Science.gov

Sample records for 1b alternative splicing

  1. Altered motor activity of alternative splice variants of the mammalian kinesin-3 protein KIF1B.

    PubMed

    Matsushita, Masafumi; Yamamoto, Ruri; Mitsui, Keiji; Kanazawa, Hiroshi

    2009-11-01

    Several mammalian kinesin motor proteins exist as multiple isoforms that arise from alternative splicing of a single gene. However, the roles of many motor protein splice variants remain unclear. The kinesin-3 motor protein KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein. The insertions are located in the loop region containing the lysine-rich cluster, also known as the K-loop, and in the hinge region adjacent to the motor domain. To clarify the functions of these alternative splice variants of KIF1B, we examined the biochemical properties of recombinant KIF1B with and without insertion sequences. In a microtubule-dependent ATPase assay, KIF1B variants that contained both insertions had higher activity and affinity for microtubules than KIF1B variants that contained no insertions. Mutational analysis of the K-loop insertion revealed that variants with a longer insertion sequence at this site had higher activity. However, the velocity of movement in motility assays was similar between KIF1B with and without insertion sequences. Our results indicate that splicing isoforms of KIF1B that vary in their insertion sequences have different motor activities.

  2. Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells.

    PubMed

    Gonçalves, Vânia; Henriques, Andreia F A; Henriques, Andreia; Pereira, Joana F S; Pereira, Joana; Neves Costa, Ana; Moyer, Mary Pat; Moita, Luís Ferreira; Gama-Carvalho, Margarida; Matos, Paulo; Jordan, Peter

    2014-04-01

    The premessenger RNA of the majority of human genes can generate various transcripts through alternative splicing, and different tissues or disease states show specific patterns of splicing variants. These patterns depend on the relative concentrations of the splicing factors present in the cell nucleus, either as a consequence of their expression levels or of post-translational modifications, such as protein phosphorylation, which are determined by signal transduction pathways. Here, we analyzed the contribution of protein kinases to the regulation of alternative splicing variant Rac1b that is overexpressed in certain tumor types. In colorectal cells, we found that depletion of AKT2, AKT3, GSK3β, and SRPK1 significantly decreased endogenous Rac1b levels. Although knockdown of AKT2 and AKT3 affected only Rac1b protein levels suggesting a post-splicing effect, the depletion of GSK3β or SRPK1 decreased Rac1b alternative splicing, an effect mediated through changes in splicing factor SRSF1. In particular, the knockdown of SRPK1 or inhibition of its catalytic activity reduced phosphorylation and subsequent translocation of SRSF1 to the nucleus, limiting its availability to promote the inclusion of alternative exon 3b into the Rac1 pre-mRNA. Altogether, the data identify SRSF1 as a prime regulator of Rac1b expression in colorectal cells and provide further mechanistic insight into how the regulation of alternative splicing events by protein kinases can contribute to sustain tumor cell survival.

  3. Tumor-related alternatively spliced Rac1b is not regulated by Rho-GDP dissociation inhibitors and exhibits selective downstream signaling.

    PubMed

    Matos, Paulo; Collard, John G; Jordan, Peter

    2003-12-12

    Rac1 is a member of the Rho family of small GTPases, which control signaling pathways that regulate actin cytoskeletal dynamics and gene transcription. Rac1 is activated by guanine nucleotide exchange factors and inactivated by GTPase-activating proteins. In addition, Rho-GDP dissociation inhibitors (Rho-GDIs) can inhibit Rac1 by sequestering it in the cytoplasm. We have found previously that colorectal tumors express an alternatively spliced variant, Rac1b, containing 19 additional amino acids following the switch II region. Here we characterized the regulation and downstream signaling of Rac1b. Although little Rac1b protein is expressed in cells, the amount of activated Rac1b protein often exceeds that of activated Rac1, suggesting that Rac1b contributes significantly to the downstream signaling of Rac in cells. The regulation of both Rac1 and Rac1b activities is dependent on guanine nucleotide exchange factors and GTPase-activating proteins, but the difference in their activation is mainly determined by the inability of Rac1b to interact with Rho-GDI. As a consequence, most Rac1b remains bound to the plasma membrane and is not sequestered by Rho-GDI in the cytoplasm. Unlike Rac1, activated Rac1b is unable to induce lamellipodia formation and is unable to bind and activate p21-activated protein kinase nor activate the downstream protein kinase JNK. However, both Rac1 and Rac1b are able to activate NFkappaB to the same extent. These data suggest that alternative splicing of Rac1 leads to a highly active Rac variant that differs in regulation and downstream signaling.

  4. Whole-Exome Sequencing Identifies Loci Associated with Blood Cell Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis.

    PubMed

    Polfus, Linda M; Khajuria, Rajiv K; Schick, Ursula M; Pankratz, Nathan; Pazoki, Raha; Brody, Jennifer A; Chen, Ming-Huei; Auer, Paul L; Floyd, James S; Huang, Jie; Lange, Leslie; van Rooij, Frank J A; Gibbs, Richard A; Metcalf, Ginger; Muzny, Donna; Veeraraghavan, Narayanan; Walter, Klaudia; Chen, Lu; Yanek, Lisa; Becker, Lewis C; Peloso, Gina M; Wakabayashi, Aoi; Kals, Mart; Metspalu, Andres; Esko, Tõnu; Fox, Keolu; Wallace, Robert; Franceshini, Nora; Matijevic, Nena; Rice, Kenneth M; Bartz, Traci M; Lyytikäinen, Leo-Pekka; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Li-Gao, Ruifang; Mook-Kanamori, Dennis O; Lettre, Guillaume; van Duijn, Cornelia M; Franco, Oscar H; Rich, Stephen S; Rivadeneira, Fernando; Hofman, Albert; Uitterlinden, André G; Wilson, James G; Psaty, Bruce M; Soranzo, Nicole; Dehghan, Abbas; Boerwinkle, Eric; Zhang, Xiaoling; Johnson, Andrew D; O'Donnell, Christopher J; Johnsen, Jill M; Reiner, Alexander P; Ganesh, Santhi K; Sankaran, Vijay G

    2016-08-01

    Circulating blood cell counts and indices are important indicators of hematopoietic function and a number of clinical parameters, such as blood oxygen-carrying capacity, inflammation, and hemostasis. By performing whole-exome sequence association analyses of hematologic quantitative traits in 15,459 community-dwelling individuals, followed by in silico replication in up to 52,024 independent samples, we identified two previously undescribed coding variants associated with lower platelet count: a common missense variant in CPS1 (rs1047891, MAF = 0.33, discovery + replication p = 6.38 × 10(-10)) and a rare synonymous variant in GFI1B (rs150813342, MAF = 0.009, discovery + replication p = 1.79 × 10(-27)). By performing CRISPR/Cas9 genome editing in hematopoietic cell lines and follow-up targeted knockdown experiments in primary human hematopoietic stem and progenitor cells, we demonstrate an alternative splicing mechanism by which the GFI1B rs150813342 variant suppresses formation of a GFI1B isoform that preferentially promotes megakaryocyte differentiation and platelet production. These results demonstrate how unbiased studies of natural variation in blood cell traits can provide insight into the regulation of human hematopoiesis. PMID:27486782

  5. PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b

    PubMed Central

    Zhou, Jie; Li, Zhiping; Jiao, Xuanmao; Li, Wayne W; Plomann, Markus; Xu, Zhishun; Lisanti, Michael P

    2011-01-01

    Cyclin D1 overexpression is a common feature of many human malignancies. Genomic deletion analysis has demonstrated a key role for cyclin D1 in cellular proliferation, angiogenesis and cellular migration. To investigate the mechanisms contributing to cyclin D1 functions, we purified cyclin D1a-associated complexes by affinity chromatography and identified the PACSIN 2 (protein kinase C and casein kinase substrate in neurons 2) protein by mass spectrometry. The PACSIN 2, but not the related PACSIN 1 and 3, directly bound wild-type cyclin D1 (cyclin D1a) at the carboxyl terminus and failed to bind cyclin D1b, the alternative splicing variant of cyclin D1. PACSIN 2 knockdown induced cellular migration and reduced cell spreading in LNCaP cells expressing cyclin D1a. In cyclin D1−/− mouse embryonic fibroblasts (MEFs), cyclin D1a, but not cyclin D1b, reduced the cell spreading to a polarized morphology. siPACSIN 2 had no effect on cellular migration of cyclin D1−/− MEFs. Cyclin D1a restored the migratory ability of cyclin D1−/− MEFs, which was further enhanced by knocking down PACSIN 2 with siRNA. The cyclin D1-associated protein, PACSIN 2, regulates cell spreading and migration, which are dependent on cyclin D1 expression. PMID:21200149

  6. Chromatin and alternative splicing.

    PubMed

    Alló, M; Schor, I E; Muñoz, M J; de la Mata, M; Agirre, E; Valcárcel, J; Eyras, E; Kornblihtt, A R

    2010-01-01

    Alternative splicing affects more than 90% of human genes. Coupling between transcription and splicing has become crucial in the complex network underlying alternative splicing regulation. Because chromatin is the real template for nuclear transcription, changes in its structure, but also in the "reading" and "writing" of the histone code, could modulate splicing choices. Here, we discuss the evidence supporting these ideas, from the first proposal of chromatin affecting alternative splicing, performed 20 years ago, to the latest findings including genome-wide evidence that nucleosomes are preferentially positioned in exons. We focus on two recent reports from our laboratories that add new evidence to this field. The first report shows that a physiological stimulus such as neuron depolarization promotes intragenic histone acetylation (H3K9ac) and chromatin relaxation, causing the skipping of exon 18 of the neural cell adhesion molecule gene. In the second report, we show how specific histone modifications can be created at targeted gene regions as a way to affect alternative splicing: Using small interfering RNAs (siRNAs), we increased the levels of H3K9me2 and H3K27me3 in the proximity of alternative exon 33 of the human fibronectin gene, favoring its inclusion into mature messenger RNA (mRNA) through a mechanism that recalls RNA-mediated transcriptional gene silencing.

  7. How did alternative splicing evolve?

    PubMed

    Ast, Gil

    2004-10-01

    Alternative splicing creates transcriptome diversification, possibly leading to speciation. A large fraction of the protein-coding genes of multicellular organisms are alternatively spliced, although no regulated splicing has been detected in unicellular eukaryotes such as yeasts. A comparative analysis of unicellular and multicellular eukaryotic 5' splice sites has revealed important differences - the plasticity of the 5' splice sites of multicellular eukaryotes means that these sites can be used in both constitutive and alternative splicing, and for the regulation of the inclusion/skipping ratio in alternative splicing. So, alternative splicing might have originated as a result of relaxation of the 5' splice site recognition in organisms that originally could support only constitutive splicing. PMID:15510168

  8. Our favourite alternative splice site.

    PubMed

    Lerivray, Hubert; Méreau, Agnès; Osborne, H Beverley

    2006-05-01

    Alternative splicing is a widespread mechanism in mammals that generates several mRNAs from one gene, thereby creating genetic diversity of the genome. Variant splice patterns are often specific to different stages of development or particular tissues, and alternative splicing defects are being more frequently detected in genetic diseases and cancers. The increasingly important role of alternative splicing in the function and the regulation of cellular process makes it critical to have an easy-to-use data repository for the biological and medical research communities. We have compared web resources that give access to information on alternatively spliced genes, and the FAST DB (Friendly Alternative Splicing and Transcripts DataBase) site came out as our favourite.

  9. The neurogenetics of alternative splicing

    PubMed Central

    Vuong, Celine K.; Black, Douglas L.; Zheng, Sika

    2016-01-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain. PMID:27094079

  10. Alternative splicing and muscular dystrophy

    PubMed Central

    Pistoni, Mariaelena; Ghigna, Claudia; Gabellini, Davide

    2013-01-01

    Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, muscle-specific gene expression and muscular dystrophy. Next, to illustrate these concepts we focus on two muscular dystrophy, myotonic muscular dystrophy and facioscapulohumeral muscular dystrophy, both associated to disruption of splicing regulation in muscle. PMID:20603608

  11. Alternative Splice in Alternative Lice

    PubMed Central

    Tovar-Corona, Jaime M.; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P.; Clark, John M.; Reynolds, Stuart E.; Pittendrigh, Barry R.; Feil, Edward J.; Urrutia, Araxi O.

    2015-01-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  12. Alternative Splice in Alternative Lice.

    PubMed

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation.

  13. Methods for Characterization of Alternative RNA Splicing.

    PubMed

    Harvey, Samuel E; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.

  14. Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene

    SciTech Connect

    Conboy, John G.; Parra, Marilyn K.; Tan, Jeff S.; Mohandas, Narla; Conboy, John G.

    2008-11-07

    In the protein 4.1R gene, alternative first exons splice differentially to alternative 3' splice sites far downstream in exon 2'/2 (E2'/2). We describe a novel intrasplicing mechanism by which exon 1A (E1A) splices exclusively to the distal E2'/2 acceptor via two nested splicing reactions regulated by novel properties of exon 1B (E1B). E1B behaves as an exon in the first step, using its consensus 5' donor to splice to the proximal E2'/2 acceptor. A long region of downstream intron is excised, juxtaposing E1B with E2'/2 to generate a new composite acceptor containing the E1B branchpoint/pyrimidine tract and E2 distal 3' AG-dinucleotide. Next, the upstream E1A splices over E1B to this distal acceptor, excising the remaining intron plus E1B and E2' to form mature E1A/E2 product. We mapped branch points for both intrasplicing reactions and demonstrated that mutation of the E1B 5' splice site or branchpoint abrogates intrasplicing. In the 4.1R gene, intrasplicing ultimately determines N-terminal protein structure and function. More generally, intrasplicing represents a new mechanism whereby alternative promoters can be coordinated with downstream alternative splicing.

  15. Alternative splicing regulation and cell lineage differentiation.

    PubMed

    Liu, Huan; He, Ling; Tang, Liling

    2012-11-01

    The alternative splicing of precursor mRNA is an essential mechanism for protein diversity. It plays important biological roles, such as proliferation, differentiation and development of cells. Furthermore, alternative splicing participates in the pathogenesis of diseases, including cancer. Thus, in-depth understanding of splicing regulation is of great significance. Regulation of alternative splicing is an extraordinary complicated process in which several signal molecules are at work. Besides the cis-elements and trans-factors, several lines of evidences suggest that other molecules, structures or process also regulate splicing, such as RNA structures, transcription and transcription factors, chromatin and protein. Meanwhile, increasing body of evidence shows that alternative splicing correlated closely to stem cell lineage differentiation. It means that there is a fundamental role for splicing in controlling regulatory program required for cell lineage differentiation. This review systematically sums up the regulation of alternative splicing and summarizes the splicing events during cell lineage differentiation of stem cells.

  16. COMMUNICATION: Alternative splicing and genomic stability

    NASA Astrophysics Data System (ADS)

    Cahill, Kevin

    2004-06-01

    Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.

  17. Alternative Splicing in Plant Immunity

    PubMed Central

    Yang, Shengming; Tang, Fang; Zhu, Hongyan

    2014-01-01

    Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel. PMID:24918296

  18. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs.

    PubMed

    Zhang, Xiao-Ou; Dong, Rui; Zhang, Yang; Zhang, Jia-Lin; Luo, Zheng; Zhang, Jun; Chen, Ling-Ling; Yang, Li

    2016-09-01

    Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells. PMID:27365365

  19. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs

    PubMed Central

    Zhang, Xiao-Ou; Dong, Rui; Zhang, Yang; Zhang, Jia-Lin; Luo, Zheng; Zhang, Jun; Chen, Ling-Ling; Yang, Li

    2016-01-01

    Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells. PMID:27365365

  20. Hallmarks of alternative splicing in cancer.

    PubMed

    Oltean, S; Bates, D O

    2014-11-13

    The immense majority of genes are alternatively spliced and there are many isoforms specifically associated with cancer progression and metastasis. The splicing pattern of specific isoforms of numerous genes is altered as cells move through the oncogenic process of gaining proliferative capacity, acquiring angiogenic, invasive, antiapoptotic and survival properties, becoming free from growth factor dependence and growth suppression, altering their metabolism to cope with hypoxia, enabling them to acquire mechanisms of immune escape, and as they move through the epithelial-mesenchymal and mesenchymal-epithelial transitions and metastasis. Each of the 'hallmarks of cancer' is associated with a switch in splicing, towards a more aggressive invasive cancer phenotype. The choice of isoforms is regulated by several factors (signaling molecules, kinases, splicing factors) currently being identified systematically by a number of high-throughput, independent and unbiased methodologies. Splicing factors are de-regulated in cancer, and in some cases are themselves oncogenes or pseudo-oncogenes and can contribute to positive feedback loops driving cancer progression. Tumour progression may therefore be associated with a coordinated splicing control, meaning that there is the potential for a relatively small number of splice factors or their regulators to drive multiple oncogenic processes. The understanding of how splicing contributes to the various phenotypic traits acquired by tumours as they progress and metastasise, and in particular how alternative splicing is coordinated, can and is leading to the development of a new class of anticancer therapeutics-the alternative-splicing inhibitors. PMID:24336324

  1. Alternative Splicing in Alzheimer’s Disease

    PubMed Central

    Love, Julia E.; Hayden, Eric J.; Rohn, Troy T.

    2015-01-01

    Neurodegenerative diseases have a variety of different genes contributing to their underlying pathology. Unfortunately, for many of these diseases it is not clear how changes in gene expression affect pathology. Transcriptome analysis of neurodegenerative diseases using ribonucleic acid sequencing (RNA Seq) and real time quantitative polymerase chain reaction (RT-qPCR) provides for a platform to allow investigators to determine the contribution of various genes to the disease phenotype. In Alzheimer’s disease (AD) there are several candidate genes reported that may be associated with the underlying pathology and are, in addition, alternatively spliced. Thus, AD is an ideal disease to examine how alternative splicing may affect pathology. In this context, genes of particular interest to AD pathology include the amyloid precursor protein (APP), TAU, and apolipoprotein E (APOE). Here, we review the evidence of alternative splicing of these genes in normal and AD patients, and recent therapeutic approaches to control splicing. PMID:26942228

  2. Shedding UV light on alternative splicing.

    PubMed

    Marengo, Matthew S; Garcia-Blanco, Mariano A

    2009-05-15

    After DNA damage, cells modulate pre-messenger RNA (pre-mRNA) splicing to induce an anti- or proapoptotic response. In this issue, Muñoz et al. (2009) uncover a cotranscriptional mechanism for activating alternative pre-mRNA splicing after ultraviolet irradiation that depends unexpectedly on hyperphosphorylation of the RNA polymerase II C-terminal domain and decreased rates of transcription elongation.

  3. Variation in alternative splicing across human tissues

    PubMed Central

    Yeo, Gene; Holste, Dirk; Kreiman, Gabriel; Burge, Christopher B

    2004-01-01

    Background Alternative pre-mRNA splicing (AS) is widely used by higher eukaryotes to generate different protein isoforms in specific cell or tissue types. To compare AS events across human tissues, we analyzed the splicing patterns of genomically aligned expressed sequence tags (ESTs) derived from libraries of cDNAs from different tissues. Results Controlling for differences in EST coverage among tissues, we found that the brain and testis had the highest levels of exon skipping. The most pronounced differences between tissues were seen for the frequencies of alternative 3' splice site and alternative 5' splice site usage, which were about 50 to 100% higher in the liver than in any other human tissue studied. Quantifying differences in splice junction usage, the brain, pancreas, liver and the peripheral nervous system had the most distinctive patterns of AS. Analysis of available microarray expression data showed that the liver had the most divergent pattern of expression of serine-arginine protein and heterogeneous ribonucleoprotein genes compared to the other human tissues studied, possibly contributing to the unusually high frequency of alternative splice site usage seen in liver. Sequence motifs enriched in alternative exons in genes expressed in the brain, testis and liver suggest specific splicing factors that may be important in AS regulation in these tissues. Conclusions This study distinguishes the human brain, testis and liver as having unusually high levels of AS, highlights differences in the types of AS occurring commonly in different tissues, and identifies candidate cis-regulatory elements and trans-acting factors likely to have important roles in tissue-specific AS in human cells. PMID:15461793

  4. Origin of Spliceosomal Introns and Alternative Splicing

    PubMed Central

    Irimia, Manuel; Roy, Scott William

    2014-01-01

    In this work we review the current knowledge on the prehistory, origins, and evolution of spliceosomal introns. First, we briefly outline the major features of the different types of introns, with particular emphasis on the nonspliceosomal self-splicing group II introns, which are widely thought to be the ancestors of spliceosomal introns. Next, we discuss the main scenarios proposed for the origin and proliferation of spliceosomal introns, an event intimately linked to eukaryogenesis. We then summarize the evidence that suggests that the last eukaryotic common ancestor (LECA) had remarkably high intron densities and many associated characteristics resembling modern intron-rich genomes. From this intron-rich LECA, the different eukaryotic lineages have taken very distinct evolutionary paths leading to profoundly diverged modern genome structures. Finally, we discuss the origins of alternative splicing and the qualitative differences in alternative splicing forms and functions across lineages. PMID:24890509

  5. The Alternative Splicing Mutation Database: a hub for investigations of alternative splicing using mutational evidence

    PubMed Central

    Bechtel, Jason M; Rajesh, Preeti; Ilikchyan, Irina; Deng, Ying; Mishra, Pankaj K; Wang, Qi; Wu, Xiaochun; Afonin, Kirill A; Grose, William E; Wang, Ye; Khuder, Sadik; Fedorov, Alexei

    2008-01-01

    Background Some mutations in the internal regions of exons occur within splicing enhancers and silencers, influencing the pattern of alternative splicing in the corresponding genes. To understand how these sequence changes affect splicing, we created a database of these mutations. Findings The Alternative Splicing Mutation Database (ASMD) serves as a repository for all exonic mutations not associated with splicing junctions that measurably change the pattern of alternative splicing. In this initial published release (version 1.2), only human sequences are present, but the ASMD will grow to include other organisms, (see Availability and requirements section for the ASMD web address). This relational database allows users to investigate connections between mutations and features of the surrounding sequences, including flanking sequences, RNA secondary structures and strengths of splice junctions. Splicing effects of the mutations are quantified by the relative presence of alternative mRNA isoforms with and without a given mutation. This measure is further categorized by the accuracy of the experimental methods employed. The database currently contains 170 mutations in 66 exons, yet these numbers increase regularly. We developed an algorithm to derive a table of oligonucleotide Splicing Potential (SP) values from the ASMD dataset. We present the SP concept and tools in detail in our corresponding article. Conclusion The current data set demonstrates that mutations affecting splicing are located throughout exons and might be enriched within local RNA secondary structures. Exons from the ASMD have below average splicing junction strength scores, but the difference is small and is judged not to be significant. PMID:18611286

  6. Histone methylation, alternative splicing and neuronal differentiation.

    PubMed

    Fiszbein, Ana; Kornblihtt, Alberto R

    2016-01-01

    Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs. PMID:27606339

  7. Histone methylation, alternative splicing and neuronal differentiation.

    PubMed

    Fiszbein, Ana; Kornblihtt, Alberto R

    2016-01-01

    Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs.

  8. Schizophyllum commune has an extensive and functional alternative splicing repertoire

    PubMed Central

    Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.; Wösten, Han A. B.; Abeel, Thomas; Reinders, Marcel J. T.

    2016-01-01

    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically. PMID:27659065

  9. Vitamin D and alternative splicing of RNA.

    PubMed

    Zhou, Rui; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Xu, Jianzhong; Adams, John S; Hewison, Martin

    2015-04-01

    The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  10. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    PubMed

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html. PMID:25720307

  11. Integrating alternative splicing detection into gene prediction

    PubMed Central

    Foissac, Sylvain; Schiex, Thomas

    2005-01-01

    Background Alternative splicing (AS) is now considered as a major actor in transcriptome/proteome diversity and it cannot be neglected in the annotation process of a new genome. Despite considerable progresses in term of accuracy in computational gene prediction, the ability to reliably predict AS variants when there is local experimental evidence of it remains an open challenge for gene finders. Results We have used a new integrative approach that allows to incorporate AS detection into ab initio gene prediction. This method relies on the analysis of genomically aligned transcript sequences (ESTs and/or cDNAs), and has been implemented in the dynamic programming algorithm of the graph-based gene finder EuGÈNE. Given a genomic sequence and a set of aligned transcripts, this new version identifies the set of transcripts carrying evidence of alternative splicing events, and provides, in addition to the classical optimal gene prediction, alternative optimal predictions (among those which are consistent with the AS events detected). This allows for multiple annotations of a single gene in a way such that each predicted variant is supported by a transcript evidence (but not necessarily with a full-length coverage). Conclusions This automatic combination of experimental data analysis and ab initio gene finding offers an ideal integration of alternatively spliced gene prediction inside a single annotation pipeline. PMID:15705189

  12. Epigenetics in alternative pre-mRNA splicing

    PubMed Central

    Luco, Reini F.; Allo, Mariano; Schor, Ignacio E.; Kornblihtt, Alberto R.; Misteli, Tom

    2010-01-01

    Alternative splicing plays critical roles in differentiation, development and disease and is a major source for protein diversity in higher eukaryotes. Traditionally, analysis of alternative splicing regulation has focused on RNA sequence elements and their associated factors, but recent provocative studies point to a key function of chromatin structure and histone modifications in alternative splicing regulation. These insights suggest that epigenetic regulation not only determines what parts of the genome are expressed, but also how they are spliced. PMID:21215366

  13. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  14. Vials: Visualizing Alternative Splicing of Genes

    PubMed Central

    Strobelt, Hendrik; Alsallakh, Bilal; Botros, Joseph; Peterson, Brant; Borowsky, Mark; Pfister, Hanspeter; Lex, Alexander

    2016-01-01

    Alternative splicing is a process by which the same DNA sequence is used to assemble different proteins, called protein isoforms. Alternative splicing works by selectively omitting some of the coding regions (exons) typically associated with a gene. Detection of alternative splicing is difficult and uses a combination of advanced data acquisition methods and statistical inference. Knowledge about the abundance of isoforms is important for understanding both normal processes and diseases and to eventually improve treatment through targeted therapies. The data, however, is complex and current visualizations for isoforms are neither perceptually efficient nor scalable. To remedy this, we developed Vials, a novel visual analysis tool that enables analysts to explore the various datasets that scientists use to make judgments about isoforms: the abundance of reads associated with the coding regions of the gene, evidence for junctions, i.e., edges connecting the coding regions, and predictions of isoform frequencies. Vials is scalable as it allows for the simultaneous analysis of many samples in multiple groups. Our tool thus enables experts to (a) identify patterns of isoform abundance in groups of samples and (b) evaluate the quality of the data. We demonstrate the value of our tool in case studies using publicly available datasets. PMID:26529712

  15. An alternative splicing program promotes adipose tissue thermogenesis.

    PubMed

    Vernia, Santiago; Edwards, Yvonne Jk; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. PMID:27635635

  16. Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets

    PubMed Central

    Barberan-Soler, Sergio; Zahler, Alan M.

    2008-01-01

    Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (∼18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 – now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream

  17. Splicing factor SRSF1 negatively regulates alternative splicing of MDM2 under damage

    PubMed Central

    Comiskey, Daniel F.; Jacob, Aishwarya G.; Singh, Ravi K.; Tapia-Santos, Aixa S.; Chandler, Dawn S.

    2015-01-01

    Genotoxic stress induces alternative splicing of the oncogene MDM2 generating MDM2-ALT1, an isoform attributed with tumorigenic properties. However, the mechanisms underlying this event remain unclear. Here we explore MDM2 splicing regulation by utilizing a novel minigene that mimics endogenous MDM2 splicing in response to UV and cisplatinum-induced DNA damage. We report that exon 11 is necessary and sufficient for the damage-specific alternative splicing of the MDM2 minigene and that the splicing factor SRSF1 binds exon 11 at evolutionarily conserved sites. Interestingly, mutations disrupting this interaction proved sufficient to abolish the stress-induced alternative splicing of the MDM2 minigene. Furthermore, SRSF1 overexpression promoted exclusion of exon 11, while its siRNA-mediated knockdown prevented the stress-induced alternative splicing of endogenous MDM2. Additionally, we observed elevated SRSF1 levels under stress and in tumors correlating with the expression of MDM2-ALT1. Notably, we demonstrate that MDM2-ALT1 splicing can be blocked by targeting SRSF1 sites on exon 11 using antisense oligonucleotides. These results present conclusive evidence supporting a negative role for SRSF1 in MDM2 alternative splicing. Importantly, we define for the first time, a clear-cut mechanism for the regulation of damage-induced MDM2 splicing and present potential strategies for manipulating MDM2 expression via splicing modulation. PMID:25845590

  18. Alternative Splicing and Subfunctionalization Generates Functional Diversity in Fungal Proteomes

    PubMed Central

    Jiménez-López, Claudia; Lorenz, Michael C.; van Hoof, Ambro

    2013-01-01

    Alternative splicing is commonly used by the Metazoa to generate more than one protein from a gene. However, such diversification of the proteome by alternative splicing is much rarer in fungi. We describe here an ancient fungal alternative splicing event in which these two proteins are generated from a single alternatively spliced ancestral SKI7/HBS1 gene retained in many species in both the Ascomycota and Basidiomycota. While the ability to express two proteins from a single SKI7/HBS1 gene is conserved in many fungi, the exact mechanism by which they achieve this varies. The alternative splicing was lost in Saccharomyces cerevisiae following the whole-genome duplication event as these two genes subfunctionalized into the present functionally distinct HBS1 and SKI7 genes. When expressed in yeast, the single gene from Lachancea kluyveri generates two functionally distinct proteins. Expression of one of these proteins complements hbs1, but not ski7 mutations, while the other protein complements ski7, but not hbs1. This is the first known case of subfunctionalization by loss of alternative splicing in yeast. By coincidence, the ancestral alternatively spliced gene was also duplicated in Schizosaccharomyces pombe with subsequent subfunctionalization and loss of splicing. Similar subfunctionalization by loss of alternative splicing in fungi also explains the presence of two PTC7 genes in the budding yeast Tetrapisispora blattae, suggesting that this is a common mechanism to preserve duplicate alternatively spliced genes. PMID:23516382

  19. Impacts of Alternative Splicing Events on the Differentiation of Adipocytes

    PubMed Central

    Lin, Jung-Chun

    2015-01-01

    Alternative splicing was found to be a common phenomenon after the advent of whole transcriptome analyses or next generation sequencing. Over 90% of human genes were demonstrated to undergo at least one alternative splicing event. Alternative splicing is an effective mechanism to spatiotemporally expand protein diversity, which influences the cell fate and tissue development. The first focus of this review is to highlight recent studies, which demonstrated effects of alternative splicing on the differentiation of adipocytes. Moreover, use of evolving high-throughput approaches, such as transcriptome analyses (RNA sequencing), to profile adipogenic transcriptomes, is also addressed. PMID:26389882

  20. The influence of Argonaute proteins on alternative RNA splicing.

    PubMed

    Batsché, Eric; Ameyar-Zazoua, Maya

    2015-01-01

    Alternative splicing of precursor RNAs is an important process in multicellular species because it impacts several aspects of gene expression: from the increase of protein repertoire to the level of expression. A large body of evidences demonstrates that factors regulating chromatin and transcription impact the outcomes of alternative splicing. Argonaute (AGO) proteins were known to play key roles in the regulation of gene expression at the post-transcriptional level. More recently, their role in the nucleus of human somatic cells has emerged. Here, we will discuss some of the nuclear functions of AGO, with special emphasis on alternative splicing. The AGO-mediated modulation of alternative splicing is based on several properties of these proteins: their binding to transcripts on chromatin and their interactions with many proteins, especially histone tail-modifying enzymes, HP1γ and splicing factors. AGO proteins may favor a decrease in the RNA-polymerase II kinetics at actively transcribed genes leading to the modulation of alternative splicing decisions. They could also influence alternative splicing through their interaction with core components of the splicing machinery and several splicing factors. We will discuss the modes of AGO recruitment on chromatin at active genes. We suggest that long intragenic antisense transcripts (lincRNA) might be an important feature of genes containing splicing events regulated by AGO.

  1. Regulation of Alternative Splicing in Vivo by Overexpression of Antagonistic Splicing Factors

    NASA Astrophysics Data System (ADS)

    Caceres, Javier F.; Stamm, Stefan; Helfman, David M.; Krainer, Adrian R.

    1994-09-01

    The opposing effects of SF2/ASF and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 influence alternative splicing in vitro. SF2/ASF or hnRNP A1 complementary DNAs were transiently overexpressed in HeLa cells, and the effect on alternative splicing of several cotransfected reporter genes was measured. Increased expression of SF2/ASF activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and prevented abnormal exon skipping. Increased expression of hnRNP A1 activated distal 5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing factors influence different modes of alternative splicing in vivo and may be a natural mechanism for tissue-specific or developmental regulation of gene expression.

