding to the maximum daily dose for a migraine attack. The AUC of rizatriptan and its active N-monodesmethyl metabolite after three 10 mg doses was approximately threefold greater than the plasma concentrations following a single 10 mg dose. Metabolite profiles were similar after single and multiple doses. Adverse events during rizatriptan were mild and transient; similar events occurred during placebo, with a somewhat reduced incidence. Diastolic blood pressure tended to increase compared with placebo (approximately 5 mmHg), particularly on the first multiple-dose day (p < .01 vs. placebo). In conclusion, rizatriptan is well tolerated by healthy subjects during multiple-dose administration, with no unexpected accumulation of drug in plasma. PMID:10631625

  1. Clinical pharmacokinetics of almotriptan, a serotonin 5-HT(1B/1D) receptor agonist for the treatment of migraine.

    PubMed

    McEnroe, Janet D; Fleishaker, Joseph C

    2005-01-01

    The pharmacokinetics of almotriptan are linear over a range of oral doses up to 200mg in healthy volunteers. The compound has a half-life of approximately 3 hours. Almotriptan is well absorbed after oral administration and the mean absolute bioavailability is 69.1%. Maximal plasma concentrations are achieved between 1.5 and 4 hours after dose administration; however, within 1 hour after administration, plasma concentrations are approximately 68% of the value at 3 hours after administration. Food does not significantly affect almotriptan absorption. Almotriptan is not highly protein bound and is extensively distributed in the body. Approximately 50% of an almotriptan dose is excreted unchanged in the urine; this is the predominant single mechanism of elimination. Renal clearance is mediated, in part, through active tubular secretion, while the balance of the almotriptan dose is metabolised to inactive compounds. The predominant route of metabolism is via monoamine oxidase-A, and cytochrome P450 (CYP) mediated oxidation (via CYP3A4 and CYP2D6) occurs to a minor extent. Almotriptan clearance is moderately reduced in elderly subjects, but the magnitude of this effect does not warrant a dose reduction. Sex has no significant effect on almotriptan pharmacokinetics. Almotriptan pharmacokinetic parameters do not differ between adolescents and adults, and absorption is not affected during a migraine attack. As expected, renal dysfunction results in reduced clearance of almotriptan. Patients with moderate-to-severe renal dysfunction should use the lowest dose of almotriptan and the total daily dose should not exceed 12.5 mg. Similar dosage recommendations are valid for patients with hepatic impairment, based on the clearance mechanisms for almotriptan. Drug-drug interaction studies were conducted between almotriptan and the following compounds: fluoxetine, moclobemide, propranolol, verapamil and ketoconazole. No significant pharmacokinetic or pharmacodynamic interactions with almotriptan were observed for fluoxetine or propranolol. Almotriptan clearance was reduced, to a modest degree, by moclobemide and verapamil, which was consistent with the contribution of monoamine oxidase-A and CYP3A4 to the metabolic clearance of almotriptan. Although ketoconazole has a greater effect on almotriptan clearance than verapamil, no dosage adjustment is required when almotriptan is given with these drugs. PMID:15762767

  2. Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice.

    PubMed

    Lawson, Sarah K; Gray, Andrew C; Woehrle, Nancy S

    2016-11-01

    Social impairments in autism remain poorly understood and without approved pharmacotherapies. Novel animals models are needed to elucidate mechanisms and evaluate novel treatments for the social deficits in autism. Recently, serotonin 1B receptor (5-HT1B) agonist challenge in mice was shown to induce autism-like behaviors including perseveration, reduced prepulse inhibition, and delayed alternation deficits. However, the effects of 5-HT1B agonists on autism-related social behaviors in mice remain unknown. Here, we examine the effects of 5-HT1B agonist challenge on sociability and preference for social novelty in mice. We also examine the effects of 5-HT1B agonist treatment on average rearing duration, a putative rodent measure of non-selective attention. Non-selective attention is an associated feature of autism that is also not well understood. We show that 5-HT1B receptor activation reduces sociability, preference for social novelty, and rearing in mice. In addition, we examine the ability of oxytocin, an off-label treatment for the social impairments in autism, to reverse 5-HT1B agonist-induced social and attention deficits in mice. We show that oxytocin restores social novelty preference in mice treated with a 5-HT1B agonist. We also show that oxytocin attenuates 5-HT1B agonist-induced sociability and rearing deficits in mice. Our results suggest that 5-HT1B agonist challenge provides a useful pharmacological mouse model for aspects of autism, and implicate 5-HT1B in autism social and attention deficits. Moreover, our findings suggest that oxytocin may treat the social deficits in autism through a mechanism involving 5-HT1B. PMID:27439030

  3. Age Effects on the Serotonin1B Receptor as Assessed by PET Imaging

    PubMed Central

    Matuskey, David; Pittman, Brian; Planeta-Wilson, Beata; Walderhaug, Espen; Henry, Shannan; Gallezot, Jean-Dominique; Nabulsi, Nabeel; Ding, Yu-Shin; Bhagwagar, Zubin; Malison, Robert; Carson, Richard E.; Neumeister, Alexander

    2013-01-01

    Previous imaging studies have suggested that there is an age-related decline in brain serotonin (5HT) measures in healthy subjects. This paper addresses whether 5HT1B receptor availability decreases with aging via positron emission tomography (PET) imaging. Methods 48 healthy control subjects (mean 30±10 years; age range 18 to 61; 33 men, 15 women) completed [11C]P943 scans on a high resolution PET tomograph. Regions were examined with and without grey matter masking (GMM), the latter in an attempt to control for age related grey matter atrophy on binding potential (BPND) as determined by a validated multilinear reference tissue model (MRTM2). Results 5-HT1B BPND receptor binding decreased in the cortex at an average rate of 8% per decade without and 9% with GMM. A negative association with age was also observed in all individual cortical regions. Differences in the putamen and pallidum (positive association) were significant following adjustment for multiple comparisons. No effects of 5-HT1B BPND were found with gender or race in any regions. Conclusion These findings indicate that age is a relevant factor for the 5-HT1B receptor in the cortex of healthy adults. PMID:22851636

  4. Preclinical pharmacology and pharmacokinetics of AZD3783, a selective 5-hydroxytryptamine 1B receptor antagonist.

    PubMed

    Zhang, Minli; Zhou, Diansong; Wang, Yi; Maier, Donna L; Widzowski, Daniel V; Sobotka-Briner, Cynthia D; Brockel, Becky J; Potts, William M; Shenvi, Ashok B; Bernstein, Peter R; Pierson, M Edward

    2011-11-01

    The preclinical pharmacology and pharmacokinetic properties of (2R)-6-methoxy-8-(4-methylpiperazin-1-yl)-N-(4-morpholin-4-ylphenyl)chromane-2-carboxamide (AZD3783), a potent 5-hydroxytryptamine 1B (5-HT(1B)) receptor antagonist, were characterized as part of translational pharmacokinetic/pharmacodynamic hypothesis testing in human clinical trials. The affinity of AZD3783 to the 5-HT(1B) receptor was measured in vitro by using membrane preparations containing recombinant human or guinea pig 5-HT(1B) receptors and in native guinea pig brain tissue. In vivo antagonist potency of AZD3783 for the 5HT(1B) receptor was investigated by measuring the blockade of 5-HT(1B) agonist-induced guinea pig hypothermia. The anxiolytic-like potency was assessed using the suppression of separation-induced vocalization in guinea pig pups. The affinity of AZD3783 for human and guinea pig 5-HT(1B) receptor (K(i), 12.5 and 11.1 nM, respectively) was similar to unbound plasma EC(50) values for guinea pig receptor occupancy (11 nM) and reduction of agonist-induced hypothermia (18 nM) in guinea pig. Active doses of AZD3783 in the hypothermia assay were similar to doses that reduced separation-induced vocalization in guinea pig pups. AZD3783 demonstrated favorable pharmacokinetic properties. The predicted pharmacokinetic parameters (total plasma clearance, 6.5 ml/min/kg; steady-state volume of distribution, 6.4 l/kg) were within 2-fold of the values observed in healthy male volunteers after a single 20-mg oral dose. This investigation presents a direct link between AZD3783 in vitro affinity and in vivo receptor occupancy to preclinical disease model efficacy. Together with predicted human pharmacokinetic properties, we have provided a model for the quantitative translational pharmacology of AZD3783 that increases confidence in the optimal human receptor occupancy required for antidepressant and anxiolytic effects in patients. PMID:21825000

  5. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    PubMed

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. PMID:27269199

  6. Whole-hemisphere autoradiography of 5-HT₁B receptor densities in postmortem alcoholic brains.

    PubMed

    Storvik, Markus; Häkkinen, Merja; Tupala, Erkki; Tiihonen, Jari

    2012-06-30

    The 5-HT(1B) receptor has been associated with alcohol dependence, impulsive or alcohol-related aggressive behavior, and anxiety. The aim of this study was to determine whether or not the 5-HT(1B) receptor density differs in brain samples from anxiety-prone Cloninger type 1 alcoholics and socially hostile, predominantly male, type 2 alcoholics, and controls. Whole-hemispheric 5-HT(1B) receptor density was measured in eight regions of postmortem brains from 17 alcoholics and 10 nonalcoholic controls by autoradiography with tritiated GR-125743 and unlabeled ketanserin to prevent 5-HT(1D) binding. The 5-HT(1B) receptor density was not altered significantly in any of the studied regions. However, some correlations were observed in types 1 and 2 alcoholics only. The 5-HT(1B) receptor density decreased with age in type 1 alcoholics only. There was a significant positive correlation between 5-HT(1B) receptor and serotonin transporter densities in the head of caudate of type 1 alcoholics only. There was a significant positive correlation between 5-HT(1B) receptor density and dopaminergic terminal density, as estimated by vesicular monoamine transporter 2 measurement in the nucleus accumbens of type 2 alcoholics only. There were no significant correlations between 5-HT(1B) receptor and dopamine transporter or dopamine D2/D3 receptor densities in any of the subject groups. In conclusion, these results do not indicate primary changes in 5-HT(1B) receptor densities among these alcoholics, although the data must be considered as preliminary. PMID:22804971

  7. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors

    PubMed Central

    Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346

  8. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT1D, 5HT7 receptors).

    PubMed

    Stahl, Stephen M

    2015-04-01

    Vortioxetine is an antidepressant that targets multiple pharmacologic modes of action at sites--or nodes--where serotonergic neurons connect to various brain circuits. These multimodal pharmacologic actions of vortioxetine lead to enhanced release of various neurotransmitters, including serotonin, at various nodes within neuronal networks. PMID:25831967

  9. GR-127935-sensitive mechanism mediating hypotension in anesthetized rats: are 5-HT5B receptors involved?

    PubMed

    Sánchez-Maldonado, Carolina; López-Sánchez, Pedro; Anguiano-Robledo, Liliana; Leopoldo, Marcello; Lacivita, Enza; Terrón, José A

    2015-04-01

    The 5-HT1B/1D receptor antagonist, GR-127935, inhibits hypotensive responses produced by the 5-HT1A, 5-HT1B/1D and 5-HT7 receptor agonist, and 5-HT5A/5B receptor ligand, 5-carboxamidotryptamine (5-CT), in rats. This work further characterized the above mechanism using more selective 5-HT1B and 5-HT1D receptor antagonists. Also, expression of 5-HT5A and 5-HT5B receptor mRNAs in blood vessels was searched by reverse transcription polymerase chain reaction. Decreases in diastolic blood pressure induced by 5-CT (0.001-10 μg/kg, intravenously) were analyzed in anesthetized rats that had received intravenous vehicle (1 mL/kg), SB-224289 (5-HT1B antagonist; 0.3 and 1.0 mg/kg), BRL15572 (5-HT1D antagonist; 0.3 and 1.0 mg/kg), SB-224289 + BRL15572 (0.3 mg/kg, each), or SB-224289 + BRL15572 (0.3 mg/kg, each) + GR-127935 (1 mg/kg). Because only the latter treatment inhibited 5-CT-induced hypotension, suggestive of a mechanism unrelated to 5-HT1B/1D receptors, the effects of antagonists/ligands at 5-HT5A (SB-699551, 1 mg/kg), 5-HT6 (SB-399885, 1 mg/kg), and 5-HT1B/1D/5A/5B/7 receptors (ergotamine, 0.1 mg/kg) on 5-CT-induced hypotension were tested. Interestingly, only ergotamine blocked 5-CT-induced responses; this effect closely paralleled that of SB-224289 + BRL-15572 + GR-127935. Neither did ergotamine nor GR-127935 inhibit hypotensive responses induced by the 5-HT7 receptor agonist, LP-44. Faint but clear bands corresponding to 5-HT5A and 5-HT5B receptor mRNAs in aorta and mesenteric arteries were detected. Results suggest that the GR-127935-sensitive mechanism mediating hypotension in rats is unrelated to 5-HT1B, 5-HT1D, 5-HT5A, 5-HT6, and 5-HT7 receptors. This mechanism, however, resembles putative 5-HT5B receptors. PMID:25502305

  10. A review of rizatriptan, a quick and consistent 5-HT1B/1D agonist for the acute treatment of migraine.

    PubMed

    Pascual, Julio

    2004-03-01

    Rizatriptan is a second-generation triptan marketed as 5 and 10 mg tablets and rapidly disintegrating wafer formulations. In > 5000 acute migraine patients enrolled in short-term trials and almost 1800 patients in long-term, open-label trials treating approximately 47000 attacks, rizatriptan was effective and well-tolerated. Controlled head-to-head data and a meta-analysis of 53 randomised, placebo-controlled trials of oral triptans in > 24000 patients have shown that rizatriptan 10 mg offers efficacy advantages over oral sumatriptan 50 and 100 mg and other oral triptans, both in terms of speed of onset of action and consistency. These advantages may reflect its improved pharmacological profile over sumatriptan in terms of higher oral bioavailability and a shorter time to maximum concentration. The wafer formulation offers the convenience of being administered without water. As a result of its superior efficacy profile and generally good tolerability, rizatriptan can be considered as a first-line treatment for acute migraine. PMID:15013934

  11. RU 24969-induced emesis in the cat - 5-HT1 sites other than 5-HT1A, 5-HT1B or 5-HT1C implicated

    NASA Technical Reports Server (NTRS)

    Lucot, James B.

    1990-01-01

    RU 24969 was administered s.c. to cats and found to elicit emesis with a maximally effective dose of 1.0 mg/kg 5-Methoxytryptamine was found to have lower efficacy and to produce a higher incidence of nonspecific effects while trifluoromethylphenylpiperizine (TFMPP) was devoid of emetic effects. The emesis elicited by 1.0 mg/kg of RU 24969 was not altered by pretreatment with phentolamine, haloperidol, yohimbine or (-)-propranolol, indicating that catecholamines played no role in this response. The emesis was prevented by metergoline and methysergide but not by ketanserin, cyproheptadine, mesulergine, ICS 205 930, methiothepin, trimethobenzamide or BMY 7378. An indirect argument is presented that implicates a role for 5-HT1D sites. This conclusion must remain tentative until drugs selective for this site are synthesized and tested. The emesis was also prevented by 8-hydroxy-2-(di-n-propylamine)tetralin (8-OH-DPAT), confirming that this drug has a general antiemetic effect in cats.

  12. Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors.

    PubMed

    Bobade, Vijeta; Bodhankar, Subhash L; Aswar, Urmila; Vishwaraman, Mohan; Thakurdesai, Prasad

    2015-04-01

    The present study aimed at evaluation of prophylactic efficacy and possible mechanisms of asiaticoside (AS) based standardized extract of Centella asiatica (L.) Urban leaves (INDCA) in animal models of migraine. The effects of oral and intranasal (i.n.) pretreatment of INDCA (acute and 7-days subacute) were evaluated against nitroglycerine (NTG, 10 mg·kg(-1), i.p.) and bradykinin (BK, 10 μg, intra-arterial) induced hyperalgesia in rats. Tail flick latencies (from 0 to 240 min) post-NTG treatment and the number of vocalizations post-BK treatment were recorded as a measure of hyperalgesia. Separate groups of rats for negative (Normal) and positive (sumatriptan, 42 mg·kg(-1), s.c.) controls were included. The interaction of INDCA with selective 5-HT1A, 5-HT1B, and 5-HT1D receptor antagonists (NAN-190, Isamoltane hemifumarate, and BRL-15572 respectively) against NTG-induced hyperalgesia was also evaluated. Acute and sub-acute pre-treatment of INDCA [10 and 30 mg·kg(-1) (oral) and 100 μg/rat (i.n.) showed significant anti-nociception activity, and reversal of the NTG-induced hyperalgesia and brain 5-HT concentration decline. Oral pre-treatment with INDCA (30 mg·kg(-1), 7 d) showed significant reduction in the number of vocalization. The anti-nociceptive effects of INDCA were blocked by 5-HT1A and 5-HT1B but not 5-HT1D receptor antagonists. In conclusion, INDCA demonstrated promising anti-nociceptive effects in animal models of migraine, probably through 5-HT1A/1B medicated action. PMID:25908624

  13. Structural basis for molecular recognition at serotonin receptors.

    PubMed

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric

    2013-05-01

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs. PMID:23519210

  14. Pharmacological evidence that 5-HT1A/1B/1D, α2-adrenoceptors and D2-like receptors mediate ergotamine-induced inhibition of the vasopressor sympathetic outflow in pithed rats.

    PubMed

    Villamil-Hernández, Ma Trinidad; Alcántara-Vázquez, Oscar; Sánchez-López, Araceli; Gutiérrez-Lara, Erika J; Centurión, David

    2014-10-01

    The sympathetic nervous system that innervates the peripheral circulation is regulated by several mechanisms/receptors. It has been reported that prejunctional 5-HT1A, 5-HT1B, 5-HT1D, D2-like receptors and α2-adrenoceptors mediate the inhibition of the vasopressor sympathetic outflow in pithed rats. In addition, ergotamine, an antimigraine drug, displays affinity at the above receptors and may explain some of its adverse/therapeutic effects. Thus, the aims of this study were to investigate in pithed rats: (i) whether ergotamine produces inhibition of the vasopressor sympathetic outflow; and (ii) the major receptors involved in this effect. For this purpose, male Wistar pithed rats were pre-treated with gallamine (25 mg/kg; i.v.) and desipramine (50 µg/kg) and prepared to stimulate the vasopressor sympathetic outflow (T7-T9; 0.03-3 Hz) or to receive i.v. bolus of exogenous noradrenaline (0.03-3 µg/kg). I.v. continuous infusions of ergotamine (1 and 1.8 μg/kgmin) dose-dependently inhibited the vasopressor responses to sympathetic stimulation but not those to exogenous noradrenaline. The sympatho-inhibition elicited by 1.8 μg/kg min ergotamine was (i) unaffected by saline (1 ml/kg); (ii) partially antagonised by WAY 100635 (5-HT1A; 30 μg/kg) and rauwolscine (α2-adrenoceptor; 300 μg/kg), and (iii) dose-dependently blocked by GR 127935 (5-HT1B/1D; 100 and 300 μg/kg) or raclopride (D2-like; 300 and 1000 μg/kg), The above doses of antagonists did not modify per se the sympathetically-induced vasopressor responses. The above results suggest that ergotamine induces inhibition of the vasopressor sympathetic outflow by activation of prejunctional 5-HT1A, 5-HT1B/1D, α2-adrenoceptors and D2-like receptors in pithed rats. PMID:24975101

  15. Structural features for functional selectivity at serotonin receptors.

    PubMed

    Wacker, Daniel; Wang, Chong; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Jiang, Yi; Chu, Meihua; Siu, Fai Yiu; Liu, Wei; Xu, H Eric; Cherezov, Vadim; Roth, Bryan L; Stevens, Raymond C

    2013-05-01

    Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for β-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities. PMID:23519215

  16. Intrathecal 5-methoxy-N,N-dimethyltryptamine in mice modulates 5-HT1 and 5-HT3 receptors.

    PubMed

    Alhaider, A A; Hamon, M; Wilcox, G L

    1993-11-01

    The antinociceptive effects of intrathecally administered 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), a potent 5-HT receptor agonist, were studied in three behavioral tests in mice: the tail-flick test and the intrathecal substance P and N-methyl-D-aspartic acid (NMDA) assays. Intrathecal administration of 5-MeO-DMT (4.6-92 nmol/mouse) produced a significant prolongation of the tail-flick latency. This action was blocked by 5-HT3 and gamma-aminobutyric acidA (GABAA) receptor antagonists but not by 5-HT2, 5-HT1A, 5-HT1B or 5-HT1S receptor antagonists. Binding studies indicated that 5-MeO-DMT had very low affinity for 5-HT3 receptors. 5-MeO-DMT inhibited biting behavior while increasing scratching behavior induced by intrathecally administered substance P. The inhibition of biting behavior was antagonized by intrathecal co-administration of 5-HT1B and GABAA receptor antagonists while 5-HT1A, 5-HT1S, 5-HT2 and 5-HT3 receptor antagonists had no effect. 5-MeO-DMT-enhanced scratching behavior was inhibited by all the antagonists used except ketanserin and bicuculline, suggesting the involvement of 5-HT1A, 5-HT1B, 5-HT1S, 5-HT3 and GABAA receptors. NMDA-induced biting behavior was inhibited by 5-MeO-DMT pretreatment; this action was antagonized by 5-HT1B, 5-HT3 and GABAA receptor antagonists. The involvement of these receptors in 5-MeO-DMT action suggests that it may promote release of 5-HT (5-hydroxytryptamine, serotonin). PMID:7507056

  17. Autoradiography of serotonin 5-HT1A receptor-activated G proteins in guinea pig brain sections by agonist-stimulated [35S]GTPgammaS binding.

    PubMed

    Dupuis, D S; Palmier, C; Colpaert, F C; Pauwels, P J

    1998-03-01

    G protein activation mediated by serotonin 5-HT1A and 5-HT(1B/D) receptors in guinea pig brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPgammaS binding to brain sections. [35S]GTPgammaS binding was stimulated by the mixed 5-HT1A/5-HT(1B/D) agonist L694247 in brain structures enriched in 5-HT1A binding sites, i.e., hippocampus (+140 +/- 14%), dorsal raphe (+70 +/- 8%), lateral septum (+52 +/- 12%), cingulate (+36 +/- 8%), and entorhinal cortex (+34 +/- 5%). L694247 caused little or no stimulation of [35S]GTPgammaS binding in brain regions with high densities of 5-HT(1B/D) binding sites (e.g., substantia nigra, striatum, central gray, and dorsal subiculum). The [35S]GTPgammaS binding response was antagonized by WAY100635 (10 microM) and methiothepin (10 microM). In contrast, the 5-HT1B inverse agonist SB224289 (10 microM) did not affect the L694247-mediated [35S]GTPgammaS binding response, and the mixed 5-HT(1B/D) antagonist GR127935 (10 microM) yielded a partial blockade. The distribution pattern of the [35S]GTPgammaS binding response and the antagonist profile suggest the L694247-mediated response in guinea pig brain to be mediated by 5-HT1A receptors. In addition to L694247, 8-hydroxy-2-(di-n-propylamino)tetralin, and flesinoxan also stimulated [35S]GTPgammaS binding; their maximal responses varied between 46 and 52% compared with L694247, irrespective of the brain structure being considered. Sumatriptan, rizatriptan, and zolmitriptan (10 microM) stimulated [35S]GTPgammaS binding in the hippocampus by 20-50%. Naratriptan, CP122638, and dihydroergotamine stimulated [35S]GTPgammaS binding to a similar level as L694247 in hippocampus, lateral septum, and dorsal raphe. It appears that under the present experimental conditions, G protein activation through 5-HT1A but not 5-HT(1B/D) receptors can be measured in guinea pig brain sections. PMID:9489749

  18. 5-Hydroxytryptamine(1F) receptors do not participate in vasoconstriction: lack of vasoconstriction to LY344864, a selective serotonin(1F) receptor agonist in rabbit saphenous vein.

    PubMed

    Cohen, M L; Schenck, K

    1999-09-01

    Recently, several novel approaches to the treatment of migraine have been advanced, including selective 5-hydroxytryptamine (or serotonin) 1B/1D (5-HT(1B/1D)) receptor agonists such as sumatriptan and 5-HT(1F) receptor agonists such as LY344864. Many 5-HT(1B/1D) receptor agonists have been identified based on their ability to produce cerebral vascular contraction, whereas LY344864 was identified as an inhibitor of trigeminal nerve-mediated dural extravasation. In our study, several triptan derivatives were compared with LY344864 for their ability to contract the rabbit saphenous vein, a tissue used in the preclinical identification of sumatriptan-related agonists. Sumatriptan, zolmitriptan, rizatriptan, and naratriptan all contracted the rabbit saphenous vein from baseline tone, whereas LY344864 in concentrations up to 10(-4) M did not contract the rabbit saphenous vein. Furthermore, vascular contractions to sumatriptan were markedly augmented in the presence of prostaglandin F(2alpha) (PGF(2alpha)). However, even in the presence of PGF(2alpha) (3 x 10(-7) M), LY344864 did not contract the rabbit saphenous vein in concentrations well in excess of its 5-HT(1F) receptor affinity (pK(i) = 8.2). Only when concentrations exceeded those likely to activate 5-HT(1B) and 5-HT(1D) receptors (>10(-5) M) did modest contractile responses occur in the presence of PGF(2alpha). Use of these serotonergic agonists revealed a significant correlation between the contractile potency in the rabbit saphenous vein and the affinities of these agonists at 5-HT(1B) and 5-HT(1D) receptors, although contractile agonist potencies were not quantitatively similar to 5-HT(1B) or 5-HT(1D) receptor affinities. In contrast, no significant correlation existed between the contractile potencies of these serotonergic agonists in the rabbit saphenous vein and their affinity at 5-HT(1F) receptors. These data support the contention that activation of 5-HT(1F) receptors will not result in vascular

  19. Oral serotonin receptor agonists: a review of their cost effectiveness in migraine.

    PubMed

    Lofland, Jennifer H; Nash, David B

    2005-01-01

    Migraine headache is a highly prevalent chronic, episodic condition. The direct and indirect costs of migraine headache have a tremendous economic impact in the US. Research has shown that serotonin (5HT(1B/D)) receptor agonists reduce healthcare costs, improve health-related QOL (HR-QOL), decrease migraine disability and keep patients effective in the workplace. The purpose of this manuscript is to examine the cost effectiveness of oral 5HT(1B/D) receptor agonists for the treatment of migraine headache. In general, 5HT(1B/D) receptor agonists are associated with increases in direct healthcare costs; however, they are also associated with reductions in the indirect costs associated with migraine headache. Therefore, it appears that the relatively high acquisition cost of these medications is offset and, as a class, these medications appear to be cost effective and demonstrate net benefits from the societal perspective. Based on meta-analyses in which data on eletriptan were not available, it appears that within the class, almotriptan and rizatriptan are the most cost effective. In a prospective study comparing eletriptan with sumatriptan, it appears that the former may be more cost effective than the latter. Additional investigations are needed to further explore the application of the friction-cost approach and QALYs to cost-effectiveness analyses of this class of medication. PMID:15836007

  20. Modulation of the vagal bradycardia evoked by stimulation of upper airway receptors by central 5-HT1 receptors in anaesthetized rabbits

    PubMed Central

    Dando, Simon B; Skinner, Matthew R; Jordan, David; Ramage, Andrew G

    1998-01-01

    The effects of central application of 5-HT1A and 5-HT1B/1D receptor ligands on the reflex bradycardia, apnoea, renal sympathoexcitation and pressor response evoked by stimulating upper airway receptors with smoke in atenolol-pretreated anaesthetized rabbits were studied.Intracisternal administration of the 5-HT1A receptor antagonists WAY-100635 (100 μg kg−1) and (−)pindolol (100 μg kg−1) significantly reduced the smoke-induced bradycardia, attenuated the pressor response and in the case of (−)pindolol, sympathetic nerve activity. The same dose of WAY-100635 i.v. was without effect.Buspirone (200 μg kg−1, i.c.) potentiated the reflex bradycardia. This action was prevented if the animals were pretreated with WAY-100635 (100 μg kg−1, i.v.)(+)8-OH-DPAT (25 μg kg−1, i.c.) attenuated the evoked bradycardia, pressor response, apnoea and renal sympathoexcitation. The attenuation of the apnoea and renal sympathoexcitation, but not the bradycardia or pressor response was prevented in animals pretreated with WAY-100635 (100 μg kg−1, i.v.). The attenuation of the reflex bradycardia and the reduction in the renal sympathoexcitation were reduced by pretreatment with the 5-HT1B/1D receptor antagonist GR127935 (100 μg kg−1, i.v.).In WAY-100635 (100 μg kg−1, i.v.) pretreated animals, sumatriptan (a 5-HT1B/1D receptor agonist) reduced the reflex bradycardia and the pressor response. The 5-HT1B/1D receptor antagonist GR127935 (20 μg kg−1, i.c. or 100 μg kg−1, i.v.) had no effect on the reflex responses.In conclusion, the present data are consistent with the hypothesis that activation of central 5-HT1A receptors potentiate whilst activation of 5-HT1B/1D receptors attenuate the reflex activation of cardiac preganglionic vagal motoneurones evoked by stimulation of upper airway receptors with smoke in rabbits. PMID:9786516

  1. Evidence that the deficit in sexual behavior in adult rats neonatally exposed to citalopram is a consequence of 5-HT1 receptor stimulation during development

    PubMed Central

    Maciag, Dorota; Coppinger, David; Paul, Ian A.

    2006-01-01

    Neonatal (postnatal days 8-21) exposure of rats to the selective serotonin reuptake inhibitor (SSRI), citalopram, results in persistent changes in behavior including decreased sexual activity in adult animals. We hypothesized that this effect was a consequence of abnormal stimulation of serotonergic receptors 5- HT1A or/and 5-HT1B as a result of increased synaptic availability of serotonin during a critical period of development. We examined whether neonatal exposure to a 5-HT1A (8OH-DPAT) and/or a 5-HT1B (CGS 12066B) receptor agonist can mimic the effect of neonatal exposure to citalopram on adult sexual behavior. Results showed that neonatal treatment with 5-HT1B receptor agonist robustly impaired sexual behavior similar to the effect of citalopram whereas exposure to 5-HT1A receptor agonist only moderately influenced male sexual activity in adult animals. These data support the hypothesis that stimulation of serotonin autoreceptors during development contributes to the adult sexual deficit in rats neonatally exposed to citalopram. PMID:17101120

  2. Theory-based analysis of clinical efficacy of triptans using receptor occupancy

    PubMed Central

    2014-01-01

    Background Triptans, serotonin 5-HT1B/1D receptor agonists, exert their action by targeting serotonin 5-HT1B/1D receptors, are used for treatment of migraine attack. Presently, 5 different triptans, namely sumatriptan, zolmitriptan, eletriptan, rizatriptan, and naratriptan, are marketed in Japan. In the present study, we retrospectively analyzed the relationships of clinical efficacy (headache relief) in Japanese and 5-HT1B/1D receptor occupancy (Φ1B and Φ1D). Receptor occupancies were calculated from both the pharmacokinetic and pharmacodynamic data of triptans. Methods To evaluate the total amount of exposure to drug, we calculated the area under the plasma concentration-time curve (AUCcp) and the areas under the time curves for Ф1B and Ф1D (AUCФ1B and AUCФ1D). Moreover, parameters expressing drug transfer and binding rates (A cp , A Ф 1B , A Ф 1D ) were calculated. Results Our calculations showed that Фmax1B and Фmax1D were relatively high at 32.0-89.4% and 68.4-96.2%, respectively, suggesting that it is likely that a high occupancy is necessary to attain the clinical effect. In addition, the relationships between therapeutic effect and AUCcp, AUCΦ1B, AUCΦ1D, and A cp  · AUCcp differed with each drug and administered form, whereas a significant relationship was found between the therapeutic effect and A Φ 1B  · AUCΦ1B or A Φ 1D  · AUCΦ1D that was not affected by the drug and the form of administration. Conclusions These results suggest that receptor occupancy can be used as a parameter for a common index to evaluate the therapeutic effect. We considered that the present findings provide useful information to support the proper use of triptans. PMID:25488888

  3. A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity.

    PubMed

    Martí-Solano, Maria; Sanz, Ferran; Pastor, Manuel; Selent, Jana

    2014-01-01

    Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity. PMID:25313636

  4. Association of Polymorphisms within the Serotonin Receptor Genes 5-HTR1A, 5-HTR1B, 5-HTR2A and 5-HTR2C and Migraine Susceptibility in a Turkish Population

    PubMed Central

    Yücel, Yavuz; Coşkun, Salih; Cengiz, Beyhan; Özdemir, Hasan H.; Uzar, Ertuğrul; Çim, Abdullah; Camkurt, M. Akif; Aluclu, M. Ufuk

    2016-01-01

    Objective Migraine, a highly prevelant headache disorder, is regarded as a polygenic multifactorial disease. Serotonin (5-HT) and their respective receptors have been implicated in the patogenesis. Methods We investigated the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C receptor gene polymorphisms and their association with migraine in Turkish patients. The rs6295, rs1300060, rs1228814, rs6311, rs6313, rs6314, rs6318, rs3813929 (−759C/T) and rs518147 polymorphisms were analyzed in 135 patients with migraine and 139 healthy subjects, using a BioMark 96.96 dynamic array system. Results We found no difference in the frequency of the analyzed eight out of nine polymorpisms between migraine and control groups. However, a significant association was found between the rs3813929 polymorphism in the promoter region of 5-HTR2C gene and migraine. Also, the allele of rs3813929 was more common in the migraine group. Conclusion This result suggests that the 5-HTR2C rs3813929 polymorphism can be a genetic risk factor for migraine in a Turkish population. PMID:27489378

  5. Brain Serotonin Receptors and Transporters: Initiation vs. Termination of Escalated Aggression

    PubMed Central

    Takahashi, Aki; Quadros, Isabel M.; de Almeida, Rosa M. M.; Miczek, Klaus A.

    2013-01-01

    Rationale Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. Objective We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. Results New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT1A, 5-HT1B and 5-HT2A/2C receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT1A and 5-HT1B receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. Conclusions Feedback to autoreceptors of the 5-HT1 family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT2 family expression may cause escalated aggression, whereas the phasic increase of 5-HT2 receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment. PMID:20938650

  6. Social dominance in male vasopressin 1b receptor knockout mice.

    PubMed

    Caldwell, Heather K; Dike, Obianuju E; Stevenson, Erica L; Storck, Kathryn; Young, W Scott

    2010-07-01

    We have previously reported that mice with a targeted disruption of their vasopressin 1b receptor gene, Avpr1b, have mild impairments in social recognition and reduced aggression. The reductions in aggression are limited to social forms of aggression, i.e., maternal and inter-male aggression, while predatory aggression remains unaffected. To further clarify the role of the Avpr1b in the regulation of social behavior we first examined anxiety-like and depression-like behaviors in Avpr1b knockout (Avpr1b -/-) mice. We then went on to test the ability of Avpr1b -/- mice to form dominance hierarchies. No major differences were found between Avpr1b -/- and wildtype mice in anxiety-like behaviors, as measured using an elevated plus maze and an open field test, or depression-like behaviors, as measured using a forced swim test. In the social dominance study we found that Avpr1b -/- mice are able to form dominance hierarchies, though in early hierarchy formation dominant Avpr1b -/- mice display significantly more mounting behavior on Day 1 of testing compared to wildtype controls. Further, non-socially dominant Avpr1b -/- mice spend less time engaged in attack behavior than wildtype controls. These findings suggest that while Avpr1b -/- mice may be able to form dominance hierarchies they appear to employ alternate strategies. PMID:20298692

  7. Serotonin type-1D receptor stimulation of A-type K(+) channel decreases membrane excitability through the protein kinase A- and B-Raf-dependent p38 MAPK pathways in mouse trigeminal ganglion neurons.

    PubMed

    Zhao, Xianyang; Zhang, Yuan; Qin, Wenjuan; Cao, Junping; Zhang, Yi; Ni, Jianqiang; Sun, Yangang; Jiang, Xinghong; Tao, Jin

    2016-08-01

    Although recent studies have implicated serotonin 5-HT1B/D receptors in the nociceptive sensitivity of primary afferent neurons, the underlying molecular and cellular mechanisms remain unclear. In this study, we identified a novel functional role of the 5-HT1D receptor subtype in regulating A-type potassium (K(+)) currents (IA) as well as membrane excitability in small trigeminal ganglion (TG) neurons. We found that the selective activation of 5-HT1D, rather than 5-HT1B, receptors reversibly increased IA, while the sustained delayed rectifier K(+) current was unaffected. The 5-HT1D-mediated IA increase was associated with a depolarizing shift in the voltage dependence of inactivation. Blocking G-protein signaling with pertussis toxin or by intracellular application of a selective antibody raised against Gαo or Gβ abolished the 5-HT1D effect on IA. Inhibition of protein kinase A (PKA), but not of phosphatidylinositol 3-kinase or protein kinase C, abolished the 5-HT1D-mediated IA increase. Analysis of phospho-p38 (p-p38) revealed that activation of 5-HT1D, but not 5-HT1B, receptors significantly activated p38, while p-ERK and p-JNK were unaffected. The p38 MAPK inhibitor SB203580, but not its inactive analogue SB202474, and inhibition of B-Raf blocked the 5-HT1D-mediated IA response. Functionally, we observed a significantly decreased action potential firing rate induced by the 5-HT1D receptors; pretreatment with 4-aminopyridine abolished this effect. Taken together, these results suggest that the activation of 5-HT1D receptors selectively enhanced IA via the Gβγ of the Go-protein, PKA, and the sequential B-Raf-dependent p38 MAPK signaling cascade. This 5-HT1D receptor effect may contribute to neuronal hypoexcitability in small TG neurons. PMID:27156838

  8. A Hybrid Approach to Structure and Function Modeling of G Protein-Coupled Receptors.

    PubMed

    Latek, Dorota; Bajda, Marek; Filipek, Sławomir

    2016-04-25

    The recent GPCR Dock 2013 assessment of serotonin receptor 5-HT1B and 5-HT2B, and smoothened receptor SMO targets, exposed the strengths and weaknesses of the currently used computational approaches. The test cases of 5-HT1B and 5-HT2B demonstrated that both the receptor structure and the ligand binding mode can be predicted with the atomic-detail accuracy, as long as the target-template sequence similarity is relatively high. On the other hand, the observation of a low target-template sequence similarity, e.g., between SMO from the frizzled GPCR family and members of the rhodopsin family, hampers the GPCR structure prediction and ligand docking. Indeed, in GPCR Dock 2013, accurate prediction of the SMO target was still beyond the capabilities of most research groups. Another bottleneck in the current GPCR research, as demonstrated by the 5-HT2B target, is the reliable prediction of global conformational changes induced by activation of GPCRs. In this work, we report details of our protocol used during GPCR Dock 2013. Our structure prediction and ligand docking protocol was especially successful in the case of 5-HT1B and 5-HT2B-ergotamine complexes for which we provide one of the most accurate predictions. In addition to a description of the GPCR Dock 2013 results, we propose a novel hybrid computational methodology to improve GPCR structure and function prediction. This computational methodology employs two separate rankings for filtering GPCR models. The first ranking is ligand-based while the second is based on the scoring scheme of the recently published BCL method. In this work, we prove that the use of knowledge-based potentials implemented in BCL is an efficient way to cope with major bottlenecks in the GPCR structure prediction. Thereby, we also demonstrate that the knowledge-based potentials for membrane proteins were significantly improved, because of the recent surge in available experimental structures. PMID:26978043

  9. Early MEK1/2 Inhibition after Global Cerebral Ischemia in Rats Reduces Brain Damage and Improves Outcome by Preventing Delayed Vasoconstrictor Receptor Upregulation

    PubMed Central

    Johansson, Sara Ellinor; Larsen, Stine Schmidt; Povlsen, Gro Klitgaard; Edvinsson, Lars

    2014-01-01

    Background Global cerebral ischemia following cardiac arrest is associated with increased cerebral vasoconstriction and decreased cerebral blood flow, contributing to delayed neuronal cell death and neurological detriments in affected patients. We hypothesize that upregulation of contractile ETB and 5-HT1B receptors, previously demonstrated in cerebral arteries after experimental global ischemia, are a key mechanism behind insufficient perfusion of the post-ischemic brain, proposing blockade of this receptor upregulation as a novel target for prevention of cerebral hypoperfusion and delayed neuronal cell death after global cerebral ischemia. The aim was to characterize the time-course of receptor upregulation and associated neuronal damage after global ischemia and investigate whether treatment with the MEK1/2 inhibitor U0126 can prevent cerebrovascular receptor upregulation and thereby improve functional outcome after global cerebral ischemia. Incomplete global cerebral ischemia was induced in Wistar rats and the time-course of enhanced contractile responses and the effect of U0126 in cerebral arteries were studied by wire myography and the neuronal cell death by TUNEL. The expression of ETB and 5-HT1B receptors was determined by immunofluorescence. Results Enhanced vasoconstriction peaked in fore- and midbrain arteries 3 days after ischemia. Neuronal cell death appeared initially in the hippocampus 3 days after ischemia and gradually increased until 7 days post-ischemia. Treatment with U0126 normalised cerebrovascular ETB and 5-HT1B receptor expression and contractile function, reduced hippocampal cell death and improved survival rate compared to vehicle treated animals. Conclusions Excessive cerebrovascular expression of contractile ETB and 5-HT1B receptors is a delayed response to global cerebral ischemia peaking 3 days after the insult, which likely contributes to the development of delayed neuronal damage. The enhanced cerebrovascular contractility can be

  10. Intrathecal dihydroergotamine inhibits capsaicin-induced vasodilatation in the canine external carotid circulation via GR127935- and rauwolscine-sensitive receptors.

    PubMed

    Marichal-Cancino, Bruno A; González-Hernández, Abimael; Manrique-Maldonado, Guadalupe; Ruiz-Salinas, Inna I; Altamirano-Espinoza, Alain H; MaassenVanDenBrink, Antoinette; Villalón, Carlos M

    2012-10-01

    It has been suggested that during a migraine attack trigeminal nerves release calcitonin gene-related peptide (CGRP), producing central nociception and vasodilatation of cranial arteries, including the extracranial branches of the external carotid artery. Since trigeminal inhibition may prevent this vasodilatation, the present study has investigated the effects of intrathecal dihydroergotamine on the external carotid vasodilatation to capsaicin, α-CGRP and acetylcholine. Anaesthetized vagosympathectomized dogs were prepared to measure blood pressure, heart rate and external carotid conductance. A catheter was inserted into the right common carotid artery for the continuous infusion of phenylephrine (to restore the carotid vascular tone), whereas the corresponding thyroid artery was cannulated for one-min intracarotid infusions of capsaicin, α-CGRP and acetylcholine (which dose-dependently increased the external carotid conductance). Another cannula was inserted intrathecally (C(1)-C(3)) for the administration of dihydroergotamine, the α(2)-adrenoceptor antagonist rauwolscine or the serotonin 5-HT(1B/1D) receptor antagonist GR127935 (N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)[1,1-biphenyl]-4-carboxamide hydrochloride monohydrate). Intrathecal dihydroergotamine (10, 31 and 100μg) inhibited the vasodilatation to capsaicin, but not that to α-CGRP or acetylcholine. This inhibition was: (i) unaffected by 10μg GR127935 or 100μg rauwolscine, but abolished by 31μg GR127935 or 310μg rauwolscine at 10μg dihydroergotamine; and (ii) abolished by the combination 10μg GR127935+100μg rauwolscine at 100μg dihydroergotamine. Thus, intrathecal (C(1)-C(3)) dihydroergotamine seems to inhibit the external carotid vasodilatation to capsaicin by spinal activation of serotonin 5-HT(1B/1D) (probably 5-HT(1B)) receptors and α(2) (probably α(2A/2C))-adrenoceptors. PMID:22841658

  11. Serotonin 1B Receptor Imaging in Alcohol Dependence

    PubMed Central

    Hu, Jian; Henry, Shannan; Gallezot, Jean-Dominique; Ropchan, Jim; Neumaier, John F.; Potenza, Marc N.; Sinha, Rajita; Krystal, John H.; Huang, Yiyun; Ding, Yu-Shin; Carson, Richard E.; Neumeister, Alexander

    2010-01-01

    Background Although animal models suggest that alcohol dependence (AD) is associated with elevations in the number of serotonin-1B receptors (5HT1BR), 5HT1BR levels have not been investigated in people with AD. The selective 5HT1BR antagonist radioligand, [11C]P943, permits in vivo assessment of central 5HT1BR binding potential (BPND) using positron emission tomography (PET). Because of its central role in AD, we were particularly interested in ventral striatal 5HT1BR BPND values. Methods Twelve medication-free, recently abstinent (at least 4 weeks) patients with AD (mean age 35.2±10.1 years, 5 women) and 12 healthy control subjects (HC) (mean age 30.6±9.2 years, 5 women) completed [11C]P943 PET on a high resolution research tomograph (HRRT). Individual MRI scans were collected to exclude individuals with anatomical abnormalities and for co-registration. Imaging data were analyzed using a multilinear reference tissue model. Results Ventral striatal 5-HT1BR BPND values (2.01±0.57 and 1.55±0.09, 29% between-group difference, p=.006) were increased in AD compared to HC subjects. No influence of demographic or clinical variables or amount of injected radiotracer was observed. Conclusions This study provides the first evidence that AD in humans, like in rodent models, is associated with increased levels of ventral striatal 5HT1BRs. PMID:20172504

  12. Human cerebrovascular contractile receptors are upregulated via a B-Raf/MEK/ERK-sensitive signaling pathway

    PubMed Central

    2011-01-01

    Background Cerebral ischemia results in a rapid increase in contractile cerebrovascular receptors, such as the 5-hydroxytryptamine type 1B (5-HT1B), angiotensin II type 1 (AT1), and endothelin type B (ETB) receptors, in the vessel walls within the ischemic region, which further impairs local blood flow and aggravates tissue damage. This receptor upregulation occurs via activation of the mitogen-activated protein kinase pathway. We therefore hypothesized an important role for B-Raf, the first signaling molecule in the pathway. To test our hypothesis, human cerebral arteries were incubated at 37°C for 48 h in the absence or presence of a B-Raf inhibitor: SB-386023 or SB-590885. Contractile properties were evaluated in a myograph and protein expression of the individual receptors and activated phosphorylated B-Raf (p-B-Raf) was evaluated immunohistochemically. Results 5-HT1B, AT1, and ETB receptor-mediated contractions were significantly reduced by application of SB-590885, and to a smaller extent by SB-386023. A marked reduction in AT1 receptor immunoreactivity was observed after treatment with SB-590885. Treatment with SB-590885 and SB-386023 diminished the culture-induced increase of p-B-Raf immunoreactivity. Conclusions B-Raf signaling has a key function in the altered expression of vascular contractile receptors observed after organ culture. Therefore, specific targeting of B-Raf might be a novel approach to reduce tissue damage after cerebral ischemia by preventing the previously observed upregulation of contractile receptors in smooth muscle cells. PMID:21223556

  13. Characterization of prejunctional 5-HT1 receptors that mediate the inhibition of pressor effects elicited by sympathetic stimulation in the pithed rat

    PubMed Central

    Morán, A; Fernández, M M; Velasco, C; Martín, M L; San Román, L

    1998-01-01

    A study was made of the effects of 5-carboxamidotryptamine (5-CT) on pressor responses induced in vivo by electrical stimulation of the sympathetic outflow from the spinal cord of pithed rats. All animals had been pretreated with atropine. Sympathetic stimulation (0.1, 0.5, 1 and 5 Hz) resulted in frequency-dependent increases in blood pressure. Intravenous infusion of 5-CT at doses of 0.01, 0.1 and 1 μg kg−1 min−1 reduced the pressor effects obtained by electrical stimulation. The inhibitory effect of 5-CT was significantly more pronounced at lower frequencies of stimulation. In the present study we characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-CT.The inhibition induced by 0.01 μg kg−1 min−1 of 5-CT on sympathetically-induced pressor responses was partially blocked after i.v. treatment with methiothepin (10  μg kg−1), WAY-100,635 (100 μg kg−1) or GR127935T (250 μg kg−1), but was not affected by cyanopindolol (100 μg kg−1).The selective 5-HT1A receptor agonist 8-OH-DPAT and the selective 5-HT1B/1D receptor agonists sumatriptan and L-694,247 inhibited the pressor response, whereas the 5-HT1B receptor agonists CGS-12066B and CP-93,129 and the 5-HT2C receptor agonist m-CPP did not modify the pressor symapthetic responses.The selective 5-HT1A receptor antagonist WAY-100,635 (100 μg kg−1) blocked the inhibition induced by 8-OH-DPAT and the selective 5-HT1B/1D receptor antagonist GR127935T (250 μg kg−1) abolished the inhibition induced either by L-694,247 or sumatriptan.None of the 5-HT receptor agonists used in our experiments modified the pressor responses induced by exogenous noradrenaline (NA).These results suggest that the presynaptic inhibitory action of 5-CT on the electrically-induced pressor response is mediated by both r-5-HT1D and 5-HT1A receptors. PMID:9559906

  14. Effects of housing and muricidal behavior on serotonergic receptors and interactions with novel anxiolytic drugs.

    PubMed

    McMillen, B A; Chamberlain, J K; DaVanzo, J P

    1988-01-01

    Mouse killing by rats represents a predatory behavior that can be modified by drugs from several different therapeutic classes and by environmental conditions. Buspirone and gepirone, non-benzodiazepine anxiolytics that stimulate serotonergic receptors (5HT1a) and inhibit isolation-induced intraspecies aggression, were tested for inhibition of muricidal behavior by isolated rats. Neither buspirone (3.0 mg/kg s.c.) nor gepirone (from 5.0 to 40 mg/kg) inhibited muricide. Additional rats were housed, either aggregated or isolated, and tested for muricidal behavior 9 times over 5 weeks to establish which animals were muricidal: thus, there were 4 groups of rats: muricidal or non-muricidal under either isolated or aggregated housing condition. [3H]-Spiperone was used to determine striatal D2 receptor Bmax and Kd and prefrontal cortex D2 and 5HT2 receptor binding. There were no changes across the four groups. Binding of [3H]-5-hydroxytryptamine (5HT) to 5HT1a receptors decreased in septum of both groups of isolated rats and binding to 5HT1b receptors decreased 50% in hippocampus of isolated and aggregated muricidal rats. Binding of [3H]-5HT to either receptor was unchanged in amygdaloid area and hypothalamus across all groups. Thus, stimulating pre- and postsynaptic 5HT1a receptors does not alter muricidal behavior and changes in 5HT1 receptor binding occurs in limited areas. Whether this limited change in hippocampal 5HT1b binding is important for establishing muricidal behavior is unclear; however the direction of the change is consistent with reports that decreased serotonergic activity increases predatory behavior. PMID:2894404

  15. Attenuated Stress Response to Acute Restraint and Forced Swimming Stress in Arginine Vasopressin 1b Receptor Subtype (Avpr1b) Receptor Knockout Mice and Wild-Type Mice Treated with a Novel Avpr1b Receptor Antagonist

    PubMed Central

    Roper, J A; Craighead, M; O’Carroll, A-M; Lolait, S J

    2010-01-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. PMID:20846299

  16. Sequential onset of three 5-HT receptors during the 5-hydroxytryptaminergic differentiation of the murine 1C11 cell line.

    PubMed Central

    Kellermann, O.; Loric, S.; Maroteaux, L.; Launay, J. M.

    1996-01-01

    1. The murine 1C11 clone, which derives from a multipotential embryonal carcinoma cell line, has the features of a neuroectodermal precursor. When cultured in the presence of dibutyryl cyclic AMP, the 1C11 cells extend bipolar extensions and express neurone-associated markers. After 4 days, the resulting cells have acquired the ability to synthesize, take up, store and catabolize 5-hydroxytryptamine (5-HT). We have thus investigated the presence of 5-HT receptors during the 5-hydroxytryptaminergic differentiation of this inducible 1C11 cell line. 2. As shown by the binding of [125I]-GTI and the CGS 12066-dependent inhibition of the forskolin-induced cyclic AMP production, functional 5-HT1B/1D receptors become expressed on day 2 of 1C11 cell differentiation. The density of these receptors remained unchanged until day 4. 3. The same holds true for the 5-HT2B receptor, also identified by its pharmacological profile and its positive coupling to the phosphoinositide cascade. 4. On day 4 of 1C11 cell differentiation, a third 5-HT receptor, pharmacologically and functionally similar to 5-HT2A, had become induced. 5. Strikingly, the amounts of each transcript encoding 5-HT1B, 5-HT2A and 5-HT2B receptor did not very significantly during the time course of the 1C11 5-hydroxytryptaminergic differentiation. 6. The clone 1C11 may thus provide a useful in vitro model for studying regulation(s) between multiple G-linked receptors as well as the possible role of 5-HT upon the expression of a complete 5-hydroxytryptamine phenotype. Images Figure 5 PMID:8818339

  17. Strategies for improved modeling of GPCR-drug complexes: blind predictions of serotonin receptors bound to ergotamine.