  2. IRAS: High-Throughput Identification of Novel Alternative Splicing Regulators.

    PubMed

    Zheng, S

    2016-01-01

    Alternative splicing is a fundamental regulatory process of gene expression. Defects in alternative splicing can lead to various diseases, and modification of disease-causing splicing events presents great therapeutic promise. Splicing outcome is commonly affected by extracellular stimuli and signaling cascades that converge on RNA-binding splicing regulators. These trans-acting factors recognize cis-elements in pre-mRNA transcripts to affect spliceosome assembly and splice site choices. Identification of these splicing regulators and/or upstream modulators has been difficult and traditionally done by piecemeal. High-throughput screening strategies to find multiple regulators of exon splicing have great potential to accelerate the discovery process, but typically confront low sensitivity and low specificity of screening assays. Here we describe a unique screening strategy, IRAS (identifying regulators of alternative splicing), using a pair of dual-output minigene reporters to allow for sensitive detection of exon splicing changes. Each dual-output reporter produces green fluorescent protein (GFP) and red fluorescent protein (RFP) fluorescent signals to assay the two spliced isoforms exclusively. The two complementary minigene reporters alter GFP/RFP output ratios in the opposite direction in response to splicing change. Applying IRAS in cell-based high-throughput screens allows sensitive and specific identification of splicing regulators and modulators for any alternative exons of interest. In comparison to previous high-throughput screening methods, IRAS substantially enhances the specificity of the screening assay. This strategy significantly eliminates false positives without sacrificing sensitive identification of true regulators of splicing. PMID:27241759

  3. Control of adenovirus E1B mRNA synthesis by a shift in the activities of RNA splice sites.

    PubMed Central

    Montell, C; Fisher, E F; Caruthers, M H; Berk, A J

    1984-01-01

    The primary transcript from adenovirus 2 early region 1B (E1B) is processed by differential RNA splicing into two overlapping mRNAs, 13S and 22S. The 22S mRNA is the major E1B mRNA during the early phase of infection, whereas the 13S mRNA predominates during the late phase. In previous work, it has been shown that this shift in proportions of the E1B mRNAs is influenced by increased cytoplasmic stability of the 13S mRNA at late times in infection. Two observations presented here demonstrate that the increase in proportion of the 13S mRNA at late times is also regulated by a change in the specificity of RNA splicing. First, the relative concentrations of the 13S to 22S nuclear RNAs were not constant throughout infection but increased at late times. Secondly, studies with the mutant, adenovirus 2 pm2250 , provided evidence that there was an increased propensity to utilize a 5' splice in the region of the 13S 5' splice site at late times in infection. Adenovirus 2 pm2250 has a G----C transversion in the first base of E1B 13S mRNA intron preventing splicing of the 13S mRNA but not of the 22S mRNA. During the early phase of a pm2250 infection, the E1B primary transcripts were processed into the 22S mRNA only. However, during the late phase, when the 13S mRNA normally predominates, E1B primary transcripts were also processed by RNA splicing at two formerly unused or cryptic 5' splice sites. Both cryptic splice sites were located much closer to the disrupted 13S 5' splice site than to the 22S 5' splice site. Thus, the temporal increase in proportion of the 13S mRNA to the 22S mRNA is regulated by two processes, an increase in cytoplasmic stability of the 13S mRNA and an increased propensity to utilize the 13S 5' splice site during the late phase of infection. Adenovirus 2 pm2250 was not defective for productive infection of HeLa cells or for transformation of rat cells. Images PMID:6727875

  4. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern

    PubMed Central

    Bouton, Clément; Geldreich, Angèle; Ramel, Laëtitia; Ryabova, Lyubov A.; Dimitrova, Maria; Keller, Mario

    2015-01-01

    The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splic-ing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5’ region and sug-gested that the main role of CaMV splicing is to downregulate expression of open read-ing frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA. PMID:26162084

  5. Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells

    PubMed Central

    Meininger, Isabel; Griesbach, Richard A.; Hu, Desheng; Gehring, Torben; Seeholzer, Thomas; Bertossi, Arianna; Kranich, Jan; Oeckinghaus, Andrea; Eitelhuber, Andrea C.; Greczmiel, Ute; Gewies, Andreas; Schmidt-Supprian, Marc; Ruland, Jürgen; Brocker, Thomas; Heissmeyer, Vigo; Heyd, Florian; Krappmann, Daniel

    2016-01-01

    MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify hnRNP U as a suppressor of exon7 inclusion. Whereas selective depletion of MALT1A impairs T-cell signalling and activation, downregulation of hnRNP U enhances MALT1A expression and T-cell activation. Thus, TCR-induced alternative splicing augments MALT1 scaffolding to enhance downstream signalling and to promote optimal T-cell activation. PMID:27068814

  6. Alternative splicing of inner-ear-expressed genes.

    PubMed

    Wang, Yanfei; Liu, Yueyue; Nie, Hongyun; Ma, Xin; Xu, Zhigang

    2016-09-01

    Alternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+ 68) is only expressed in inner ear hair cells. Alternative splicing along the tonotopic axis of the cochlea contributes to frequency tuning, particularly in lower vertebrates, such as chickens and turtles. Differential splicing of Kcnma1, which encodes for the α subunit of the Ca(2+)-activated K(+) channel (BK channel), has been suggested to affect the channel gating properties and is important for frequency tuning. Consequently, deficits in alternative splicing have been shown to cause hearing loss, as we can observe in Bronx Waltzer (bv) mice and Sfswap mutant mice. Despite the advances in this field, the regulation of alternative splicing in the inner ear remains elusive. Further investigation is also needed to clarify the mechanism of hearing loss caused by alternative splicing deficits. PMID:27376950

  7. Prevalence of alternative splicing choices in Arabidopsis thaliana

    PubMed Central

    2010-01-01

    Background Around 14% of protein-coding genes of Arabidopsis thaliana genes from the TAIR9 genome release are annotated as producing multiple transcript variants through alternative splicing. However, for most alternatively spliced genes in Arabidopsis, the relative expression level of individual splicing variants is unknown. Results We investigated prevalence of alternative splicing (AS) events in Arabidopsis thaliana using ESTs. We found that for most AS events with ample EST coverage, the majority of overlapping ESTs strongly supported one major splicing choice, with less than 10% of ESTs supporting the minor form. Analysis of ESTs also revealed a small but noteworthy subset of genes for which alternative choices appeared with about equal prevalence, suggesting that for these genes the variant splicing forms co-occur in the same cell types. Of the AS events in which both forms were about equally prevalent, more than 80% affected untranslated regions or involved small changes to the encoded protein sequence. Conclusions Currently available evidence from ESTs indicates that alternative splicing in Arabidopsis occurs and affects many genes, but for most genes with documented alternative splicing, one AS choice predominates. To aid investigation of the role AS may play in modulating function of Arabidopsis genes, we provide an on-line resource (ArabiTag) that supports searching AS events by gene, by EST library keyword search, and by relative prevalence of minor and major forms. PMID:20525311

  8. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii

    PubMed Central

    2010-01-01

    Background Genome-wide computational analysis of alternative splicing (AS) in several flowering plants has revealed that pre-mRNAs from about 30% of genes undergo AS. Chlamydomonas, a simple unicellular green alga, is part of the lineage that includes land plants. However, it diverged from land plants about one billion years ago. Hence, it serves as a good model system to study alternative splicing in early photosynthetic eukaryotes, to obtain insights into the evolution of this process in plants, and to compare splicing in simple unicellular photosynthetic and non-photosynthetic eukaryotes. We performed a global analysis of alternative splicing in Chlamydomonas reinhardtii using its recently completed genome sequence and all available ESTs and cDNAs. Results Our analysis of AS using BLAT and a modified version of the Sircah tool revealed AS of 498 transcriptional units with 611 events, representing about 3% of the total number of genes. As in land plants, intron retention is the most prevalent form of AS. Retained introns and skipped exons tend to be shorter than their counterparts in constitutively spliced genes. The splice site signals in all types of AS events are weaker than those in constitutively spliced genes. Furthermore, in alternatively spliced genes, the prevalent splice form has a stronger splice site signal than the non-prevalent form. Analysis of constitutively spliced introns revealed an over-abundance of motifs with simple repetitive elements in comparison to introns involved in intron retention. In almost all cases, AS results in a truncated ORF, leading to a coding sequence that is around 50% shorter than the prevalent splice form. Using RT-PCR we verified AS of two genes and show that they produce more isoforms than indicated by EST data. All cDNA/EST alignments and splice graphs are provided in a website at http://combi.cs.colostate.edu/as/chlamy. Conclusions The extent of AS in Chlamydomonas that we observed is much smaller than observed in

  9. Alternative Splicing Signatures in RNA-seq Data: Percent Spliced in (PSI).

    PubMed

    Schafer, Sebastian; Miao, Kui; Benson, Craig C; Heinig, Matthias; Cook, Stuart A; Hubner, Norbert

    2015-01-01

    Thousands of alternative exons are spliced out of messenger RNA to increase protein diversity. High-throughput sequencing of short cDNA fragments (RNA-seq) generates a genome-wide snapshot of these post-transcriptional processes. RNA-seq reads yield insights into the regulation of alternative splicing by revealing the usage of known or unknown splice sites as well as the expression level of exons. Constitutive exons are never covered by split alignments, whereas alternative exonic parts are located within highly expressed splicing junctions. The ratio between reads including or excluding exons, also known as percent spliced in index (PSI), indicates how efficiently sequences of interest are spliced into transcripts. This protocol describes a method to calculate the PSI without prior knowledge of splicing patterns. It provides a quantitative, global assessment of exon usage that can be integrated with other tools that identify differential isoform processing. Novel, complex splicing events along a genetic locus can be visualized in an exon-centric manner and compared across conditions.

  10. Diversity of teleost leukocyte molecules: role of alternative splicing.

    PubMed

    Maisey, Kevin; Imarai, Mónica

    2011-11-01

    Alternative splicing is an important mechanism of gene expression control that also produces a large proteome from a limited number of genes. In the immune system of mammals, numerous relevant genes have been found to undergo alternative splicing that contributes to the complexity of immune response. An increasing number of reports have recently indicated that alternative splicing also occurs in other vertebrates, such as fish. In this review we summarize the general features of such molecular events in cytokines and leukocyte co-receptors and their contribution to diversity and regulation of fish leukocytes. PMID:20723604

  11. Genome-wide profiling of alternative splicing in Alzheimer's disease

    PubMed Central

    Lai, Mitchell K.P.; Esiri, Margaret M.; Tan, Michelle G.K.

    2014-01-01

    Alternative splicing is a highly regulated process which generates transcriptome and proteome diversity through the skipping or inclusion of exons within gene loci. Identification of aberrant alternative splicing associated with human diseases has become feasible with the development of new genomic technologies and powerful bioinformatics. We have previously reported genome-wide gene alterations in the neocortex of a well-characterized cohort of Alzheimer's disease (AD) patients and matched elderly controls using a commercial exon microarray platform [1]. Here, we provide detailed description of analyses aimed at identifying differential alternative splicing events associated with AD. PMID:26484111

  12. Designing oligo libraries taking alternative splicing into account

    NASA Astrophysics Data System (ADS)

    Shoshan, Avi; Grebinskiy, Vladimir; Magen, Avner; Scolnicov, Ariel; Fink, Eyal; Lehavi, David; Wasserman, Alon

    2001-06-01

    We have designed sequences for DNA microarrays and oligo libraries, taking alternative splicing into account. Alternative splicing is a common phenomenon, occurring in more than 25% of the human genes. In many cases, different splice variants have different functions, are expressed in different tissues or may indicate different stages of disease. When designing sequences for DNA microarrays or oligo libraries, it is very important to take into account the sequence information of all the mRNA transcripts. Therefore, when a gene has more than one transcript (as a result of alternative splicing, alternative promoter sites or alternative poly-adenylation sites), it is very important to take all of them into account in the design. We have used the LEADS transcriptome prediction system to cluster and assemble the human sequences in GenBank and design optimal oligonucleotides for all the human genes with a known mRNA sequence based on the LEADS predictions.

  13. Contextual fear conditioning induces differential alternative splicing.

    PubMed

    Poplawski, Shane G; Peixoto, Lucia; Porcari, Giulia S; Wimmer, Mathieu E; McNally, Anna G; Mizuno, Keiko; Giese, K Peter; Chatterjee, Snehajyoti; Koberstein, John N; Risso, Davide; Speed, Terence P; Abel, Ted

    2016-10-01

    The process of memory consolidation requires transcription and translation to form long-term memories. Significant effort has been dedicated to understanding changes in hippocampal gene expression after contextual fear conditioning. However, alternative splicing by differential transcript regulation during this time period has received less attention. Here, we use RNA-seq to determine exon-level changes in expression after contextual fear conditioning and retrieval. Our work reveals that a short variant of Homer1, Ania-3, is regulated by contextual fear conditioning. The ribosome biogenesis regulator Las1l, small nucleolar RNA Snord14e, and the RNA-binding protein Rbm3 also change specific transcript usage after fear conditioning. The changes in Ania-3 and Las1l are specific to either the new context or the context-shock association, while the changes in Rbm3 occur after context or shock only. Our analysis revealed novel transcript regulation of previously undetected changes after learning, revealing the importance of high throughput sequencing approaches in the study of gene expression changes after learning. PMID:27451143

  14. Evolutionary Character of Alternative Splicing in Plants

    PubMed Central

    Zhang, Chengjun; Yang, Hong; Yang, Huizhao

    2015-01-01

    Alternative splicing (AS) is one of the most important ways to enhance the functional diversity of genes. Huge amounts of data have been produced by microarray, expressed sequence tag, and RNA-seq, and plenty of methods have been developed specifically for this task. The most frequently asked questions in previous research were as follows. What is the content rate of AS genes among the whole gene set? How many AS types are presented in the genome, and which type is dominant? How about the conservation ability of AS among different species? Which kinds of isoforms from some genes have the environmental response to help individual adaptation? Based on this background, we collected analysis results from 17 species to try to map out the landscape of AS studies in plants. We have noted the shortages of previous results, and we appeal to all scientists working in the AS field to make a standard protocol so that analyses between different projects are comparable. PMID:26819552

  15. An alternative splicing program promotes adipose tissue thermogenesis

    PubMed Central

    Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635

  16. Evolution of alternative splicing in primate brain transcriptomes

    PubMed Central

    Lin, Lan; Shen, Shihao; Jiang, Peng; Sato, Seiko; Davidson, Beverly L.; Xing, Yi

    2010-01-01

    Alternative splicing is a predominant form of gene regulation in higher eukaryotes. The evolution of alternative splicing provides an important mechanism for the acquisition of novel gene functions. In this work, we carried out a genome-wide phylogenetic survey of lineage-specific splicing patterns in the primate brain, via high-density exon junction array profiling of brain transcriptomes of humans, chimpanzees and rhesus macaques. We identified 509 genes showing splicing differences among these species. RT–PCR analysis of 40 exons confirmed the predicted splicing evolution of 33 exons. Of these 33 exons, outgroup analysis using rhesus macaques confirmed 13 exons with human-specific increase or decrease in transcript inclusion levels after humans diverged from chimpanzees. Some of the human-specific brain splicing patterns disrupt domains critical for protein–protein interactions, and some modulate translational efficiency of their host genes. Strikingly, for exons showing splicing differences across species, we observed a significant increase in the rate of silent substitutions within exons, coupled with accelerated sequence divergence in flanking introns. This indicates that evolution of cis-regulatory signals is a major contributor to the emergence of human-specific splicing patterns. In one gene (MAGOH), using minigene reporter assays, we demonstrated that the combination of two human-specific cis-sequence changes created its human-specific splicing pattern. Together, our data reveal widespread human-specific changes of alternative splicing in the brain and suggest an important role of splicing in the evolution of neuronal gene regulation and functions. PMID:20460271

  17. Mechanisms and Regulation of Alternative Pre-mRNA Splicing

    PubMed Central

    Lee, Yeon

    2015-01-01

    Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA–protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA–RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions. PMID:25784052

  18. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator.

    PubMed Central

    König, H; Ponta, H; Herrlich, P

    1998-01-01

    Alternative splicing of pre-mRNA is a fundamental mechanism of differential gene expression in that it can give rise to functionally distinct proteins from a single gene, according to the developmental or physiological state of cells in multicellular organisms. In the pre-mRNA of the cell surface molecule CD44, the inclusion of up to 10 variant exons (v1-v10) is regulated during development, upon activation of lymphocytes and dendritic cells, and during tumour progression. Using minigene constructs containing CD44 exon v5, we have discovered exonic RNA elements that couple signal transduction to alternative splicing. They form a composite splice regulator encompassing an exon recognition element and splice silencer elements. Both type of elements are necessary to govern cell type-specific inclusion of the exon as well as inducible inclusion in T cells after stimulation by concanavalin A, by Ras signalling or after activation of protein kinase C by phorbol ester. Inducible splicing does not depend on de novo protein synthesis. The coupling of signal transduction to alternative splicing by such elements probably represents the mechanism whereby splice patterns of genes are established during development and can be changed under physiological and pathological conditions. PMID:9582284

  19. Peptidic tools applied to redirect alternative splicing events.

    PubMed

    Nancy, Martínez-Montiel; Nora, Rosas-Murrieta; Rebeca, Martínez-Contreras

    2015-05-01

    Peptides are versatile and attractive biomolecules that can be applied to modulate genetic mechanisms like alternative splicing. In this process, a single transcript yields different mature RNAs leading to the production of protein isoforms with diverse or even antagonistic functions. During splicing events, errors can be caused either by mutations present in the genome or by defects or imbalances in regulatory protein factors. In any case, defects in alternative splicing have been related to several genetic diseases including muscular dystrophy, Alzheimer's disease and cancer from almost every origin. One of the most effective approaches to redirect alternative splicing events has been to attach cell-penetrating peptides to oligonucleotides that can modulate a single splicing event and restore correct gene expression. Here, we summarize how natural existing and bioengineered peptides have been applied over the last few years to regulate alternative splicing and genetic expression. Under different genetic and cellular backgrounds, peptides have been shown to function as potent vehicles for splice correction, and their therapeutic benefits have reached clinical trials and patenting stages, emphasizing the use of regulatory peptides as an exciting therapeutic tool for the treatment of different genetic diseases.

  20. Monitoring Alternative Splicing Changes in Arabidopsis Circadian Clock Genes.

    PubMed

    Simpson, Craig G; Fuller, John; Calixto, Cristiane P G; McNicol, Jim; Booth, Clare; Brown, John W S; Staiger, Dorothee

    2016-01-01

    Posttranscriptional control makes an important contribution to circadian regulation of gene expression. In higher plants, alternative splicing is particularly prevalent upon abiotic and biotic stress and in the circadian system. Here we describe in detail a high-resolution reverse transcription-PCR based panel (HR RT-PCR) to monitor alternative splicing events. The use of the panel allows the quantification of changes in the proportion of splice isoforms between different samples, e.g., different time points, different tissues, genotypes, ecotypes, or treatments. PMID:26867620

  1. Involvement of PARP1 in the regulation of alternative splicing

    PubMed Central

    Matveeva, Elena; Maiorano, John; Zhang, Qingyang; Eteleeb, Abdallah M; Convertini, Paolo; Chen, Jing; Infantino, Vittoria; Stamm, Stefan; Wang, Jiping; Rouchka, Eric C; Fondufe-Mittendorf, Yvonne N

    2016-01-01

    Specialized chromatin structures such as nucleosomes with specific histone modifications decorate exons in eukaryotic genomes, suggesting a functional connection between chromatin organization and the regulation of pre-mRNA splicing. Through profiling the functional location of Poly (ADP) ribose polymerase, we observed that it is associated with the nucleosomes at exon/intron boundaries of specific genes, suggestive of a role for this enzyme in alternative splicing. Poly (ADP) ribose polymerase has previously been implicated in the PARylation of splicing factors as well as regulation of the histone modification H3K4me3, a mark critical for co-transcriptional splicing. In light of these studies, we hypothesized that interaction of the chromatin-modifying factor, Poly (ADP) ribose polymerase with nucleosomal structures at exon–intron boundaries, might regulate pre-mRNA splicing. Using genome-wide approaches validated by gene-specific assays, we show that depletion of PARP1 or inhibition of its PARylation activity results in changes in alternative splicing of a specific subset of genes. Furthermore, we observed that PARP1 bound to RNA, splicing factors and chromatin, suggesting that Poly (ADP) ribose polymerase serves as a gene regulatory hub to facilitate co-transcriptional splicing. These studies add another function to the multi-functional protein, Poly (ADP) ribose polymerase, and provide a platform for further investigation of this protein’s function in organizing chromatin during gene regulatory processes. PMID:27462443

  2. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    PubMed Central

    Dlamini, Zodwa; Tshidino, Shonisani C.; Hull, Rodney

    2015-01-01

    Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets. PMID:26580598

  3. Functional Dissection of an Alternatively Spliced Herpesvirus Gene by Splice Site Mutagenesis

    PubMed Central

    Schommartz, Tim; Loroch, Stefan; Alawi, Malik; Grundhoff, Adam; Sickmann, Albert

    2016-01-01

    ABSTRACT Herpesviruses have large and complex DNA genomes. The largest among the herpesviruses, those of the cytomegaloviruses, include over 170 genes. Although most herpesvirus gene products are expressed from unspliced transcripts, a substantial number of viral transcripts are spliced. Some viral transcripts are subject to alternative splicing, which leads to the expression of several proteins from a single gene. Functional analysis of individual proteins derived from an alternatively spliced gene is difficult, as deletion and nonsense mutagenesis, both common methods used in the generation of viral gene knockout mutants, affect several or all gene products at the same time. Here, we show that individual gene products of an alternatively spliced herpesvirus gene can be inactivated selectively by mutagenesis of the splice donor or acceptor site and by intron deletion or substitution mutagenesis. We used this strategy to dissect the essential M112/113 gene of murine cytomegalovirus (MCMV), which encodes the MCMV Early 1 (E1) proteins. The expression of each of the four E1 protein isoforms was inactivated individually, and the requirement for each isoform in MCMV replication was analyzed in fibroblasts, endothelial cells, and macrophages. We show that the E1 p87 isoform, but not the p33, p36, and p38 isoforms, is essential for viral replication in cell culture. Moreover, the presence of one of the two medium-size isoforms (p36 or p38) and the presence of intron 1, but not its specific sequence, are required for viral replication. This study demonstrates the usefulness of splice site mutagenesis for the functional analysis of alternatively spliced herpesvirus genes. IMPORTANCE Herpesviruses include up to 170 genes in their DNA genomes. The functions of most viral gene products remain poorly defined. The construction of viral gene knockout mutants has thus been an important tool for functional analysis of viral proteins. However, this strategy is of limited use when

  4. Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing.

    PubMed

    Yang, Xinping; Coulombe-Huntington, Jasmin; Kang, Shuli; Sheynkman, Gloria M; Hao, Tong; Richardson, Aaron; Sun, Song; Yang, Fan; Shen, Yun A; Murray, Ryan R; Spirohn, Kerstin; Begg, Bridget E; Duran-Frigola, Miquel; MacWilliams, Andrew; Pevzner, Samuel J; Zhong, Quan; Trigg, Shelly A; Tam, Stanley; Ghamsari, Lila; Sahni, Nidhi; Yi, Song; Rodriguez, Maria D; Balcha, Dawit; Tan, Guihong; Costanzo, Michael; Andrews, Brenda; Boone, Charles; Zhou, Xianghong J; Salehi-Ashtiani, Kourosh; Charloteaux, Benoit; Chen, Alyce A; Calderwood, Michael A; Aloy, Patrick; Roth, Frederick P; Hill, David E; Iakoucheva, Lilia M; Xia, Yu; Vidal, Marc

    2016-02-11

    While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms"). PMID:26871637

  5. Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing.

    PubMed

    Yang, Xinping; Coulombe-Huntington, Jasmin; Kang, Shuli; Sheynkman, Gloria M; Hao, Tong; Richardson, Aaron; Sun, Song; Yang, Fan; Shen, Yun A; Murray, Ryan R; Spirohn, Kerstin; Begg, Bridget E; Duran-Frigola, Miquel; MacWilliams, Andrew; Pevzner, Samuel J; Zhong, Quan; Trigg, Shelly A; Tam, Stanley; Ghamsari, Lila; Sahni, Nidhi; Yi, Song; Rodriguez, Maria D; Balcha, Dawit; Tan, Guihong; Costanzo, Michael; Andrews, Brenda; Boone, Charles; Zhou, Xianghong J; Salehi-Ashtiani, Kourosh; Charloteaux, Benoit; Chen, Alyce A; Calderwood, Michael A; Aloy, Patrick; Roth, Frederick P; Hill, David E; Iakoucheva, Lilia M; Xia, Yu; Vidal, Marc

    2016-02-11

    While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms").

  6. [Alternative splicing regulation: implications in cancer diagnosis and treatment].

    PubMed

    Martínez-Montiel, Nancy; Rosas-Murrieta, Nora; Martínez-Contreras, Rebeca

    2015-04-01

    The accurate expression of the genetic information is regulated by processes like mRNA splicing, proposed after the discoveries of Phil Sharp and Richard Roberts, who demonstrated the existence of intronic sequences, present in almost every structural eukaryotic gene, which should be precisely removed. This intron removal is called "splicing", which generates different proteins from a single mRNA, with different or even antagonistic functions. We currently know that alternative splicing is the most important source of protein diversity, given that 70% of the human genes undergo splicing and that mutations causing defects in this process could originate up to 50% of genetic diseases, including cancer. When these defects occur in genes involved in cell adhesion, proliferation and cell cycle regulation, there is an impact on cancer progression, rising the opportunity to diagnose and treat some types of cancer according to a particular splicing profile.

  7. The evolutionary landscape of alternative splicing in vertebrate species.

    PubMed

    Barbosa-Morais, Nuno L; Irimia, Manuel; Pan, Qun; Xiong, Hui Y; Gueroussov, Serge; Lee, Leo J; Slobodeniuc, Valentina; Kutter, Claudia; Watt, Stephen; Colak, Recep; Kim, TaeHyung; Misquitta-Ali, Christine M; Wilson, Michael D; Kim, Philip M; Odom, Duncan T; Frey, Brendan J; Blencowe, Benjamin J

    2012-12-21

    How species with similar repertoires of protein-coding genes differ so markedly at the phenotypic level is poorly understood. By comparing organ transcriptomes from vertebrate species spanning ~350 million years of evolution, we observed significant differences in alternative splicing complexity between vertebrate lineages, with the highest complexity in primates. Within 6 million years, the splicing profiles of physiologically equivalent organs diverged such that they are more strongly related to the identity of a species than they are to organ type. Most vertebrate species-specific splicing patterns are cis-directed. However, a subset of pronounced splicing changes are predicted to remodel protein interactions involving trans-acting regulators. These events likely further contributed to the diversification of splicing and other transcriptomic changes that underlie phenotypic differences among vertebrate species. PMID:23258890

  8. The landscape of alternative splicing in cervical squamous cell carcinoma

    PubMed Central

    Guo, Peng; Wang, Dan; Wu, Jun; Yang, Junjun; Ren, Tong; Zhu, Baoli; Xiang, Yang

    2015-01-01

    Background Alternative splicing (AS) is a key regulatory mechanism in protein synthesis and proteome diversity. In this study, we identified alternative splicing events in four pairs of cervical squamous cell carcinoma (CSCC) and adjacent nontumor tissues using RNA sequencing. Methods The transcripts of the four paired samples were thoroughly analyzed by RNA sequencing. SpliceMap software was used to detect the splicing junctions. Kyoto Encyclopedia of Genes and Genomes pathway analysis was conducted to detect the alternative spliced genes-related signal pathways. The alternative spliced genes were validated by reverse transcription-polymerase chain reaction (RT-PCR). Results There were 35 common alternative spliced genes in the four CSCC samples; they were novel and CSCC specific. Sixteen pathways were significantly enriched (P<0.05). One novel 5′AS site in the KLHDC7B gene, encoding kelch domain-containing 7B, and an exon-skipping site in the SYCP2 gene, encoding synaptonemal complex 2, were validated by RT-PCR. The KLHDC7B gene with 5′AS was found in 67.5% (27/40) of CSCC samples and was significantly related with cellular differentiation and tumor size. The exon-skipping site of the SYCP2 gene was found in 35.0% (14/40) of CSCC samples and was significantly related with depth of cervical invasion. Conclusion The KLHDC7B and the SYCP2 genes with alternative spliced events might be involved in the development and progression of CSCC and could be used as biomarkers in the diagnosis and prognosis of CSCC. PMID:25565867

  9. The adipogenic transcriptional cofactor ZNF638 interacts with splicing regulators and influences alternative splicing

    PubMed Central

    Du, Chen; Ma, Xinran; Meruvu, Sunitha; Hugendubler, Lynne; Mueller, Elisabetta

    2014-01-01

    Increasing evidence indicates that transcription and alternative splicing are coordinated processes; however, our knowledge of specific factors implicated in both functions during the process of adipocyte differentiation is limited. We have previously demonstrated that the zinc finger protein ZNF638 plays a role as a transcriptional coregulator of adipocyte differentiation via induction of PPARγ in cooperation with CCAAT/enhancer binding proteins (C/EBPs). Here we provide new evidence that ZNF638 is localized in nuclear bodies enriched with splicing factors, and through biochemical purification of ZNF638’s interacting proteins in adipocytes and mass spectrometry analysis, we show that ZNF638 interacts with splicing regulators. Functional analysis of the effects of ectopic ZNF638 expression on a minigene reporter demonstrated that ZNF638 is sufficient to promote alternative splicing, a function enhanced through its recruitment to the minigene promoter at C/EBP responsive elements via C/EBP proteins. Structure-function analysis revealed that the arginine/serine-rich motif and the C-terminal zinc finger domain required for speckle localization are necessary for the adipocyte differentiation function of ZNF638 and for the regulation of the levels of alternatively spliced isoforms of lipin1 and nuclear receptor co-repressor 1. Overall, our data demonstrate that ZNF638 participates in splicing decisions and that it may control adipogenesis through regulation of the relative amounts of differentiation-specific isoforms. PMID:25024404

  10. Estimation of alternative splicing variability in human populations

    PubMed Central

    Gonzàlez-Porta, Mar; Calvo, Miquel; Sammeth, Michael; Guigó, Roderic

    2012-01-01

    DNA arrays have been widely used to perform transcriptome-wide analysis of gene expression, and many methods have been developed to measure gene expression variability and to compare gene expression between conditions. Because RNA-seq is also becoming increasingly popular for transcriptome characterization, the possibility exists for further quantification of individual alternative transcript isoforms, and therefore for estimating the relative ratios of alternative splice forms within a given gene. Changes in splicing ratios, even without changes in overall gene expression, may have important phenotypic effects. Here we have developed statistical methodology to measure variability in splicing ratios within conditions, to compare it between conditions, and to identify genes with condition-specific splicing ratios. Furthermore, we have developed methodology to deconvolute the relative contribution of variability in gene expression versus variability in splicing ratios to the overall variability of transcript abundances. As a proof of concept, we have applied this methodology to estimates of transcript abundances obtained from RNA-seq experiments in lymphoblastoid cells from Caucasian and Yoruban individuals. We have found that protein-coding genes exhibit low splicing variability within populations, with many genes exhibiting constant ratios across individuals. When comparing these two populations, we have found that up to 10% of the studied protein-coding genes exhibit population-specific splicing ratios. We estimate that ∼60% of the total variability observed in the abundance of transcript isoforms can be explained by variability in transcription. A large fraction of the remaining variability can likely result from variability in splicing. Finally, we also detected that variability in splicing is uncommon without variability in transcription. PMID:22113879

  11. Functional roles of alternative splicing factors in human disease

    PubMed Central

    Cieply, Benjamin; Carstens, Russ P

    2015-01-01

    Alternative splicing (AS) is an important mechanism used to generate greater transcriptomic and proteomic diversity from a finite genome. Nearly all human gene transcripts are alternatively spliced and can produce protein isoforms with divergent and even antagonistic properties that impact cell functions. Many AS events are tightly regulated in a cell-type or tissue-specific manner, and at different developmental stages. AS is regulated by RNA-binding proteins, including cell- or tissue-specific splicing factors. In the past few years, technological advances have defined genome-wide programs of AS regulated by increasing numbers of splicing factors. These splicing regulatory networks (SRNs) consist of transcripts that encode proteins that function in coordinated and related processes that impact the development and phenotypes of different cell types. As such, it is increasingly recognized that disruption of normal programs of splicing regulated by different splicing factors can lead to human diseases. We will summarize examples of diseases in which altered expression or function of splicing regulatory proteins has been implicated in human disease pathophysiology. As the role of AS continues to be unveiled in human disease and disease risk, it is hoped that further investigations into the functions of numerous splicing factors and their regulated targets will enable the development of novel therapies that are directed at specific AS events as well as the biological pathways they impact. WIREs RNA 2015, 6:311–326. doi: 10.1002/wrna.1276 For further resources related to this article, please visit the http://wires.wiley.com/remdoi.cgi?doi=10.1002/wrna.1276WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article. PMID:25630614

  12. Tissue-specific alternative splicing of TCF7L2

    PubMed Central

    Prokunina-Olsson, Ludmila; Welch, Cullan; Hansson, Ola; Adhikari, Neeta; Scott, Laura J.; Usher, Nicolle; Tong, Maurine; Sprau, Andrew; Swift, Amy; Bonnycastle, Lori L.; Erdos, Michael R.; He, Zhi; Saxena, Richa; Harmon, Brennan; Kotova, Olga; Hoffman, Eric P.; Altshuler, David; Groop, Leif; Boehnke, Michael; Collins, Francis S.; Hall, Jennifer L.