    PubMed

    Rodríguez, David; Ranganathan, Anirudh; Carlsson, Jens

    2014-07-28

    The recent increase in the number of atomic-resolution structures of G protein-coupled receptors (GPCRs) has contributed to a deeper understanding of ligand binding to several important drug targets. However, reliable modeling of GPCR-ligand complexes for the vast majority of receptors with unknown structure remains to be one of the most challenging goals for computer-aided drug design. The GPCR Dock 2013 assessment, in which researchers were challenged to predict the crystallographic structures of serotonin 5-HT(1B) and 5-HT(2B) receptors bound to ergotamine, provided an excellent opportunity to benchmark the current state of this field. Our contributions to GPCR Dock 2013 accurately predicted the binding mode of ergotamine with RMSDs below 1.8 Å for both receptors, which included the best submissions for the 5-HT(1B) complex. Our models also had the most accurate description of the binding sites and receptor-ligand contacts. These results were obtained using a ligand-guided homology modeling approach, which combines extensive molecular docking screening with incorporation of information from multiple crystal structures and experimentally derived restraints. In this work, we retrospectively analyzed thousands of structures that were generated during the assessment to evaluate our modeling strategies. Major contributors to accuracy were found to be improved modeling of extracellular loop two in combination with the use of molecular docking to optimize the binding site for ligand recognition. Our results suggest that modeling of GPCR-drug complexes has reached a level of accuracy at which structure-based drug design could be applied to a large number of pharmaceutically relevant targets. PMID:25030302

  18. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  19. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  20. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  1. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  2. Individual vulnerability to escalated aggressive behavior by a low dose of alcohol: decreased serotonin receptor mRNA in the prefrontal cortex of male mice

    PubMed Central

    Chiavegatto, S; Quadros, IMH; Ambar, G; Miczek, KA

    2009-01-01

    Low to moderate doses of alcohol consumption induce heightened aggressive behavior in some, but not all individuals. Individual vulnerability for this nonadaptive behavior may be determined by an interaction of genetic and environmental factors to the sensitivity of alcohol’s effects on brain and behavior. We used a previously established protocol for alcohol oral self-administration and characterized alcohol-heightened aggressive (AHA) mice as compared to alcohol-non-heightened (ANA) counterparts. A week later, we quantified mRNA steady state levels of several candidate genes in the serotonin (5-HT) system in different brain areas. We report a regionally selective and significant reduction of all 5-HT receptor subtype transcripts, except for 5HT3, in the prefrontal cortex of AHA mice. Comparable gene expression profile was previously observed in aggressive mice induced by social isolation or by an anabolic androgenic steroid. Additional change in the 5-HT1B receptor transcripts was seen in the amygdala and hypothalamus of AHA mice. In both these areas, 5-HT1B mRNA was elevated when compared to ANA mice. In the hypothalamus, AHA mice showed also increased transcripts for 5-HT2A receptor. In the midbrain, 5-HT synthetic enzyme, 5-HT transporter, and 5-HT receptors mRNA levels were similar between groups. Our results emphasize a role for postsynaptic over presynaptic 5-HT receptors in individuals who showed escalated aggression after the consumption of a moderate dose of alcohol. This gene expression profile of 5-HT neurotransmission components in the brain of mice may suggest a vulnerability trait for alcohol-heightened aggression. PMID:20002201

  3. The vasopressin 1b receptor and the neural regulation of social behavior.

    PubMed

    Stevenson, Erica L; Caldwell, Heather K

    2012-03-01

    To date, much of the work in rodents implicating vasopressin (Avp) in the regulation of social behavior has focused on its action via the Avp 1a receptor (Avpr1a). However, there is mounting evidence that the Avp 1b receptor (Avpr1b) also plays a significant role in Avp's modulation of social behavior. The Avpr1b is heavily expressed on the anterior pituitary cortiocotrophs where it acts as an important modulator of the endocrine stress response. In the brain, the Avpr1b is prominent in the CA2 region of the hippocampus, but can also be found in areas such as the paraventricular nucleus of the hypothalamus and the olfactory bulb. Studies that have employed genetic knockouts or pharmacological manipulation of the Avpr1b point to the importance of central Avpr1b in the modulation of social behavior. However, there continues to be a knowledge gap in our understanding of where in the brain this is occurring, as well as how and if the central actions of Avp acting via the Avpr1b interact with the stress axis. In this review we focus on the genetic and pharmacological studies that have implicated the Avpr1b in the neural regulation of social behaviors, including social forms of aggressive behavior, social memory, and social motivation. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. PMID:22178035

  4. Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors

    PubMed Central

    Watson, J; Brough, S; Coldwell, M C; Gager, T; Ho, M; Hunter, A J; Jerman, J; Middlemiss, D N; Riley, G J; Brown, A M

    1998-01-01

    Xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine] has been reported to act as a functionally selective muscarinic partial agonist with potential use in the treatment of Alzheimer's disease. This study examined the functional activity of xanomeline at 5-HT1 and 5-HT2 receptors in native tissue and/or human cloned receptors.Xanomeline had affinity for muscarinic receptors in rat cortical membranes where the ratio of the displacement affinity of [3H]-Quinuclidinyl benzilate vs that of [3H]-Oxotremorine-M was 16, indicative of partial agonist activity. Radioligand binding studies on human cloned receptors confirmed that xanomeline had substantial affinity for M1, M2, M3, M4, M5 receptors and also for 5-HT1 and 5-HT2 receptor subtypes.Carbachol and xanomeline stimulated basal [35S]-GTPγS binding in rat cortical membranes with micromolar affinity. The response to carbachol was attenuated by himbacine and pirenzepine with pA2 of 8.2, 6.9 respectively consistent with the response being mediated, predominantly, via M2 and M4 receptors. Xanomeline-induced stimulation of [35S]-GTPγS binding was inhibited by himbacine with an apparent pKb of 6.3, was not attenuated by pirenzepine up to 3 μM and was inhibited by the selective 5-HT1A antagonist WAY100635 with an apparent pKb of 9.4. These data suggest the agonist effect of xanomeline in this tissue is, in part, via 5-HT1A receptors. Similar studies on human cloned receptors confirmed that xanomeline is an agonist at human cloned 5-HT1A and 5-HT1B receptors.In studies using the fluorescent cytoplasmic Ca2+ indicator FLUO-3AM, xanomeline induced an increase in cytoplasmic Ca2+ concentration in SH-SY5Y cells expressing recombinant human 5-HT2C receptors. Atropine antagonized this response, consistent with mediation via endogenously-expressed muscarinic receptors. In the presence of atropine, xanomeline antagonized 5-HT-induced cytoplasmic changes in Ca2+ concentration in cells expressing h5

  5. AKR1B7 Is Induced by the Farnesoid X Receptor and Metabolizes Bile Acids*

    PubMed Central

    Schmidt, Daniel R.; Schmidt, Samuel; Holmstrom, Sam R.; Makishima, Makoto; Yu, Ruth T.; Cummins, Carolyn L.; Mangelsdorf, David J.; Kliewer, Steven A.

    2011-01-01

    Although bile acids are crucial for the absorption of lipophilic nutrients in the intestine, they are cytotoxic at high concentrations and can cause liver damage and promote colorectal carcinogenesis. The farnesoid X receptor (FXR), which is activated by bile acids and abundantly expressed in enterohepatic tissues, plays a crucial role in maintaining bile acids at safe concentrations. Here, we show that FXR induces expression of Akr1b7 (aldo-keto reductase 1b7) in murine small intestine, colon, and liver by binding directly to a response element in the Akr1b7 promoter. We further show that AKR1B7 metabolizes 3-keto bile acids to 3β-hydroxy bile acids that are less toxic to cultured cells than their 3α-hydroxy precursors. These findings reveal a feed-forward, protective pathway operative in murine enterohepatic tissues wherein FXR induces AKR1B7 to detoxify bile acids. PMID:21081494

  6. α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization.

    PubMed

    Castillo-Badillo, Jean A; Sánchez-Reyes, Omar B; Alfonzo-Méndez, Marco A; Romero-Ávila, M Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J Adolfo

    2015-01-01

    Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs

  7. α1B-Adrenergic Receptors Differentially Associate with Rab Proteins during Homologous and Heterologous Desensitization

    PubMed Central

    Castillo-Badillo, Jean A.; Sánchez-Reyes, Omar B.; Alfonzo-Méndez, Marco A.; Romero-Ávila, M. Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J. Adolfo

    2015-01-01

    Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs

  8. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    PubMed Central

    Amchova, Petra; Kucerova, Jana; Giugliano, Valentina; Babinska, Zuzana; Zanda, Mary T.; Scherma, Maria; Dusek, Ladislav; Fadda, Paola; Micale, Vincenzo; Sulcova, Alexandra; Fratta, Walter; Fattore, Liana

    2013-01-01

    Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5–10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats. PMID:24688470

  9. Role of opioid receptors in neurogenic dural vasodilation and sensitization of trigeminal neurones in anaesthetized rats

    PubMed Central

    Williamson, D J; Shepheard, S L; Cook, D A; Hargreaves, R J; Hill, R G; Cumberbatch, M J

    2001-01-01

    Migraine headache is thought to be caused by a distension of meningeal blood vessels, the activation of trigeminal sensory neurones and the the development of a central sensitization within the trigeminal nucleus caudalis (TNC). It has been proposed that clinically effective 5-HT1B/1D agonists act peripherally to inhibit the release of calcitonin gene-related peptide (CGRP) and neurogenic dural vasodilation, and to attenuate nociceptive neurotransmission within the TNC. Since opioids are also effective anti-migraine agents the present studies investigated the role of opioids within the trigemino-vascular system in anaesthetised rats. Electrical stimulation of the dura mater evoked neurogenic dural vasodilation which was significantly inhibited by morphine (1 mg kg−1) the selective μ-opioid agonist DAGO (10 μg kg−1) and the mixed agonist/antagonist butorphanol (1 mg kg−1) but not by the κ- and δ-opioid agonists (±) U50488H (100 μg kg−1) and DPDPE (1 mg kg−1). Morphine had no effect on CGRP-evoked dural vasodilation. In electrophysiological studies morphine (1 – 10 mg kg−1) significantly attenuated brainstem neuronal activity in response to electrical stimulation of the dura by 65% at 10 mg kg−1. Morphine (3 mg kg−1) also inhibited the TNC neuronal sensitization following CGRP-evoked dilation. The present studies have demonstrated that opioids block the nociceptive neurotransmission within the trigeminal nucleus caudalis and in addition inhibit neurogenic dural vasodilation via an action on μ-opioid receptors located on trigeminal sensory fibres innervating dural blood vessels. These peripheral and central actions are similar to those of the ‘triptan' 5-HT1B/1D agonists and could account for the anti-migraine actions of opioids. PMID:11454653

  10. Cross-talk between receptors with intrinsic tyrosine kinase activity and alpha1b-adrenoceptors.

    PubMed Central

    del Carmen Medina, L; Vázquez-Prado, J; García-Sáinz, J A

    2000-01-01

    The effect of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) on the phosphorylation and function of alpha(1b)-adrenoceptors transfected into Rat-1 fibroblasts was studied. EGF and PDGF increased the phosphorylation of these adrenoceptors. The effect of EGF was blocked by tyrphostin AG1478 and that of PDGF was blocked by tyrphostin AG1296, inhibitors of the intrinsic tyrosine kinase activities of the receptors for these growth factors. Wortmannin, an inhibitor of phosphoinositide 3-kinase, blocked the alpha(1b)-adrenoceptor phosphorylation induced by EGF but not that induced by PDGF. Inhibition of protein kinase C blocked the adrenoceptor phosphorylation induced by EGF and PDGF. The ability of noradrenaline to increase [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTP[S]) binding in membrane preparations was used as an index of the functional coupling of the alpha(1b)-adrenoceptors and G-proteins. Noradrenaline-stimulated [(35)S]GTP[S] binding was markedly decreased in membranes from cells pretreated with EGF or PDGF. Our data indicate that: (i) activation of EGF and PDGF receptors induces phosphorylation of alpha(1b)-adrenoceptors, (ii) phosphatidylinositol 3-kinase is involved in the EGF response, but does not seem to play a major role in the action of PDGF, (iii) protein kinase C mediates this action of both growth factors and (iv) the phosphorylation of alpha(1b)-adrenoceptors induced by EGF and PDGF is associated with adrenoceptor desensitization. PMID:10947955

  11. Serotonin Receptors in Rat Jugular Vein: Presence and Involvement in the Contraction

    PubMed Central

    Gaskell, Geri L.; Szasz, Theodora; Thompson, Janice M.; Watts, Stephanie W.

    2010-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) is released during platelet aggregation, a phenomenon commonly observed in blood clot formation and venous diseases. Once released, 5-HT can interact with its receptors in the peripheral vasculature to modify vascular tone. The goal of this study was to perform a detailed pharmacological characterization of the 5-HT receptors involved in the contractile response of the rat jugular vein (RJV) using recently developed drugs with greater selectivity toward 5-HT receptor subtypes. We hypothesized that, as for other blood vessels, the 5-HT1B/1D and 5-HT2B receptor subtypes mediate contraction in RJV alongside the 5-HT2A receptor subtype. Endothelium-intact RJV rings were set up in an isolated organ bath for isometric tension recordings, and contractile concentration-effect curves were obtained for 13 distinct serotonergic receptor agonists. Surprisingly, the 5-HT1A and the mixed 5-HT1A/1B receptor agonists (±)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) and 5-methoxy-3 (1,2,3,6-tetrahydropyridin-4-yl) (1H indole) (RU24969) caused contractions that were antagonized by the 5-HT1A receptor antagonist [O-methyl-3H]-N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide (WAY100135). The contractile curve to 5-HT was shifted to the right by WAY100135, 3-[2-[4-(4-fluoro benzoyl)-piperidin-1-yl]ethyl]-1H-quinazoline-2,4-dione (ketanserin; 5-HT2A/C receptor antagonist), and 1-(2-chloro-3,4-dimethoxybenzyl)-6-methyl-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole hydrochloride (LY266097; 5-HT2B receptor antagonist). Ketanserin also caused rightward shifts of the contractile curves to 8-OH-DPAT, RU24969, and the 5-HT2B receptor agonist (α-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine) (BW723C86). Agonists for 5-HT1B/1D/1F, 5-HT3, 5-HT6, and 5-HT7 receptors were inactive. In real-time polymerase chain reaction experiments that have never been performed in this tissue previously, we

  12. Serotonin 1B Receptor Gene (HTR1B) Methylation as a Risk Factor for Callous-Unemotional Traits in Antisocial Boys.

    PubMed

    Moul, Caroline; Dobson-Stone, Carol; Brennan, John; Hawes, David J; Dadds, Mark R

    2015-01-01

    The serotonin system is thought to play a role in the aetiology of callous-unemotional (CU) traits in children. Previous research identified a functional single nucleotide polymorphism (SNP) from the promoter region of the serotonin 1B receptor gene as being associated with CU traits in boys with antisocial behaviour problems. This research tested the hypothesis that CU traits are associated with reduced methylation of the promoter region of the serotonin 1B receptor gene due to the influence of methylation on gene expression. Participants (N = 117) were boys with antisocial behaviour problems aged 3-16 years referred to University of New South Wales Child Behaviour Research Clinics. Participants volunteered a saliva sample from which the genotype of a SNP from the promoter region of the serotonin 1B receptor gene and the methylation levels of 30 CpG sites from 3 CpG regions surrounding the location of this polymorphism were assayed. Lower levels of serotonin 1B receptor gene methylation were associated with higher levels of CU traits. This relationship, however, was found to be moderated by genotype and carried exclusively by two CpG sites for which levels of methylation were negatively associated with overall methylation levels in this region of the gene. Results provide support to the emerging literature that argues for a genetically-driven system-wide alteration in serotonin function in the aetiology of CU traits. Furthermore, the results suggest that there may be two pathways to CU traits that involve methylation of the serotonin 1B receptor gene; one that is driven by a genotypic risk and another that is associated with risk for generally increased levels of methylation. Future research that aims to replicate and further investigate these results is required. PMID:25993020

  13. SynCAM1 recruits NMDA receptors via protein 4.1B.

    PubMed

    Hoy, Jennifer L; Constable, John R; Vicini, Stefano; Fu, Zhanyan; Washbourne, Philip

    2009-12-01

    Cell adhesion molecules have been implicated as key organizers of synaptic structures, but there is still a need to determine how these molecules facilitate neurotransmitter receptor recruitment to developing synapses. Here, we identify erythrocyte protein band 4.1-like 3 (protein 4.1B) as an intracellular effector molecule of Synaptic Cell Adhesion Molecule 1 (SynCAM1) that is sufficient to recruit NMDA-type receptors (NMDARs) to SynCAM1 adhesion sites in COS7 cells. Protein 4.1B in conjunction with SynCAM1 also increased the frequency of NMDAR-mediated mEPSCs and area of presynaptic contact in an HEK293 cell/ neuron co-culture assay. Studies in cultured hippocampal neurons reveal that manipulation of protein 4.1B expression levels specifically affects NMDAR-mediated activity and localization. Finally, further experimentation in COS7 cells show that SynCAM1 may also interact with protein 4.1N to specifically effect AMPA type receptor (AMPAR) recruitment. Thus, SynCAM1 may recruit both AMPARs and NMDARs by independent mechanisms during synapse formation. PMID:19796685

  14. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. PMID:23916504

  15. TASP0434299: A Novel Pyridopyrimidin-4-One Derivative as a Radioligand for Vasopressin V1B Receptor.

    PubMed

    Koga, Kazumi; Yoshinaga, Mitsukane; Uematsu, Yoshikatsu; Nagai, Yuji; Miyakoshi, Naoki; Shimoda, Yoko; Fujinaga, Masayuki; Minamimoto, Takafumi; Zhang, Ming-Rong; Higuchi, Makoto; Ohtake, Norikazu; Suhara, Tetsuya; Chaki, Shigeyuki

    2016-06-01

    A novel pyridopyrimidin-4-one derivative, N-tert-butyl-2-[2-(3-methoxyphenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]acetamide (TASP0434299), was characterized as a radioligand candidate for arginine vasopressin 1B (V1B) receptor. TASP0434299 exhibited high binding affinities for human and rat V1B receptors with IC50 values of 0.526 and 0.641 nM, respectively, and potent antagonistic activity at the human V1B receptor with an IC50 value of 0.639 nM without apparent binding affinities for other molecules at 1 μM. [(3)H]TASP0434299 bound to membranes expressing the human V1B receptor as well as those prepared from the rat anterior pituitary in a saturable manner. The binding of [(3)H]TASP0434299 to the membranes was dose-dependently displaced by several ligands for the V1B receptor. In addition, the intravenous administration of [(3)H]TASP0434299 to rats produced a saturable radioactive accumulation in the anterior pituitary where the V1B receptor is enriched, and it was dose-dependently blocked by the oral administration of 2-[2-(3-chloro-4-fluorophenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]-N-isopropylacetamide hydrochloride, a V1B receptor antagonist, indicating that [(3)H]TASP0434299 can be used as an in vivo radiotracer to measure the occupancy of the V1B receptor. Finally, the intravenous administration of [(11)C]TASP0434299 provided positron emission tomographic images of the V1B receptor in the pituitary in an anesthetized monkey, and the signal was blocked by pretreatment with an excess of unlabeled TASP0434299. These results indicate that radiolabeled TASP0434299 is the first radioligand to be capable of quantifying the V1B receptor selectively in both in vitro and in vivo studies and will provide a clinical biomarker for determining the occupancy of the V1B receptor during drug development or for monitoring the levels of the V1B receptor in diseased conditions. PMID:27029585

  16. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials

    PubMed Central

    Pithadia, Anand B.; Jain, Sunita M.

    2009-01-01

    5-hydroxytryptamine (5-HT) has become one of the most investigated and complex biogenic amines. The main receptors and their subtypes, e.g., 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 5-HTIE and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6 and 5-HT7 have been identified. Specific drugs which are capable of either selectively stimulating or inhibiting these receptor subtypes are being designed. This has generated therapeutic potentials of 5-HT receptor modulators in a variety of disease conditions. Conditions where 5-HT receptor modulators have established their use with distinct efficacy and advantages include migraine, anxiety, psychosis, obesity and cancer therapy-induced vomiting by cytotoxic drugs and radiation. Discovery of 5-HT, its biosynthesis, metabolism, physiological role and the potential of 5-HT receptor modulators in various nervous, cardiovascular and gastrointestinal tract disorders, bone growth and micturition have been discussed in this article. Keywords 5-hydroxytryptamine (5-HT) receptors; Modulators; Biogenic amines PMID:22505971

  17. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    PubMed Central

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-01-01

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615

  18. Alpha-2 adrenergic and serotonin-1B receptors in the OK cell, an opossum kidney cell line

    SciTech Connect

    Murphy, T.J.

    1988-01-01

    Alpha-2 adrenergic and serotonin-1B (5HT{sub 1B}) receptors, both negatively-coupled to adenylyl cyclase, were characterized in the OK cell line, a renal proximal tubule epithelial cell line derived from the kidney of a North American opossum. In membrane saturation radioligand binding experiments, ({sup 3}H)yohimbine and ({sup 3}H)rauwolscine labeled an equivalent number of binding sites. Detailed pharmacological analysis of OK cell alpha-2 adrenergic receptors in competition binding assays indicate this receptor is neither an alpha-2A nor an alpha-2B adrenergic receptor subtype, although the alpha-2B receptor subtype-selective drugs prazosin, ARC-239 and chlorpromazine have affinities for OK cell alpha-2 adrenergic receptors similar to those at the alpha-2B receptor subtype. Determinations of agonist potency for inhibition of PTH-stimulated cyclic AMP production and radioligand binding analysis using ({sup 125}I)({minus})-cyanopindolol indicate that a 5HT{sub 1B} receptor is expressed in the OK cell line. A biochemical effector system coupled to this receptor subtype has not been previously described. Several compounds appear to be potent agonists at the 5TH{sub 1B} receptor including the beta adrenergic antagonists cyanopindolol, pindolol, propranolol and alprenolol.

  19. Structure and function of serotonin G protein-coupled receptors.

    PubMed

    McCorvy, John D; Roth, Bryan L

    2015-06-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein-coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  20. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  1. Serotonin receptor 1A knockout: An animal model of anxiety-related disorder

    PubMed Central

    Ramboz, Sylvie; Oosting, Ronald; Amara, Djamel Aït; Kung, Hank F.; Blier, Pierre; Mendelsohn, Monica; Mann, J. John; Brunner, Dani; Hen, René

    1998-01-01

    To investigate the contribution of individual serotonin (5-hydroxytryptamine; 5-HT) receptors to mood control, we have used homologous recombination to generate mice lacking specific serotonergic receptor subtypes. In the present report, we demonstrate that mice without 5-HT1A receptors display decreased exploratory activity and increased fear of aversive environments (open or elevated spaces). 5-HT1A knockout mice also exhibited a decreased immobility in the forced swim test, an effect commonly associated with antidepressant treatment. Although 5-HT1A receptors are involved in controlling the activity of serotonergic neurons, 5-HT1A knockout mice had normal levels of 5-HT and 5-hydroxyindoleacetic acid, possibly because of an up-regulation of 5-HT1B autoreceptors. Heterozygote 5-HT1A mutants expressed approximately one-half of wild-type receptor density and displayed intermediate phenotypes in most behavioral tests. These results demonstrate that 5-HT1A receptors are involved in the modulation of exploratory and fear-related behaviors and suggest that reductions in 5-HT1A receptor density due to genetic defects or environmental stressors might result in heightened anxiety. PMID:9826725

  2. Cartilage Acidic Protein–1B (LOTUS), an Endogenous Nogo Receptor Antagonist for Axon Tract Formation

    PubMed Central

    Sato, Yasufumi; Iketani, Masumi; Kurihara, Yuji; Yamaguchi, Megumi; Yamashita, Naoya; Nakamura, Fumio; Arie, Yuko; Kawasaki, Takahiko; Hirata, Tatsumi; Abe, Takaya; Kiyonari, Hiroshi; Strittmatter, Stephen M.; Goshima, Yoshio; Takei, Kohtaro

    2011-01-01

    Neural circuitry formation depends on the molecular control of axonal projection during development. By screening with fluorophore-assisted light inactivation in the developing mouse brain, we identified cartilage acidic protein–1B as a key molecule for lateral olfactory tract (LOT) formation and named it LOT usher substance (LOTUS). We further identified Nogo receptor–1 (NgR1) as a LOTUS-binding protein. NgR1 is a receptor of myelin-derived axon growth inhibitors, such as Nogo, which prevent neural regeneration in the adult. LOTUS suppressed Nogo-NgR1 binding and Nogo-induced growth cone collapse. A defasciculated LOT was present in lotus-deficient mice but not in mice lacking both lotus- and ngr1. These findings suggest that endogenous antagonism of NgR1 by LOTUS is crucial for normal LOT formation. PMID:21817055

  3. L12 enhances gonococcal transcytosis of polarized Hec1B cells via the lutropin receptor.

    PubMed

    Spence, Janice M; Tyler, Ryan E; Domaoal, Robert A; Clark, Virginia L

    2002-03-01

    We previously reported that gonococci convert to a more invasive phenotype (Inv(+)GC) following contact with cells expressing the lutropin receptor (LHr) and that Inv(+)GC express a novel adhesin that interacts with LHr. We propose that this adhesion allows Inv(+)GC to activate LHr and induce gonococcal transcytosis, usurping normal LHr function in fallopian and endometrial epithelium, which is to transport fetal chorionic gonadotropin (hCG) into the mother. Infected polarized Hec1B monolayers, grown on collagen-coated transwells, showed that the passage of GC across the monolayer occurred rapidly, within 30 min, and proceeded at a constant rate with Inv(+)GC passage three-fold faster than GC grown in tissue culture media alone (Inv(-)GC). Electron microscopy found that Inv(+)GC triggered pseudopod formation around the bacterium, with GC found throughout the Hec1B targets within 30 min, while Inv(-)GC did neither. Pre-treatment of Inv(-)GC with recombinant ribosomal protein L12, a gonococcal "hCG-like" protein previously shown to increase invasion, also increased Inv(-)GC transcytosis to the rate of Inv(+)GC. This enhancement was completely abolished by addition of luteinizing hormone, a cognate ligand of LHr. This is convincing evidence that surface expressed L12 mediates gonococcal invasion and transcytosis via LHr, a mechanism that could be important in the development of invasive gonococcal disease in women. PMID:11855942

  4. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2.

    PubMed

    Pagani, J H; Zhao, M; Cui, Z; Avram, S K Williams; Caruana, D A; Dudek, S M; Young, W S

    2015-04-01

    The vasopressin 1b receptor (Avpr1b) is critical for social memory and social aggression in rodents, yet little is known about its specific roles in these behaviors. Some clues to Avpr1b function can be gained from its profile of expression in the brain, which is largely limited to the pyramidal neurons of the CA2 region of the hippocampus, and from experiments showing that inactivation of the gene or antagonism of the receptor leads to a reduction in social aggression. Here we show that partial replacement of the Avpr1b through lentiviral delivery into the dorsal CA2 region restored the probability of socially motivated attack behavior in total Avpr1b knockout mice, without altering anxiety-like behaviors. To further explore the role of the Avpr1b in this hippocampal region, we examined the effects of Avpr1b agonists on pyramidal neurons in mouse and rat hippocampal slices. We found that selective Avpr1b agonists induced significant potentiation of excitatory synaptic responses in CA2, but not in CA1 or in slices from Avpr1b knockout mice. In a way that is mechanistically very similar to synaptic potentiation induced by oxytocin, Avpr1b agonist-induced potentiation of CA2 synapses relies on NMDA (N-methyl-D-aspartic acid) receptor activation, calcium and calcium/calmodulin-dependent protein kinase II activity, but not on cAMP-dependent protein kinase activity or presynaptic mechanisms. Our data indicate that the hippocampal CA2 is important for attacking in response to a male intruder and that the Avpr1b, likely through its role in regulating CA2 synaptic plasticity, is a necessary mediator. PMID:24863146

  5. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  6. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia

    PubMed Central

    Perez Bay, Andres E; Schreiner, Ryan; Mazzoni, Francesca; Carvajal-Gonzalez, Jose M; Gravotta, Diego; Perret, Emilie; Lehmann Mantaras, Gullermo; Zhu, Yuan-Shan; Rodriguez-Boulan, Enrique J

    2013-01-01

    Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial-specific clathrin adaptor AP-1B. Some native epithelia lack AP-1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP-1B-deficient epithelia to relocate AP-1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP-1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP-1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus-end kinesin KIF16B and non-centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a-dependent TfR recycling pathway of non-polarized cells. They define a transcytotic pathway important for the physiology of native AP-1B-deficient epithelia and report the first microtubule motor involved in transcytosis. PMID:23749212

  7. Long-Range Communication Network in the Type 1B Bone Morphogenetic Protein Receptor.

    PubMed

    Evangelista, Wilfredo; Yeh, Lee-Chuan C; Gmyrek, Aleksandra; Lee, J Ching; Lee, John C

    2015-12-01

    Protein-protein interactions are recognized as a fundamental phenomenon that is intimately associated with biological functions and thus are ideal targets for developing modulators for regulating biological functions. A challenge is to identify a site that is situated away from but functionally connected to the protein-protein interface. We employed bone morphogenetic proteins (BMPs) and their receptors as a model system to develop a strategy for identifying such a network of communication. Accordingly, using computational analyses with the COREX/BEST algorithm, we uncovered an overall pattern connecting various regions of BMPR-1B ectodomain, including the four conserved residues in the protein-protein interface. In preparation for testing the long-range effects of mutations of distal residues for future studies, we examined the extent of measurable perturbation of the four conserved residues by determination of the conformation and relative affinities of these BMPR-1B mutants for ligands BMP-2, -6, and -7 and GDF-5. Results suggest no significant structural changes in the receptor but do suggest that the four residues play different roles in defining ligand affinity and both intra- and intermolecular interactions play a role in defining ligand affinity. Thus, these results established two primary but necessary goals: (1) the baseline knowledge of perturbation of conserved interfacial residues for future reference and (2) the ability of the computational approach to identify the distal residues connecting to the interfacial residues. The data presented here provide the foundation for future experiments to identify the effects of distal residues that affect the specificity and affinity of BMP recognition. Protein-protein interactions are integral reactions in essentially all biological activities such as gene regulation and age-related development. Often, diseases are consequences of the alteration of these intermacromolecular interactions, which are thus recognized

  8. Design, synthesis and pharmacological characterization of fluorescent peptides for imaging human V1b vasopressin or oxytocin receptors

    PubMed Central

    Corbani, Maithé; Trueba, Miguel; Stoev, Stoytcho; Murat, Brigitte; Mion, Julie; Boulay, Véra; Guillon, Gilles; Manning, Maurice

    2011-01-01

    Among the four known vasopressin and oxytocin receptors, the specific localization of the V1b isoform is poorly described due to the lack of selective pharmacological tools. In an attempt to address this need, we decided to design, synthesize and characterize fluorescent selective V1b analogues. Starting with the selective V1b agonist, [deamino-Cys1, Leu4, Lys8]vasopressin (d[Leu4,Lys8]VP) synthesized earlier, we added blue, green or red fluorophores to the lysine residue at position 8, either directly or by the use of linkers of different lengths. Among the nine analogues synthesized, two exhibited very promising properties. These are d[Leu4, Lys (Alexa 647)8]VP (3) and d[Leu4, Lys (11-aminoundecanoyl-Alexa 647)8]VP (9). They remained full V1b agonists with nanomolar affinity and specifically decorated the plasma membrane of CHO cells stably transfected with the human V1b receptor. These new selective fluorescent peptides will allow the cellular localisation of V1b or OT receptor isoforms in native tissues. PMID:21428295

  9. Different serotonin receptor agonists have distinct effects on sound-evoked responses in inferior colliculus.

    PubMed

    Hurley, Laura M

    2006-11-01

    The neuromodulator serotonin has a complex set of effects on the auditory responses of neurons within the inferior colliculus (IC), a midbrain auditory nucleus that integrates a wide range of inputs from auditory and nonauditory sources. To determine whether activation of different types of serotonin receptors is a source of the variability in serotonergic effects, four selective agonists of serotonin receptors in the serotonin (5-HT) 1 and 5-HT2 families were iontophoretically applied to IC neurons, which were monitored for changes in their responses to auditory stimuli. Different agonists had different effects on neural responses. The 5-HT1A agonist had mixed facilitatory and depressive effects, whereas 5-HT1B and 5-HT2C agonists were both largely facilitatory. Different agonists changed threshold and frequency tuning in ways that reflected their effects on spike count. When pairs of agonists were applied sequentially to the same neurons, selective agonists sometimes affected neurons in ways that were similar to serotonin, but not to other selective agonists tested. Different agonists also differentially affected groups of neurons classified by the shapes of their frequency-tuning curves, with serotonin and the 5-HT1 receptors affecting proportionally more non-V-type neurons relative to the other agonists tested. In all, evidence suggests that the diversity of serotonin receptor subtypes in the IC is likely to account for at least some of the variability of the effects of serotonin and that receptor subtypes fulfill specialized roles in auditory processing. PMID:16870843

  10. A Significant Role of the Truncated Ghrelin Receptor GHS-R1b in Ghrelin-induced Signaling in Neurons.

    PubMed

    Navarro, Gemma; Aguinaga, David; Angelats, Edgar; Medrano, Mireia; Moreno, Estefanía; Mallol, Josefa; Cortés, Antonio; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Lluís, Carme; Ferré, Sergi

    2016-06-17

    The truncated non-signaling ghrelin receptor growth hormone secretagogue R1b (GHS-R1b) has been suggested to simply exert a dominant negative role in the trafficking and signaling of the full and functional ghrelin receptor GHS-R1a. Here we reveal a more complex modulatory role of GHS-R1b. Differential co-expression of GHS-R1a and GHS-R1b, both in HEK-293T cells and in striatal and hippocampal neurons in culture, demonstrates that GHS-R1b acts as a dual modulator of GHS-R1a function: low relative GHS-R1b expression potentiates and high relative GHS-R1b expression inhibits GHS-R1a function by facilitating GHS-R1a trafficking to the plasma membrane and by exerting a negative allosteric effect on GHS-R1a signaling, respectively. We found a preferential Gi/o coupling of the GHS-R1a-GHS-R1b complex in HEK-293T cells and, unexpectedly, a preferential Gs/olf coupling in both striatal and hippocampal neurons in culture. A dopamine D1 receptor (D1R) antagonist blocked ghrelin-induced cAMP accumulation in striatal but not hippocampal neurons, indicating the involvement of D1R in the striatal GHS-R1a-Gs/olf coupling. Experiments in HEK-293T cells demonstrated that D1R co-expression promotes a switch in GHS-R1a-G protein coupling from Gi/o to Gs/olf, but only upon co-expression of GHS-R1b. Furthermore, resonance energy transfer experiments showed that D1R interacts with GHS-R1a, but only in the presence of GHS-R1b. Therefore, GHS-R1b not only determines the efficacy of ghrelin-induced GHS-R1a-mediated signaling but also determines the ability of GHS-R1a to form oligomeric complexes with other receptors, promoting profound qualitative changes in ghrelin-induced signaling. PMID:27129257

  11. Central V1b receptor antagonism in lactating rats: impairment of maternal care but not of maternal aggression.

    PubMed

    Bayerl, D S; Klampfl, S M; Bosch, O J

    2014-12-01

    Maternal behaviour in rodents is mediated by the central oxytocin and vasopressin systems, amongst others. The role of vasopressin, acting via the V1a receptor (V1aR), on maternal care and maternal aggression has recently been described. However, a potential involvement of the V1b receptor (V1bR) in maternal behaviour has only been demonstrated in knockout mice. The present study aimed to examine the effects of central pharmacological manipulation of the V1bR on maternal behaviour in lactating Wistar rats. On pregnancy day 18, female rats were implanted with a guide cannula targeting the lateral ventricle. After parturition, dams received an acute central infusion of a specific V1bR agonist (d[Leu4,Lys8]VP) or V1bR antagonist (SSR149415) once daily, followed by observations of maternal care [lactation day (LD) 1], maternal motivation in the pup retrieval test (LD 2), anxiety-related behaviour on the elevated plus-maze (LD 3) and maternal aggression in the maternal defence test followed by maternal care monitoring (LD 4). Our data demonstrate that, under nonstress conditions, the V1bR antagonist decreased the occurrence of both nursing and mother-pup interaction, whereas the V1bR agonist did not affect either parameter. Under stress conditions (i.e. after the maternal defence test), mother-pup interaction was decreased by infusion of the V1bR antagonist. During the maternal defence test, neither treatment affected aggressive or non-aggressive behaviour. Finally, neither treatment altered maternal motivation or anxiety. In conclusion, central V1bR antagonism modulates aspects of maternal care but not of maternal aggression or maternal motivation in lactating rats. These findings further extend our knowledge on the vasopressin system as a vital mediator of maternal behaviour. PMID:25283607

  12. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction.

    PubMed

    Eden, Emily R; White, Ian J; Tsapara, Anna; Futter, Clare E

    2010-03-01

    The epidermal growth factor receptor (EGFR) is a critical determinator of cell fate. Signalling from this receptor tyrosine kinase is spatially regulated by progression through the endocytic pathway, governing receptor half-life and accessibility to signalling proteins and phosphatases. Endocytosis of EGFR is required for interaction with the protein tyrosine phosphatase PTP1B (ref. 1), which localizes to the cytoplasmic face of the endoplasmic reticulum (ER), raising the question of how PTP1B comes into contact with endosomal EGFR. We show that EGFR-PTP1B interaction occurs by means of direct membrane contacts between the perimeter membrane of multivesicular bodies (MVBs) and the ER. The population of EGFR interacting with PTP1B is the same population that undergo ESCRT-mediated (endosomal sorting complex required for transport) sorting within MVBs, and PTP1B activity promotes the sequestration of EGFR on to MVB internal vesicles. Membrane contacts between endosomes and the ER form in both the presence and absence of stimulation by EGF. Thus membrane contacts between endosomes and the ER may represent a global mechanism for direct interaction between proteins on these two organelles. PMID:20118922

  13. Evidence for involvement of central vasopressin V1b and V2 receptors in stress-induced baroreflex desensitization

    PubMed Central

    Milutinović-Smiljanić, Sanja; Šarenac, Olivera; Lozić-Djurić, Maja; Murphy, David; Japundžić-Žigon, Nina

    2013-01-01

    Background and Purpose It is well recognized that vasopressin modulates the neurogenic control of the circulation. Here, we report the central mechanisms by which vasopressin modulates cardiovascular response to stress induced by immobilization. Experimental Approach Experiments were performed in conscious male Wistar rats equipped with radiotelemetric device for continuous measurement of haemodynamic parameters: systolic and diastolic BP and heart rate (HR). The functioning of the spontaneous baro-receptor reflex (BRR) was evaluated using the sequence method and the following parameters were evaluated: BRR sensitivity (BRS) and BRR effectiveness index (BEI). Key Results Under baseline physiological conditions intracerebroventricular injection of 100 and 500 ng of selective non-peptide V1a or V1b or V2 receptor antagonist did not modify BP, HR and BRR. Rats exposed to 15 min long stress by immobilization exhibited increase of BP, HR, reduction of BRS and no change in BEI. Pretreatment of rats with V1a receptor antagonist did not modulate the BP, HR, BRS and BEI response to stress. Pretreatment of rats with V1b receptor and V2 receptor antagonist, at both doses, prevented BRR desensitization and tachycardia, but failed to modulate stress-induced hypertension. Conclusions and Implications Vasopressin by the stimulation of central V1b- and V2-like receptors mediates stress-induced tachycardia and BRR desensitization. If these mechanisms are involved, BRR desensitization in heart failure and hypertension associated with poor outcome, they could be considered as novel targets for cardiovascular drug development. PMID:23488898

  14. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    PubMed Central

    Pandey, S C; Davis, J M; Pandey, G N

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtypes are linked to the multifunctional phosphoinositide (PI) signalling system. 5-HT3 receptors are considered ion-gated receptors and are also linked to the PI signalling system by an unknown mechanism. The 5-HT2A receptor subtype is the most widely studied of the 5-HT receptors in psychiatric disorders (for example, suicide, depression and schizophrenia) as well as in relation to the mechanism of action of antidepressant drugs. The roles of 5-HT2C and 5-HT3 receptors in psychiatric disorders are less clear. These 5-HT receptors also play an important role in alcoholism. It has been shown that 5-HT2A, 5-HT2C and 5-HT3 antagonists cause attenuation of alcohol intake in animals and humans. However, the exact mechanisms are unknown. The recent cloning of the cDNAs for 5-HT2A, 5-HT2C and 5-HT3 receptors provides the opportunity to explore the molecular mechanisms responsible for the alterations in these receptors during illness as well as pharmacotherapy. This review article will focus on the current research into the pharmacological properties, molecular biology, and clinical correlates of 5-HT2A, 5-HT2C and 5-HT3 receptors. PMID:7786883

  15. Binding of indolylalkylamines at 5-HT2 serotonin receptors: examination of a hydrophobic binding region.

    PubMed

    Glennon, R A; Chaurasia, C; Titeler, M

    1990-10-01

    Taking advantage of a proposed hydrophobic region on 5-HT2 receptors previously identified by radioligand-binding studies utilizing various phenylisopropylamine derivatives, we prepared and evaluated several N1 - and/or C7-alkyl-substituted derivatives of alpha-methyltryptamine in order to improve its affinity and selectivity. It was determined that substitution of an n-propyl or amyl group has similar effect on affinity regardless of location (i.e., N1 or C7). The low affinity of several N1-alkylpyrroleethylamines suggests that the benzene portion of the alpha-methyltryptamines is necessary for significant affinity. Whereas tryptamine derivatives generally display little selectivity for the various populations of 5-HT receptors, N1-n-propyl-5-methoxy-alpha-methyltryptamine (3h) binds with significant affinity (Ki = 12 nM) and selectivity at 5-HT2 receptors relative to 5-HT1A (Ki = 7100 nM), 5-HT1B (Ki = 5000 nM), 5-HT1C (Ki = 120 nM), and 5-HT1D (Ki greater than 10,000 nM) receptors. As a consequence, this is the most 5-HT2-selective indolylalkylamine derivative reported to date. PMID:2213830

  16. Serotonin-induced inhibition of locomotor rhythm of the rat isolated spinal cord is mediated by the 5-HT1 receptor class.

    PubMed Central

    Beato, M; Nistri, A

    1998-01-01

    The neurotransmitter serotonin (5-HT) induces rhythmic motor patterns (fictive locomotion) of the neonatal rat spinal cord in vitro; this is a useful experimental model to study the generation of a motor programme at exclusively spinal level. Nevertheless, 5-HT slows down the fictive locomotion typically elicited by activation of NMDA glutamate receptors, suggesting a complex action of this monoamine. By means of electrophysiological recordings from multiple ventral roots we demonstrated that the decrease caused by 5-HT in NMDA-induced periodicity was dose-dependent, enhanced after pharmacological blocking of 5-HT2 excitatory receptors, and imitated by pharmacological agonists of the 5-HT1 receptor family. Selective blockers of the 5-HT1A or 5-HT1B/D receptor classes, either alone or in combination, largely (but not completely) attenuated this inhibitory action of 5-HT. It is concluded that the principal inhibitory action of 5-HT on the spinal locomotor network was mediated by certain subtypes of the 5-HT1 receptor class, which tends to oppose the 5-HT2 receptor-mediated excitation of the same network. PMID:9842733

  17. A selective 5-HT1a receptor agonist improves respiration in a mouse model of Rett syndrome

    PubMed Central

    Levitt, Erica S.; Hunnicutt, Barbara J.; Knopp, Sharon J.; Williams, John T.

    2013-01-01

    Rett syndrome is a neurological disorder caused by loss of function mutations in the gene that encodes the DNA binding protein methyl-CpG-binding protein 2 (Mecp2). A prominent feature of the syndrome is disturbances in respiration characterized by frequent apnea and an irregular interbreath cycle. 8-Hydroxy-2-dipropylaminotetralin has been shown to positively modulate these disturbances (Abdala AP, Dutschmann M, Bissonnette JM, Paton JF, Proc Natl Acad Sci U S A 107: 18208–18213, 2010), but the mode of action is not understood. Here we show that the selective 5-HT1a biased agonist 3-chloro-4-fluorophenyl-(4-fluoro-4-{[(5-methylpyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone (F15599) decreases apnea and corrects irregularity in both heterozygous Mecp2-deficient female and in Mecp2 null male mice. In whole cell voltage-clamp recordings from dorsal raphe neurons, F15599 potently induced an outward current, which was blocked by barium, reversed at the potassium equilibrium potential, and was antagonized by the 5-HT1a antagonist WAY100135. This is consistent with somatodendritic 5-HT1a receptor-mediated activation of G protein-coupled inwardly rectifying potassium channels (GIRK). In contrast, F15599 did not activate 5-HT1b/d receptors that mediate inhibition of glutamate release from terminals in the nucleus accumbens by a presynaptic mechanism. Thus F15599 activated somatodendritic 5-HT1a autoreceptors, but not axonal 5-HT1b/d receptors. In unanesthetized Mecp2-deficient heterozygous female mice, F15599 reduced apnea in a dose-dependent manner with maximal effect of 74.5 ± 6.9% at 0.1 mg/kg and improved breath irrregularity. Similarly, in Mecp2 null male mice, apnea was reduced by 62 ± 6.6% at 0.25 mg/kg, and breathing became regular. The results indicate respiration is improved with a 5-HT1a agonist that activates GIRK channels without affecting neurotransmitter release. PMID:24092697

  18. The Hypothalamic-Pituitary-Adrenal Axis Response to Stress in Mice Lacking Functional Vasopressin V1b Receptors

    PubMed Central

    Lolait, Stephen J.; Stewart, Lesley Q.; Jessop, David S.; Young, W. Scott; O'Carroll, Anne-Marie

    2007-01-01

    The role of arginine vasopressin (Avp) as an adrenocorticotropin (ACTH) secretagogue is mediated by the Avp 1b receptor (Avpr1b) found on anterior pituitary corticotropes. Avp also potentiates the actions of corticotropin-releasing hormone (Crh) and appears to be an important mediator of the hypothalamic-pituitary-adrenal (HPA) axis response to chronic stress. To investigate the role of Avp in the HPA axis response to stress, we measured plasma ACTH and corticosterone (CORT) levels in Avpr1b knockout (KO) mice and wild-type controls in response to two acute (restraint and insulin administration) and one form of chronic (daily restraint for 14 days) stress. No significant difference was found in the basal plasma levels of ACTH and CORT between the two genotypes. Acute restraint (30 min) increased plasma ACTH and CORT to a similar level in both the Avpr1b mutant and wild-type mice. In contrast, plasma ACTH and CORT levels induced by hypoglycemia were significantly decreased in the Avpr1b KO mice when compared to wild-type littermates. There was no difference in the ACTH response to acute and chronic restraint in wild-type mice. In the Avpr1b KO group subjected to 14 sessions of daily restraint, plasma ACTH was decreased when compared to wild-type mice. On the other hand, the CORT elevations induced by restraint did not adapt in the Avpr1b KO or wild-type mice. The data suggests that the Avpr1b is required for the normal pituitary and adrenal response to some acute stressful stimuli, and is necessary only for a normal ACTH response during chronic stress. PMID:17122081

  19. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.

    PubMed

    Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B

    2015-11-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. PMID:26337385

  20. The ghrelin receptors (GHS-R1a and GHS-R1b).

    PubMed

    Albarrán-Zeckler, Rosie G; Smith, Roy G

    2013-01-01

    The growth hormone (GH) secretagogue receptor (GHS-R1a) is a G protein-coupled receptor (GPCR) expressed in the brain as well as other areas of the body. In the early 1990s, this receptor was expression cloned in MERCK laboratories by using a group of synthesized small molecules known to increase GH release in humans and other animals. Since its discovery, hundreds of studies have shown the importance of this receptor and its endogenous ligand, ghrelin, in metabolism, neurotransmission, and behavior. Even more relevant are the prospective benefits that will result from pharmacologic manipulation of GHS-R1a. Multiple GHS-R1a agonists and antagonists are available for experimentation, and some have been used in patients with promising results. Studies in rodents have revealed intriguing potential roles for GHS-R1a modulation. Our goal in this chapter is to connect these studies with the inherent advantages of targeting this receptor pharmacologically. PMID:23652387

  1. The Vasopressin 1b Receptor Antagonist A-988315 Blocks Stress Effects on the Retrieval of Object-Recognition Memory.

    PubMed

    Barsegyan, Areg; Atsak, Piray; Hornberger, Wilfried B; Jacobson, Peer B; van Gaalen, Marcel M; Roozendaal, Benno

    2015-07-01

    Stress-induced activation of the hypothalamo-pituitary-adrenocortical (HPA) axis and high circulating glucocorticoid levels are well known to impair the retrieval of memory. Vasopressin can activate the HPA axis by stimulating vasopressin 1b (V1b) receptors located on the pituitary. In the present study, we investigated the effect of A-988315, a selective and highly potent non-peptidergic V1b-receptor antagonist with good pharmacokinetic properties, in blocking stress effects on HPA-axis activity and memory retrieval. To study cognitive performance, male Sprague-Dawley rats were trained on an object-discrimination task during which they could freely explore two identical objects. Memory for the objects and their location was tested 24 h later. A-988315 (20 or 60 mg/kg) or water was administered orally 90 min before retention testing, followed 60 min later by stress of footshock exposure. A-988315 dose-dependently dampened stress-induced increases in corticosterone plasma levels, but did not significantly alter HPA-axis activity of non-stressed control rats. Most importantly, A-988315 administration prevented stress-induced impairment of memory retrieval on both the object-recognition and the object-location tasks. A-988315 did not alter the retention of non-stressed rats and did not influence the total time spent exploring the objects or experimental context in either stressed or non-stressed rats. Thus, these findings indicate that direct antagonism of V1b receptors is an effective treatment to block stress-induced activation of the HPA axis and the consequent impairment of retrieval of different aspects of recognition memory. PMID:25669604

  2. Melatonin receptor 1B gene associated with hyperglycemia in bipolar disorder.

    PubMed

    Hukic, Dzana S; Lavebratt, Catharina; Frisén, Louise; Backlund, Lena; Hilding, Agneta; Gu, Harvest F; Östenson, Claes-Göran; Erlinge, David; Ehrenborg, Ewa; Schalling, Martin; Ösby, Urban

    2016-06-01

    Bipolar patients are at a higher risk of developing metabolic disorders. Cardiovascular morbidity and mortality is twice the rate reported in the population. Antipsychotic medication increases the risk of metabolic abnormalities. However, bipolar disorder and schizophrenia have a similarly increased mortality from cardiovascular causes of death, although bipolar patients medicate with antipsychotic drugs to a much smaller extent than schizophrenic patients. Bipolar disorder and schizophrenia share substantial genetic risk components; thus, increased metabolic abnormalities is hypothesized to be an effect of specific sets of metabolic risk genes, which might overlap with the metabolic risk genes in schizophrenia. This study reports that a functional genetic variant of MTNR1B, previously implicated in the impairment of glucose-stimulated insulin release also in schizophrenia, was associated with elevated fasting glucose levels in bipolar patients and controls. This finding suggests that the MTNR1B-dependent vulnerability for elevated fasting plasma glucose levels is shared between bipolar disorder and schizophrenia. PMID:26991397

  3. The role of serotonin receptor subtypes in treating depression: a review of animal studies

    PubMed Central

    Carr, Gregory V.

    2012-01-01

    Rationale Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. Objective Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. Results Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5- HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. Conclusions The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs. PMID:21107537

  4. Immunohistochemical Localization of AT1a, AT1b, and AT2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary

    PubMed Central

    Premer, Courtney; Lamondin, Courtney; Mitzey, Ann; Speth, Robert C.; Brownfield, Mark S.

    2013-01-01

    Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors. PMID:23573410

  5. Direct and Indirect 5-HT receptor agonists produce gender-specific effects on locomotor and vertical activity in C57 BL/6J mice

    PubMed Central

    Brookshire, Bethany R.; Jones, Sara R.

    2009-01-01

    It is well established that the dopamine (DA) and serotonin (5-HT) systems have extensive and complex interactions. However, the effects of specific 5-HT receptor agonists on traditionally DA-related behaviors remain unclear. Our goal in these studies was to characterize the effects of 5-HT receptor agonists on measures of locomotor activity and vertical rearing. The SSRIs fluoxetine and citalopram produced significant decreases in locomotor activity and vertical rearing at the highest doses used with females significant more sensitive to citalopram. The 5-HT1A agonist 8-OH-DPAT and the 5-HT2C agonist MK 212 significantly decreased activity in both male and female mice, with females more sensitive to 8-OH-DPAT. In contrast, the 5-HT1B agonist RU 24969 and the 5-HT2A agonist DOI both increased activity, with DOI exhibiting differential effects with regard to sex. Finally, the 5-HT3 agonist SR 57227 produced significant locomotor increases only in female mice at the lowest dose. The results of these experiments define locomotor profiles of several 5-HT agonists in male and female C57BL/6J mice, providing a foundation for further explorations of 5-HT receptor effects on activity. PMID:19698737

  6. Direct interaction and functional coupling between human 5-HT6 receptor and the light chain 1 subunit of the microtubule-associated protein 1B (MAP1B-LC1).