    2009-01-01

    Common variants in the transcription factor 7-like 2 (TCF7L2) gene have been identified as the strongest genetic risk factors for type 2 diabetes (T2D). However, the mechanisms by which these non-coding variants increase risk for T2D are not well-established. We used 13 expression assays to survey mRNA expression of multiple TCF7L2 splicing forms in up to 380 samples from eight types of human tissue (pancreas, pancreatic islets, colon, liver, monocytes, skeletal muscle, subcutaneous adipose tissue and lymphoblastoid cell lines) and observed a tissue-specific pattern of alternative splicing. We tested whether the expression of TCF7L2 splicing forms was associated with single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene and most strongly associated with T2D. Expression of two splicing forms was lower in pancreatic islets with increasing counts of T2D-associated alleles of the SNPs: a ubiquitous splicing form (P = 0.018 for rs7903146 and P = 0.020 for rs12255372) and a splicing form found in pancreatic islets, pancreas and colon but not in other tissues tested here (P = 0.009 for rs12255372 and P = 0.053 for rs7903146). Expression of this form in glucose-stimulated pancreatic islets correlated with expression of proinsulin (r2 = 0.84–0.90, P < 0.00063). In summary, we identified a tissue-specific pattern of alternative splicing of TCF7L2. After adjustment for multiple tests, no association between expression of TCF7L2 in eight types of human tissue samples and T2D-associated genetic variants remained significant. Alternative splicing of TCF7L2 in pancreatic islets warrants future studies. GenBank Accession Numbers: FJ010164–FJ010174. PMID:19602480

  13. Tissue-specific alternative splicing of TCF7L2.

    PubMed

    Prokunina-Olsson, Ludmila; Welch, Cullan; Hansson, Ola; Adhikari, Neeta; Scott, Laura J; Usher, Nicolle; Tong, Maurine; Sprau, Andrew; Swift, Amy; Bonnycastle, Lori L; Erdos, Michael R; He, Zhi; Saxena, Richa; Harmon, Brennan; Kotova, Olga; Hoffman, Eric P; Altshuler, David; Groop, Leif; Boehnke, Michael; Collins, Francis S; Hall, Jennifer L

    2009-10-15

    Common variants in the transcription factor 7-like 2 (TCF7L2) gene have been identified as the strongest genetic risk factors for type 2 diabetes (T2D). However, the mechanisms by which these non-coding variants increase risk for T2D are not well-established. We used 13 expression assays to survey mRNA expression of multiple TCF7L2 splicing forms in up to 380 samples from eight types of human tissue (pancreas, pancreatic islets, colon, liver, monocytes, skeletal muscle, subcutaneous adipose tissue and lymphoblastoid cell lines) and observed a tissue-specific pattern of alternative splicing. We tested whether the expression of TCF7L2 splicing forms was associated with single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene and most strongly associated with T2D. Expression of two splicing forms was lower in pancreatic islets with increasing counts of T2D-associated alleles of the SNPs: a ubiquitous splicing form (P = 0.018 for rs7903146 and P = 0.020 for rs12255372) and a splicing form found in pancreatic islets, pancreas and colon but not in other tissues tested here (P = 0.009 for rs12255372 and P = 0.053 for rs7903146). Expression of this form in glucose-stimulated pancreatic islets correlated with expression of proinsulin (r(2) = 0.84-0.90, P < 0.00063). In summary, we identified a tissue-specific pattern of alternative splicing of TCF7L2. After adjustment for multiple tests, no association between expression of TCF7L2 in eight types of human tissue samples and T2D-associated genetic variants remained significant. Alternative splicing of TCF7L2 in pancreatic islets warrants future studies. GenBank Accession Numbers: FJ010164-FJ010174. PMID:19602480

  14. Aberrant and alternative splicing in skeletal system disease.

    PubMed

    Fan, Xin; Tang, Liling

    2013-10-01

    The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy. PMID:23800666

  15. Alternative splicing of the androgen receptor in polycystic ovary syndrome

    PubMed Central

    Wang, Fangfang; Pan, Jiexue; Liu, Ye; Meng, Qing; Lv, Pingping; Qu, Fan; Ding, Guo-Lian; Klausen, Christian; Leung, Peter C. K.; Chan, Hsiao Chang; Yao, Weimiao; Zhou, Cai-Yun; Shi, Biwei; Zhang, Junyu; Sheng, Jianzhong; Huang, Hefeng

    2015-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common female endocrine disorders and a leading cause of female subfertility. The mechanism underlying the pathophysiology of PCOS remains to be illustrated. Here, we identify two alternative splice variants (ASVs) of the androgen receptor (AR), insertion and deletion isoforms, in granulosa cells (GCs) in ∼62% of patients with PCOS. AR ASVs are strongly associated with remarkable hyperandrogenism and abnormalities in folliculogenesis, and are absent from all control subjects without PCOS. Alternative splicing dramatically alters genome-wide AR recruitment and androgen-induced expression of genes related to androgen metabolism and folliculogenesis in human GCs. These findings establish alternative splicing of AR in GCs as the major pathogenic mechanism for hyperandrogenism and abnormal folliculogenesis in PCOS. PMID:25825716

  16. Factors influencing alternative splice site utilization in vivo.

    PubMed Central

    Fu, X Y; Manley, J L

    1987-01-01

    To study factors that influence the choice of alternative pre-mRNA splicing pathways, we introduced plasmids expressing either wild-type or mutated simian virus 40 (SV40) early regions into tissue culture cells and then measured the quantities of small-t and large-T RNAs produced. One important element controlling splice site selection was found to be the size of the intron removed in the production of small-t mRNA; expansion of this intron (from 66 to 77 or more nucleotides) resulted in a substantial increase in the amount of small-t mRNA produced relative to large-T mRNA. This suggests that in the normal course of SV40 early pre-mRNA processing, large-T splicing is at a competitive advantage relative to small-t splicing because of the small size of the latter intron. Several additional features of the pre-mRNA that can influence splice site selection were also identified by analyzing the effects of mutations containing splice site duplications. These include the strengths of competing 5' splice sites and the relative positions of splice sites in the pre-mRNA. Finally, we showed that the ratio of small-t to large-T mRNA was 10 to 15-fold greater in human 293 cells than in HeLa cells or other mammalian cell types. These results suggest the existence of cell-specific trans-acting factors that can dramatically alter the pattern of splice site selection in a pre-mRNA. Images PMID:3029566

  17. Alternative splicing impairs soluble guanylyl cyclase function in aortic aneurysm.

    PubMed

    Martin, Emil; Golunski, Eva; Laing, Susan T; Estrera, Anthony L; Sharina, Iraida G

    2014-12-01

    Nitric oxide (NO) receptor soluble guanylyl cyclase (sGC) is a key regulator of several important vascular functions and is important for maintaining cardiovascular homeostasis and vascular plasticity. Diminished sGC expression and function contributes to pathogenesis of several cardiovascular diseases. However, the processes that control sGC expression in vascular tissue remain poorly understood. Previous work in animal and cell models revealed the complexity of alternative splicing of sGC genes and demonstrated its importance in modulation of sGC function. The aim of this study was to examine the role of alternative splicing of α1 and β1 sGC in healthy and diseased human vascular tissue. Our study found a variety of α1 and β1 sGC splice forms expressed in human aorta. Their composition and abundance were different between samples of aortic tissue removed during surgical repair of aortic aneurysm and samples of aortas without aneurysm. Aortas with aneurysm demonstrated decreased sGC activity, which correlated with increased expression of dysfunctional sGC splice variants. In addition, the expression of 55-kDa oxidation-resistant α1 isoform B sGC (α1-IsoB) was significantly lower in aortic samples with aneurysm. The α1-IsoB splice variant was demonstrated to support sGC activity in aortic lysates. Together, our results suggest that alternative splicing contributes to diminished sGC function in vascular dysfunction. Precise understanding of sGC splicing regulation could help to design new therapeutic interventions and to personalize sGC-targeting therapies in treatments of vascular disease.

  18. Sec16 alternative splicing dynamically controls COPII transport efficiency.

    PubMed

    Wilhelmi, Ilka; Kanski, Regina; Neumann, Alexander; Herdt, Olga; Hoff, Florian; Jacob, Ralf; Preußner, Marco; Heyd, Florian

    2016-01-01

    The transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi depends on COPII-coated vesicles. While the basic principles of the COPII machinery have been identified, it remains largely unknown how COPII transport is regulated to accommodate tissue- or activation-specific differences in cargo load and identity. Here we show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T-cell activation. Using splice-site blocking morpholinos and CRISPR/Cas9-mediated genome engineering, we show that the number of ER exit sites, COPII dynamics and transport efficiency depend on Sec16 alternative splicing. As the mechanistic basis, we suggest the C-terminal Sec16 domain to be a splicing-controlled protein interaction platform, with individual isoforms showing differential abilities to recruit COPII components. Our work connects the COPII pathway with alternative splicing, adding a new regulatory layer to protein secretion and its adaptation to changing cellular environments. PMID:27492621

  19. Sec16 alternative splicing dynamically controls COPII transport efficiency

    PubMed Central

    Wilhelmi, Ilka; Kanski, Regina; Neumann, Alexander; Herdt, Olga; Hoff, Florian; Jacob, Ralf; Preußner, Marco; Heyd, Florian

    2016-01-01

    The transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi depends on COPII-coated vesicles. While the basic principles of the COPII machinery have been identified, it remains largely unknown how COPII transport is regulated to accommodate tissue- or activation-specific differences in cargo load and identity. Here we show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T-cell activation. Using splice-site blocking morpholinos and CRISPR/Cas9-mediated genome engineering, we show that the number of ER exit sites, COPII dynamics and transport efficiency depend on Sec16 alternative splicing. As the mechanistic basis, we suggest the C-terminal Sec16 domain to be a splicing-controlled protein interaction platform, with individual isoforms showing differential abilities to recruit COPII components. Our work connects the COPII pathway with alternative splicing, adding a new regulatory layer to protein secretion and its adaptation to changing cellular environments. PMID:27492621

  20. Age-dependent gain of alternative splice forms and biased duplication explain the relation between splicing and duplication

    PubMed Central

    Roux, Julien; Robinson-Rechavi, Marc

    2011-01-01

    We analyze here the relation between alternative splicing and gene duplication in light of recent genomic data, with a focus on the human genome. We show that the previously reported negative correlation between level of alternative splicing and family size no longer holds true. We clarify this pattern and show that it is sufficiently explained by two factors. First, genes progressively gain new splice variants with time. The gain is consistent with a selectively relaxed regime, until purifying selection slows it down as aging genes accumulate a large number of variants. Second, we show that duplication does not lead to a loss of splice forms, but rather that genes with low levels of alternative splicing tend to duplicate more frequently. This leads us to reconsider the role of alternative splicing in duplicate retention. PMID:21173032

  1. Development of a novel splice array platform and its application in the identification of alternative splice variants in lung cancer

    PubMed Central

    2010-01-01

    Background Microarrays strategies, which allow for the characterization of thousands of alternative splice forms in a single test, can be applied to identify differential alternative splicing events. In this study, a novel splice array approach was developed, including the design of a high-density oligonucleotide array, a labeling procedure, and an algorithm to identify splice events. Results The array consisted of exon probes and thermodynamically balanced junction probes. Suboptimal probes were tagged and considered in the final analysis. An unbiased labeling protocol was developed using random primers. The algorithm used to distinguish changes in expression from changes in splicing was calibrated using internal non-spliced control sequences. The performance of this splice array was validated with artificial constructs for CDC6, VEGF, and PCBP4 isoforms. The platform was then applied to the analysis of differential splice forms in lung cancer samples compared to matched normal lung tissue. Overexpression of splice isoforms was identified for genes encoding CEACAM1, FHL-1, MLPH, and SUSD2. None of these splicing isoforms had been previously associated with lung cancer. Conclusions This methodology enables the detection of alternative splicing events in complex biological samples, providing a powerful tool to identify novel diagnostic and prognostic biomarkers for cancer and other pathologies. PMID:20525254

  2. Regulation of Chemoresistance Via Alternative Messenger RNA Splicing

    PubMed Central

    Eblen, Scott T.

    2012-01-01

    The acquisition of drug resistance to chemotherapy is a significant problem in the treatment of cancer, greatly increasing patient morbidity and mortality. Tumors are often sensitive to chemotherapy upon initial treatment, but repeated treatments can select for those cells that have were able to survive initial therapy and have acquired cellular mechanisms to enhance their resistance to subsequent chemotherapy treatment. Many cellular mechanisms of drug resistance have been identified, most of which result from changes in gene and protein expression. While changes at the transcriptional level have been duly noted, it is primarily the post-transcriptional processing of pre-mRNA into mature mRNA that regulates the composition of the proteome and it is the proteome that actually regulates the cell’s response to chemotherapeutic insult, inducing cell survival or death. During pre-mRNA processing, intronic non-protein-coding sequences are removed and protein-coding exons are spliced to form a continuous template for protein translation. Alternative splicing involves the differential inclusion or exclusion of exonic sequences into the mature transcript, generating different mRNA templates for protein production. This regulatory mechanism enables the potential to produce many different protein isoforms from the same gene. In this review I will explain the mechanism of alternative pre-mRNA splicing and look at some specific examples of how splicing factors, splicing factor kinases and alternative splicing of specific pre-mRNAs from genes have been shown to contribute to acquisition of the drug resistant phenotype. PMID:22248731

  3. Cloning and characterization of human RTVP-1b, a novel splice variant of RTVP-1 in glioma cells

    SciTech Connect

    Xiang Cunli; Sarid, Ronit; Cazacu, Simona; Finniss, Susan; Lee, Hae-Kyung; Ziv-Av, Amotz; Mikkelsen, Tom; Brodie, Chaya

    2007-10-26

    Here, we report the cloning and characterization of RTVP-1b, a novel splice variant of human RTVP-1, which was isolated from the U87 glioma cell line. Sequence analysis revealed that RTVP-1b contains an additional 71 base exon between exons 2 and 3 that is missing in RTVP-1, leading to a frame-shift and a different putative protein. The deduced protein was 237 amino acids in length, sharing the N-terminal 141 amino acids with RTVP-1. RT-PCR analysis demonstrated that RTVP-1b was expressed in a wide range of tissues and that its expression was different from that of RTVP-1. In contrast, RTVP-1 and RTVP-1b showed similar patterns of expression in astrocytic tumors; highly expressed in glioblastomas as compared to normal brains, low-grade astrocytomas and anaplastic oligodendrogliomas. Overexpression of RTVP-1b increased glioma cell proliferation but did not affect cell migration. Our results suggest that RTVP-1b represents a potential prognostic marker and therapeutic target in gliomas.

  4. Alternative splicing of TAF6: downstream transcriptome impacts and upstream RNA splice control elements.

    PubMed

    Kamtchueng, Catherine; Stébenne, Marie-Éve; Delannoy, Aurélie; Wilhelm, Emmanuelle; Léger, Hélène; Benecke, Arndt G; Bell, Brendan

    2014-01-01

    The TAF6δ pathway of apoptosis can dictate life versus death decisions independently of the status of p53 tumor suppressor. TAF6δ is an inducible pro-apoptotic subunit of the general RNA polymerase II (Pol II) transcription factor TFIID. Alternative splice site choice of TAF6δ has been shown to be a pivotal event in triggering death via the TAF6δ pathway, yet nothing is currently known about the mechanisms that promote TAF6δ splicing. Furthermore the transcriptome impact of the gain of function of TAF6δ versus the loss of function of the major TAF6α splice form remains undefined. Here we employ comparative microarray analysis to show that TAF6δ drives a transcriptome profile distinct from that resulting from depletion of TAF6α. To define the cis-acting RNA elements responsible for TAF6δ alternative splicing we performed a mutational analysis of a TAF6 minigene system. The data point to several new RNA elements that can modulate TAF6δ and also reveal a role for RNA secondary structure in the selection of TAF6δ.

  5. The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events

    PubMed Central

    Warzecha, Claude C.; Shen, Shihao; Xing, Yi; Carstens, Russ P.

    2010-01-01

    Cell-type and tissue-specific alternative splicing events are regulated by combinatorial control involving both abundant RNA binding proteins as well as those with more discrete expression and specialized functions. Epithelial Splicing Regulatory Proteins 1 and 2 (ESRP1 and ESRP2) are recently discovered epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the FGFR2, ENAH, CD44 and CTNND1 transcripts. To catalogue a larger set of splicing events under the regulation of the ESRPs we profiled splicing changes induced by RNA interference-mediated knockdown of ESRP1 and ESRP2 expression in a human epithelial cell line using the splicing sensitive Affymetrix Exon ST1.0 Arrays. Analysis of the microarray data resulted in the identification of over a hundred candidate ESRP regulated splicing events. We were able to independently validate 38 of these targets by RT-PCR. The ESRP regulated events encompass all known types of alternative splicing events, most prominent being alternative cassette exons and splicing events leading to alternative 3' terminal exons. Importantly, a number of these regulated splicing events occur in gene transcripts that encode proteins with well-described roles in the regulation of actin cytoskeleton organization, cell-cell adhesion, cell polarity and cell migration. In sum, this work reveals a novel list of transcripts differentially spliced in epithelial and mesenchymal cells, implying that coordinated alternative splicing plays a critical role in determination of cell type identity. These results further establish ESRP1 and ESRP2 as global regulators of an epithelial splicing regulatory network. PMID:19829082

  6. Alternatively spliced, spliceosomal twin introns in Helminthosporium solani.

    PubMed

    Ág, Norbert; Flipphi, Michel; Karaffa, Levente; Scazzocchio, Claudio; Fekete, Erzsébet

    2015-12-01

    Spliceosomal twin introns, "stwintrons", have been defined as complex intervening sequences that carry a second intron ("internal intron") interrupting one of the conserved sequence domains necessary for their correct splicing via consecutive excision events. Previously, we have described and experimentally verified stwintrons in species of Sordariomycetes, where an "internal intron" interrupted the donor sequence of an "external intron". Here we describe and experimentally verify two novel stwintrons of the potato pathogen Helminthosporium solani. One instance involves alternative splicing of an internal intron interrupting the donor domain of an external intron and a second one interrupting the acceptor domain of an overlapping external intron, both events leading to identical mature mRNAs. In the second case, an internal intron interrupts the donor domain of the external intron, while an alternatively spliced intron leads to an mRNA carrying a premature chain termination codon. We thus extend the stwintron concept to the acceptor domain and establish a link of the occurrence of stwintrons with that of alternative splicing.

  7. Alternatively spliced, spliceosomal twin introns in Helminthosporium solani.

    PubMed

    Ág, Norbert; Flipphi, Michel; Karaffa, Levente; Scazzocchio, Claudio; Fekete, Erzsébet

    2015-12-01

    Spliceosomal twin introns, "stwintrons", have been defined as complex intervening sequences that carry a second intron ("internal intron") interrupting one of the conserved sequence domains necessary for their correct splicing via consecutive excision events. Previously, we have described and experimentally verified stwintrons in species of Sordariomycetes, where an "internal intron" interrupted the donor sequence of an "external intron". Here we describe and experimentally verify two novel stwintrons of the potato pathogen Helminthosporium solani. One instance involves alternative splicing of an internal intron interrupting the donor domain of an external intron and a second one interrupting the acceptor domain of an overlapping external intron, both events leading to identical mature mRNAs. In the second case, an internal intron interrupts the donor domain of the external intron, while an alternatively spliced intron leads to an mRNA carrying a premature chain termination codon. We thus extend the stwintron concept to the acceptor domain and establish a link of the occurrence of stwintrons with that of alternative splicing. PMID:26514742

  8. Increased dosage of Dyrk1A alters alternative splicing factor (ASF)-regulated alternative splicing of tau in Down syndrome.

    PubMed

    Shi, Jianhua; Zhang, Tianyi; Zhou, Chunlei; Chohan, Muhammad Omar; Gu, Xiaosong; Wegiel, Jerzy; Zhou, Jianhua; Hwang, Yu-Wen; Iqbal, Khalid; Grundke-Iqbal, Inge; Gong, Cheng-Xin; Liu, Fei

    2008-10-17

    Two groups of tau, 3R- and 4R-tau, are generated by alternative splicing of tau exon 10. Normal adult human brain expresses equal levels of them. Disruption of the physiological balance is a common feature of several tauopathies. Very early in their life, individuals with Down syndrome (DS) develop Alzheimer-type tau pathology, the molecular basis for which is not fully understood. Here, we demonstrate that Dyrk1A, a kinase encoded by a gene in the DS critical region, phosphorylates alternative splicing factor (ASF) at Ser-227, Ser-234, and Ser-238, driving it into nuclear speckles and preventing it from facilitating tau exon 10 inclusion. The increased dosage of Dyrk1A in DS brain due to trisomy of chromosome 21 correlates to an increase in 3R-tau level, which on abnormal hyperphosphorylation and aggregation of tau results in neurofibrillary degeneration. Imbalance of 3R- and 4R-tau in DS brain by Dyrk1A-induced dysregulation of alternative splicing factor-mediated alternative splicing of tau exon 10 represents a novel mechanism of neurofibrillary degeneration and may help explain early onset tauopathy in individuals with DS.

  9. SplicePie: a novel analytical approach for the detection of alternative, non-sequential and recursive splicing.

    PubMed

    Pulyakhina, Irina; Gazzoli, Isabella; 't Hoen, Peter A C; Verwey, Nisha; den Dunnen, Johan T; den Dunnen, Johan; Aartsma-Rus, Annemieke; Laros, Jeroen F J

    2015-07-13

    Alternative splicing is a powerful mechanism present in eukaryotic cells to obtain a wide range of transcripts and protein isoforms from a relatively small number of genes. The mechanisms regulating (alternative) splicing and the paradigm of consecutive splicing have recently been challenged, especially for genes with a large number of introns. RNA-Seq, a powerful technology using deep sequencing in order to determine transcript structure and expression levels, is usually performed on mature mRNA, therefore not allowing detailed analysis of splicing progression. Sequencing pre-mRNA at different stages of splicing potentially provides insight into mRNA maturation. Although the number of tools that analyze total and cytoplasmic RNA in order to elucidate the transcriptome composition is rapidly growing, there are no tools specifically designed for the analysis of nuclear RNA (which contains mixtures of pre- and mature mRNA). We developed dedicated algorithms to investigate the splicing process. In this paper, we present a new classification of RNA-Seq reads based on three major stages of splicing: pre-, intermediate- and post-splicing. Applying this novel classification we demonstrate the possibility to analyze the order of splicing. Furthermore, we uncover the potential to investigate the multi-step nature of splicing, assessing various types of recursive splicing events. We provide the data that gives biological insight into the order of splicing, show that non-sequential splicing of certain introns is reproducible and coinciding in multiple cell lines. We validated our observations with independent experimental technologies and showed the reliability of our method. The pipeline, named SplicePie, is freely available at: https://github.com/pulyakhina/splicing_analysis_pipeline. The example data can be found at: https://barmsijs.lumc.nl/HG/irina/example_data.tar.gz. PMID:25800735

  10. SplicePie: a novel analytical approach for the detection of alternative, non-sequential and recursive splicing.

    PubMed

    Pulyakhina, Irina; Gazzoli, Isabella; 't Hoen, Peter A C; Verwey, Nisha; den Dunnen, Johan T; den Dunnen, Johan; Aartsma-Rus, Annemieke; Laros, Jeroen F J

    2015-07-13

    Alternative splicing is a powerful mechanism present in eukaryotic cells to obtain a wide range of transcripts and protein isoforms from a relatively small number of genes. The mechanisms regulating (alternative) splicing and the paradigm of consecutive splicing have recently been challenged, especially for genes with a large number of introns. RNA-Seq, a powerful technology using deep sequencing in order to determine transcript structure and expression levels, is usually performed on mature mRNA, therefore not allowing detailed analysis of splicing progression. Sequencing pre-mRNA at different stages of splicing potentially provides insight into mRNA maturation. Although the number of tools that analyze total and cytoplasmic RNA in order to elucidate the transcriptome composition is rapidly growing, there are no tools specifically designed for the analysis of nuclear RNA (which contains mixtures of pre- and mature mRNA). We developed dedicated algorithms to investigate the splicing process. In this paper, we present a new classification of RNA-Seq reads based on three major stages of splicing: pre-, intermediate- and post-splicing. Applying this novel classification we demonstrate the possibility to analyze the order of splicing. Furthermore, we uncover the potential to investigate the multi-step nature of splicing, assessing various types of recursive splicing events. We provide the data that gives biological insight into the order of splicing, show that non-sequential splicing of certain introns is reproducible and coinciding in multiple cell lines. We validated our observations with independent experimental technologies and showed the reliability of our method. The pipeline, named SplicePie, is freely available at: https://github.com/pulyakhina/splicing_analysis_pipeline. The example data can be found at: https://barmsijs.lumc.nl/HG/irina/example_data.tar.gz.

  11. Splicing Express: a software suite for alternative splicing analysis using next-generation sequencing data.

    PubMed

    Kroll, Jose E; Kim, Jihoon; Ohno-Machado, Lucila; de Souza, Sandro J

    2015-01-01

    Motivation. Alternative splicing events (ASEs) are prevalent in the transcriptome of eukaryotic species and are known to influence many biological phenomena. The identification and quantification of these events are crucial for a better understanding of biological processes. Next-generation DNA sequencing technologies have allowed deep characterization of transcriptomes and made it possible to address these issues. ASEs analysis, however, represents a challenging task especially when many different samples need to be compared. Some popular tools for the analysis of ASEs are known to report thousands of events without annotations and/or graphical representations. A new tool for the identification and visualization of ASEs is here described, which can be used by biologists without a solid bioinformatics background. Results. A software suite named Splicing Express was created to perform ASEs analysis from transcriptome sequencing data derived from next-generation DNA sequencing platforms. Its major goal is to serve the needs of biomedical researchers who do not have bioinformatics skills. Splicing Express performs automatic annotation of transcriptome data (GTF files) using gene coordinates available from the UCSC genome browser and allows the analysis of data from all available species. The identification of ASEs is done by a known algorithm previously implemented in another tool named Splooce. As a final result, Splicing Express creates a set of HTML files composed of graphics and tables designed to describe the expression profile of ASEs among all analyzed samples. By using RNA-Seq data from the Illumina Human Body Map and the Rat Body Map, we show that Splicing Express is able to perform all tasks in a straightforward way, identifying well-known specific events. Availability and Implementation. Splicing Express is written in Perl and is suitable to run only in UNIX-like systems. More details can be found at: http://www.bioinformatics-brazil.org/splicingexpress.

  12. Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes

    PubMed Central

    Sharma, Alok; Nguyen, Hieu; Geng, Cuiyu; Hinman, Melissa N.; Luo, Guangbin; Lou, Hua

    2014-01-01

    In cardiomyocytes, calcium is known to control gene expression at the level of transcription, whereas its role in regulating alternative splicing has not been explored. Here we report that, in mouse primary or embryonic stem cell-derived cardiomyocytes, increased calcium levels induce robust and reversible skipping of several alternative exons from endogenously expressed genes. Interestingly, we demonstrate a calcium-mediated splicing regulatory mechanism that depends on changes of histone modifications. Specifically, the regulation occurs through changes in calcium-responsive kinase activities that lead to alterations in histone modifications and subsequent changes in the transcriptional elongation rate and exon skipping. We demonstrate that increased intracellular calcium levels lead to histone hyperacetylation along the body of the genes containing calcium-responsive alternative exons by disrupting the histone deacetylase-to-histone acetyltransferase balance in the nucleus. Consequently, the RNA polymerase II elongation rate increases significantly on those genes, resulting in skipping of the alternative exons. These studies reveal a mechanism by which calcium-level changes in cardiomyocytes impact on the output of gene expression through altering alternative pre-mRNA splicing patterns. PMID:25368158

  13. Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct n-termini

    SciTech Connect

    Parra, Marilyn K.; Gee, Sherry L.; Koury, Mark J.; Mohandas, Narla; Conboy, John G.

    2003-03-25

    Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA regulates expression of longer or shorter isoforms of 4.1R protein, respectively. The current study reports unexpected complexity in the 5' region of the 4.1R gene that directly affects alternative splicing of exon 2'. Three mutually exclusive alternative 5' exons, designated 1A, 1B, and 1C, were identified far upstream of exon 2 in both mouse and human genomes; all three are associated with strong transcriptional promoters in the flanking genomic sequence. Importantly, exons 1A and 1B splice differentially with respect to exon 2', generating transcripts with different 5' ends and distinct N-terminal protein coding capacity. Exon 1A-type transcripts splice so as to exclude exon 2' and therefore utilize the downstream AUG2 for translation of 80kD 4.1R protein, whereas exon 1B transcripts include exon 2' and initiate at AUG1 to synthesize 135kD isoforms. RNA blot analyses revealed that 1A transcripts increase in abundance in late erythroblasts, consistent with the previously demonstrated upregulation of 80kD 4.1R during terminal erythroid differentiation. Together these results suggest that synthesis of structurally distinct 4.1R protein isoforms in various cell types is regulated by a novel mechanism requiring coordination between upstream transcription initiation events and downstream alternative splicing events.

  14. Statistical and Computational Methods for High-Throughput Sequencing Data Analysis of Alternative Splicing

    PubMed Central

    2013-01-01

    The burgeoning field of high-throughput sequencing significantly improves our ability to understand the complexity of transcriptomes. Alternative splicing, as one of the most important driving forces for transcriptome diversity, can now be studied at an unprecedent resolution. Efficient and powerful computational and statistical methods are in urgent need to facilitate the characterization and quantification of alternative splicing events. Here we discuss methods in splice junction read mapping, and methods in exon-centric or isoform-centric quantification of alternative splicing. In addition, we discuss HITS-CLIP and splicing QTL analyses which are novel high-throughput sequencing based approaches in the dissection of splicing regulation. PMID:24058384

  15. Tissue-specific alternative splicing of Shaker potassium channel transcripts results from distinct modes of regulating 3' splice choice.

    PubMed

    Iverson, L E; Mottes, J R; Yeager, S A; Germeraad, S E

    1997-05-01

    Alternative splicing of precursor RNA enables a single gene to encode multiple protein isoforms with different functional characteristics and tissue distributions. Differential splicing of Drosophila Shaker (Sh) gene transcripts regulates the tissue-specific expression of kinetically distinct potassium ion channels throughout development. Regulation of Sh alternative splicing is being examined in germline transformants using lacZ as a reporter gene. P-element constructs were generated in which one or both of the two mutually exclusive Sh 3' acceptor sites were positioned in the same translational reading frame as the lacZ coding sequences. The constructs were introduced into the germline and the transgenic animals examined for tissue-specific beta-galactosidase expression patterns. Some tissues exhibit "promiscuous" splicing; these tissues are competent to splice to either 3' acceptor even when both are present on the same pre-mRNA. In other tissues splice choice results from competition between the two 3' sites; these tissues can splice to either site when it is the only available 3' acceptor, but when given a choice will splice to only one of the two 3' acceptors. In some tissues, splicing occurs exclusively at only one of the 3' acceptor sites; these tissues are not competent to splice to one of the sites even if it is the only 3' acceptor present on the pre-mRNA. These results suggests that multiple, distinct regulatory modes are operating to control tissue-specific alternative splicing of Sh 3' domains and are discussed in terms of potential underlying mechanisms for regulating the tissue-specific expression of alternatively spliced genes.

  16. Alternative splicing of Wilms tumor suppressor 1 (Wt1) exon 4 results in protein isoforms with different functions.

    PubMed

    Schnerwitzki, Danny; Perner, Birgit; Hoppe, Beate; Pietsch, Stefan; Mehringer, Rebecca; Hänel, Frank; Englert, Christoph

    2014-09-01

    The Wilms tumor suppressor gene Wt1 encodes a zinc finger transcription factor that is essential for development of multiple organs including kidneys, gonads, spleen and heart. In mammals Wt1 comprises 10 exons with two characteristic splicing events: inclusion or skipping of exon 5 and alternative usage of two splice donor sites between exons 9 and 10. Most fish including zebrafish and medaka possess two wt1 paralogs, wt1a and wt1b, both lacking exon 5. Here we have characterized wt1 in guppy, platyfish and the short-lived African killifish Nothobranchius furzeri. All fish except zebrafish show alternative splicing of exon 4 of wt1a but not of wt1b with the wt1a(-exon 4) isoform being the predominant splice variant. With regard to function, Wt1a(+exon 4) showed less dimerization but stimulated transcription more effectively than the Wt1a(-exon 4) isoform. A specific knockdown of wt1a exon 4 in zebrafish was associated with anomalies in kidney development demonstrating a physiological function for Wt1a exon 4. Interestingly, alternative splicing of exon 4 seems to be an early evolutionary event as it is observed in the single wt1 gene of the sturgeon, a species that has not gone through teleost-specific genome duplication. PMID:25014653

  17. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage

    PubMed Central

    Alsafadi, Samar; Houy, Alexandre; Battistella, Aude; Popova, Tatiana; Wassef, Michel; Henry, Emilie; Tirode, Franck; Constantinou, Angelos; Piperno-Neumann, Sophie; Roman-Roman, Sergio; Dutertre, Martin; Stern, Marc-Henri

    2016-01-01

    Hotspot mutations in the spliceosome gene SF3B1 are reported in ∼20% of uveal melanomas. SF3B1 is involved in 3′-splice site (3′ss) recognition during RNA splicing; however, the molecular mechanisms of its mutation have remained unclear. Here we show, using RNA-Seq analyses of uveal melanoma, that the SF3B1R625/K666 mutation results in deregulated splicing at a subset of junctions, mostly by the use of alternative 3′ss. Modelling the differential junctions in SF3B1WT and SF3B1R625/K666 cell lines demonstrates that the deregulated splice pattern strictly depends on SF3B1 status and on the 3'ss-sequence context. SF3B1WT knockdown or overexpression do not reproduce the SF3B1R625/K666 splice pattern, qualifying SF3B1R625/K666 as change-of-function mutants. Mutagenesis of predicted branchpoints reveals that the SF3B1R625/K666-promoted splice pattern is a direct result of alternative branchpoint usage. Altogether, this study provides a better understanding of the mechanisms underlying splicing alterations induced by mutant SF3B1 in cancer, and reveals a role for alternative branchpoints in disease. PMID:26842708

  18. Alteration of Conserved Alternative Splicing in AMELX Causes Enamel Defects

    PubMed Central

    Cho, E.S.; Kim, K.-J.; Lee, K.-E.; Lee, E.-J.; Yun, C.Y.; Lee, M.-J.; Shin, T.J.; Hyun, H.-K.; Kim, Y.-J.; Lee, S.-H.; Jung, H.-S.; Lee, Z.H.; Kim, J.-W.

    2014-01-01

    Tooth enamel is the most highly mineralized tissue in vertebrates. Enamel crystal formation and elongation should be well controlled to achieve an exceptional hardness and a compact microstructure. Enamel matrix calcification occurs with several matrix proteins, such as amelogenin, enamelin, and ameloblastin. Among them, amelogenin is the most abundant enamel matrix protein, and multiple isoforms resulting from extensive but well-conserved alternative splicing and postsecretional processing have been identified. In this report, we recruited a family with a unique enamel defect and identified a silent mutation in exon 4 of the AMELX gene. We show that the mutation caused the inclusion of exon 4, which is almost always skipped, in the mRNA transcript. We further show, by generating and characterizing a transgenic animal model, that the alteration of the ratio and quantity of the developmentally conserved alternative splicing repertoire of AMELX caused defects in enamel matrix mineralization. PMID:25117480

  19. Maps, codes, and sequence elements: can we predict the protein output from an alternatively spliced locus?

    PubMed

    Sharma, Shalini; Black, Douglas L

    2006-11-22

    Alternative splicing choices are governed by splicing regulatory protein interactions with splicing silencer and enhancer elements present in the pre-mRNA. However, the prediction of these choices from genomic sequence is difficult, in part because the regulators can act as either enhancers or silencers. A recent study describes how for a particular neuronal splicing regulatory protein, Nova, the location of its binding sites is highly predictive of the protein's effect on an exon's splicing.