    PubMed

    Kim, Soon-Hee; Kim, Dong Hyuk; Lee, Kang Ho; Im, Sun-Kyoung; Hur, Eun-Mi; Chung, Kwang Chul; Rhim, Hyewhon

    2014-01-01

    Serotonin (5-HT) receptors of type 6 (5-HT6R) play important roles in mood, psychosis, and eating disorders. Recently, a growing number of studies support the use of 5-HT6R-targeting compounds as promising drug candidates for treating cognitive dysfunction associated with Alzheimer's disease. However, the mechanistic linkage between 5-HT6R and such functions remains poorly understood. By using yeast two-hybrid, GST pull-down, and co-immunoprecipitation assays, here we show that human 5-HT6R interacts with the light chain 1 (LC1) subunit of MAP1B protein (MAP1B-LC1), a classical microtubule-associated protein highly expressed in the brain. Functionally, we have found that expression of MAP1B-LC1 regulates serotonin signaling in a receptor subtype-specific manner, specifically controlling the activities of 5-HT6R, but not those of 5-HT4R and 5-HT7R. In addition, we have demonstrated that MAP1B-LC1 increases the surface expression of 5-HT6R and decreases its endocytosis, suggesting that MAP1B-LC1 is involved in the desensitization and trafficking of 5-HT6R via a direct interaction. Together, we suggest that signal transduction pathways downstream of 5-HT6R are regulated by MAP1B, which might play a role in 5-HT6R-mediated signaling in the brain. PMID:24614691

  7. Direct Interaction and Functional Coupling between Human 5-HT6 Receptor and the Light Chain 1 Subunit of the Microtubule-Associated Protein 1B (MAP1B-LC1)

    PubMed Central

    Kim, Soon-Hee; Kim, Dong Hyuk; Lee, Kang Ho; Im, Sun-Kyoung; Hur, Eun-Mi; Chung, Kwang Chul; Rhim, Hyewhon

    2014-01-01

    Serotonin (5-HT) receptors of type 6 (5-HT6R) play important roles in mood, psychosis, and eating disorders. Recently, a growing number of studies support the use of 5-HT6R-targeting compounds as promising drug candidates for treating cognitive dysfunction associated with Alzheimer’s disease. However, the mechanistic linkage between 5-HT6R and such functions remains poorly understood. By using yeast two-hybrid, GST pull-down, and co-immunoprecipitation assays, here we show that human 5-HT6R interacts with the light chain 1 (LC1) subunit of MAP1B protein (MAP1B-LC1), a classical microtubule-associated protein highly expressed in the brain. Functionally, we have found that expression of MAP1B-LC1 regulates serotonin signaling in a receptor subtype-specific manner, specifically controlling the activities of 5-HT6R, but not those of 5-HT4R and 5-HT7R. In addition, we have demonstrated that MAP1B-LC1 increases the surface expression of 5-HT6R and decreases its endocytosis, suggesting that MAP1B-LC1 is involved in the desensitization and trafficking of 5-HT6R via a direct interaction. Together, we suggest that signal transduction pathways downstream of 5-HT6R are regulated by MAP1B, which might play a role in 5-HT6R-mediated signaling in the brain. PMID:24614691

  8. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats.

    PubMed

    Li, Yan; Raaby, Kasper F; Sánchez, Connie; Gulinello, Maria

    2013-11-01

    Hormonally induced mood disorders such as premenstrual dysphoric disorder (PMDD) are characterized by a range of physical and affective symptoms including anxiety, irritability, anhedonia, social withdrawal and depression. Studies demonstrated rodent models of progesterone withdrawal (PWD) have a high level of constructive and descriptive validity to model hormonally-induced mood disorders in women. Here we evaluate the effects of several classes of antidepressants in PWD female Long-Evans rats using the forced swim test (FST) as a measure of antidepressant activity. The study included fluoxetine, duloxetine, amitriptyline and an investigational multimodal antidepressant, vortioxetine (5-HT(3), 5-HT(7) and 5-HT(1D) receptor antagonist; 5-HT(1B) receptor partial agonist; 5-HT(1A) receptor agonist; inhibitor of the serotonin transporter (SERT)). After 14 days of administration, amitriptyline and vortioxetine significantly reduced immobility in the FST whereas fluoxetine and duloxetine were ineffective. After 3 injections over 48 h, neither fluoxetine nor duloxetine reduced immobility, whereas amitriptyline and vortioxetine significantly reduced FST immobility during PWD. When administered acutely during PWD, the 5-HT(1A) receptor agonist, flesinoxan, significantly reduced immobility, whereas the 5-HT(1A) receptor antagonist, WAY-100635, increased immobility. The 5-HT(3) receptor antagonist, ondansetron, significantly reduced immobility, whereas the 5-HT(3) receptor agonist, SR-57227, increased immobility. The 5-HT(7) receptor antagonist, SB-269970, was inactive, although the 5-HT(7) receptor agonist, AS-19, significantly increased PWD-induced immobility. None of the compounds investigated (ondansetron, flesinoxan and SB-269970) improved the effect of fluoxetine during PWD. These data indicate that modulation of specific 5-HT receptor subtypes is critical for manipulating FST immobility in this model of hormone-induced depression. PMID:24016840

  9. Extracellular surface residues of the α1B-adrenoceptor critical for G protein-coupled receptor function.

    PubMed

    Ragnarsson, Lotten; Andersson, Åsa; Thomas, Walter G; Lewis, Richard J

    2015-01-01

    Ligand binding and conformational changes that accompany signaling from G protein-coupled receptors (GPCRs) have mostly focused on the role of transmembrane helices and intracellular loop regions. However, recent studies, including several GPCRs cocrystallized with bound ligands, suggest that the extracellular surface (ECS) of GPCRs plays an important role in ligand recognition, selectivity, and binding, as well as potentially contributing to receptor activation and signaling. This study applied alanine-scanning mutagenesis to investigate the role of the complete ECS of the α1B-adrenoreceptor on norepinephrine (NE) potency, affinity, and efficacy. Half (24 of 48) of the ECS mutations significantly decreased NE potency in an inositol 1-phosphate assay. Most mutations reduced NE affinity (17) determined from [(3)H]prazosin displacement studies, whereas four mutations at the entrance to the NE binding pocket enhanced NE affinity. Removing the influence of NE affinity and receptor expression levels on NE potency gave a measure of NE efficacy, which was significantly decreased for 11 of 48 ECS mutants. These different effects tended to cluster to different regions of the ECS, which is consistent with different regions of the ECS playing discrete functional roles. Exposed ECS residues at the entrance to the NE binding pocket mostly affected NE affinity, whereas buried or structurally significant residues mostly affected NE efficacy. The broad potential for ECS mutations to affect GPCR function has relevance for the increasing number of nonsynonymous single nucleotide polymorphisms now being identified in GPCRs. PMID:25352041

  10. Involvement of 5-HT₇ receptors in vortioxetine's modulation of circadian rhythms and episodic memory in rodents.

    PubMed

    Westrich, Ligia; Haddjeri, Nasser; Dkhissi-Benyahya, Ouria; Sánchez, Connie

    2015-02-01

    Since poor circadian synchrony and cognitive dysfunction have been linked to affective disorders, antidepressants that target key 5-HT (serotonin) receptor subtypes involved in circadian rhythm and cognitive regulation may have therapeutic utility. Vortioxetine is a multimodal antidepressant that inhibits 5-HT1D, 5-HT3, 5-HT7 receptor activity, 5-HT reuptake, and enhances the activity of 5-HT1A and 5-HT1B receptors. In this study, we investigated the effects of vortioxetine on the period length of PER2::LUC expression, circadian behavior, and episodic memory, using tissue explants from genetically modified PER2::LUC mice, locomotor activity rhythm monitoring, and the object recognition test, respectively. Incubation of tissue explants from the suprachiasmatic nucleus of PER2::LUC mice with 0.1 μM vortioxetine increased the period length of PER2 bioluminescence. Monitoring of daily wheel-running activity of Sprague-Dawley rats treated with vortioxetine (10 mg/kg, s.c.), alone or in combination with the 5-HT1A receptor agonist flesinoxan (2.5 mg/kg, s.c.) or the 5-HT7 receptor antagonist SB269970 (30 mg/kg, s.c.), just prior to activity onset revealed significant delays in wheel-running behavior. The increase in circadian period length and the phase delay produced by vortioxetine were abolished in the presence of the 5-HT7 receptor partial agonist AS19. Finally, in the object recognition test, vortioxetine (10 mg/kg, i.p.) increased the time spent exploring the novel object during the retention test and this effect was prevented by AS19 (5 mg/kg, i.p.). In conclusion, the present study shows that vortioxetine, partly via its 5-HT7 receptor antagonism, induced a significant effect on circadian rhythm and presented promnesic properties in rodents. PMID:25446573

  11. SULT2B1b Sulfotransferase: Induction by Vitamin D Receptor and Reduced Expression in Prostate Cancer

    PubMed Central

    Seo, Young-Kyo; Mirkheshti, Nooshin; Song, Chung S.; Kim, Soyoung; Dodds, Sherry; Ahn, Soon C.; Christy, Barbara; Mendez-Meza, Rosario; Ittmann, Michael M.; Abboud-Werner, Sherry

    2013-01-01

    An elevated tumor tissue androgen level, which reactivates androgen receptor in recurrent prostate cancer, arises from the intratumor synthesis of 5α-dihydrotestosterone through use of the precursor steroid dehydroepiandrosterone (DHEA) and is fueled by the steroidogenic enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD1), aldoketoreductase (AKR1C3), and steroid 5-alpha reductase, type 1 (SRD5A1) present in cancer tissue. Sulfotransferase 2B1b (SULT2B1b) (in short, SULT2B) is a prostate-expressed hydroxysteroid SULT that converts cholesterol, oxysterols, and DHEA to 3β-sulfates. DHEA metabolism involving sulfonation by SULT2B can potentially interfere with intraprostate androgen synthesis due to reduction of free DHEA pool and, thus, conversion of DHEA to androstenedione. Here we report that in prostatectomy specimens from treatment-naive patients, SULT2B expression is markedly reduced in malignant tissue (P < .001, Mann-Whitney U test) compared with robust expression in adjacent nonmalignant glands. SULT2B was detected in formalin-fixed specimens by immunohistochemistry on individual sections and tissue array. Immunoblotting of protein lysates of frozen cancer and matched benign tissue confirmed immunohistochemistry results. An in-house–developed rabbit polyclonal antibody against full-length human SULT2B was validated for specificity and used in the analyses. Ligand-activated vitamin D receptor induced the SULT2B1 promoter in vivo in mouse prostate and increased SULT2B mRNA and protein levels in vitro in prostate cancer cells. A vitamin D receptor/retinoid X receptor-α–bound DNA element (with a DR7 motif) mediated induction of the transfected SULT2B1 promoter in calcitriol-treated cells. SULT2B knockdown caused an increased proliferation rate of prostate cancer cells upon stimulation by DHEA. These results suggest that the tumor tissue SULT2B level may partly control prostate cancer growth, and its induction in a therapeutic setting may inhibit disease

  12. Crystal Structure of Botulinum Neurotoxin Type a in Complex With the Cell Surface Co-Receptor GT1b-Insight Into the Toxin-Neuron Interaction

    SciTech Connect

    Stenmark, P.; Dupuy, J.; Inamura, A.; Kiso, M.; Stevens, R.C.

    2009-05-26

    Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in the toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.

  13. Monoamine receptor agonists, acting preferentially at presynaptic autoreceptors and heteroreceptors, downregulate the cell fate adaptor FADD in rat brain cortex.

    PubMed

    García-Fuster, M Julia; García-Sevilla, Jesús A

    2015-02-01

    FADD is a crucial adaptor of death receptors that can engage apoptosis or survival actions (e.g. neuroplasticity) through its phosphorylated form (p-FADD). Although FADD was shown to participate in receptor mechanisms related to drugs of abuse, little is known on its role in the signaling of classic neurotransmitters (dopamine, noradrenaline, and serotonin) in brain. This study assessed the modulation of FADD (and p-FADD/FADD ratio, as an index of neuroplasticity) and FLIP-L (a neuroprotective FADD interacting partner), as well as the role of MEK-ERK signaling, after activation of monoamine auto/heteroreceptors by selective agonists in rat cortex. Acute depletion of monoamines with reserpine, but not with AMPT or PCPA, reduced FADD (28%) and increased p-FADD/FADD ratio (1.34-fold). Activation of presynaptic α2A-adrenoceptors (UK-14304 and clonidine), 5-HT1A receptors (8-OH-DPAT), and D2 dopamine receptor (bromocriptine) dose-dependently decreased FADD (up to 54%) and increased p-FADD (up to 29%) and p-FADD/FADD ratios (up to 2.93-fold), through specific receptor mechanisms. Activation of rat 5-HT1B autoreceptor in axon terminals by CP-94253 did not modulate FADD forms. Activation of postsynaptic D1 dopamine receptor by SKF-81297 also reduced FADD (25%) and increased p-FADD (32%). Disruption of MEK-ERK activation with SL327 did not modify clonidine (α2A-adrenoceptor)-induced FADD inhibition, indicating that agonist effect was not dependent on ERK signaling. The various monoamine receptor agonists and antagonists did not alter FLIP-L content, or the activation of executioner caspase-3 and PARP-1 cleavage, indicating that the agonists attenuated apoptotic signals and promoted neuroplasticity through FADD regulation. These novel results indicate that inhibition of pro-apoptotic FADD adaptor could function as a common signaling step in the initial activation of monoamine receptors in the brain. PMID:25286119

  14. Vasopressin V1a, but not V1b, receptors within the PVN of lactating rats mediate maternal care and anxiety-related behaviour.

    PubMed

    Bayerl, Doris S; Hönig, Jennifer N; Bosch, Oliver J

    2016-05-15

    The brain neuropeptide arginine-vasopressin (AVP) mediates a wide range of social behaviours via its V1a (V1aR) but also its V1b receptor (V1bR). With respect to maternal behaviour, V1bR are still less investigated, whereas V1aR have been shown repeatedly to trigger maternal behaviour, depending on the brain region. Here, we aimed to study the role of both V1aR and V1bR within the hypothalamic paraventricular nucleus (PVN), a major source of AVP, in maternal care (lactation day (LD) 1), maternal motivation in the pup retrieval test (LD 3) and anxiety-related behaviour on the elevated plus maze (EPM; LD 5) by acute local infusion of receptor subtype-specific antagonists for V1aR (d(CH2)5Tyr(Me)(2)AVP) or V1bR (SSR149415). Furthermore, we compared V1bR expression in the PVN of virgin versus lactating rats (LD 4). Our results demonstrate that within the PVN neither V1bR mRNA (qPCR) nor protein (Western Blot) content differed between virgin and lactating rats. Regarding behaviour, acute antagonism of V1aR, but not of V1bR, decreased the occurrence of nursing as well as anxiety-related behaviour as reflected by higher percentage of time spent on and of entries into the open arms of the EPM. Maternal motivation was not affected by any treatment. In summary, we demonstrate subtype-specific involvement of V1 receptors within the PVN in mediating various maternal behaviours. The lack of effects after V1bR blockade reveals that AVP acts mainly via V1aR in the PVN, at least in lactating rats, to mediate maternal care and anxiety. PMID:26909846

  15. Expansion and Protection by a Virus-Specific NK Cell Subset Lacking Expression of the Inhibitory NKR-P1B Receptor during Murine Cytomegalovirus Infection.

    PubMed

    Rahim, Mir Munir A; Wight, Andrew; Mahmoud, Ahmad Bakur; Aguilar, Oscar A; Lee, Seung-Hwan; Vidal, Silvia M; Carlyle, James R; Makrigiannis, Andrew P

    2016-09-15

    NK cells play a major role in immune defense against human and murine CMV (MCMV) infection. Although the MCMV genome encodes for MHC class I-homologous decoy ligands for inhibitory NK cell receptors to evade detection, some mouse strains have evolved activating receptors, such as Ly49H, to recognize these ligands and initiate an immune response. In this study, we demonstrate that approximately half of the Ly49H-expressing (Ly49H(+)) NK cells in the spleen and liver of C57BL/6 mice also express the inhibitory NKR-P1B receptor. During MCMV infection, the NKR-P1B(-)Ly49H(+) NK cell subset proliferates to constitute the bulk of the NK cell population. This NK cell subset also confers better protection against MCMV infection compared with the NKR-P1B(+)Ly49H(+) subset. The two populations are composed of cells that differ in their surface expression of receptors such as Ly49C/I and NKG2A/C/E, as well as developmental markers, CD27 and CD11b, and the high-affinity IL-2R (CD25) following infection. Although the NKR-P1B(+) NK cells can produce effector molecules such as IFNs and granzymes, their proliferation is inhibited during infection. A similar phenotype in MCMV-infected Clr-b-deficient mice, which lack the ligand for NKR-P1B, suggests the involvement of ligands other than the host Clr-b. Most interestingly, genetic deficiency of the NKR-P1B, but not Clr-b, results in accelerated virus clearance and recovery from MCMV infection. This study is particularly significant because the mouse NKR-P1B:Clr-b receptor:ligand system represents the closest homolog of the human NKR-P1A:LLT1 system and may have a direct relevance to human CMV infection. PMID:27511735

  16. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism

    PubMed Central

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-01-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80–90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine’s acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine’s acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  17. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism.

    PubMed

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-10-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  18. The Vasopressin 1b Receptor is Prominent in the Hippocampal Area CA2 Where It Is Unaffected by Restraint Stress or Adrenalectomy

    PubMed Central

    Young, W. Scott; Li, Jade; Wersinger, Scott R.; Palkovits, Miklós

    2006-01-01

    The vasopressin 1b receptor (Avpr1b) is one of two principal receptors mediating the behavioral effects of vasopressin (Avp) in the brain. Avpr1b has recently been shown to strongly influence social forms of aggression in mice and hamsters. This receptor appears to play a role in social recognition and motivation as well as in regulating the hypothalamic-pituitary-adrenal axis. Most of these studies have been performed in knockout mice, a species in which the localization of the Avpr1b has not been described, thus precluding correlations with the behaviors. We performed in situ hybridization histochemistry (ISHH) with specific probes and found especially prominent expression within the CA2 pyramidal neurons of the hippocampus, with much lower expression in the hypothalamic paraventricular nucleus and amygdala. Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) confirmed expression in those as well other areas in which the ISHH was not sensitive enough to detect labeled cells (e.g., piriform cortex, septum, caudate-putamen and lower brainstem areas). Mouse Avpr1b transcript levels were not altered in the CA2 field by restraint stress or adrenalectomy. Finally, ISHH and RT-PCR showed expression of the Avpr1b gene in the rat and human hippocampi as well. We suggest that the CA2 field may form or retrieve associations (memories) between olfactory cues and social encounters. PMID:17027167

  19. The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy.

    PubMed

    Young, W S; Li, J; Wersinger, S R; Palkovits, M

    2006-12-28

    The vasopressin 1b receptor (Avpr1b) is one of two principal receptors mediating the behavioral effects of vasopressin (Avp) in the brain. Avpr1b has recently been shown to strongly influence social forms of aggression in mice and hamsters. This receptor appears to play a role in social recognition and motivation as well as in regulating the hypothalamic-pituitary-adrenal axis. Most of these studies have been performed in knockout mice, a species in which the localization of the Avpr1b has not been described, thus precluding correlations with the behaviors. We performed in situ hybridization histochemistry (ISHH) with specific probes and found especially prominent expression within the CA2 pyramidal neurons of the hippocampus, with much lower expression in the hypothalamic paraventricular nucleus and amygdala. Reverse transcriptase-polymerase chain reaction (RT-PCR) confirmed expression in those as well other areas in which the ISHH was not sensitive enough to detect labeled cells (e.g. piriform cortex, septum, caudate-putamen and lower brainstem areas). Mouse Avpr1b transcript levels were not altered in the CA2 field by restraint stress or adrenalectomy. Finally, ISHH and RT-PCR showed expression of the Avpr1b gene in the rat and human hippocampi as well. We suggest that the CA2 field may form or retrieve associations (memories) between olfactory cues and social encounters. PMID:17027167

  20. Evaluation of the serotonin receptor blockers ketanserin and methiothepin on the pulmonary hypertensive responses of broilers to intravenously infused serotonin.

    PubMed

    Chapman, M E; Wideman, R F

    2006-04-01

    The pathogenesis of pulmonary hypertension remains incompletely understood. Many factors have been implicated; however, there has been great interest in the potent pulmonary vasoconstrictor serotonin (5-HT) due to episodes of primary pulmonary hypertension in humans triggered by serotoninergic appetite-suppressant drugs. Pulmonary hypertensive patients have elevated blood 5-HT levels and pulmonary vasoconstriction induced by 5-HT is believed to be mediated through 5-HT1B/1D and 5-HT2A receptors that are expressed by pulmonary smooth muscle cells. The vascular remodeling associated with pulmonary hypertension also appears to require the serotonin transporter. We investigated the roles of 5-HT receptor blockers on the development of pulmonary hypertension induced by infusing 5-HT i.v. in broilers. For this purpose, we treated broilers with the selective 5-HT2A receptor antagonist ketanserin (5 mg/ kg of BW) or with the nonselective 5-HT1/2 receptor antagonist methiothepin (3 mg/kg of BW). Receptor blockade was followed by infusion of 5-HT while recording pulmonary arterial pressure and pulmonary arterial blood flow. The results demonstrate that methiothepin, but not ketanserin, eliminated the 5-HT-induced pulmonary hypertensive responses in broilers. The 5-HT2A receptor does not, therefore, appear to play a role in the 5-HT-induced pulmonary hypertensive responses in broilers. Methiothepin did not inhibit pulmonary vascular contractility per se, because the pulmonary hypertensive response to the thromboxane A2 mimetic U44069 remained intact in methiothepin-treated broilers. Methiothepin will be a useful tool for evaluating the role of 5-HT in the pathogenesis of pulmonary hypertension syndrome (ascites) as well as the onset of pulmonary hypertension triggered by inflammatory stimuli such as bacterial lipolysaccharide. PMID:16615363

  1. Inhibition of cerebrovascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage

    PubMed Central

    2011-01-01

    Background Late cerebral ischemia carries high morbidity and mortality after subarachnoid hemorrhage (SAH) due to reduced cerebral blood flow (CBF) and the subsequent cerebral ischemia which is associated with upregulation of contractile receptors in the vascular smooth muscle cells (SMC) via activation of mitogen-activated protein kinase (MAPK) of the extracellular signal-regulated kinase (ERK)1/2 signal pathway. We hypothesize that SAH initiates cerebrovascular ERK1/2 activation, resulting in receptor upregulation. The raf inhibitor will inhibit the molecular events upstream ERK1/2 and may provide a therapeutic window for treatment of cerebral ischemia after SAH. Results Here we demonstrate that SAH increases the phosphorylation level of ERK1/2 in cerebral vessels and reduces the neurology score in rats in additional with the CBF measured by an autoradiographic method. The intracisternal administration of SB-386023-b, a specific inhibitor of raf, given 6 h after SAH, aborts the receptor changes and protects the brain from the development of late cerebral ischemia at 48 h. This is accompanied by reduced phosphorylation of ERK1/2 in cerebrovascular SMC. SAH per se enhances contractile responses to endothelin-1 (ET-1), 5-carboxamidotryptamine (5-CT) and angiotensin II (Ang II), upregulates ETB, 5-HT1B and AT1 receptor mRNA and protein levels. Treatment with SB-386023-b given as late as at 6 h but not at 12 h after the SAH significantly decreased the receptor upregulation, the reduction in CBF and the neurology score. Conclusion These results provide evidence for a role of the ERK1/2 pathway in regulation of expression of cerebrovascular SMC receptors. It is suggested that raf inhibition may reduce late cerebral ischemia after SAH and provides a realistic time window for therapy. PMID:22032648

  2. α1B-Adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts

    PubMed Central

    Hirai, Takao; Tanaka, Kenjiro; Togari, Akifumi

    2015-01-01

    ABSTRACT Circadian clocks are endogenous and biological oscillations that occur with a period of <24 h. In mammals, the central circadian pacemaker is localized in the suprachiasmatic nucleus (SCN) and is linked to peripheral tissues through neural and hormonal signals. In the present study, we investigated the physiological function of the molecular clock on bone remodeling. The results of loss-of-function and gain-of-function experiments both indicated that the rhythmic expression of Tnfrsf11b, which encodes osteoprotegerin (OPG), was regulated by Bmal1 in MC3T3-E1 cells. We also showed that REV-ERBα negatively regulated Tnfrsf11b as well as Bmal1 in MC3T3-E1 cells. We systematically investigated the relationship between the sympathetic nervous system and the circadian clock in osteoblasts. The administration of phenylephrine, a nonspecific α1-adrenergic receptor (AR) agonist, stimulated the expression of Tnfrsf11b, whereas the genetic ablation of α1B-AR signaling led to the alteration of Tnfrsf11b expression concomitant with Bmal1 and Per2 in bone. Thus, this study demonstrated that the circadian regulation of Tnfrsf11b was regulated by the clock genes encoding REV-ERBα (Nr1d1) and Bmal1 (Bmal1, also known as Arntl), which are components of the core loop of the circadian clock in osteoblasts. PMID:26453621

  3. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression.

    PubMed

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. PMID:25110054

  4. Characterization, solubilization and partial purification of serotonin 5-HT1C receptors

    SciTech Connect

    Yagaloff, K.A.

    1986-01-01

    /sup 125/I-Lysergic acid diethylamide (/sup 125/I-LSD) binds with high affinity to a unique serotonergic site on rat choroid plexus. These sites were localized to choroid plexus epithelial cells using a novel high resolution autoradiographic technique. In membrane preparations, the serotonergic site density was 3100 fmol/mg protein, which is 10 fold higher than the density of any other serotonergic site in brain homogenates. The pharmacology of this site, termed the 5-HT1c site, does not match that of 5-Ht1a, 5-HT1b or 5HT2 serotonergic sites. 5-Ht1c sites were solubilized from pig choroid plexus using the zwitterionic detergent, CHAPS. High affinity labelling of the solubilized site was obtained using the serotonergic radioligand, N1-methyl-2-(/sup 125/I)lysergic acid diethylamide (/sup 125/I-MIL). Choroid plexus tumors obtained from transgenic mice were examined for the presence of serotonin 5-HT1c receptors. /sup 125/I-LSD binding to choroid plexus tumors displays a pharmacological profile that matches the properties of 5-HT1c receptors in normal choroid plexus. The tumor exhibits the highest site density of serotonin receptors (6600 fmol/mg protein) found in any tissue. /sup 125/I-LSD autoradiography of brain sections from transgenic mice shows high levels of specific labelling over the tumor. The affinities of various indolealkyl, phenlakyl and beta-carboline derivatives for the serotonin 5-HT1c receptor were measured in pig choroid plexus using /sup 125/I-MIL. Serotonin precursors and metabolites were all very weak inhibitors of specific /sup 125/I-MIL binding. Structure-affinity relationships were determined for a number of indolealkylamine analogues. Only serotonin is present in cerebrospinal fluid at concentrations near its 5-HT1c inhibition constant, suggesting that serotonin is the natural 5-HT1c agonist.

  5. Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring.

    PubMed

    Champagne, Frances A; Weaver, Ian C G; Diorio, Josie; Dymov, Sergiy; Szyf, Moshe; Meaney, Michael J

    2006-06-01

    Variations in maternal behavior are associated with differences in estrogen receptor (ER)-alpha expression in the medial preoptic area (MPOA) and are transmitted across generations such that, as adults, the female offspring of mothers that exhibit increased pup licking/grooming (LG) over the first week postpartum (i.e. high LG mothers) show increased ERalpha expression in the MPOA and are themselves high LG mothers. In the present studies, cross-fostering confirmed an association between maternal care and ERalpha expression in the MPOA; the biological offspring of low LG mothers fostered at birth to high LG dams show increased ERalpha expression in the MPOA. Cross-fostering the biological offspring of high LG mothers to low LG dams produces the opposite effect. We examined whether the maternal programing of ERalpha expression is associated with differences in methylation of the relevant ERalpha promoter. Levels of cytosine methylation across the ERalpha1b promoter were significantly elevated in the adult offspring of low, compared with high, LG mothers. Differentially methylated regions included a signal transducer and activator of transcription (Stat)5 binding site and the results of chromatin immunoprecipitation assays revealed decreased Stat5b binding to the ERalpha1b promoter in the adult offspring of low, compared with high, LG mothers. Finally, we found increased Stat5b levels in the MPOA of neonates reared by high, compared with low, LG mothers. These findings suggest that maternal care is associated with cytosine methylation of the ERalpha1b promoter, providing a potential mechanism for the programming of individual differences in ERalpha expression and maternal behavior in the female offspring. PMID:16513834

  6. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  7. Inhibitors of Growth 1b Suppresses Peroxisome Proliferator-Activated Receptor-β/δ Expression Through Downregulation of Hypoxia-Inducible Factor 1α in Osteoblast Differentiation.

    PubMed

    Qu, Bo; Hong, Zhen; Gong, Kai; Sheng, Jun; Wu, Hong-Hua; Deng, Shao-Lin; Huang, Gang; Ma, Ze-Hui; Pan, Xian-Ming

    2016-04-01

    Bone formation, a highly regulated developmental process, involves osteoblast differentiation, which is controlled by different important transcription factors. Recent evidence has suggested possible negative regulation of inhibitors of growth (ING) 1b on the osteoblast marker expression. The aim of this study is to examine the detailed mechanism by which the activity of ING1b inhibits osteoblast differentiation. In the current study, we investigated the function and mechanism by which ING1b inhibits osteoblast differentiation using C3H10T1/2 mesenchymal stem cells and MC3T3-E1 preosteoblasts. Real-time polymerase chain reaction and Western blotting showed that ING1b was decreased during osteoblast differentiation and ING1b overexpression markedly decreased alkaline phosphatase (ALP) activity, runt-related transcription factor 2 (Runx2) expression, and collagen type 1 synthesis, whereas ING1b silencing significantly upregulated ALP activity, Runx2 expression, and collagen type 1 synthesis. Further studies indicated that ING1b suppressed the expression of peroxisome proliferator-activated receptor (PPAR)-β/δ in a hypoxia-inducible factor (HIF) 1α-dependent manner, while ING1b silencing significantly increased the expression of PPAR-β/δ and HIF1α. Moreover, PPAR-β/δ or HIF1α silencing significantly inhibited ALP activity, Runx2 expression, and collagen type 1 synthesis. These results demonstrated that ING1b is an important regulator of osteoblast differentiation and suppresses PPAR-β/δ. Our study may provide additional insight into osteoblast differentiation and offer a potential new molecular target for osteoporosis. PMID:26849833

  8. Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: evidence for direct 5-HT receptor modulation.

    PubMed

    Jensen, Jesper Bornø; du Jardin, Kristian Gaarn; Song, Dekun; Budac, David; Smagin, Gennady; Sanchez, Connie; Pehrson, Alan Lars

    2014-01-01

    Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and 5-HT transporter (SERT) inhibitor that enhances memory in normal rats in novel object recognition (NOR) and conditioned fear (Mørk et al., 2013). We hypothesized that vortioxetine's 5-HT receptor mechanisms are involved in its memory effects, and therefore investigated these effects in 5-HT depleted rats. Four injections of the irreversible tryptophan hydroxylase inhibitor 4-chloro-dl-phenylalanine methyl ester hydrochloride (PCPA, 86mg/kg, s.c.) induced 5-HT depletion, as measured in hippocampal homogenate and microdialysate. The effects of acute challenge with vortioxetine or the 5-HT releaser fenfluramine on extracellular 5-HT were measured in PCPA-treated and control rats. PCPA's effects on NOR and spontaneous alternation (SA) performance were assessed along with the effects of acute treatment with 5-hydroxy-l-tryptophan (5-HTP), vortioxetine, the selective 5-HT reuptake inhibitor escitalopram, or the 5-HT norepinephrine reuptake inhibitor duloxetine. SERT occupancies were estimated by ex vivo autoradiography. PCPA depleted central 5-HT by >90% in tissue and microdialysate, and impaired NOR and SA performance. Restoring central 5-HT with 5-HTP reversed these deficits. At similar SERT occupancies (>90%) vortioxetine, but not escitalopram or duloxetine, restored memory performance. Acute fenfluramine significantly increased extracellular 5-HT in control and PCPA-treated rats, while vortioxetine did so only in control rats. Thus, vortioxetine restores 5-HT depletion impaired memory performance in rats through one or more of its receptor activities. PMID:24284262

  9. Antiproliferative effect of the Ginkgo biloba extract is associated with the enhancement of cytochrome P450 1B1 expression in estrogen receptor-negative breast cancer cells

    PubMed Central

    ZHAO, XIAO-DAN; DONG, NI; MAN, HONG-TAO; FU, ZHONG-LIN; ZHANG, MEI-HONG; KOU, SHUANG; MA, SHI-LIANG

    2013-01-01

    Ginkgo biloba is a dioecious tree and its extract is a complex mixture that has been used for thousands of years to treat a variety of ailments in traditional Chinese medicine. The aim of this study was to present our observations on the inhibitory effects of different Ginkgo biloba extracts on human breast cancer cell proliferation and growth. Our results demonstrated that treatment of MCF-7 and MDA-MB-231 human breast cancer cells with Ginkgo biloba leaves and ginkgo fruit extract inhibited cell proliferation. It was also observed that this inhibition was accompanied by the enhancement of cytochrome P450 (CYP) 1B1 expression in MDA-MB-231 cells. In addition, treatment with ginkgo fruit extract resulted in a higher CYP1B1 expression in MDA-MB-231 cells compared to treatment with the Ginkgo biloba leaves extract. Our results suggested that the inhibitory effects of the Ginkgo biloba extract on estrogen receptor-negative breast cancer proliferation and the induction of CYP1B1 expression may be exerted through an alternative pathway, independent of the estrogen receptor or the aryl hydrocarbon receptor pathway. PMID:24649031

  10. Mediation of 5-HT-induced external carotid vasodilatation in GR 127935-pretreated vagosympathectomized dogs by the putative 5-HT7 receptor

    PubMed Central

    Villalón, Carlos M; Centurión, David; Luján-Estrada, Miguel; Terrón, José A; Sánchez-López, Araceli

    1997-01-01

    The vasodilator effects of 5-hydroxytryptamine (5-HT) in the external carotid bed of anaesthetized dogs with intact sympathetic tone are mediated by prejunctional sympatho-inhibitory 5-HT1B/1D receptors and postjunctional 5-HT receptors. The prejunctional vasodilator mechanism is abolished after vagosympathectomy which results in the reversal of the vasodilator effect to vasoconstriction. The blockade of this vasoconstrictor effect of 5-HT with the 5-HT1B/1D receptor antagonist, GR 127935, unmasks a dose-dependent vasodilator effect of 5-HT, but not of sumatriptan. Therefore, the present study set out to analyse the pharmacological profile of this postjunctional vasodilator 5-HT receptor in the external carotid bed of vagosympathectomized dogs pretreated with GR 127935 (20 μg kg−1, i.v.).One-minute intracarotid (i.c.) infusions of 5-HT (0.330 μg min−1), 5-carboxamidotryptamine (5-CT; 0.010.3 μg min−1), 5-methoxytryptamine (1100 μg min−1) and lisuride (31000 μg min−1) resulted in dose-dependent increases in external carotid blood flow (without changes in blood pressure or heart rate) with a rank order of agonist potency of 5-CT>>5-HT⩾5-methoxytryptamine>lisuride, whereas cisapride (1001000 μg min−1, i.c.) was practically inactive. Interestingly, lisuride (mean dose of 85±7 μg kg−1, i.c.), but not cisapride (mean dose of 67±7 μg kg−1, i.c.), specifically abolished the responses induced by 5-HT, 5-CT and 5-methoxytryptamine, suggesting that a common site of action may be involved. In contrast, 1 min i.c. infusions of 8-OH-DPAT (33000 μg min−1) produced dose-dependent decreases, not increases, in external carotid blood flow and failed to antagonize (mean dose of 200±33 μg kg−1, i.c.) the agonist-induced vasodilator responses.The external carotid vasodilator responses to 5-HT, 5-CT and 5-methoxytryptamine were not modified by intravenous (i.v.) pretreatment with either saline, (±)-pindolol (4

  11. 5-HT1D receptor inhibits renal sympathetic neurotransmission by nitric oxide pathway in anesthetized rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-09-01

    Although serotonin has been shown to inhibit peripheral sympathetic outflow, serotonin regulation on renal sympathetic outflow has not yet been elucidated. This study investigated which 5-HT receptor subtypes are involved. Wistar rats were anesthetized (sodium pentobarbital; 60mg/kg, i.p.), and prepared for in situ autoperfused rat kidney, which allows continuous measurement of systemic blood pressure (SBP), heart rate (HR) and renal perfusion pressure (PP). Electrical stimulation of renal sympathetic nerves resulted in frequency-dependent increases in PP (18.3±1.0, 43.7±2.7 and 66.7±4.0 for 2, 4 and 6Hz, respectively), without altering SBP or HR. 5-HT, 5-carboxamidotryptamine (5-HT1/7 agonist) (0.00000125-0.1μg/kg each) or l-694,247 (5-HT1D agonist; 0.0125μg/kg) i.a. bolus inhibited vasopressor responses by renal nerve electrical stimulation, unlike i.a. bolus of agonists α-methyl-5-HT (5-HT2), 1-PBG (5-HT3), cisapride (5-HT4), AS-19 (5-HT7), CGS-12066B (5-HT1B) or 8-OH-DPAT (5-HT1A) (0.0125μg/kg each). The effect of l-694,247 did not affect the exogenous norepinephrine-induced vasoconstrictions, whereas was abolished by antagonist LY310762 (5-HT1D; 1mg/kg) or l-NAME (nitric oxide; 10mg/kg), but not by indomethacin (COX1/2; 2mg/kg) or glibenclamide (ATP-dependent K(+) channel; 20mg/kg). These results suggest that 5-HT mechanism-induced inhibition of rat vasopressor renal sympathetic outflow is mainly mediated by prejunctional 5-HT1D receptors via nitric oxide release. PMID:26003124

  12. Activation of cyclic AMP-dependent protein kinase inhibits the desensitization and internalization of metabotropic glutamate receptors 1a and 1b.

    PubMed

    Mundell, Stuart J; Pula, Giordano; More, Julia C A; Jane, David E; Roberts, Peter J; Kelly, Eamonn

    2004-06-01

    In this study, we characterized the effects of activation of cyclic AMP-dependent protein kinase (PKA) on the internalization and functional coupling of the metabotropic glutamate receptor (mGluR1) splice variants mGluR1a and mGluR1b. Using an enzyme-linked immunosorbent assay technique to assess receptor internalization, we found that the glutamate-induced internalization of mGluR1a or mGluR1b transiently expressed in human embryonic kidney (HEK) 293 cells was inhibited by coactivation of endogenous beta2-adrenoceptors with isoprenaline or by direct activation of adenylyl cyclase with forskolin. The PKA inhibitor N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride (H89) blocked the effects of both isoprenaline and forskolin. The heterologous internalization of the mGluR1 splice variants triggered by carbachol was also inhibited by isoprenaline and forskolin in a PKA-sensitive fashion, whereas the constitutive (agonist-independent) internalization of mGluR1a was inhibited only modestly by PKA activation. Using inositol phosphate (IP) accumulation in cells prelabeled with [3H]inositol to assess receptor coupling, PKA activation increased basal IP accumulation in mGluR1a receptor-expressing cells and also increased glutamate-stimulated IP accumulation in both mGluR1a- and mGluR1b-expressing cells, but only at short times of glutamate addition. Furthermore, PKA activation completely blocked the carbachol-induced heterologous desensitization of glutamate-stimulated IP accumulation in both mGluR1a- and mGluR1b-expressing cells. In coimmunoprecipitation experiments, the ability of glutamate to increase association of GRK2 and arrestin-2 with mGluR1a and mGluR1b was inhibited by PKA activation with forskolin. Together, these results indicate that PKA activation inhibits the agonist-induced internalization and desensitization of mGluR1a and mGluR1b, probably by reducing their interaction with GRK2 and nonvisual arrestins. PMID:15155843

  13. Association between the Melatonin Receptor 1B Gene Polymorphism on the Risk of Type 2 Diabetes, Impaired Glucose Regulation: A Meta-Analysis

    PubMed Central

    Wang, Yi-Chao; Ma, Yu-Shui; Zhang, Feng; Che, Wu; Fu, Da; Wang, Xiao-Feng

    2012-01-01

    Background Melatonin receptor 1B (MTNR1B) belongs to the seven-transmembrane G protein-coupled receptor superfamily involved in insulin secretion, which has attracted considerable attention as a candidate gene for type 2 diabetes (T2D) since it was first identified as a loci associated with fasting plasma glucose level through genome wide association approach. The relationship between MTNR1B and T2D has been reported in various ethnic groups. The aim of this study was to consolidate and summarize published data on the potential of MTNR1B polymorphisms in T2D risk prediction. Methods PubMed, EMBASE, ISI web of science and the CNKI databases were systematically searched to identify relevant studies. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Heterogeneity and publication bias were also tested. Results A total of 23 studies involving 172,963 subjects for two common polymorphisms (rs10830963, rs1387153) on MTNR1B were included. An overall random effects per-allele OR of 1.05 (95% CI: 1.02–1.08; P<10−4) and 1.04 (95% CI: 0.98–1.10; P = 0.20) were found for the two variants respectively. Similar results were also observed using dominant or recessive genetic model. There was strong evidence of heterogeneity, which largely disappeared after stratification by ethnicity. Significant results were found in Caucasians when stratified by ethnicity; while no significant associations were observed in East Asians and South Asians. Besides, we found that the rs10830963 polymorphism is a risk factor associated with increased impaired glucose regulation susceptibility. Conclusions This meta-analysis demonstrated that the rs10830963 polymorphism is a risk factor for developing impaired glucose regulation and T2D. PMID:23226241

  14. The tumor necrosis factor receptor superfamily member 1B polymorphisms predict response to anti-TNF therapy in patients with autoimmune disease: A meta-analysis.

    PubMed

    Chen, Wenjuan; Xu, Hui; Wang, Xiuxiu; Gu, Junying; Xiong, Huizi; Shi, Yuling

    2015-09-01

    Numerous published data on the tumor necrosis factor receptor superfamily member 1B (TNFRSF1B) gene polymorphisms are shown to be associated with response or non-response to anti-TNF therapy in autoimmune diseases such as rheumatoid arthritis (RA), psoriasis and Crohn's Disease (CD). The aim of this study is to investigate whether the TNFRSF1B rs1061622 T/G or TNFRSF1A A/G rs767455 polymorphisms can predict the response to anti-TNF-based therapy in patients with autoimmune diseases. We conducted a meta-analysis of studies on the association between TNFRSF1B rs1061622 T/G polymorphism or TNFRSF1A A/G rs767455 polymorphism and non-responsiveness to anti-TNF therapy in autoimmune diseases. A total of 8 studies involving 929 subjects for TNFRSF1B rs1061622 and 564 subjects for TNFRSF1A rs767455 were finally considered. These studies consisted of seven studies on the TNFRSF1B polymorphism and four studies on the TNFRSF1A polymorphism. Meta-analysis showed significant association between the TNFRSF1B rs1061622 allele and non-responders to anti-TNF therapy [T/G odds ratio (OR) 0.72, 95% confidence interval (CI) 0.57-0.93, p=0.01]. Stratification by disease type indicated an association between the TNFRSF1B rs1061622 allele and non-responders to TNF antagonist in RA (T/G OR 0.69, 95% CI 0.48-0.99, p<0.05) and psoriasis (T/G OR 0.39, 95% CI 0.23-0.67, p<0.001), but not in CD (T/G OR 1.14, 95% CI 0.57-0.93, p=0.57). And there was no association between TNFRSF1A rs767455 genotype and non-responders to the anti-TNF therapy (A/G OR 0.93, 95% CI 0.70-1.23, p=0.59). This meta-analysis demonstrates that TNFRSF1B T allele carriers show a better response to anti-TNF therapy, and individuals carrying TNFRSF1A A allele have no relationship with the response to anti-TNF therapy for autoimmune diseases. The genotyping of this polymorphism could help to optimize the treatment by identifying patients with a likely poor response to biological drugs. PMID:26071216

  15. Larvae of the small white butterfly, Pieris rapae, express a novel serotonin receptor.

    PubMed

    Qi, Yi-Xiang; Xia, Ren-Ying; Wu, Ya-Su; Stanley, David; Huang, Jia; Ye, Gong-Yin

    2014-12-01

    The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G-protein-coupled receptors. Five 5-HT receptor subtypes have been reported in Drosophila that share high similarity with mammalian 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, and 5-HT7 receptors. We isolated a cDNA (Pr5-HT8 ) from larval Pieris rapae, which shares relatively low similarity to the known 5-HT receptor classes. After heterologous expression in HEK293 cells, Pr5-HT8 mediated increased [Ca(2+)]i in response to low concentrations (< 10 nM) of 5-HT. The receptor did not affect [cAMP]i even at high concentrations (> 10 μM) of 5-HT. Dopamine, octopamine, and tyramine did not influence receptor signaling. Pr5-HT8 was also activated by various 5-HT receptor agonists including 5-methoxytryptamine, (±)-8-Hydroxy-2-(dipropylamino) tetralin, and 5-carboxamidotryptamine. Methiothepin, a non-selective 5-HT receptor antagonist, activated Pr5-HT8 . WAY 10635, a 5-HT1A antagonist, but not SB-269970, SB-216641, or RS-127445, inhibited 5-HT-induced [Ca(2+)]i increases. We infer that Pr5-HT8 represents the first recognized member of a novel 5-HT receptor class with a unique pharmacological profile. We found orthologs of Pr5-HT8 in some insect pests and vectors such as beetles and mosquitoes, but not in the genomes of honeybee or parasitoid wasps. This is likely to be an invertebrate-specific receptor because there were no similar receptors in mammals. We isolated a cDNA (Pr5-HT8) from larval Pieris rapae, which shares relatively low similarity to the known GPCRs. After heterologous expression in HEK293 cells, Pr5-HT8 mediated increased [Ca(2+)]i in response to low concentrations (< 10 nM) of 5-HT and various 5-HT receptor agonists. We found orthologs of Pr5-HT8 in some insect pests and vectors such as beetles and mosquitoes, but not in the genomes of honeybee, parasitoid wasps

  16. Current and emerging second-generation triptans in acute migraine therapy: a comparative review.

    PubMed

    Deleu, D; Hanssens, Y

    2000-07-01

    Sterile neurogenic inflammation within cephalic tissue, involving vasodilation and plasma protein extravasation, has been proposed as a pathophysiological mechanism in acute migraine. The action of 5-hydroxytryptamine (5-HT1B/1D) agonists--so-called triptans--on receptors located in meningeal arteries (5-HT1B) and trigeminovascular fiber endings (5-HT1D) has an inhibitory effect on this neurogenic inflammation. Recently, a series of second-generation 5-HT1B/1D agonists (almotriptan, eletriptan, frovatriptan, naratriptan, rizatriptan, and zolmitriptan) have been developed and are reviewed in this article. Their in vitro pharmacological properties, pharmacokinetics, clinical efficacy, drug interactions, and adverse effects are evaluated and compared to the golden standard in the treatment of acute migraine, sumatriptan. PMID:10883409

  17. Involvement of 5-HT3 receptors in the action of vortioxetine in rat brain: Focus on glutamatergic and GABAergic neurotransmission.

    PubMed

    Riga, Maurizio S; Sánchez, Connie; Celada, Pau; Artigas, Francesc

    2016-09-01

    The antidepressant vortioxetine is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin (5-HT) transporter (SERT) inhibitor. Vortioxetine occupies all targets at high therapeutic doses and only SERT and 5-HT3-R at low doses. Vortioxetine increases extracellular monoamine concentrations in rat forebrain more than selective serotonin reuptake inhibitors (SSRI) and shows pro-cognitive activity in preclinical models. Given its high affinity for 5-HT3-R (Ki = 3.7 nM), selectively expressed in GABA interneurons, we hypothesized that vortioxetine may disinhibit glutamatergic and monoaminergic neurotransmission following 5-HT3-R blockade. Here we assessed vortioxetine effect on pyramidal neuron activity and extracellular 5-HT concentration using in vivo extracellular recordings of rat medial prefrontal cortex (mPFC) pyramidal neurons and microdialysis in mPFC and ventral hippocampus (vHPC). Vortioxetine, but not escitalopram, increased pyramidal neuron discharge in mPFC. This effect was prevented by SR57227A (5-HT3-R agonist) and was mimicked by ondansetron (5-HT3-R antagonist) and by escitalopram/ondansetron combinations. In microdialysis experiments, ondansetron augmented the 5-HT-enhancing effect of escitalopram in mPFC and vHPC. Local ondansetron in vHPC augmented escitalopram effect, indicating the participation of intrinsic mechanisms. Since 5-HT neurons express GABAB receptors, we examined their putative involvement in controlling 5-HT release after 5-HT3-R blockade. Co-perfusion of baclofen (but not muscimol) reversed the increased 5-HT levels produced by vortioxetine and escitalopram/ondansetron combinations in vHPC. The present results suggest that vortioxetine increases glutamatergic and serotonergic neurotransmission in rat forebrain by blocking 5-HT3 receptors in GABA interneurons. PMID:27106166

  18. Analysis of differential β variable region of T cell receptor expression and NAV3/TNFRSF1B gene mutation in mycosis fungoides

    PubMed Central

    Li, Li; Ren, Jingyu; Guo, Shuping; Bai, Li

    2016-01-01

    Objective This study aimed to analyze the predominant expression of the variable region of T cell receptor (TRBV) and determine whether NAV3 or TNFRSF1B gene mutation involved in the pathogenesis of MF. Results TRBV5-7 expression increased from the normal, early-stage to advanced-stage lesion in MF patient. By contrast, TRBV2 decreased with the lesion developed. We found no mutations of NAV3 or TNFRSF1B in the lesions from this study. Materials and Methods Real-time PCR were used to screen differential expression of TRBV in different lesions. Mutational analyses were used to validate genetic alterations in the skin lesions. Conclusions The identification of TRBV gene expression differences between normal and different stages of MF lesions provide insight into promising new diagnostic and prognostic biomarkers. None of the reported genetic abnormalities suggests complexity of progress from a primary cytogenetic event to an advanced stage with poor prognosis in MF. PMID:26918607

  19. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver

    PubMed Central

    Harkitis, P.; Lang, M. A.; Marselos, M.; Fotopoulos, A.; Albucharali, G.; Konstandi, M.

    2015-01-01

    Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens. PMID:26466350

  20. Involvement of the 5-HT(1A) receptor in the anti-immobility effects of fluvoxamine in the forced swimming test and mouse strain differences in 5-HT(1A) receptor binding.

    PubMed

    Sugimoto, Yumi; Furutani, Sachiko; Kajiwara, Yoshinobu; Hirano, Kazufumi; Yamada, Shizuo; Tagawa, Noriko; Kobayashi, Yoshiharu; Hotta, Yoshihiro; Yamada, Jun

    2010-03-10

    We previously demonstrated the presence of strain differences in baseline immobility time and sensitivity to the selective serotonin reuptake inhibitor (SSRI) fluvoxamine in five strains of mice (ICR, ddY, C57BL, DBA/2 and BALB/c mice). Furthermore, variations in serotonin (5-HT) transporter binding in the brain were strongly related to strain differences in baseline immobility and sensitivity to fluvoxamine. In the present study, we examined the involvement of the 5-HT(1A) receptor in anti-immobility effects in DBA/2 mice, which show high sensitivity to fluvoxamine. The anti-immobility effects of fluvoxamine in DBA/2 mice were inhibited by the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (WAY 100635). However, the 5-HT(1B) receptor antagonist 3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide (GR55562), the 5-HT(2) receptor antagonist 6-methyl-1-(methylethyl)-ergoline-8beta-carboxylic acid 2-hydroxy-1-methylpropyl ester (LY 53857), the 5-HT(3) receptor antagonist ondansetron and the 5-HT(4) receptor antagonist 4-amino-5-chloro-2-methoxy-benzoic acid 2-(diethylamino)ethyl ester (SDZ 205,557) did not influence the anti-immobility effects of fluvoxamine in DBA/2 mice. These results suggest that fluvoxamine-induced antidepressant-like effects in DBA/2 mice are mediated by the 5-HT(1A) receptor. We analyzed 5-HT(1A) receptor binding in the brains of five strains of mice. Strain differences in 5-HT(1A) receptor binding were observed. 5-HT(1A) receptor binding in brain was not correlated with baseline immobility time in the five strains of mice examined. These results suggest that, although the anti-immobility effects of fluvoxamine in DBA/2 mice are mediated by the 5-HT(1A) receptor, strain differences in 5-HT(1A) receptor binding are not related to variation in immobility time and responses to fluvoxamine. PMID:19958758

  1. Effect of peptides corresponding to extracellular domains of serotonin 1B/1D receptors and melanocortin 3 and 4 receptors on hormonal regulation of adenylate cyclase in rat brain.

    PubMed

    Shpakova, E A; Derkach, K V; Shpakov, A O

    2014-03-01

    The ligand-recognizing part of G protein-coupled receptors consists of their extracellular loops and N-terminal domain. Identification of these sites is essential for receptor mapping and for the development and testing of new hormone system regulators. The peptides corresponding by their structure to extracellular loop 2 of serotonin 1B/1D receptor (peptide 1), extracellular loop 3 of melanocortin 3 receptor (peptide 2), and N-terminal domain of melanocortin 4 (peptide 3) were synthesized by the solid-phase method. In synaptosomal membranes isolated from rat brain, peptide 1 (10(-5)-10(-4) M) attenuated the effects of 5-nonyloxytryptamine (selective agonist of serotonin 1B/1D receptor) and to a lesser extent serotonin and 5-methoxy-N,N-dimethyltryptamine acting on all the subtypes of serotonin receptor 1. Peptide 2 (10(-5)-10(-4) M) significantly reduced the adenylate cyclase-stimulating effect of γ-melanocyte-stimulating hormone (agonist of melanocortin receptor 3), but had no effect on the adenylate cyclase effect of THIQ (agonist melanocortin receptor 4). Peptide 3 reduced the adenylate cyclase-stimulating effects of THIQ and α-melanocyte-stimulating hormone (non-selective agonist of melanocortin receptors 3 and 4), but did not modulate the effect of γ-melanocyte-stimulating hormone. The effect of peptide 3 was weaker: it was observed at peptide 3 concentration of 10(-4) M. Peptides 1-3 did no change the adenylate cyclase-modulating effects of hormones acting through non-homologous receptors. Thus, the synthesized peptides specifically inhibited the regulatory effects of hormones acting through homologous receptors. This suggests that the corresponding extracellular domains are involved in ligand recognition and binding and determine functional activity of the receptor. PMID:24770752

  2. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders.