  20. Complexity of the alternative splicing landscape in plants.

    PubMed

    Reddy, Anireddy S N; Marquez, Yamile; Kalyna, Maria; Barta, Andrea

    2013-10-01

    Alternative splicing (AS) of precursor mRNAs (pre-mRNAs) from multiexon genes allows organisms to increase their coding potential and regulate gene expression through multiple mechanisms. Recent transcriptome-wide analysis of AS using RNA sequencing has revealed that AS is highly pervasive in plants. Pre-mRNAs from over 60% of intron-containing genes undergo AS to produce a vast repertoire of mRNA isoforms. The functions of most splice variants are unknown. However, emerging evidence indicates that splice variants increase the functional diversity of proteins. Furthermore, AS is coupled to transcript stability and translation through nonsense-mediated decay and microRNA-mediated gene regulation. Widespread changes in AS in response to developmental cues and stresses suggest a role for regulated splicing in plant development and stress responses. Here, we review recent progress in uncovering the extent and complexity of the AS landscape in plants, its regulation, and the roles of AS in gene regulation. The prevalence of AS in plants has raised many new questions that require additional studies. New tools based on recent technological advances are allowing genome-wide analysis of RNA elements in transcripts and of chromatin modifications that regulate AS. Application of these tools in plants will provide significant new insights into AS regulation and crosstalk between AS and other layers of gene regulation.

  1. Involvement of Alternative Splicing in Barley Seed Germination.

    PubMed

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3' splicing (34%-45%), intron retention (32%-34%) and alternative 5' splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination.

  2. Alternative Splicing of G9a Regulates Neuronal Differentiation.

    PubMed

    Fiszbein, Ana; Giono, Luciana E; Quaglino, Ana; Berardino, Bruno G; Sigaut, Lorena; von Bilderling, Catalina; Schor, Ignacio E; Steinberg, Juliana H Enriqué; Rossi, Mario; Pietrasanta, Lía I; Caramelo, Julio J; Srebrow, Anabella; Kornblihtt, Alberto R

    2016-03-29

    Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10(+) isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  3. Involvement of Alternative Splicing in Barley Seed Germination

    PubMed Central

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3’ splicing (34%-45%), intron retention (32%-34%) and alternative 5’ splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination. PMID:27031341

  4. Identification of alternatively spliced human biotinidase mRNAs and putative localization of endogenous biotinidase.

    PubMed

    Stanley, Christine M; Hymes, Jeanne; Wolf, Barry

    2004-04-01

    Biotinidase is essential for recycling the vitamin biotin and for transferring biotin to proteins, such as histones, suggesting that the enzyme localizes to various cellular and extracellular sites. To better understand the functions of the enzyme, we examined its gene structure and subcellular localization. Using RACE-PCR and a BLAST search, we extended the 5' sequence of the biotinidase gene. Three novel, alternatively spliced variants of biotinidase, 1a, 1b, and 1c, were identified in multiple human tissues. Exon 1c is present only in testes. The sequence of the 5' splice variants, 1a and 1b, suggest that biotinidase localizes to the mitochondria and/or ER, respectively. Using indirect immunofluorescence studies, biotinidase localizes to organelles in the cytoplasm, but not nucleus, of human fibroblasts and Hep G2 cells. Endogenous expression was examined by isopycnic gradient centrifugation of rat liver organelles, which identified an 85kDa biotinidase protein with biotinyl-hydrolase and transferase activities in microsomes and possibly lysosomes. A 48kDa protein, which also reacts with anti-biotinidase, localizes to mitochondria. The 48kDa protein is not N-glycosylated but is biotinylated, is in the inner mitochondrial matrix, but has no biotinyl-hydrolase or transferase activities. The function and validation of the mitochondrial species remains to be determined. The 5' splice variants and organelle fractionation studies indicate that biotinidase is directed to the secretory pathway and perhaps mitochondria.

  5. Evolution of alternative splicing in newly evolved genes of Drosophila.

    PubMed

    Zhan, Zubing; Ren, Juan; Zhang, Yue; Zhao, Ruoping; Yang, Shuang; Wang, Wen

    2011-01-01

    New gene origination is a fundamental process underlying evolution of biological diversity. Although new genes usually evolve rapidly in sequences, structure and expression, the evolutionary pattern of alternative splicing (AS) in new genes and the molecular mechanisms involved in this alternation remain to be explored. Here, we used the new genes identified in the Drosophila melanogaster lineage to study alternation of AS and the possible functional consequences of these genes. We found that new genes tended to exhibit low degree of AS, though a few new genes were alternatively spliced. Interestingly loss of introns in retroposed new genes can only account for one third of the low-level AS in new genes, while partial gene duplication without AS exons and mutations in the duplicated AS exons/introns together have resulted in two-third AS losses in new genes, indicating that reducing the degree of AS is a general trend in all categories of new genes. Further investigations on tissue expression patterns of these new genes showed that those with AS alternation had a relatively lower expression level, were expressed in fewer tissues and tended to be more likely expressed in testis than their parental genes. All these observations imply that these new genes may have gained diverged structures and expression patterns from their parental genes after AS alternation.

  6. Genetic Variation of Pre-mRNA Alternative Splicing in Human Populations

    PubMed Central

    Lu, Zhi-xiang; Jiang, Peng; Xing, Yi

    2011-01-01

    The precise splicing outcome of a transcribed gene is controlled by complex interactions between cis regulatory splicing signals and trans-acting regulators. In higher eukaryotes, alternative splicing is a prevalent mechanism for generating transcriptome and proteome diversity. Alternative splicing can modulate gene function, affect organismal phenotype and cause disease. Common genetic variation that affects splicing regulation can lead to differences in alternative splicing between human individuals and consequently impact expression level or protein function. In several well-documented examples, such natural variation of alternative splicing has indeed been shown to influence disease susceptibility and drug response. With new microarray- and sequencing-based genomic technologies that can analyze eukaryotic transcriptomes at the exon- or nucleotide-level, it has become possible to globally compare the alternative splicing profiles across human individuals in any tissue or cell type of interest. Recent large-scale transcriptome studies using high-density splicing-sensitive microarray and deep RNA sequencing (RNA-Seq) have revealed widespread genetic variation of alternative splicing in humans. In the future, an extensive catalogue of alternative splicing variation in human populations will help elucidate the molecular underpinnings of complex traits and human diseases, and shed light on the mechanisms of splicing regulation in human cells. PMID:22095823

  7. A general definition and nomenclature for alternative splicing events.

    PubMed

    Sammeth, Michael; Foissac, Sylvain; Guigó, Roderic

    2008-01-01

    Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells is one of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS) is a key phenomenon contributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora of different transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify the different types of reflected splicing variation. In this work, we present a general definition of the AS event along with a notation system that involves the relative positions of the splice sites. This nomenclature univocally and dynamically assigns a specific "AS code" to every possible pattern of splicing variation. On the basis of this definition and the corresponding codes, we have developed a computational tool (AStalavista) that automatically characterizes the complete landscape of AS events in a given transcript annotation of a genome, thus providing a platform to investigate the transcriptome diversity across genes, chromosomes, and species. Our analysis reveals that a substantial part--in human more than a quarter-of the observed splicing variations are ignored in common classification pipelines. We have used AStalavista to investigate and to compare the AS landscape of different reference annotation sets in human and in other metazoan species and found that proportions of AS events change substantially depending on the annotation protocol, species-specific attributes, and coding constraints acting on the transcripts. The AStalavista system therefore provides a general framework to conduct specific studies investigating the occurrence, impact, and regulation of AS.

  8. The Interplay of Temperature and Genotype on Patterns of Alternative Splicing in Drosophila melanogaster

    PubMed Central

    Jakšić, Ana Marija; Schlötterer, Christian

    2016-01-01

    Alternative splicing is the highly regulated process of variation in the removal of introns from premessenger-RNA transcripts. The consequences of alternative splicing on the phenotype are well documented, but the impact of the environment on alternative splicing is not yet clear. We studied variation in alternative splicing among four different temperatures, 13, 18, 23, and 29°, in two Drosophila melanogaster genotypes. We show plasticity of alternative splicing with up to 10% of the expressed genes being differentially spliced between the most extreme temperatures for a given genotype. Comparing the two genotypes at different temperatures, we found <1% of the genes being differentially spliced at 18°. At extreme temperatures, however, we detected substantial differences in alternative splicing—with almost 10% of the genes having differential splicing between the genotypes: a magnitude similar to between species differences. Genes with differential alternative splicing between genotypes frequently exhibit dominant inheritance. Remarkably, the pattern of surplus of differences in alternative splicing at extreme temperatures resembled the pattern seen for gene expression intensity. Since different sets of genes were involved for the two phenotypes, we propose that purifying selection results in the reduction of differences at benign temperatures. Relaxed purifying selection at temperature extremes, on the other hand, may cause the divergence in gene expression and alternative splicing between the two strains in rarely encountered environments. PMID:27440867

  9. WT1 interacts with the splicing protein RBM4 and regulates its ability to modulate alternative splicing in vivo

    SciTech Connect

    Markus, M. Andrea; Heinrich, Bettina; Raitskin, Oleg; Adams, David J.; Mangs, Helena; Goy, Christine; Ladomery, Michael; Sperling, Ruth; Stamm, Stefan; Morris, Brian J. . E-mail: brianm@medsci.usyd.edu.au

    2006-10-15

    Wilm's tumor protein 1 (WT1), a protein implicated in various cancers and developmental disorders, consists of two major isoforms: WT1(-KTS), a transcription factor, and WT1(+KTS), a post-transcriptional regulator that binds to RNA and can interact with splicing components. Here we show that WT1 interacts with the novel splicing regulator RBM4. Each protein was found to colocalize in nuclear speckles and to cosediment with supraspliceosomes in glycerol gradients. RBM4 conferred dose-dependent and cell-specific regulation of alternative splicing of pre-mRNAs transcribed from several reporter genes. We found that overexpressed WT1(+KTS) abrogated this effect of RBM4 on splice-site selection, whereas WT1(-KTS) did not. We conclude that the (+KTS) form of WT1 is able to inhibit the effect of RBM4 on alternative splicing.

  10. TMEM16A alternative splicing coordination in breast cancer

    PubMed Central

    2013-01-01

    Background TMEM16A, also known as Anoctamin-1, is a calcium-activated chloride channel gene overexpressed in many tumors. The role of TMEM16A in cancer is not completely understood and no data are available regarding the potential tumorigenic properties of the multiple isoforms generated by alternative splicing (AS). Methods We evaluated TMEM16A AS pattern, isoforms distribution and Splicing Coordination (SC), in normal tissues and breast cancers, through a semi-quantitative PCR-assay that amplifies transcripts across three AS exons, 6b, 13 and 15. Results In breast cancer, we did not observe an association either to AS of individual exons or to specific TMEM16A isoforms, and induced expression of the most common isoforms present in tumors in the HEK293 Flp-In Tet-ON system had no effect on cellular proliferation and migration. The analysis of splicing coordination, a mechanism that regulates AS of distant exons, showed a preferential association of exon 6b and 15 in several normal tissues and tumors: isoforms that predominantly include exon 6b tend to exclude exon 15 and vice versa. Interestingly, we found an increase in SC in breast tumors compared to matched normal tissues. Conclusions As the different TMEM16A isoforms do not affect proliferation or migration and do not associate with tumors, our results suggest that the resulting channel activities are not directly involved in cell growth and motility. Conversely, the observed increase in SC in breast tumors suggests that the maintenance of the regulatory mechanism that coordinates distant alternative spliced exons in multiple genes other than TMEM16A is necessary for cancer cell viability. PMID:23866066

  11. Integrative analysis of many RNA-seq datasets to study alternative splicing.

    PubMed

    Li, Wenyuan; Dai, Chao; Kang, Shuli; Zhou, Xianghong Jasmine

    2014-06-01

    Alternative splicing is an important gene regulatory mechanism that dramatically increases the complexity of the proteome. However, how alternative splicing is regulated and how transcription and splicing are coordinated are still poorly understood, and functions of transcript isoforms have been studied only in a few limited cases. Nowadays, RNA-seq technology provides an exceptional opportunity to study alternative splicing on genome-wide scales and in an unbiased manner. With the rapid accumulation of data in public repositories, new challenges arise from the urgent need to effectively integrate many different RNA-seq datasets for study alterative splicing. This paper discusses a set of advanced computational methods that can integrate and analyze many RNA-seq datasets to systematically identify splicing modules, unravel the coupling of transcription and splicing, and predict the functions of splicing isoforms on a genome-wide scale.

  12. Novel alternative splicing isoform biomarkers identification from high-throughput plasma proteomics profiling of breast cancer

    PubMed Central

    2013-01-01

    Background In the biopharmaceutical industry, biomarkers define molecular taxonomies of patients and diseases and serve as surrogate endpoints in early-phase drug trials. Molecular biomarkers can be much more sensitive than traditional lab tests. Discriminating disease biomarkers by traditional method such as DNA microarray has proved challenging. Alternative splicing isoform represents a new class of diagnostic biomarkers. Recent scientific evidence is demonstrating that the differentiation and quantification of individual alternative splicing isoforms could improve insights into disease diagnosis and management. Identifying and characterizing alternative splicing isoforms are essential to the study of molecular mechanisms and early detection of complex diseases such as breast cancer. However, there are limitations with traditional methods used for alternative splicing isoform determination such as transcriptome-level, low level of coverage and poor focus on alternative splicing. Results Therefore, we presented a peptidomics approach to searching novel alternative splicing isoforms in clinical proteomics. Our results showed that the approach has significant potential in enabling discovery of new types of high-quality alternative splicing isoform biomarkers. Conclusions We developed a peptidomics approach for the proteomics community to analyze, identify, and characterize alternative splicing isoforms from MS-based proteomics experiments with more coverage and exclusive focus on alternative splicing. The approach can help generate novel hypotheses on molecular risk factors and molecular mechanisms of cancer in early stage, leading to identification of potentially highly specific alternative splicing isoform biomarkers for early detection of cancer. PMID:24565027

  13. Alternative splicing: An important mechanism in stem cell biology

    PubMed Central

    Chen, Kenian; Dai, Xiaojing; Wu, Jiaqian

    2015-01-01

    Alternative splicing (AS) is an essential mechanism in post-transcriptional regulation and leads to protein diversity. It has been shown that AS is prevalent in metazoan genomes, and the splicing pattern is dynamically regulated in different tissues and cell types, including embryonic stem cells. These observations suggest that AS may play critical roles in stem cell biology. Since embryonic stem cells and induced pluripotent stem cells have the ability to give rise to all types of cells and tissues, they hold the promise of future cell-based therapy. Many efforts have been devoted to understanding the mechanisms underlying stem cell self-renewal and differentiation. However, most of the studies focused on the expression of a core set of transcription factors and regulatory RNAs. The role of AS in stem cell differentiation was not clear. Recent advances in high-throughput technologies have allowed the profiling of dynamic splicing patterns and cis-motifs that are responsible for AS at a genome-wide scale, and provided novel insights in a number of studies. In this review, we discuss some recent findings involving AS and stem cells. An emerging picture from these findings is that AS is integrated in the transcriptional and post-transcriptional networks and together they control pluripotency maintenance and differentiation of stem cells. PMID:25621101

  14. Convergent evolution of alternative splices at domain boundaries of the BK channel.

    PubMed

    Fodor, Anthony A; Aldrich, Richard W

    2009-01-01

    Alternative splicing is a widespread mechanism for generating transcript diversity in higher eukaryotic genomes. The alternative splices of the large-conductance calcium-activated potassium (BK) channel have been the subject of a good deal of experimental functional characterization in the Arthropoda, Chordata, and Nematoda phyla. In this review, we examine a list of splices of the BK channel by manual curation of Unigene clusters mapped to mouse, human, chicken, Drosophila, and Caenorhabditis elegans genomes. We find that BK alternative splices do not appear to be conserved across phyla. Despite this lack of conservation, splices occur in both vertebrates and invertebrates at identical regions of the channel at experimentally established domain boundaries. The fact that, across phyla, unique splices occur at experimentally established domain boundaries suggests a prominent role for the convergent evolution of alternative splices that produce functional changes via changes in interdomain communication. PMID:18694345

  15. Lost in Translation: Pitfalls in Deciphering Plant Alternative Splicing Transcripts

    PubMed Central

    Brown, John W.S.; Simpson, Craig G.; Marquez, Yamile; Gadd, Geoffrey M.; Barta, Andrea; Kalyna, Maria

    2015-01-01

    Transcript annotation in plant databases is incomplete and often inaccurate, leading to misinterpretation. As more and more RNA-seq data are generated, plant scientists need to be aware of potential pitfalls and understand the nature and impact of specific alternative splicing transcripts on protein production. A primary area of concern and the topic of this article is the (mis)annotation of open reading frames and premature termination codons. The basic message is that to adequately address expression and functions of transcript isoforms, it is necessary to be able to predict their fate in terms of whether protein isoforms are generated or specific transcripts are unproductive or degraded. PMID:26286536

  16. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    DOE PAGESBeta

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; Yang, Li; Bolisetty, Mohan; Landolin, Jane; Wan, Ken; Sandler, Jeremy; Booth, Benjamin W.; Celniker, Susan E.; et al

    2015-08-20

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected themore » splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.« less

  17. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    SciTech Connect

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; Yang, Li; Bolisetty, Mohan; Landolin, Jane; Wan, Ken; Sandler, Jeremy; Booth, Benjamin W.; Celniker, Susan E.; Graveley, Brenton R.; Brenner, Steven E.

    2015-08-20

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.

  18. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    PubMed Central

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; Yang, Li; Bolisetty, Mohan; Landolin, Jane; Wan, Ken; Sandler, Jeremy; Booth, Benjamin W.; Celniker, Susan E.; Graveley, Brenton R.; Brenner, Steven E.

    2015-01-01

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. This large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs. PMID:26294686

  19. Transcriptome Bioinformatical Analysis of Vertebrate Stages of Schistosoma japonicum Reveals Alternative Splicing Events

    PubMed Central

    Wang, Xinye; Xu, Xindong; Lu, Xingyu; Zhang, Yuanbin; Pan, Weiqing

    2015-01-01

    Alternative splicing is a molecular process that contributes greatly to the diversification of proteome and to gene functions. Understanding the mechanisms of stage-specific alternative splicing can provide a better understanding of the development of eukaryotes and the functions of different genes. Schistosoma japonicum is an infectious blood-dwelling trematode with a complex lifecycle that causes the tropical disease schistosomiasis. In this study, we analyzed the transcriptome of Schistosoma japonicum to discover alternative splicing events in this parasite, by applying RNA-seq to cDNA library of adults and schistosomula. Results were validated by RT-PCR and sequencing. We found 11,623 alternative splicing events among 7,099 protein encoding genes and average proportion of alternative splicing events per gene was 42.14%. We showed that exon skip is the most common type of alternative splicing events as found in high eukaryotes, whereas intron retention is the least common alternative splicing type. According to intron boundary analysis, the parasite possesses same intron boundaries as other organisms, namely the classic “GT-AG” rule. And in alternative spliced introns or exons, this rule is less strict. And we have attempted to detect alternative splicing events in genes encoding proteins with signal peptides and transmembrane helices, suggesting that alternative splicing could change subcellular locations of specific gene products. Our results indicate that alternative splicing is prevalent in this parasitic worm, and that the worm is close to its hosts. The revealed secretome involved in alternative splicing implies new perspective into understanding interaction between the parasite and its host. PMID:26407301

  20. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer.

    PubMed

    Ryan, Michael; Wong, Wing Chung; Brown, Robert; Akbani, Rehan; Su, Xiaoping; Broom, Bradley; Melott, James; Weinstein, John

    2016-01-01

    TCGA's RNASeq data represent one of the largest collections of cancer transcriptomes ever assembled. RNASeq technology, combined with computational tools like our SpliceSeq package, provides a comprehensive, detailed view of alternative mRNA splicing. Aberrant splicing patterns in cancers have been implicated in such processes as carcinogenesis, de-differentiation and metastasis. TCGA SpliceSeq (http://bioinformatics.mdanderson.org/TCGASpliceSeq) is a web-based resource that provides a quick, user-friendly, highly visual interface for exploring the alternative splicing patterns of TCGA tumors. Percent Spliced In (PSI) values for splice events on samples from 33 different tumor types, including available adjacent normal samples, have been loaded into TCGA SpliceSeq. Investigators can interrogate genes of interest, search for the genes that show the strongest variation between or among selected tumor types, or explore splicing pattern changes between tumor and adjacent normal samples. The interface presents intuitive graphical representations of splicing patterns, read counts and various statistical summaries, including percent spliced in. Splicing data can also be downloaded for inclusion in integrative analyses. TCGA SpliceSeq is freely available for academic, government or commercial use. PMID:26602693

  1. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer

    PubMed Central

    Ryan, Michael; Wong, Wing Chung; Brown, Robert; Akbani, Rehan; Su, Xiaoping; Broom, Bradley; Melott, James; Weinstein, John

    2016-01-01

    TCGA's RNASeq data represent one of the largest collections of cancer transcriptomes ever assembled. RNASeq technology, combined with computational tools like our SpliceSeq package, provides a comprehensive, detailed view of alternative mRNA splicing. Aberrant splicing patterns in cancers have been implicated in such processes as carcinogenesis, de-differentiation and metastasis. TCGA SpliceSeq (http://bioinformatics.mdanderson.org/TCGASpliceSeq) is a web-based resource that provides a quick, user-friendly, highly visual interface for exploring the alternative splicing patterns of TCGA tumors. Percent Spliced In (PSI) values for splice events on samples from 33 different tumor types, including available adjacent normal samples, have been loaded into TCGA SpliceSeq. Investigators can interrogate genes of interest, search for the genes that show the strongest variation between or among selected tumor types, or explore splicing pattern changes between tumor and adjacent normal samples. The interface presents intuitive graphical representations of splicing patterns, read counts and various statistical summaries, including percent spliced in. Splicing data can also be downloaded for inclusion in integrative analyses. TCGA SpliceSeq is freely available for academic, government or commercial use. PMID:26602693

  2. SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics

    PubMed Central

    2013-01-01

    Background Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from proteomics. Therefore, based on the peptidomic database of human protein isoforms for proteomics experiments, our objective is to design a new alternative splicing database to 1) provide more coverage of genes, transcripts and alternative splicing, 2) exclusively focus on the alternative splicing, and 3) perform context-specific alternative splicing analysis. Results We used a three-step pipeline to create a synthetic alternative splicing database (SASD) to identify novel alternative splicing isoforms and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. First, we extracted information on gene structures of all genes in the Ensembl Genes 71 database and incorporated the Integrated Pathway Analysis Database. Then, we compiled artificial splicing transcripts. Lastly, we translated the artificial transcripts into alternative splicing peptides. The SASD is a comprehensive database containing 56,630 genes (Ensembl gene IDs), 95,260 transcripts (Ensembl transcript IDs), and 11,919,779 Alternative Splicing peptides, and also covering about 1,956 pathways, 6,704 diseases, 5,615 drugs, and 52 organs. The database has a web-based user interface that allows users to search, display and download a single gene/transcript/protein, custom gene set, pathway, disease, drug, organ related alternative splicing. Moreover, the quality of the database was validated with comparison to other

  3. The ASAP II database: analysis and comparative genomics of alternative splicing in 15 animal species.

    PubMed

    Kim, Namshin; Alekseyenko, Alexander V; Roy, Meenakshi; Lee, Christopher

    2007-01-01

    We have greatly expanded the Alternative Splicing Annotation Project (ASAP) database: (i) its human alternative splicing data are expanded approximately 3-fold over the previous ASAP database, to nearly 90,000 distinct alternative splicing events; (ii) it now provides genome-wide alternative splicing analyses for 15 vertebrate, insect and other animal species; (iii) it provides comprehensive comparative genomics information for comparing alternative splicing and splice site conservation across 17 aligned genomes, based on UCSC multigenome alignments; (iv) it provides an approximately 2- to 3-fold expansion in detection of tissue-specific alternative splicing events, and of cancer versus normal specific alternative splicing events. We have also constructed a novel database linking orthologous exons and orthologous introns between genomes, based on multigenome alignment of 17 animal species. It can be a valuable resource for studies of gene structure evolution. ASAP II provides a new web interface enabling more detailed exploration of the data, and integrating comparative genomics information with alternative splicing data. We provide a set of tools for advanced data-mining of ASAP II with Pygr (the Python Graph Database Framework for Bioinformatics) including powerful features such as graph query, multigenome alignment query, etc. ASAP II is available at http://www.bioinformatics.ucla.edu/ASAP2.

  4. Molecular heterogeneity and alternative splicing of human lactoperoxidase.

    PubMed

    Fragoso, Miryam A; Torbati, Aliza; Fregien, Nevis; Conner, Gregory E

    2009-02-01

    Human lactoperoxidase (LPO) exists as two distinct molecules independent of glycosylation. The N-terminus of one form is blocked and has not been identified while the other is proteolytically processed at the N-terminus similar to myeloperoxidase. Our analysis identified alternatively spliced human LPO mRNAs that may explain the observed molecular heterogeneity of LPO. Two mRNAs omit propeptide encoding exons while retaining the 5' exon encoding the secretion signal, consistent with the heterogeneity and suggesting a possible functional role for the propeptide. Two LPO forms were expressed using baculovirus and both showed similar enzyme activity. LC/MS/MS analysis of trypsin digested, partially purified, salivary LPO confirmed the larger unprocessed LPO is present in saliva. To compare variant expression patterns, antisera were raised against purified recombinant (rhLPO) as well as against an antigenic peptide sequence within the exons encoding the propeptide region. Immunohistochemistry demonstrated proLPO was differently localized within gland cells compared to other forms of LPO. The data suggested splice variants may contribute to LPO molecular heterogeneity and its regulation by intracellular compartmental localization.

  5. AVISPA: a web tool for the prediction and analysis of alternative splicing.

    PubMed

    Barash, Yoseph; Vaquero-Garcia, Jorge; González-Vallinas, Juan; Xiong, Hui Yuan; Gao, Weijun; Lee, Leo J; Frey, Brendan J

    2013-01-01

    Transcriptome complexity and its relation to numerous diseases underpins the need to predict in silico splice variants and the regulatory elements that affect them. Building upon our recently described splicing code, we developed AVISPA, a Galaxy-based web tool for splicing prediction and analysis. Given an exon and its proximal sequence, the tool predicts whether the exon is alternatively spliced, displays tissue-dependent splicing patterns, and whether it has associated regulatory elements. We assess AVISPA's accuracy on an independent dataset of tissue-dependent exons, and illustrate how the tool can be applied to analyze a gene of interest. AVISPA is available at http://avispa.biociphers.org.

  6. RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis.

    PubMed

    Wu, Zhe; Zhu, Danling; Lin, Xiaoya; Miao, Jin; Gu, Lianfeng; Deng, Xian; Yang, Qian; Sun, Kangtai; Zhu, Danmeng; Cao, Xiaofeng; Tsuge, Tomohiko; Dean, Caroline; Aoyama, Takashi; Gu, Hongya; Qu, Li-Jia

    2016-01-01

    Nuclear-localized RNA binding proteins are involved in various aspects of RNA metabolism, which in turn modulates gene expression. However, the functions of nuclear-localized RNA binding proteins in plants are poorly understood. Here, we report the functions of two proteins containing RNA recognition motifs, RZ-1B and RZ-1C, in Arabidopsis thaliana. RZ-1B and RZ-1C were localized to nuclear speckles and interacted with a spectrum of serine/arginine-rich (SR) proteins through their C termini. RZ-1C preferentially bound to purine-rich RNA sequences in vitro through its N-terminal RNA recognition motif. Disrupting the RNA binding activity of RZ-1C with SR proteins through overexpression of the C terminus of RZ-1C conferred defective phenotypes similar to those observed in rz-1b rz-1c double mutants, including delayed seed germination, reduced stature, and serrated leaves. Loss of function of RZ-1B and RZ-1C was accompanied by defective splicing of many genes and global perturbation of gene expression. In addition, we found that RZ-1C directly targeted FLOWERING LOCUS C (FLC), promoting efficient splicing of FLC introns and likely also repressing FLC transcription. Our findings highlight the critical role of RZ-1B/1C in regulating RNA splicing, gene expression, and many key aspects of plant development via interaction with proteins including SR proteins.

  7. FULL-GENOME ANALYSIS OF ALTERNATIVE SPLICING IN MOUSE LIVER AFTER HEPATOTOXICANT EXPOSURE

    EPA Science Inventory

    Alternative splicing plays a role in determining gene function and protein diversity. We have employed whole genome exon profiling using Affymetrix Mouse Exon 1.0 ST arrays to understand the significance of alternative splicing on a genome-wide scale in response to multiple toxic...

  8. Regulation of alternative splicing by the circadian clock and food related cues

    PubMed Central

    2012-01-01

    Background The circadian clock orchestrates daily rhythms in metabolism, physiology and behaviour that allow organisms to anticipate regular changes in their environment, increasing their adaptation. Such circadian phenotypes are underpinned by daily rhythms in gene expression. Little is known, however, about the contribution of post-transcriptional processes, particularly alternative splicing. Results Using Affymetrix mouse exon-arrays, we identified exons with circadian alternative splicing in the liver. Validated circadian exons were regulated in a tissue-dependent manner and were present in genes with circadian transcript abundance. Furthermore, an analysis of circadian mutant Vipr2-/- mice revealed the existence of distinct physiological pathways controlling circadian alternative splicing and RNA binding protein expression, with contrasting dependence on Vipr2-mediated physiological signals. This view was corroborated by the analysis of the effect of fasting on circadian alternative splicing. Feeding is an important circadian stimulus, and we found that fasting both modulates hepatic circadian alternative splicing in an exon-dependent manner and changes the temporal relationship with transcript-level expression. Conclusions The circadian clock regulates alternative splicing in a manner that is both tissue-dependent and concurrent with circadian transcript abundance. This adds a novel temporal dimension to the regulation of mammalian alternative splicing. Moreover, our results demonstrate that circadian alternative splicing is regulated by the interaction between distinct physiological cues, and illustrates the capability of single genes to integrate circadian signals at different levels of regulation. PMID:22721557

  9. Alternative splicing in plants – coming of age

    PubMed Central

    Syed, Naeem H.; Kalyna, Maria; Marquez, Yamile; Barta, Andrea; Brown, John W.S.

    2012-01-01

    More than 60% of intron-containing genes undergo alternative splicing (AS) in plants. This number will increase when AS in different tissues, developmental stages, and environmental conditions are explored. Although the functional impact of AS on protein complexity is still understudied in plants, recent examples demonstrate its importance in regulating plant processes. AS also regulates transcript levels and the link with nonsense-mediated decay and generation of unproductive mRNAs illustrate the need for both transcriptional and AS data in gene expression analyses. AS has influenced the evolution of the complex networks of regulation of gene expression and variation in AS contributed to adaptation of plants to their environment and therefore will impact strategies for improving plant and crop phenotypes. PMID:22743067

  10. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR)

    PubMed Central

    Solomon, Oz; Oren, Shirley; Safran, Michal; Deshet-Unger, Naamit; Akiva, Pinchas; Jacob-Hirsch, Jasmine; Cesarkas, Karen; Kabesa, Reut; Amariglio, Ninette; Unger, Ron; Rechavi, Gideon; Eyal, Eran

    2013-01-01

    Alternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery. PMID:23474544

  11. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level

    PubMed Central

    Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L.

    2015-01-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. PMID:26061177

  12. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    PubMed Central

    Bonomi, Serena; Gallo, Stefania; Catillo, Morena; Pignataro, Daniela; Biamonti, Giuseppe; Ghigna, Claudia

    2013-01-01

    Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer might provide a better understanding of the malignant transformation and identify novel pathways that are uniquely relevant to tumorigenesis. Understanding the molecular underpinnings of cancer-associated alternative splicing isoforms will not only help to explain many fundamental hallmarks of cancer, but will also offer unprecedented opportunities to improve the efficacy of anti-cancer treatments. PMID:24285959

  13. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators

    PubMed Central

    Llorian, Miriam; Gooding, Clare; Bellora, Nicolas; Hallegger, Martina; Buckroyd, Adrian; Wang, Xiao; Rajgor, Dipen; Kayikci, Melis; Feltham, Jack; Ule, Jernej; Eyras, Eduardo; Smith, Christopher W.J.

    2016-01-01

    Alternative splicing (AS) is a key component of gene expression programs that drive cellular differentiation. Smooth muscle cells (SMCs) are important in the function of a number of physiological systems; however, investigation of SMC AS has been restricted to a handful of events. We profiled transcriptome changes in mouse de-differentiating SMCs and observed changes in hundreds of AS events. Exons included in differentiated cells were characterized by particularly weak splice sites and by upstream binding sites for Polypyrimidine Tract Binding protein (PTBP1). Consistent with this, knockdown experiments showed that that PTBP1 represses many smooth muscle specific exons. We also observed coordinated splicing changes predicted to downregulate the expression of core components of U1 and U2 snRNPs, splicing regulators and other post-transcriptional factors in differentiated cells. The levels of cognate proteins were lower or similar in differentiated compared to undifferentiated cells. However, levels of snRNAs did not follow the expression of splicing proteins, and in the case of U1 snRNP we saw reciprocal changes in the levels of U1 snRNA and U1 snRNP proteins. Our results suggest that the AS program in differentiated SMCs is orchestrated by the combined influence of auxiliary RNA binding proteins, such as PTBP1, along with altered activity and stoichiometry of the core splicing machinery. PMID:27317697

  14. Evolutionarily conserved autoregulation of alternative pre-mRNA splicing by ribosomal protein L10a

    PubMed Central

    Takei, Satomi; Togo-Ohno, Marina; Suzuki, Yutaka; Kuroyanagi, Hidehito

    2016-01-01

    Alternative splicing of pre-mRNAs can regulate expression of protein-coding genes by generating unproductive mRNAs rapidly degraded by nonsense-mediated mRNA decay (NMD). Many of the genes directly regulated by alternative splicing coupled with NMD (AS-NMD) are related to RNA metabolism, but the repertoire of genes regulated by AS-NMD in vivo is to be determined. Here, we analyzed transcriptome data of wild-type and NMD-defective mutant strains of the nematode worm Caenorhabditis elegans and demonstrate that eight of the 82 cytoplasmic ribosomal protein (rp) genes generate unproductively spliced mRNAs. Knockdown of any of the eight rp genes exerted a dynamic and compensatory effect on alternative splicing of its own transcript and inverse effects on that of the other rp genes. A large subunit protein L10a, termed RPL-1 in nematodes, directly and specifically binds to an evolutionarily conserved 39-nt stretch termed L10ARE between the two alternative 5′ splice sites in its own pre-mRNA to switch the splice site choice. Furthermore, L10ARE-mediated splicing autoregulation of the L10a-coding gene is conserved in vertebrates. These results indicate that L10a is an evolutionarily conserved splicing regulator and that homeostasis of a subset of the rp genes are regulated at the level of pre-mRNA splicing in vivo. PMID:26961311

  15. Alternative splicing and expression profile analysis of expressed sequence tags in domestic pig.

    PubMed

    Zhang, Liang; Tao, Lin; Ye, Lin; He, Ling; Zhu, Yuan-Zhong; Zhu, Yue-Dong; Zhou, Yan

    2007-02-01

    Domestic pig (Sus scrofa domestica) is one of the most important mammals to humans. Alternative splicing is a cellular mechanism in eukaryotes that greatly increases the diversity of gene products. Expression sequence tags (ESTs) have been widely used for gene discovery, expression profile analysis, and alternative splicing detection. In this study, a total of 712,905 ESTs extracted from 101 different non-normalized EST libraries of the domestic pig were analyzed. These EST libraries cover the nervous system, digestive system, immune system, and meat production related tissues from embryo, newborn, and adult pigs, making contributions to the analysis of alternative splicing variants as well as expression profiles in various stages of tissues. A modified approach was designed to cluster and assemble large EST datasets, aiming to detect alternative splicing together with EST abundance of each splicing variant. Much efforts were made to classify alternative splicing into different types and apply different filters to each type to get more reliable results. Finally, a total of 1,223 genes with average 2.8 splicing variants were detected among 16,540 unique genes. The overview of expression profiles would change when we take alternative splicing into account. PMID:17572361

  16. Alternative splicing and expression profile analysis of expressed sequence tags in domestic pig.

    PubMed

    Zhang, Liang; Tao, Lin; Ye, Lin; He, Ling; Zhu, Yuan-Zhong; Zhu, Yue-Dong; Zhou, Yan

    2007-02-01

    Domestic pig (Sus scrofa domestica) is one of the most important mammals to humans. Alternative splicing is a cellular mechanism in eukaryotes that greatly increases the diversity of gene products. Expression sequence tags (ESTs) have been widely used for gene discovery, expression profile analysis, and alternative splicing detection. In this study, a total of 712,905 ESTs extracted from 101 different non-normalized EST libraries of the domestic pig were analyzed. These EST libraries cover the nervous system, digestive system, immune system, and meat production related tissues from embryo, newborn, and adult pigs, making contributions to the analysis of alternative splicing variants as well as expression profiles in various stages of tissues. A modified approach was designed to cluster and assemble large EST datasets, aiming to detect alternative splicing together with EST abundance of each splicing variant. Much efforts were made to classify alternative splicing into different types and apply different filters to each type to get more reliable results. Finally, a total of 1,223 genes with average 2.8 splicing variants were detected among 16,540 unique genes. The overview of expression profiles would change when we take alternative splicing into account.