    PubMed

    Di Giovanni, Giuseppe; De Deurwaerdère, Philippe

    2016-01-01

    The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy. PMID:26617215

  3. Effect of chronic treatment with angiotensin type 1 receptor antagonists on striatal dopamine levels in normal rats and in a rat model of Parkinson's disease treated with L-DOPA.

    PubMed

    Dominguez-Meijide, Antonio; Villar-Cheda, Begoña; Garrido-Gil, Pablo; Sierrra-Paredes, German; Guerra, Maria J; Labandeira-Garcia, Jose L

    2014-01-01

    Beneficial effects of angiotensin type-1 receptor (AT1) inhibition have been observed in a number of brain processes mediated by oxidative stress and neuroinflammation, including Parkinson's disease. However, important counterregulatory interactions between dopamine and angiotensin systems have recently been demonstrated in several peripheral tissues, and it is possible that a decrease in dopamine levels due to AT1 inhibition may interfere with neuroprotective strategies. The present experiments involving rats with normal dopaminergic innervation indicate that chronic treatment with the AT1 antagonist candesartan does not significantly affect striatal levels of dopamine, serotonin or metabolites, as does not significantly affect motor behavior, as evaluated by the rotarod test. Interestingly, chronic administration of candesartan to normal rats induced a marked increase in dopamine D1 and a decrease in dopamine D2 receptor expression. In a rat model of Parkinson's disease treated with L-DOPA, no differences in striatal dopamine and serotonin levels were observed between candesartan-treated rats and untreated, which suggests that chronic treatment with candesartan does not significantly affect the process of L-DOPA decarboxylation and dopamine release in Parkinson's disease patients. Candesartan did not induce any differences in the striatal expression of dopamine D1 and D2 and serotonin 5-HT1B receptors in 6ydroxydopamine-lesioned rats treated with L-DOPA. The results suggest that chronic treatment with AT1 antagonists as a neuroprotective strategy does not significantly affect striatal dopamine release or motor behavior. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'. PMID:23973568

  4. Insulin-like growth factor receptor 1b is required for zebrafish primordial germ cell migration and survival

    PubMed Central

    Schlueter, Peter J.; Sang, Xianpeng; Duan, Cunming; Wood, Antony W.

    2007-01-01

    Insulin-like growth factor (IGF) signaling is a critical regulator of somatic growth during fetal and adult development, primarily through its stimulatory effects on cell proliferation and survival. IGF signaling is also required for development of the reproductive system, although its precise role in this regard remains unclear. We have hypothesized that IGF signaling is required for embryonic germline development, which requires the specification and proliferation of primordial germ cells (PGCs) in an extragonadal location, followed by directed migration to the genital ridges. We tested this hypothesis using loss-of-function studies in the zebrafish embryo, which possesses two functional copies of the Type-1 IGF receptor gene (igf1ra, igf1rb). Knockdown of IGF1Rb by morpholino oligonucleotides (MO) results in mismigration and elimination of primordial germ cells (PGCs), resulting in fewer PGCs colonizing the genital ridges. In contrast, knockdown of IGF1Ra has no effect on PGC migration or number despite inducing widespread somatic cell apoptosis. Ablation of both receptors, using combined MO injections or overexpression of a dominant-negative IGF1R, yields embryos with a PGC-deficient phenotype similar to IGF1Rb knockdown. TUNEL analyses revealed that mismigrated PGCs in IGF1Rb-deficient embryos are eliminated by apoptosis; overexpression of an antiapoptotic gene (Bcl2l) rescues ectopic PGCs from apoptosis but fails to rescue migration defects. Lastly, we show that suppression of IGF signaling leads to quantitative changes in the expression of genes encoding CXCL-family chemokine ligands and receptors involved in PGC migration. Collectively, these data suggest a novel role for IGF signaling in early germline development, potentially via cross-talk with chemokine signaling pathways. PMID:17362906

  5. Novel Polymorphisms of Adrenergic, Alpha-1B-, Receptor and Peroxisome Proliferator-activated Receptor Gamma, Coactivator 1 Beta Genes and Their Association with Egg Production Traits in Local Chinese Dagu Hens

    PubMed Central

    Mu, F.; Jing, Y.; Qin, N.; Zhu, H. Y.; Liu, D. H.; Yuan, S. G.; Xu, R. F.

    2016-01-01

    Adrenergic, alpha-1B-, receptor (ADRA1B) and peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B) genes are involved in regulation of hen ovarian development. In this study, these two genes were investigated as possible molecular markers associated with hen-housed egg production, egg weight (EW) and body weight in Chinese Dagu hens. Samples were analyzed using the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique, followed by sequencing analysis. Two novel single nucleotide polymorphisms (SNPs) were identified within the candidate genes. Among them, an A/G transition at base position 1915 in exon 2 of ADRA1B gene and a T/C mutation at base position 6146 in the 3′-untranslated region (UTR) of PPARGC1B gene were found to be polymorphic and named SNP A1915G and T6146C, respectively. The SNP A1915G (ADRA1B) leads to a non-synonymous substitution (aspartic acid 489-to-glycine). The 360 birds from the Dagu population were divided into genotypes AA and AG, allele A was found to be present at a higher frequency. Furthermore, the AG genotype correlated with significantly higher hen-housed egg production (HHEP) at 30, 43, 57, and 66 wks of age and with a higher EW at 30 and 43 wks (p<0.05). For the SNP T6146C (PPARGC1B), the hens were typed into TT and TC genotypes, with the T allele shown to be dominant. The TC genotype was also markedly correlated with higher HHEP at 57 and 66 wks of age and EW at 30 and 43 wks (p<0.05). Moreover, four haplotypes were reconstructed based on these two SNPs, with the AGTC haplotype found to be associated with the highest HHEP at 30 to 66 wks of age and with higher EW at 30 and 43 wks (p<0.05). Collectively, the two SNPs identified in this study might be used as potential genetic molecular markers favorable in the improvement of egg productivity in chicken breeding. PMID:26954135

  6. Novel Polymorphisms of Adrenergic, Alpha-1B-, Receptor and Peroxisome Proliferator-activated Receptor Gamma, Coactivator 1 Beta Genes and Their Association with Egg Production Traits in Local Chinese Dagu Hens.

    PubMed

    Mu, F; Jing, Y; Qin, N; Zhu, H Y; Liu, D H; Yuan, S G; Xu, R F

    2016-09-01

    Adrenergic, alpha-1B-, receptor (ADRA1B) and peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B) genes are involved in regulation of hen ovarian development. In this study, these two genes were investigated as possible molecular markers associated with hen-housed egg production, egg weight (EW) and body weight in Chinese Dagu hens. Samples were analyzed using the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique, followed by sequencing analysis. Two novel single nucleotide polymorphisms (SNPs) were identified within the candidate genes. Among them, an A/G transition at base position 1915 in exon 2 of ADRA1B gene and a T/C mutation at base position 6146 in the 3'-untranslated region (UTR) of PPARGC1B gene were found to be polymorphic and named SNP A1915G and T6146C, respectively. The SNP A1915G (ADRA1B) leads to a non-synonymous substitution (aspartic acid 489-to-glycine). The 360 birds from the Dagu population were divided into genotypes AA and AG, allele A was found to be present at a higher frequency. Furthermore, the AG genotype correlated with significantly higher hen-housed egg production (HHEP) at 30, 43, 57, and 66 wks of age and with a higher EW at 30 and 43 wks (p<0.05). For the SNP T6146C (PPARGC1B), the hens were typed into TT and TC genotypes, with the T allele shown to be dominant. The TC genotype was also markedly correlated with higher HHEP at 57 and 66 wks of age and EW at 30 and 43 wks (p<0.05). Moreover, four haplotypes were reconstructed based on these two SNPs, with the AGTC haplotype found to be associated with the highest HHEP at 30 to 66 wks of age and with higher EW at 30 and 43 wks (p<0.05). Collectively, the two SNPs identified in this study might be used as potential genetic molecular markers favorable in the improvement of egg productivity in chicken breeding. PMID:26954135

  7. Evidence that mCPP may have behavioural effects mediated by central 5-HT1C receptors.

    PubMed Central

    Kennett, G. A.; Curzon, G.

    1988-01-01

    1. The effects of 1-(3-chlorophenyl)piperazine (mCPP) and 1-[3-(trifluoromethyl)phenyl] piperazine (TFMPP) on activity of rats in a novel cage, and on the rotorod and elevated bar co-ordination tests was examined. 2. Peripherally administered mCPP and TFMPP dose-dependently reduced locomotion, rearing, and feeding scores but not grooming of freely fed rats placed in a novel observation cage. Yawning behaviour was increased. Similar effects were also observed after injection of mCPP into the 3rd ventricle. 3. Co-ordination on a rotating drum of both untrained and trained rats was impaired following mCPP but co-ordination on an elevated bar was not. 4. The hypoactivity induced by mCPP was opposed by three antagonists with high affinity for the 5-hydroxytryptamine (5-HT1C) site; metergoline, mianserin, cyproheptadine and possibly also by a fourth antagonist mesulergine. Metergoline, mianserin and cyproheptadine also opposed the reduction in feeding scores. However, neither effect of mCPP was antagonized by the 5-HT2-receptor antagonists ketanserin or ritanserin, the 5-HT3-receptor antagonist ICS 205-930, the 5-HT1A and 5-HT1B-receptor antagonists (-)-pindolol, (-)-propranolol and (+/-)-cyanopindolol or the 5-HT1A-, 5-HT2- and dopamine receptor antagonist spiperone. The specific alpha 2-adrenoceptor antagonist idazoxan was also without effect. 5. Hypoactivity induced by TFMPP was similarly antagonized by mianserin but unaffected by (+/-)-cyanopindolol. 6. These results suggest that the hypoactivity is mediated by central 5-HT1C-receptors and that mCPP and possibly TFMPP may be 5-HT1C-receptor agonists. 7. As mianserin, cyproheptadine and mesulergine in the absence of mCPP did not increase locomotion but increased the number of feeding scores, the activation of 5-HT1C-receptors may be of physiological importance in the control of appetite. The possible relevance of these results to the therapeutic and side-effects of clinically used antidepressants (particularly

  8. N-methyl-D-aspartate receptor channel blocker-like discriminative stimulus effects of nitrous oxide gas.

    PubMed

    Richardson, Kellianne J; Shelton, Keith L

    2015-01-01

    Nitrous oxide (N2O) gas is a widely used anesthetic adjunct in dentistry and medicine that is also commonly abused. Studies have shown that N2O alters the function of the N-methyl-d-aspartate (NMDA), GABAA, opioid, and serotonin receptors among others. However, the receptors systems underlying the abuse-related central nervous system effects of N2O are unclear. The present study explores the receptor systems responsible for producing the discriminative stimulus effects of N2O. B6SJLF1/J male mice trained to discriminate 10 minutes of exposure to 60% N2O + 40% oxygen versus 100% oxygen served as subjects. Both the high-affinity NMDA receptor channel blocker (+)-MK-801 maleate [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] and the low-affinity blocker memantine partially mimicked the stimulus effects of N2O. Neither the competitive NMDA antagonist, CGS-19755 (cis-4-[phosphomethyl]-piperidine-2-carboxylic acid), nor the NMDA glycine-site antagonist, L701-324 [7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(1H)-quinolinone], produced N2O-like stimulus effects. A range of GABAA agonists and positive modulators, including midazolam, pentobarbital, muscimol, and gaboxadol (4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol), all failed to produce N2O-like stimulus effects. The μ-, κ-, and δ-opioid agonists, as well as 5-hydroxytryptamine (serotonin) 1B/2C (5-HT1B/2C) and 5-HT1A agonists, also failed to produce N2O-like stimulus effects. Ethanol partially substituted for N2O. Both (+)-MK-801 and ethanol but not midazolam pretreatment also significantly enhanced the discriminative stimulus effects of N2O. Our results support the hypothesis that the discriminative stimulus effects of N2O are at least partially mediated by NMDA antagonist effects similar to those produced by channel blockers. However, as none of the drugs tested fully mimicked the stimulus effects of N2O, other mechanisms may also be involved. PMID:25368340

  9. The 5-HT1D/1B receptor agonist sumatriptan enhances fear of simulated speaking and reduces plasma levels of prolactin.

    PubMed

    de Rezende, Marcos Gonçalves; Garcia-Leal, Cybele; Graeff, Frederico Guilherme; Del-Ben, Cristina Marta

    2013-12-01

    This study measured the effects of the preferential 5-HT1D/1B receptor agonist sumatriptan in healthy volunteers who performed the Simulated Public Speaking Test (SPST), which recruits the neural network involved in panic disorder and social anxiety disorder. In a double-blind, randomised experiment, 36 males received placebo (12), 50 mg (12) or 100 mg (12) of sumatriptan 2 h before the SPST. Subjective, physiological and hormonal measures were taken before, during and after the test. The dose of 100 mg of sumatriptan increased speech-induced fear more than either a 50mg dose of the drug or placebo. The largest dose of sumatriptan also enhanced vigilance more than placebo, without any change in blood pressure, heart rate or electrical skin conductance. Sumatriptan decreased plasma levels of prolactin. A significant but moderate increase in plasma cortisol after SPST occurred, independent of treatment. Because sumatriptan decreases 5-HT release into the extracellular space, the potentiation of SPST-induced fear caused by the drug supports the hypothesis that 5-HT attenuates this emotional state. As acute administration of antidepressants has also been shown to enhance speaking fear and increase plasma prolactin, in contrast to sumatriptan, the 5-HT regulation of stress-hormone release is likely to be different from that of emotion. PMID:23325368

  10. (3H)WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    SciTech Connect

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-12-01

    In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.

  11. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels

    PubMed Central

    2011-01-01

    Background AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP) enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. Methods Expression of AhR and Cyp1b1 was detected in isolated rat brain microvessels. AhR was immunovisualised in brain microvessel endothelial cells. The effect of AhR ligands on Cyp1b1 expression was studied using isolated brain microvessels after ex vivo and/or in vivo exposure to TCDD, heavy hydrocarbons containing diesel exhaust particles (DEP) or Δ9-tetrahydrocannabinol (Δ9-THC). Results After ex vivo exposure to TCDD (a highly potent AhR ligand) for 3 h, Cyp1b1 expression was significantly increased by 2.3-fold in brain microvessels. A single i.p. dose of TCDD also increased Cyp1b1 transcripts (22-fold) and Cyp1b1 protein (2-fold) in rat brain microvessels at 72 h after TCDD. Likewise, DEP treatment (in vivo and ex vivo) strongly induced Cyp1b1 protein in brain microvessels. DEP-mediated Cyp1b1 induction was inhibited by actinomycin D, cycloheximide, or by an AhR antagonist. In contrast, a sub-chronic in vivo treatment with Δ9-THC once daily for 7 seven days had no effect on Cyp1b1 expression Conclusions Our results show that TCDD and DEP strongly induced Cyp1b1 in rat brain microvessels, likely through AhR activation. PMID:21867498

  12. Skatole (3-Methylindole) Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes

    PubMed Central

    Balaguer, Patrick; Ekstrand, Bo; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2016-01-01

    Skatole (3-methylindole) is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR) regulated genes, such as cytochrome P450 1A1 (CYP1A1), in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway. PMID:27138278

  13. Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism.

    PubMed

    Matsunaga, Toshiyuki; Suzuki, Ayaka; Kezuka, Chihiro; Okumura, Naoko; Iguchi, Kazuhiro; Inoue, Ikuo; Soda, Midori; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2016-08-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most effective chemotherapeutic drugs that are used for treatment of patients with gastrointestinal cancer cells, but its continuous administration often evokes the development of chemoresistance. In this study, we investigated alterations in antioxidant molecules and functions using a newly established CDDP-resistant variant of gastric cancer MKN45 cells, and found that aldo-keto reductase 1B10 (AKR1B10) is significantly up-regulated with acquisition of the CDDP resistance. In the nonresistant MKN45 cells, the sensitivity to cytotoxic effect of CDDP was decreased and increased by overexpression and silencing of AKR1B10, respectively. In addition, the AKR1B10 overexpression markedly suppressed accumulation and cytotoxicity of 4-hydroxy-2-nonenal that is produced during lipid peroxidation by CDDP treatment, suggesting that the enzyme acts as a crucial factor for facilitation of the CDDP resistance through inhibiting induction of oxidative stress by the drug. Transient exposure to CDDP and induction of the CDDP resistance decreased expression of peroxisome proliferator-activated receptor-γ (PPARγ) in MKN45 and colon cancer LoVo cells. Additionally, overexpression of PPARγ in the cells elevated the sensitivity to the CDDP toxicity, which was further augmented by concomitant treatment with a PPARγ ligand rosiglitazone. Intriguingly, overexpression of AKR1B10 in the cells resulted in a decrease in PPARγ expression, which was recovered by addition of an AKR1B10 inhibitor oleanolic acid, inferring that PPARγ is a downstream target of AKR1B10-dependent mechanism underlying the CDDP resistance. Combined treatment with the AKR1B10 inhibitor and PPARγ ligand elevated the CDDP sensitivity, which was almost the same level as that in the parental cells. These results suggest that combined treatment with the AKR1B10 inhibitor and PPARγ ligand is an effective adjuvant therapy for overcoming CDDP resistance of

  14. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure.

    PubMed

    Jacob, Aude; Potin, Sophie; Chapy, Hélène; Crete, Dominique; Glacial, Fabienne; Ganeshamoorthy, Kayathiri; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier

    2015-07-10

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor activated by a variety of widespread persistent environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). It can transactivate the expression of several target genes. Recently AhR transcripts were detected in isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line, an in vitro model of the human cerebral endothelium. To date AhR implication in the co-regulation of ABCB1, ABCG2 and CYP1B1 at human cerebral endothelium has not been addressed. Here we investigated whether AhR could co-regulate ABCB1, ABCG2 and CYP1B1 expressions in the hCMEC/D3 cell line. Exposure to TCDD induced a concentration-dependent increase in CYP1B1 expression. We demonstrated AhR involvement in the TCDD-mediated increase in CYP1B1 expression by using small interfering RNA against AhR. Western blotting analysis also revealed an increase in CYP1B1 protein expression following TCDD exposure in hCMEC/D3. Regarding ABCB1 and ABCG2, exposure to TCDD had no effect on their protein expressions and functional activities. In conclusion our data indicated a differential modulation of CYP1B1 and ABCB1/ABCG2 expressions in hCMEC/D3 cells following TCDD exposure. PMID:25858487

  15. Down-regulation of Homer1b/c attenuates group I metabotropic glutamate receptors dependent Ca²⁺ signaling through regulating endoplasmic reticulum Ca²⁺ release in PC12 cells.

    PubMed

    Lv, Miao-Miao; Cheng, Yong-Chun; Xiao, Zhi-Bin; Sun, Mei-Yan; Ren, Peng-Cheng; Sun, Xu-De

    2014-08-01

    The molecular basis for group I metabotropic glutamate receptors (mGluR1 and 5) coupling to membrane ion channels and intracellular calcium pools is not fully understood. Homer is a family of post synaptic density proteins functionally and physically attached to target proteins at proline-rich sequences. In the present study, we demonstrate that Homer1b/c is constitutively expressed in PC12 cells, whereas Homer1a, the immediate early gene product, can be up-regulated by brain derived neurotrophic factor (BDNF) and glutamate. Knockdown of Homer1b/c using specific target small interfering RNA (siRNA) did not interfere the expression of mGluR1, mGluR5 and their downstream effectors, including inositol-1,4,5-trisphosphate receptors (IP3R), phospholipase C (PLC) and Gq proteins. By analyzing Ca(2+) imaging in PC12 cells, we demonstrated that Homer1b/c is an essential regulator of the Ca(2+) release from the endoplasmic reticulum (ER) induced by the activation of group I mGluRs, IP3R and ryanodine receptors (RyR). Furthermore, the group I mGluRs activation-dependent refilling of the Ca(2+) stores in both resting and depolarizing conditions were strongly attenuated in the absence of Homer1b/c. Together, our results demonstrate that in PC12 cells Homer1b/c is a regulator of group I mGluRs related Ca(2+) homeostasis that is essential for the maintenance of normal Ca(2+) levels in the ER. PMID:25026550

  16. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence

    PubMed Central

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs. PMID:26968030

  17. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence.

    PubMed

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs. PMID:26968030

  18. Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1b on CD8+ T Cells and TNF Receptor Superfamily Member 1a on Non-CD8+ T Cells Contribute Significantly to Upper Genital Tract Pathology Following Chlamydial Infection

    PubMed Central

    Manam, Srikanth; Thomas, Joshua D.; Li, Weidang; Maladore, Allison; Schripsema, Justin H.; Ramsey, Kyle H.; Murthy, Ashlesh K.

    2015-01-01

    Background. We demonstrated previously that tumor necrosis factor α (TNF-α)–producing Chlamydia-specific CD8+ T cells cause oviduct pathological sequelae. Methods. In the current study, we used wild-type C57BL/6J (WT) mice with a deficiency in genes encoding TNF receptor superfamily member 1a (TNFR1; TNFR1 knockout [KO] mice), TNF receptor superfamily member 1b (TNFR2; TNFR2 KO mice), and both TNFR1 and TNFR2 (TNFR1/2 double KO [DKO] mice) and mix-match adoptive transfers of CD8+ T cells to study chlamydial pathogenesis. Results. TNFR1 KO, TNFR2 KO, and TNFR1/2 DKO mice displayed comparable clearance of primary or secondary genital Chlamydia muridarum infection but significantly reduced oviduct pathology, compared with WT animals. The Chlamydia-specific total cellular cytokine response in splenic and draining lymph nodes and the antibody response in serum were comparable between the WT and KO animals. However, CD8+ T cells from TNFR2 KO mice displayed significantly reduced activation (CD11a expression and cytokine production), compared with TNFR1 KO or WT animals. Repletion of TNFR2 KO mice with WT CD8+ T cells but not with TNFR2 KO CD8+ T cells and repletion of TNFR1 KO mice with either WT or TNFR1 KO CD8+ T cells restored oviduct pathology to WT levels in both KO groups. Conclusions. Collectively, these results demonstrate that TNFR2-bearing CD8+ T cells and TNFR1-bearing non-CD8+ T cells contribute significantly to oviduct pathology following genital chlamydial infection. PMID:25552370

  19. Characterization of putative 5-HT7 receptors mediating tachycardia in the cat

    PubMed Central

    Villalón, Carlos M; Heiligers, Jan P C; Centurión, David; De Vries, Peter; Saxena, Pramod R

    1997-01-01

    It has been suggested that the tachycardic response to 5-hydroxytryptamine (5-HT) in the spinal-transected cat is mediated by ‘5-HT1-like' receptors since this effect, being mimicked by 5-carboxamidotryptamine (5-CT), is not modified by ketanserin or MDL 72222, but it is blocked by methiothepin, methysergide or mesulergine. The present study was set out to reanalyse this suggestion in terms of the IUPHAR 5-HT receptor classification schemes proposed in 1994 and 1996. Intravenous (i.v.) bolus injections of the tryptamine derivatives, 5-CT (0.01, 0.03, 0.1, 0.3, 1, 3, 10 and 30 μg kg−1), 5-HT (3, 10 and 30 μg kg−1) and 5-methoxytryptamine (3, 10 and 30 μg kg−1) as well as the atypical antipsychotic drug, clozapine (1000 and 3000 μg kg−1) resulted in dose-dependent increases in heart rate, with a rank order of agonist potency of 5-CT >> 5-HT > 5-methoxytryptamine >> clozapine. The tachycardic effects of 5-HT and 5-methoxytryptamine were dose-dependently antagonized by i.v. administration of lisuride (30 and 100 μg kg−1), ergotamine (100 and 300 μg kg−1) or mesulergine (100, 300 and 1000 μg kg−1); the highest doses of these antagonists used also blocked the tachycardic effects of 5-CT. Clozapine (1000 and 3000 μg kg−1) did not affect the 5-HT-induced tachycardia, but attenuated, with its highest dose, the responses to 5-methoxytryptamine and 5-CT. However, these doses of clozapine as well as the high doses of ergotamine (300 μg kg−1) and mesulergine (300 and 1000 μg kg−1) also attenuated the tachycardic effects of isoprenaline. In contrast, 5-HT-, 5-methoxytryptamine- and 5-CT-induced tachycardia were not significantly modified after i.v. administration of physiological saline (0.1 and 0.3 ml kg−1), the 5-HT1B/1D receptor antagonist, GR127935 (500 μg kg−1) or the 5-HT3/4 receptor antagonist, tropisetron (3000 μg kg−1). Intravenous injections of the 5-HT1 receptor agonists

  20. Receptor binding profiles and quantitative structure-affinity relationships of some 5-substituted-N,N-diallyltryptamines.

    PubMed

    Cozzi, Nicholas V; Daley, Paul F

    2016-02-01

    N,N-Diallyltryptamine (DALT) and 5-methoxy-N,N-diallyltryptamine (5-MeO-DALT) are two tryptamines synthesized and tested by Alexander Shulgin. In self-experiments, 5-MeO-DALT was reported to be psychoactive in the 12-20mg range, while the unsubstituted compound DALT had few discernible effects in the 42-80 mg range. Recently, 5-MeO-DALT has been used in nonmedical settings for its psychoactive effects, but these effects have been poorly characterized and little is known of its pharmacological properties. We extended the work of Shulgin by synthesizing additional 5-substituted-DALTs. We then compared them to DALT and 5-MeO-DALT for their binding affinities at 45 cloned receptors and transporter proteins. Based on in vitro binding affinity, we identified 27 potential receptor targets for the 5-substituted-DALT compounds. Five of the DALT compounds had affinity in the 10-80 nM range for serotonin 5-HT1A and 5-HT2B receptors, while the affinity of DALT itself at 5-HT1A receptors was slightly lower at 100 nM. Among the 5-HT2 subtypes, the weakest affinity was at 5-HT2A receptors, spanning 250-730 nM. Five of the DALT compounds had affinity in the 50-400 nM range for serotonin 5-HT1D, 5-HT6, and 5-HT7 receptors; again, it was the unsubstituted DALT that had the weakest affinity at all three subtypes. The test drugs had even weaker affinity for 5-HT1B, 5-HT1E, and 5-HT5A subtypes and little or no affinity for the 5-HT3 subtype. These compounds also had generally nanomolar affinities for adrenergic α2A, α2B, and α2C receptors, sigma receptors σ1 and σ2, histamine H1 receptors, and norepinephrine and serotonin uptake transporters. They also bound to other targets in the nanomolar-to-low micromolar range. Based on these binding results, it is likely that multiple serotonin receptors, as well as several nonserotonergic sites are important for the psychoactive effects of DALT drugs. To learn whether any quantitative structure-affinity relationships existed, we evaluated

  1. The roles of the GA receptors GID1a, GID1b, and GID1c in sly1-independent GA signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gibberellin (GA) hormone signaling occurs through proteolytic and non-proteolytic signaling mechanisms when the GA receptor GID1 (GA-INSENSITIVE DWARF 1) binds GA. GA binding to GID1 protein causes a conformational change, enabling GID1 to bind negative regulators of GA responses called DELLA prote...

  2. Gene-gene-environment interactions between drugs, transporters, receptors, and metabolizing enzymes: Statins, SLCO1B1, and CYP3A4 as an example.

    PubMed

    Sadee, Wolfgang

    2013-09-01

    Pharmacogenetic biomarker tests include mostly specific single gene-drug pairs, capable of accounting for a portion of interindividual variability in drug response and toxicity. However, multiple genes are likely to contribute, either acting independently or epistatically, with the CYP2C9-VKORC1-warfarin test panel, an example of a clinically used gene-gene-dug interaction. I discuss here further instances of gene-gene-drug interactions, including a proposed dynamic effect on statin therapy by genetic variants in both a transporter (SLCO1B1) and a metabolizing enzyme (CYP3A4) in liver cells, the main target site where statins block cholesterol synthesis. These examples set a conceptual framework for developing diagnostic panels involving multiple gene-drug combinations. PMID:23436703

  3. Rizatriptan has central antinociceptive effects against durally evoked responses.

    PubMed

    Cumberbatch, M J; Hill, R G; Hargreaves, R J

    1997-06-01

    The 5-HT(1B/1D) receptor agonist rizatriptan constricts intracranial, extracerebral blood vessels, inhibits neurogenic vasodilation and extravasation in the meninges and is effective clinically against migraine. The present study has investigated whether rizatriptan may also have activity at 5-HT(1B/1D) receptors within the central nervous system (CNS) that contributes to its antimigraine effects. Action potentials evoked by electrical stimulation of the dura-mater were recorded extracellularly from single neurones in the trigeminal nucleus caudalis in anaesthetized rats. Rizatriptan dose dependently inhibited these nociceptive dural responses by up to 63 +/- 9% after 3 mg/kg, i.v. Rizatriptan therefore has central activity which may contribute to its efficacy against migraine headache. PMID:9203565

  4. Novel 2,7-Substituted (S)-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic Acids: Peroxisome Proliferator-Activated Receptor γ Partial Agonists with Protein-Tyrosine Phosphatase 1B Inhibition.

    PubMed

    Otake, Kazuya; Azukizawa, Satoru; Takeda, Shigemitsu; Fukui, Masaki; Kawahara, Arisa; Kitao, Tatsuya; Shirahase, Hiroaki

    2015-01-01

    A novel series of 2,7-substituted 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and biologically evaluated. (S)-2-(2-Furylacryloyl)-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid tert-butylamine salt (13jE) was identified as a potent human peroxisome proliferator-activated receptor γ (PPARγ)-selective agonist (EC50=85 nM) and human protein-tyrosine phosphatase 1B (PTP-1B) inhibitor (IC50=1.0 µM). Compound 13jE partially activated PPARγ, but not PPARα or PPARδ, and antagonized farglitazar, a full PPARγ agonist. Cmax after the oral administration of 13jE at 10 mg/kg was 28.6 µg/mL (53 µM) in male Sprague-Dawley (SD) rats. Repeated administration of 13jE and rosiglitazone for 14 d at 10 mg/kg/d decreased plasma glucose and triglyceride levels significantly in male KK-A(y) mice. Rosiglitazone, but not 13jE, significantly increased the plasma volume and liver weight. In conclusion, 13jE showed stronger hypoglycemic and hypolipidemic effects and weaker hemodilution and hepatotoxic effects than rosiglitazone, suggesting that its safer efficacy may be due to its partial PPARγ agonism and PTP-1B inhibition. PMID:26633022

  5. Design, synthesis and evaluation of small molecule imidazo[2,1-b][1,3,4]thiadiazoles as inhibitors of transforming growth factor-β type-I receptor kinase (ALK5).

    PubMed

    Patel, Harun M; Sing, Baljeet; Bhardwaj, Varun; Palkar, Mahesh; Shaikh, Mahamadhanif S; Rane, Rajesh; Alwan, Wesam S; Gadad, Andanappa K; Noolvi, Malleshappa N; Karpoormath, Rajshekhar

    2015-03-26

    A new series of imidazo[2,1-b][1,3,4]thiadiazoles 5(a-g), 6(a-g), 9(a-i) and 12(a-h) were synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin receptor-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and their TGF-β -induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. Compound 6d, 2-(5-((2-cyclopropyl-6-(4-fluorophenyl) imidazo [2,1-b][1,3,4]thiadiazol-5-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid, shows prominent ALK5 inhibition (IC50 = 0.0012 μM) and elective inhibition (91%) against the P38αkinase at10 μM. The binding mode of compound 6d by XP docking studies shows that it fits well into the active site cavity of ALK5 by forming broad and tight interactions. Lipinski's rule and in silico ADME pharmacokinetic parameters are within the acceptable range defined for human use thereby indicating their potential as a drug-like molecules. PMID:25234355

  6. [Rizatriptan (Maxalt), a new entity of triptan for migraine: pharmacology and therapeutic relevance].

    PubMed

    Ikemoto, Fumihiko; Toru, Taro; Aijima, Hiroshi; Natsumeda, Yutaka

    2004-04-01

    Rizatriptan is a highly potent, selective serotonin 5-HT(1B/1D)-receptor agonist. Current theories on the mechanism of migraine suggest the central role of vasodilation of intracranial, extracerebral blood vessels and activation of perivascular trigeminal sensory nerves. There abundantly exist 5-HT(1B) receptors in meningeal blood vessels and 5-HT(1D) receptors in the trigeminal ganglia. The therapeutic activity of rizatriptan in migraine can most likely be attributed to agonist effects at 5-HT(1B/1D) receptors on these target sites. Two types of the 10 mg formulation, a tablet (Maxalt) tablet) and an orally disintegrating tablet (Maxalt)RPD tablet), are available. The latter may have a clinical relevance for patients who administer it without liquid. Pharmacokinetic study demonstrated the approximate T(max) of 1.0 or 1.1 h in tablets and 1.3 h in RPD tablets, resulting in early onset for headache relief and also pain free. Bioavailability was estimated to be about 45%. The efficacy and good tolerability and underlying profiles of pharmacokinetics of rizatriptan are almost similar between Japanese and other races, and a reduction in headache response up to 2 h can be attained in a large majority of patients. Several reports have described the favorable clinical profile of rizatriptan in comparison to other triptans. Rizatriptan is thus effective and provides migraine sufferers with an appropriate quality of life. PMID:15056946

  7. Postnatal changes in the expressions of serotonin 1A, 1B, and 2A receptors in ten brain stem nuclei of the rat: implication for a sensitive period

    PubMed Central

    Liu, Qiuli; Wong-Riley, Margaret T.T.

    2009-01-01

    A critical period in respiratory network development occurs in the rat around postnatal days (P)12–13, when abrupt neurochemical, metabolic, and physiological changes were evident. As serotonin (5-HT) and its receptors are involved in respiratory modulation, and serotonergic abnormality is implicated in Sudden Infant Death Syndrome, we hypothesized that 5-HT receptors are significantly down-regulated during the critical period. This was documented recently for 5-HT2AR in several respiratory nuclei. The present study represents a comprehensive analysis of postnatal development of 5-HT1AR and 5-HT1BR in ten brain stem nuclei and 5-HT2AR in six nuclei not previously examined. Optical densitometric analysis of immunohistochemically-reacted neurons from P2 to P21 indicated four developmental patterns of expression: 1) Pattern I: a high level of expression at P2–P11, an abrupt and significant reduction at P12, followed by a plateau until P21 (5-HT1AR and 5-HT1BR in raphé magnus [RM], raphé obscurus [ROb], raphé pallidus [RP], pre-Bötzinger complex [PBC], nucleus ambiguus [Amb], and hypoglossal nucleus [XII; 5-HT1AR only]). 2) Pattern II: a high level at P2–P9, a gradual decline from P9 to P12, followed by a plateau until P21 (5-HT1AR and 5-HT1BR in the retrotrapezoid nucleus [RTN]/parafacial respiratory group [pFRG]). 3) Pattern III: a high level at P2–P11, followed by a gradual decline until P21 (5-HT1AR in the ventrolateral subnucleus of solitary tract nucleus [NTSVL] and the non-respiratory cuneate nucleus [CN]). 4) Pattern IV: a relatively constant level maintained from P2 to P21 (5-HT1AR in the commissural subnucleus of solitary tract nucleus [NTSCOM]; 5-HT1BR in XII, NTSVL, NTSCOM, and CN; and 5-HT2AR in RM, ROb, RP, RTN/pFRG, NTSVL, and NTSCOM). Thus, a significant reduction in the expression of 5-HT1AR, 5-HT1BR, and 5-HT2AR in multiple respiratory-related nuclei at P12 is consistent with reduced serotonergic transmission during the critical period

  8. Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum.

    PubMed

    Virk, Michael S; Sagi, Yotam; Medrihan, Lucian; Leung, Jenny; Kaplitt, Michael G; Greengard, Paul

    2016-01-19

    Little is known about the molecular similarities and differences between neurons in the ventral (vSt) and dorsal striatum (dSt) and their physiological implications. In the vSt, serotonin [5-Hydroxytryptamine (5-HT)] modulates mood control and pleasure response, whereas in the dSt, 5-HT regulates motor behavior. Here we show that, in mice, 5-HT depolarizes cholinergic interneurons (ChIs) of the dSt whereas hyperpolarizing ChIs from the vSt by acting on different 5-HT receptor isoforms. In the vSt, 5-HT1A (a postsynaptic receptor) and 5-HT1B (a presynaptic receptor) are highly expressed, and synergistically inhibit the excitability of ChIs. The inhibitory modulation by 5-HT1B, but not that by 5-HT1A, is mediated by p11, a protein associated with major depressive disorder. Specific deletion of 5-HT1B from cholinergic neurons results in impaired inhibition of ACh release in the vSt and in anhedonic-like behavior. PMID:26733685

  9. Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum

    PubMed Central

    Virk, Michael S.; Sagi, Yotam; Medrihan, Lucian; Leung, Jenny; Kaplitt, Michael G.; Greengard, Paul

    2016-01-01

    Little is known about the molecular similarities and differences between neurons in the ventral (vSt) and dorsal striatum (dSt) and their physiological implications. In the vSt, serotonin [5-Hydroxytryptamine (5-HT)] modulates mood control and pleasure response, whereas in the dSt, 5-HT regulates motor behavior. Here we show that, in mice, 5-HT depolarizes cholinergic interneurons (ChIs) of the dSt whereas hyperpolarizing ChIs from the vSt by acting on different 5-HT receptor isoforms. In the vSt, 5-HT1A (a postsynaptic receptor) and 5-HT1B (a presynaptic receptor) are highly expressed, and synergistically inhibit the excitability of ChIs. The inhibitory modulation by 5-HT1B, but not that by 5-HT1A, is mediated by p11, a protein associated with major depressive disorder. Specific deletion of 5-HT1B from cholinergic neurons results in impaired inhibition of ACh release in the vSt and in anhedonic-like behavior. PMID:26733685

  10. Triton 2 (1B)

    NASA Technical Reports Server (NTRS)

    Clark, Michelle L.; Meiss, A. G.; Neher, Jason R.; Rudolph, Richard H.

    1994-01-01

    The goal of this project was to perform a detailed design analysis on a conceptually designed preliminary flight trainer. The Triton 2 (1B) must meet the current regulations in FAR Part 23. The detailed design process included the tasks of sizing load carrying members, pulleys, bolts, rivets, and fuselage skin for the safety cage, empennage, and control systems. In addition to the regulations in FAR Part 23, the detail design had to meet established minimums for environmental operating conditions and material corrosion resistance.

  11. Safety profile of the triptans.

    PubMed

    Tepper, Stewart J; Millson, David

    2003-03-01

    The triptans are 5-HT(1B/1D) agonists used as migraine and cluster-specific agents. Seven are in commercial use worldwide; in order of release these are sumatriptan, zolmitriptan, rizatriptan, naratriptan, almotriptan, frovatriptan and eletriptan. Sumatriptan has been in clinical use since 1991, and although postmarketing studies have stimulated much debate of triptan strengths and weaknesses, their overall safety profile appears excellent. The most serious adverse events are cardiovascular, due to coronary artery narrowing as a consequence of coronary artery 5-HT(1B) receptor activity. Triptans are contraindicated in patients with vascular disease. Other events are even more rare, and include the potential for drug-drug interactions, based on metabolic elimination pathways. Serotonin syndrome has been a concern, but one large prospective study failed to document a single case, and reports are sporadic and not clearly causative. PMID:12904112

  12. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking.

    PubMed

    Monti, Jaime M; Jantos, Héctor

    2008-01-01

    Based on electrophysiological, neurochemical and neuropharmacological approaches, it is currently accepted that serotonin (5-HT) and dopamine (DA) function to promote waking (W) and to inhibit slow wave sleep (SWS) and/or rapid-eye-movement sleep (REMS). Serotonergic neurons of the dorsal raphe nucleus (DRN) fire at a steady rate during W, decrease their firing during SWS and virtually cease activity during REMS. On the other hand, DA cells in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) do not change their mean firing rate across the sleep-wake cycle. It has been proposed that DA cells in the midbrain show a change in temporal pattern rather than firing rate during the sleep-wake cycle. Available evidence tends to indicate that during W and REMS an increase of burst firing activity of DA neurons occurs together with an enhanced release of DA in the VTA, the nucleus accumbens and several forebrain structures. Recently, DA neurons were characterised in the ventral periaqueductal grey matter (VPAG) that express Fos protein during W. Lesioning of these cells resulted in an increase of SWS and REMS, which led to the proposal that VPAG DA neurons may play a role in the promotion of W. Systemic injection of full agonists at postsynaptic 5-HT(1A) (8-OH-DPAT, flesinoxan), 5-HT(1B) (CGS 12066B, CP-94,253), 5-HT(2A/2C) (DOI, DOM) and 5-HT(3) (m-chlorophenylbiguanide) receptors increases W and reduces SWS and REMS. On the other hand, microdialysis perfusion or direct infusion of 8-OH-DPAT or flesinoxan into the DRN, where somatodendritic 5-HT(1A) receptors are located, significantly increases REMS. Systemic administration of the selective DA D(1) receptor agonist SKF 38393 induces behavioural arousal together with an increase of W and a reduction of sleep. On the other hand, injection of a DA D(2) receptor agonist (apomorphine, bromocriptine, quinpirole) gives rise to biphasic effects, such that low doses reduce W and augment SWS and REMS

  13. Interferon Gamma-1b Injection

    MedlinePlus

    Interferon gamma-1b injection is used to reduce the frequency and severity of serious infections in people ... with severe, malignant osteopetrosis (an inherited bone disease). Interferon gamma-1b is in a class of medications ...

  14. The Effects of Glycogen Synthase Kinase-3beta in Serotonin Neurons

    PubMed Central

    Zhou, Wenjun; Chen, Ligong; Paul, Jodi; Yang, Sufen; Li, Fuzeng; Sampson, Karen; Woodgett, Jim R.; Beaulieu, Jean Martin; Gamble, Karen L.; Li, Xiaohua

    2012-01-01

    Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors. PMID:22912839

  15. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women

    PubMed Central

    Matuszek, Maria A.; Anton, Angelyn; Thillainathan, Sobana; Armstrong, Nicola J.

    2015-01-01

    Aim To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities. Method Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians. Results There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000), triglycerides (P = .050), low density lipoprotein (P = .009) and non-fasting blood glucose (15 min) (P = .024) were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC). Non-fasting insulin in South Asians (15–120 min), in South East/East Asians (60–120 min), and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006). The molar ratio of C-peptide AUC/Insulin AUC (P = .045) and adiponectin (P = .037) were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022) and rs10830963 (P = 0.009), which are both near the melatonin receptor MTNR1B. Conclusions Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of

  16. Interferon Beta-1b Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS, a disease in which ... interferon beta-1b injection at around the same time of day each time you inject it. Follow ...

  17. Phylogeography of E1b1b1b-M81 haplogroup and analysis of its subclades in Morocco.

    PubMed

    Reguig, Ahmed; Harich, Nourdin; Barakat, Abdelhamid; Rouba, Hassan

    2014-01-01

    In this study we analyzed 295 unrelated Berber-speaking men from northern, central, and southern Morocco to characterize frequency of the E1b1b1b-M81 haplogroup and to refine the phylogeny of its subclades: E1b1b1b1-M107, E1b1b1b2-M183, and E1b1b1b2a-M165. For this purpose, we typed four biallelic polymorphisms: M81, M107, M183, and M165. A large majority of the Berber-speaking male lineages belonged to the Y-chromosomal E1b1b1b-M81 haplogroup. The frequency ranged from 79.1% to 98.5% in all localities sampled. E1b1b1b2-M183 was the most dominant subclade in our samples, ranging from 65.1% to 83.1%. In contrast, the E1b1b1b1-M107 and E1b1b1b2a-M165 subclades were not found in our samples. Our results suggest a predominance of the E1b1b1b-M81 haplogroup among Moroccan Berber-speaking males with a decreasing gradient from south to north. The most prevalent subclade in this haplogroup was E1b1b1b2-M183, for which diffferences among these three groups were statistically significant between central and southern groups. PMID:25397701

  18. Migraine: pathophysiology, pharmacology, treatment and future trends.

    PubMed

    Villalón, Carlos M; Centurión, David; Valdivia, Luis Felipe; de Vries, Peter; Saxena, Pramod R

    2003-03-01

    Migraine treatment has evolved into the scientific arena, but it seems still controversial whether migraine is primarily a vascular or a neurological dysfunction. Irrespective of this controversy, the levels of serotonin (5-hydroxytryptamine; 5-HT), a vasoconstrictor and a central neurotransmitter, seem to decrease during migraine (with associated carotid vasodilatation) whereas an i.v. infusion of 5-HT can abort migraine. In fact, 5-HT as well as ergotamine, dihydroergotamine and other antimigraine agents invariably produce vasoconstriction in the external carotid circulation. The last decade has witnessed the advent of sumatriptan and second generation triptans (e.g. zolmitriptan, rizatriptan, naratriptan), which belong to a new class of drugs, the 5-HT1B/1D/1F receptor agonists. Compared to sumatriptan, the second-generation triptans have a higher oral bioavailability and longer plasma half-life. In line with the vascular and neurogenic theories of migraine, all triptans produce selective carotid vasoconstriction (via 5-HT1B receptors) and presynaptic inhibition of the trigeminovascular inflammatory responses implicated in migraine (via 5-HT1D/5-ht1F receptors). Moreover, selective agonists at 5-HT1D (PNU-142633) and 5-ht1F (LY344864) receptors inhibit the trigeminovascular system without producing vasoconstriction. Nevertheless, PNU-142633 proved to be ineffective in the acute treatment of migraine, whilst LY344864 did show some efficacy when used in doses which interact with 5-HT1B receptors. Finally, although the triptans are effective antimigraine agents producing selective cranial vasoconstriction, efforts are being made to develop other effective antimigraine alternatives acting via the direct blockade of vasodilator mechanisms (e.g. antagonists at CGRP receptors, antagonists at 5-HT7 receptors, inhibitors of nitric oxide biosynthesis, etc). These alternatives will hopefully lead to fewer side effects. PMID:15320857

  19. Integrated Strategy for Use of Positron Emission Tomography in Nonhuman Primates to Confirm Multitarget Occupancy of Novel Psychotropic Drugs: An Example with AZD3676.

    PubMed

    Varnäs, Katarina; Juréus, Anders; Johnström, Peter; Ahlgren, Charlotte; Schött, Pär; Schou, Magnus; Gruber, Susanne; Jerning, Eva; Malmborg, Jonas; Halldin, Christer; Afzelius, Lovisa; Farde, Lars

    2016-09-01

    Positron emission tomography (PET) is widely applied in central nervous system (CNS) drug development for assessment of target engagement in vivo. As the majority of PET investigations have addressed drug interaction at a single binding site, findings of multitarget engagement have been less frequently reported and have often been inconsistent with results obtained in vitro. AZD3676 [N,N-dimethyl-7-(4-(2-(pyridin-2-yl)ethyl)piperazin-1-yl) benzofuran-2-carboxamide] is a novel combined serotonin (5-hydroxytryptamine) 5-HT1A and 5-HT1B receptor antagonist that was developed for the treatment of cognitive impairment in Alzheimer's disease. Here, we evaluated the properties of AZD3676 as a CNS drug by combining in vitro and ex vivo radioligand binding techniques, behavioral pharmacology in rodents, and PET imaging in nonhuman primates. Target engagement in the nonhuman primate brain was assessed in PET studies by determination of drug-induced occupancy using receptor-selective radioligands. AZD3676 showed preclinical properties consistent with CNS drug potential, including nanomolar receptor affinity and efficacy in rodent models of learning and memory. In PET studies of the monkey brain, AZD3676 inhibited radioligand binding in a dose-dependent manner with similar affinity at both receptors. The equally high affinity at 5-HT1A and 5-HT1B receptors as determined in vivo was not predicted from corresponding estimates obtained in vitro, suggesting more than 10-fold selectivity for 5-HT1A versus 5-HT1B receptors. These findings support the further integrated use of PET for confirmation of multitarget occupancy of CNS drugs. Importantly, earlier introduction of PET studies in nonhuman primates may reduce future development costs and the requirement for animal experiments in preclinical CNS drug development programs. PMID:27402278

  20. 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved

    PubMed Central

    2012-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) delivered over 1 week results in a sustained fall in blood pressure in the sham and deoxycorticosterone acetate (DOCA)-salt rat. We hypothesized 5-HT lowers blood pressure through direct receptor-mediated vascular relaxation. In vivo, 5-HT reduced mean arterial pressure (MAP), increased heart rate, stroke volume, cardiac index, and reduced total peripheral resistance during a 1 week infusion of 5-HT (25 µg/kg/min) in the normotensive Sprague Dawley rat. The mesenteric vasculature was chosen as an ideal candidate for the site of 5-HT receptor mediated vascular relaxation given the high percentage of cardiac output the site receives. Real-time RT-PCR demonstrated that mRNA transcripts for the 5-HT2B, 5-HT1B, and 5-HT7 receptors are present in sham and DOCA-salt superior mesenteric arteries. Immunohistochemistry and Western blot validated the presence of the 5-HT2B, 5- HT1B and 5-HT7 receptor protein in sham and DOCA-salt superior mesenteric artery. Isometric contractile force was measured in endothelium-intact superior mesenteric artery and mesenteric resistance arteries in which the contractile 5- HT2A receptor was antagonized. Maximum concentrations of BW-723C86 (5- HT2B agonist), CP 93129 (5-HT1B agonist) or LP-44 (5-HT7 agonist) did not relax the superior mesenteric artery from DOCA-salt rats vs. vehicle. Additionally, 5-HT (10–9 M to 10–5 M) did not cause relaxation in either contracted mesenteric resistance arteries or superior mesenteric arteries from normotensive Sprague- Dawley rats. Thus, although 5-HT receptors known to mediate vascular relaxation are present in the superior mesenteric artery, they are not functional, and are therefore not likely involved in a 5-HT-induced fall in total peripheral resistance and MAP. PMID:22559843

  1. miR-199a-5p inhibits monocyte/macrophage differentiation by targeting the activin A type 1B receptor gene and finally reducing C/EBPα expression.

    PubMed

    Lin, Hai-Shuang; Gong, Jia-Nan; Su, Rui; Chen, Ming-Tai; Song, Li; Shen, Chao; Wang, Fang; Ma, Yan-Ni; Zhao, Hua-Lu; Yu, Jia; Li, Wei-Wei; Huang, Li-Xia; Xu, Xin-Hua; Zhang, Jun-Wu

    2014-12-01

    miRNAs are short, noncoding RNAs that regulate expression of target genes at post-transcriptional levels and function in many important cellular processes, including differentiation, proliferation, etc. In this study, we observed down-regulation of miR-199a-5p during monocyte/macrophage differentiation of HL-60 and THP-1 cells, as well as human CD34(+) HSPCs. This down-regulation of miR-199a-5p resulted from the up-regulation of PU.1 that was demonstrated to regulate transcription of the miR-199a-2 gene negatively. Overexpression of miR-199a-5p by miR-199a-5p mimic transfection or lentivirus-mediated gene transfer significantly inhibited monocyte/macrophage differentiation of the cell lines or HSPCs. The mRNA encoding an ACVR1B was identified as a direct target of miR-199a-5p. Gradually increased ACVR1B expression level was detected during monocyte/macrophage differentiation of the leukemic cell lines and HSPCs, and knockdown of ACVR1B resulted in inhibition of monocyte/macrophage differentiation of HL-60 and THP-1 cells, which suggested that ACVR1B functions as a positive regulator of monocyte/macrophage differentiation. We demonstrated that miR-199a-5p overexpression or ACVR1B knockdown promoted proliferation of THP-1 cells through increasing phosphorylation of Rb. We also demonstrated that the down-regulation of ACVR1B reduced p-Smad2/3, which resulted in decreased expression of C/EBPα, a key regulator of monocyte/macrophage differentiation, and finally, inhibited monocyte/macrophage differentiation. PMID:25258381

  2. Human autoreactive T cells recognize CD1b and phospholipids

    PubMed Central

    Van Rhijn, Ildiko; van Berlo, Twan; Hilmenyuk, Tamara; Cheng, Tan-Yun; Wolf, Benjamin J.; Tatituri, Raju V. V.; Uldrich, Adam P.; Napolitani, Giorgio; Cerundolo, Vincenzo; Altman, John D.; Willemsen, Peter; Huang, Shouxiong; Rossjohn, Jamie; Besra, Gurdyal S.; Brenner, Michael B.; Godfrey, Dale I.; Moody, D. Branch

    2016-01-01

    In contrast with the common detection of T cells that recognize MHC, CD1a, CD1c, or CD1d proteins, CD1b autoreactive T cells have been difficult to isolate in humans. Here we report the development of polyvalent complexes of CD1b proteins and carbohydrate backbones (dextramers) and their use in identifying CD1b autoreactive T cells from human donors. Activation is mediated by αβ T-cell receptors (TCRs) binding to CD1b-phospholipid complexes, which is sufficient to activate autoreactive responses to CD1b-expressing cells. Using mass spectrometry and T-cell responses to scan through the major classes of phospholipids, we identified phosphatidylglycerol (PG) as the immunodominant lipid antigen. T cells did not discriminate the chemical differences that distinguish mammalian PG from bacterial PG. Whereas most models of T-cell recognition emphasize TCR discrimination of differing self and foreign structures, CD1b autoreactive T cells recognize lipids with dual self and foreign origin. PG is rare in the cellular membranes that carry CD1b proteins. However, bacteria and mitochondria are rich in PG, so these data point to a more general mechanism of immune detection of infection- or stress-associated lipids. PMID:26621732

  3. Identification of Bidentate Salicylic Acid Inhibitors of PTP1B.

    PubMed

    Haftchenary, Sina; Jouk, Andriana O; Aubry, Isabelle; Lewis, Andrew M; Landry, Melissa; Ball, Daniel P; Shouksmith, Andrew E; Collins, Catherine V; Tremblay, Michel L; Gunning, Patrick T

    2015-09-10

    PTP1B is a master regulator in the insulin and leptin metabolic pathways. Hyper-activated PTP1B results in insulin resistance and is viewed as a key factor in the onset of type II diabetes and obesity. Moreover, inhibition of PTP1B expression in cancer cells dramatically inhibits cell growth in vitro and in vivo. Herein, we report the computationally guided optimization of a salicylic acid-based PTP1B inhibitor 6, identifying new and more potent bidentate PTP1B inhibitors, such as 20h, which exhibited a > 4-fold improvement in activity. In CHO-IR cells, 20f, 20h, and 20j suppressed PTP1B activity and restored insulin receptor phosphorylation levels. Notably, 20f, which displayed a 5-fold selectivity for PTP1B over the closely related PTPσ protein, showed no inhibition of PTP-LAR, PRL2 A/S, MKPX, or papain. Finally, 20i and 20j displayed nanomolar inhibition of PTPσ, representing interesting lead compounds for further investigation. PMID:26396684

  4. Association study of functional polymorphisms in interleukins and interleukin receptors genes: IL1A, IL1B, IL1RN, IL6, IL6R, IL10, IL10RA and TGFB1 in schizophrenia in Polish population.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Wilkosc, Monika; Frydecka, Dorota; Groszewska, Agata; Narozna, Beata; Dmitrzak-Weglarz, Monika; Czerski, Piotr; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Leszczynska-Rodziewicz, Anna; Slopien, Agnieszka; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2015-12-01

    Schizophrenia has been associated with a large range of autoimmune diseases, with a history of any autoimmune disease being associated with a 45% increase in risk for the illness. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. In particular, increases or imbalance in cytokine before birth or during the early stages of life may affect neurodevelopment and produce vulnerability to the disease. A total of 27 polymorphisms of IL1N gene: rs1800587, rs17561; IL1B gene: rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627; IL1RN gene: rs419598, rs315952, rs9005, rs4251961; IL6 gene: rs1800795, rs1800797; IL6R gene: rs4537545, rs4845617, rs2228145, IL10 gene: rs1800896, rs1800871, rs1800872, rs1800890, rs6676671; IL10RA gene: rs2229113, rs3135932; TGF1B gene: rs1800469, rs1800470; each selected on the basis of molecular evidence for functionality, were investigated in this study. Analysis was performed on a group of 621 patients with diagnosis of schizophrenia and 531 healthy controls in Polish population. An association of rs4848306 in IL1B gene, rs4251961 in IL1RN gene, rs2228145 and rs4537545 in IL6R with schizophrenia have been observed. rs6676671 in IL10 was associated with early age of onset. Strong linkage disequilibrium was observed between analyzed polymorphisms in each gene, except of IL10RA. We observed that haplotypes composed of rs4537545 and rs2228145 in IL6R gene were associated with schizophrenia. Analyses with family history of schizophrenia, other psychiatric disorders and alcohol abuse/dependence did not show any positive findings. Further studies on larger groups along with correlation with circulating protein levels are needed. PMID:26481614

  5. Monoclonal antibodies to equine CD23 identify the low-affinity receptor for IgE on subpopulations of IgM+ and IgG1+ B-cells in horses.

    PubMed

    Wagner, Bettina; Hillegas, Julia M; Babasyan, Susanna

    2012-04-15

    CD23, also called FcεRII, is the low-affinity receptor for IgE and has first been described as a major receptor regulating IgE responses. In addition, CD23 also binds to CD21, integrins and MHC class II molecules and thus has a much wider functional role in immune regulation ranging from involvement in antigen-presentation to multiple cytokine-like functions of soluble CD23. The role of CD23 during immune responses of the horse is less well understood. Here, we expressed equine CD23 in mammalian cells using a novel IL-4 expression system. Expression resulted in high yield of recombinant IL-4/CD23 fusion protein which was purified and used for the generation of monoclonal antibodies (mAbs) to equine CD23. Seven anti-CD23 mAbs were further characterized. The expression of the low-affinity IgE receptor on equine peripheral blood mononuclear cells was analyzed by flow cytometric analysis. Cell surface staining showed that CD23 is mainly expressed by a subpopulation of equine B-cells. Only a very few equine T-cells or monocytes expressed CD23. CD23(+) B-cells were either IgM(+) or IgG1(+) cells. All CD23(+) cells were also positive for cell surface IgE staining suggesting in vivo IgE binding by the receptor. Two of the CD23 mAbs detected either the complete extracellular region of CD23 or a 22kDa cleavage product of CD23 by Western blotting. The new anti-CD23 mAbs provide valuable reagents to further analyze the roles of CD23 during immune responses of the horse in health and disease. PMID:22405681

  6. 18 CFR 1b.5 - Formal investigations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Formal investigations. 1b.5 Section 1b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.5 Formal investigations....

  7. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  8. 18 CFR 1b.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Scope. 1b.2 Section 1b.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.2 Scope. This part applies to...

  9. 18 CFR 1b.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Definitions. 1b.1 Section 1b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.1 Definitions. For purposes of this part—...

  10. 18 CFR 1b.6 - Preliminary investigations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Preliminary investigations. 1b.6 Section 1b.6 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.6 Preliminary investigations....

  11. 18 CFR 1b.21 - Enforcement hotline.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Enforcement hotline. 1b.21 Section 1b.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.21 Enforcement hotline. (a)...

  12. 18 CFR 1b.14 - Subpoenas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Subpoenas. 1b.14 Section 1b.14 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.14 Subpoenas. (a) Service of a...

  13. 18 CFR 1b.19 - Submissions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Submissions. 1b.19 Section 1b.19 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.19 Submissions. In the event...

  14. 7 CFR 1b.2 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Policy. 1b.2 Section 1b.2 Agriculture Office of the Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.2 Policy. (a) All policies and programs of the various USDA agencies shall be planned, developed, and implemented so as to achieve the goals...

  15. 7 CFR 1b.2 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Policy. 1b.2 Section 1b.2 Agriculture Office of the Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.2 Policy. (a) All policies and programs of the various USDA agencies shall be planned, developed, and implemented so as to achieve the goals...

  16. 7 CFR 1b.2 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Policy. 1b.2 Section 1b.2 Agriculture Office of the Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.2 Policy. (a) All policies and programs of the various USDA agencies shall be planned, developed, and implemented so as to achieve the goals...

  17. 7 CFR 1b.2 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Policy. 1b.2 Section 1b.2 Agriculture Office of the Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.2 Policy. (a) All policies and programs of the various USDA agencies shall be planned, developed, and implemented so as to achieve the goals...

  18. 7 CFR 1b.3 - Categorical exclusions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Categorical exclusions. 1b.3 Section 1b.3 Agriculture Office of the Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.3 Categorical exclusions. (a) The following are categories of activities which have been determined not to have a significant individual or cumulative effect on the...

  19. Suppression of Lipid Accumulation by Indole-3-Carbinol Is Associated with Increased Expression of the Aryl Hydrocarbon Receptor and CYP1B1 Proteins in Adipocytes and with Decreased Adipocyte-Stimulated Endothelial Tube Formation.

    PubMed

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2016-01-01

    This study investigated the effects of indole-3-carbinol (I3C) on adipogenesis- and angiogenesis-associated factors in mature adipocytes. The cross-talk between mature adipocytes and endothelial cells (ECs) was also explored by cultivating ECs in a conditioned medium (CM) by using I3C-treated adipocytes. The results revealed that I3C significantly inhibited triglyceride accumulation in mature adipocytes in association with significantly increased expression of AhR and CYP1B1 proteins as well as slightly decreased nuclear factor erythroid-derived factor 2-related factor 2, hormone-sensitive lipase, and glycerol-3-phosphate dehydrogenase expression by mature adipocytes. Furthermore, I3C inhibited CM-stimulated endothelial tube formation, which was accompanied by the modulated secretion of angiogenic factors in adipocytes, including vascular endothelial growth factor, interleukin-6, matrix metalloproteinases, and nitric oxide. In conclusion, I3C reduced lipid droplet accumulation in adipocytes and suppressed adipocyte-stimulated angiogenesis in ECs, suggesting that I3C is a potential therapeutic agent for treating obesity and obesity-associated disorders. PMID:27527145

  20. Suppression of Lipid Accumulation by Indole-3-Carbinol Is Associated with Increased Expression of the Aryl Hydrocarbon Receptor and CYP1B1 Proteins in Adipocytes and with Decreased Adipocyte-Stimulated Endothelial Tube Formation

    PubMed Central

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2016-01-01

    This study investigated the effects of indole-3-carbinol (I3C) on adipogenesis- and angiogenesis-associated factors in mature adipocytes. The cross-talk between mature adipocytes and endothelial cells (ECs) was also explored by cultivating ECs in a conditioned medium (CM) by using I3C-treated adipocytes. The results revealed that I3C significantly inhibited triglyceride accumulation in mature adipocytes in association with significantly increased expression of AhR and CYP1B1 proteins as well as slightly decreased nuclear factor erythroid-derived factor 2–related factor 2, hormone-sensitive lipase, and glycerol-3-phosphate dehydrogenase expression by mature adipocytes. Furthermore, I3C inhibited CM-stimulated endothelial tube formation, which was accompanied by the modulated secretion of angiogenic factors in adipocytes, including vascular endothelial growth factor, interleukin-6, matrix metalloproteinases, and nitric oxide. In conclusion, I3C reduced lipid droplet accumulation in adipocytes and suppressed adipocyte-stimulated angiogenesis in ECs, suggesting that I3C is a potential therapeutic agent for treating obesity and obesity-associated disorders. PMID:27527145

  1. The 13C4 Monoclonal Antibody That Neutralizes Shiga Toxin Type 1 (Stx1) Recognizes Three Regions on the Stx1 B Subunit and Prevents Stx1 from Binding to Its Eukaryotic Receptor Globotriaosylceramide▿

    PubMed Central

    Smith, Michael J.; Carvalho, Humberto M.; Melton-Celsa, Angela R.; O'Brien, Alison D.

    2006-01-01

    The 13C4 monoclonal antibody (MAb) recognizes the B subunit of Stx1 (StxB1) and neutralizes the cytotoxic and lethal activities of Stx1. However, this MAb does not bind to the B polypeptide of Stx2, despite the 73% amino acid sequence similarity between StxB1 and StxB2. When we compared the amino acid sequences of StxB1 and StxB2, we noted three regions of dissimilarity (amino acids 1 to 6, 25 to 32, and 54 to 61) located near each other on the crystal structure of StxB1. To identify the 13C4 epitope, we generated seven Stx1/Stx2 B chimeric polypeptides that contained one, two, or three of the dissimilar StxB1 regions. The 13C4 MAb reacted strongly with StxB1 and the triple-chimeric B subunit but not with the other chimeras. Mice immunized with the triple-chimeric B subunit survived a lethal challenge with Stx1 but not Stx2, substantiating the identified regions as the 13C4 MAb epitope and suggesting that the incorporation of this epitope into StxB2 altered sites necessary for anti-Stx2-neutralizing Ab production. Next, single amino acid substitutions were made in StxB1 to mimic Stx1d, a variant not recognized by the 13C4 MAb. The 13C4 MAb reacted strongly to StxB1 with the T1A or G25A mutations but not with the N55T change. Finally, we found that the 13C4 MAb blocked the binding of Stx1 to its receptor, globotriaosyl ceramide. Taken together, these results indicate that the 13C4 MAb prevents the interaction of Stx1 with its receptor by binding three nonlinear regions of the molecule that span receptor recognition sites on StxB1, one of which includes the essential residue 55N. PMID:17030576

  2. Pharmacological targeting of the serotonergic system for the treatment of obesity

    PubMed Central

    Garfield, Alastair S; Heisler, Lora K

    2009-01-01

    The attenuation of food intake as induced by an increase in serotonergic (5-hydroxytryptamine, 5-HT) efficacy has been a target of antiobesity pharmacotherapies. However, the induction of tolerance and/or side-effects limited the clinical utility of the earliest serotonin-related medications. With the global prevalence of obesity rising, there has been renewed interest in the manipulation of the serotonergic system as a point of pharmacological intervention. The serotonin2C receptor (5-HT2CR), serotonin1B (rodent)/serotonin1Dβ (human) receptor (5-HT1B/1DβR) and serotonin6 receptor (5-HT6R) represent the most promising serotonin receptor therapeutic targets. Canonical serotonin receptor compounds have given way to a myriad of novel receptor-selective ligands, many of which have observable anorectic effects. Here we review serotonergic compounds reducing ingestive behaviour and discuss their clinical potential for the treatment of obesity. PMID:19029184

  3. HIV-1 Tat Protein Induces PD-L1 (B7-H1) Expression on Dendritic Cells through Tumor Necrosis Factor Alpha- and Toll-Like Receptor 4-Mediated Mechanisms

    PubMed Central

    Planès, Rémi; BenMohamed, Lbachir; Leghmari, Kaoutar; Delobel, Pierre; Izopet, Jacques

    2014-01-01

    ABSTRACT Chronic human immunodeficiency virus type 1 (HIV-1) infection is associated with induction of T-cell coinhibitory pathways. However, the mechanisms by which HIV-1 induces upregulation of coinhibitory molecules remain to be fully elucidated. The aim of the present study was to determine whether and how HIV-1 Tat protein, an immunosuppressive viral factor, induces the PD-1/PD-L1 coinhibitory pathway on human dendritic cells (DCs). We found that treatment of DCs with whole HIV-1 Tat protein significantly upregulated the level of expression of PD-L1. This PD-L1 upregulation was observed in monocyte-derived dendritic cells (MoDCs) obtained from either uninfected or HIV-1-infected patients as well as in primary myeloid DCs from HIV-negative donors. In contrast, no effect on the expression of PD-L2 or PD-1 molecules was detected. The induction of PD-L1 on MoDCs by HIV-1 Tat (i) occurred in dose- and time-dependent manners, (ii) was mediated by the N-terminal 1–45 fragment of Tat, (iii) did not require direct cell-cell contact but appeared rather to be mediated by soluble factor(s), (iv) was abrogated following neutralization of tumor necrosis factor alpha (TNF-α) or blocking of Toll-like receptor 4 (TLR4), (v) was absent in TLR4-knockoout (KO) mice but could be restored following incubation with Tat-conditioned medium from wild-type DCs, (vi) impaired the capacity of MoDCs to functionally stimulate T cells, and (vii) was not reversed functionally following PD-1/PD-L1 pathway blockade, suggesting the implication of other Tat-mediated coinhibitory pathways. Our results demonstrate that HIV-1 Tat protein upregulates PD-L1 expression on MoDCs through TNF-α- and TLR4-mediated mechanisms, functionally compromising the ability of DCs to stimulate T cells. The findings offer a novel potential molecular target for the development of an anti-HIV-1 treatment. IMPORTANCE The objective of this study was to investigate the effect of human immunodeficiency virus type 1 (HIV

  4. 7 CFR 1b.2 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Policy. 1b.2 Section 1b.2 Agriculture Office of the Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.2 Policy. (a) All policies and programs of the various USDA agencies shall be planned, developed, and implemented so as to achieve the goals and to follow the procedures declared by...

  5. Serotonin regulates osteoblast proliferation and function in vitro

    PubMed Central

    Dai, S.Q.; Yu, L.P.; Shi, X.; Wu, H.; Shao, P.; Yin, G.Y.; Wei, Y.Z.

    2014-01-01

    The monoamine serotonin (5-hydroxytryptamine, 5-HT), a well-known neurotransmitter, also has important functions outside the central nervous system. The objective of this study was to investigate the role of 5-HT in the proliferation, differentiation, and function of osteoblasts in vitro. We treated rat primary calvarial osteoblasts with various concentrations of 5-HT (1 nM to 10 µM) and assessed the rate of osteoblast proliferation, expression levels of osteoblast-specific proteins and genes, and the ability to form mineralized nodules. Next, we detected which 5-HT receptor subtypes were expressed in rat osteoblasts at different stages of osteoblast differentiation. We found that 5-HT could inhibit osteoblast proliferation, differentiation, and mineralization at low concentrations, but this inhibitory effect was mitigated at relatively high concentrations. Six of the 5-HT receptor subtypes (5-HT1A, 5-HT1B, 5-HT1D, 5-HT2A, 5-HT2B, and 5-HT2C) were found to exist in rat osteoblasts. Of these, 5-HT2A and 5-HT1B receptors had the highest expression levels, at both early and late stages of differentiation. Our results indicated that 5-HT can regulate osteoblast proliferation and function in vitro. PMID:25098615

  6. Oral almotriptan: practical uses in the acute treatment of migraine.

    PubMed

    Dowson, Andrew J

    2004-05-01

    Almotriptan (Almogran, Lundbeck; Almirall Prodesfarma; Axert, Ortho-McNeil) is a novel 5-HT(1B/1D) receptor agonist (triptan) that is widely available on prescription for the acute treatment of migraine. Almotriptan has pharmacodynamic and pharmacokinetic profiles that make it suitable for use in this indication. It is a potent agonist at 5-HT(1B), (1D) and (1F) receptors, while having a low affinity for other 5-HT receptors. It is also a potent inhibitor of neurogenic inflammation. Almotriptan has a high oral bioavailability, is absorbed rapidly, has a relatively short plasma half-life and its route of elimination presents few potential problems. Placebo-controlled dose-finding studies have demonstrated that almotriptan tablets are effective and well-tolerated in the acute treatment of migraine, with a 12.5 mg dose providing the best balance between efficacy and tolerability. Large placebo-controlled studies show that the efficacy of oral almotriptan is comparable with that of the other oral triptans. In direct comparator-controlled studies, almotriptan was as effective as sumatriptan 50 and 100 mg but had a superior tolerability profile. Furthermore, the efficacy and tolerability of almotriptan is sustained in the long term following open-label administration. Meta-analyses and post hoc analyses of clinical data confirm these findings. In conclusion, almotriptan 12.5 mg is a good therapeutic choice for the symptomatic treatment of acute migraine attacks. PMID:15853532

  7. Neuronal expression and regulation of CGRP promoter activity following viral gene transfer into cultured trigeminal ganglia neurons.

    PubMed

    Durham, Paul L; Dong, Penny X; Belasco, Kevin T; Kasperski, Jeffrey; Gierasch, William W; Edvinsson, Lars; Heistad, Donald D; Faraci, Frank M; Russo, Andrew F

    2004-01-30

    We have examined the regulation of calcitonin gene-related peptide (CGRP) promoter activity in primary cultures of rat trigeminal ganglia neurons. A viral vector was used to circumvent the potential complication of examining only a small subpopulation of cells in the heterogeneous cultures. Infection with high titers of recombinant adenovirus containing 1.25 kb of the rat CGRP promoter linked to the beta-galactosidase reporter gene (AdCGRP-lacZ) yielded expression in about 50% of the CGRP-expressing neurons. The CGRP-lacZ reporter gene was preferentially expressed in neurons, with 91% co-expression with endogenous CGRP. In contrast, an adenoviral vector containing a CMV-lacZ reporter was predominantly expressed in non-neuronal cells, with only 29% co-expression with CGRP. We then asked whether the CGRP promoter in the viral vector could be regulated by serotonin receptor type 1 (5-HT(1)) agonists. Promoter activity was decreased two- to threefold by treatment with five 5-HT(1B/D) agonists, including the triptan drugs sumatriptan, eletriptan, and rizatriptan that are used for migraine treatment. As controls, CMV promoter activity was not affected, and 5-HT(1B/D) receptor antagonists blocked the repression caused by sumatriptan and eletriptan. Thus, adenoviral gene transfer can be used in trigeminal ganglia neurons for studying the mechanisms of triptan drug action on CGRP synthesis. PMID:14715155

  8. [The pharmacological basis of the serotonin system: Application to antidepressant response].

    PubMed

    David, D J; Gardier, A M

    2016-06-01

    If serotonin (5-hydroxytryptamin [5-HT]) is well known for its role in mood regulation, it also impacts numerous physiological functions at periphery. Serotonin is synthetized at the periphery into the gut by intestinal enterochromaffin cells and in the central nervous system (CNS) in the raphe nucleus from the essential amino acid tryptophan. Physiological effects of 5-HT are mediated by about 15 serotoninergic receptors grouped into seven broad families (5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, 5-HT7 receptor families). Except 5-HT3 receptor, a ligand-gated ion channels, all the others are G protein-coupled receptors. Serotonin's homeostasis involves serotoninergic autoreceptor such as 5-HT1A, 5-HT1B, 5-HT1D, the enzymatic degradation of serotonin by monoamine oxidase A (MAO-A), and a transporter (serotoninergic transporter [SERT]). In the CNS, the SERT is a key target for various antidepressant drugs such as Selective Serotonin Reuptake Inhibitors (SSRI), Serotonin Norepinephrin Reuptake Inhibitors (SNRI) and tricyclics family. However, antidepressant activity of SERT inhibitors is not directly mediated by the SERT inhibition, but a consequence of postsynaptic 5-HT receptor activation following the increase in 5-HT levels in the synaptic cleft. In pharmacology, SSRIs are defined as indirect agonist of postsynaptic receptor. Among all the 5-HT receptors, 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B and 5-HT4 receptors activation would mediate antidepressant effects. In the meanwhile, 5-HT2A, 5-HT2C, 5-HT3, 5-HT6 and 5-HT7 receptors activation would induce opposite effects. The best serotoninergic antidepressant would directly activate 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B and 5-HT4 and would block 5-HT2A, 5-HT2C, 5-HT3, 5-HT6 and 5-HT7 receptor. If the chemical synthesis of such a compound may be compromised, SERT inhibition associated with the blockade of some but not all 5-HT receptor could shorten onset of action and/or improve antidepressant efficacy on the overall

  9. Histone Demethylase Jumonji AT-rich Interactive Domain 1B (JARID1B) Controls Mammary Gland Development by Regulating Key Developmental and Lineage Specification Genes*

    PubMed Central

    Zou, Mike Ran; Cao, Jian; Liu, Zongzhi; Huh, Sung Jin; Polyak, Kornelia; Yan, Qin

    2014-01-01

    The JmjC domain-containing H3K4 histone demethylase jumonji AT-rich interactive domain 1B (JARID1B) (also known as KDM5B and PLU1) is overexpressed in breast cancer and is a potential target for breast cancer treatment. To investigate the in vivo function of JARID1B, we developed Jarid1b−/− mice and characterized their phenotypes in detail. Unlike previously reported Jarid1b−/− strains, the majority of these Jarid1b−/− mice were viable beyond embryonic and neonatal stages. This allowed us to further examine phenotypes associated with the loss of JARID1B in pubertal development and pregnancy. These Jarid1b−/− mice exhibited decreased body weight, premature mortality, decreased female fertility, and delayed mammary gland development. Related to these phenotypes, JARID1B loss decreased serum estrogen level and reduced mammary epithelial cell proliferation in early puberty. In mammary epithelial cells, JARID1B loss diminished the expression of key regulators for mammary morphogenesis and luminal lineage specification, including FOXA1 and estrogen receptor α. Mechanistically, JARID1B was required for GATA3 recruitment to the Foxa1 promoter to activate Foxa1 expression. These results indicate that JARID1B positively regulates mammary ductal development through both extrinsic and cell-autonomous mechanisms. PMID:24802759

  10. Processing TES Level-1B Data

    NASA Technical Reports Server (NTRS)

    DeBaca, Richard C.; Sarkissian, Edwin; Madatyan, Mariyetta; Shepard, Douglas; Gluck, Scott; Apolinski, Mark; McDuffie, James; Tremblay, Dennis

    2006-01-01

    TES L1B Subsystem is a computer program that performs several functions for the Tropospheric Emission Spectrometer (TES). The term "L1B" (an abbreviation of "level 1B"), refers to data, specific to the TES, on radiometric calibrated spectral radiances and their corresponding noise equivalent spectral radiances (NESRs), plus ancillary geolocation, quality, and engineering data. The functions performed by TES L1B Subsystem include shear analysis, monitoring of signal levels, detection of ice build-up, and phase correction and radiometric and spectral calibration of TES target data. Also, the program computes NESRs for target spectra, writes scientific TES level-1B data to hierarchical- data-format (HDF) files for public distribution, computes brightness temperatures, and quantifies interpixel signal variability for the purpose of first-order cloud and heterogeneous land screening by the level-2 software summarized in the immediately following article. This program uses an in-house-developed algorithm, called "NUSRT," to correct instrument line-shape factors.

  11. Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder.

    PubMed

    Mørk, A; Pehrson, A; Brennum, L T; Nielsen, S Møller; Zhong, H; Lassen, A B; Miller, S; Westrich, L; Boyle, N J; Sánchez, C; Fischer, C W; Liebenberg, N; Wegener, G; Bundgaard, C; Hogg, S; Bang-Andersen, B; Stensbøl, T Bryan

    2012-03-01

    1-[2-(2,4-Dimethylphenyl-sulfanyl)-phenyl]-piperazine (Lu AA21004) is a human (h) serotonin (5-HT)(3A) receptor antagonist (K(i) = 3.7 nM), h5-HT(7) receptor antagonist (K(i) = 19 nM), h5-HT(1B) receptor partial agonist (K(i) = 33 nM), h5-HT(1A) receptor agonist (K(i) = 15 nM), and a human 5-HT transporter (SERT) inhibitor (K(i) = 1.6 nM) (J Med Chem 54:3206-3221, 2011). Here, we confirm that Lu AA21004 is a partial h5-HT(1B) receptor agonist [EC(50) = 460 nM, intrinsic activity = 22%] using a whole-cell cAMP-based assay and demonstrate that Lu AA21004 is a rat (r) 5-HT(7) receptor antagonist (K(i) = 200 nM and IC(50) = 2080 nM). In vivo, Lu AA21004 occupies the r5-HT(1B) receptor and rSERT (ED(50) = 3.2 and 0.4 mg/kg, respectively) after subcutaneous administration and is a 5-HT(3) receptor antagonist in the Bezold-Jarisch reflex assay (ED(50) = 0.11 mg/kg s.c.). In rat microdialysis experiments, Lu AA21004 (2.5-10.0 mg/kg s.c.) increased extracellular 5-HT, dopamine, and noradrenaline in the medial prefrontal cortex and ventral hippocampus. Lu AA21004 (5 mg/kg per day for 3 days; minipump subcutaneously), corresponding to 41% rSERT occupancy, significantly increased extracellular 5-HT in the ventral hippocampus. Furthermore, the 5-HT(3) receptor antagonist, ondansetron, potentiated the increase in extracellular levels of 5-HT induced by citalopram. Lu AA21004 has antidepressant- and anxiolytic-like effects in the rat forced swim (Flinders Sensitive Line) and social interaction and conditioned fear tests (minimal effective doses: 7.8, 2.0, and 3.9 mg/kg). In conclusion, Lu AA21004 mediates its pharmacological effects via two pharmacological modalities: SERT inhibition and 5-HT receptor modulation. In vivo, this results in enhanced release of several neurotransmitters and antidepressant- and anxiolytic-like profiles at doses for which targets in addition to the SERT are occupied. The multimodal activity profile of Lu AA21004 is distinct from that of current

  12. The polysialic acid mimetics 5-nonyloxytryptamine and vinorelbine facilitate nervous system repair.

    PubMed

    Saini, Vedangana; Lutz, David; Kataria, Hardeep; Kaur, Gurcharan; Schachner, Melitta; Loers, Gabriele

    2016-01-01

    Polysialic acid (PSA) is a large negatively charged glycan mainly attached to the neural cell adhesion molecule (NCAM). Several studies have shown that it is important for correct formation of brain circuitries during development and for synaptic plasticity, learning and memory in the adult. PSA also plays a major role in nervous system regeneration following injury. As a next step for clinical translation of PSA based therapeutics, we have previously identified the small organic compounds 5-nonyloxytryptamine and vinorelbine as PSA mimetics. Activity of 5-nonyloxytryptamine and vinorelbine had been confirmed in assays with neural cells from the central and peripheral nervous system in vitro and shown to be independent of their function as serotonin receptor 5-HT1B/1D agonist or cytostatic drug, respectively. As we show here in an in vivo paradigm for spinal cord injury in mice, 5-nonyloxytryptamine and vinorelbine enhance regain of motor functions, axonal regrowth, motor neuron survival and remyelination. These data indicate that 5-nonyloxytryptamine and vinorelbine may be re-tasked from their current usage as a 5-HT1B/1D agonist or cytostatic drug to act as mimetics for PSA to stimulate regeneration after injury in the mammalian nervous system. PMID:27324620

  13. The polysialic acid mimetics 5-nonyloxytryptamine and vinorelbine facilitate nervous system repair

    PubMed Central

    Saini, Vedangana; Lutz, David; Kataria, Hardeep; Kaur, Gurcharan; Schachner, Melitta; Loers, Gabriele

    2016-01-01

    Polysialic acid (PSA) is a large negatively charged glycan mainly attached to the neural cell adhesion molecule (NCAM). Several studies have shown that it is important for correct formation of brain circuitries during development and for synaptic plasticity, learning and memory in the adult. PSA also plays a major role in nervous system regeneration following injury. As a next step for clinical translation of PSA based therapeutics, we have previously identified the small organic compounds 5-nonyloxytryptamine and vinorelbine as PSA mimetics. Activity of 5-nonyloxytryptamine and vinorelbine had been confirmed in assays with neural cells from the central and peripheral nervous system in vitro and shown to be independent of their function as serotonin receptor 5-HT1B/1D agonist or cytostatic drug, respectively. As we show here in an in vivo paradigm for spinal cord injury in mice, 5-nonyloxytryptamine and vinorelbine enhance regain of motor functions, axonal regrowth, motor neuron survival and remyelination. These data indicate that 5-nonyloxytryptamine and vinorelbine may be re-tasked from their current usage as a 5-HT1B/1D agonist or cytostatic drug to act as mimetics for PSA to stimulate regeneration after injury in the mammalian nervous system. PMID:27324620

  14. Male-Female Differences in Upregulation of Vasoconstrictor Responses in Human Cerebral Arteries

    PubMed Central

    Ahnstedt, Hilda; Cao, Lei; Krause, Diana N.; Warfvinge, Karin; Säveland, Hans; Nilsson, Ola G.; Edvinsson, Lars

    2013-01-01

    Background and purpose Male-female differences may significantly impact stroke prevention and treatment in men and women, however underlying mechanisms for sexual dimorphism in stroke are not understood. We previously found in males that cerebral ischemia upregulates contractile receptors in cerebral arteries, which is associated with lower blood flow. The present study investigates if cerebral arteries from men and women differ in cerebrovascular receptor upregulation. Experimental approach Freshly obtained human cerebral arteries were placed in organ culture, an established model for studying receptor upregulation. 5-hydroxtryptamine type 1B (5-HT1B), angiotensin II type 1 (AT1) and endothelin-1 type A and B (ETA and ETB) receptors were evaluated using wire myograph for contractile responses, real-time PCR for mRNA and immunohistochemistry for receptor expression. Key results Vascular sensitivity to angiotensin II and endothelin-1 was markedly lower in cultured cerebral arteries from women as compared to men. ETB receptor-mediated contraction occurred in male but not female arteries. Interestingly, there were similar upregulation in mRNA and expression of 5-HT1B, AT1, and ETB receptors and in local expression of Ang II after organ culture. Conclusions and Implications In spite of receptor upregulation after organ culture in both sexes, cerebral arteries from women were significantly less responsive to vasoconstrictors angiotensin II and endothelin-1 as compared to arteries from men. This suggests receptor coupling and/or signal transduction mechanisms involved in cerebrovascular contractility may be suppressed in females. This is the first study to demonstrate sex differences in the vascular function of human brain arteries. PMID:23658641

  15. Gene profiling of growth factor independence 1B gene (Gfi-1B) in leukemic cells.

    PubMed

    Koldehoff, Michael; Zakrzewski, Johannes L; Klein-Hitpass, Ludger; Beelen, Dietrich W; Elmaagacli, Ahmet H

    2008-01-01

    To investigate the molecular effects of growth factor independence 1B (Gfi-1B), a transcription factor essential for the development of hematopoietic cells and differentiation of erythroid and megakaryocytic lineages, the naturally Gfi-1B overexpressing cell line K562 was cultured in the presence of Gfi-1B target-specific small interfering RNA (siRNA). SiRNA treatment significantly knocked down Gfi-1B expression with an efficiency of nearly 90%. Analysis of the siRNA silencing protocol by colony-forming units ensured that it was not cytotoxic. Samples from Gfi-1B overexpressing cells and cells with knocked-down Gfi-1B were analyzed by oligonucleotide microarray technology and based upon rigorous statistical analysis of the data; relevant genes were chosen for confirmation by reserve transcriptase-polymerase chain reaction, including MYC/MYCBP and CDKN1A. Interestingly, transcripts within components of the signalling cascade of immune cells (PLD1, LAMP1, HSP90, IL6ST), of the tyrosine kinase pathway (TPR, RAC3) and of the transcription factors (RAC3, CEP290, JEM-1, ATR, MYC, SMC3, RARA, RBBP6) were found to be differentially expressed in Gfi-1B overexpressing cells compared to controls. Individual genes such as ZDHHC17, DMXL1, ZNF292 were found to be upregulated in Gfi-1B overexpressing cells. In addition, down-regulated transcripts showed cell signaling transcripts for several chemokine gene members including GNAL, CXCL5, GNL3L, GPR65, TMEM30, BCL11B and transcription factors (GTF2H3, ATXN3). In conclusion, several essential cell signalling factors, as well as transcriptional and post-translational regulation genes were differentially expressed in cells that overexpressed Gfi-1B compared to control cells with knocked-down Gfi-1B. Our data indicate that Gfi-1B signalling is important for commitment and maturation of hematopoietic cell populations. PMID:18224412

  16. In vitro pharmacological investigations of Sapindus trifoliatus in various migraine targets.

    PubMed

    Arulmozhi, D K; Sridhar, N; Bodhankar, S L; Veeranjaneyulu, A; Arora, S K

    2004-12-01

    Phytotherapies have offered alternative sources of therapy for migraine and gained much importance in prophylactic treatment. The aqueous extract of pericarp of fruits of Sapindus trifoliatus Linn (ST), family Sapindaceae was evaluated for its affinity for 5-HT(1B/1D) receptors in rabbit saphenous vein, alpha-adrenoceptors in rabbit aorta, GABA receptors in guinea pig ileum, 5-HT(2B) receptors in rat fundus and vanilloid receptors in guinea pig trachea. The calcium blocking effect was studied in rabbit aorta while the modulatory role of ST on platelet serotonin release was evaluated in human platelets. The aqueous extract of Sapindus trifoliatus exhibited significant 5-HT(2B) receptor inhibition and moderate platelet serotonin release inhibition. PMID:15507343

  17. Experimental Reproduction of Type 1B Chondrules

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Le, L.

    2002-01-01

    We have replicated type 1B chondrule textures and compositions with crystallization experiments in which UOC material was melted at 1400 deg.C and cooled at 5-1000 deg.C/hr using graphite crucibles in evacuated silica tubes to provide a reducing environment. Additional information is contained in the original extended abstract.

  18. Aldo-keto Reductase 1B15 (AKR1B15)

    PubMed Central

    Weber, Susanne; Salabei, Joshua K.; Möller, Gabriele; Kremmer, Elisabeth; Bhatnagar, Aruni; Adamski, Jerzy; Barski, Oleg A.

    2015-01-01

    Aldo-keto reductases (AKRs) comprise a superfamily of proteins involved in the reduction and oxidation of biogenic and xenobiotic carbonyls. In humans, at least 15 AKR superfamily members have been identified so far. One of these is a newly identified gene locus, AKR1B15, which clusters on chromosome 7 with the other human AKR1B subfamily members (i.e. AKR1B1 and AKR1B10). We show that alternative splicing of the AKR1B15 gene transcript gives rise to two protein isoforms with different N termini: AKR1B15.1 is a 316-amino acid protein with 91% amino acid identity to AKR1B10; AKR1B15.2 has a prolonged N terminus and consists of 344 amino acid residues. The two gene products differ in their expression level, subcellular localization, and activity. In contrast with other AKR enzymes, which are mostly cytosolic, AKR1B15.1 co-localizes with the mitochondria. Kinetic studies show that AKR1B15.1 is predominantly a reductive enzyme that catalyzes the reduction of androgens and estrogens with high positional selectivity (17β-hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoA conjugates and exhibits strong cofactor selectivity toward NADP(H). In accordance with its substrate spectrum, the enzyme is expressed at the highest levels in steroid-sensitive tissues, namely placenta, testis, and adipose tissue. Placental and adipose expression could be reproduced in the BeWo and SGBS cell lines, respectively. In contrast, AKR1B15.2 localizes to the cytosol and displays no enzymatic activity with the substrates tested. Collectively, these results demonstrate the existence of a novel catalytically active AKR, which is associated with mitochondria and expressed mainly in steroid-sensitive tissues. PMID:25577493

  19. JARID1B is a luminal lineage-driving oncogene in breast cancer

    PubMed Central

    Yamamoto, Shoji; Wu, Zhenhua; Russnes, Hege G.; Takagi, Shinji; Peluffo, Guillermo; Vaske, Charles; Zhao, Xi; Vollan, Hans Kristian Moen; Maruyama, Reo; Ekram, Muhammad B.; Sun, Hanfei; Kim, Jee Hyun; Carver, Kristopher; Zucca, Mattia; Feng, Jianxing; Almendro, Vanessa; Bessarabova, Marina; Rueda, Oscar M.; Nikolsky, Yuri; Caldas, Carlos; Liu, X. Shirley; Polyak, Kornelia

    2014-01-01

    SUMMARY Recurrent mutations in histone modifying enzymes imply key roles in tumorigenesis yet their functional relevance is largely unknown. Here we show that JARID1B, encoding a histone H3 lysine 4 (H3K4) demethylase, is frequently amplified and overexpressed in luminal breast tumors and a somatic mutation in a basal-like breast cancer results in the gain of unique chromatin binding and luminal expression and splicing patterns. Downregulation of JARID1B in luminal cells induces basal genes expression and growth arrest, which is rescued by TGFβ pathway inhibitors. Integrated JARID1B chromatin binding, H3K4 methylation, and expression profiles suggest a key function for JARID1B in luminal cell-specific expression programs. High luminal JARID1B activity is associated with poor outcome in patients with hormone receptor positive breast tumors. PMID:24937458

  20. The Role of PTP1B O-GlcNAcylation in Hepatic Insulin Resistance

    PubMed Central

    Zhao, Yun; Tang, Zhuqi; Shen, Aiguo; Tao, Tao; Wan, Chunhua; Zhu, Xiaohui; Huang, Jieru; Zhang, Wanlu; Xia, Nana; Wang, Suxin; Cui, Shiwei; Zhang, Dongmei

    2015-01-01

    Protein tyrosine phosphatase 1B (PTP1B), which can directly dephosphorylate both the insulin receptor and insulin receptor substrate 1 (IRS-1), thereby terminating insulin signaling, reportedly plays an important role in insulin resistance. Accumulating evidence has demonstrated that O-GlcNAc modification regulates functions of several important components of insulin signal pathway. In this study, we identified that PTP1B is modified by O-GlcNAcylation at three O-GlcNAc sites (Ser104, Ser201, and Ser386). Palmitate acid (PA) impaired the insulin signaling, indicated by decreased phosphorylation of both serine/threonine-protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK3β) following insulin administration, and upregulated PTP1B O-GlcNAcylation in HepG2 cells. Compared with the wild-type, intervention PTP1B O-GlcNAcylation by site-directed gene mutation inhibited PTP1B phosphatase activity, resulted in a higher level of phosphorylated Akt and GSK3β, recovered insulin sensitivity, and improved lipid deposition in HepG2 cells. Taken together, our research showed that O-GlcNAcylation of PTP1B can influence insulin signal transduction by modulating its own phosphatase activity, which participates in the process of hepatic insulin resistance. PMID:26402673

  1. Differential epigenetic and transcriptional response of the skeletal muscle carnitine palmitoyltransferase 1B (CPT1B) gene to lipid exposure with obesity.

    PubMed

    Maples, Jill M; Brault, Jeffrey J; Witczak, Carol A; Park, Sanghee; Hubal, Monica J; Weber, Todd M; Houmard, Joseph A; Shewchuk, Brian M

    2015-08-15

    The ability to increase fatty acid oxidation (FAO) in response to dietary lipid is impaired in the skeletal muscle of obese individuals, which is associated with a failure to coordinately upregulate genes involved with FAO. While the molecular mechanisms contributing to this metabolic inflexibility are not evident, a possible candidate is carnitine palmitoyltransferase-1B (CPT1B), which is a rate-limiting step in FAO. The present study was undertaken to determine if the differential response of skeletal muscle CPT1B gene transcription to lipid between lean and severely obese subjects is linked to epigenetic modifications (DNA methylation and histone acetylation) that impact transcriptional activation. In primary human skeletal muscle cultures the expression of CPT1B was blunted in severely obese women compared with their lean counterparts in response to lipid, which was accompanied by changes in CpG methylation, H3/H4 histone acetylation, and peroxisome proliferator-activated receptor-δ and hepatocyte nuclear factor 4α transcription factor occupancy at the CPT1B promoter. Methylation of specific CpG sites in the CPT1B promoter that correlated with CPT1B transcript level blocked the binding of the transcription factor upstream stimulatory factor, suggesting a potential causal mechanism. These findings indicate that epigenetic modifications may play important roles in the regulation of CPT1B in response to a physiologically relevant lipid mixture in human skeletal muscle, a major site of fatty acid catabolism, and that differential DNA methylation may underlie the depressed expression of CPT1B in response to lipid, contributing to the metabolic inflexibility associated with severe obesity. PMID:26058865

  2. ESA Swarm Mission - Level 1b Products

    NASA Astrophysics Data System (ADS)

    Tøffner-Clausen, Lars; Floberghagen, Rune; Mecozzi, Riccardo; Menard, Yvon

    2014-05-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which will bring new insights into the Earth system by improving our understanding of the Earth's interior and environment. The Level 1b Products of the Swarm mission contain time-series of the quality screened, calibrated, corrected, and fully geo-localized measurements of the magnetic field intensity, the magnetic field vector (provided in both instrument and Earth-fixed frames), the plasma density, temperature, and velocity. Additionally, quality screened and pre-calibrated measurements of the nongravitational accelerations are provided. Geo-localization is performed by 24- channel GPS receivers and by means of unique, three head Advanced Stellar Compasses for high-precision satellite attitude information. The Swarm Level 1b data will be provided in daily products separately for each of the three Swarm spacecrafts. This poster will present detailed lists of the contents of the Swarm Level 1b Products and brief descriptions of the processing algorithms used in the generation of these data.

  3. [Pharmacological properties of vortioxetine and its pre-clinical consequences].

    PubMed

    David, D J; Tritschler, L; Guilloux, J-P; Gardier, A M; Sanchez, C; Gaillard, R

    2016-02-01

    Selective Serotonin Reuptake Inhibitors (SSRIs) are extensively used for the treatment of major depressive disorder (MDD). SSRIs are defined as indirect receptor agonists since the activation of postsynaptic receptors is a consequence of an increase in extracellular concentrations of serotonin (5-HT) mediated by the blockade of serotonin transporter. The activation of some serotoninergic receptors (5-HT1A, post-synaptic, 5-HT1B post-synaptic, 5-HT2B, and 5-HT4), but not all (5-HT1A, pre-synaptic, 5-HT1B pre-synaptic, 5-HT2A, 5-HT2C, 5-HT3, and probably 5-HT6), induces anxiolytic/antidepressive - like effects. Targetting specifically some of them could potentially improve the onset of action and/or efficacy and/or prevent MD relapse. Vortioxetine (Brintellix, 1- [2-(2,4-dimethylphenyl-sulfanyl)-phenyl]-piperazine) is a novel multi-target antidepressant drug approved by the Food and Drug Administration (FDA) and by European Medicines Agency. Its properties are markedly different from the extensively prescribed SSRIs. Compared to the SSRIs, vortioxetine is defined as a multimodal antidepressant drug since it is not only a serotonin reuptake inhibitor, but also a 5-HT1D, 5-HT3, 5-HT7 receptor antagonist, 5-HT1B receptor partial agonist and 5-HT1A receptor agonist. This specific pharmacological profile enables vortioxetine to affect not only the serotoninergic and noradrenergic systems, but also the histaminergic, cholinergic, gamma-butyric acid (GABA) ergic and glutamatergic ones. Thus, vortioxetine not only induces antidepressant-like or anxiolytic-like activity but also improves cognitive parameters in several animal models. Indeed, vortioxetine was shown to improve working memory, episodic memory, cognitive flexibility and spatial memory in young adult rodents and also in old animal models. These specific effects of the vortioxetine are of interest considering that cognitive dysfunction is a common comorbidity to MDD. Altogether, even though this molecule still

  4. Myelin protein zero gene mutated in Charcot-Marie-Tooth type 1B patients

    SciTech Connect

    Su, Ying; Li, Lanying; Lepercq, J.; Lebo, R.V. ); Brooks, D.G.; Ravetch, J.V. ); Trofatter, J.A. )

    1993-11-15

    The autosomal dominant of Charcot-Marie-Tooth disease (CMT), whose gene is type 1B (CMT1B), has slow nerve conduction with demyelinated Schwann cells. In this study the abundant peripheral myelin protein zero (MPZ) gene, MPZ, was mapped 130 kb centromeric to the Fc receptor immunoglobulin gene cluster in band 1q22, and a major MPZ point mutation was found to cosegregate with CMT1B in one large CMT1B family. The MPZ point mutation in 18 of 18 related CMT1B pedigree 1 patients converts a positively charged lysine in codon 96 to a negatively charged glutamate. The same MPZ locus cosegregates with the CMT1B disease gene in a second CMT1B family [total multipoint logarithm of odds (lod) = 11.4 at [theta] = 0.00] with a splice junction mutation. Both mutations occur in MPZ protein regions otherwise conserved identically in human, rat, and cow since these species diverged 100 million years ago. MPZ protein, expressed exclusively in myelinated peripheral nerve Schwann cells, constitutes >50% of myelin protein. These mutations are anticipated to disrupt homophilic MPZ binding and result in CMT1B peripheral nerve demyelination.

  5. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome

    PubMed Central

    Krishnan, Navasona; Krishnan, Keerthi; Connors, Christopher R.; Choy, Meng S.; Page, Rebecca; Peti, Wolfgang; Van Aelst, Linda; Shea, Stephen D.; Tonks, Nicholas K.

    2015-01-01

    The X-linked neurological disorder Rett syndrome (RTT) presents with autistic features and is caused primarily by mutations in a transcriptional regulator, methyl CpG–binding protein 2 (MECP2). Current treatment options for RTT are limited to alleviating some neurological symptoms; hence, more effective therapeutic strategies are needed. We identified the protein tyrosine phosphatase PTP1B as a therapeutic candidate for treatment of RTT. We demonstrated that the PTPN1 gene, which encodes PTP1B, was a target of MECP2 and that disruption of MECP2 function was associated with increased levels of PTP1B in RTT models. Pharmacological inhibition of PTP1B ameliorated the effects of MECP2 disruption in mouse models of RTT, including improved survival in young male (Mecp2–/y) mice and improved behavior in female heterozygous (Mecp2–/+) mice. We demonstrated that PTP1B was a negative regulator of tyrosine phosphorylation of the tyrosine kinase TRKB, the receptor for brain-derived neurotrophic factor (BDNF). Therefore, the elevated PTP1B that accompanies disruption of MECP2 function in RTT represents a barrier to BDNF signaling. Inhibition of PTP1B led to increased tyrosine phosphorylation of TRKB in the brain, which would augment BDNF signaling. This study presents PTP1B as a mechanism-based therapeutic target for RTT, validating a unique strategy for treating the disease by modifying signal transduction pathways with small-molecule drugs. PMID:26214522

  6. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome.

    PubMed

    Krishnan, Navasona; Krishnan, Keerthi; Connors, Christopher R; Choy, Meng S; Page, Rebecca; Peti, Wolfgang; Van Aelst, Linda; Shea, Stephen D; Tonks, Nicholas K

    2015-08-01

    The X-linked neurological disorder Rett syndrome (RTT) presents with autistic features and is caused primarily by mutations in a transcriptional regulator, methyl CpG-binding protein 2 (MECP2). Current treatment options for RTT are limited to alleviating some neurological symptoms; hence, more effective therapeutic strategies are needed. We identified the protein tyrosine phosphatase PTP1B as a therapeutic candidate for treatment of RTT. We demonstrated that the PTPN1 gene, which encodes PTP1B, was a target of MECP2 and that disruption of MECP2 function was associated with increased levels of PTP1B in RTT models. Pharmacological inhibition of PTP1B ameliorated the effects of MECP2 disruption in mouse models of RTT, including improved survival in young male (Mecp2-/y) mice and improved behavior in female heterozygous (Mecp2-/+) mice. We demonstrated that PTP1B was a negative regulator of tyrosine phosphorylation of the tyrosine kinase TRKB, the receptor for brain-derived neurotrophic factor (BDNF). Therefore, the elevated PTP1B that accompanies disruption of MECP2 function in RTT represents a barrier to BDNF signaling. Inhibition of PTP1B led to increased tyrosine phosphorylation of TRKB in the brain, which would augment BDNF signaling. This study presents PTP1B as a mechanism-based therapeutic target for RTT, validating a unique strategy for treating the disease by modifying signal transduction pathways with small-molecule drugs. PMID:26214522

  7. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway

    PubMed Central

    Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan

    2016-01-01

    Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised. PMID:27052191

  8. B-1B excels in conventional role

    SciTech Connect

    Scott, W.B.

    1992-07-01

    A report is presented of an observational flight performed in a USAF B-1B to better understand the operational aspects of the aircraft's new conventional bombing mission as an integral element of a multiaircraft tactical strike package. The basic flight plan consisted of a standard takeoff and climb, cruising to the training area at 22,000 ft, descending for a 400 ft low-level run, making two simulated bomb drops, and climbing back to 25,000 ft for the return to base. Attention is given the new/enhanced avionics, the ALQ-161 defensive electronic warfare system and ripple-release Mk. 82 bombing procedures.

  9. Histamine may contribute to vortioxetine's procognitive effects; possibly through an orexigenic mechanism.

    PubMed

    Smagin, Gennady N; Song, Dekun; Budac, David P; Waller, Jessica A; Li, Yan; Pehrson, Alan L; Sánchez, Connie

    2016-07-01

    Vortioxetine is a novel multimodal antidepressant that acts as a serotonin (5-HT)3, 5-HT7, and 5-HT1D receptor antagonist; 5-HT1B receptor partial agonist; 5-HT1A receptor agonist; and 5-HT transporter inhibitor in vitro. In preclinical and clinical studies vortioxetine demonstrates positive effects on cognitive dysfunction. Vortioxetine's effect on cognitive function likely involves the modulation of several neurotransmitter systems. Acute and chronic administration of vortioxetine resulted in changes in histamine concentrations in microdialysates collected from the rat prefrontal cortex and ventral hippocampus. Based on these results and a literature review of the current understanding of the interaction between the histaminergic and serotonergic systems and the role of histamine on cognitive function, we hypothesize that vortioxetine through an activation of the orexinergic system stimulates the tuberomammilary nucleus and enhances histaminergic neurotransmission, which contributes to vortioxetine's positive effects on cognitive function. PMID:26945513

  10. HTR1B and HTR2C in autism spectrum disorders in Brazilian families.

    PubMed

    Orabona, G M; Griesi-Oliveira, K; Vadasz, E; Bulcão, V L S; Takahashi, V N V O; Moreira, E S; Furia-Silva, M; Ros-Melo, A M S; Dourado, F; Matioli, S R; Matioli, R; Otto, P; Passos-Bueno, M R

    2009-01-23

    Autism spectrum disorders (ASD) is a group of behaviorally defined neurodevelopmental disabilities characterized by multiple genetic etiologies and a complex presentation. Several studies suggest the involvement of the serotonin system in the development of ASD, but only few have investigated serotonin receptors. We have performed a case-control and a family-based study with 9 polymorphisms mapped to two serotonin receptor genes (HTR1B and HTR2C) in 252 Brazilian male ASD patients of European ancestry. These analyses showed evidence of undertransmission of the HTR1B haplotypes containing alleles -161G and -261A at HTR1B gene to ASD (P=0.003), but no involvement of HTR2C to the predisposition to this disease. Considering the relatively low level of statistical significance and the power of our sample, further studies are required to confirm the association of these serotonin-related genes and ASD. PMID:19038234

  11. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity.