  17. Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing

    PubMed Central

    Selvanathan, Saravana P.; Erkizan, Hayriye V.; Dirksen, Uta; Natarajan, Thanemozhi G.; Dakic, Aleksandra; Yu, Songtao; Liu, Xuefeng; Paulsen, Michelle T.; Ljungman, Mats E.; Wu, Cathy H.; Lawlor, Elizabeth R.; Üren, Aykut; Toretsky, Jeffrey A.

    2015-01-01

    The synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based on proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncoprotein with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate the effect of EWS-FLI1 on posttranscriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis, including CLK1, CASP3, PPFIBP1, and TERT, validate as alternatively spliced by EWS-FLI1. In a CLIP-seq experiment, we find that EWS-FLI1 RNA-binding motifs most frequently occur adjacent to intron–exon boundaries. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNP K, and PRPF6. Reduction of EWS-FLI1 produces an isoform of γ-TERT that has increased telomerase activity compared with wild-type (WT) TERT. The small molecule YK-4–279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions, including helicases DDX5 and RNA helicase A (RHA) that alters RNA-splicing ratios. As such, YK-4–279 validates the splicing mechanism of EWS-FLI1, showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells (hMSC). Exon array analysis of 75 ES patient samples shows similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing toward oncogenesis, and, reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code. PMID:25737553

  18. Alternative splicing regulated by butyrate in bovine epithelial cells.

    PubMed

    Wu, Sitao; Li, Congjun; Huang, Wen; Li, Weizhong; Li, Robert W

    2012-01-01

    As a signaling molecule and an inhibitor of histone deacetylases (HDACs), butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT) and control (CT) groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG) while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001) at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor) and Exon#11 (Acceptor) in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC inhibitors.

  19. Alternative splicing of the FMR1 gene in human fetal brain neurons

    SciTech Connect

    Tao Huang; Yan Shen; Xue-bin Qin; Guan-Yun Wu

    1996-08-09

    The alternative splicing expression of the FMR1 gene was reported in several human and mouse tissues. Five regions of FMR1 gene can be alternatively spliced, but the combination of them has not been investigated fully. We reported here the analysis of alternative splicing pattern of the FMR1 gene in cultured fetal human neurons, using a RT-PCR and cloning strategy. Eleven splicing types were cloned and different isoforms were not equally represented. The dominant isoform represents nearly 40%, and the other isoforms were relatively rare. One isoform has a different carboxyl-terminus. Most of the alternative spliced regions appear hydrophilic; thus, they may locate on the surface of the FMR1 protein. 16 refs., 2 figs.

  20. Alternative splicing acting as a bridge in evolution

    PubMed Central

    Salamov, Asaf; Kuo, Alan; Aerts, Andrea L.; Kong, Xiangyang; Grigoriev, Igor V.

    2015-01-01

    Background Alternative splicing (AS) regulates diverse cellular and developmental functions through alternative protein structures of different isoforms. Alternative exons dominate AS in vertebrates; however, very little is known about the extent and function of AS in lower eukaryotes. To understand the role of introns in gene evolution, we examined AS from a green algal and five fungal genomes using a novel EST-based gene-modeling algorithm (COMBEST). Methods AS from each genome was classified with COMBEST that maps EST sequences to genomes to build gene models. Various aspects of AS were analyzed through statistical methods. The interplay of intron 3n length, phase, coding property, and intron retention (RI) were examined with Chi-square testing. Results With 3 to 834 times EST coverage, we identified up to 73% of AS in intron-containing genes and found preponderance of RI among 11 types of AS. The number of exons, expression level, and maximum intron length correlated with number of AS per gene (NAG), and intron-rich genes suppressed AS. Genes with AS were more ancient, and AS was conserved among fungal genomes. Among stopless introns, non-retained introns (NRI) avoided, but major RI preferred 3n length. In contrast, stop-containing introns showed uniform distribution among 3n, 3n+1, and 3n+2 lengths. We found a clue to the intron phase enigma: it was the coding function of introns involved in AS that dictates the intron phase bias. Conclusions Majority of AS is non-functional, and the extent of AS is suppressed for intron-rich genes. RI through 3n length, stop codon, and phase bias bridges the transition from functionless to functional alternative isoforms. PMID:27358887

  1. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation.

    PubMed

    Salomonis, Nathan; Schlieve, Christopher R; Pereira, Laura; Wahlquist, Christine; Colas, Alexandre; Zambon, Alexander C; Vranizan, Karen; Spindler, Matthew J; Pico, Alexander R; Cline, Melissa S; Clark, Tyson A; Williams, Alan; Blume, John E; Samal, Eva; Mercola, Mark; Merrill, Bradley J; Conklin, Bruce R

    2010-06-01

    Two major goals of regenerative medicine are to reproducibly transform adult somatic cells into a pluripotent state and to control their differentiation into specific cell fates. Progress toward these goals would be greatly helped by obtaining a complete picture of the RNA isoforms produced by these cells due to alternative splicing (AS) and alternative promoter selection (APS). To investigate the roles of AS and APS, reciprocal exon-exon junctions were interrogated on a genome-wide scale in differentiating mouse embryonic stem (ES) cells with a prototype Affymetrix microarray. Using a recently released open-source software package named AltAnalyze, we identified 144 genes for 170 putative isoform variants, the majority (67%) of which were predicted to alter protein sequence and domain composition. Verified alternative exons were largely associated with pathways of Wnt signaling and cell-cycle control, and most were conserved between mouse and human. To examine the functional impact of AS, we characterized isoforms for two genes. As predicted by AltAnalyze, we found that alternative isoforms of the gene Serca2 were targeted by distinct microRNAs (miRNA-200b, miRNA-214), suggesting a critical role for AS in cardiac development. Analysis of the Wnt transcription factor Tcf3, using selective knockdown of an ES cell-enriched and characterized isoform, revealed several distinct targets for transcriptional repression (Stmn2, Ccnd2, Atf3, Klf4, Nodal, and Jun) as well as distinct differentiation outcomes in ES cells. The findings herein illustrate a critical role for AS in the specification of ES cells with differentiation, and highlight the utility of global functional analyses of AS. PMID:20498046

  2. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis

    PubMed Central

    Jiang, Qiang; Yang, Chun Hong; Zhang, Yan; Sun, Yan; Li, Rong Ling; Wang, Chang Fa; Zhong, Ji Feng; Huang, Jin Ming

    2016-01-01

    Alternative splicing (AS) contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A) and mastitic (HS8A) cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs) with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine–cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5′ splicing and alternativesplicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A) and 5.4% (HS8A) novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis. PMID:27459697

  3. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis.

    PubMed

    Wang, Xiu Ge; Ju, Zhi Hua; Hou, Ming Hai; Jiang, Qiang; Yang, Chun Hong; Zhang, Yan; Sun, Yan; Li, Rong Ling; Wang, Chang Fa; Zhong, Ji Feng; Huang, Jin Ming

    2016-01-01

    Alternative splicing (AS) contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A) and mastitic (HS8A) cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs) with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine-cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5' splicing and alternative 3' splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A) and 5.4% (HS8A) novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis. PMID:27459697

  4. Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells.

    PubMed

    Iannone, Camilla; Pohl, Andy; Papasaikas, Panagiotis; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel; ValcáRcel, Juan

    2015-03-01

    Splicing of mRNA precursors can occur cotranscriptionally and it has been proposed that chromatin structure influences splice site recognition and regulation. Here we have systematically explored potential links between nucleosome positioning and alternative splicing regulation upon progesterone stimulation of breast cancer cells. We confirm preferential nucleosome positioning in exons and report four distinct profiles of nucleosome density around alternatively spliced exons, with RNA polymerase II accumulation closely following nucleosome positioning. Hormone stimulation induces switches between profile classes, correlating with a subset of alternative splicing changes. Hormone-induced exon inclusion often correlates with higher nucleosome occupancy at the exon or the preceding intronic region and with higher RNA polymerase II accumulation. In contrast, exons skipped upon hormone stimulation display low nucleosome densities even before hormone treatment, suggesting that chromatin structure primes alternative splicing regulation. Skipped exons frequently harbor binding sites for hnRNP AB, a hormone-induced splicing regulator whose knock down prevents some hormone-induced skipping events. Collectively, our results argue that a variety of chromatin architecture mechanisms can influence alternative splicing decisions.

  5. Genome-Wide Analysis of Alternative Splicing during Development and Drought Stress in Maize.

    PubMed

    Thatcher, Shawn R; Danilevskaya, Olga N; Meng, Xin; Beatty, Mary; Zastrow-Hayes, Gina; Harris, Charlotte; Van Allen, Brandon; Habben, Jeffrey; Li, Bailin

    2016-01-01

    Alternative splicing plays a crucial role in plant development as well as stress responses. Although alternative splicing has been studied during development and in response to stress, the interplay between these two factors remains an open question. To assess the effects of drought stress on developmentally regulated splicing in maize (Zea mays), 94 RNA-seq libraries from ear, tassel, and leaf of the B73 public inbred line were constructed at four developmental stages under both well-watered and drought conditions. This analysis was supplemented with a publicly available series of 53 libraries from developing seed, embryo, and endosperm. More than 48,000 novel isoforms, often with stage- or condition-specific expression, were uncovered, suggesting that developmentally regulated alternative splicing occurs in thousands of genes. Drought induced large developmental splicing changes in leaf and ear but relatively few in tassel. Most developmental stage-specific splicing changes affected by drought were tissue dependent, whereas stage-independent changes frequently overlapped between leaf and ear. A linear relationship was found between gene expression changes in splicing factors and alternative spicing of other genes during development. Collectively, these results demonstrate that alternative splicing is strongly associated with tissue type, developmental stage, and stress condition.

  6. Genome-Wide Analysis of Alternative Splicing during Development and Drought Stress in Maize1[OPEN

    PubMed Central

    Thatcher, Shawn R.; Meng, Xin; Beatty, Mary; Zastrow-Hayes, Gina; Harris, Charlotte; Habben, Jeffrey; Li, Bailin

    2016-01-01

    Alternative splicing plays a crucial role in plant development as well as stress responses. Although alternative splicing has been studied during development and in response to stress, the interplay between these two factors remains an open question. To assess the effects of drought stress on developmentally regulated splicing in maize (Zea mays), 94 RNA-seq libraries from ear, tassel, and leaf of the B73 public inbred line were constructed at four developmental stages under both well-watered and drought conditions. This analysis was supplemented with a publicly available series of 53 libraries from developing seed, embryo, and endosperm. More than 48,000 novel isoforms, often with stage- or condition-specific expression, were uncovered, suggesting that developmentally regulated alternative splicing occurs in thousands of genes. Drought induced large developmental splicing changes in leaf and ear but relatively few in tassel. Most developmental stage-specific splicing changes affected by drought were tissue dependent, whereas stage-independent changes frequently overlapped between leaf and ear. A linear relationship was found between gene expression changes in splicing factors and alternative spicing of other genes during development. Collectively, these results demonstrate that alternative splicing is strongly associated with tissue type, developmental stage, and stress condition. PMID:26582726

  7. A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis

    PubMed Central

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry; Ghanem, Dana; An, Xiuli; Li, Jie; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2014-01-01

    Alternative pre-messenger RNA splicing remodels the human transcriptome in a spatiotemporal manner during normal development and differentiation. Here we explored the landscape of transcript diversity in the erythroid lineage by RNA-seq analysis of five highly purified populations of morphologically distinct human erythroblasts, representing the last four cell divisions before enucleation. In this unique differentiation system, we found evidence of an extensive and dynamic alternative splicing program encompassing genes with many diverse functions. Alternative splicing was particularly enriched in genes controlling cell cycle, organelle organization, chromatin function and RNA processing. Many alternative exons exhibited differentiation-associated switches in splicing efficiency, mostly in late-stage polychromatophilic and orthochromatophilic erythroblasts, in concert with extensive cellular remodeling that precedes enucleation. A subset of alternative splicing switches introduces premature translation termination codons into selected transcripts in a differentiation stage-specific manner, supporting the hypothesis that alternative splicing-coupled nonsense-mediated decay contributes to regulation of erythroid-expressed genes as a novel part of the overall differentiation program. We conclude that a highly dynamic alternative splicing program in terminally differentiating erythroblasts plays a major role in regulating gene expression to ensure synthesis of appropriate proteome at each stage as the cells remodel in preparation for production of mature red cells. PMID:24442673

  8. Structure of the human myelin/oligodendrocyte glycoprotein gene and multiple alternative spliced isoforms

    SciTech Connect

    Pham-Dinh, D.; Gaspera, D.B.; Dautigny, A.

    1995-09-20

    Myelin/oligodendrocyte glycoprotein (MOG), a special component of the central nervous system localization on the outermost lamellae of mature myelin, is a member of the immunoglobulin superfamily. We report here the organization of the human MOG gene, which spans approximately 17 kb, and the characterization of six MOG mRNA splicing variants. The intron/exon structure of the human MOG gene confirmed the splicing pattern, supporting the hypothesis that mRNA isoforms could arise by alternative splicing of a single gene. In addition to the eight exons coding for the major MOG isoform, the human MOG gene also contains 3` region, a previously unknown alternatively spliced coding exon, VIA. Alternative utilization of two acceptor splicing sites for exon VIII could produce two different C-termini. The nucleotide sequences presented here may be a useful tool to study further possible involvement if the MOG gene in hereditary neurological disorders. 23 refs., 5 figs.

  9. Characterization of Alternative Spliceoforms and the RNA Splicing Machinery in Pancreatic Cancer

    PubMed Central

    Carrigan, Patricia E.; Bingham, Jonathan L.; Srinvasan, Subha; Brentnall, Teresa A.; Miller, Laurence J.

    2010-01-01

    Objectives and Methods Alternative splicing provides proteomic diversity that can have profound effects. The extent, pattern, and roles of alternative splicing in pancreatic cancer have not been systematically investigated. We have utilized a spliceoform-specific microarray and polymerase chain reaction to evaluate all known splice variants in human pancreatic cancer cell lines representing a spectrum of differentiation, from near-normal HPDE6 to Capan-1 and poorly differentiated MiaPaCa2 cells. Validation of altered spliceoforms was verified in primary cancer specimens and normal pancreatic ductal cells. Additionally, expression of 92 spliceosomal genes were examined to better understand the mechanism for observed differences in mRNA splicing. Results A statistically significant reduction in alternative splicing was found in the pancreatic cancer cell lines compared to HPDE6 cells. Many splice variants identified in Capan-1 and MiaPaCa2 cells were observed in Grade 3 and Grade 4 tumors. Analysis of genes encoding spliceosomal proteins revealed that 28 of 92 genes had significantly decreased expression in cancer compared to normal pancreas. Conclusion Pancreatic cancer has reduced alternative splicing diversity compared to normal pancreas. This is demonstrated in both cell lines and primary tumors, with the loss in splicing diversity correlated with relative reduction in expression of spliceosomal genes. PMID:21178653

  10. Non-coding functions of alternative pre-mRNA splicing in development

    PubMed Central

    Mockenhaupt, Stefan; Makeyev, Eugene V.

    2015-01-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. PMID:26493705

  11. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains.

    PubMed

    Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko

    2016-08-01

    Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases.

  12. The Evolutionary Fate of Alternatively Spliced Homologous Exons after Gene Duplication

    PubMed Central

    Abascal, Federico; Tress, Michael L.; Valencia, Alfonso

    2015-01-01

    Alternative splicing and gene duplication are the two main processes responsible for expanding protein functional diversity. Although gene duplication can generate new genes and alternative splicing can introduce variation through alternative gene products, the interplay between the two processes is complex and poorly understood. Here, we have carried out a study of the evolution of alternatively spliced exons after gene duplication to better understand the interaction between the two processes. We created a manually curated set of 97 human genes with mutually exclusively spliced homologous exons and analyzed the evolution of these exons across five distantly related vertebrates (lamprey, spotted gar, zebrafish, fugu, and coelacanth). Most of these exons had an ancient origin (more than 400 Ma). We found examples supporting two extreme evolutionary models for the behaviour of homologous axons after gene duplication. We observed 11 events in which gene duplication was accompanied by splice isoform separation, that is, each paralog specifically conserved just one distinct ancestral homologous exon. At other extreme, we identified genes in which the homologous exons were always conserved within paralogs, suggesting that the alternative splicing event cannot easily be separated from the function in these genes. That many homologous exons fall in between these two extremes highlights the diversity of biological systems and suggests that the subtle balance between alternative splicing and gene duplication is adjusted to the specific cellular context of each gene. PMID:25931610

  13. Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5′ splice site selection

    PubMed Central

    Bielli, Pamela; Bordi, Matteo; Biasio, Valentina Di; Sette, Claudio

    2014-01-01

    Alternative splicing (AS) modulates many physiological and pathological processes. For instance, AS of the BCL-X gene balances cell survival and apoptosis in development and cancer. Herein, we identified the polypyrimidine tract binding protein (PTBP1) as a direct regulator of BCL-X AS. Overexpression of PTBP1 promotes selection of the distal 5′ splice site in BCL-X exon 2, generating the pro-apoptotic BCL-Xs splice variant. Conversely, depletion of PTBP1 enhanced splicing of the anti-apoptotic BCL-XL variant. In vivo cross-linking experiments and site-directed mutagenesis restricted the PTBP1 binding site to a polypyrimidine tract located between the two alternative 5′ splice sites. Binding of PTBP1 to this site was required for its effect on splicing. Notably, a similar function of PTBP1 in the selection of alternative 5′ splice sites was confirmed using the USP5 gene as additional model. Mechanistically, PTBP1 displaces SRSF1 binding from the proximal 5′ splice site, thus repressing its selection. Our study provides a novel mechanism of alternative 5′ splice site selection by PTBP1 and indicates that the presence of a PTBP1 binding site between two alternative 5′ splice sites promotes selection of the distal one, while repressing the proximal site by competing for binding of a positive regulator. PMID:25294838

  14. nagnag: Identification and quantification of NAGNAG alternative splicing using RNA-Seq data.

    PubMed

    Yan, Xiaoyan; Sablok, Gaurav; Feng, Gang; Ma, Jiaxin; Zhao, Hongwei; Sun, Xiaoyong

    2015-07-01

    Regulation of proteome diversity by alternative splicing has been widely demonstrated in plants and animals. NAGNAG splicing, which was recently defined as a tissue specific event, results in the production of two distinct isoforms that are distinguished by three nucleotides (NAG) as a consequence of the intron proximal or distal to the splice site. Since the NAGNAG mechanism is not well characterized, tools for the identification and quantification of NAGNAG splicing events remain under-developed. Here we report nagnag, an R-based NAGNAG splicing detection tool, which accurately identifies and quantifies NAGNAG splicing events using RNA-Seq. Overall, nagnag produces user-friendly visualization reports and highlights differences between the DNA/RNA/protein across the identified isoforms of the reported gene. The package is available on https://sourceforge.net/projects/nagnag/files/; or http://genome.sdau.edu.cn/research/software/nagnag.html. PMID:26028313

  15. Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity

    PubMed Central

    Marquez, Yamile; Höpfler, Markus; Ayatollahi, Zahra; Barta, Andrea; Kalyna, Maria

    2015-01-01

    Alternative splicing (AS) diversifies transcriptomes and proteomes and is widely recognized as a key mechanism for regulating gene expression. Previously, in an analysis of intron retention events in Arabidopsis, we found unusual AS events inside annotated protein-coding exons. Here, we also identify such AS events in human and use these two sets to analyse their features, regulation, functional impact, and evolutionary origin. As these events involve introns with features of both introns and protein-coding exons, we name them exitrons (exonic introns). Though exitrons were detected as a subset of retained introns, they are clearly distinguishable, and their splicing results in transcripts with different fates. About half of the 1002 Arabidopsis and 923 human exitrons have sizes of multiples of 3 nucleotides (nt). Splicing of these exitrons results in internally deleted proteins and affects protein domains, disordered regions, and various post-translational modification sites, thus broadly impacting protein function. Exitron splicing is regulated across tissues, in response to stress and in carcinogenesis. Intriguingly, annotated intronless genes can be also alternatively spliced via exitron usage. We demonstrate that at least some exitrons originate from ancestral coding exons. Based on our findings, we propose a “splicing memory” hypothesis whereby upon intron loss imprints of former exon borders defined by vestigial splicing regulatory elements could drive the evolution of exitron splicing. Altogether, our studies show that exitron splicing is a conserved strategy for increasing proteome plasticity in plants and animals, complementing the repertoire of AS events. PMID:25934563

  16. Cyclin D1b splice variant promotes αvβ3-mediated adhesion and invasive migration of breast cancer cells.

    PubMed

    Wu, Feng-Hua; Luo, Li-Qiong; Liu, Yi; Zhan, Qiu-Xiao; Luo, Chao; Luo, Jing; Zhang, Gui-Mei; Feng, Zuo-Hua

    2014-12-01

    Cyclin D1b, a splice variant of the cell cycle regulator cyclin D1, holds oncogenic functions in human cancer. However, the mechanisms underlying cyclin D1b function remain poorly understood. Here we introduced wild-type cyclin D1a or cyclin D1b variant into non-metastatic MCF-7 cells. Our results show that ectopic expression of cyclin D1b promotes invasiveness of the cancer cells in a cyclin D1a independent manner. Specifically, cyclin D1b is found to modulate the expression of αvβ3, which characterizes the metastatic phenotype, and enhance tumor cell invasive potential in cooperating with HoxD3. Notably, cyclin D1b promotes αvβ3-mediated adhesion and invasive migration, which are associated with invasive potential of breast cancer cells. Further exploration indicates that cyclin D1b makes breast cancer cells more sensitive to toll-like receptor 4 ligand released from damaged tumor cells. These findings reveal a role of cyclin D1b as a possible mediator of αvβ3 transcription to promote tumor metastasis.

  17. Cyclin D1b splice variant promotes αvβ3-mediated adhesion and invasive migration of breast cancer cells.

    PubMed

    Wu, Feng-Hua; Luo, Li-Qiong; Liu, Yi; Zhan, Qiu-Xiao; Luo, Chao; Luo, Jing; Zhang, Gui-Mei; Feng, Zuo-Hua

    2014-12-01

    Cyclin D1b, a splice variant of the cell cycle regulator cyclin D1, holds oncogenic functions in human cancer. However, the mechanisms underlying cyclin D1b function remain poorly understood. Here we introduced wild-type cyclin D1a or cyclin D1b variant into non-metastatic MCF-7 cells. Our results show that ectopic expression of cyclin D1b promotes invasiveness of the cancer cells in a cyclin D1a independent manner. Specifically, cyclin D1b is found to modulate the expression of αvβ3, which characterizes the metastatic phenotype, and enhance tumor cell invasive potential in cooperating with HoxD3. Notably, cyclin D1b promotes αvβ3-mediated adhesion and invasive migration, which are associated with invasive potential of breast cancer cells. Further exploration indicates that cyclin D1b makes breast cancer cells more sensitive to toll-like receptor 4 ligand released from damaged tumor cells. These findings reveal a role of cyclin D1b as a possible mediator of αvβ3 transcription to promote tumor metastasis. PMID:25193465

  18. Alternative splicing affects the subcellular localization of Drosha.

    PubMed

    Link, Steffen; Grund, Stefanie E; Diederichs, Sven

    2016-06-20

    The RNase III enzyme Drosha is a key factor in microRNA (miRNA) biogenesis and as such indispensable for cellular homeostasis and developmental processes. Together with its co-factor DGCR8, it converts the primary transcript (pri-miRNA) into the precursor hairpin (pre-miRNA) in the nucleus. While the middle and the C-terminal domain are crucial for pri-miRNA processing and DGCR8 binding, the function of the N-terminus remains cryptic. Different studies have linked this region to the subcellular localization of Drosha, stabilization and response to stress. In this study, we identify alternatively spliced Drosha transcripts that are devoid of a part of the arginine/serine-rich (RS-rich) domain and expressed in a large set of human cells. In contrast to their expected habitation, we find two isoforms also present in the cytoplasm, while the other two isoforms reside exclusively in the nucleus. Their processing activity for pri-miRNAs and the binding to co-factors remains unaltered. In multiple cell lines, the endogenous mRNA expression of the Drosha isoforms correlates with the localization of endogenous Drosha proteins. The pri-miRNA processing efficiency is not significantly different between groups of cells with or without cytoplasmic Drosha expression. In summary, we discovered novel isoforms of Drosha with differential subcellular localization pointing toward additional layers of complexity in the regulation of its activity. PMID:27185895

  19. Ancient nature of alternative splicing and functions of introns

    SciTech Connect

    Zhou, Kemin; Salamov, Asaf; Kuo, Alan; Aerts, Andrea; Grigoriev, Igor

    2011-03-21

    Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but introns retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.

  20. Structures of alternatively spliced isoforms of human ketohexokinase.

    PubMed

    Trinh, Chi H; Asipu, Aruna; Bonthron, David T; Phillips, Simon E V

    2009-03-01

    A molecular understanding of the unique aspects of dietary fructose metabolism may be the key to understanding and controlling the current epidemic of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism is initiated by its phosphorylation to fructose 1-phosphate, which is performed by ketohexokinase (KHK). Here, the crystal structures of the two alternatively spliced isoforms of human ketohexokinase, hepatic KHK-C and the peripheral isoform KHK-A, and of the ternary complex of KHK-A with the substrate fructose and AMP-PNP are reported. The structure of the KHK-A ternary complex revealed an active site with both the substrate fructose and the ATP analogue in positions ready for phosphorylation following a reaction mechanism similar to that of the pfkB family of carbohydrate kinases. Hepatic KHK deficiency causes the benign disorder essential fructosuria. The effects of the disease-causing mutations (Gly40Arg and Ala43Thr) have been modelled in the context of the KHK structure.

  1. Structures of alternatively spliced isoforms of human ketohexokinase

    PubMed Central

    Trinh, Chi H.; Asipu, Aruna; Bonthron, David T.; Phillips, Simon E. V.

    2009-01-01

    A molecular understanding of the unique aspects of dietary fructose metabolism may be the key to understanding and controlling the current epidemic of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism is initiated by its phosphorylation to fructose 1-phosphate, which is performed by ketohexokinase (KHK). Here, the crystal structures of the two alternatively spliced isoforms of human ketohexokinase, hepatic KHK-C and the peripheral isoform KHK-A, and of the ternary complex of KHK-A with the substrate fructose and AMP-PNP are reported. The structure of the KHK-A ternary complex revealed an active site with both the substrate fructose and the ATP analogue in positions ready for phosphorylation following a reaction mechanism similar to that of the pfkB family of carbohydrate kinases. Hepatic KHK deficiency causes the benign disorder essential fructosuria. The effects of the disease-causing mutations (Gly40Arg and Ala43Thr) have been modelled in the context of the KHK structure. PMID:19237742

  2. Alternative pre-mRNA splicing in Drosophila spliceosomal assembly factor RNP-4F during development.

    PubMed

    Fetherson, Rebecca A; Strock, Stephen B; White, Kristen N; Vaughn, Jack C

    2006-04-26

    The 5'- and 3'-UTR regions in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation. Here we report the results of a systematic study of alternative splicing in rnp-4f, which encodes a Drosophila spliceosomal assembly factor. We show that most of the nine introns are constitutively spliced, but several patterns of alternative splicing are observed in two pre-mRNA regions including the 5'-UTR. Intron V is shown to be of recent evolutionary origin and is infrequently spliced, resulting in generation of an in-frame stop codon and a predicted truncated protein lacking a nuclear localization signal, so that alternative splicing regulates its subcellular localization. Intron 0, located in the 5'-UTR, is subject to three different splicing decisions in D. melanogaster. Northern analysis of poly(A+) mRNAs reveals two differently sized rnp-4f mRNA isoforms in this species. A switch in relative isoform abundance occurs during mid-embryo stages, when the larger isoform becomes more abundant. This isoform is shown to represent intron 0 unspliced mRNA, whereas the smaller transcript represents the product of alternative splicing. Comparative genomic analysis predicts that intron 0 is present in diverse Drosophila species. Intron 0 splicing results in loss of an evolutionarily conserved stem-loop constituting a potential cis-regulatory element at the 3'-splice site. A model is proposed for the role of this element both in 5'-UTR alternative splicing decisions and in RNP-4F translational modulation. Preliminary evidences in support of our model are discussed.

  3. Tissue- and development-specific expression of multiple alternatively spliced transcripts of rat neuronal nitric oxide synthase.

    PubMed Central

    Lee, M A; Cai, L; Hübner, N; Lee, Y A; Lindpaintner, K

    1997-01-01

    Nitric oxide (NO) functions as an intercellular messenger and mediates numerous biological functions. Among the three isoforms of NO synthase that produce NO, the ubiquitously expressed neuronal NO synthase (nNOS) is responsible for a large part of NO production, yet its regulation is poorly understood. Recent reports of two alternative spliceforms of nNOS in the mouse and in man have raised the possibility of spatial and temporal modulation of expression. This study demonstrates the existence of at least three transcripts of the rat nNOS gene designated nNOSa, nNOSb, and nNOSc, respectively, with distinct 5' untranslated first exons that arise from alternative splicing to a common second exon. Expression of the alternative transcripts occurs with a high degree of tissue and developmental specificity, as demonstrated by RNase protection assays on multiple tissues from both fetal and adult rats. Furthermore, terminal differentiation of rat pheochromocytoma-derived PC12 cells into neurons is associated with induction of nNOSa, suggesting, likewise, development- and tissue-specific transcriptional control of nNOS isoform expression. Physical mapping using a rat yeast artificial chromosome clone shows that the alternatively spliced first exons 1a, 1b, and 1c are separated by at least 15-60 kb from the downstream coding sequence, with exons 1b and 1c being positioned within 200 bp of each other. These findings provide evidence that the biological activity of nNOS is tightly and specifically regulated by a complex pattern of alternative splicing, indicating that the notion of constitutive expression of this isoform needs to be revised. PMID:9294118

  4. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.

    PubMed

    Shkreta, Lulzim; Bell, Brendan; Revil, Timothée; Venables, Julian P; Prinos, Panagiotis; Elela, Sherif Abou; Chabot, Benoit

    2013-01-01

    For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively

  5. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation.

    PubMed

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F

    2016-01-01

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system. PMID:26703587

  6. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation

    PubMed Central

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F.

    2015-01-01

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system. PMID:26703587

  7. Incorporating alternative splicing and mRNA editing into the genetic analysis of complex traits

    PubMed Central

    Hassan, Musa A.; Saeij, Jeroen P.J.

    2014-01-01

    The nomination of candidate genes underlying complex traits is often focused on genetic variations that alter mRNA abundance or result in non-conservative changes in amino acids. Although inconspicuous in complex trait analysis, genetic variants that affect splicing or RNA editing can also generate proteomic diversity and impact genetic traits. Indeed it is known that splicing and RNA editing modulate several traits in humans and model organisms. Using high-throughput RNA sequencing (RNA-seq) analysis, it is now possible to integrate the genetics of transcript abundance, alternative splicing and editing with the analysis of complex traits. We recently demonstrated that both alternative splicing and mRNA editing are modulated by genetic and environmental factors, and potentially engender phenotypic diversity in a genetically segregating mouse population. Therefore, the analysis of splicing and RNA editing will expand not only the regulatory landscape of transcriptome and proteome complexity, but also the repertoire of candidate genes for complex traits. PMID:25171292

  8. Alternate cyclin D1 mRNA splicing modulates p27KIP1 binding and cell migration.

    PubMed

    Li, Zhiping; Wang, Chenguang; Jiao, Xuanmao; Katiyar, Sanjay; Casimiro, Mathew C; Prendergast, George C; Powell, Michael J; Pestell, Richard G

    2008-03-14

    Cyclin D1 is an important cell cycle regulator, but in cancer its overexpression also increases cellular migration mediated by p27 KIP1 stabilization and RhoA inhibition. Recently, a common polymorphism at the exon 4-intron 4 boundary of the human cyclin D1 gene within a splice donor region was associated with an altered risk of developing cancer. Altered RNA splicing caused by this polymorphism gives rise to a variant cyclin D1 isoform termed cyclin D1b, which has the same N terminus as the canonical cyclin D1a isoform but a distinct C terminus. In this study we show that these different isoforms have unique properties with regard to the cellular migration function of cyclin D1. Although they displayed little difference in transcriptional co-repression assays on idealized reporter genes, microarray cDNA expression analysis revealed differential regulation of genes, including those that influence cellular migration. Additionally, whereas cyclin D1a stabilized p27 KIP1 and inhibited RhoA-induced ROCK kinase activity, promoting cellular migration, cyclin D1b failed to stabilize p27 KIP1 or inhibit ROCK kinase activity and had no effect on migration. Our findings argue that alternate splicing is an important determinant of the function of cyclin D1 in cellular migration.