    PubMed

    Liu, Peihong; Du, Yongli; Song, Lianhua; Shen, Jingkang; Li, Qunyi

    2016-08-01

    Protein tyrosine phosphatase 1B (PTP1B) as a key negative regulator of both insulin and leptin receptor pathways has been an attractive therapeutic target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. With the goal of enhancing potency and selectivity of the PTP1B inhibitors, a series of methyl salicylate derivatives as ABC type PTP1B inhibitors (P1-P7) were discovered. More importantly, compound P6 exhibited high potent inhibitory activity (IC50 = 50 nM) for PTP1B with 15-fold selectivity over T-cell PTPase (TCPTP). Further studies on cellular activities revealed that compound P6 could enhance insulin-mediated insulin receptor β (IRβ) phosphorylation and insulin-stimulated glucose uptake. PMID:27123900

  12. Protein Tyrosine Phosphatase-1B Negatively Impacts Host Defense against Pseudomonas aeruginosa Infection.

    PubMed

    Yue, Lei; Xie, Zhongping; Li, Hua; Pang, Zheng; Junkins, Robert D; Tremblay, Michel L; Chen, Xiaochun; Lin, Tong-Jun

    2016-05-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in immune-compromised individuals. Mechanisms governing immune responses to P. aeruginosa infection remain incompletely defined. Herein, we demonstrate that protein tyrosine phosphatase-1B (PTP1B) is a critical negative regulator in P. aeruginosa infection. PTP1B-deficient mice display greatly enhanced bacterial clearance and reduced disease scores, which are accompanied by increased neutrophil infiltration and cytokine production. Interestingly, PTP1B deficiency mainly up-regulates the production of interferon-stimulated response elements-regulated cytokines and chemokines, including chemokine ligand 5 (regulated on activation normal T cell expressed and secreted), CXCL10 (interferon γ-inducible protein 10), and interferon-β production. Further studies reveal that PTP1B deficiency leads to increased interferon regulatory factor 7 (IRF7) expression and activation. These findings demonstrate a novel regulatory mechanism of the immune response to P. aeruginosa infection through PTP1B-IRF7 interaction. This novel PTP1B-IRF7-interferon-stimulated response elements pathway may have broader implications in Toll-like receptor-mediated innate immunity. PMID:27105736

  13. Skylab Saturn 1B flight manual

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A Saturn 1B Flight Manual provides launch vehicle systems descriptions and predicted performance data for the Skylab missions. Vehicle SL-2 (SA-206) is the baseline for this manual; but, as a result of the great similarity, the material is representative of SL-3 and SL-4 launch vehicles, also. The Flight Manual is not a control document but is intended primarily as an aid to astronauts who are training for Skylab missions. In order to provide a comprehensive reference for that purpose, the manual also contains descriptions of the ground support interfaces, prelaunch operations, and emergency procedures. Mission variables and constraints are summarized, and mission control monitoring and data flow during launch preparation and flight are discussed.

  14. Pharmacologically distinct phenotypes of α1B-adrenoceptors: variation in binding and functional affinities for antagonists

    PubMed Central

    Yoshiki, Hatsumi; Uwada, Junsuke; Anisuzzaman, Abu Syed Md; Umada, Hidenori; Hayashi, Ryoji; Kainoh, Mie; Masuoka, Takayoshi; Nishio, Matomo; Muramatsu, Ikunobu

    2014-01-01

    Background and Purpose The pharmacological properties of particular receptors have recently been suggested to vary under different conditions. We compared the pharmacological properties of the α1B-adrenoceptor subtype in various tissue preparations and under various conditions. Experimental Approach [3H]-prazosin binding to α1B-adrenoceptors in rat liver (segments, dispersed hepatocytes and homogenates) was assessed and the pharmacological profiles were compared with the functional and binding profiles in rat carotid artery and recombinant α1B-adrenoceptors. Key Results In association and saturation-binding experiments with rat liver, binding affinity for [3H]-prazosin varied significantly between preparations (KD value approximately ten times higher in segments than in homogenates). The binding profile for various drugs in liver segments also deviated from the representative α1B-adrenoceptor profile observed in liver homogenates and recombinant receptors. L-765,314 and ALS-77, selective antagonists of α1B-adrenoceptors, showed high binding and antagonist affinities in liver homogenates and recombinant α1B-adrenoceptors. However, binding affinities for both ligands in the segments of rat liver and carotid artery were 10 times lower, and the antagonist potencies in α1B-adrenoceptor-mediated contractions of carotid artery were more than 100 times lower than the representative α1B-adrenoceptor profile. Conclusions and Implications In contrast to the consistent profile of recombinant α1B-adrenoceptors, the pharmacological profile of native α1B-adrenoceptors of rat liver and carotid artery varied markedly under various receptor environments, showing significantly different binding properties between intact tissues and homogenates, and dissociation between functional and binding affinities. In addition to conventional ‘subtype’ characterization, ‘phenotype’ pharmacology must be considered in native receptor evaluations in vivo and in future

  15. MISR Level 1A CCD, 1B1, 1B2, and Browse Products

    Atmospheric Science Data Center

    2013-04-01

    ... Mode L1B2 data processing. Added ProductVersion Attribute to metadata of all products. New ancillary files: ... and AN data, as well as Band-to-Band transform fix. ROI Image Matching improvements to blunder detection algorithm and to Image Coordinate Correction. New ancillary files: ...

  16. Behavioral characterization of serotonergic activation in the flatworm Planaria.

    PubMed

    Farrell, Martilias S; Gilmore, Kirsti; Raffa, Robert B; Walker, Ellen A

    2008-05-01

    Serotonin (5-hydroxytryptamine, 5-HT) receptors have been identified in Planaria, a model used for studying the pharmacology of behavioral phenomena. This study characterized the behavioral and locomotor effects of 5-HT, a 5-HT1A agonist, a 5-HT1B/2C agonist, and a 5-HT1A antagonist to examine the role of 5-HT receptor activation in this species. Planarians were video recorded individually in a clear plastic cube containing drug solution or vehicle. To quantify locomotor velocity (pLMV), planarians were placed individually into a dish containing drug solution or vehicle and the rate of gridline crossings was recorded. For the antagonist experiments, four conditions were studied: water alone, agonist alone, antagonist alone, and agonist plus antagonist. The decrease in pLMV induced by the5-HT1A agonist (8-OH-DPAT), and the 5-HT1B/2C agonist (mCPP), was antagonized by pretreatment with the 5-HT1A antagonist (WAY-100635) at a dose that had no effect of its own on pLMV. At a higher concentration of WAY-100635, further decreases in pLMV induced by 8-OH-DPAT were observed. Each agonist produced increased occurrences of 'C-like position' and 'screw-like hyperkinesia', 5-HT and mCPP produced 'writhing', and only mCPP produced a significant increase in duration of 'headswing' behavior. The results demonstrate that the 5-HT1A receptor identified in Planaria mediates behavioral responses to 5-HT receptor ligands, supporting the notion that planarians possess functional 5-HT receptors and might serve as a simple model for their study. PMID:18469535

  17. The efficacy of vortioxetine for the treatment of major depressive disorder.

    PubMed

    Dhir, Ashish; Sarvaiya, Jayrajsinh

    2014-12-01

    Vortioxetine (Lu AA21004; Brintellix(®)) has received approval from various international regulatory agencies for the treatment of major depression. The drug molecule has a multimodal mechanism of action that projects it as a unique molecule for the treatment of major depression. These mechanisms include property to inhibit serotonin reuptake via inhibiting serotonin transporters and acting on multiple serotonin receptor subtypes. Vortioxetine is an agonist of 5-HT1A, a partial agonist of 5-HT1B and an antagonist of 5-HT1D, 5-HT3 and 5-HT7 serotoninergic receptors. The molecule has been found to be effective and well-tolerable to be administered in humans for the treatment of major depression. Precautions should be exercised when vortioxetine is prescribed with cytochrome P450 inducers and inhibitors. This review attempts to compile the efficacy profile of vortioxetine in different clinical trials and the results are compared with other standard antidepressants. PMID:25418918

  18. The Effect of Hydrophobic Monoamines on Acid-Sensing Ion Channels ASIC1B

    PubMed Central

    Nagaeva, E. I.; Potapieva, N. N.; Tikhonov, D. B.

    2015-01-01

    Acid-sensing ion channels (ASICs) are widely distributed in both the central and peripheral nervous systems of vertebrates. The pharmacology of these receptors remains poorly investigated, while the search for new ASIC modulators is very important. Recently, we found that some monoamines, which are blockers of NMDA receptors, inhibit and/or potentiate acid-sensing ion channels, depending on the subunit composition of the channels. The effect of 9-aminoacridine, IEM-1921, IEM-2117, and memantine both on native receptors and on recombinant ASIC1a, ASIC2a, and ASIC3 homomers was studied. In the present study, we have investigated the effect of these four compounds on homomeric ASIC1b channels. Experiments were performed on recombinant receptors expressed in CHO cells using the whole-cell patch clamp technique. Only two compounds, 9-aminoacridine and memantine, inhibited ASIC1b channels. IEM-1921 and IEM-2117 were inactive even at a 1000 μM concentration. In most aspects, the effect of the compounds on ASIC1b was similar to their effect on ASIC1a. The distinguishing feature of homomeric ASIC1b channels is a steep activation-dependence, indicating cooperative activation by protons. In our experiments, the curve of the concentration dependence of ASIC1b inhibition by 9-aminoacridine also had a slope (Hill coefficient) of 3.8, unlike ASIC1a homomers, for which the Hill coefficient was close to 1. This finding indicates that the inhibitory effect of 9-aminoacridine is associated with changes in the activation properties of acid-sensing ion channels. PMID:26085950

  19. Qa-1(b)-dependent modulation of dendritic cell and NK cell cross-talk in vivo.

    PubMed

    Colmenero, Paula; Zhang, Angela L; Qian, Ting; Lu, Linrong; Cantor, Harvey; Söderström, Kalle; Engleman, Edgar G

    2007-10-01

    Dendritic cells (DC) trigger activation and IFN-gamma release by NK cells in lymphoid tissues, a process important for the polarization of Th1 responses. Little is known about the molecular signals that regulate DC-induced NK cell IFN-gamma synthesis. In this study, we analyzed whether the interaction between Qa-1(b) expressed on DC and its CD94/NKG2A receptor on NK cells affects this process. Activation of DC using CpG-oligodeoxynucleotides in Qa-1(b)-deficient mice, or transfer of CpG-oligodeoxynucleotide-activated Qa-1(b)-deficient DC into wild-type mice, resulted in dramatically increased IFN-gamma production by NK cells, as compared with that induced by Qa-1(b)-expressing DC. Masking the CD94/NKG2A inhibitory receptor on NK cells in wild-type mice similarly enhanced the IFN-gamma response of these cells to Qa-1(b)-expressing DC. Furthermore, NK cells from CD94/NKG2A-deficient mice displayed higher IFN-gamma production upon DC stimulation. These results demonstrate that Qa-1(b) is critically involved in regulating IFN-gamma synthesis by NK cells in vivo through its interaction with CD94/NKG2A inhibitory receptors. This receptor-ligand interaction may be essential to prevent unabated cytokine production by NK cells during an inflammatory response. PMID:17878358

  20. Functional properties of Claramine: a novel PTP1B inhibitor and insulin-mimetic compound.

    PubMed

    Qin, Zhaohong; Pandey, Nihar R; Zhou, Xun; Stewart, Chloe A; Hari, Aswin; Huang, Hua; Stewart, Alexandre F R; Brunel, Jean Michel; Chen, Hsiao-Huei

    2015-02-27

    Protein tyrosine phosphatase 1B (PTP1B) inhibits insulin signaling, interfering with its control of glucose homeostasis and metabolism. PTP1B activity is elevated in obesity and type 2 diabetes and is a major cause of insulin resistance. Trodusquemine (MSI-1436) is a "first-in-class" highly selective inhibitor of PTP1B that can cross the blood-brain barrier to suppress feeding and promote insulin sensitivity and glycemic control. Trodusquemine is a naturally occurring cholestane that can be purified from the liver of the dogfish shark, Squalus acanthias, but it can also be manufactured synthetically by a fairly laborious process that requires several weeks. Here, we tested a novel easily and rapidly (2 days) synthesized polyaminosteroid derivative (Claramine) containing a spermino group similar to Trodusquemine for its ability to inhibit PTP1B. Like Trodusquemine, Claramine displayed selective inhibition of PTP1B but not its closest related phosphatase TC-PTP. In cultured neuronal cells, Claramine and Trodusquemine both activated key components of insulin signaling, with increased phosphorylation of insulin receptor-β (IRβ), Akt and GSK3β. Intraperitoneal administration of Claramine or Trodusquemine effectively restored glycemic control in diabetic mice as determined by glucose and insulin tolerance tests. A single intraperitoneal dose of Claramine, like an equivalent dose of Trodusquemine, suppressed feeding and caused weight loss without increasing energy expenditure. In summary, Claramine is an alternative more easily manufactured compound for the treatment of type II diabetes. PMID:25623533

  1. Macrosomia, obesity, and macrocephaly as first clinical presentation of PHP1b caused by STX16 deletion.

    PubMed

    de Lange, Iris M; Verrijn Stuart, Annemarie A; van der Luijt, Rob B; Ploos van Amstel, Hans Kristian; van Haelst, Mieke M

    2016-09-01

    Pseudohypoparathyroidism (PHP) is a genetic disorder with resistance to parathyroid hormone (PTH) as most important feature. Main subtypes of the disease are pseudohypoparathyroidism 1b (PHP1b) and pseudohypoparathyroidism 1a (PHP1a). PHP1b is characterized by PTH resistance of the renal cortex due to reduced activity of the stimulatory G protein α subunit (Gsα) of the PTH receptor. In addition to resistance to PTH, PHP1a patients also lack sensitivity for other hormones that signal their actions through G protein-coupled receptors and display physical features of Albright hereditary osteodystrophy (AHO), which is not classically seen in PHP1b patients. PHP1a is caused by heterozygous loss-of-function mutations in maternally inherited GNAS exons 1-13, which encode Gsα. PHP1b is often caused by deletion of the STX16 gene, which is thought to have an important role in controlling the methylation and thus imprinting at part of the GNAS locus. Here we present a patient with PHP1b caused by the previously described recurrent 3-kb STX16 deletion. The patient's first symptoms were macrosomia, early onset obesity, and macrocephaly. Since this is an atypical but previously described rare presentation of PHP1b, we reemphasize STX16 deletions and PHP1b as a rare cause for early onset obesity and macrosomia. © 2016 Wiley Periodicals, Inc. PMID:27338644

  2. Serotonin antagonists fail to alter MDMA self-administration in rats.

    PubMed

    Schenk, Susan; Foote, Jason; Aronsen, Dane; Bukholt, Natasha; Highgate, Quenten; Van de Wetering, Ross; Webster, Jeremy

    2016-09-01

    Acute exposure to ±3,4-methylenedioxymethamphetamine (MDMA) preferentially increases release of serotonin (5-HT), and a role of 5-HT in many of the behavioral effects of acute exposure to MDMA has been demonstrated. A role of 5-HT in MDMA self-administration in rats has not, however, been adequately determined. Therefore, the present study measured the effect of pharmacological manipulation of some 5-HT receptor subtypes on self-administration of MDMA. Rats received extensive experience with self-administered MDMA prior to tests with 5-HT ligands. Doses of the 5-HT1A antagonist, WAY 100635 (0.1-1.0mg/kg), 5-HT1B antagonist, GR 127935 (1.0-3.0mg/kg), and the 5-HT2A antagonist, ketanserin (1.0-3.0mg/kg) that have previously been shown to decrease self-administration of other psychostimulants and that decreased MDMA-produced hyperactivity in the present study did not alter MDMA self-administration. Experimenter-administered injections of MDMA (10.0mg/kg, ip) reinstated extinguished drug-taking behavior, but this also was not decreased by any of the antagonists. In contrast, both WAY 100635 and ketanserin, but not GR 127935, decreased cocaine-produced drug seeking in rats that had been trained to self-administered cocaine. The 5-HT1A agonist, 8-OH-DPAT (0.1-1.0mg/kg), but not the 5-HT1B/1A agonist, RU 24969 (0.3-3.0mg/kg), decreased drug-seeking produced by the reintroduction of a light stimulus that had been paired with self-administered MDMA infusions. These findings suggest a limited role of activation of 5-HT1A, 5-HT1B or 5-HT2 receptor mechanisms in MDMA self-administration or in MDMA-produced drug-seeking following extinction. The data suggest, however, that 5-HT1A agonists inhibit cue-induced drug-seeking following extinction of MDMA self-administration and might, therefore, be useful adjuncts to therapies to limit relapse to MDMA use. PMID:27264435

  3. Altered Entrainment to the Day/Night Cycle Attenuates the Daily Rise in Circulating Corticosterone in the Mouse

    PubMed Central

    Sollars, Patricia J.; Weiser, Michael J.; Kudwa, Andrea E.; Bramley, Jayne R.; Ogilvie, Malcolm D.; Spencer, Robert L.; Handa, Robert J.; Pickard, Gary E.

    2014-01-01

    The suprachiasmatic nucleus (SCN) is a circadian oscillator entrained to the day/night cycle via input from the retina. Serotonin (5-HT) afferents to the SCN modulate retinal signals via activation of 5-HT1B receptors, decreasing responsiveness to light. Consequently, 5-HT1B receptor knockout (KO) mice entrain to the day/night cycle with delayed activity onsets. Since circulating corticosterone levels exhibit a robust daily rhythm peaking around activity onset, we asked whether delayed entrainment of activity onsets affects rhythmic corticosterone secretion. Wheel-running activity and plasma corticosterone were monitored in mice housed under several different lighting regimens. Both duration of the light∶dark cycle (T cycle) and the duration of light within that cycle was altered. 5-HT1B KO mice that entrained to a 9.5L:13.5D (short day in a T = 23 h) cycle with activity onsets delayed more than 4 h after light offset exhibited a corticosterone rhythm in phase with activity rhythms but reduced 50% in amplitude compared to animals that initiated daily activity <4 h after light offset. Wild type mice in 8L:14D (short day in a T = 22 h) conditions with highly delayed activity onsets also exhibited a 50% reduction in peak plasma corticosterone levels. Exogenous adrenocorticotropin (ACTH) stimulation in animals exhibiting highly delayed entrainment suggested that the endogenous rhythm of adrenal responsiveness to ACTH remained aligned with SCN-driven behavioral activity. Circadian clock gene expression in the adrenal cortex of these same animals suggested that the adrenal circadian clock was also aligned with SCN-driven behavior. Under T cycles <24 h, altered circadian entrainment to short day (winter-like) conditions, manifest as long delays in activity onset after light offset, severely reduces the amplitude of the diurnal rhythm of plasma corticosterone. Such a pronounced reduction in the glucocorticoid rhythm may alter rhythmic gene expression in the

  4. Practical route to the left wing of CTX1B and total syntheses of CTX1B and 54-deoxyCTX1B.

    PubMed

    Yamashita, Shuji; Takeuchi, Katsutoshi; Koyama, Takuya; Inoue, Masayuki; Hayashi, Yujiro; Hirama, Masahiro

    2015-02-01

    Ciguatoxins, the principal causative agents of ciguatera seafood poisoning, are extremely large polycyclic ethers. We report herein a reliable route for constructing the left wing of CTX1B, which possesses the acid/base/oxidant-sensitive bisallylic ether moiety, by a 6-exo radical cyclization/ring-closing metathesis strategy. This new route enabled us to achieve the second-generation total synthesis of CTX1B and the first synthesis of 54-deoxyCTX1B. PMID:25529606

  5. Hydroxysteroid sulfotransferase 2B1b expression and localization in normal human brain

    PubMed Central

    Salman, Emily D.; Faye-Petersen, Ona; Falany, Charles N.

    2012-01-01

    Steroid sulfonation in the human brain has not been well characterized. The major sulfotransferase (SULT) isoforms that conjugate steroids in humans are SULT1E1, SULT2A1, and SULT2B1b. SULT2B1b catalyzes the sulfonation of 3β-hydroxysteroids, including neurosteroids dehydroepiandrosterone and pregnenolone, as well as cholesterol and several hydroxycholesterols. SULT2B1b mRNA and protein expression were detected in adult and fetal human brain sections, whereas neither mRNA, nor protein expression were identified for SULT1E1 or SULT2A1. Using immunohistochemical analysis, SULT2B1b expression was detected in neurons and oligodendrocytes in adult brain and in epithelial tissues in 28-week-old fetal brain. Sulfonation of cholesterol, oxysterols, and neurosteroids in the brain is apparently catalyzed by SULT2B1b since expression of neither SULT2A1 nor SULT1E1 was detected in human brain sections. SULT2B1b mRNA and protein were also detected in human U373-MG glioblastoma cells. Both mRNA and protein expression of liver X receptor (LXR)-β, but not LXR-α, were detected in U373-MG cells, and LXR-β activation resulted in a decrease in SULT2B1b protein expression. Since hydroxycholesterols are important physiological LXR activators, this suggests a role for regulation of sterol metabolism by LXR and SULT2B1b. Therefore, elucidating key enzymes in the metabolism of cholesterol and neurosteroids could help define the properties of steroid conjugation in the human brain. PMID:24683427

  6. 18 CFR 1b.11 - Limitation on participation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Limitation on participation. 1b.11 Section 1b.11 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.11 Limitation...

  7. 18 CFR 1b.11 - Limitation on participation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Limitation on participation. 1b.11 Section 1b.11 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.11 Limitation...

  8. 18 CFR 1b.8 - Requests for Commission investigations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Requests for Commission investigations. 1b.8 Section 1b.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.8 Requests for...

  9. 18 CFR 1b.4 - Types of investigations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Types of investigations. 1b.4 Section 1b.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.4 Types of...

  10. 18 CFR 1b.7 - Procedure after investigation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Procedure after investigation. 1b.7 Section 1b.7 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.7 Procedure after...

  11. 18 CFR 1b.9 - Confidentiality of investigations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Freedom of Information Act disclosure are set forth in 18 CFR part 3b and § 1b.20. A request for... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Confidentiality of investigations. 1b.9 Section 1b.9 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...

  12. 18 CFR 1b.10 - By whom conducted.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false By whom conducted. 1b.10 Section 1b.10 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.10 By whom conducted....

  13. 18 CFR 1b.3 - Scope of investigations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Scope of investigations. 1b.3 Section 1b.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.3 Scope of investigations....

  14. 18 CFR 1b.18 - Right to submit statements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Right to submit statements. 1b.18 Section 1b.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.18 Right to...

  15. 18 CFR 1b.18 - Right to submit statements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Right to submit statements. 1b.18 Section 1b.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.18 Right to...

  16. 18 CFR 1b.18 - Right to submit statements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Right to submit statements. 1b.18 Section 1b.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.18 Right to...

  17. 18 CFR 1b.18 - Right to submit statements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Right to submit statements. 1b.18 Section 1b.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.18 Right to...

  18. 18 CFR 1b.4 - Types of investigations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Types of investigations. 1b.4 Section 1b.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.4 Types of...

  19. 18 CFR 1b.4 - Types of investigations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Types of investigations. 1b.4 Section 1b.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.4 Types of...

  20. 18 CFR 1b.4 - Types of investigations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Types of investigations. 1b.4 Section 1b.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.4 Types of...

  1. 18 CFR 1b.4 - Types of investigations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Types of investigations. 1b.4 Section 1b.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.4 Types of...

  2. Molecular characterization of a gilthead sea bream (Sparus aurata) muscle tissue cDNA for carnitine palmitoyltransferase 1B (CPT1B).

    PubMed

    Boukouvala, Evridiki; Leaver, Michael J; Favre-Krey, Laurence; Theodoridou, Maria; Krey, Grigorios

    2010-10-01

    Understanding the control of piscine fatty acid metabolism is important for determining the nutritional requirements of fish, and hence for the production of optimal aquaculture diets. The regulation and expression of carnitine palmitoyltransferase 1 (CPT1; EC No 2.3.1.21) are critical processes in the control of fatty acid metabolism, and here we report a cDNA from gilthead sea bream (Sparus aurata) which encodes a protein with high identity to vertebrate CPT1. This sea bream CPT1 mRNA is predominantly expressed in skeletal and cardiac muscle, with little expression in other tissues. Phylogenetic analysis of other vertebrate CPT1 sequences show that fish genomes contain a single gene related to mammalian CPT1B, and a further two multi-gene families related to mammalian CPT1A. Genes related to mammalian CPT1C are absent in fish. Therefore, based on both functional and evolutionary orthology to mammalian CPT1B, the sea bream CPT1 reported here is a CPT1B isoform. Sea bream CPT1B mRNA expression progressively decreases in heart and muscle up to 12h after last feeding, but returns to initial, non-fasted levels after 72h. In contrast, in liver non-fasted expression is low, but strongly increases at 24 and 72h after last feeding. In white muscle and liver, CPT1B mRNA expression is highly correlated with the expression of peroxisomal proliferator-activated receptor beta (PPARbeta). Thus fatty acid metabolism by CPT1B and its control by PPARs are similar in fish and mammals, but multiple genes for CPT1A-like proteins in fish also suggest different and more complex pathways of lipid utilisation than in mammals. PMID:20601065

  3. Multiple Intravenous Infusions Phase 1b

    PubMed Central

    Cassano-Piché, A; Fan, M; Sabovitch, S; Masino, C; Easty, AC

    2012-01-01

    Background Minimal research has been conducted into the potential patient safety issues related to administering multiple intravenous (IV) infusions to a single patient. Previous research has highlighted that there are a number of related safety risks. In Phase 1a of this study, an analysis of 2 national incident-reporting databases (Institute for Safe Medical Practices Canada and United States Food and Drug Administration MAUDE) found that a high percentage of incidents associated with the administration of multiple IV infusions resulted in patient harm. Objectives The primary objectives of Phase 1b of this study were to identify safety issues with the potential to cause patient harm stemming from the administration of multiple IV infusions; and to identify how nurses are being educated on key principles required to safely administer multiple IV infusions. Data Sources and Review Methods A field study was conducted at 12 hospital clinical units (sites) across Ontario, and telephone interviews were conducted with program coordinators or instructors from both the Ontario baccalaureate nursing degree programs and the Ontario postgraduate Critical Care Nursing Certificate programs. Data were analyzed using Rasmussen’s 1997 Risk Management Framework and a Health Care Failure Modes and Effects Analysis. Results Twenty-two primary patient safety issues were identified with the potential to directly cause patient harm. Seventeen of these (critical issues) were categorized into 6 themes. A cause-consequence tree was established to outline all possible contributing factors for each critical issue. Clinical recommendations were identified for immediate distribution to, and implementation by, Ontario hospitals. Future investigation efforts were planned for Phase 2 of the study. Limitations This exploratory field study identifies the potential for errors, but does not describe the direct observation of such errors, except in a few cases where errors were observed. Not all

  4. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b.

    PubMed

    Mizuno, Yosuke; Tokuzawa, Yoshimi; Ninomiya, Yuichi; Yagi, Ken; Yatsuka-Kanesaki, Yukiko; Suda, Tatsuo; Fukuda, Toru; Katagiri, Takenobu; Kondoh, Yasumitsu; Amemiya, Tomoyuki; Tashiro, Hideo; Okazaki, Yasushi

    2009-07-01

    Although microRNAs (miRNAs) are involved in many biological processes, the mechanisms whereby miRNAs regulate osteoblastic differentiation are poorly understood. Here, we found that BMP-4-induced osteoblastic differentiation of bone marrow-derived ST2 stromal cells was promoted and repressed after transfection of sense and antisense miR-210, respectively. A reporter assay demonstrated that the activin A receptor type 1B (AcvR1b) gene was a target for miR-210. Furthermore, inhibition of transforming growth factor-beta (TGF-beta)/activin signaling in ST2 cells with SB431542 promoted osteoblastic differentiation. We conclude that miR-210 acts as a positive regulator of osteoblastic differentiation by inhibiting the TGF-beta/activin signaling pathway through inhibition of AcvR1b. PMID:19520079

  5. Do mutations in SCN1B cause Dravet syndrome?

    PubMed

    Kim, Young Ok; Dibbens, Leanne; Marini, Carla; Suls, Arvid; Chemaly, Nicole; Mei, Davide; McMahon, Jacinta M; Iona, Xenia; Berkovic, Samuel F; De Jonghe, Peter; Guerrini, Renzo; Nabbout, Rima; Scheffer, Ingrid E

    2013-01-01

    A homozygous SCN1B mutation was previously identified in a patient with early onset epileptic encephalopathy (EOEE) described as Dravet syndrome (DS) despite a more severe phenotype than DS. We investigated whether SCN1B mutations are a common cause of DS. Patients with DS who did not have a SCN1A sequencing mutation or copy number variation were studied. Genomic DNA was Sanger sequenced for mutations in the 6 exons of SCN1B. In 54 patients with DS recruited from four centres, no SCN1B mutations were identified. SCN1B mutation is not a common cause of DS. PMID:23182416

  6. Association of Neuropeptide Y (NPY), Interleukin-1B (IL1B) Genetic Variants and Correlation of IL1B Transcript Levels with Vitiligo Susceptibility

    PubMed Central

    Laddha, Naresh C.; Dwivedi, Mitesh; Mansuri, Mohmmad Shoab; Singh, Mala; Patel, Hetanshi H.; Agarwal, Nishtha; Shah, Anish M.; Begum, Rasheedunnisa

    2014-01-01

    Background Vitiligo is a depigmenting disorder resulting from loss of functional melanocytes in the skin. NPY plays an important role in induction of immune response by acting on a variety of immune cells. NPY synthesis and release is governed by IL1B. Moreover, genetic variability in IL1B is reported to be associated with elevated NPY levels. Objectives Aim of the present study was to explore NPY promoter −399T/C (rs16147) and exon2 +1128T/C (rs16139) polymorphisms as well as IL1B promoter −511C/T (rs16944) polymorphism and to correlate IL1B transcript levels with vitiligo. Methods PCR-RFLP method was used to genotype NPY -399T/C SNP in 454 patients and 1226 controls; +1128T/C SNP in 575 patients and 1279 controls and IL1B −511C/T SNP in 448 patients and 785 controls from Gujarat. IL1B transcript levels in blood were also assessed in 105 controls and 95 patients using real-time PCR. Results Genotype and allele frequencies for NPY −399T/C, +1128T/C and IL1B −511C/T SNPs differed significantly (p<0.0001, p<0.0001; p = 0.0161, p = 0.0035 and p<0.0001, p<0.0001) between patients and controls. ‘TC’ haplotype containing minor alleles of NPY polymorphisms was significantly higher in patients and increased the risk of vitiligo by 2.3 fold (p<0.0001). Transcript levels of IL1B were significantly higher, in patients compared to controls (p = 0.0029), in patients with active than stable vitiligo (p = 0.015), also in female patients than male patients (p = 0.026). Genotype-phenotype correlation showed moderate association of IL1B -511C/T polymorphism with higher IL1B transcript levels. Trend analysis revealed significant difference between patients and controls for IL1B transcript levels with respect to different genotypes. Conclusion Our results suggest that NPY −399T/C, +1128T/C and IL1B −511C/T polymorphisms are associated with vitiligo and IL1B −511C/T SNP influences its transcript levels leading to increased risk for vitiligo in

  7. Protein-Tyrosine Phosphatase 1B Substrates and Metabolic Regulation

    PubMed Central

    Bakke, Jesse; Haj, Fawaz G.

    2014-01-01

    Metabolic homeostasis requires integration of complex signaling networks which, when deregulated, contribute to metabolic syndrome and related disorders. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as a key regulator of signaling networks that are implicated in metabolic diseases such as obesity and type 2 diabetes. In this review, we examine mechanisms that regulate PTP1B-substrate interaction, enzymatic activity and experimental approaches to identify PTP1B substrates. We then highlight findings that implicate PTP1B in metabolic regulation. In particular, insulin and leptin signaling are discussed as well as recently identified PTP1B substrates that are involved in endoplasmic reticulum stress response, cell-cell communication, energy balance and vesicle trafficking. In summary, PTP1B exhibits exquisite substrate specificity and is an outstanding pharmaceutical target for obesity and type 2 diabetes. PMID:25263014

  8. Serotonin and insulin-like peptides modulate leucokinin-producing neurons that affect feeding and water homeostasis in Drosophila.

    PubMed

    Liu, Yiting; Luo, Jiangnan; Carlsson, Mikael A; Nässel, Dick R

    2015-08-15

    Metabolic homeostasis and water balance is maintained by tight hormonal and neuronal regulation. In Drosophila, insulin-like peptides (DILPs) are key regulators of metabolism, and the neuropeptide leucokinin (LK) is a diuretic hormone that also modulates feeding. However, it is not known whether LK and DILPs act together to regulate feeding and water homeostasis. Because LK neurons express the insulin receptor (dInR), we tested functional links between DILP and LK signaling in feeding and water balance. Thus, we performed constitutive and conditional manipulations of activity in LK neurons and insulin-producing cells (IPCs) in adult flies and monitored food intake, responses to desiccation, and peptide expression levels. We also measured in vivo changes in LK and DILP levels in neurons in response to desiccation and drinking. Our data show that activated LK cells stimulate diuresis in vivo, and that LK and IPC signaling affect food intake in opposite directions. Overexpression of the dInR in LK neurons decreases the LK peptide levels, but only caused a subtle decrease in feeding, and had no effect on water balance. Next we demonstrated that LK neurons express the serotonin receptor 5-HT1B . Knockdown of this receptor in LK neurons diminished LK expression, increased desiccation resistance, and diminished food intake. Live calcium imaging indicates that serotonin inhibits spontaneous activity in abdominal LK neurons. Our results suggest that serotonin via 5-HT1B diminishes activity in the LK neurons and thereby modulates functions regulated by LK peptide, but the action of the dInR in these neurons remains less clear. PMID:25732325

  9. A complex selection signature at the human AVPR1B gene

    PubMed Central

    Cagliani, Rachele; Fumagalli, Matteo; Pozzoli, Uberto; Riva, Stefania; Cereda, Matteo; Comi, Giacomo P; Pattini, Linda; Bresolin, Nereo; Sironi, Manuela

    2009-01-01

    Background The vasopressin receptor type 1b (AVPR1B) is mainly expressed by pituitary corticotropes and it mediates the stimulatory effects of AVP on ACTH release; common AVPR1B haplotypes have been involved in mood and anxiety disorders in humans, while rodents lacking a functional receptor gene display behavioral defects and altered stress responses. Results Here we have analyzed the two exons of the gene and the data we present suggest that AVPR1B has been subjected to natural selection in humans. In particular, analysis of exon 2 strongly suggests the action of balancing selection in African populations and Europeans: the region displays high nucleotide diversity, an excess of intermediate-frequency alleles, a higher level of within-species diversity compared to interspecific divergence and a genealogy with common haplotypes separated by deep branches. This relatively unambiguous situation coexists with unusual features across exon 1, raising the possibility that a nonsynonymous variant (Gly191Arg) in this region has been subjected to directional selection. Conclusion Although the underlying selective pressure(s) remains to be identified, we consider this to be among the first documented examples of a gene involved in mood disorders and subjected to natural selection in humans; this observation might add support to the long-debated idea that depression/low mood might have played an adaptive role during human evolution. PMID:19486526

  10. Sumatriptan inhibits the release of CGRP and substance P from the rat spinal cord.

    PubMed

    Arvieu, L; Mauborgne, A; Bourgoin, S; Oliver, C; Feltz, P; Hamon, M; Cesselin, F

    1996-08-12

    The possible presynaptic action of the anti-migraine drug sumatriptan on primary afferent fibres containing substance P and/or calcitonin gene-related peptide was investigated on superfused rat horizontal spinal cord slices with attached dorsal roots. Electrical stimulation of dorsal roots triggered a significant overflow of both peptides; this could be reduced by sumatriptan in a concentration-dependent manner. As expected from the involvement of 5-HT1B/1.D beta receptors, methiothepin, (-)tertatolol and GR 127,935, but not WAY 100,635, prevented the inhibitors effect of sumatriptan. These data support the idea that the anti-migraine action of sumatriptan may involve, at least in part, a presynaptic inhibitory control of nociceptive (trigeminovascular) substance P- and/or calcitonin gene-related peptide-containing sensory fibres. PMID:8905706

  11. The efficacy and tolerability of frovatriptan and dexketoprofen for the treatment of acute migraine attacks.

    PubMed

    Allais, Gianni; Rolando, Sara; De Lorenzo, Cristina; Benedetto, Chiara

    2014-08-01

    Frovatriptan is a triptan characterized by a high affinity for 5-HT1B/1D receptors and a long half-life contributing to a more sustained and prolonged action than other triptans. Dexketoprofen is a nonsteroidal anti-inflammatory drug with a relatively short half-life and rapid onset of action, blocking the action of cyclo-oxygenase, which is involved in prostaglandins' production, thus reducing inflammation and pain. Both drugs have been successfully employed as monotherapies for the treatment of acute migraine attacks. The combination of these two drugs (frovatriptan 2.5 mg plus dexketoprofen 25 or 37.5 mg) has been tested in migraine sufferers, showing a rapid and good initial efficacy, with 2-h pain free rates of 51%, and a high persistence in the 48-h following the onset of pain: recurrence occurred in only 29% of attacks and sustained pain free rates were 43% at 24- and 33% at 48-h. PMID:25056381

  12. Migraine: diagnosis and management.

    PubMed

    Goadsby, P J

    2003-01-01

    Migraine is the most common form of disabling primary headache and affects approximately 12% of studied Caucasian populations. Non-pharmacological management of migraine largely consists of lifestyle advice to help sufferers avoid situations in which attacks will be triggered. Preventive treatments for migraine should usually be considered on the basis of attack frequency, particularly its trend to change with time, and tract-ability to acute care. Acute care treatments for migraine can be divided into non-specific treatments (general analgesics, such as aspirin or non-steroidal anti--inflammatory drugs) and treatments relatively specific to migraine (ergotamine and the triptans). The triptans--sumatriptan, naratriptan, rizatriptan, zolmitriptan, almotriptan, eletriptan and frovatriptan--are potent serotonin, 5-HT1B/1D, receptor agonists which represent a major advance in the treatment of acute migraine. Chronic daily headache in association with analgesic overuse is probably the major avoidable cause of headache disability in the developed world. PMID:14511196

  13. Vortioxetine for the treatment of major depressive disorder.

    PubMed

    Tritschler, Laurent; Felice, Daniela; Colle, Romain; Guilloux, Jean-Philippe; Corruble, Emmanuelle; Gardier, Alain Michel; David, Denis Joseph

    2014-11-01

    Vortioxetine (Brintellix(®), 1-[2-(2,4-dimethylphenyl-sulfanyl)-phenyl]-piperazine) is a multimodal antidepressant targeting the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT3, 5-HT7 receptors and the serotonin (5-HT) transporter (5-HTT). Vortioxetine administration induces antidepressant- and anxiolytic-like effects, and can enhance cognitive performance in rodents. Several clinical trials have reported the efficiency and a satisfactory tolerability of vortioxetine treatment in depressed patients. Remarkably, vortioxetine has a specific positive impact on cognitive symptoms in depressed patients. Overall, vortioxetine is an efficacious antidepressant drug for the treatment of patients with a major depressive episode and has a unique mechanism of action offering a new therapeutic option. PMID:25166025

  14. Seasonally Changing Cryptochrome 1b Expression in the Retinal Ganglion Cells of a Migrating Passerine Bird.

    PubMed

    Nießner, Christine; Gross, Julia Christina; Denzau, Susanne; Peichl, Leo; Fleissner, Gerta; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2016-01-01

    Cryptochromes, blue-light absorbing proteins involved in the circadian clock, have been proposed to be the receptor molecules of the avian magnetic compass. In birds, several cryptochromes occur: Cryptochrome 2, Cryptochrome 4 and two splice products of Cryptochrome 1, Cry1a and Cry1b. With an antibody not distinguishing between the two splice products, Cryptochrome 1 had been detected in the retinal ganglion cells of garden warblers during migration. A recent study located Cry1a in the outer segments of UV/V-cones in the retina of domestic chickens and European robins, another migratory species. Here we report the presence of cryptochrome 1b (eCry1b) in retinal ganglion cells and displaced ganglion cells of European Robins, Erithacus rubecula. Immuno-histochemistry at the light microscopic and electron microscopic level showed eCry1b in the cell plasma, free in the cytosol as well as bound to membranes. This is supported by immuno-blotting. However, this applies only to robins in the migratory state. After the end of the migratory phase, the amount of eCry1b was markedly reduced and hardly detectable. In robins, the amount of eCry1b in the retinal ganglion cells varies with season: it appears to be strongly expressed only during the migratory period when the birds show nocturnal migratory restlessness. Since the avian magnetic compass does not seem to be restricted to the migratory phase, this seasonal variation makes a role of eCry1b in magnetoreception rather unlikely. Rather, it could be involved in physiological processes controlling migratory restlessness and thus enabling birds to perform their nocturnal flights. PMID:26953690

  15. Seasonally Changing Cryptochrome 1b Expression in the Retinal Ganglion Cells of a Migrating Passerine Bird

    PubMed Central

    Nießner, Christine; Gross, Julia Christina; Denzau, Susanne; Peichl, Leo; Fleissner, Gerta; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2016-01-01

    Cryptochromes, blue-light absorbing proteins involved in the circadian clock, have been proposed to be the receptor molecules of the avian magnetic compass. In birds, several cryptochromes occur: Cryptochrome 2, Cryptochrome 4 and two splice products of Cryptochrome 1, Cry1a and Cry1b. With an antibody not distinguishing between the two splice products, Cryptochrome 1 had been detected in the retinal ganglion cells of garden warblers during migration. A recent study located Cry1a in the outer segments of UV/V-cones in the retina of domestic chickens and European robins, another migratory species. Here we report the presence of cryptochrome 1b (eCry1b) in retinal ganglion cells and displaced ganglion cells of European Robins, Erithacus rubecula. Immuno-histochemistry at the light microscopic and electron microscopic level showed eCry1b in the cell plasma, free in the cytosol as well as bound to membranes. This is supported by immuno-blotting. However, this applies only to robins in the migratory state. After the end of the migratory phase, the amount of eCry1b was markedly reduced and hardly detectable. In robins, the amount of eCry1b in the retinal ganglion cells varies with season: it appears to be strongly expressed only during the migratory period when the birds show nocturnal migratory restlessness. Since the avian magnetic compass does not seem to be restricted to the migratory phase, this seasonal variation makes a role of eCry1b in magnetoreception rather unlikely. Rather, it could be involved in physiological processes controlling migratory restlessness and thus enabling birds to perform their nocturnal flights. PMID:26953690

  16. Injectable interferon beta-1b for the treatment of relapsing forms of multiple sclerosis

    PubMed Central

    Jankovic, Slobodan M

    2010-01-01

    Multiple sclerosis (MS) is chronic inflammatory and demyelinating disease with either a progressive (10%–15%) or relapsing-remitting (85%–90%) course. The pathological hallmarks of MS are lesions of both white and grey matter in the central nervous system. The onset of the disease is usually around 30 years of age. The patients experience an acute focal neurologic dysfunction which is not characteristic, followed by partial or complete recovery. Acute episodes of neurologic dysfunction with diverse signs and symptoms will then recur throughout the life of a patient, with periods of partial or complete remission and clinical stability in between. Currently, there are several therapeutic options for MS with disease-modifying properties. Immunomodulatory therapy with interferon beta-1b (IFN-β1b) or -1a, glatiramer and natalizumab shows similar efficacy; in a resistant or intolerant patient, the most recently approved therapeutic option is mitoxantrone. IFN-β1b in patients with MS binds to specific receptors on surface of immune cells, changing the expression of several genes and leading to a decrease in quantity of cell-associated adhesion molecules, inhibition of major histocompatibility complex class II expression and reduction in inflammatory cells migration into the central nervous system. After 2 years of treatment, IFN-β1b reduces the risk of development of clinically defined MS from 45% (with placebo) to 28% (with IFN-β1b). It also reduces relapses for 34% (1.31 exacerbations annually with placebo and 0.9 with higher dose of IFN-β1b) and makes 31% more patients relapse-free. In secondary-progressive disease annual rate of progression is 3% lower with IFN-β1b. In recommended doses IFN-β1b causes the following frequent adverse effects: injection site reactions (redness, discoloration, inflammation, pain, necrosis and non-specific reactions), insomnia, influenza-like syndrome, asthenia, headache, myalgia, hypoesthesia, nausea, paresthesia, myasthenia

  17. Molecular requirements for the insecticidal activity of the plant peptide pea albumin 1 subunit b (PA1b).

    PubMed

    Da Silva, Pedro; Rahioui, Isabelle; Laugier, Christian; Jouvensal, Laurence; Meudal, Hervé; Chouabe, Christophe; Delmas, Agnès F; Gressent, Frédéric

    2010-10-22

    PA1b (pea albumin 1, subunit b) is a small and compact 37-amino acid protein, isolated from pea seeds (Pisum sativum), that adopts a cystine knot fold. It acts as a potent insecticidal agent against major pests in stored crops and vegetables, making it a promising bioinsecticide. Here, we investigate the influence of individual residues on the structure and bioactivity of PA1b. A collection of 13 PA1b mutants was successfully chemically synthesized in which the residues involved in the definition of PA1b amphiphilic and electrostatic characteristics were individually replaced with an alanine. The three-dimensional structure of PA1b was outstandingly tolerant of modifications. Remarkably, receptor binding and insecticidal activities were both dependent on common well defined clusters of residues located on one single face of the toxin, with Phe-10, Arg-21, Ile-23, and Leu-27 being key residues of the binding interaction. The inactivity of the mutants is clearly due to a change in the nature of the side chain rather than to a side effect, such as misfolding or degradation of the peptide, in the insect digestive tract. We have shown that a hydrophobic patch is the putative site of the interaction of PA1b with its binding site. Overall, the mutagenesis data provide major insights into the functional elements responsible for PA1b entomotoxic properties and give some clues toward a better understanding of the PA1b mode of action. PMID:20660598

  18. Tomato Protein Kinase 1b Mediates Signaling of Plant Responses to Necrotrophic Fungi and Insect Herbivory[W

    PubMed Central

    AbuQamar, Synan; Chai, Mao-Feng; Luo, Hongli; Song, Fengming; Mengiste, Tesfaye

    2008-01-01

    The tomato protein kinase 1 (TPK1b) gene encodes a receptor-like cytoplasmic kinase localized to the plasma membrane. Pathogen infection, mechanical wounding, and oxidative stress induce expression of TPK1b, and reducing TPK1b gene expression through RNA interference (RNAi) increases tomato susceptibility to the necrotrophic fungus Botrytis cinerea and to feeding by larvae of tobacco hornworm (Manduca sexta) but not to the bacterial pathogen Pseudomonas syringae. TPK1b RNAi seedlings are also impaired in ethylene (ET) responses. Notably, susceptibility to Botrytis and insect feeding is correlated with reduced expression of the proteinase inhibitor II gene in response to Botrytis and 1-aminocyclopropane-1-carboxylic acid, the natural precursor of ET, but wild-type expression in response to mechanical wounding and methyl-jasmonate. TPK1b functions independent of JA biosynthesis and response genes required for resistance to Botrytis. TPK1b is a functional kinase with autophosphorylation and Myelin Basis Protein phosphorylation activities. Three residues in the activation segment play a critical role in the kinase activity and in vivo signaling function of TPK1b. In sum, our findings establish a signaling role for TPK1b in an ET-mediated shared defense mechanism for resistance to necrotrophic fungi and herbivorous insects. PMID:18599583

  19. AMYLOID-β PEPTIDE BINDS TO MICROTUBULE-ASSOCIATED PROTEIN 1B (MAP1B)

    PubMed Central

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H.; Manoutcharian, Karen

    2008-01-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer’s disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer’s disease. PMID:18079022

  20. Amyloid-beta peptide binds to microtubule-associated protein 1B (MAP1B).

    PubMed

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H; Manoutcharian, Karen

    2008-05-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer's disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer's disease. PMID:18079022

  1. MAN1B1 Deficiency: An Unexpected CDG-II

    PubMed Central

    Millón, María B.; Race, Valérie; Sturiale, Luisa; Garozzo, Domenico; Mills, Philippa; Clayton, Peter; Asteggiano, Carla G.; Quelhas, Dulce; Cansu, Ali; Martins, Esmeralda; Nassogne, Marie-Cécile; Gonçalves-Rocha, Miguel; Topaloglu, Haluk; Jaeken, Jaak; Foulquier, François; Matthijs, Gert

    2013-01-01

    Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases, due to impaired protein and lipid glycosylation. In the present study, exome sequencing was used to identify MAN1B1 as the culprit gene in an unsolved CDG-II patient. Subsequently, 6 additional cases with MAN1B1-CDG were found. All individuals presented slight facial dysmorphism, psychomotor retardation and truncal obesity. Generally, MAN1B1 is believed to be an ER resident alpha-1,2-mannosidase acting as a key factor in glycoprotein quality control by targeting misfolded proteins for ER-associated degradation (ERAD). However, recent studies indicated a Golgi localization of the endogenous MAN1B1, suggesting a more complex role for MAN1B1 in quality control. We were able to confirm that MAN1B1 is indeed localized to the Golgi complex instead of the ER. Furthermore, we observed an altered Golgi morphology in all patients' cells, with marked dilatation and fragmentation. We hypothesize that part of the phenotype is associated to this Golgi disruption. In conclusion, we linked mutations in MAN1B1 to a Golgi glycosylation disorder. Additionally, our results support the recent findings on MAN1B1 localization. However, more work is needed to pinpoint the exact function of MAN1B1 in glycoprotein quality control, and to understand the pathophysiology of its deficiency. PMID:24348268

  2. Two extreme young objects in Barnard 1-b

    SciTech Connect

    Hirano, Naomi; Liu, Fang-chun

    2014-07-01

    Two submillimeter/millimeter sources in the Barnard 1b (B1-b) core, B1-bN and B1-bS, have been studied in dust continuum, H{sup 13}CO{sup +} J = 1-0, CO J = 2-1, {sup 13}CO J = 2-1, and C{sup 18}O J = 2-1. The spectral energy distributions of these sources from the mid-IR to 7 mm are characterized by very cold temperatures of T {sub dust} < 20 K and low bolometric luminosities of 0.15-0.31 L {sub ☉}. The internal luminosities of B1-bN and B1-bS are estimated to be <0.01-0.03 L {sub ☉} and ∼0.1-0.2 L {sub ☉}, respectively. Millimeter interferometric observations have shown that these sources have already formed central compact objects of ∼100 AU sizes. Both B1-bN and B1-bS are driving the CO outflows with low characteristic velocities of ∼2-4 km s{sup –1}. The fractional abundance of H{sup 13}CO{sup +} at the positions of B1-bN and B1-bS is lower than the canonical value by a factor of four to eight. This implies that a significant fraction of CO is depleted onto dust grains in the dense gas surrounding these sources. The observed physical and chemical properties suggest that B1-bN and B1-bS are in an earlier evolutionary stage than most of the known class 0 protostars. In particular, the properties of B1-bN agree with those of the first hydrostatic core predicted by the MHD simulations. The CO outflow was also detected in the mid-IR source located at ∼15'' from B1-bS. Since the dust continuum emission was not detected in this source, the circumstellar material surrounding this source is less than 0.01 M {sub ☉}. It is likely that the envelope of this source was dissipated by the outflow from the protostar that is located to the southwest of B1-b.

  3. [The interactions between natural products and OATP1B1].

    PubMed

    Shi, Mei-zhi; Liu, Yu; Bian, Jia-lin; Jin, Meng; Gui, Chun-shan

    2015-07-01

    Organic anion transporting polypeptide 1B1 (OATP1B1) is an important liver-specific uptake transporter, which mediates transport of numerous endogenous substances and drugs from blood into hepatocytes. To identify and investigate potential modulators of OATP1B1 from natural products, the effect of 21 frequently used natural compounds and extracts on OATP1B1-mediated fluorescein methotrexate transport was studied by using Chinese hamster ovary cells stably expressing OATP1B1 (CHO-OATP1B1) in 96-well plates. This method could be used for the screening of large compound libraries. Our studies showed that some flavonoids (e.g., quercetin, quercitrin, rutin, chrysanthemum flavonoids and mulberrin) and triterpenoids (e.g., glycyrrhetinic acid and glycyrrhizic acid) were inhibitors of OATP1B1 with IC50 values less than 16 µmol · L(-1). The IC50 value of glycyrrhetinic acid on OATP1B1 was comparable to its blood concentration in clinics, indicating an OATPlB1-mediated drug-drug interaction could occur. Structure-activity relationship analysis showed that flavonoids had much higher inhibitory activity than their glycosides. Furthermore, the type and length of saccharides had a significant effect on their activity. In addition, we used OATP1B1 substrates fluvastatin and rosuvastatin as probe drugs to investigate the substrate-dependent effect of several natural compounds on the function of OATP1B1 in vitro. Our results demonstrated that the effect of these natural products on the function of OATPlB1 was substrate-dependent. In summary, this study would be conducive to predicting and avoiding potential OATP1B1-mediated drug-drug and drug-food interactions and thus provide the experimental basis and guidance for rational drug use. PMID:26552146

  4. Aldo-Keto Reductases 1B in Endocrinology and Metabolism

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Volat, Fanny; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2012-01-01

    The aldose reductase (AR; human AKR1B1/mouse Akr1b3) has been the focus of many research because of its role in diabetic complications. The starting point of these alterations is the massive entry of glucose in polyol pathway where it is converted into sorbitol by this enzyme. However, the issue of AR function in non-diabetic condition remains unresolved. AR-like enzymes (AKR1B10, Akr1b7, and Akr1b8) are highly related isoforms often co-expressed with bona fide AR, making functional analysis of one or the other isoform a challenging task. AKR1B/Akr1b members share at least 65% protein identity and the general ability to reduce many redundant substrates such as aldehydes provided from lipid peroxidation, steroids and their by-products, and xenobiotics in vitro. Based on these properties, AKR1B/Akr1b are generally considered as detoxifying enzymes. Considering that divergences should be more informative than similarities to help understanding their physiological functions, we chose to review specific hallmarks of each human/mouse isoforms by focusing on tissue distribution and specific mechanisms of gene regulation. Indeed, although the AR shows ubiquitous expression, AR-like proteins exhibit tissue-specific patterns of expression. We focused on three organs where certain isoforms are enriched, the adrenal gland, enterohepatic, and adipose tissues and tried to connect recent enzymatic and regulation data with endocrine and metabolic functions of these organs. We presented recent mouse models showing unsuspected physiological functions in the regulation of glucido-lipidic metabolism and adipose tissue homeostasis. Beyond the widely accepted idea that AKR1B/Akr1b are detoxification enzymes, these recent reports provide growing evidences that they are able to modify or generate signal molecules. This conceptually shifts this class of enzymes from unenviable status of scavenger to upper class of messengers. PMID:22876234

  5. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades

    PubMed Central

    Jiang, Cheng-shi; Liang, Lin-fu; Guo, Yue-wei

    2012-01-01

    This article provides an overview of approximately 300 secondary metabolites with inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), which were isolated from various natural sources or derived from synthetic process in the last decades. The structure-activity relationship and the selectivity of some compounds against other protein phosphatases were also discussed. Potential pharmaceutical applications of several PTP1B inhibitors were presented. PMID:22941286

  6. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  7. 18 CFR 1b.16 - Rights of witnesses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Rights of witnesses. 1b.16 Section 1b.16 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... person, such person shall have the right to appear on the record; and in addition to the rights...

  8. 18 CFR 1b.16 - Rights of witnesses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Rights of witnesses. 1b.16 Section 1b.16 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... person, such person shall have the right to appear on the record; and in addition to the rights...

  9. 18 CFR 1b.16 - Rights of witnesses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Rights of witnesses. 1b.16 Section 1b.16 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... person, such person shall have the right to appear on the record; and in addition to the rights...

  10. 18 CFR 1b.16 - Rights of witnesses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Rights of witnesses. 1b.16 Section 1b.16 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... person, such person shall have the right to appear on the record; and in addition to the rights...

  11. ALDH1B1 links alcohol consumption and diabetes.

    PubMed

    Singh, Surendra; Chen, Ying; Matsumoto, Akiko; Orlicky, David J; Dong, Hongbin; Thompson, David C; Vasiliou, Vasilis

    2015-08-01

    Aldehyde dehydrogenase 1B1 (ALDH1B1) is a mitochondrial enzyme sharing 65% and 72% sequence identity with ALDH1A1 and ALDH2 proteins, respectively. Compared to the latter two ALDH isozymes, little is known about the physiological functions of ALDH1B1. Studies in humans indicate that ALDH1B1 may be associated with alcohol sensitivity and stem cells. Our recent in vitro studies using human ALDH1B1 showed that it metabolizes acetaldehyde and retinaldehyde. To investigate the in vivo role of ALDH1B1, we generated and characterized a global Aldh1b1 knockout mouse line. These knockout (KO) mice are fertile and show overtly good health. However, ethanol pharmacokinetic analysis revealed ∼40% increase in blood acetaldehyde levels in KO mice. Interestingly, the KO mice exhibited higher fasting blood glucose levels. Collectively, we show for the first time the functional in vivo role of ALDH1B1 in acetaldehyde metabolism and in maintaining glucose homeostasis. This mouse model is a valuable tool to investigate the mechanism by which alcohol may promote the development of diabetes. PMID:26086111

  12. 18 CFR 1b.20 - Request for confidential treatment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Request for confidential treatment. 1b.20 Section 1b.20 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... confidential treatment. Any person compelled to produce documents in an investigation may claim that some...

  13. 18 CFR 1b.20 - Request for confidential treatment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Request for confidential treatment. 1b.20 Section 1b.20 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... confidential treatment. Any person compelled to produce documents in an investigation may claim that some...

  14. 18 CFR 1b.20 - Request for confidential treatment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Request for confidential treatment. 1b.20 Section 1b.20 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... confidential treatment. Any person compelled to produce documents in an investigation may claim that some...

  15. 18 CFR 1b.20 - Request for confidential treatment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Request for confidential treatment. 1b.20 Section 1b.20 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... confidential treatment. Any person compelled to produce documents in an investigation may claim that some...

  16. 18 CFR 1b.20 - Request for confidential treatment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Request for confidential treatment. 1b.20 Section 1b.20 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... confidential treatment. Any person compelled to produce documents in an investigation may claim that some...

  17. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide.

    PubMed

    Jeong, Hyeon-Uk; Kwon, Mihwa; Lee, Yongnam; Yoo, Ji Seok; Shin, Dae Hee; Song, Im-Sook; Lee, Hye Suk

    2015-01-01

    We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1), OAT3, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 1 (OCT1), OCT2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3) and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3). The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (K m) =41.5 μM, maximum uptake rate (V max) =46.2 pmol/minute, and intrinsic clearance (CL int) =1.11 μL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CL int values of 0.035 and 0.034 μL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 μM, respectively. However, catalposide did not significantly inhibit the transport activities of OCT1, OCT2, OAT1, P-gp, or BCRP. In conclusion, OAT3, OATP1B1, and OATP1B3 are major transporters that may regulate the pharmacokinetic properties and may cause herb-drug interactions of catalposide, although their clinical relevance awaits further evaluation. PMID:25653502

  18. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide

    PubMed Central

    Jeong, Hyeon-Uk; Kwon, Mihwa; Lee, Yongnam; Yoo, Ji Seok; Shin, Dae Hee; Song, Im-Sook; Lee, Hye Suk

    2015-01-01

    We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1), OAT3, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 1 (OCT1), OCT2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3) and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3). The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (Km) =41.5 μM, maximum uptake rate (Vmax) =46.2 pmol/minute, and intrinsic clearance (CLint) =1.11 μL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CLint values of 0.035 and 0.034 μL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 μM, respectively. However, catalposide did not significantly inhibit the transport activities of OCT1, OCT2, OAT1, P-gp, or BCRP. In conclusion, OAT3, OATP1B1, and OATP1B3 are major transporters that may regulate the pharmacokinetic properties and may cause herb–drug interactions of catalposide, although their clinical relevance awaits further evaluation. PMID:25653502

  19. Association of CYP2D6*10, OATP1B1 A388G, and OATP1B1 T521C Polymorphisms and Overall Survival of Breast Cancer Patients after Tamoxifen Therapy

    PubMed Central

    Zhang, Xuefeng; Pu, Zhichen; Ge, Jun; Shen, Jie; Yuan, Xiaolong; Xie, Haitang

    2015-01-01

    Background The global incidence of breast cancer is increasing, mainly due to the sharp rise in breast cancer incidence in Asia. The aim of this study was to evaluate the association of CYP2D6*10 (c.100C>T and c.1039C>T), OATP1B1 A388G, and OATP1B1 T521C polymorphisms with overall survival (OS) for hormone receptor (estrogen receptor or progesterone receptor)-positive tumors (ER+/PR+) breast cancer patients after adjuvant tamoxifen (TAM) therapy. Material/Method We included 296 invasive breast cancer patients with hormone receptor-positive tumors during the period 2002–2009. We collected patient data, including clinical features, TAM therapy, and survival status. Archived paraffin blocks from surgery were the source of tissue for genotyping. CYP2D6*10, OATP1B1 A388G, and T521C polymorphisms were detected by direct sequencing of genomic DNA. OS was assessed with Kaplan-Meier analysis, while the Cox proportional hazards model was used to implement multivariate tests for the prognostic significance. Results There was a significant difference in OS between OATP1B1 T521C wild-type and the mutant genotype C carrier (P=0.034). However, there was no difference in overall survival between wild-type and carrier groups for CYP2D6*10 (P=0.096) and OATP1B1 A388G (P=0.388), respectively. Conclusions These results suggest that the OATP1B1 T521C mutation may be an independent prognostic marker for breast cancer patients using TAM therapy. PMID:25701109

  20. Aldo Keto Reductase 1B7 and Prostaglandin F2α Are Regulators of Adrenal Endocrine Functions

    PubMed Central

    Lambert-Langlais, Sarah; Volat, Fanny; Manin, Michèle; Coudoré, François; Val, Pierre; Sahut-Barnola, Isabelle; Ragazzon, Bruno; Louiset, Estelle; Delarue, Catherine; Lefebvre, Hervé; Urade, Yoshihiro; Martinez, Antoine

    2009-01-01

    Prostaglandin F2α (PGF2α), represses ovarian steroidogenesis and initiates parturition in mammals but its impact on adrenal gland is unknown. Prostaglandins biosynthesis depends on the sequential action of upstream cyclooxygenases (COX) and terminal synthases but no PGF2α synthases (PGFS) were functionally identified in mammalian cells. In vitro, the most efficient mammalian PGFS belong to aldo-keto reductase 1B (AKR1B) family. The adrenal gland is a major site of AKR1B expression in both human (AKR1B1) and mouse (AKR1B3, AKR1B7). Thus, we examined the PGF2α biosynthetic pathway and its functional impact on both cortical and medullary zones. Both compartments produced PGF2α but expressed different biosynthetic isozymes. In chromaffin cells, PGF2α secretion appeared constitutive and correlated to continuous expression of COX1 and AKR1B3. In steroidogenic cells, PGF2α secretion was stimulated by adrenocorticotropic hormone (ACTH) and correlated to ACTH-responsiveness of both COX2 and AKR1B7/B1. The pivotal role of AKR1B7 in ACTH-induced PGF2α release and functional coupling with COX2 was demonstrated using over- and down-expression in cell lines. PGF2α receptor was only detected in chromaffin cells, making medulla the primary target of PGF2α action. By comparing PGF2α-responsiveness of isolated cells and whole adrenal cultures, we demonstrated that PGF2α repressed glucocorticoid secretion by an indirect mechanism involving a decrease in catecholamine release which in turn decreased adrenal steroidogenesis. PGF2α may be regarded as a negative autocrine/paracrine regulator within a novel intra-adrenal feedback loop. The coordinated cell-specific regulation of COX2 and AKR1B7 ensures the generation of this stress-induced corticostatic signal. PMID:19809495

  1. Interaction between genetic polymorphism of cytochrome P450-1B1 and environmental pollutants in breast cancer risk.

    PubMed

    Saintot, M; Malaveille, C; Hautefeuille, A; Gerber, M

    2004-02-01

    Cytochrome P450 1B1 (CYP1B1) is implicated in the activation of potentially carcinogenic xenobiotics and oestrogens. The polymorphism of the CYP1B1 gene at codon 432 (Val-->Leu) is associated with change in catalytic function. In a case-series study of breast cancer patients, we investigated the interaction between this polymorphism and environmental exposure. The women carrying the Val CYP1B1 allele and who had lived near to a waste incinerator for more than 10 years had a higher risk of breast cancer than those never exposed with the Leu/Leu genotype (odds ratio of interactions (ORi)=3.26, 95% confidence interval (CI) 1.20-8.84). Also, the Val CYP1B1 allele increased the susceptibility to breast cancer for women exposed during their life to agricultural products used in farming (ORi = 2.18, 95% CI 1.10-4.32). These xenobiotics, mainly organochlorine hydrocarbons, are known to bind to the aromatic hydrocarbon receptor (AhR), and to induce the expression of CYP1B1 enzyme. The excess risk for exposed women with a Val CYP1B1 homo/heterozygous genotype could result from a higher exposure to activated metabolites of pesticides or dioxin-like substances. Also, a higher induction of CYP1B1 enzyme by xenobiotics could increase the formation of genotoxic catechol-oestrogens among exposed women carrying the Val CYP1B1 allele. Our results suggested that the Val CYP1B1 allele increases the susceptibility to breast cancer in women exposed to waste incinerator or agricultural pollutants. PMID:15075793

  2. Antiobesity and Antidiabetes Effects of a Cudrania tricuspidata Hydrophilic Extract Presenting PTP1B Inhibitory Potential

    PubMed Central

    Kim, Dae Hoon; Lee, Sooung; Chung, Youn Wook; Kim, Byeong Mo; Kim, Hanseul; Kim, Kunhong; Yang, Kyung Mi

    2016-01-01

    Diabetes and obesity represent the major health problems and the most age-related metabolic diseases. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as an important regulator of insulin signal transduction and is regarded as a pharmaceutical target for metabolic disorders. To find novel natural materials presenting therapeutic activities against diabetes and obesity, we screened various herb extracts using a chip screening allowing the determination of PTP1B inhibitory effects of the tested compounds using insulin receptor (IR) as the substrate. Cudrania tricuspidata leaves (CTe) had a strong inhibitory effect on PTP1B activity and substantially inhibited fat accumulation in 3T3-L1 cells. CTe was orally administrated to diet-induced obesity (DIO) mice once daily for 3 weeks after which changes in glucose, insulin metabolism, and fat accumulation were examined. Hepatic enzyme markers (aspartate aminotransferase, AST, and alanine aminotransferase, ALT) and total fat mass and triglyceride levels decreased in CTe-treated mice, whereas body weight and total cholesterol concentration slightly decreased. CTe increased the phosphorylation of IRS-1 and Akt in liver tissue. Furthermore, CTe treatment significantly lowered blood glucose levels and improved insulin secretion in DIO mice. Our results strongly suggest that CTe may represent a promising therapeutic substance against diabetes and obesity. PMID:26989693

  3. Antiobesity and Antidiabetes Effects of a Cudrania tricuspidata Hydrophilic Extract Presenting PTP1B Inhibitory Potential.

    PubMed

    Kim, Dae Hoon; Lee, Sooung; Chung, Youn Wook; Kim, Byeong Mo; Kim, Hanseul; Kim, Kunhong; Yang, Kyung Mi

    2016-01-01

    Diabetes and obesity represent the major health problems and the most age-related metabolic diseases. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as an important regulator of insulin signal transduction and is regarded as a pharmaceutical target for metabolic disorders. To find novel natural materials presenting therapeutic activities against diabetes and obesity, we screened various herb extracts using a chip screening allowing the determination of PTP1B inhibitory effects of the tested compounds using insulin receptor (IR) as the substrate. Cudrania tricuspidata leaves (CTe) had a strong inhibitory effect on PTP1B activity and substantially inhibited fat accumulation in 3T3-L1 cells. CTe was orally administrated to diet-induced obesity (DIO) mice once daily for 3 weeks after which changes in glucose, insulin metabolism, and fat accumulation were examined. Hepatic enzyme markers (aspartate aminotransferase, AST, and alanine aminotransferase, ALT) and total fat mass and triglyceride levels decreased in CTe-treated mice, whereas body weight and total cholesterol concentration slightly decreased. CTe increased the phosphorylation of IRS-1 and Akt in liver tissue. Furthermore, CTe treatment significantly lowered blood glucose levels and improved insulin secretion in DIO mice. Our results strongly suggest that CTe may represent a promising therapeutic substance against diabetes and obesity. PMID:26989693

  4. Deciphering the function of the CNGB1b subunit in olfactory CNG channels

    PubMed Central

    Nache, Vasilica; Wongsamitkul, Nisa; Kusch, Jana; Zimmer, Thomas; Schwede, Frank; Benndorf, Klaus

    2016-01-01

    Olfactory cyclic nucleotide-gated (CNG) ion channels are key players in the signal transduction cascade of olfactory sensory neurons. The second messengers cAMP and cGMP directly activate these channels, generating a depolarizing receptor potential. Olfactory CNG channels are composed of two CNGA2 subunits and two modulatory subunits, CNGA4, and CNGB1b. So far the exact role of the modulatory subunits for channel activation is not fully understood. By measuring ligand binding and channel activation simultaneously, we show that in functional heterotetrameric channels not only the CNGA2 subunits and the CNGA4 subunit but also the CNGB1b subunit binds cyclic nucleotides and, moreover, also alone translates this signal to open the pore. In addition, we show that the CNGB1b subunit is the most sensitive subunit in a heterotetrameric channel to cyclic nucleotides and that it accelerates deactivation to a similar extent as does the CNGA4 subunit. In conclusion, the CNGB1b subunit participates in ligand-gated activation of olfactory CNG channels and, particularly, contributes to rapid termination of odorant signal in an olfactory sensory neuron. PMID:27405959

  5. Deciphering the function of the CNGB1b subunit in olfactory CNG channels.

    PubMed

    Nache, Vasilica; Wongsamitkul, Nisa; Kusch, Jana; Zimmer, Thomas; Schwede, Frank; Benndorf, Klaus

    2016-01-01

    Olfactory cyclic nucleotide-gated (CNG) ion channels are key players in the signal transduction cascade of olfactory sensory neurons. The second messengers cAMP and cGMP directly activate these channels, generating a depolarizing receptor potential. Olfactory CNG channels are composed of two CNGA2 subunits and two modulatory subunits, CNGA4, and CNGB1b. So far the exact role of the modulatory subunits for channel activation is not fully understood. By measuring ligand binding and channel activation simultaneously, we show that in functional heterotetrameric channels not only the CNGA2 subunits and the CNGA4 subunit but also the CNGB1b subunit binds cyclic nucleotides and, moreover, also alone translates this signal to open the pore. In addition, we show that the CNGB1b subunit is the most sensitive subunit in a heterotetrameric channel to cyclic nucleotides and that it accelerates deactivation to a similar extent as does the CNGA4 subunit. In conclusion, the CNGB1b subunit participates in ligand-gated activation of olfactory CNG channels and, particularly, contributes to rapid termination of odorant signal in an olfactory sensory neuron. PMID:27405959

  6. Flow cytometric analysis of FSHR, BMRR1B, LHR and apoptosis in granulosa cells and ovulation rate in merino sheep.

    PubMed

    Regan, Sheena L P; McFarlane, James R; O'Shea, Tim; Andronicos, Nicholas; Arfuso, Frank; Dharmarajan, Arun; Almahbobi, Ghanim

    2015-08-01

    The aim of the present study was to determine the direct cause of the mutation-induced, increased ovulation rate in Booroola Merino (BB) sheep. Granulosa cells were removed from antral follicles before ovulation and post-ovulation from BB (n=5) and WT (n=12) Merino ewes. Direct immunofluorescence measurement of mature cell surface receptors using flow cytometry demonstrated a significant up-regulation of FSH receptor (FSHR), transforming growth factor beta type 1, bone morphogenetic protein receptor (BMPR1B), and LH receptor (LHR) in BB sheep. The increased density of FSHR and LHR provide novel evidence of a mechanism for increasing the number of follicles that are recruited during dominant follicle selection. The compounding increase in receptors with increasing follicle size maintained the multiple follicles and reduced the apoptosis, which contributed to a high ovulation rate in BB sheep. In addition, we report a mutation-independent mechanism of down-regulation to reduce receptor density of the leading dominant follicle in sheep. The suppression of receptor density coincides with the cessation of mitogenic growth and steroidogenic differentiation as part of the luteinization of the follicle. The BB mutation-induced attenuation of BMPR1B signaling led to an increased density of the FSHR and LHR and a concurrent reduction in apoptosis to increase the ovulation rate. The role of BMPs in receptor modulation is implicated in the development of multiple ovulations. PMID:25948249

  7. 6β-Hydroxytestosterone, a Cytochrome P450 1B1-Testosterone-Metabolite, Mediates Angiotensin II-Induced Renal Dysfunction in Male Mice.

    PubMed

    Pingili, Ajeeth K; Thirunavukkarasu, Shyamala; Kara, Mehmet; Brand, David D; Katsurada, Akemi; Majid, Dewan S A; Navar, L Gabriel; Gonzalez, Frank J; Malik, Kafait U

    2016-05-01

    6β-Hydroxytestosterone, a cytochrome P450 1B1-derived metabolite of testosterone, contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the maintenance of renal homeostasis, development of hypertension, and end-organ damage, this study was conducted to determine the contribution of 6β-hydroxytestosterone to angiotensin II actions on water consumption and renal function in maleCyp1b1(+/+)andCyp1b1(-/-)mice. Castration ofCyp1b1(+/+)mice orCyp1b1(-/-)gene disruption minimized the angiotensin II-induced increase in water consumption, urine output, proteinuria, and sodium excretion and decreases in urine osmolality. 6β-Hydroxytestosterone did not alter angiotensin II-induced increases in water intake, urine output, proteinuria, and sodium excretion or decreases in osmolality inCyp1b1(+/+)mice, but restored these effects of angiotensin II inCyp1b1(-/-)or castratedCyp1b1(+/+)mice.Cyp1b1gene disruption or castration prevented angiotensin II-induced renal fibrosis, oxidative stress, inflammation, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, and angiotensin-converting enzyme. 6β-Hydroxytestosterone did not alter angiotensin II-induced renal fibrosis, inflammation, oxidative stress, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, or angiotensin-converting enzyme inCyp1b1(+/+)mice. However, inCyp1b1(-/-)or castratedCyp1b1(+/+)mice, it restored these effects of angiotensin II. These data indicate that 6β-hydroxytestosterone contributes to increased thirst, impairment of renal function, and end-organ injury associated with angiotensin II-induced hypertension in male mice and that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension in male mice. PMID:26928804

  8. The role of stat1b in zebrafish hematopoiesis

    PubMed Central

    Song, Hao; Yan, Yi-lin; Titus, Tom; He, Xinjun; Postlethwait, John H.

    2011-01-01

    STAT1 mediates response to interferons and regulates immunity, cell proliferation, apoptosis, and sensitivity of Fanconi Anemia cells to apoptosis after interferon signaling; the roles of STAT1 in embryos, however, are not understood. To explore embryonic functions of STAT1, we investigated stat1b, an unstudied zebrafish co-ortholog of human STAT1. Zebrafish stat1a encodes all five domains of the human STAT1-alpha splice form but, like the human STAT1-beta splice variant, stat1b lacks a complete transactivation domain; thus, two unlinked zebrafish paralogs encode protein forms translated from two splice variants of a single human gene, as expected by subfunctionalization after genome duplication. Phylogenetic and conserved synteny studies showed that stat1b and stat1a arose as duplicates in the teleost genome duplication (TGD) and clarified the evolutionary origin of STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 by tandem and genome duplication. RT-PCR revealed maternal expression of stat1a and stat1b. In situ hybridization detected stat1b but not stat1a expression in embryonic hematopoietic tissues. Morpholino knockdown of stat1b, but not stat1a, decreased expression of the myeloid and granulocyte markers spi and mpo and increased expression of the hematopoietic progenitor marker scl, the erythrocyte marker gata1, and hemoglobin. These results suggest that zebrafish Stat1b promotes myeloid development at the expense of erythroid development. PMID:21914475

  9. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana.

    PubMed

    Shah, Muhammad Raza; Ishtiaq; Hizbullah, Syed Muhammad; Habtemariam, Solomon; Zarrelli, Armando; Muhammad, Akhtar; Collina, Simona; Khan, Inamulllah

    2016-08-01

    Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49 ± 0.02, 4.17 ± 0.03 and 87.52 ± 0.03 µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds. PMID:26118418

  10. Identification of Novel Inhibitors of Organic Anion Transporting Polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) Using a Consensus Vote of Six Classification Models

    PubMed Central

    2015-01-01

    Organic anion transporting polypeptides 1B1 and 1B3 are transporters selectively expressed on the basolateral membrane of the hepatocyte. Several studies reveal that they are involved in drug–drug interactions, cancer, and hyperbilirubinemia. In this study, we developed a set of classification models for OATP1B1 and 1B3 inhibition based on more than 1700 carefully curated compounds from literature, which were validated via cross-validation and by use of an external test set. After combining several sets of descriptors and classifiers, the 6 best models were selected according to their statistical performance and were used for virtual screening of DrugBank. Consensus scoring of the screened compounds resulted in the selection and purchase of nine compounds as potential dual inhibitors and of one compound as potential selective OATP1B3 inhibitor. Biological testing of the compounds confirmed the validity of the models, yielding an accuracy of 90% for OATP1B1 and 80% for OATP1B3, respectively. Moreover, at least half of the new identified inhibitors are associated with hyperbilirubinemia or hepatotoxicity, implying a relationship between OATP inhibition and these severe side effects. PMID:26469880

  11. MISR Level 1B2 Terrain Data (MI1B2T_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward and four cameras pointing aftward. It takes 7 minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally gaussian, centered at 443, 555, 670, and 865 nm. The Terrain data are re-projected to the terrain altitude. In this product, surface data from all cameras will appear in the same geographic location. Thus, this product is the primary input to Level 2 aerosol/surface processing, which requires co-registration of the L1B2 imagery at the surface. Clouds will still be displaced due to their elevation above the surface, but this time with respect to the terrain rather than the ellipsoid. (The mountain location T is now assigned the geographic location at T, and the Cloud at F appears at the geographic location T.) In Level 2 aerosol/surface processing, algorithms are applied to screen out the clouds. Terrain data only exist for MISR blocks containing some land. [Location=GLOBAL LAND] [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=563.2 km (cross-track); Longitude_Resolution=140.8 km (along-track).; Temporal_Resolution=about 15 orbits/day; Temporal_Resolution_Range=about 15 orbits/day].

  12. CYP1B1: a unique gene with unique characteristics.

    PubMed

    Faiq, Muneeb A; Dada, Rima; Sharma, Reetika; Saluja, Daman; Dada, Tanuj

    2014-01-01

    CYP1B1, a recently described dioxin inducible oxidoreductase, is a member of the cytochrome P450 superfamily involved in the metabolism of estradiol, retinol, benzo[a]pyrene, tamoxifen, melatonin, sterols etc. It plays important roles in numerous physiological processes and is expressed at mRNA level in many tissues and anatomical compartments. CYP1B1 has been implicated in scores of disorders. Analyses of the recent studies suggest that CYP1B1 can serve as a universal/ideal cancer marker and a candidate gene for predictive diagnosis. There is plethora of literature available about certain aspects of CYP1B1 that have not been interpreted, discussed and philosophized upon. The present analysis examines CYP1B1 as a peculiar gene with certain distinctive characteristics like the uniqueness in its chromosomal location, gene structure and organization, involvement in developmentally important disorders, tissue specific, not only expression, but splicing, potential as a universal cancer marker due to its involvement in key aspects of cellular metabolism, use in diagnosis and predictive diagnosis of various diseases and the importance and function of CYP1B1 mRNA in addition to the regular translation. Also CYP1B1 is very difficult to express in heterologous expression systems, thereby, halting its functional studies. Here we review and analyze these exceptional and startling characteristics of CYP1B1 with inputs from our own experiences in order to get a better insight into its molecular biology in health and disease. This may help to further understand the etiopathomechanistic aspects of CYP1B1 mediated diseases paving way for better research strategies and improved clinical management. PMID:25658124

  13. The COBRA-1B irradiation experiment in EBR-II

    SciTech Connect

    Tsai, H.; Hins, A.G.; Strain, R.V.; Smith, D.L.

    1994-09-01

    The objective of the forthcoming COBRA-1B experiment in EBR-II is to evaluate the effects of fast neutron irradiation on the physical and mechanical properties of candidate fusion structural materials. Of special interest in this experiment will be ITER-relevant temperature and exposure for the test specimens. Approximately 50% of the irradiation test volume will be devoted to vanadium-alloy specimens. Design of the COBRA-1B irradiation experiment began in this reporting period and is in progress. The target reactor insertion date for COBRA-1B is September 1994. Technical and programmatic feasibility approval for the experiment has been granted by EBR-II Operations.

  14. PROBING THE EARLIEST STAGE OF PROTOSTELLAR EVOLUTION-BARNARD 1-bN AND BARNARD 1-bS

    SciTech Connect

    Huang, Yun-Hsin; Hirano, Naomi

    2013-04-01

    Two submm/mm sources in the Barnard 1b (B1-b) core, B1-bN and B1-bS, have been observed with the Submillimeter Array (SMA) and the Submillimeter Telescope (SMT). The 1.1 mm continuum map obtained with the SMA reveals that the two sources contain spatially compact components, suggesting that they harbor protostars. The N{sub 2}D{sup +} and N{sub 2}H{sup +} J = 3-2 maps were obtained by combining the SMA and SMT data. The N{sub 2}D{sup +} map clearly shows two peaks at the continuum positions. The N{sub 2}H{sup +} map also peaks at the continuum positions, but is more dominated by the spatially extended component. The N{sub 2}D{sup +}/N{sub 2}H{sup +} ratio was estimated to be {approx}0.2 at the positions of both B1-bN and B1-bS. The derived N{sub 2}D{sup +}/N{sub 2}H{sup +} ratio is comparable to those of the prestellar cores in the late evolutionary stage and the class 0 protostars in the early evolutionary stage. Although B1-bN is bright in N{sub 2}H{sup +} and N{sub 2}D{sup +}, this source was barely seen in H{sup 13}CO{sup +}. This implies that the depletion of carbon-bearing molecules is significant in B1-bN. The chemical property suggests that B1-bN is in the earlier evolutionary stage as compared to B1-bS with the H{sup 13}CO{sup +} counterpart. The N{sub 2}H{sup +} and N{sub 2}D{sup +} lines show that the radial velocities of the two sources are different by {approx}0.9 km s{sup -1}. However, the velocity pattern along the line through B1-bN and B1-bS suggests that these two sources were not formed out of a single rotating cloud. It is likely that the B1-b core consists of two velocity components, each of which harbors a very young source.

  15. Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice.

    PubMed

    Ehrman, L A; Williams, M T; Schaefer, T L; Gudelsky, G A; Reed, T M; Fienberg, A A; Greengard, P; Vorhees, C V

    2006-10-01

    Mice lacking phosphodiesterase 1B (PDE1B) exhibit an exaggerated locomotor response to D-methamphetamine and increased in vitro phosphorylation of DARPP32 (dopamine- and cAMP-regulated phosphoprotein, M r 32 kDa) at Thr34 in striatal brain slices treated with the D1 receptor agonist, SKF81297. These results indicated a possible regulatory role for PDE1B in pathways involving DARPP32. Here, we generated PDE1B x DARPP32 double-knockout (double-KO) mice to test the role of PDE1B in DARPP32-dependent pathways in vivo. Analysis of the response to d-methamphetamine on locomotor activity showed that the hyperactivity experienced by PDE1B mutant mice was blocked in PDE1B-/- x DARPP32-/- double-KO mice, consistent with participation of PDE1B and DARPP32 in the same pathway. Further behavioral testing in the elevated zero-maze revealed that DARPP32-/- mice showed a less anxious phenotype that was nullified in double-mutant mice. In contrast, in the Morris water maze, double-KO mice showed deficits in spatial reversal learning not observed in either single mutant compared with wild-type mice. The data suggest a role for PDE1B in locomotor responses to psychostimulants through modulation of DARPP32-dependent pathways; however, this modulation does not necessarily impact other behaviors, such as anxiety or learning. Instead, the phenotype of double-KOs observed in these latter tasks may be mediated through independent pathways. PMID:17010100

  16. Expression Patterns of Organic Anion Transporting Polypeptides 1B1 and 1B3 Protein in Human Pediatric Liver.

    PubMed

    Thomson, Margaret M S; Hines, Ronald N; Schuetz, Erin G; Meibohm, Bernd

    2016-07-01

    Determining appropriate pharmacotherapy in young children can be challenging due to uncertainties in the development of drug disposition pathways. With knowledge of the ontogeny of drug-metabolizing enzymes and an emerging focus on drug transporters, the developmental pattern of the uptake transporters organic anion transporting polypeptide (OATP) 1B1 and 1B3 was assessed by relative protein quantification using Western blotting in 80 human pediatric liver specimens covering an age range from 9 days to 12 years. OATP1B3 exhibited high expression at birth, which declined over the first months of life, and then increased again in the preadolescent period. In comparison with children 6-12 years of age, the relative protein expression of highly glycosylated (total) OATP1B3 was 235% (357%) in children <3 months of age, 33% (64%) in the age group from 3 months to 2 years, and 50% (59%) in children 2-6 years of age. The fraction of highly glycosylated to total OATP1B3 increased with age, indicating ontogenic processes not only at the transcriptional level but also at the post-translational level. Similar to OATP1B3, OATP1B1 showed high interindividual variability in relative protein expression but no statistically significant difference among the studied age groups. PMID:27098745

  17. MISR Level 1B1 Radiance Data (MI1B1_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    summary, the Level 1B1 Product contains the Data Numbers (DNs) radiometrically-scaled to radiances with no geometric resampling. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1.1 km; Longitude_Resolution=1.1 km; Temporal_Resolution=about 15 orbits/day; Temporal_Resolution_Range=about 15 orbits/day].

  18. CX3CR1(+) B Cells Show Immune Suppressor Properties*

    PubMed Central

    Wu, Zhiqiang

    2014-01-01

    The immune regulatory functions of B cells are not fully understood yet. The present study aims to characterize a subtype of B cells that expresses CX3CR1. In this study, peripheral blood samples were collected from patients with food allergies and healthy subjects. Peripheral B cells were analyzed by flow cytometry. T cell proliferation was assessed by carboxyfluorescein succinimidyl ester dilution assay. The results showed that the CX3CR1+ B cells were detected in the peripheral blood samples of healthy subjects and were significantly less in patients with food allergies. CX3CR1+ B cells expressed high levels of TGF-β and integrin αvβ6. CX3CR1+ B cells could efficiently suppress other effector CD4+ T cell activation. We conclude that human peripheral CX3CR1+ B cells have immune suppressor properties. PMID:24970890

  19. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3.

    PubMed

    Gozalpour, Elnaz; Greupink, Rick; Wortelboer, Heleen M; Bilos, Albert; Schreurs, Marieke; Russel, Frans G M; Koenderink, Jan B

    2014-06-01

    Digitalis-like compounds (DLCs) such as digoxin, digitoxin, and ouabain, also known as cardiac glycosides, are among the oldest pharmacological treatments for heart failure. The compounds have a narrow therapeutic window, while at the same time, DLC pharmacokinetics is prone to drug-drug interactions at the transport level. Hepatic transporters organic anion transporting polypeptide (OATP) 1B1, OATP1B3, and Na(+)-dependent taurocholate co-transporting polypeptide (NTCP) influence the disposition of a variety of drugs by mediating their uptake from blood into hepatocytes. The interaction of digoxin, digitoxin, and ouabain with hepatic uptake transporters has been studied before. However, here, we systematically investigated a much wider range of structurally related DLCs for their capability to inhibit or to be transported by these transporters in order to better understand the relation between the activity and chemical structure of this compound type. We studied the uptake and inhibitory potency of a series of 14 structurally related DLCs in Chinese hamster ovary cells expressing NTCP (CHO-NTCP) and human embryonic kidney cells expressing OATP1B1 and OATP1B3 (HEK-OATP1B1 and HEK-OATP1B3). The inhibitory effect of the DLCs was measured against taurocholic acid (TCA) uptake in CHO-NTCP cells and against uptake of β-estradiol 17-β-d-glucuronide (E217βG) in HEK-OATP1B1 and HEK-OATP1B3 cells. Proscillaridin A was the most effective inhibitor of NTCP-mediated TCA transport (IC50 = 22 μM), whereas digitoxin and digitoxigenin were the most potent inhibitors of OATP1B1 and OAPTP1B3, with IC50 values of 14.2 and 36 μM, respectively. Additionally, we found that the sugar moiety and hydroxyl groups of the DLCs play different roles in their interaction with NTCP, OATP1B1, and OATP1B3. The sugar moiety decreases the inhibition of NTCP and OATP1B3 transport activity, whereas it enhances the inhibitory potency against OATP1B1. Moreover, the hydroxyl group at position 12

  20. The serotonin transporter promotes a pathological estrogen metabolic pathway in pulmonary hypertension via cytochrome P450 1B1

    PubMed Central

    2016-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a devastating vasculopathy that predominates in women and has been associated with dysregulated estrogen and serotonin signaling. Overexpression of the serotonin transporter (SERT+) in mice results in an estrogen-dependent development of pulmonary hypertension (PH). Estrogen metabolism by cytochrome P450 1B1 (CYP1B1) contributes to the pathogenesis of PAH, and serotonin can increase CYP1B1 expression in human pulmonary arterial smooth muscle cells (hPASMCs). We hypothesized that an increase in intracellular serotonin via increased SERT expression may dysregulate estrogen metabolism via CYP1B1 to facilitate PAH. Consistent with this hypothesis, we found elevated lung CYP1B1 protein expression in female SERT+ mice accompanied by PH, which was attenuated by the CYP1B1 inhibitor 2,3′,4,5′-tetramethoxystilbene (TMS). Lungs from female SERT+ mice demonstrated an increase in oxidative stress that was marked by the expression of 8-hydroxyguanosine; however, this was unaffected by CYP1B1 inhibition. SERT expression was increased in monocrotaline-induced PH in female rats; however, TMS did not reverse PH in monocrotaline-treated rats but prolonged survival. Stimulation of hPASMCs with the CYP1B1 metabolite 16α-hydroxyestrone increased cellular proliferation, which was attenuated by an inhibitor (MPP) of estrogen receptor alpha (ERα) and a specific ERα antibody. Thus, increased intracellular serotonin caused by increased SERT expression may contribute to PAH pathobiology by dysregulation of estrogen metabolic pathways via increased CYP1B1 activity. This promotes PASMC proliferation by the formation of pathogenic metabolites of estrogen that mediate their effects via ERα. Our studies indicate that targeting this pathway in PAH may provide a promising antiproliferative therapeutic strategy. PMID:27162617

  1. The serotonin transporter promotes a pathological estrogen metabolic pathway in pulmonary hypertension via cytochrome P450 1B1.

    PubMed

    Johansen, Anne Katrine Z; Dean, Afshan; Morecroft, Ian; Hood, Katie; Nilsen, Margaret; Loughlin, Lynn; Anagnostopoulou, Aikaterini; Touyz, Rhian M; White, Kevin; MacLean, Margaret R

    2016-03-01

    Pulmonary arterial hypertension (PAH) is a devastating vasculopathy that predominates in women and has been associated with dysregulated estrogen and serotonin signaling. Overexpression of the serotonin transporter (SERT(+)) in mice results in an estrogen-dependent development of pulmonary hypertension (PH). Estrogen metabolism by cytochrome P450 1B1 (CYP1B1) contributes to the pathogenesis of PAH, and serotonin can increase CYP1B1 expression in human pulmonary arterial smooth muscle cells (hPASMCs). We hypothesized that an increase in intracellular serotonin via increased SERT expression may dysregulate estrogen metabolism via CYP1B1 to facilitate PAH. Consistent with this hypothesis, we found elevated lung CYP1B1 protein expression in female SERT(+) mice accompanied by PH, which was attenuated by the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS). Lungs from female SERT(+) mice demonstrated an increase in oxidative stress that was marked by the expression of 8-hydroxyguanosine; however, this was unaffected by CYP1B1 inhibition. SERT expression was increased in monocrotaline-induced PH in female rats; however, TMS did not reverse PH in monocrotaline-treated rats but prolonged survival. Stimulation of hPASMCs with the CYP1B1 metabolite 16α-hydroxyestrone increased cellular proliferation, which was attenuated by an inhibitor (MPP) of estrogen receptor alpha (ERα) and a specific ERα antibody. Thus, increased intracellular serotonin caused by increased SERT expression may contribute to PAH pathobiology by dysregulation of estrogen metabolic pathways via increased CYP1B1 activity. This promotes PASMC proliferation by the formation of pathogenic metabolites of estrogen that mediate their effects via ERα. Our studies indicate that targeting this pathway in PAH may provide a promising antiproliferative therapeutic strategy. PMID:27162617

  2. Impact of Common Diabetes Risk Variant in MTNR1B on Sleep, Circadian, and Melatonin Physiology.

    PubMed

    Lane, Jacqueline M; Chang, Anne-Marie; Bjonnes, Andrew C; Aeschbach, Daniel; Anderson, Clare; Cade, Brian E; Cain, Sean W; Czeisler, Charles A; Gharib, Sina A; Gooley, Joshua J; Gottlieb, Daniel J; Grant, Struan F A; Klerman, Elizabeth B; Lauderdale, Diane S; Lockley, Steven W; Munch, Miriam; Patel, Sanjay; Punjabi, Naresh M; Rajaratnam, Shanthakumar M W; Rueger, Melanie; St Hilaire, Melissa A; Santhi, Nayantara; Scheuermaier, Karin; Van Reen, Eliza; Zee, Phyllis C; Shea, Steven A; Duffy, Jeanne F; Buxton, Orfeu M; Redline, Susan; Scheer, Frank A J L; Saxena, Richa

    2016-06-01

    The risk of type 2 diabetes (T2D) is increased by abnormalities in sleep quantity and quality, circadian alignment, and melatonin regulation. A common genetic variant in a receptor for the circadian-regulated hormone melatonin (MTNR1B) is associated with increased fasting blood glucose and risk of T2D, but whether sleep or circadian disruption mediates this risk is unknown. We aimed to test if MTNR1B diabetes risk variant rs10830963 associates with measures of sleep or circadian physiology in intensive in-laboratory protocols (n = 58-96) or cross-sectional studies with sleep quantity and quality and timing measures from self-report (n = 4,307-10,332), actigraphy (n = 1,513), or polysomnography (n = 3,021). In the in-laboratory studies, we found a significant association with a substantially longer duration of elevated melatonin levels (41 min) and delayed circadian phase of dim-light melatonin offset (1.37 h), partially mediated through delayed offset of melatonin synthesis. Furthermore, increased T2D risk in MTNR1B risk allele carriers was more pronounced in early risers versus late risers as determined by 7 days of actigraphy. Our results provide the surprising insight that the MTNR1B risk allele influences dynamics of melatonin secretion, generating a novel hypothesis that the MTNR1B risk allele may extend the duration of endogenous melatonin production later into the morning and that early waking may magnify the diabetes risk conferred by the risk allele. PMID:26868293

  3. The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects.

    PubMed

    Oliveira, Cláudia C; van Veelen, Peter A; Querido, Bianca; de Ru, Arnoud; Sluijter, Marjolein; Laban, Sandra; Drijfhout, Jan W; van der Burg, Sjoerd H; Offringa, Rienk; van Hall, Thorbald

    2010-01-18

    The nonclassical major histocompatibility complex (MHC) Qa-1b accommodates monomorphic leader peptides and functions as a ligand for germ line receptors CD94/NKG2, which are expressed by natural killer cells and CD8+ T cells. We here describe that the conserved peptides are replaced by a novel peptide repertoire of surprising diversity as a result of impairments in the antigen-processing pathway. This novel peptide repertoire represents immunogenic neoantigens for CD8+ T cells, as we found that these Qa-1b-restricted T cells dominantly participated in the response to tumors with processing deficiencies. A surprisingly wide spectrum of target cells, irrespective of transformation status, MHC background, or type of processing deficiency, was recognized by this T cell subset, complying with the conserved nature of Qa-1b. Target cell recognition depended on T cell receptor and Qa-1b interaction, and immunization with identified peptide epitopes demonstrated in vivo priming of CD8+ T cells. Our data reveal that Qa-1b, and most likely its human homologue human leukocyte antigen-E, is important for the defense against processing-deficient cells by displacing the monomorphic leader peptides, which relieves the inhibition through CD94/NKG2A on lymphocytes, and by presenting a novel repertoire of immunogenic peptides, which recruits a subset of cytotoxic CD8+ T cells. PMID:20038604

  4. Novel chromenedione derivatives displaying inhibition of protein tyrosine phosphatase 1B (PTP1B) from Flemingia philippinensis.

    PubMed

    Wang, Yan; Yuk, Heung Joo; Kim, Jeong Yoon; Kim, Dae Wook; Song, Yeong Hun; Tan, Xue Fei; Curtis-Long, Marcus J; Park, Ki Hun

    2016-01-15

    Protein tyrosine phosphatase 1B (PTP1B) is an important target to treat obesity and diabetes due to its key roles in insulin and leptin signaling. The MeOH extracts of the root bark of Flemingia philippinensis yielded eight inhibitory molecules (1-8) capable of targeting PTP1B. Three of them were identified to be novel compounds, philippin A (1), philippin B (2), and philippin C (3) which have a rare 3-phenylpropanoyl chromenedione skeleton. The other compounds (4-8) were known prenylated isoflavones. All compounds (1-8) inhibited PTP1B in a dose dependent manner with IC50s ranging between 2.4 and 29.4μM. The most potent compound emerged to be prenylated isoflavone 5 (IC50=2.4μM). In kinetic studies, chromenedione derivatives (1-3) emerged to be reversible, competitive inhibitors, whereas prenylated isoflavones (5-8) were noncompetitive inhibitors. PMID:26704263

  5. UBC9-dependent Association between Calnexin and Protein Tyrosine Phosphatase 1B (PTP1B) at the Endoplasmic Reticulum*

    PubMed Central

    Lee, Dukgyu; Kraus, Allison; Prins, Daniel; Groenendyk, Jody; Aubry, Isabelle; Liu, Wen-Xin; Li, Hao-Dong; Julien, Olivier; Touret, Nicolas; Sykes, Brian D.; Tremblay, Michel L.; Michalak, Marek

    2015-01-01

    Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling. We showed that calnexin and PTP1B form UBC9-dependent complexes, revealing a previously unrecognized contribution of calnexin to the retention of PTP1B at the ER membrane. This work shows that the SUMOylation machinery links two ER proteins from divergent pathways to potentially affect cellular protein quality control and energy metabolism. PMID:25586181

  6. Regulation of Signaling at Regions of Cell-Cell Contact by Endoplasmic Reticulum-Bound Protein-Tyrosine Phosphatase 1B

    PubMed Central

    Haj, Fawaz G.; Sabet, Ola; Kinkhabwala, Ali; Wimmer-Kleikamp, Sabine; Roukos, Vassilis; Han, Hong-Mei; Grabenbauer, Markus; Bierbaum, Martin; Antony, Claude; Neel, Benjamin G.; Bastiaens, Philippe I.

    2012-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed PTP that is anchored to the endoplasmic reticulum (ER). PTP1B dephosphorylates activated receptor tyrosine kinases after endocytosis, as they transit past the ER. However, PTP1B also can access some plasma membrane (PM)-bound substrates at points of cell-cell contact. To explore how PTP1B interacts with such substrates, we utilized quantitative cellular imaging approaches and mathematical modeling of protein mobility. We find that the ER network comes in close proximity to the PM at apparently specialized regions of cell-cell contact, enabling PTP1B to engage substrate(s) at these sites. Studies using PTP1B mutants show that the ER anchor plays an important role in restricting its interactions with PM substrates mainly to regions of cell-cell contact. In addition, treatment with PTP1B inhibitor leads to increased tyrosine phosphorylation of EphA2, a PTP1B substrate, specifically at regions of cell-cell contact. Collectively, our results identify PM-proximal sub-regions of the ER as important sites of cellular signaling regulation by PTP1B. PMID:22655028

  7. Carnitine Palmitoyltransferase-1b (CPT1b) Deficiency Aggravates Pressure-Overload-Induced Cardiac Hypertrophy due to Lipotoxicity

    PubMed Central

    He, Lan; Kim, Teayoun; Long, Qinqiang; Liu, Jian; Wang, Peiyong; Zhou, Yiqun; Ding, Yishu; Prasain, Jeevan; Wood, Philip A.; Yang, Qinglin

    2012-01-01

    Background Carnitine palmitoyltransferase 1(CPT1) is a rate-limiting step of mitochondrial β-oxidation by controlling the mitochondrial uptake of long-chain acyl-CoAs. The muscle isoform, CPT1b, is the predominant isoform expressed in the heart. It has been suggested that inhibiting CPT-1 activity by specific CPT-1 inhibitors exerts protective effects against cardiac hypertrophy and heart failure. However, clinical and animal studies have shown mixed results, thereby posting concerns on the safety of this class of drugs. Preclinical studies using genetically modified animal models should provide a better understanding of targeting CPT1 in order to evaluate it as a safe and effective therapeutic approach. Methods and Results Heterozygous CPT1b knockout mice (CPT1b+/−) were subjected to transverse aorta constriction (TAC)-induced pressure-overload. These mice showed overtly normal cardiac structure/function under the basal condition. Under a severe pressure-overload condition induced by two weeks of transverse aorta constriction (TAC), CPT1b+/− mice were susceptible to premature death with congestive heart failure. Under a milder pressure-overload condition, CPT1b+/− mice exhibited exacerbated cardiac hypertrophy and remodeling compared with that in wild-type littermates. There were more pronounced impairments of cardiac contraction with greater eccentric cardiac hypertrophy in CPT1b+/− than in controlled mice. Moreover, the CPT1b+/− heart exhibited exacerbated mitochondrial abnormalities and myocardial lipid accumulation with elevated triglycerides and ceramide content, leading to greater cardiomyocytes apoptosis. Conclusions We conclude that CPT1b deficiency can cause lipotoxicity in the heart under pathological stress, leading to exacerbation of cardiac pathology. Therefore, caution should be applied in the clinical use of CPT-1 inhibitors. PMID:22932257

  8. Ferredoxin 1b (Fdx1b) Is the Essential Mitochondrial Redox Partner for Cortisol Biosynthesis in Zebrafish.

    PubMed

    Griffin, Aliesha; Parajes, Silvia; Weger, Meltem; Zaucker, Andreas; Taylor, Angela E; O'Neil, Donna M; Müller, Ferenc; Krone, Nils

    2016-03-01

    Mitochondrial cytochrome P450 (CYP) enzymes rely on electron transfer from the redox partner ferredoxin 1 (FDX1) for catalytic activity. Key steps in steroidogenesis require mitochondrial CYP enzymes and FDX1. Over 30 ferredoxin mutations have been explored in vitro; however, no spontaneously occurring mutations have been identified in humans leaving the impact of FDX1 on steroidogenesis in the whole organism largely unknown. Zebrafish are an important model to study human steroidogenesis, because they have similar steroid products and endocrine tissues. This study aimed to characterize the influence of ferredoxin on steroidogenic capacity in vivo by using zebrafish. Zebrafish have duplicate ferredoxin paralogs: fdx1 and fdx1b. Although fdx1 was observed throughout development and in most tissues, fdx1b was expressed after development of the zebrafish interrenal gland (counterpart to the mammalian adrenal gland). Additionally, fdx1b was restricted to adult steroidogenic tissues, such as the interrenal, gonads, and brain, suggesting that fdx1b was interacting with steroidogenic CYP enzymes. By using transcription activator-like effector nucleases, we generated fdx1b mutant zebrafish lines. Larvae with genetic disruption of fdx1b were morphologically inconspicuous. However, steroid hormone analysis by liquid chromatography tandem mass spectrometry revealed fdx1b mutants failed to synthesize glucocorticoids. Additionally, these mutants had an up-regulation of the hypothalamus-pituitary-interrenal axis and showed altered dark-light adaptation, suggesting impaired cortisol signaling. Antisense morpholino knockdown confirmed Fdx1b is required for de novo cortisol biosynthesis. In summary, by using zebrafish, we generated a ferredoxin knockout model system, which demonstrates for the first time the impact of mitochondrial redox regulation on glucocorticoid biosynthesis in vivo. PMID:26650568

  9. Apoptotic neutrophils in the circulation of patients with glycogen storage disease type 1b (GSD1b).

    PubMed

    Kuijpers, Taco W; Maianski, Nikolai A; Tool, Anton T J; Smit, G Peter A; Rake, Jan Peter; Roos, Dirk; Visser, Gepke

    2003-06-15

    Glycogen storage disease type 1b (GSD1b) is a rare autosomal recessive disorder characterized by hypoglycemia, hepatomegaly, and growth retardation, and associated-for unknown reasons- with neutropenia and neutrophil dysfunction. In 5 GSD1b patients in whom nicotin-amide adenine dinucleotide phosphate-oxidase activity and chemotaxis were defective, we found that the majority of circulating granulocytes bound Annexin-V. The neutrophils showed signs of apoptosis with increased caspase activity, condensed nuclei, and perinuclear clustering of mitochondria to which the proapoptotic Bcl-2 member Bax had translocated already. Granulocyte colony-stimulating factor (G-CSF) addition to in vitro cultures did not rescue the GSD1b neutrophils from apoptosis as occurs with G-CSF-treated control neutrophils. Moreover, the 2 GSD1b patients on G-CSF treatment did not show significantly lower levels of apoptotic neutrophils in the bloodstream. Current understanding of neutrophil apoptosis and the accompanying functional demise suggests that GSD1b granulocytes are dysfunctional because they are apoptotic. PMID:12576310

  10. Ahcyl2 upregulates NBCe1-B via multiple serine residues of the PEST domain-mediated association

    PubMed Central

    Park, Pil Whan; Ahn, Jeong Yeal

    2016-01-01

    Inositol-1,4,5-triphosphate [IP3] receptors binding protein released with IP3 (IRBIT) was previously reported as an activator of NBCe1-B. Recent studies have characterized IRBIT homologue S-Adenosylhomocysteine hydrolase-like 2 (AHCYL2). AHCYL2 is highly homologous to IRBIT (88%) and heteromerizes with IRBIT. The two important domains in the N-terminus of AHCYL2 are a PEST domain and a coiled-coil domain which are highly comparable to those in IRBIT. Therefore, in this study, we tried to identify the role of those domains in mouse AHCYL2 (Ahcyl2), and we succeeded in identifying PEST domain of Ahcyl2 as a regulation region for NBCe1-B activity. Site directed mutagenesis and coimmunoprecipitation assay showed that NBCe1-B binds to the N-terminal Ahcyl2-PEST domain, and its binding is determined by the phosphorylation of 4 critical serine residues (Ser151, Ser154, Ser157, and Ser160) in Ahcyl2 PEST domain. Also we revealed that 4 critical serine residues in Ahcyl2 PEST domain are indispensable for the activation of NBCe1-B using measurement of intracellular pH experiment. Thus, these results suggested that the NBCe1-B is interacted with 4 critical serine residues in Ahcyl2 PEST domain, which play an important role in intracellular pH regulation through NBCe1-B. PMID:27382360

  11. Oncolytic Replication of E1b-Deleted Adenoviruses

    PubMed Central

    Cheng, Pei-Hsin; Wechman, Stephen L.; McMasters, Kelly M.; Zhou, Heshan Sam

    2015-01-01

    Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads) are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viral mRNA export, and cell cycle disruption. PMID:26561828

  12. Oncolytic Replication of E1b-Deleted Adenoviruses.

    PubMed

    Cheng, Pei-Hsin; Wechman, Stephen L; McMasters, Kelly M; Zhou, Heshan Sam

    2015-11-01

    Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads) are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viralmRNAexport, and cell cycle disruption. PMID:26561828

  13. Effect of ganglioside GT1b on the in vitro maturation of porcine oocytes and embryonic development

    PubMed Central

    HWANG, Seon-Ung; JEON, Yubyeol; YOON, Junchul David; CAI, Lian; KIM, Eunhye; YOO, Hyunju; KIM, Kyu-Jun; PARK, Kyu Mi; JIN, Minghui; KIM, Hyunggee; HYUN, Sang-Hwan

    2015-01-01

    Ganglioside is an acidic glycosphingolipid with sialic acids residues. This study was performed to investigate the effect and mechanism of ganglioside GT1b in porcine oocytes in the process of in vitro maturation (IVM) and preimplantation development. Metaphase II (MII) rates were significantly (P < 0.05) different between the control group and the 5 nM GT1b treatment group. Intracellular glutathione (GSH) levels in oocytes matured with 5 nM and 20 nM and GT1b decreased significantly (P < 0.05). The 10 nM group showed a significant (P < 0.05) decrease in intracellular reactive oxygen species (ROS) levels compared with the control group. Subsequently, the level of intracellular Ca2+ in oocytes treated with different concentrations of GT1b was measured. Intracellular Ca2+ was significantly (P < 0.05) increased with a higher concentration of GT1b in a dose-dependent manner. Real-time PCR was performed and showed that the expression of bradykinin 2 receptor (B2R) and calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) in cumulus cells was significantly (P < 0.05) decreased in the 20 nM GT1b treatment group. Treatment with 5 nM GT1b significantly (P < 0.05) decreased the expression of CaMKIIδ. In oocytes, treatment with 5 nM GT1b significantly (P < 0.05) decreased CaMKIIγ and POU5F1 (POU domain, class 5, transcription factor 1). However, treatment with 20 nM GT1b significantly (P < 0.05) increased the expression of POU5F1. Finally, embryonic developmental data showed no significant differences in the two experiments (parthenogenesis and in vitro fertilization). In conclusion, the results of the present study indicated that GT1b plays an important role in increasing the nuclear maturation rate and decreasing the intracellular ROS levels during IVM. However, GT1b inhibited maturation of the cytoplasm by maintaining intracellular Ca2+ in the process of oocyte maturation regardless of the cell cycle stage. Therefore, GT1b is thought to act on another mechanism

  14. Anthrax Lethal Toxin Induced Lysosomal Membrane Permeabilization and Cytosolic Cathepsin Release Is Nlrp1b/Nalp1b-Dependent

    PubMed Central

    Averette, Kathleen M.; Pratt, Matthew R.; Yang, Yanan; Bassilian, Sara; Whitelegge, Julian P.; Loo, Joseph A.; Muir, Tom W.; Bradley, Kenneth A.