  9. Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans.

    PubMed

    Lee, Benjamin P; Pilling, Luke C; Emond, Florence; Flurkey, Kevin; Harrison, David E; Yuan, Rong; Peters, Luanne L; Kuchel, George A; Ferrucci, Luigi; Melzer, David; Harries, Lorna W

    2016-10-01

    Dysregulation of splicing factor expression and altered alternative splicing are associated with aging in humans and other species, and also with replicative senescence in cultured cells. Here, we assess whether expression changes of key splicing regulator genes and consequent effects on alternative splicing are also associated with strain longevity in old and young mice, across 6 different mouse strains with varying lifespan (A/J, NOD.B10Sn-H2(b) /J, PWD.Phj, 129S1/SvlmJ, C57BL/6J and WSB/EiJ). Splicing factor expression and changes to alternative splicing were associated with strain lifespan in spleen and to a lesser extent in muscle. These changes mainly involved hnRNP splicing inhibitor transcripts with most changes more marked in spleens of young animals from long-lived strains. Changes in spleen isoform expression were suggestive of reduced cellular senescence and retained cellular proliferative capacity in long-lived strains. Changes in muscle isoform expression were consistent with reduced pro-inflammatory signalling in longer-lived strains. Two splicing regulators, HNRNPA1 and HNRNPA2B1, were also associated with parental longevity in humans, in the InCHIANTI aging study. Splicing factors may represent a driver, mediator or early marker of lifespan in mouse, as expression differences were present in the young animals of long-lived strains. Changes to alternative splicing patterns of key senescence genes in spleen and key remodelling genes in muscle suggest that correct regulation of alternative splicing may enhance lifespan in mice. Expression of some splicing factors in humans was also associated with parental longevity, suggesting that splicing regulation may also influence lifespan in humans. PMID:27363602

  10. Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans.

    PubMed

    Lee, Benjamin P; Pilling, Luke C; Emond, Florence; Flurkey, Kevin; Harrison, David E; Yuan, Rong; Peters, Luanne L; Kuchel, George A; Ferrucci, Luigi; Melzer, David; Harries, Lorna W

    2016-10-01

    Dysregulation of splicing factor expression and altered alternative splicing are associated with aging in humans and other species, and also with replicative senescence in cultured cells. Here, we assess whether expression changes of key splicing regulator genes and consequent effects on alternative splicing are also associated with strain longevity in old and young mice, across 6 different mouse strains with varying lifespan (A/J, NOD.B10Sn-H2(b) /J, PWD.Phj, 129S1/SvlmJ, C57BL/6J and WSB/EiJ). Splicing factor expression and changes to alternative splicing were associated with strain lifespan in spleen and to a lesser extent in muscle. These changes mainly involved hnRNP splicing inhibitor transcripts with most changes more marked in spleens of young animals from long-lived strains. Changes in spleen isoform expression were suggestive of reduced cellular senescence and retained cellular proliferative capacity in long-lived strains. Changes in muscle isoform expression were consistent with reduced pro-inflammatory signalling in longer-lived strains. Two splicing regulators, HNRNPA1 and HNRNPA2B1, were also associated with parental longevity in humans, in the InCHIANTI aging study. Splicing factors may represent a driver, mediator or early marker of lifespan in mouse, as expression differences were present in the young animals of long-lived strains. Changes to alternative splicing patterns of key senescence genes in spleen and key remodelling genes in muscle suggest that correct regulation of alternative splicing may enhance lifespan in mice. Expression of some splicing factors in humans was also associated with parental longevity, suggesting that splicing regulation may also influence lifespan in humans.

  11. Corticotropin (ACTH) regulates alternative RNA splicing in Y1 mouse adrenocortical tumor cells.

    PubMed

    Schimmer, Bernard P; Cordova, Martha

    2015-06-15

    The stimulatory effect of ACTH on gene expression is well documented and is thought to be a major mechanism by which ACTH maintains the functional and structural integrity of the gland. Previously, we showed that ACTH regulates the accumulation of over 1200 transcripts in Y1 adrenal cells, including a cluster with functions in alternative splicing of RNA. On this basis, we postulated that some of the effects of ACTH on the transcription landscape of Y1 cells are mediated by alternative splicing. In this study, we demonstrate that ACTH regulates the alternative splicing of four transcripts - Gnas, Cd151, Dab2 and Tia1. Inasmuch as alternative splicing potentially affects transcripts from more than two-thirds of the mouse genome, we suggest that these findings are representative of a genome-wide effect of ACTH that impacts on the mRNA and protein composition of the adrenal cortex.

  12. Distal regulation of alternative splicing by splicing enhancer in equine beta-casein intron 1.

    PubMed

    Lenasi, Tina; Peterlin, B Matija; Dovc, Peter

    2006-03-01

    The complexity of cotranscriptional splicing is reflected in the coordinated interplay between various cis-elements and transacting factors. In this report, we demonstrated that a cis-element in intron 1 of the equine beta-casein gene (intronic splicing enhancer 1, ISE1) increases the inclusion of all weak exons in its pre-mRNA. The ISE1 also functioned on a hybrid transcript, which was transcribed from the alpha-globin promoter, where it increased the inclusion of the human fibronectin EDA exon and the beta-casein exon 5. The region of ISE1 necessary for its function included the same sequence as is found in some exonic splicing enhancers. Since the ISE1 influenced the splicing of the entire transcript from intron 1, we propose a model for the cotranscriptional splicing of beta-casein mRNA, where the 5' end of the growing transcript remains associated with the C-terminal domain of RNA polymerase II. Thus, the ISE1 remains in close proximity to the mRNA exit groove throughout transcription and influences all weak exons as soon as they are copied.

  13. Transcriptome Analysis Indicates Considerable Divergence in Alternative Splicing Between Duplicated Genes in Arabidopsis thaliana

    PubMed Central

    Tack, David C.; Pitchers, William R.; Adams, Keith L.

    2014-01-01

    Gene and genome duplication events have created a large number of new genes in plants that can diverge by evolving new expression profiles and functions (neofunctionalization) or dividing extant ones (subfunctionalization). Alternative splicing (AS) generates multiple types of mRNA from a single type of pre-mRNA by differential intron splicing. It can result in new protein isoforms or downregulation of gene expression by transcript decay. Using RNA-seq, we investigated the degree to which alternative splicing patterns are conserved between duplicated genes in Arabidopsis thaliana. Our results revealed that 30% of AS events in α-whole-genome duplicates and 33% of AS events in tandem duplicates are qualitatively conserved within leaf tissue. Loss of ancestral splice forms, as well as asymmetric gain of new splice forms, may account for this divergence. Conserved events had different frequencies, as only 31% of shared AS events in α-whole-genome duplicates and 41% of shared AS events in tandem duplicates had similar frequencies in both paralogs, indicating considerable quantitative divergence. Analysis of published RNA-seq data from nonsense-mediated decay (NMD) mutants indicated that 85% of α-whole-genome duplicates and 89% of tandem duplicates have diverged in their AS-induced NMD. Our results indicate that alternative splicing shows a high degree of divergence between paralogs such that qualitatively conserved alternative splicing events tend to have quantitative divergence. Divergence in AS patterns between duplicates may be a mechanism of regulating expression level divergence. PMID:25326238

  14. Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing

    PubMed Central

    Gao, Qingsong; Sun, Wei; Ballegeer, Marlies; Libert, Claude; Chen, Wei

    2015-01-01

    Divergence of alternative splicing represents one of the major driving forces to shape phenotypic diversity during evolution. However, the extent to which these divergences could be explained by the evolving cis-regulatory versus trans-acting factors remains unresolved. To globally investigate the relative contributions of the two factors for the first time in mammals, we measured splicing difference between C57BL/6J and SPRET/EiJ mouse strains and allele-specific splicing pattern in their F1 hybrid. Out of 11,818 alternative splicing events expressed in the cultured fibroblast cells, we identified 796 with significant difference between the parental strains. After integrating allele-specific data from F1 hybrid, we demonstrated that these events could be predominately attributed to cis-regulatory variants, including those residing at and beyond canonical splicing sites. Contrary to previous observations in Drosophila, such predominant contribution was consistently observed across different types of alternative splicing. Further analysis of liver tissues from the same mouse strains and reanalysis of published datasets on other strains showed similar trends, implying in general the predominant contribution of cis-regulatory changes in the evolution of mouse alternative splicing. PMID:26134616

  15. Alternative Splicing of G-protein Coupled Receptors: Relevance to Pain Management

    PubMed Central

    Oladosu, Folabomi A.; Maixner, William; Nackley, Andrea G.

    2015-01-01

    Drugs that target G-protein coupled receptors (GPCRs) represent the primary treatment strategy for patients with acute and chronic pain; however, there is substantial individual variability in both the efficacy and adverse side effects associated with these drugs. Variability in drug responses is, in part, due to individuals’ diversity in alternative splicing of pain-relevant GPCRs. GPCR alternative splice variants often exhibit distinct tissue distribution patterns, drug binding properties, and signaling characteristics that may impact disease pathology as well as the size and direction of analgesic effects. Here, we review the importance of GPCRs and their known splice variants to the management of pain. PMID:26250730

  16. Alternative Splicing of G Protein-Coupled Receptors: Relevance to Pain Management.

    PubMed

    Oladosu, Folabomi A; Maixner, William; Nackley, Andrea G

    2015-08-01

    Drugs that target G protein-coupled receptors (GPCRs) represent the primary treatment strategy for patients with acute and chronic pain; however, there is substantial individual variability in both the efficacy and adverse effects associated with these drugs. Variability in drug responses is due, in part, to individuals' diversity in alternative splicing of pain-relevant GPCRs. G protein-coupled receptor alternative splice variants often exhibit distinct tissue distribution patterns, drug-binding properties, and signaling characteristics that may impact disease pathology as well as the extent and direction of analgesic effects. We review the importance of GPCRs and their known splice variants to the management of pain.

  17. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    SciTech Connect

    Alvarez, Enrique; Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M.

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  18. Alternative splicing of RNAs transcribed from the human c- myb gene

    SciTech Connect

    Shen-Ong, G.L.C.; Skurla, R.M. Jr.; Owens, J.D.; Mushinski, J.F. )

    1990-06-01

    An alternative splicing event in which a portion of the intron bounded by the vE6 and vE7 exons with v-{ital myb} homology is included as an additional 363-nucleotide coding exon (termed E6A or coding exon 9A) has been described for normal and tumor murine cells that express {ital myb}. The authors show that this alternative splicing event is conserved in human c-{ital myb} transcripts. In addition, another novel exon (termed E7A or coding exon 10A) is identified in human c-{ital myb} mRNAs expressed in normal and tumor cells. Although the {ital myb} protein isoform encoded by murine E6A-containing mRNA is larger than the major c-{ital myb} protein, the predicted products of both forms of human alternatively spliced {ital myb} transcripts are 3{prime}-truncated {ital myb} proteins that terminate in the alternative exons. These proteins are predicted to lack the same carboxy-terminal domains as the viral {ital myb} proteins encoded by avian myeloblastosis virus and E26 virus. The junction sequences that flank these exons closely resemble the consensus splice donor and splice acceptor sequences, yet the alternative transcripts are less abundant than is the major form of c-{ital myb} transcripts. The contribution that alternative splicing events in c-{ital myb} expression may make on c-{ital myb} function remains to be elucidated.

  19. Alternative splicing of the beta A4 amyloid gene of Alzheimer's disease in cortex of control and Alzheimer's disease patients.

    PubMed

    König, G; Salbaum, J M; Wiestler, O; Lang, W; Schmitt, H P; Masters, C L; Beyreuther, K

    1991-02-01

    An S1 nuclease protection assay was designed to study the splicing pattern of the alternatively spliced beta A4 amyloid gene (APP gene) of Alzheimer's disease (AD). We determined the splicing pattern of the APP gene in fetal, adult, aged adult and AD human cortex. The results suggest that alternative splicing of the APP gene in AD is not significantly different from age-matched controls, but distinct from the developing fetal brain.

  20. Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex.

    PubMed

    Chih, Ben; Gollan, Leora; Scheiffele, Peter

    2006-07-20

    Formation of synapses requires specific cellular interactions that organize pre- and postsynaptic compartments. The neuroligin-neurexin complex mediates heterophilic adhesion and can trigger assembly of glutamatergic and GABAergic synapses in cultured hippocampal neurons. Both neuroligins and neurexins are encoded by multiple genes. Alternative splicing generates large numbers of isoforms, which may engage in selective axo-dendritic interactions. We explored whether alternative splicing of the postsynaptic neuroligins modifies their activity toward glutamatergic and GABAergic axons. We find that small extracellular splice insertions restrict the function of neuroligin-1 and -2 to glutamatergic and GABAergic contacts and alter interaction with presynaptic neurexins. The neuroligin isoforms associated with GABAergic contacts bind to neurexin-1alpha and a subset of neurexin-1betas. In turn, these neurexin isoforms induce GABAergic but not glutamatergic postsynaptic differentiation. Our findings suggest that alternative splicing plays a central role in regulating selective extracellular interactions through the neuroligin-neurexin complex at glutamatergic and GABAergic synapses.

  1. The Conserved Splicing Factor SUA Controls Alternative Splicing of the Developmental Regulator ABI3 in Arabidopsis[W][OA

    PubMed Central

    Sugliani, Matteo; Brambilla, Vittoria; Clerkx, Emile J.M.; Koornneef, Maarten; Soppe, Wim J.J.

    2010-01-01

    ABSCISIC ACID INSENSITIVE3 (ABI3) is a major regulator of seed maturation in Arabidopsis thaliana. We detected two ABI3 transcripts, ABI3-α and ABI3-β, which encode full-length and truncated proteins, respectively. Alternative splicing of ABI3 is developmentally regulated, and the ABI3-β transcript accumulates at the end of seed maturation. The two ABI3 transcripts differ by the presence of a cryptic intron in ABI3-α, which is spliced out in ABI3-β. The suppressor of abi3-5 (sua) mutant consistently restores wild-type seed features in the frameshift mutant abi3-5 but does not suppress other abi3 mutant alleles. SUA is a conserved splicing factor, homologous to the human protein RBM5, and reduces splicing of the cryptic ABI3 intron, leading to a decrease in ABI3-β transcript. In the abi3-5 mutant, ABI3-β codes for a functional ABI3 protein due to frameshift restoration. PMID:20525852

  2. Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation.

    PubMed

    Thatcher, Shawn R; Zhou, Wengang; Leonard, April; Wang, Bing-Bing; Beatty, Mary; Zastrow-Hayes, Gina; Zhao, Xiangyu; Baumgarten, Andy; Li, Bailin

    2014-09-01

    Alternative splicing enhances transcriptome diversity in all eukaryotes and plays a role in plant tissue identity and stress adaptation. To catalog new maize (Zea mays) transcripts and identify genomic loci that regulate alternative splicing, we analyzed over 90 RNA-seq libraries from maize inbred lines B73 and Mo17, as well as Syn10 doubled haploid lines (progenies from B73 × Mo17). Transcript discovery was augmented with publicly available data from 14 maize tissues, expanding the maize transcriptome by more than 30,000 and increasing the percentage of intron-containing genes that undergo alternative splicing to 40%. These newly identified transcripts greatly increase the diversity of the maize proteome, sometimes coding for entirely different proteins compared with their most similar annotated isoform. In addition to increasing proteome diversity, many genes encoding novel transcripts gained an additional layer of regulation by microRNAs, often in a tissue-specific manner. We also demonstrate that the majority of genotype-specific alternative splicing can be genetically mapped, with cis-acting quantitative trait loci (QTLs) predominating. A large number of trans-acting QTLs were also apparent, with nearly half located in regions not shown to contain genes associated with splicing. Taken together, these results highlight the currently underappreciated role that alternative splicing plays in tissue identity and genotypic variation in maize.

  3. ROS and p53 in regulation of UVB-induced HDM2 alternative splicing.

    PubMed

    Tong, Lingying; Wu, Shiyong

    2015-01-01

    Alternative splicing plays an important role in proteasome diversity and gene expression regulation in eukaryotic cells. Hdm2, the human homolog of mdm2 (murine double minute oncogene 2), is known to be an oncogene as its role in suppression of p53. Hdm2 alternative splicing, occurs in both tumor and normal tissues, is believed to be a response of cells for cellular stress, and thus modulate p53 activity. Therefore, understanding the regulation of hdm2 splicing is critical in elucidating the mechanisms of tumor development and progression. In this study, we determined the effect of ultraviolet B light (UVB) on alternative splicing of hdm2. Our data indicated that UVB (50 mJ cm(-2)) alone is not a good inducer of alternative splicing of hdm2. The less effectiveness could be due to the induction of ROS and p53 by UVB because removing ROS by L-NAC (10 mm) in p53 null cells could lead to alternative splicing of hdm2 upon UVB irradiation. PMID:24986024

  4. Modulation of alternative splicing with chemical compounds in new therapeutics for human diseases.

    PubMed

    Ohe, Kenji; Hagiwara, Masatoshi

    2015-04-17

    Alternative splicing is a critical step where a limited number of human genes generate a complex and diverse proteome. Various diseases, including inherited diseases with abnormalities in the "genome code," have been found to result in an aberrant mis-spliced "transcript code" with correlation to the resulting phenotype. Chemical compound-based and nucleic acid-based strategies are trying to target this mis-spliced "transcript code". We will briefly mention about how to obtain splicing-modifying-compounds by high-throughput screening and overview of what is known about compounds that modify splicing pathways. The main focus will be on RNA-binding protein kinase inhibitors. In the main text, we will refer to diseases where splicing-modifying-compounds have been intensively investigated, with comparison to nucleic acid-based strategies. The information on their involvement in mis-splicing as well as nonsplicing events will be helpful in finding better compounds with less off-target effects for future implications in mis-splicing therapy.

  5. Alternative splicing modulated by genetic variants demonstrates accelerated evolution regulated by highly conserved proteins

    PubMed Central

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Lin, Xianzhi; Chan, Tak-Ming; Wang, Rena; Xiao, Xinshu

    2016-01-01

    Identification of functional genetic variants and elucidation of their regulatory mechanisms represent significant challenges of the post-genomic era. A poorly understood topic is the involvement of genetic variants in mediating post-transcriptional RNA processing, including alternative splicing. Thus far, little is known about the genomic, evolutionary, and regulatory features of genetically modulated alternative splicing (GMAS). Here, we systematically identified intronic tag variants for genetic modulation of alternative splicing using RNA-seq data specific to cellular compartments. Combined with our previous method that identifies exonic tags for GMAS, this study yielded 622 GMAS exons. We observed that GMAS events are highly cell type independent, indicating that splicing-altering genetic variants could have widespread function across cell types. Interestingly, GMAS genes, exons, and single-nucleotide variants (SNVs) all demonstrated positive selection or accelerated evolution in primates. We predicted that GMAS SNVs often alter binding of splicing factors, with SRSF1 affecting the most GMAS events and demonstrating global allelic binding bias. However, in contrast to their GMAS targets, the predicted splicing factors are more conserved than expected, suggesting that cis-regulatory variation is the major driving force of splicing evolution. Moreover, GMAS-related splicing factors had stronger consensus motifs than expected, consistent with their susceptibility to SNV disruption. Intriguingly, GMAS SNVs in general do not alter the strongest consensus position of the splicing factor motif, except the more than 100 GMAS SNVs in linkage disequilibrium with polymorphisms reported by genome-wide association studies. Our study reports many GMAS events and enables a better understanding of the evolutionary and regulatory features of this phenomenon. PMID:26888265

  6. In Vitro and In Vivo Modulation of Alternative Splicing by the Biguanide Metformin

    PubMed Central

    Laustriat, Delphine; Gide, Jacqueline; Barrault, Laetitia; Chautard, Emilie; Benoit, Clara; Auboeuf, Didier; Boland, Anne; Battail, Christophe; Artiguenave, François; Deleuze, Jean-François; Bénit, Paule; Rustin, Pierre; Franc, Sylvia; Charpentier, Guillaume; Furling, Denis; Bassez, Guillaume; Nissan, Xavier; Martinat, Cécile; Peschanski, Marc; Baghdoyan, Sandrine

    2015-01-01

    Major physiological changes are governed by alternative splicing of RNA, and its misregulation may lead to specific diseases. With the use of a genome-wide approach, we show here that this splicing step can be modified by medication and demonstrate the effects of the biguanide metformin, on alternative splicing. The mechanism of action involves AMPK activation and downregulation of the RBM3 RNA-binding protein. The effects of metformin treatment were tested on myotonic dystrophy type I (DM1), a multisystemic disease considered to be a spliceopathy. We show that this drug promotes a corrective effect on several splicing defects associated with DM1 in derivatives of human embryonic stem cells carrying the causal mutation of DM1 as well as in primary myoblasts derived from patients. The biological effects of metformin were shown to be compatible with typical therapeutic dosages in a clinical investigation involving diabetic patients. The drug appears to act as a modifier of alternative splicing of a subset of genes and may therefore have novel therapeutic potential for many more diseases besides those directly linked to defective alternative splicing. PMID:26528939

  7. RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing

    PubMed Central

    Khan, Dilshad H.; Gonzalez, Carolina; Cooper, Charlton; Sun, Jian-Min; Chen, Hou Yu; Healy, Shannon; Xu, Wayne; Smith, Karen T.; Workman, Jerry L.; Leygue, Etienne; Davie, James R.

    2014-01-01

    Histone deacetylases (HDACs) and lysine acetyltransferases (KATs) catalyze dynamic histone acetylation at regulatory and coding regions of transcribed genes. Highly phosphorylated HDAC2 is recruited within corepressor complexes to regulatory regions, while the nonphosphorylated form is associated with the gene body. In this study, we characterized the nonphosphorylated HDAC2 complexes recruited to the transcribed gene body and explored the function of HDAC-complex-mediated dynamic histone acetylation. HDAC1 and 2 were coimmunoprecipitated with several splicing factors, including serine/arginine-rich splicing factor 1 (SRSF1) which has roles in alternative splicing. The co-chromatin immunoprecipitation of HDAC1/2 and SRSF1 to the gene body was RNA-dependent. Inhibition of HDAC activity and knockdown of HDAC1, HDAC2 or SRSF1 showed that these proteins were involved in alternative splicing of MCL1. HDAC1/2 and KAT2B were associated with nascent pre-mRNA in general and with MCL1 pre-mRNA specifically. Inhibition of HDAC activity increased the occupancy of KAT2B and acetylation of H3 and H4 of the H3K4 methylated alternative MCL1 exon 2 nucleosome. Thus, nonphosphorylated HDAC1/2 is recruited to pre-mRNA by splicing factors to act at the RNA level with KAT2B and other KATs to catalyze dynamic histone acetylation of the MCL1 alternative exon and alter the splicing of MCL1 pre-mRNA. PMID:24234443

  8. Alternative Splicing in the Differentiation of Human Embryonic Stem Cells into Cardiac Precursors

    PubMed Central

    Salomonis, Nathan; Nelson, Brandon; Vranizan, Karen; Pico, Alexander R.; Hanspers, Kristina; Kuchinsky, Allan; Ta, Linda; Mercola, Mark; Conklin, Bruce R.

    2009-01-01

    The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org), we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation. PMID:19893621

  9. Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.).

    PubMed

    Lisson, Ralph; Hellert, Jan; Ringleb, Malte; Machens, Fabian; Kraus, Josef; Hehl, Reinhard

    2010-09-01

    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT-PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain.

  10. Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy

    PubMed Central

    Struck, Adam J.; Gupta, Riti; Farnsworth, Dylan R.; Mahady, Amy E.; Eichinger, Katy; Thornton, Charles A.; Wang, Eric T.; Berglund, J. Andrew

    2016-01-01

    Alternative splicing is a regulated process that results in expression of specific mRNA and protein isoforms. Alternative splicing factors determine the relative abundance of each isoform. Here we focus on MBNL1, a splicing factor misregulated in the disease myotonic dystrophy. By altering the concentration of MBNL1 in cells across a broad dynamic range, we show that different splicing events require different amounts of MBNL1 for half-maximal response, and respond more or less steeply to MBNL1. Motifs around MBNL1 exon 5 were studied to assess how cis-elements mediate the MBNL1 dose-dependent splicing response. A framework was developed to estimate MBNL concentration using splicing responses alone, validated in the cell-based model, and applied to myotonic dystrophy patient muscle. Using this framework, we evaluated the ability of individual and combinations of splicing events to predict functional MBNL concentration in human biopsies, as well as their performance as biomarkers to assay mild, moderate, and severe cases of DM. PMID:27681373

  11. Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.)

    PubMed Central

    Lisson, Ralph; Hellert, Jan; Ringleb, Malte; Machens, Fabian; Kraus, Josef

    2010-01-01

    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT–PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain. PMID:20512402

  12. Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.).

    PubMed

    Lisson, Ralph; Hellert, Jan; Ringleb, Malte; Machens, Fabian; Kraus, Josef; Hehl, Reinhard

    2010-09-01

    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT-PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain. PMID:20512402

  13. Coordinately Regulated Alternative Splicing of Genes Involved in Cholesterol Biosynthesis and Uptake

    PubMed Central

    Naidoo, Devesh; Rudel, Lawrence L.; Temel, Ryan E.; McDaniel, Allison L.; Marshall, Stephanie M.; Krauss, Ronald M.

    2011-01-01

    Genes involved in cholesterol biosynthesis and uptake are transcriptionally regulated in response to cellular sterol content in a coordinated manner. A number of these genes, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and LDL receptor (LDLR), undergo alternative splicing, resulting in reductions of enzyme or protein activity. Here we demonstrate that cellular sterol depletion suppresses, and sterol loading induces, alternative splicing of multiple genes involved in the maintenance of cholesterol homeostasis including HMGCR and LDLR, the key regulators of cellular cholesterol biosynthesis and uptake, respectively. These changes were observed in both in vitro studies of the HepG2 human hepatoma derived cell line, as well as in vivo studies of St. Kitts vervets, also known as African green monkeys, a commonly used primate model for investigating cholesterol metabolism. These effects are mediated in part by sterol regulation of polypyrimidine tract binding protein 1 (PTBP1), since knock-down of PTBP1 eliminates sterol induced changes in alternative splicing of several of these genes. Single nucleotide polymorphisms (SNPs) that influence HMGCR and LDLR alternative splicing (rs3846662 and rs688, respectively), have been associated with variation in plasma LDL-cholesterol levels. Sterol-induced changes in alternative splicing are blunted in carriers of the minor alleles for each of these SNPs, indicating an interaction between genetic and non-genetic regulation of this process. Our results implicate alternative splicing as a novel mechanism of enhancing the robust transcriptional response to conditions of cellular cholesterol depletion or accumulation. Thus coordinated regulation of alternative splicing may contribute to cellular cholesterol homeostasis as well as plasma LDL levels. PMID:21559365

  14. The plethora of PMCA isoforms: Alternative splicing and differential expression.

    PubMed

    Krebs, Joachim

    2015-09-01

    In this review the four different genes of the mammalian plasma membrane calcium ATPase (PMCA) and their spliced isoforms are discussed with respect to their tissue distribution, their differences during development and their importance for regulating Ca²⁺ homeostasis under different conditions. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  15. SPACE: an algorithm to predict and quantify alternatively spliced isoforms using microarrays.

    PubMed

    Anton, Miguel A; Gorostiaga, Dorleta; Guruceaga, Elizabeth; Segura, Victor; Carmona-Saez, Pedro; Pascual-Montano, Alberto; Pio, Ruben; Montuenga, Luis M; Rubio, Angel

    2008-01-01

    Exon and exon+junction microarrays are promising tools for studying alternative splicing. Current analytical tools applied to these arrays lack two relevant features: the ability to predict unknown spliced forms and the ability to quantify the concentration of known and unknown isoforms. SPACE is an algorithm that has been developed to (1) estimate the number of different transcripts expressed under several conditions, (2) predict the precursor mRNA splicing structure and (3) quantify the transcript concentrations including unknown forms. The results presented here show its robustness and accuracy for real and simulated data. PMID:18312629

  16. SPACE: an algorithm to predict and quantify alternatively spliced isoforms using microarrays

    PubMed Central

    Anton, Miguel A; Gorostiaga, Dorleta; Guruceaga, Elizabeth; Segura, Victor; Carmona-Saez, Pedro; Pascual-Montano, Alberto; Pio, Ruben; Montuenga, Luis M; Rubio, Angel

    2008-01-01

    Exon and exon+junction microarrays are promising tools for studying alternative splicing. Current analytical tools applied to these arrays lack two relevant features: the ability to predict unknown spliced forms and the ability to quantify the concentration of known and unknown isoforms. SPACE is an algorithm that has been developed to (1) estimate the number of different transcripts expressed under several conditions, (2) predict the precursor mRNA splicing structure and (3) quantify the transcript concentrations including unknown forms. The results presented here show its robustness and accuracy for real and simulated data. PMID:18312629

  17. Genome-Wide Survey of Cold Stress Regulated Alternative Splicing in Arabidopsis thaliana with Tiling Microarray

    PubMed Central

    Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert

    2013-01-01

    Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression. PMID:23776682

  18. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

    SciTech Connect

    Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

    2009-02-03

    Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

  19. Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking.

    PubMed

    Aoto, Jason; Martinelli, David C; Malenka, Robert C; Tabuchi, Katsuhiko; Südhof, Thomas C

    2013-07-01

    Neurexins are essential presynaptic cell adhesion molecules that are linked to schizophrenia and autism and are subject to extensive alternative splicing. Here, we used a genetic approach to test the physiological significance of neurexin alternative splicing. We generated knockin mice in which alternatively spliced sequence #4 (SS4) of neuexin-3 is constitutively included but can be selectively excised by cre-recombination. SS4 of neurexin-3 was chosen because it is highly regulated and controls neurexin binding to neuroligins, LRRTMs, and other ligands. Unexpectedly, constitutive inclusion of SS4 in presynaptic neurexin-3 decreased postsynaptic AMPA, but not NMDA receptor levels, and enhanced postsynaptic AMPA receptor endocytosis. Moreover, constitutive inclusion of SS4 in presynaptic neurexin-3 abrogated postsynaptic AMPA receptor recruitment during NMDA receptor-dependent LTP. These phenotypes were fully rescued by constitutive excision of SS4 in neurexin-3. Thus, alternative splicing of presynaptic neurexin-3 controls postsynaptic AMPA receptor trafficking, revealing an unanticipated alternative splicing mechanism for trans-synaptic regulation of synaptic strength and long-term plasticity.

  20. Alternative splicing and genomic structure of the Wilms tumor gene WT1.

    PubMed Central

    Haber, D A; Sohn, R L; Buckler, A J; Pelletier, J; Call, K M; Housman, D E

    1991-01-01

    The chromosome 11p13 Wilms tumor susceptibility gene WT1 appears to play a crucial role in regulating the proliferation and differentiation of nephroblasts and gonadal tissue. The WT1 gene consists of 10 exons, encoding a complex pattern of mRNA species: four distinct transcripts are expressed, reflecting the presence or absence of two alternative splices. Splice I consists of a separate exon, encoding 17 amino acids, which is inserted between the proline-rich amino terminus and the zinc finger domains. Splice II arises from the use of an alternative 5' splice junction and results in the insertion of 3 amino acids between zinc fingers 3 and 4. RNase protection analysis demonstrates that the most prevalent splice variant in both human and mouse is that which contains both alternative splices, whereas the least common is the transcript missing both splices. The relative distribution of splice variants is highly conserved between normal fetal kidney tissue and Wilms tumors that have intact WT1 transcripts. The ratio of these different WT1 mRNA species is also maintained as a function of development in the mouse kidney and in various mouse tissues expressing WT1. The conservation in structure and relative levels of each of the four WT1 mRNA species suggests that each encoded polypeptide makes a significant contribution to normal gene function. The control of cellular proliferation and differentiation exerted by the WT1 gene products may involve interactions between four polypeptides with distinct targets and functions. Images PMID:1658787

  1. Regulation of transcription of the RNA splicing factor hSlu7 by Elk-1 and Sp1 affects alternative splicing

    PubMed Central

    Alberstein, Moti; Amit, Maayan; Vaknin, Keren; O'Donnell, Amanda; Farhy, Chen; Lerenthal, Yaniv; Shomron, Noam; Shaham, Ohad; Sharrocks, Andrew D.; Ashery-Padan, Ruth; Ast, Gil

    2007-01-01

    Alternative splicing plays a major role in transcriptome diversity and plasticity, but it is largely unknown how tissue-specific and embryogenesis-specific alternative splicing is regulated. The highly conserved splicing factor Slu7 is involved in 3′ splice site selection and also regulates alternative splicing. We show that Slu7 has a unique spatial pattern of expression among human and mouse embryonic and adult tissues. We identified several functional Ets binding sites and GC-boxes in the human Slu7 (hSlu7) promoter region. The Ets and GC-box binding transcription factors, Elk-1 and Sp1, respectively, exerted opposite effects on hSlu7 transcription: Sp1 protein enhances and Elk-1 protein represses transcription in a dose-dependent manner. Sp1 protein bound to the hSlu7 promoter in vivo, and depletion of Sp1 by RNA interference (RNAi) repressed hSlu7 expression. Elk-1 protein bound to the hSlu7 promoter in vivo, and depletion of Elk-1 by RNAi caused an increase in the endogenous level of hSlu7 mRNA. Further, depletion of either Sp1 or Elk-1 affected alternative splicing. Our results provide indications of a complex transcription regulation mechanism that controls the spatial and temporal expression of Slu7, presumably allowing regulation of tissue-specific alternative splicing events. PMID:17804646

  2. Computational Analysis of an Evolutionarily Conserved VertebrateMuscle Alternative Splicing Program

    SciTech Connect

    Das, Debopriya; Clark, Tyson A.; Schweitzer, Anthony; Marr,Henry; Yamamoto, Miki L.; Parra, Marilyn K.; Arribere, Josh; Minovitsky,Simon; Dubchak, Inna; Blume, John E.; Conboy, John G.