    2009-01-01

    NOD-like receptors (NLRs) are a group of cytoplasmic molecules that recognize microbial invasion or ‘danger signals’. Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell death termed pyronecrosis. Bacillus anthracis lethal toxin (LT), is recognized by a subset of alleles of the NLR protein Nlrp1b, resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane permeabilization (LMP). The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis. PMID:19924255

  15. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN.

    PubMed

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions (O2∙-) in mitochondria, either by chemical inhibition of complex I or by genetic silencing of O2∙--dismutating mitochondrial Sod2. The O2∙--dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced O2∙- led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated O2∙--induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with O2∙-, PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  16. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN

    PubMed Central

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions () in mitochondria, either by chemical inhibition of complex I or by genetic silencing of -dismutating mitochondrial Sod2. The -dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated -induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with , PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  17. Family-based study of AVPR1B association and interaction with stressful life events on depression and anxiety in suicide attempts.

    PubMed

    Ben-Efraim, Yair J; Wasserman, Danuta; Wasserman, Jerzy; Sokolowski, Marcus

    2013-07-01

    The cortisol response to psychosocial stress may become dysregulated in stress-related disorders. It is potentiated by pituitary secretion of adrenocorticotropic hormone (ACTH), which is, in part, regulated by arginine vasopressin receptor-1B (AVPR1B). AVPR1B variants were previously reported to associate with mood and anxiety disorders. This study aims, for the first time, to investigate association of AVPR1B genetic variants with mood and anxiety outcomes in suicidal behavior.Using a family-based study design of 660 complete nuclear family trios with offspring who have made a suicide attempt (SA), we tested the direct association and linkage of AVPR1B single nucleotide polymorphisms (SNPs) with SA, as well as with depression and anxiety in SA. Main findings were the association and linkage of AVPR1B exon 1 SNP rs33990840 and a major 6-SNP haplotype representative of all common AVPR1B-SNPs, on the outcome of high Beck Depression Inventory scores in SA. By contrast, genetic associations with lifetime diagnoses of depression and anxiety in SA or gene-environment interactions between AVPR1B variants and stressful life events (SLEs) were not significant. An exploratory screen of interactions between AVPR1B and CRHR1 (corticotropin-releasing hormone receptor-1), the principal pituitary regulator of ACTH secretion, showed no support for gene-gene interactions on the studied outcomes. The results suggest that AVPR1B genetic variation, eg, non-synonymous SNP rs33990840 mediating putative consequences on ligand binding, has a role in SA etiology characterized by elevated depression symptoms, without involving AVPR1B-moderation of SLEs. PMID:23422793

  18. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    SciTech Connect

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su; Kang, Wonku; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  19. QSAR studies of benzofuran/benzothiophene biphenyl derivatives as inhibitors of PTPase-1B

    PubMed Central

    Kaushik, D.; Kumar, R.; Saxena, A. K.

    2010-01-01

    Objectives: Insulin resistance is associated with a defect in protein tyrosine phosphorylation in the insulin signal transduction cascade. The PTPase enzyme dephosphorylates the active form of the insulin receptor and thus attenuates its tyrosine kinase activity, therefore, the need for a potent PTPase inhibitor exists, with the intention of which the QSAR was performed. Materials and Methods: Quantitative structure-activity relationship (QSAR) has been established on a series of 106 compounds considering 27 variables, for novel biphenyl analogs, using the SYSTAT (Version 7.0) software, for their protein tyrosine phosphatase (PTPase-1B) inhibitor activity, in order to understand the essential structural requirement for binding with the receptor. Results: Among several regression models, one per series was selected on the basis of a high correlation coefficient (r, 0.86), least standard deviation (s, 0.234), and a high value of significance for the maximum number of subjects (n, 101). Conclusions: The influence of the different physicochemical parameters of the substituents in various positions has been discussed by generating the best QSAR model using multiple regression analysis, and the information thus obtained from the present study can be used to design and predict more potent molecules as PTPase-1B inhibitors, prior to their synthesis. PMID:21814427

  20. 9 CFR 73.1b - Quarantine policy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.1b... various areas because of cattle scabies and has issued the regulations in this part governing the interstate movement of cattle from such areas. It is the policy of the Department to quarantine...

  1. 9 CFR 73.1b - Quarantine policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.1b... various areas because of cattle scabies and has issued the regulations in this part governing the interstate movement of cattle from such areas. It is the policy of the Department to quarantine...

  2. 9 CFR 73.1b - Quarantine policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.1b... various areas because of cattle scabies and has issued the regulations in this part governing the interstate movement of cattle from such areas. It is the policy of the Department to quarantine...

  3. 9 CFR 73.1b - Quarantine policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.1b... various areas because of cattle scabies and has issued the regulations in this part governing the interstate movement of cattle from such areas. It is the policy of the Department to quarantine...

  4. 9 CFR 73.1b - Quarantine policy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.1b... various areas because of cattle scabies and has issued the regulations in this part governing the interstate movement of cattle from such areas. It is the policy of the Department to quarantine...

  5. 18 CFR 1b.18 - Right to submit statements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Right to submit... COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.18 Right to submit statements. Any person may, at any time during the course of an investigation, submit documents,...

  6. PTP1B: mediating ROS signaling to silence genes

    PubMed Central

    Boivin, Benoit; Tonks, Nicholas K.

    2015-01-01

    Numerous studies have shown that normal cells often respond to the activation of oncogenes by undergoing reactive oxygen species-dependent induction of senescence. Here, we discuss our recent publication identifying protein tyrosine phosphatase PTP1B as an important redox-controlled checkpoint for senescence downstream of oncogenic RAS.

  7. AIRS Level 1b Algorithm Theoretical Basis Document

    NASA Technical Reports Server (NTRS)

    Aumann, H.; Gregorich, D.; Gaiser, S.; Hagan, D.; Pagano, T.; Ting, D.

    2000-01-01

    The level 1b Algorithm Theoretical Basis Document (ATBD) describes the theoretical bases of the algorithms used to convert the raw detector output (data numbers) from the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder Brazil (HSB) to physical radiance units and, in the case of AIRS, perform in-orbit spectral calibrations.

  8. Leukocyte transcellular diapedesis: Rap1b is in control

    PubMed Central

    Filippi, Marie-Dominique

    2015-01-01

    The neutrophil transmigration across the blood endothelial cell barrier represents the prerequisite step of innate inflammation. It is well known that neutrophils cross the endothelial barrier by transmigrating at the endothelial cell junction (‘paracellular’). However, in vivo and in vitro evidence have clearly demonstrated occurrence of an alternate mode of migration directly through the endothelial cell body (‘transcellular’). Despite our knowledge on mechanisms of transendothelial migration, it remains unclear which factors determine distinct modes of migration. We recently found that the Ras-like Rap1b GTPase limits neutrophil transcellular migration. Rap1b restrains transcellular migration by suppressing Akt-driven invasive protrusions while leaving the paracellular route unaffected. Furthermore, Rap1b limits neutrophil tissue infiltration in mice and prevents hyper susceptibility to endotoxin shock. These findings uncover a novel role for Rap1b in neutrophil migration and inflammation. Importantly, they offer emerging evidences that paracellular and transcellular migration of neutrophils are regulated by separate mechanisms. Here, we discuss the mechanisms of neutrophil transmigration and their clinical importance for vascular integrity and innate inflammation. PMID:26451346

  9. Saturn 1B and Saturn 5 computer programs, software

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information on the progress and development of all Saturn 1B and Saturn 5 computer programs is presented. On-line, operating systems, test programs, and on-line display descriptions are given along with off-line programs. All programs are listed in tabular form.

  10. Listeria meningoencephalitis and anti-GQ1b antibody syndrome.

    PubMed

    Vergori, A; Masi, G; Donati, D; Ginanneschi, F; Annunziata, P; Cerase, A; Mencarelli, M; Rossetti, B; De Luca, A; Zanelli, G

    2016-08-01

    We report the first case of Listeria monocytogenes meningoencephalitis associated with anti-GQ1b antibody syndrome in an immunocompetent adult. A prompt diagnosis, made thanks to the multidisciplinary contribution, allowed a combined therapeutic approach leading to final favourable outcome, despite several intercurrent complications. PMID:26825308

  11. The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects

    PubMed Central

    Oliveira, Cláudia C.; van Veelen, Peter A.; Querido, Bianca; de Ru, Arnoud; Sluijter, Marjolein; Laban, Sandra; Drijfhout, Jan W.; van der Burg, Sjoerd H.; Offringa, Rienk

    2010-01-01

    The nonclassical major histocompatibility complex (MHC) Qa-1b accommodates monomorphic leader peptides and functions as a ligand for germ line receptors CD94/NKG2, which are expressed by natural killer cells and CD8+ T cells. We here describe that the conserved peptides are replaced by a novel peptide repertoire of surprising diversity as a result of impairments in the antigen-processing pathway. This novel peptide repertoire represents immunogenic neoantigens for CD8+ T cells, as we found that these Qa-1b–restricted T cells dominantly participated in the response to tumors with processing deficiencies. A surprisingly wide spectrum of target cells, irrespective of transformation status, MHC background, or type of processing deficiency, was recognized by this T cell subset, complying with the conserved nature of Qa-1b. Target cell recognition depended on T cell receptor and Qa-1b interaction, and immunization with identified peptide epitopes demonstrated in vivo priming of CD8+ T cells. Our data reveal that Qa-1b, and most likely its human homologue human leukocyte antigen-E, is important for the defense against processing-deficient cells by displacing the monomorphic leader peptides, which relieves the inhibition through CD94/NKG2A on lymphocytes, and by presenting a novel repertoire of immunogenic peptides, which recruits a subset of cytotoxic CD8+ T cells. PMID:20038604

  12. Differentiation of 5-hydroxytryptamine2 receptor subtypes using sup 125 I-R-(-)2,5-dimethoxy-4-iodo-phenylisopropylamine and sup 3 H-ketanserin

    SciTech Connect

    McKenna, D.J.; Peroutka, S.J. )

    1989-10-01

    The radioligand binding characteristics of 125I-R-(-)4-iodo-2,5-dimethoxyphenylisopropylamine (125I-R-(-)DOI) and 3H-ketanserin were compared in rat and bovine cortical membranes. In rat cortex, 125I-R-(-)DOI labels a relatively low density of binding sites (Bmax = 2.5 +/- 0.2 pmol/gm tissue) with high affinity (KD = 0.63 +/- 0.09 nM). In bovine cortex, specific binding of 125I-R-(-)DOI represents less than 20% of total binding at radioligand concentrations above 0.6 nM, and, therefore, the data cannot be analyzed adequately by Scatchard transformation. By contrast, 3H-ketanserin displays saturable, specific high-affinity binding in both rat cortex (KD = 1.0 +/- 0.1 nM; Bmax = 11 +/- 0.4 pmol/gm tissue) and bovine cortex (KD = 1.2 +/- 0.2 nM; Bmax = 5.3 +/- 0.4 pmol/gm tissue). Ki values for 30 drugs were determined for 125I-R-(-)DOI-labeled sites in rat cortex and 3H-ketanserin-labeled sites in bovine cortex. 5-Hydroxytryptamine (5-HT) displays 250-fold higher selectivity for the 125I-R-(-)DOI-labeled sites (Ki = 3.0 +/- 0.7 nM) than for the 3H-ketanserin-labeled sites (Ki = 750 +/- 50 nM). Structural congeners of R-(-)DOI display 80- to 160-fold higher affinity for the 125I-R-(-)DOI binding site than for the 3H-ketanserin-labeled binding site. d-LSD and putative 5-HT2 antagonists are approximately equipotent at both sites. Significant correlations were found between drug affinities for 125I-R-(-)DOI-labeled sites in rat cortex and putative 5-HT2A sites labeled previously by 77Br-R-(-)DOB (r = 0.93, p less than 0.01), putative 5-HT2B sites labeled by 3H-ketanserin in bovine cortex (r = 0.63, p less than 0.01), and 5-HT1C binding sites that have been characterized by other investigators (r = 0.78, p less than 0.01). No significant correlations were found between drug affinities for 125I-R-(-)DOI-labeled sites in rat cortex and 5-HT1A, 5-HT1B, 5-HT1D, or 5-HT3 sites, as determined by previous investigators.

  13. 20 CFR 655.700 - What statutory provisions govern the employment of H-1B, H-1B1, and E-3 nonimmigrants and how do...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (Public Law 106-95) and the regulations issued thereunder, 20 CFR part 655, subparts L and M. (3) E-3... employment of H-1B, H-1B1, and E-3 nonimmigrants and how do employers apply for H-1B, H-1B1, and E-3 visas... Requirements for Employers Seeking To Employ Nonimmigrants on H-1b Visas in Specialty Occupations and...

  14. 20 CFR 655.700 - What statutory provisions govern the employment of H-1B, H-1B1, and E-3 nonimmigrants and how do...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (Public Law 106-95) and the regulations issued thereunder, 20 CFR part 655, subparts L and M. (3) E-3... employment of H-1B, H-1B1, and E-3 nonimmigrants and how do employers apply for H-1B, H-1B1, and E-3 visas... Requirements for Employers Seeking To Employ Nonimmigrants on H-1b Visas in Specialty Occupations and...

  15. 20 CFR 655.700 - What statutory provisions govern the employment of H-1B, H-1B1, and E-3 nonimmigrants and how do...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (Public Law 106-95) and the regulations issued thereunder, 20 CFR part 655, subparts L and M. (3) E-3... employment of H-1B, H-1B1, and E-3 nonimmigrants and how do employers apply for H-1B, H-1B1, and E-3 visas... Requirements for Employers Seeking To Employ Nonimmigrants on H-1b Visas in Specialty Occupations and...

  16. BMPR1a and BMPR1b Signaling Exert Opposing Effects on Gliosis after Spinal Cord Injury

    PubMed Central

    Sahni, Vibhu; Mukhopadhyay, Abhishek; Tysseling, Vicki; Hebert, Amy; Birch, Derin; Mcguire, Tammy L.; Stupp, Samuel I.; Kessler, John A.

    2011-01-01

    Astrogliosis following spinal cord injury (SCI) involves an early hypertrophic response that is beneficial and a subsequent formation of a dense scar. We investigated the role of bone morphogenetic protein (BMP) signaling in gliosis after SCI and find that BMPR1a and BMPR1b signaling exerts opposing effects on hypertrophy. Conditional ablation of BMPR1a from glial fibrillary acidic protein (GFAP)-expressing cells leads to defective astrocytic hypertrophy, increased infiltration by inflammatory cells, and reduced axon density. BMPR1b-null mice conversely develop “hyperactive” reactive astrocytes and consequently have smaller lesion volumes. The effects of ablation of either receptor are reversed in the double knock-out animals. These findings indicate that BMPR1a and BMPR1b exert directly opposing effects on the initial reactive astrocytic hypertrophy. Also, BMPR1b knock-out mice have an attenuated glial scar in the chronic stages following injury, suggesting that it has a greater role in glial scar progression. To elucidate the differing roles of the two receptors in astrocytes, we examined the effects of ablation of either receptor in serum-derived astrocytes in vitro. We find that the two receptors exert opposing effects on the posttranscriptional regulation of astrocytic microRNA-21. Further, overexpression of microRNA-21 in wild-type serum-derived astrocytes causes a dramatic reduction in cell size accompanied by reduction in GFAP levels. Hence, regulation of microRNA-21 by BMP signaling provides a novel mechanism for regulation of astrocytic size. Targeting specific BMPR subunits for therapeutic purposes may thus provide an approach for manipulating gliosis and enhancing functional outcomes after SCI. PMID:20130193

  17. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis.

    PubMed

    Kumar, Anita; Dumasia, Kushaan; Deshpande, Sharvari; Gaonkar, Reshma; Balasinor, N H

    2016-08-01

    Actin remodeling is a vital process for signaling, movement and survival in all cells. In the testes, extensive actin reorganization occurs at spermatid-Sertoli cell junctions during sperm release (spermiation) and at inter Sertoli cell junctions during restructuring of the blood testis barrier (BTB). During spermiation, tubulobulbar complexes (TBCs), rich in branched actin networks, ensure recycling of spermatid-Sertoli cell junctional molecules. Similar recycling occurs during BTB restructuring around the same time as spermiation occurs. Actin related protein 2/3 complex is an essential actin nucleation and branching protein. One of its subunits, Arpc1b, was earlier found to be down-regulated in an estrogen-induced rat model of spermiation failure. Also, Arpc1b was found to be estrogen responsive through estrogen receptor beta in seminiferous tubule culture. Here, knockdown of Arpc1b by siRNA in adult rat testis led to defects in spermiation caused by failure in TBC formation. Knockdown also compromised BTB integrity and caused polarity defects of mature spermatids. Apart from these effects pertaining to Sertoli cells, Arpc1b reduction perturbed ability of germ cells to enter G2/M phase thus hindering cell division. In summary, Arpc1b, an estrogen responsive gene, is a regulator of spermiation, mature spermatid polarity, BTB integrity and cell division during adult spermatogenesis. PMID:27113856

  18. BmRobo1a and BmRobo1b control axon repulsion in the silkworm Bombyx mori.

    PubMed

    Li, Xiao-Tong; Yu, Qi; Zhou, Qi-Sheng; Zhao, Xiao; Liu, Zhao-Yang; Cui, Wei-Zheng; Liu, Qing-Xin

    2016-02-15

    The development of the nervous system is based on the growth and connection of axons, and axon guidance molecules are the dominant regulators during this course. Robo, as the receptor of axon guidance molecule Slit, plays a key role as a conserved repellent cue for axon guidance during the development of the central nervous system. However, the function of Robo in the silkworm Bombyx mori is unknown. In this study, we cloned two novel robo genes in B. mori (Bmrobo1a and Bmrobo1b). BmRobo1a and BmRobo1b lack an Ig and a FNIII domain in the extracellular region and the CC0 and CC2 motifs in the intracellular region. BmRobo1a and BmRobo1b were colocalized with BmSlit in the neuropil. Knock-down of Bmrobo1a and Bmrobo1b by RNA interference (RNAi) resulted in abnormal development of axons. Our results suggest that BmRobo1a and BmRobo1b have repulsive function in axon guidance, even though their structures are different from Robo1 of other species. PMID:26642898

  19. Serotonin suppresses β-casein expression via PTP1B activation in human mammary epithelial cells.

    PubMed

    Chiba, Takeshi; Maeda, Tomoji; Sanbe, Atsushi; Kudo, Kenzo

    2016-04-22

    Serotonin (5-hydroxytriptamine, 5-HT) has an important role in milk volume homeostasis within the mammary gland during lactation. We have previously shown that the expression of β-casein, a differentiation marker in mammary epithelial cells, is suppressed via 5-HT-mediated inhibition of signal transduction and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial MCF-12A cell line. In addition, the reduction of β-casein in turn was associated with 5-HT7 receptor expression in the cells. The objective of this study was to determine the mechanisms underlying the 5-HT-mediated suppression of β-casein and STAT5 phosphorylation. The β-casein level and phosphorylated STAT5 (pSTAT5)/STAT5 ratio in the cells co-treated with 5-HT and a protein kinase A (PKA) inhibitor (KT5720) were significantly higher than those of cells treated with 5-HT alone. Exposure to 100 μM db-cAMP for 6 h significantly decreased the protein levels of β-casein and pSTAT5 and the pSTAT5/STAT5 ratio, and significantly increased PTP1B protein levels. In the cells co-treated with 5-HT and an extracellular signal-regulated kinase1/2 (ERK) inhibitor (FR180294) or Akt inhibitor (124005), the β-casein level and pSTAT5/STAT5 ratio were equal to those of cells treated with 5-HT alone. Treatment with 5-HT significantly induced PTP1B protein levels, whereas its increase was inhibited by KT5720. In addition, the PTP1B inhibitor sc-222227 increased the expression levels of β-casein and the pSTAT5/STAT5 ratio. Our observations indicate that PTP1B directly regulates STAT5 phosphorylation and that its activation via the cAMP/PKA pathway downstream of the 5-HT7 receptor is involved in the suppression of β-casein expression in MCF-12A cells. PMID:27016479

  20. PTP1B: a new therapeutic target for Rett syndrome.

    PubMed

    Tautz, Lutz

    2015-08-01

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that is characterized by successive loss of acquired cognitive, social, and motor skills and development of autistic behavior. RTT affects approximately 1 in 10,000 live female births and is the second most common cause of severe mental retardation in females, after Down syndrome. Currently, there is no cure or effective therapy for RTT. Approved treatment regimens are presently limited to supportive management of specific physical and mental disabilities. In this issue, Krishnan and colleagues reveal that the protein tyrosine phosphatase PTP1B is upregulated in patients with RTT and in murine models and provide strong evidence that targeting PTP1B has potential as a viable therapeutic strategy for the treatment of RTT. PMID:26214520

  1. COMMIX-1B. 3-D Single-Phase Thermal Hydraulics

    SciTech Connect

    Wildman, D.J.

    1986-01-31

    COMMIX-1B is designed to perform steady-state or transient, single-phase, three-dimensional analysis of fluid flow with heat transfer in a single-component or multicomponent system. The program was developed for the analysis of heat transfer and fluid flow processes in a nuclear reactor system; however, it can easily be applied to non-nuclear systems requiring heat transfer and/or fluid flow analysis. COMMIX-1B solves the conservation equations of mass, momentum, and energy, and transport equations of turbulence parameters and provides detailed local velocity, temperature, and pressure fields for the problem under consideration. It is capable of solving thermal-hydraulic problems involving either a single component, such as a rod bundle, reactor plenum, piping system, heat exchanger, etc., or a multicomponent system that is a combination of these components.

  2. Pharmacophore modeling for protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Bharatham, Kavitha; Bharatham, Nagakumar; Lee, Keun Woo

    2007-05-01

    A three dimensional chemical feature based pharmacophore model was developed for the inhibitors of protein tyrosine phosphatase 1B (PTP1B) using the CATALYST software, which would provide useful knowledge for performing virtual screening to identify new inhibitors targeted toward type II diabetes and obesity. A dataset of 27 inhibitors, with diverse structural properties, and activities ranging from 0.026 to 600 microM, was selected as a training set. Hypol, the most reliable quantitative four featured pharmacophore hypothesis, was generated from a training set composed of compounds with two H-bond acceptors, one hydrophobic aromatic and one ring aromatic features. It has a correlation coefficient, RMSD and cost difference (null cost-total cost) of 0.946, 0.840 and 65.731, respectively. The best hypothesis (Hypol) was validated using four different methods. Firstly, a cross validation was performed by randomizing the data using the Cat-Scramble technique. The results confirmed that the pharmacophore models generated from the training set were valid. Secondly, a test set of 281 molecules was scored, with a correlation of 0.882 obtained between the experimental and predicted activities. Hypol performed well in correctly discriminating the active and inactive molecules. Thirdly, the model was investigated by mapping on two PTP1B inhibitors identified by different pharmaceutical companies. The Hypol model correctly predicted these compounds as being highly active. Finally, docking simulations were performed on few compounds to substantiate the role of the pharmacophore features at the binding site of the protein by analyzing their binding conformations. These multiple validation approaches provided confidence in the utility of this pharmacophore model as a 3D query for virtual screening to retrieve new chemical entities showing potential as potent PTP1B inhibitors. PMID:17615669

  3. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics

    PubMed Central

    Lancaster, Cynthia S.; Finkelstein, David; Ware, Russell E.; Sparreboom, Alex

    2013-01-01

    Hydroxyurea is currently the only FDA-approved drug that ameliorates the pathophysiology of sickle cell anemia. Unfortunately, substantial interpatient variability in the pharmacokinetics (PK) of hydroxyurea may result in variation of the drug's efficacy. However, little is known about mechanisms that modulate hydroxyurea PK. Recent in vitro studies identifying hydroxyurea as a substrate for organic anion transporting polypeptide (OATP1B) transporters prompted the current investigation assessing the role of OATP1B transporters in modulating hydroxyurea PK. Using wild-type and Oatp1b knockout (Oatp1b−/−) mice, hydroxyurea PK was analyzed in vivo by measuring [14C]hydroxyurea distribution in plasma, kidney, liver, urine, or the exhaled 14CO2 metabolite. Plasma levels were significantly reduced by 20% in Oatp1b−/− mice compared with wild-type (area under the curve of 38.64 or 48.45 μg·h−1·ml−1, respectively) after oral administration, whereas no difference was observed between groups following intravenous administration. Accumulation in the kidney was significantly decreased by twofold in Oatp1b−/− mice (356.9 vs. 748.1 pmol/g), which correlated with a significant decrease in urinary excretion. Hydroxyurea accumulation in the liver was also decreased (136.6 vs. 107.3 pmol/g in wild-type or Oatp1b−/− mice, respectively) correlating with a decrease in exhaled 14CO2. These findings illustrate that deficiency of Oatp1b transporters alters the absorption, distribution, and elimination of hydroxyurea thus providing the first in vivo evidence that cell membrane transporters may play a significant role in modulating hydroxyurea PK. Future studies to investigate other transporters and their role in hydroxyurea disposition are warranted for understanding the sources of variation in hydroxyurea's PK. PMID:23986199

  4. Lithostratigraphy from downhole logs in Hole AND-1B, Antarctica

    USGS Publications Warehouse

    Williams, Trevor; Morin, Roger H.; Jarrard, Richard D.; Jackolski, Chris L.; Henrys, Stuart A.; Niessen, Frank; Magens, Diana; Kuhn, Gerhard; Monien, Donata; Powell, Ross D.

    2012-01-01

    The ANDRILL (Antarctic Drilling Project) McMurdo Ice Shelf (MIS) project drilled 1285 m of sediment in Hole AND–1B, representing the past 12 m.y. of glacial history. Downhole geophysical logs were acquired to a depth of 1018 mbsf (meters below seafloor), and are complementary to data acquired from the core. The natural gamma radiation (NGR) and magnetic susceptibility logs are particularly useful for understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND–1B. NGR logs cover the entire interval from the seafloor to 1018 mbsf, and magnetic susceptibility and other logs covered the open hole intervals between 692 and 1018 and 237–342 mbsf. In the upper part of AND–1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamictite (containing K-bearing clays, K-feldspar, mica, and heavy minerals). In the lower open hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamictites (relatively high in magnetite). Sandstones can be distinguished by their high resistivity values in AND–1B. On the basis of these three downhole logs, diamictite, claystones, and sandstones can be predicted correctly for 74% of the 692–1018 mbsf interval. The logs were then used to predict facies for the 6% of this interval that was unrecovered by coring. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties and help refine parts of the lithostratigraphy, for example, the varying terrigenous content of diatomites and the transitions from subice diamictite to open-water diatomite.

  5. NICMOS OBSERVATIONS OF THE TRANSITING HOT JUPITER XO-1b

    SciTech Connect

    Burke, Christopher J.; McCullough, P. R.; Bergeron, L. E.; Long, Douglas; Gilliland, Ronald L.; Nelan, Edmund P.; Valenti, Jeff A.; Johns-Krull, Christopher M.; Janes, Kenneth A.

    2010-08-20

    We refine the physical parameters of the transiting hot Jupiter planet XO-1b and its stellar host XO-1 using Hubble Space Telescope (HST) NICMOS observations. XO-1b has a radius R{sub p} = 1.21 {+-} 0.03 R{sub J} , and XO-1 has a radius R{sub *} = 0.94 {+-} 0.02 R{sub sun}, where the uncertainty in the mass of XO-1 dominates the uncertainty of R{sub p} and R{sub *}. There are no significant differences in the XO-1 system properties between these broadband NIR observations and previous determinations based upon ground-based optical observations. We measure two transit timings from these observations with 9 s and 15 s precision. As a residual to a linear ephemeris model, there is a 2.0{sigma} timing difference between the two HST visits that are separated by three transit events (11.8 days). These two transit timings and additional timings from the literature are sufficient to rule out the presence of an Earth mass planet orbiting in 2:1 mean motion resonance coplanar with XO-1b. We identify and correct for poorly understood 'gain-like' variations present in NICMOS time series data. This correction reduces the effective noise in time series photometry by a factor of 2 for the case of XO-1.

  6. Presynaptic modulation of 5-HT release in the rat septal region.

    PubMed

    Rutz, S; Riegert, C; Rothmaier, A K; Jackisch, R

    2007-05-11

    5-HT released from serotonergic axon terminals in the septal nuclei modulates the activity of septal output neurons (e.g. septohippocampal cholinergic neurons) bearing somatodendritic 5-HT receptors. Therefore, we studied the mechanisms involved in the presynaptic modulation of 5-HT release in the lateral (LS) and medial septum (MS), and the diagonal band of Broca (DB). HPLC analysis showed that tissue concentrations of noradrenaline, dopamine and 5-HT were highest in DB (DB>MS>LS). Slices prepared from LS, MS and DB regions were preincubated with [(3)H]5-HT, superfused in the presence of 6-nitro-2-(1-piperazinyl)-quinoline (6-nitroquipazine) and electrically stimulated up to three times (first electrical stimulation period (S(1)), S(2), S(3); 360 pulses, 3 Hz, 2 ms, 26-28 mA). In all septal regions the Ca(2+)-dependent and tetrodotoxin-sensitive electrically-evoked overflow of [(3)H] was inhibited by the 5-HT(1B) agonist CP-93,129 and the alpha(2)-adrenoceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline tartrate (UK-14,304). Also the mu- and kappa-opioid receptor agonists (d-Ala(2), N-Me-Phe(4), glycinol(5))-enkephalin (DAMGO) and [trans-(1S,2S(-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl) cyclohexyl]-benzenacetamide hydro-chloride] (U-50,488H), respectively, acted inhibitory (although less potently), whereas the delta-opioid receptor agonist (d-Pen(2), d-Pen(5))-enkephalin (DPDPE), the dopamine D(2) receptor agonist quinpirole and the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine were all ineffective; the GABA(B) receptor agonist baclofen had weak effects. All inhibitory effects of the agonists were antagonized by the corresponding antagonists (3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide dihydrochloride (GR-55,562), idazoxan, naloxone, nor-binaltorphimine), which also significantly enhanced the evoked release of 5-HT at S(1). It is concluded that 5-HT release in septal nuclei of the rat is modulated by

  7. Regulation of human PTCH1b expression by different 5' untranslated region cis-regulatory elements

    PubMed Central

    Ozretić, Petar; Bisio, Alessandra; Musani, Vesna; Trnski, Diana; Sabol, Maja; Levanat, Sonja; Inga, Alberto

    2015-01-01

    PTCH1 gene codes for a 12-pass transmembrane receptor with a negative regulatory role in the Hedgehog-Gli signaling pathway. PTCH1 germline mutations cause Gorlin syndrome, a disorder characterized by developmental abnormalities and tumor susceptibility. The autosomal dominant inheritance, and the evidence for PTCH1 haploinsufficiency, suggests that fine-tuning systems of protein patched homolog 1 (PTC1) levels exist to properly regulate the pathway. Given the role of 5' untranslated region (5'UTR) in protein expression, our aim was to thoroughly explore cis-regulatory elements in the 5'UTR of PTCH1 transcript 1b. The (CGG)n polymorphism was the main potential regulatory element studied so far but with inconsistent results and no clear association between repeat number and disease risk. Using luciferase reporter constructs in human cell lines here we show that the number of CGG repeats has no strong impact on gene expression, both at mRNA and protein levels. We observed variability in the length of 5'UTR and changes in abundance of the associated transcripts after pathway activation. We show that upstream AUG codons (uAUGs) present only in longer 5'UTRs could negatively regulate the amount of PTC1 isoform L (PTC1-L). The existence of an internal ribosome entry site (IRES) observed using different approaches and mapped in the region comprising the CGG repeats, would counteract the effect of the uAUGs and enable synthesis of PTC1-L under stressful conditions, such as during hypoxia. Higher relative translation efficiency of PTCH1b mRNA in HEK 293T cultured hypoxia was observed by polysomal profiling and Western blot analyses. All our results point to an exceptionally complex and so far unexplored role of 5'UTR PTCH1b cis-element features in the regulation of the Hedgehog-Gli signaling pathway. PMID:25826662

  8. Preparation, Purification, and Identification of a Monoclonal Antibody Against NRP2 b1b2 Domain.

    PubMed

    Yang, Yun; Chen, Na; Li, Zhe; Wang, Xian-Jiang; Wang, Sheng-Yu; Tingwu; Luo, Fang-Hong; Yan, Jiang-Hua

    2015-10-01

    First identified as a high-affinity kinase-deficient receptor for class-3 semaphorins and vascular endothelial growth factor (VEGF) families, Neuropilin2 (NRP2) is a transmembrane non-tyrosine-kinase glycoprotein that has a vital function in neuronal patterning. Furthermore, NRP2 expression is often upregulated in cancer tissues and correlated with poor prognosis. In the present study, we report the establishment of a monoclonal antibody specific for NRP2b1b2 domain (NRP2 MAb) through hybridoma method. NRP2 MAb is measured to have a titer of 5.12 × 10(5) against NRP2b1b2 in indirect ELISA. Western blotting, flow cytometry, and immunofluorescence analysis indicate that NRP2 MAb can combine full-length NRP2 in LoVo and SW480 cells. Besides helping further understand NRP2-related pathological mechanisms and cell-signaling pathways, NRP2 MAb may act as a therapeutic agent for cancer in the future. PMID:26492624

  9. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-α dependent mechanisms.

    PubMed

    Bruder-Nascimento, Thiago; Kennard, Simone; Antonova, Galina; Mintz, James D; Bence, Kendra K; Belin de Chantemèle, Eric J

    2016-06-01

    Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair

  10. Magnolia officinalis Extract Contains Potent Inhibitors against PTP1B and Attenuates Hyperglycemia in db/db Mice.

    PubMed

    Sun, Jing; Wang, Yongsen; Fu, Xueqi; Chen, Yingli; Wang, Deli; Li, Wannan; Xing, Shu; Li, Guodong

    2015-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is an established therapeutic target for type 2 diabetes mellitus (T2DM) and obesity. The aim of this study was to investigate the inhibitory activity of Magnolia officinalis extract (ME) on PTP1B and its anti-T2DM effects. Inhibition assays and inhibition kinetics of ME were performed in vitro. 3T3-L1 adipocytes and C2C12 myotubes were stimulated with ME to explore its bioavailability in cell level. The in vivo studies were performed on db/db mice to probe its anti-T2DM effects. In the present study, ME inhibited PTP1B in a reversible competitive manner and displayed good selectivity against PTPs in vitro. Furthermore, ME enhanced tyrosine phosphorylation levels of cellular proteins, especially the insulin-induced tyrosine phosphorylations of insulin receptor β-subunit (IRβ) and ERK1/2 in a dose-dependent manner in stimulated 3T3-L1 adipocytes and C2C12 myotubes. Meanwhile, ME enhanced insulin-stimulated GLUT4 translocation. More importantly, there was a significant decrease in fasting plasma glucose level of db/db diabetic mice treated orally with 0.5 g/kg ME for 4 weeks. These findings indicated that improvement of insulin sensitivity and hypoglycemic effects of ME may be attributed to the inhibition of PTP1B. Thereby, we pioneered the inhibitory potential of ME targeted on PTP1B as anti-T2DM drug discovery. PMID:26064877

  11. Behavioral and Pharmacogenetics of Aggressive Behavior

    PubMed Central

    Takahashi, Aki; Quadros, Isabel M.; de Almeida, Rosa M. M.; Miczek, Klaus A.

    2013-01-01

    Serotonin (5-HT) has long been considered as a key transmitter in the neurocircuitry controlling aggression. Impaired regulation of each subtype of 5-HT receptor, 5-HT transporter, synthetic and metabolic enzymes has been linked particularly to impulsive aggression. The current summary focuses mostly on recent findings from pharmacological and genetic studies. The pharmacological treatments and genetic manipulations or polymorphisms of a specific target (e.g., 5-HT1A receptor) can often result in inconsistent results on aggression, due to “phasic” effects of pharmacological agents vs “trait”-like effects of genetic manipulations. Also, the local administration of a drug using the intracranial microinjection technique has shown that activation of specific subtypes of 5-HT receptors (5-HT1A and 5-HT1B) in mesocorticolimbic areas can reduce species-typical and other aggressive behaviors, but the same receptors in the medial prefrontal cortex or septal area promote escalated forms of aggression. Thus, there are receptor populations in specific brain regions that preferentially modulate specific types of aggression. Genetic studies have shown important gene × environment interactions; it is likely that the polymorphisms in the genes of 5-HT transporters (e.g., MAO A) or rate-limiting synthetic and metabolic enzymes of 5-HT determine the vulnerability to adverse environmental factors that escalate aggression. We also discuss the interaction between the 5-HT system and other systems. Modulation of 5-HT neurons in the dorsal raphe nucleus by GABA, glutamate, and CRF profoundly regulate aggressive behaviors. Also, interactions of the 5-HT system with other neuropeptides (arginine vasopressin, oxytocin, neuropeptide Y, opioid) have emerged as important neurobiological determinants of aggression. Studies of aggression in genetically modified mice identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or

  12. RELATIVE PHOTOMETRY OF HAT-P-1b OCCULTATIONS

    SciTech Connect

    Beky, Bence; Holman, Matthew J.; Noyes, Robert W.; Sasselov, Dimitar D.; Gilliland, Ronald L.; Bakos, Gaspar A.; Winn, Joshua N.

    2013-06-01

    We present Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph observations of two occultations of the transiting exoplanet HAT-P-1b. By measuring the planet to star flux ratio near opposition, we constrain the geometric albedo of the planet, which is strongly linked to its atmospheric temperature gradient. An advantage of HAT-P-1 as a target is its binary companion ADS 16402 A, which provides an excellent photometric reference, simplifying the usual steps in removing instrumental artifacts from HST time-series photometry. We find that without this reference star, we would need to detrend the lightcurve with the time of the exposures as well as the first three powers of HST orbital phase, and this would introduce a strong bias in the results for the albedo. However, with this reference star, we only need to detrend the data with the time of the exposures to achieve the same per-point scatter, therefore we can avoid most of the bias associated with detrending. Our final result is a 2{sigma} upper limit of 0.64 for the geometric albedo of HAT-P-1b between 577 and 947 nm.

  13. The α1B/D-adrenoceptor knockout mouse permits isolation of the vascular α1A-adrenoceptor and elucidates its relationship to the other subtypes

    PubMed Central

    Methven, L; McBride, M; Wallace, GA; McGrath, JC

    2009-01-01

    Background and purpose: Mesenteric and carotid arteries from the α1B/D-adrenoceptor knockout (α1B/D-KO) were employed to isolate α1A-adrenoceptor pharmacology and location and to reveal these features in the wild-type (WT) mouse. Experimental approach: Functional pharmacology by wire myography and receptor localization by confocal microscopy, using the fluorescent α1-adrenoceptor ligand BODIPY FL-Prazosin (QAPB), on mesenteric (an ‘α1A-adrenoceptor’ tissue) and carotid (an ‘α1D-adrenoceptor’ tissue) arteries. Key results: α1B/D-KO mesenteric arteries showed straightforward α1A-adrenoceptor agonist/antagonist pharmacology. WT had complex pharmacology with α1A- and α1D-adrenoceptor components. α1B/D-KO had a larger α1A-adrenoceptor response suggesting compensatory up-regulation: no increase in fluorescent ligand binding suggests up-regulation of signalling. α1B/D-KO carotid arteries had low efficacy α1A-adrenoceptor responses. WT had complex pharmacology consistent with co-activation of all three subtypes. Fluorescent binding had straightforward α1A-adrenoceptor characteristics in both arteries of α1B/D-KO. Fluorescent binding varied between cells in relative intracellular and surface distribution. Total fluorescence was reduced in the α1B/D-KO due to fewer smooth muscle cells showing fluorescent binding. WT binding was greater and sensitive to α1A- and α1D-adrenoceptor antagonists. Conclusions and implications: The straightforward pharmacology and fluorescent binding in the α1B/D-KO was used to interpret the properties of the α1A-adrenoceptor in the WT. Reduced total fluorescence in α1B/D-KO arteries, despite a clear difference in the functionally dominant subtype, indicates that measurement of receptor protein is unlikely to correlate with function. Fewer cells bound QAPB in the α1B/D-KO suggesting different cellular phenotypes of α1A-adrenoceptor exist. The α1B/D-KO provides robust assays for the α1A-adrenoceptor and takes us

  14. OATP1B1 and tumour OATP1B3 modulate exposure, toxicity, and survival after irinotecan-based chemotherapy

    PubMed Central

    Teft, W A; Welch, S; Lenehan, J; Parfitt, J; Choi, Y-H; Winquist, E; Kim, R B

    2015-01-01

    Background: Treatment of advanced and metastatic colorectal cancer with irinotecan is hampered by severe toxicities. The active metabolite of irinotecan, SN-38, is a known substrate of drug-metabolising enzymes, including UGT1A1, as well as OATP and ABC drug transporters. Methods: Blood samples (n=127) and tumour tissue (n=30) were obtained from advanced cancer patients treated with irinotecan-based regimens for pharmacogenetic and drug level analysis and transporter expression. Clinical variables, toxicity, and outcomes data were collected. Results: SLCO1B1 521C was significantly associated with increased SN-38 exposure (P<0.001), which was additive with UGT1A1*28. ABCC5 (rs562) carriers had significantly reduced SN-38 glucuronide and APC metabolite levels. Reduced risk of neutropenia and diarrhoea was associated with ABCC2–24C/T (odds ratio (OR)=0.22, 0.06–0.85) and CES1 (rs2244613; OR=0.29, 0.09–0.89), respectively. Progression-free survival (PFS) was significantly longer in SLCO1B1 388G/G patients and reduced in ABCC2–24T/T and UGT1A1*28 carriers. Notably, higher OATP1B3 tumour expression was associated with reduced PFS. Conclusions: Clarifying the association of host genetic variation in OATP and ABC transporters to SN-38 exposure, toxicity and PFS provides rationale for personalising irinotecan-based chemotherapy. Our findings suggest that OATP polymorphisms and expression in tumour tissue may serve as important new biomarkers. PMID:25611302

  15. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    SciTech Connect

    Zheng, Long-Yi; Zhou, Dong-Xun; Lu, Jin; Zhang, Wen-Jun; Zou, Da-Jin

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer PTP1B protein showed decreased expression in 67.79% of the HCC patients. Black-Right-Pointing-Pointer Low PTP1B expression predicts poor prognosis of HCC. Black-Right-Pointing-Pointer Low PTP1B expression is correlated with expansion of OV6{sup +} tumor-initiating cells. Black-Right-Pointing-Pointer Down-regulation of PTP1B is associated with activation of Wnt/{beta}-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6{sup +} tumor-initiating cells (T-ICs) and high frequency of nuclear {beta}-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/{beta}-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  16. Synthesis of oleanolic acid derivatives: In vitro, in vivo and in silico studies for PTP-1B inhibition.

    PubMed

    Ramírez-Espinosa, Juan José; Rios, Maria Yolanda; Paoli, Paolo; Flores-Morales, Virginia; Camici, Guido; de la Rosa-Lugo, Vianey; Hidalgo-Figueroa, Sergio; Navarrete-Vázquez, Gabriel; Estrada-Soto, Samuel

    2014-11-24

    Non-insulin dependent diabetes mellitus is a multifactorial disease that links different metabolic routes; a point of convergence is the enzyme PTP-1B which turns off insulin and leptin receptors involved in glucose and lipid metabolism, respectively. Pentacyclic acid triterpenes such as oleanolic acid (OA) have proved to be excellent PTP-1B inhibitors, thus, the purpose of current work was to generate a series of derivatives that improve the pharmacological effect of OA. Our findings suggest that the presence of the carboxylic acid and/or its corresponding reduction product carbinol derivative (H-bond donor) in C-28 is required to maintain the inhibitory activity; moreover, this is further enhanced by ester or ether formation on C-3. The most active derivatives were cinnamoyl ester (6) and ethyl ether (10). Compound 6 showed potent in vitro inhibitory activity and significantly decrease of blood glucose levels on in vivo experiments. Meanwhile, 10 showed contrasting outcomes, since it was the compound with higher inhibitory activity and selectivity over PTP-1B and has improved interaction with site B, according with docking studies, the in vivo antidiabetic effect was similar to oleanolic acid. In conclusion, oleanolic acid derivatives have revealed an enhanced inhibitory effect over PTP-1B activity by increasing molecular interactions with either catalytic or allosteric sites and producing a hypoglycaemic effect on non insulin dependent diabetes mellitus rat model. PMID:25264584

  17. Novel host genetic variations associated with spontaneous clearance of a single-source outbreak of HCV1b infections

    PubMed Central

    You, Hong; Liu, Sandu; Xie, Yong; Cong, Rui; Sun, Yameng; Ren, Jingjing; Wei, Kangfei; Jin, Xin; Shi, Yujian; Zhang, Haiying; Li, Jie; Wei, Lai; Zhuang, Hui; Cheng, Mingliang; Jia, Jidong

    2014-01-01

    Background and aims A total of 105 patients were identified as accidentally infected with hepatitis C virus genotype 1b (HCV1b) through blood transfusion from a single blood donor. This group provides a unique patient population to study host factors involved in the spontaneous clearance of HCV and disease progression. Methods Clinical markers, HCV RNA and eight single nucleotide polymorphisms (SNPs) of interleukin-28B (IL-28B) were detected. Exome capture and sequencing were analysed for association with HCV clearance. Results Among the 85 patients with the positive HCV antibody, 27 cases (31.8%) were HCV RNA negative over a period of 9–12 years. Of the 58 patients with positive HCV RNA, 22.4% developed chronic hepatitis, and 5.2% developed cirrhosis. Age was found to be associated with HCV1b clearance. IL-28 rs10853728 CC showed the trend. By exon sequencing, 39 SNPs were found to be significantly different in spontaneous clearance patients (p<0.001). Two SNPs in the tenascin receptor (TNR), five in the transmembrane protease serine 11A (TMPRSS11A), and one in the serine peptidase inhibitor kunitz type 2 (SPINT2) showed the closest associations (p<10−5). Conclusions Host genetic analyses on the unique, single source HCV1b-infected patient population has suggested that age and mutations in TNR, TMPRSS11A and SPINT2 genes may be factors associated with HCV clearance. PMID:26462265

  18. Glucoregulatory, endocrine and morphological effects of [P5K]hymenochirin-1B in mice with diet-induced glucose intolerance and insulin resistance.

    PubMed

    Owolabi, Bosede O; Ojo, Opeolu O; Srinivasan, Dinesh K; Conlon, J Michael; Flatt, Peter R; Abdel-Wahab, Yasser H A

    2016-07-01

    The frog skin host-defence peptide hymenochirin-1B has been shown to stimulate insulin release in vitro from isolated pancreatic islets and BRIN-BD11 clonal β-cells. This study examines the effects of 28-day administration of a more potent analogue [P5K]hymenochirin-1B ([P5K]hym-1B) (75 nmol·kg(-1) body weight) to high-fat-fed mice with obesity, glucose intolerance and insulin resistance. Treatment with [P5K]hym-1B significantly decreased plasma glucose concentrations and improved glucose tolerance, insulin secretion, insulin sensitivity and increased the magnitude of the incretin effect (difference in response to oral vs intraperitoneal glucose loads). Responses to established insulin secretagogues were greater in islets isolated from treated animals compared with saline-treated controls. [P5K]hym-1B administration significantly decreased total islet area and β- and α-cell areas, and resulted in lower concentrations of circulating triglycerides and plasma and pancreatic glucagon. Peptide treatment had no effect on food intake, body weight, indirect calorimetry or circulating concentrations of amylase and marker enzymes of liver and kidney function. RT-PCR demonstrated that the Insr (insulin receptor) gene and genes involved in insulin signalling (Slc2a4, Irs1, Pik3ca, Akt1 and Pkd1) were significantly up-regulated in skeletal muscle from animals treated with [P5K]hym-1B. Expression of the Glp1r (GLP-1 receptor) and Gipr (GIP receptor) genes was significantly elevated in islets from peptide-treated mice. These data suggest that [P5K]hym-1B shows potential for development into an agent for treating patients with type 2 diabetes. PMID:27068334

  19. New therapeutic approaches for the prevention and treatment of migraine.

    PubMed

    Diener, Hans-Christoph; Charles, Andrew; Goadsby, Peter J; Holle, Dagny

    2015-10-01

    The management of patients with migraine is often unsatisfactory because available acute and preventive therapies are either ineffective or poorly tolerated. The acute treatment of migraine attacks has been limited to the use of analgesics, combinations of analgesics with caffeine, ergotamines, and the triptans. Successful new approaches for the treatment of acute migraine target calcitonin gene-related peptide (CGRP) and serotonin (5-hydroxytryptamine, 5-HT1F) receptors. Other approaches targeting the transient receptor potential vanilloid (TRPV1) receptor, glutamate, GABAA receptors, or a combination of 5-HT1B/1D receptors and neuronal nitric oxide synthesis have been investigated but have not been successful in clinical trials thus far. In migraine prevention, the most promising new approaches are humanised antibodies against CGRP or the CGRP receptor. Non-invasive and invasive neuromodulation approaches also show promise as both acute and preventive therapies, although further studies are needed to define appropriate candidates for these therapies and optimum protocols for their use. PMID:26376968

  20. 50 CFR Table 1b to Part 679 - Discard and Disposition Codes1

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Discard and Disposition Codes1 1b Table 1b to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 1b Table 1b to Part...

  1. 50 CFR Table 1b to Part 679 - Discard and Disposition Codes1

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Discard and Disposition Codes1 1b Table 1b to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 1b Table 1b to Part...

  2. 40 CFR Table 1b to Subpart Dddd of... - Add-on Control Systems Compliance Options

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Add-on Control Systems Compliance Options 1B Table 1B to Subpart DDDD of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Products Pt. 63, Subpt. DDDD, Table 1B Table 1B to Subpart DDDD of Part 63—Add-on Control...

  3. 40 CFR Table 1b to Subpart Dddd of... - Add-on Control Systems Compliance Options