    2006-06-15

    A novel exon microarray format that probes gene expression with single exon resolution was employed to elucidate critical features of a vertebrate muscle alternative splicing program. A dataset of 56 microarray-defined, muscle-enriched exons and their flanking introns were examined computationally in order to investigate coordination of the muscle splicing program. Candidate intron regulatory motifs were required to meet several stringent criteria: significant over-representation near muscle-enriched exons, correlation with muscle expression, and phylogenetic conservation among genomes of several vertebrate orders. Three classes of regulatory motifs were identified in the proximal downstream intron, within 200nt of the target exons: UGCAUG, a specific binding site for Fox-1 related splicing factors; ACUAAC, a novel branchpoint-like element; and UG-/UGC-rich elements characteristic of binding sites for CELF splicing factors. UGCAUG was remarkably enriched, being present in nearly one-half of all cases. These studies suggest that Fox and CELF splicing factors play a major role in enforcing the muscle-specific alternative splicing program, facilitating expression of a set of unique isoforms of cytoskeletal proteins that are critical to muscle cell differentiation. Supplementary materials: There are four supplementary tables and one supplementary figure. The tables provide additional detailed information concerning the muscle-enriched datasets, and about over-represented oligonucleotide sequences in the flanking introns. The supplementary figure shows RT-PCR data confirming the muscle-enriched expression of exons predicted from the microarray analysis.

  3. Conserved alternative splicing and expression patterns of arthropod N-cadherin.

    PubMed

    Hsu, Shu-Ning; Yonekura, Shinichi; Ting, Chun-Yuan; Robertson, Hugh M; Iwai, Youichi; Uemura, Tadashi; Lee, Chi-Hon; Chiba, Akira

    2009-04-01

    Metazoan development requires complex mechanisms to generate cells with diverse function. Alternative splicing of pre-mRNA not only expands proteomic diversity but also provides a means to regulate tissue-specific molecular expression. The N-Cadherin gene in Drosophila contains three pairs of mutually-exclusive alternatively-spliced exons (MEs). However, no significant differences among the resulting protein isoforms have been successfully demonstrated in vivo. Furthermore, while the N-Cadherin gene products exhibit a complex spatiotemporal expression pattern within embryos, its underlying mechanisms and significance remain unknown. Here, we present results that suggest a critical role for alternative splicing in producing a crucial and reproducible complexity in the expression pattern of arthropod N-Cadherin. We demonstrate that the arthropod N-Cadherin gene has maintained the three sets of MEs for over 400 million years using in silico and in vivo approaches. Expression of isoforms derived from these MEs receives precise spatiotemporal control critical during development. Both Drosophila and Tribolium use ME-13a and ME-13b in "neural" and "mesodermal" splice variants, respectively. As proteins, either ME-13a- or ME-13b-containing isoform can cell-autonomously rescue the embryonic lethality caused by genetic loss of N-Cadherin. Ectopic muscle expression of either isoform beyond the time it normally ceases leads to paralysis and lethality. Together, our results offer an example of well-conserved alternative splicing increasing cellular diversity in metazoans. PMID:19343204

  4. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    SciTech Connect

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina; Redal, María Ana; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Shamy, Magdy; Muñoz, Manuel J.; and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  5. An alternatively spliced surfactant protein B mRNA in normal human lung: disease implication.

    PubMed Central

    Lin, Z; Wang, G; Demello, D E; Floros, J

    1999-01-01

    We identified an alternatively-spliced surfactant protein B (SP-B) mRNA from normal human lung with a 12 nt deletion at the beginning of exon 8. This deletion causes a loss of four amino acids in the SP-B precursor protein. Sequence comparison of the 3' splice sites reveals only one difference in the frequency of U/C in the 11 predominantly-pyrimidine nucleotide tract, 73% for the normal and 45% for the alternatively-spliced SP-B mRNA (77-99% for the consensus sequence). Analysis of SP-B mRNA in lung indicates that the abundance of the alternatively-spliced form is very low and varies among individuals. Although the relative abundance of the deletion form of SP-B mRNA remains constant among normal lungs, it is found with relatively higher abundance in the lungs of some individuals with diseases such as congenital alveolar proteinosis, respiratory distress syndrome, bronchopulmonary dysplasia, alveolar capillary dysplasia and hypophosphatasia. This observation points to the possibility that the alternative splicing is a potential regulatory mechanism of SP-B and may play a role in the pathogenesis of disease under certain circumstances. PMID:10493923

  6. Sam68 Regulates S6K1 Alternative Splicing during Adipogenesis

    PubMed Central

    Song, Jingwen

    2015-01-01

    The requirement for alternative splicing during adipogenesis is poorly understood. The Sam68 RNA binding protein is a known regulator of alternative splicing, and mice deficient for Sam68 exhibit adipogenesis defects due to defective mTOR signaling. Sam68 null preadipocytes were monitored for alternative splicing imbalances in components of the mTOR signaling pathway. Herein, we report that Sam68 regulates isoform expression of the ribosomal S6 kinase gene (Rps6kb1). Sam68-deficient adipocytes express Rps6kb1-002 and its encoded p31S6K1 protein, in contrast to wild-type adipocytes that do not express this isoform. Sam68 binds an RNA sequence encoded by Rps6kb1 intron 6 and prevents serine/arginine-rich splicing factor 1 (SRSF1)-mediated alternative splicing of Rps6kb1-002, as assessed by cross-linking and immunoprecipitation (CLIP) and minigene assays. Depletion of p31S6K1 with small interfering RNAs (siRNAs) partially restored adipogenesis of Sam68-deficient preadipocytes. The ectopic expression of p31S6K1 in wild-type 3T3-L1 cells resulted in adipogenesis differentiation defects, showing that p31S6K1 is an inhibitor of adipogenesis. Our findings indicate that Sam68 is required to prevent the expression of p31S6K1 in adipocytes for adipogenesis to occur. PMID:25776557

  7. Alternative Splicing Modulation by a LAMMER Kinase Impinges on Developmental and Transcriptome Expression

    PubMed Central

    Savaldi-Goldstein, Sigal; Aviv, Dvora; Davydov, Olga; Fluhr, Robert

    2003-01-01

    Alternative splicing is a major contributor to genome complexity, playing a significant role in various cellular functions, including signal transduction, immunity, and development. The spliceosomal machinery is responsible for the processing of nuclear RNA. Several splicing factors associated with this complex are phosphorylated by kinases that possess a conserved LAMMER motif. We demonstrate in BY-2 tobacco cells a novel role for the LAMMER motif in the maintenance of proper subnuclear localization. Furthermore, high expression of the LAMMER kinase in Arabidopsis plants modulated the alternative splicing of specific endogenous genes and resulted in abnormal plant development and a novel transcriptome profile. A prominent feature was the upregulation of genes that play a role in protein turnover, suggesting a moderating function for these gene products in the control of alternative splicing events. Together, these results demonstrate alternative splicing modulation as a result of phosphorylation activity, providing an opportunity to study its global effect on the plasticity of plant development and gene expression at the organism level. PMID:12671088

  8. Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development

    PubMed Central

    Kim, Kee K.; Nam, Joseph

    2013-01-01

    Alternative premRNA splicing is a major mechanism to generate diversity of gene products. However, the biological roles of alternative splicing during development remain elusive. Here, we focus on a neuron-specific RNA-binding protein, Rbfox3, recently identified as the antigen of the widely used anti-NeuN antibody. siRNA-mediated loss-of-function studies using the developing chicken spinal cord revealed that Rbfox3 is required to promote neuronal differentiation of postmitotic neurons. Numb premRNA encoding a signaling adaptor protein was found to be a target of Rbfox3 action, and Rbfox3 repressed the inclusion of an alternative exon via binding to the conserved UGCAUG element in the upstream intron. Depleting a specific Numb splice isoform reproduced similar neuronal differentiation defects. Forced expression of the relevant Numb splice isoform was sufficient to rescue, in an isoform-specific manner, postmitotic neurons from defects in differentiation caused by Rbfox3 depletion. Thus, Rbfox3-dependent Numb alternative splicing plays an important role in the progression of neuronal differentiation during vertebrate development. PMID:23420872

  9. Alternative RNA splicing of KSHV ORF57 produces two different RNA isoforms.

    PubMed

    Majerciak, Vladimir; Zheng, Zhi-Ming

    2016-01-15

    In lytically infected B cells Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 gene encodes two RNA isoforms by alternative splicing of its pre-mRNA, which contains a small, constitutive intron in its 5' half and a large, suboptimal intron in its 3's half. The RNA1 isoform encodes full-length ORF57 and is a major isoform derived from splicing of the constitutive small intron, but retaining the suboptimal large intron as the coding region. A small fraction (<5%) of ORF57 RNA undergoes double splicing to produce a smaller non-coding RNA2 due to lack of a translational termination codon. Both RNAs are cleaved and polyadenylated at the same cleavage site CS83636. The insertion of ORF57 RNA1 into a restriction cutting site in certain mammalian expression vectors activates splicing of the subopitmal intron and produces a truncated ORF57 protein.

  10. Regulation of neurexin 1beta tertiary structure and ligand binding through alternative splicing.

    PubMed

    Shen, Kaiser C; Kuczynska, Dorota A; Wu, Irene J; Murray, Beverly H; Sheckler, Lauren R; Rudenko, Gabby

    2008-03-01

    Neurexins and neuroligins play an essential role in synapse function, and their alterations are linked to autistic spectrum disorder. Interactions between neurexins and neuroligins regulate inhibitory and excitatory synaptogenesis in vitro through a "splice-insert signaling code." In particular, neurexin 1beta carrying an alternative splice insert at site SS#4 interacts with neuroligin 2 (found predominantly at inhibitory synapses) but much less so with other neuroligins (those carrying an insert at site B and prevalent at excitatory synapses). The structure of neurexin 1beta+SS#4 reveals dramatic rearrangements to the "hypervariable surface," the binding site for neuroligins. The splice insert protrudes as a long helix into space, triggers conversion of loop beta10-beta11 into a helix rearranging the binding site for neuroligins, and rearranges the Ca(2+)-binding site required for ligand binding, increasing its affinity. Our structures reveal the mechanism by which neurexin 1beta isoforms acquire neuroligin splice isoform selectivity.

  11. Alternative statistical methods for estimating efficacy of interferon beta-1b for multiple sclerosis clinical trials

    PubMed Central

    2011-01-01

    Background In the randomized study of interferon beta-1b (IFN beta-1b) for multiple sclerosis (MS), it has usually been evaluated the simple annual relapse rate as the study endpoint. This study aimed to investigate the performance of various regression models using information regarding the time to each recurrent event and considering the MS specific data generation process, and to estimate the treatment effect of a MS clinical trial data. Methods We conducted a simulation study with consideration of the pathological characteristics of MS, and applied alternative efficacy estimation methods to real clinical trial data, including 5 extended Cox regression models for time-to-event analysis, a Poisson regression model and a Poisson regression model with Generalized Estimating Equations (GEE). We adjusted for other important covariates that may have affected the outcome. Results We compared the simulation results for each model. The hazard ratios of real data were estimated for each model including the effects of other covariates. The results (hazard ratios of high-dose to low-dose) of all models were approximately 0.7 (range, 0.613 - 0.769), whereas the annual relapse rate ratio was 0.714. Conclusions The precision of the treatment estimation was increased by application of the alternative models. This suggests that the use of alternative models that include recurrence event data may provide better analyses. PMID:21612661

  12. A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice.

    PubMed

    Li, Jigang; Li, Xiaojuan; Guo, Lei; Lu, Feng; Feng, Xiaojie; He, Kun; Wei, Liping; Chen, Zhangliang; Qu, Li-Jia; Gu, Hongya

    2006-01-01

    MYB transcription factor genes play important roles in many developmental processes and in various defence responses of plants. Two Arabidopsis R2R3-type MYB genes, AtMYB59 and AtMYB48, were found to undergo similar alternative splicing. Both genes have four distinctively spliced transcripts that encode either MYB-related proteins or R2R3-MYB proteins. An extensive BLAST search of the GenBank database resulted in finding and cloning two rice homologues, both of which were also found to share a similar alternative splicing pattern. In a semi-quantitative study, the expression of one splice variant of AtMYB59 was found to be differentially regulated in treatments with different phytohormones and stresses. GFP fusion protein analysis revealed that both of the two predicted nuclear localization signals (NLSs) in the R3 domain are required for localizing to the nucleus. Promoter-GUS analysis in transgenic plants showed that 5'-UTR is sufficient for the translation initiation of type 3 transcripts (encoding R2R3-MYB proteins), but not for type 2 transcripts (encoding MYB-related proteins). Moreover, a new type of non-canonical intron, with the same nucleotide repeats at the 5' and 3' splice sites, was identified. Thirty-eight Arabidopsis and rice genes were found to have this type of non-canonical intron, most of which undergo alternative splicing. These data suggest that this subgroup of transcription factor genes may be involved in multiple biological processes and may be transcriptionally regulated by alternative splicing. PMID:16531467

  13. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells.

    PubMed

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina; Redal, María Ana; Alghamdi, Mansour A; Khoder, Mamdouh I; Shamy, Magdy; Muñoz, Manuel J; Kornblihtt, Alberto R

    2015-07-01

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5' untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing.

  14. Identification of alternative splicing events regulated by the oncogenic factor SRSF1 in lung cancer.

    PubMed

    de Miguel, Fernando J; Sharma, Ravi D; Pajares, María J; Montuenga, Luis M; Rubio, Angel; Pio, Ruben

    2014-02-15

    Abnormal alternative splicing has been associated with cancer. Genome-wide microarrays can be used to detect differential splicing events. In this study, we have developed ExonPointer, an algorithm that uses data from exon and junction probes to identify annotated cassette exons. We used the algorithm to profile differential splicing events in lung adenocarcinoma A549 cells after downregulation of the oncogenic serine/arginine-rich splicing factor 1 (SRSF1). Data were generated using two different microarray platforms. The PCR-based validation rate of the top 20 ranked genes was 60% and 100%. Functional enrichment analyses found a substantial number of splicing events in genes related to RNA metabolism. These analyses also identified genes associated with cancer and developmental and hereditary disorders, as well as biologic processes such as cell division, apoptosis, and proliferation. Most of the top 20 ranked genes were validated in other adenocarcinoma and squamous cell lung cancer cells, with validation rates of 80% to 95% and 70% to 75%, respectively. Moreover, the analysis allowed us to identify four genes, ATP11C, IQCB1, TUBD1, and proline-rich coiled-coil 2C (PRRC2C), with a significantly different pattern of alternative splicing in primary non-small cell lung tumors compared with normal lung tissue. In the case of PRRC2C, SRSF1 downregulation led to the skipping of an exon overexpressed in primary lung tumors. Specific siRNA downregulation of the exon-containing variant significantly reduced cell growth. In conclusion, using a novel analytical tool, we have identified new splicing events regulated by the oncogenic splicing factor SRSF1 in lung cancer. PMID:24371231

  15. Expression of Two Novel Alternatively Spliced COL2A1 Isoforms During Chondrocyte Differentiation

    PubMed Central

    McAlinden, Audrey; Johnstone, Brian; Kollar, John; Kazmi, Najam; Hering, Thomas M.

    2008-01-01

    Alternative splicing of the type II procollagen gene (COL2A1) is developmentally-regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 nucleotides of exon 2 by use of an alternative 5’ splice site, resulting in a premature termination codon and possible nonsense-mediated decay of IIC mRNA. Low levels of the IIC isoform were detected by RT-PCR and Southern analysis of COL2A1 cDNA amplified from differentiating rabbit and human MSCs. A second novel transcript, named IID, arises by use of another 5’ alternative splice site in intron 2. The IID isoform contains exon 2 plus 3 nucleotides, resulting in the insertion of an additional amino acid. The IID isoform was co-expressed with the IIA isoform during chondrogenesis, and was approximately one-third as abundant. Deletion of the IIC alternative 5’ splice site from a COL2A1 mini-gene construct resulted in a significant increase in the IIA:IIB ratio. A mutant mini-gene that inhibited production of the IID isoform, however, had differential effects on the production of the IIA and IIB isoforms: this was apparently related to the differentiation status of the cell type used. These data suggest that COL2A1 mRNA abundance and other aspects of chondrocyte differentiation may be regulated by the use of these previously undetermined alternative splice sites. PMID:18023161

  16. RNA Polymerase II Elongation at the Crossroads of Transcription and Alternative Splicing

    PubMed Central

    de la Mata, Manuel; Muñoz, Manuel J.; Alló, Mariano; Fededa, Juan Pablo; Schor, Ignacio E.; Kornblihtt, Alberto R.

    2011-01-01

    The elongation phase of transcription lies at the core of several simultaneous and coupled events leading to alternative splicing regulation. Although underestimated in the past, it is at this phase of the transcription cycle where complexes affecting the transcription machinery itself, chromatin structure, posttranscriptional gene regulation and pre-mRNA processing converge to regulate each other or simply to consolidate higher-order complexes and functions. This paper focuses on the multiple processes that take place during transcription elongation which ultimately regulate the outcome of alternative splicing decisions. PMID:22567350

  17. The Ski2-family helicase Obelus regulates Crumbs alternative splicing and cell polarity

    PubMed Central

    Vichas, Athea; Laurie, Matthew T.

    2015-01-01

    Alternative splicing can have profound consequences for protein activity, but the functions of most alternative splicing regulators are not known. We show that Obelus, a conserved Ski2-family helicase, is required for cell polarity and adherens junction organization in the Drosophila melanogaster embryo. In obelus mutants, epithelial cells display an expanded apical domain, aggregation of adherens junctions at the cell membrane, and microtubule-dependent defects in centrosome positioning. Through whole-genome transcriptome analysis, we found that Obelus is required for the alternative splicing of a small number of transcripts in the early embryo, including the pre-mRNA that encodes the apical polarity protein Crumbs. In obelus mutants, inclusion of an alternative exon results in increased expression of a Crumbs isoform that contains an additional epidermal growth factor–like repeat in the extracellular domain. Overexpression of this alternative Crumbs isoform recapitulates the junctional aggregation and centrosome positioning defects of obelus mutants. These results indicate that regulation of Crumbs alternative splicing by the Obelus helicase modulates epithelial polarity during development. PMID:26644515

  18. The Ski2-family helicase Obelus regulates Crumbs alternative splicing and cell polarity.

    PubMed

    Vichas, Athea; Laurie, Matthew T; Zallen, Jennifer A

    2015-12-01

    Alternative splicing can have profound consequences for protein activity, but the functions of most alternative splicing regulators are not known. We show that Obelus, a conserved Ski2-family helicase, is required for cell polarity and adherens junction organization in the Drosophila melanogaster embryo. In obelus mutants, epithelial cells display an expanded apical domain, aggregation of adherens junctions at the cell membrane, and microtubule-dependent defects in centrosome positioning. Through whole-genome transcriptome analysis, we found that Obelus is required for the alternative splicing of a small number of transcripts in the early embryo, including the pre-mRNA that encodes the apical polarity protein Crumbs. In obelus mutants, inclusion of an alternative exon results in increased expression of a Crumbs isoform that contains an additional epidermal growth factor-like repeat in the extracellular domain. Overexpression of this alternative Crumbs isoform recapitulates the junctional aggregation and centrosome positioning defects of obelus mutants. These results indicate that regulation of Crumbs alternative splicing by the Obelus helicase modulates epithelial polarity during development. PMID:26644515

  19. Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex.

    PubMed

    Zhang, Xiaochang; Chen, Ming Hui; Wu, Xuebing; Kodani, Andrew; Fan, Jean; Doan, Ryan; Ozawa, Manabu; Ma, Jacqueline; Yoshida, Nobuaki; Reiter, Jeremy F; Black, Douglas L; Kharchenko, Peter V; Sharp, Phillip A; Walsh, Christopher A

    2016-08-25

    Alternative splicing is prevalent in the mammalian brain. To interrogate the functional role of alternative splicing in neural development, we analyzed purified neural progenitor cells (NPCs) and neurons from developing cerebral cortices, revealing hundreds of differentially spliced exons that preferentially alter key protein domains-especially in cytoskeletal proteins-and can harbor disease-causing mutations. We show that Ptbp1 and Rbfox proteins antagonistically govern the NPC-to-neuron transition by regulating neuron-specific exons. Whereas Ptbp1 maintains apical progenitors partly through suppressing a poison exon of Flna in NPCs, Rbfox proteins promote neuronal differentiation by switching Ninein from a centrosomal splice form in NPCs to a non-centrosomal isoform in neurons. We further uncover an intronic human mutation within a PTBP1-binding site that disrupts normal skipping of the FLNA poison exon in NPCs and causes a brain-specific malformation. Our study indicates that dynamic control of alternative splicing governs cell fate in cerebral cortical development.

  20. Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex.

    PubMed

    Zhang, Xiaochang; Chen, Ming Hui; Wu, Xuebing; Kodani, Andrew; Fan, Jean; Doan, Ryan; Ozawa, Manabu; Ma, Jacqueline; Yoshida, Nobuaki; Reiter, Jeremy F; Black, Douglas L; Kharchenko, Peter V; Sharp, Phillip A; Walsh, Christopher A

    2016-08-25

    Alternative splicing is prevalent in the mammalian brain. To interrogate the functional role of alternative splicing in neural development, we analyzed purified neural progenitor cells (NPCs) and neurons from developing cerebral cortices, revealing hundreds of differentially spliced exons that preferentially alter key protein domains-especially in cytoskeletal proteins-and can harbor disease-causing mutations. We show that Ptbp1 and Rbfox proteins antagonistically govern the NPC-to-neuron transition by regulating neuron-specific exons. Whereas Ptbp1 maintains apical progenitors partly through suppressing a poison exon of Flna in NPCs, Rbfox proteins promote neuronal differentiation by switching Ninein from a centrosomal splice form in NPCs to a non-centrosomal isoform in neurons. We further uncover an intronic human mutation within a PTBP1-binding site that disrupts normal skipping of the FLNA poison exon in NPCs and causes a brain-specific malformation. Our study indicates that dynamic control of alternative splicing governs cell fate in cerebral cortical development. PMID:27565344

  1. [Alternative Splicing Detection as a Biomarker for Cancer Diagnosis: A Novel Progressive Mechanism of Acute Lymphoblastic Leukemia with Alternative Splicing as a Biomarker Candidate].

    PubMed

    Kitamura, Kouichi; Matsushita, Kazuyuki; Kobayashi, Souhei; Ishige, Takayuki; Semba, Toshihisa; Kimura, Asako; Kazami, Takahiro; Ohyama, Masayuki; Itoga, Sakae; Beppu, Minako; Nishimura, Motoi; Satoh, Mamoru; Nomura, Fumio

    2015-09-01

    Alternative splicing is an important mechanism that links to transcription and contributes to protein diversity. Disturbed alternative splicing is frequently observed in cancers, but its precise mechanism remains largely unknown. FUSE-binding protein (FBP) -interacting repressor (FIR) is a transcriptional repressor of the c-myc gene. Previous studies indicated that a splice variant of FIR, FIRΔexon2, that lacks exon2 in the transcriptional repressor domain, was increased in colorectal cancers, hepatocellular carcinomas, and leukemia cells. Furthermore, FIRΔexon2 activated c-myc transcription by disabling wild-type FIR as a dominant-negative form of FIR. Recently, somatic mutations of the SF3B1 (SAP155) gene, a subunit of the SF3B spliceosome complex, were found in myelodysplastic leukemia. In this study, FIR heterozygous knockout (FIR(+/-)) was established as a dominant-negative model of FIR in the C57BL/6 mouse. FIR(+/-) mice showed an increased c-myc mRNA expression level, particularly in peripheral blood, although FIR(+/-) mice had no apparent pathogenic phenotype. Therefore, an increased c-myc mRNA expression level alone is not enough for leukemogenesis. Nevertheless, FIR(+/-)TP53(-/-) mice generated acute T-cell lymphoblastic leukemia (T-ALL) with increased organ and/or bone marrow invasion. In conclusion, alternative splicing of FIR, generating FIRΔexon2, contributes to not only colorectal carcinogenesis but also leukemogenesis independent of the c-Myc activation pathway. Finally, we will discuss our hypothesis that FIRΔexon2 interferes with FBW7, that FIRΔexon2 inhibits PP1 in the EGFR pathway, and that FIR haploinsufficiency is potentially associated with protein expression through transcriptional and post-transcriptional mechanisms. PMID:26731899

  2. A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype

    PubMed Central

    2014-01-01

    Background Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes. Results We used the RNAseq data to update the existing grape gene prediction with 2,258 new coding genes and 3,336 putative long non-coding RNAs. Several gene structures have been improved and alternative splicing was described for about 30% of the genes. A link between AS and miRNAs was shown in 139 genes where we found that AS affects the miRNA target site. A quantitative analysis of the isoforms indicated that most of the spliced genes have one major isoform and tend to simultaneously co-express a low number of isoforms, typically two, with intron retention being the most frequent alternative splicing event. Conclusions As described in Arabidopsis, also grape displays a marked AS tissue-specificity, while stress conditions produce splicing changes to a minor extent. Surprisingly, some distinctive splicing features were also observed between genotypes. This was further supported by the observation that the panel of Serine/Arginine-rich splicing factors show a few, but very marked differences between genotypes. The finding that a part the splicing machinery can change in closely related organisms can lead to some interesting hypotheses for evolutionary adaptation, that could be particularly relevant in the response to sudden and strong selective pressures. PMID:24739459

  3. The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis

    PubMed Central

    Bielli, Pamela; Busà, Roberta; Di Stasi, Savino M; Munoz, Manuel J; Botti, Flavia; Kornblihtt, Alberto R; Sette, Claudio

    2014-01-01

    Alternative splicing (AS) is tightly coupled to transcription for the majority of human genes. However, how these two processes are linked is not well understood. Here, we unveil a direct role for the transcription factor FBI-1 in the regulation of AS. FBI-1 interacts with the splicing factor SAM68 and reduces its binding to BCL-X mRNA. This, in turn, results in the selection of the proximal 5′ splice site in BCL-X exon 2, thereby favoring the anti-apoptotic BCL-XL variant and counteracting SAM68-mediated apoptosis. Conversely, depletion of FBI-1, or expression of a SAM68 mutant lacking the FBI-1 binding region, restores the ability of SAM68 to induce BCL-XS splicing and apoptosis. FBI-1's role in splicing requires the activity of histone deacetylases, whose pharmacological inhibition recapitulates the effects of FBI-1 knockdown. Our study reveals an unexpected function for FBI-1 in splicing modulation with a direct impact on cell survival. PMID:24514149

  4. The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis.

    PubMed

    Bielli, Pamela; Busà, Roberta; Di Stasi, Savino M; Munoz, Manuel J; Botti, Flavia; Kornblihtt, Alberto R; Sette, Claudio

    2014-04-01

    Alternative splicing (AS) is tightly coupled to transcription for the majority of human genes. However, how these two processes are linked is not well understood. Here, we unveil a direct role for the transcription factor FBI-1 in the regulation of AS. FBI-1 interacts with the splicing factor SAM68 and reduces its binding to BCL-X mRNA. This, in turn, results in the selection of the proximal 5' splice site in BCL-X exon 2, thereby favoring the anti-apoptotic BCL-XL variant and counteracting SAM68-mediated apoptosis. Conversely, depletion of FBI-1, or expression of a SAM68 mutant lacking the FBI-1 binding region, restores the ability of SAM68 to induce BCL-XS splicing and apoptosis. FBI-1's role in splicing requires the activity of histone deacetylases, whose pharmacological inhibition recapitulates the effects of FBI-1 knockdown. Our study reveals an unexpected function for FBI-1 in splicing modulation with a direct impact on cell survival.

  5. Identification of genetic variants associated with alternative splicing using sQTLseekeR

    PubMed Central

    Monlong, Jean; Calvo, Miquel; Ferreira, Pedro G.; Guigó, Roderic

    2014-01-01

    Identification of genetic variants affecting splicing in RNA sequencing population studies is still in its infancy. Splicing phenotype is more complex than gene expression and ought to be treated as a multivariate phenotype to be recapitulated completely. Here we represent the splicing pattern of a gene as the distribution of the relative abundances of a gene’s alternative transcript isoforms. We develop a statistical framework that uses a distance-based approach to compute the variability of splicing ratios across observations, and a non-parametric analogue to multivariate analysis of variance. We implement this approach in the R package sQTLseekeR and use it to analyze RNA-Seq data from the Geuvadis project in 465 individuals. We identify hundreds of single nucleotide polymorphisms (SNPs) as splicing QTLs (sQTLs), including some falling in genome-wide association study SNPs. By developing the appropriate metrics, we show that sQTLseekeR compares favorably with existing methods that rely on univariate approaches, predicting variants that behave as expected from mutations affecting splicing. PMID:25140736

  6. Bipartite functions of the CREB co-activators selectively direct alternative splicing or transcriptional activation.

    PubMed

    Amelio, Antonio L; Caputi, Massimo; Conkright, Michael D

    2009-09-16

    The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1-MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity.

  7. [Perspectives of RNA interference application in the therapy of diseases associated with defects in alternative RNA splicing].

    PubMed

    Wysokiński, Daniel; Błasiak, Janusz

    2012-09-18

    The primary transcript of an eukaryotic gene (pre-mRNA) is composed of coding regions--exons intervened by non-coding introns--which are removed in the RNA splicing process, leading to the formation of mature, intron-free mRNA. Alternative splicing of pre-mRNA is responsible for high complexity of the cellular proteome and expresses effective use of genetic information contained in genomic DNA. Alternative splicing plays important roles in the organism, including apoptosis regulation or development and plasticity of the nervous system. The main role of alternative splicing is differential, dependent on conditions and the cell type, splicing of mRNA, generating diverse transcripts from one gene, and, after the translation, different isoforms of a particular protein. Because of the high complexity of this mechanism, alternative splicing is particularly prone to errors. The perturbations resulting from mutations in the key sequences for splicing regulations are especially harmful. The pathogenesis of numerous diseases results from disturbed alternative RNA splicing, and those include cancers and neurodegenerative disorders. The treatment of these conditions is problematic due to their genetic background and currently RNA interference, which is a common mechanism of eukaryotic gene regulation, is being studied. Initial successes in the attempts of silencing the expression of faulty protein isoforms support the idea of using RNA interference in targeting disease related to disturbances in alternative splicing of RNA.

  8. TCERG1 Regulates Alternative Splicing of the Bcl-x Gene by Modulating the Rate of RNA Polymerase II Transcription

    PubMed Central

    Montes, Marta; Cloutier, Alexandre; Sánchez-Hernández, Noemí; Michelle, Laetitia; Lemieux, Bruno; Blanchette, Marco; Hernández-Munain, Cristina; Chabot, Benoit

    2012-01-01

    Complex functional coupling exists between transcriptional elongation and pre-mRNA alternative splicing. Pausing sites and changes in the rate of transcription by RNA polymerase II (RNAPII) may therefore have fundamental impacts in the regulation of alternative splicing. Here, we show that the elongation and splicing-related factor TCERG1 regulates alternative splicing of the apoptosis gene Bcl-x in a promoter-dependent manner. TCERG1 promotes the splicing of the short isoform of Bcl-x (Bcl-xs) through the SB1 regulatory element located in the first half of exon 2. Consistent with these results, we show that TCERG1 associates with the Bcl-x pre-mRNA. A transcription profile analysis revealed that the RNA sequences required for the effect of TCERG1 on Bcl-x alternative splicing coincide with a putative polymerase pause site. Furthermore, TCERG1 modifies the impact of a slow polymerase on Bcl-x alternative splicing. In support of a role for an elongation mechanism in the transcriptional control of Bcl-x alternative splicing, we found that TCERG1 modifies the amount of pre-mRNAs generated at distal regions of the endogenous Bcl-x. Most importantly, TCERG1 affects the rate of RNAPII transcription of endogenous human Bcl-x. We propose that TCERG1 modulates the elongation rate of RNAPII to relieve pausing, thereby activating the proapoptotic Bcl-xS 5′ splice site. PMID:22158966

  9. Genome-Wide Landscape of Alternative Splicing Events in Brachypodium distachyon

    PubMed Central

    Walters, Braden; Lum, Gengkon; Sablok, Gaurav; Min, Xiang Jia

    2013-01-01

    Recently, Brachypodium distachyon has emerged as a model plant for studying monocot grasses and cereal crops. Using assembled expressed transcript sequences and subsequent mapping to the corresponding genome, we identified 1219 alternative splicing (AS) events spanning across 2021 putatively assembled transcripts generated from 941 genes. Approximately, 6.3% of expressed genes are alternatively spliced in B. distachyon. We observed that a majority of the identified AS events were related to retained introns (55.5%), followed by alternative acceptor sites (16.7%). We also observed a low percentage of exon skipping (5.0%) and alternative donor site events (8.8%). The ‘complex event’ that consists of a combination of two or more basic splicing events accounted for ∼14.0%. Comparative AS transcript analysis revealed 163 and 39 homologous pairs between B. distachyon and Oryza sativa and between B. distachyon and Arabidopsis thaliana, respectively. In all, we found 16 AS transcripts to be conserved in all 3 species. AS events and related putative assembled transcripts annotation can be systematically browsed at Plant Alternative Splicing Database (http://proteomics.ysu.edu/altsplice/plant/). PMID:23297300

  10. Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming

    PubMed Central

    Hirsch, Calley L.; Coban Akdemir, Zeynep; Wang, Li; Jayakumaran, Gowtham; Trcka, Dan; Weiss, Alexander; Hernandez, J. Javier; Pan, Qun; Han, Hong; Xu, Xueping; Xia, Zheng; Salinger, Andrew P.; Wilson, Marenda; Vizeacoumar, Frederick; Datti, Alessandro; Li, Wei; Cooney, Austin J.; Barton, Michelle C.; Blencowe, Benjamin J.

    2015-01-01

    Embryonic stem cells are maintained in a self-renewing and pluripotent state by multiple regulatory pathways. Pluripotent-specific transcriptional networks are sequentially reactivated as somatic cells reprogram to achieve pluripotency. How epigenetic regulators modulate this process and contribute to somatic cell reprogramming is not clear. Here we performed a functional RNAi screen to identify the earliest epigenetic regulators required for reprogramming. We identified components of the SAGA histone acetyltransferase complex, in particular Gcn5, as critical regulators of reprogramming initiation. Furthermore, we showed in mouse pluripotent stem cells that Gcn5 strongly associates with Myc and that, upon initiation of somatic reprogramming, Gcn5 and Myc form a positive feed-forward loop that activates a distinct alternative splicing network and the early acquisition of pluripotency-associated splicing events. These studies expose a Myc–SAGA pathway that drives expression of an essential alternative splicing regulatory network during somatic cell reprogramming. PMID:25877919

  11. Expression and alternative splicing pattern of human telomerase reverse transcriptase in human lung cancer cells.

    PubMed

    Fujiwara, Masachika; Kamma, Hiroshi; Wu, Wenwen; Hamasaki, Makoto; Kaneko, Setsuko; Horiguchi, Hisashi; Matsui-Horiguchi, Miwa; Satoh, Hiroaki

    2004-04-01

    Telomerase activity is generally considered to be necessary for cancer cells to avoid senescence. The expression of human telomerase reverse transcriptase (hTERT) is believed to be a rate-limiting step in telomerase activation. Recently, it has been proposed that the alternative splicing of hTERT is also involved in regulation of telomerase activity. However, the regulatory mechanism of telomerase in cancer cells has not been thoroughly investigated. To clarify it in lung cancer cells, we measured the expression of the hTERT transcript, analyzed its alternative splicing by RT-PCR, and compared it with telomerase activity and telomere length. The expression of the hTERT transcript was positively correlated with telomerase activity in lung cancer cells. Cancer cells with high telomerase activity contained 4 splicing variants of hTERT, and the full-length variant was 31.3-54.2% of the total transcripts. Cells of the TKB-20 cell line, which has extremely low telomerase activity, showed a different splicing pattern of hTERT in addition to low expression. The functional full-length variant was scarcely detected in TKB-20 cells, suggesting that the telomerase activity was repressed by alternative splicing of hTERT. Telomere length was not necessarily correlated with telomerase activity or hTERT expression in lung cancer cells. Cells of the TKB-4 cell line that also showed relatively low telomerase activity (as TKB-20 cells) had long telomeres. In conclusion, hTERT expression is regulated at both the transcriptional and post-transcriptional levels in lung cancer cells, and the alternative splicing of hTERT is involved in the control of telomerase activity.

  12. Novel Alternative Splice Variants of Mouse Cdk5rap2

    PubMed Central

    Kraemer, Nadine; Issa-Jahns, Lina; Neubert, Gerda; Ravindran, Ethiraj; Mani, Shyamala; Ninnemann, Olaf; Kaindl, Angela M.

    2015-01-01

    Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disorder characterized by a pronounced reduction of brain volume and intellectual disability. A current model for the microcephaly phenotype invokes a stem cell proliferation and differentiation defect, which has moved the disease into the spotlight of stem cell biology and neurodevelopmental science. Homozygous mutations of the Cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 are one genetic cause of MCPH. To further characterize the pathomechanism underlying MCPH, we generated a conditional Cdk5rap2 LoxP/hCMV Cre mutant mouse. Further analysis, initiated on account of a lack of a microcephaly phenotype in these mutant mice, revealed the presence of previously unknown splice variants of the Cdk5rap2 gene that are at least in part accountable for the lack of microcephaly in the mice. PMID:26322982

  13. Novel Alternative Splice Variants of Mouse Cdk5rap2.

    PubMed

    Kraemer, Nadine; Issa-Jahns, Lina; Neubert, Gerda; Ravindran, Ethiraj; Mani, Shyamala; Ninnemann, Olaf; Kaindl, Angela M

    2015-01-01

    Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disorder characterized by a pronounced reduction of brain volume and intellectual disability. A current model for the microcephaly phenotype invokes a stem cell proliferation and differentiation defect, which has moved the disease into the spotlight of stem cell biology and neurodevelopmental science. Homozygous mutations of the Cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 are one genetic cause of MCPH. To further characterize the pathomechanism underlying MCPH, we generated a conditional Cdk5rap2 LoxP/hCMV Cre mutant mouse. Further analysis, initiated on account of a lack of a microcephaly phenotype in these mutant mice, revealed the presence of previously unknown splice variants of the Cdk5rap2 gene that are at least in part accountable for the lack of microcephaly in the mice. PMID:26322982

  14. Role of an SNP in Alternative Splicing of Bovine NCF4 and Mastitis Susceptibility.

    PubMed

    Ju, Zhihua; Wang, Changfa; Wang, Xiuge; Yang, Chunhong; Sun, Yan; Jiang, Qiang; Wang, Fei; Li, Mengjiao; Zhong, Jifeng; Huang, Jinming

    2015-01-01

    Neutrophil cytosolic factor 4 (NCF4) is component of the nicotinamide dinucleotide phosphate oxidase complex, a key factor in biochemical pathways and innate immune responses. In this study, splice variants and functional single-nucleotide polymorphism (SNP) of NCF4 were identified to determine the variability and association of the gene with susceptibility to bovine mastitis characterized by inflammation. A novel splice variant, designated as NCF4-TV and characterized by the retention of a 48 bp sequence in intron 9, was detected in the mammary gland tissues of infected cows. The expression of the NCF4-reference main transcript in the mastitic mammary tissues was higher than that in normal tissues. A novel SNP, g.18174 A>G, was also found in the retained 48 bp region of intron 9. To determine whether NCF4-TV could be due to the g.18174 A>G mutation, we constructed two mini-gene expression vectors with the wild-type or mutant NCF4 g.18174 A>G fragment. The vectors were then transiently transfected into 293T cells, and alternative splicing of NCF4 was analyzed by reverse transcription-PCR and sequencing. Mini-gene splicing assay demonstrated that the aberrantly spliced NCF4-TV with 48 bp retained fragment in intron 9 could be due to g.18174 A>G, which was associated with milk somatic count score and increased risk of mastitis infection in cows. NCF4 expression was also regulated by alternative splicing. This study proposes that NCF4 splice variants generated by functional SNP are important risk factors for mastitis susceptibility in dairy cows.

  15. Role of an SNP in Alternative Splicing of Bovine NCF4 and Mastitis Susceptibility.

    PubMed

    Ju, Zhihua; Wang, Changfa; Wang, Xiuge; Yang, Chunhong; Sun, Yan; Jiang, Qiang; Wang, Fei; Li, Mengjiao; Zhong, Jifeng; Huang, Jinming

    2015-01-01

    Neutrophil cytosolic factor 4 (NCF4) is component of the nicotinamide dinucleotide phosphate oxidase complex, a key factor in biochemical pathways and innate immune responses. In this study, splice variants and functional single-nucleotide polymorphism (SNP) of NCF4 were identified to determine the variability and association of the gene with susceptibility to bovine mastitis characterized by inflammation. A novel splice variant, designated as NCF4-TV and characterized by the retention of a 48 bp sequence in intron 9, was detected in the mammary gland tissues of infected cows. The expression of the NCF4-reference main transcript in the mastitic mammary tissues was higher than that in normal tissues. A novel SNP, g.18174 A>G, was also found in the retained 48 bp region of intron 9. To determine whether NCF4-TV could be due to the g.18174 A>G mutation, we constructed two mini-gene expression vectors with the wild-type or mutant NCF4 g.18174 A>G fragment. The vectors were then transiently transfected into 293T cells, and alternative splicing of NCF4 was analyzed by reverse transcription-PCR and sequencing. Mini-gene splicing assay demonstrated that the aberrantly spliced NCF4-TV with 48 bp retained fragment in intron 9 could be due to g.18174 A>G, which was associated with milk somatic count score and increased risk of mastitis infection in cows. NCF4 expression was also regulated by alternative splicing. This study proposes that NCF4 splice variants generated by functional SNP are important risk factors for mastitis susceptibility in dairy cows. PMID:26600390

  16. Role of an SNP in Alternative Splicing of Bovine NCF4 and Mastitis Susceptibility

    PubMed Central

    Wang, Xiuge; Yang, Chunhong; Sun, Yan; Jiang, Qiang; Wang, Fei; Li, Mengjiao; Zhong, Jifeng; Huang, Jinming

    2015-01-01

    Neutrophil cytosolic factor 4 (NCF4) is component of the nicotinamide dinucleotide phosphate oxidase complex, a key factor in biochemical pathways and innate immune responses. In this study, splice variants and functional single-nucleotide polymorphism (SNP) of NCF4 were identified to determine the variability and association of the gene with susceptibility to bovine mastitis characterized by inflammation. A novel splice variant, designated as NCF4-TV and characterized by the retention of a 48 bp sequence in intron 9, was detected in the mammary gland tissues of infected cows. The expression of the NCF4-reference main transcript in the mastitic mammary tissues was higher than that in normal tissues. A novel SNP, g.18174 A>G, was also found in the retained 48 bp region of intron 9. To determine whether NCF4-TV could be due to the g.18174 A>G mutation, we constructed two mini-gene expression vectors with the wild-type or mutant NCF4 g.18174 A>G fragment. The vectors were then transiently transfected into 293T cells, and alternative splicing of NCF4 was analyzed by reverse transcription-PCR and sequencing. Mini-gene splicing assay demonstrated that the aberrantly spliced NCF4-TV with 48 bp retained fragment in intron 9 could be due to g.18174 A>G, which was associated with milk somatic count score and increased risk of mastitis infection in cows. NCF4 expression was also regulated by alternative splicing. This study proposes that NCF4 splice variants generated by functional SNP are important risk factors for mastitis susceptibility in dairy cows. PMID:26600390

  17. Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.

    PubMed

    Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E S; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Lemay, Guy; Bisaillon, Martin

    2016-01-01

    Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. PMID:27598998

  18. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing

    PubMed Central

    Li, Sanshu; Breaker, Ronald R.

    2013-01-01

    Thiamin pyrophosphate (TPP) riboswitches are found in organisms from all three domains of life. Examples in bacteria commonly repress gene expression by terminating transcription or by blocking ribosome binding, whereas most eukaryotic TPP riboswitches are predicted to regulate gene expression by modulating RNA splicing. Given the widespread distribution of eukaryotic TPP riboswitches and the diversity of their locations in precursor messenger RNAs (pre-mRNAs), we sought to examine the mechanism of alternative splicing regulation by a fungal TPP riboswitch from Neurospora crassa, which is mostly located in a large intron separating protein-coding exons. Our data reveal that this riboswitch uses a long-distance (∼530-nt separation) base-pairing interaction to regulate alternative splicing. Specifically, a portion of the TPP-binding aptamer can form a base-paired structure with a conserved sequence element (α) located near a 5′ splice site, which greatly increases use of this 5′ splice site and promotes gene expression. Comparative sequence analyses indicate that many fungal species carry a TPP riboswitch with similar intron architecture, and therefore the homologous genes in these fungi are likely to use the same mechanism. Our findings expand the scope of genetic control mechanisms relying on long-range RNA interactions to include riboswitches. PMID:23376932

  19. Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions

    PubMed Central

    Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E. S.; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.; Lemay, Guy; Bisaillon, Martin

    2016-01-01

    Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. PMID:27598998

  20. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    PubMed

    Zhang, Junyu; Liu, Hongbin; Liu, Zhiyuan; Liao, Yong; Guo, Luo; Wang, Honglian; He, Lin; Zhang, Xiaodong; Xing, Qinghe

    2013-01-01

    Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE) gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser) in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203) containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  1. Simultaneous quantification of alternatively spliced transcripts in a single droplet digital PCR reaction.

    PubMed

    Sun, Bing; Tao, Lian; Zheng, Yun-Ling

    2014-06-01

    Human telomerase reverse transcriptase (hTERT) is an essential component required for telomerase activity and telomere maintenance. Several alternatively spliced forms of hTERT mRNA have been reported in human primary and tumor cells. Currently, however, there is no sensitive and accurate method for the simultaneous quantification of multiple alternatively spliced RNA transcripts, such as in the case of hTERT. Here we show droplet digital PCR (ddPCR) provides sensitive, simultaneous digital quantification in a single reaction of two alternatively spliced single deletion hTERT transcripts (α-/β+ and α+/β-) as well as the opportunity to manually quantify non-deletion (α+/β+) and double deletion (α-/β-) transcripts. Our ddPCR method enables direct comparison among four alternatively spliced mRNAs without the need for internal standards or multiple primer pairs specific for each variant as real-time PCR (qPCR) requires, thus eliminating potential variation due to differences in PCR amplification efficiency.

  2. ALTERNATE PATCHED SPLICE FORMS ARE EXPRESSED IN A TISSUE SPECIFIC MANNER DURING EARLY EMBRYONIC DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: The Hedgehog (Hh) pathway is critical for embryonic patterning of nearly every organ system in the developing fetus and is highly conserved across phylogeny. We have previously characterized three alternate splice forms of the Ptc gene, including a novel Exon 1C isoform in the mouse, but...

  3. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy

    PubMed Central

    Sotillo, Elena; Barrett, David M.; Black, Kathryn L; Bagashev, Asen; Oldridge, Derek; Wu, Glendon; Sussman, Robyn; Lanauze, Claudia; Ruella, Marco; Gazzara, Matthew R.; Martinez, Nicole M.; Harrington, Colleen T.; Chung, Elaine Y.; Perazzelli, Jessica; Hofmann, Ted J.; Maude, Shannon L.; Raman, Pichai; Barrera, Alejandro; Gill, Saar; Lacey, Simon F.; Melenhorst, Jan J.; Allman, David; Jacoby, Elad; Fry, Terry; Mackall, Crystal; Barash, Yoseph; Lynch, Kristen W.; Maris, John M.; Grupp, Stephan A.; Thomas-Tikhonenko, Andrei

    2015-01-01

    The CD19 antigen, expressed on most B-cell acute lymphoblastic leukemias (B-ALL), can be targeted with chimeric antigen receptor–armed T cells (CART-19), but relapses with epitope loss occur in 10% to 20% of pediatric responders. We detected hemizygous deletions spanning the CD19 locus and de novo frameshift and missense mutations in exon 2 of CD19 in some relapse samples. However, we also discovered alternatively spliced CD19 mRNA species, including one lacking exon 2. Pull-down/siRNA experiments identified SRSF3 as a splicing factor involved in exon 2 retention, and its levels were lower in relapsed B-ALL. Using genome editing, we demonstrated that exon 2 skipping bypasses exon 2 mutations in B-ALL cells and allows expression of the N-terminally truncated CD19 variant, which fails to trigger killing by CART-19 but partly rescues defects associated with CD19 loss. Thus, this mechanism of resistance is based on a combination of deleterious mutations and ensuing selection for alternatively spliced RNA isoforms. Significance CART-19 yield 70% response rates in patients with B-ALL, but also produce escape variants. We discovered that the underlying mechanism is the selection for preexisting alternatively spliced CD19 isoforms with the compromised CART-19 epitope. This mechanism suggests a possibility of targeting alternative CD19 ectodomains, which could improve survival of patients with B-cell neoplasms. PMID:26516065

  4. A Subtle Alternative Splicing Event Gives Rise to a Widely Expressed Human RNase k Isoform

    PubMed Central

    Karousis, Evangelos D.; Sideris, Diamantis C.

    2014-01-01

    Subtle alternative splicing leads to the formation of RNA variants lacking or including a small number of nucleotides. To date, the impact of subtle alternative splicing phenomena on protein biosynthesis has been studied in frame-preserving incidents. On the contrary, mRNA isoforms derived from frame-shifting events were poorly studied and generally characterized as non-coding. This work provides evidence for a frame-shifting subtle alternative splicing event which results in the production of a novel protein isoform. We applied a combined molecular approach for the cloning and expression analysis of a human RNase κ transcript (RNase κ-02) which lacks four consecutive bases compared to the previously isolated RNase κ isoform. RNase κ-02 mRNA is expressed in all human cell lines tested end encodes the synthesis of a 134-amino-acid protein by utilizing an alternative initiation codon. The expression of RNase κ-02 in the cytoplasm of human cells was verified by Western blot and immunofluorescence analysis using a specific polyclonal antibody developed on the basis of the amino-acid sequence difference between the two protein isoforms. The results presented here show that subtle changes during mRNA splicing can lead to the expression of significantly altered protein isoforms. PMID:24797913

  5. Radiolabeled semi-quantitative RT-PCR assay for the analysis of alternative splicing of interleukin genes.

    PubMed

    Shakola, Felitsiya; Byrne, Stephen; Javed, Kainaat; Ruggiu, Matteo

    2014-01-01

    Alternative splicing evolved as a very efficient way to generate proteome diversity from a limited number of genes, while at the same time modulating posttranscriptional events of gene expression-such as stability, turnover, subcellular localization, binding properties, and general activity of both mRNAs and proteins. Since the vast majority of human genes undergo alternative splicing, it comes to no surprise that interleukin genes also show extensive alternative splicing. In fact, there is a growing body of evidence indicating that alternative splicing plays a central role in modulating the pleiotropic functions of cytokines, and aberrant expression of alternatively spliced interleukin mRNAs has been linked to disease. However, while several interleukin splice variants have been described, their function is still poorly understood. This is particularly relevant, since alternatively spliced cytokine isoforms can act both as disease biomarkers and as candidate entry points for therapeutic intervention. In this chapter we describe a protocol that uses radiolabeled semi-quantitative RT-PCR to efficiently detect, analyze, and quantify alternative splicing patterns of cytokine genes. PMID:24908320

  6. Radiolabeled semi-quantitative RT-PCR assay for the analysis of alternative splicing of interleukin genes.

    PubMed

    Shakola, Felitsiya; Byrne, Stephen; Javed, Kainaat; Ruggiu, Matteo

    2014-01-01

    Alternative splicing evolved as a very efficient way to generate proteome diversity from a limited number of genes, while at the same time modulating posttranscriptional events of gene expression-such as stability, turnover, subcellular localization, binding properties, and general activity of both mRNAs and proteins. Since the vast majority of human genes undergo alternative splicing, it comes to no surprise that interleukin genes also show extensive alternative splicing. In fact, there is a growing body of evidence indicating that alternative splicing plays a central role in modulating the pleiotropic functions of cytokines, and aberrant expression of alternatively spliced interleukin mRNAs has been linked to disease. However, while several interleukin splice variants have been described, their function is still poorly understood. This is particularly relevant, since alternatively spliced cytokine isoforms can act both as disease biomarkers and as candidate entry points for therapeutic intervention. In this chapter we describe a protocol that uses radiolabeled semi-quantitative RT-PCR to efficiently detect, analyze, and quantify alternative splicing patterns of cytokine genes.

  7. CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways.

    PubMed

    Berchiche, Yamina A; Sakmar, Thomas P

    2016-10-01

    The G protein-coupled receptor (GPCR) C-X-C chemokine receptor 3 (CXCR3) is a potential drug target that mediates signaling involved in cancer metastasis and inflammatory diseases. The CXCR3 primary transcript has three potential alternative splice variants and cell-type specific expression results in receptor variants that are believed to have different functional characteristics. However, the molecular pharmacology of ligand binding to CXCR3 alternative splice variants and their downstream signaling pathways remain poorly explored. To better understand the role of the functional consequences of alternative splicing of CXCR3, we measured signaling in response to four different chemokine ligands (CXCL4, CXCL9, CXCL10, and CXCL11) with agonist activity at CXCR3. Both CXCL10 and CXCL11 activated splice variant CXCR3A. Whereas CXCL10 displayed full agonistic activity for Gαi activation and extracellular signal regulated kinase (ERK) 1/2 phosphorylation and partial agonist activity for β-arrestin recruitment, CXCL9 triggered only modest ERK1/2 phosphorylation. CXCL11 induced CXCR3B-mediated β-arrestin recruitment and little ERK phosphorylation. CXCR3Alt signaling was limited to modest ligand-induced receptor internalization and ERK1/2 phosphorylation in response to chemokines CXCL11, CXCL10, and CXCL9. These results show that CXCR3 splice variants activate different signaling pathways and that CXCR3 variant function is not redundant, suggesting a mechanism for tissue specific biased agonism. Our data show an additional layer of complexity for chemokine receptor signaling that might be exploited to target specific CXCR3 splice variants. PMID:27512119

  8. Exonal elements and factors involved in the depolarization-induced alternative splicing of neurexin 2.

    PubMed

    Rozic, G; Lupowitz, Z; Zisapel, N

    2013-05-01

    The neurexin genes (NRXN1, NRXN2, and NRXN3) encode polymorphic presynaptic proteins that are implicated in synaptic plasticity and memory processing. In rat brain neurons grown in culture, depolarization induces reversible, calcium-dependent, repression of NRXN2α exon 11 (E11) splicing. Using Neuro2a cells as a model, we explored E11 cis elements and trans-acting factors involved in alternative splicing of NRXN2α E11 pre-mRNA under basal and depolarization conditions. E11 mutation studies revealed two motifs, CTGCCTG (enhancer) and GCACCCA (suppressor) regulating NRXN2α E11 alternative splicing. Subsequent E11 RNA affinity pull-down experiments demonstrated heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP L binding to this exon. Under depolarization, the amount of E11-bound hnRNP L (but not of hnRNP K) increased, in parallel to NRXN2α E11 splicing repression. Depletion of hnRNP K or hnRNP L in the Neuro2a cells by specific siRNAs enhanced NRXN2α E11 splicing and ablated the depolarization-induced repression of this exon. In addition, depolarization suppressed whereas hnRNP K depletion enhanced NRXN2α expression. These results indicate a role for hnRNP K in regulation of NRXN2α expression and of hnRNP L in the activity-dependent alternative splicing of neurexins which may potentially govern trans-synaptic signaling required for memory processing.

  9. Global Gene Expression Profiling and Alternative Splicing Events during the Chondrogenic Differentiation of Human Cartilage Endplate-Derived Stem Cells

    PubMed Central

    Shang, Jin; Fan, Xin; Shangguan, Lei; Liu, Huan; Zhou, Yue

    2015-01-01

    Low back pain (LBP) is a very prevalent disease and degenerative disc diseases (DDDs) usually account for the LBP. However, the pathogenesis of DDDs is complicated and difficult to elucidate. Alternative splicing is a sophisticated regulatory process which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. In addition, the cartilage endplate-derived stem cells have been discovered and identified by our research group. In this paper, we continue to investigate gene expression profiling and alternative splicing events during chondrogenic differentiation of cartilage endplate-derived stem cells. We adopted Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) to compare the transcriptional and splicing changes between the control and differentiated samples. RT-PCR and quantitative PCR are used to validate the microarray results. The GO and KEGG pathway analysis was also performed. After bioinformatics analysis of the data, we detected 1953 differentially expressed genes. In terms of alternative splicing, the Splicing Index algorithm was used to select alternatively spliced genes. We detected 4411 alternatively spliced genes. GO and KEGG pathway analysis also revealed several functionally involved biological processes and signaling pathways. To our knowledge, this is the first study to investigate the alternative splicing mechanisms in chondrogenic differentiation of stem cells on a genome-wide scale. PMID:26649308

  10. CIR, a corepressor of CBF1, binds to PAP-1 and effects alternative splicing

    SciTech Connect

    Maita, Hiroshi; Kitaura, Hirotake; Ariga, Hiroyoshi . E-mail: hiro@pharm.hokudai.ac.jp; Iguchi-Ariga, Sanae M.M.

    2005-02-15

    We have reported that PAP-1, a product of a causative gene for autosomal retinitis pigmentosa, plays a role in splicing. In this study, CIR, a protein originally identified as a CBF1-interacting protein and reported to act as a transcriptional corepressor, was identified as a PAP-1 binding protein and its function as a splicing factor was investigated. In addition to a basic lysine and acidic serine-rich (BA) domain and a zinc knuckle-like motif, CIR has an arginine/serine dipeptide repeat (RS) domain in its C terminal region. The RS domain has been reported to be present in the superfamily of SR proteins, which are involved in splicing reactions. We generated CIR mutants with deletions of each BA and RS domain and studied their subcellular localizations and interactions with PAP-1 and other SR proteins, including SC35, SF2/ASF, and U2AF{sup 35}. CIR was found to interact with U2AF{sup 35} through the BA domain, with SC35 and SF2/ASF through the RS domain, and with PAP-1 outside the BA domain in vivo and in vitro. CIR was found to be colocalized with SC35 and PAP-1 in nuclear speckles. Then the effect of CIR on splicing was investigated using the E1a minigene as a reporter in HeLa cells. Ectopic expression of CIR with the E1a minigene changed the ratio of spliced isoforms of E1a that were produced by alternative selection of 5'-splice sites. These results indicate that CIR is a member of the family of SR-related proteins and that CIR plays a role in splicing regulation.

  11. Phosphorylation of the alternative mRNA splicing factor 45 (SPF45) by Clk1 regulates its splice site utilization, cell migration and invasion

    PubMed Central

    Liu, Yuying; Conaway, LaShardai; Rutherford Bethard, Jennifer; Al-Ayoubi, Adnan M.; Thompson Bradley, Amber; Zheng, Hui; Weed, Scott A.; Eblen, Scott T.

    2013-01-01

    Alternative mRNA splicing is a mechanism to regulate protein isoform expression and is regulated by alternative splicing factors. The alternative splicing factor 45 (SPF45) is overexpressed in cancer, although few biological effects of SPF45 are known, and few splicing targets have been identified. We previously showed that Extracellular Regulated Kinase 2 (ERK2) phosphorylation of SPF45 regulates cell proliferation and adhesion to fibronectin. In this work, we show that Cdc2-like kinase 1 (Clk1) phosphorylates SPF45 on eight serine residues. Clk1 expression enhanced, whereas Clk1 inhibition reduced, SPF45-induced exon 6 exclusion from Fas mRNA. Mutational analysis of the Clk1 phosphorylation sites on SPF45 showed both positive and negative regulation of splicing, with a net effect of inhibiting SPF45-induced exon 6 exclusion, correlating with reduced Fas mRNA binding. However, Clk1 enhanced SPF45 protein expression, but not mRNA expression, whereas inhibition of Clk1 increased SPF45 degradation through a proteasome-dependent pathway. Overexpression of SPF45 or a phospho-mimetic mutant, but not a phospho-inhibitory mutant, stimulated ovarian cancer cell migration and invasion, correlating with increased fibronectin expression, ERK activation and enhanced splicing and phosphorylation of full-length cortactin. Our results demonstrate for the first time that SPF45 overexpression enhances cell migration and invasion, dependent on biochemical regulation by Clk1. PMID:23519612

  12. LRRTM3 Regulates Excitatory Synapse Development through Alternative Splicing and Neurexin Binding.

    PubMed

    Um, Ji Won; Choi, Tae-Yong; Kang, Hyeyeon; Cho, Yi Sul; Choii, Gayoung; Uvarov, Pavel; Park, Dongseok; Jeong, Daun; Jeon, Sangmin; Lee, Dongmin; Kim, Hyun; Lee, Seung-Hee; Bae, Yong-Chul; Choi, Se-Young; Airaksinen, Matti S; Ko, Jaewon

    2016-02-01

    The four members of the LRRTM family (LRRTM1-4) are postsynaptic adhesion molecules essential for excitatory synapse development. They have also been implicated in neuropsychiatric diseases. Here, we focus on LRRTM3, showing that two distinct LRRTM3 variants generated by alternative splicing regulate LRRTM3 interaction with PSD-95, but not its excitatory synapse-promoting activity. Overexpression of either LRRTM3 variant increased excitatory synapse density in dentate gyrus (DG) granule neurons, whereas LRRTM3 knockdown decreased it. LRRTM3 also controlled activity-regulated AMPA receptor surface expression in an alternative splicing-dependent manner. Furthermore, Lrrtm3-knockout mice displayed specific alterations in excitatory synapse density, excitatory synaptic transmission and excitability in DG granule neurons but not in CA1 pyramidal neurons. Lastly, LRRTM3 required only specific splice variants of presynaptic neurexins for their synaptogenic activity. Collectively, our data highlight alternative splicing and differential presynaptic ligand utilization in the regulation of LRRTMs, revealing key regulatory mechanisms for excitatory synapse development.

  13. Global variability in gene expression and alternative splicing is modulated by mitochondrial content.

    PubMed

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J

    2015-05-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype.

  14. Reversion to an embryonic alternative splicing program enhances leukemia stem cell self-renewal

    PubMed Central

    Holm, Frida; Hellqvist, Eva; Mason, Cayla N.; Ali, Shawn A.; Delos-Santos, Nathaniel; Barrett, Christian L.; Chun, Hye-Jung; Minden, Mark D.; Moore, Richard A.; Marra, Marco A.; Runza, Valeria; Frazer, Kelly A.; Sadarangani, Anil; Jamieson, Catriona H. M.

    2015-01-01

    Formative research suggests that a human embryonic stem cell-specific alternative splicing gene regulatory network, which is repressed by Muscleblind-like (MBNL) RNA binding proteins, is involved in cell reprogramming. In this study, RNA sequencing, splice isoform-specific quantitative RT-PCR, lentiviral transduction, and in vivo humanized mouse model studies demonstrated that malignant reprogramming of progenitors into self-renewing blast crisis chronic myeloid leukemia stem cells (BC LSCs) was partially driven by decreased MBNL3. Lentiviral knockdown of MBNL3 resulted in reversion to an embryonic alternative splice isoform program typified by overexpression of CD44 transcript variant 3, containing variant exons 8–10, and BC LSC proliferation. Although isoform-specific lentiviral CD44v3 overexpression enhanced chronic phase chronic myeloid leukemia (CML) progenitor replating capacity, lentiviral shRNA knockdown abrogated these effects. Combined treatment with a humanized pan-CD44 monoclonal antibody and a breakpoint cluster region - ABL proto-oncogene 1, nonreceptor tyrosine kinase (BCR-ABL1) antagonist inhibited LSC maintenance in a niche-dependent manner. In summary, MBNL3 down-regulation–related reversion to an embryonic alternative splicing program, typified by CD44v3 overexpression, represents a previously unidentified mechanism governing malignant progenitor reprogramming in malignant microenvironments and provides a pivotal opportunity for selective BC LSC detection and therapeutic elimination. PMID:26621726

  15. Alternative splicing of agrin regulates its binding to heparin alpha-dystroglycan, and the cell surface.

    PubMed Central

    O'Toole, J J; Deyst, K A; Bowe, M A; Nastuk, M A; McKechnie, B A; Fallon, J R

    1996-01-01

    Agrin is a basal lamina molecule that directs key events in postsynaptic differentiation, most notably the aggregation of acetylcholine receptors (AChRs) on the muscle cell surface. Agrin's AChR clustering activity is regulated by alternative mRNA splicing. Agrin splice forms having inserts at two sites (y and z) in the C-terminal region are highly active, but isoforms lacking these inserts are weakly active. The biochemical consequences of this alternative splicing are unknown. Here, the binding of four recombinant agrin isoforms to heparin, to alpha-dystroglycan (a component of an agrin receptor), and to myoblasts was tested. The presence of a four-amino acid insert at the y site is necessary and sufficient to confer heparin binding ability to agrin. Moreover, the binding of agrin to alpha-dystroglycan is inhibited by heparin when this insert is present. Agrin binding to the cell surface showed analogous properties: heparin inhibits the binding of only those agrin isoforms containing this four-amino acid insert. The results show that alternative splicing of agrin regulates its binding to heparin and suggest that agrin's interaction with alpha-dystroglycan may be modulated by cell surface glycosaminoglycans in an isoform-dependent manner. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8693000

  16. Global variability in gene expression and alternative splicing is modulated by mitochondrial content

    PubMed Central

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J.

    2015-01-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype. PMID:25800673

  17. Global variability in gene expression and alternative splicing is modulated by mitochondrial content.

    PubMed

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J

    2015-05-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype. PMID:25800673

  18. Modulation of Bcl-x Alternative Splicing Induces Apoptosis of Human Hepatic Stellate Cells.

    PubMed

    Wu, Lin; Mao, Chengqiong; Ming, Xin

    2016-01-01

    Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic viral hepatitis and, more recently, from fatty liver diseases. Activation and proliferation of hepatic stellate cells (HSCs) represent a key aspect of fibrogenesis and are associated with progressive reduction of HSC apoptosis. Bcl-x, an antiapoptotic member of Bcl-2 gene family, plays a role in apoptosis regulation in mammalian cells. Through alternative splicing, the Bcl-x gene yields two major protein isoforms with opposing functions, antiapoptotic Bcl-xL and proapoptotic Bcl-xS. This study aimed to investigate the role of Bcl-x and its alternate splicing in HSC apoptosis. The results indicated that the expression of Bcl-xL was dramatically higher than Bcl-2 in activated human HSCs. The relative expression of Bcl-xL over Bcl-xS increased gradually when HSCs were activated in cell culture, which was consistent with the increase in apoptosis resistance of activated HSCs. Redirection of Bcl-x splicing by an antisense oligonucleotide from the antiapoptotic isoform to the proapoptotic isoform induced death of HSCs without other apoptosis stimuli. We conclude that Bcl-x plays a role in regulation of HSC apoptosis and modulation of Bcl-x alternative splicing may become a novel molecular therapy for liver fibrosis. PMID:27579319

  19. Reversion to an embryonic alternative splicing program enhances leukemia stem cell self-renewal.

    PubMed

    Holm, Frida; Hellqvist, Eva; Mason, Cayla N; Ali, Shawn A; Delos-Santos, Nathaniel; Barrett, Christian L; Chun, Hye-Jung; Minden, Mark D; Moore, Richard A; Marra, Marco A; Runza, Valeria; Frazer, Kelly A; Sadarangani, Anil; Jamieson, Catriona H M

    2015-12-15

    Formative research suggests that a human embryonic stem cell-specific alternative splicing gene regulatory network, which is repressed by Muscleblind-like (MBNL) RNA binding proteins, is involved in cell reprogramming. In this study, RNA sequencing, splice isoform-specific quantitative RT-PCR, lentiviral transduction, and in vivo humanized mouse model studies demonstrated that malignant reprogramming of progenitors into self-renewing blast crisis chronic myeloid leukemia stem cells (BC LSCs) was partially driven by decreased MBNL3. Lentiviral knockdown of MBNL3 resulted in reversion to an embryonic alternative splice isoform program typified by overexpression of CD44 transcript variant 3, containing variant exons 8-10, and BC LSC proliferation. Although isoform-specific lentiviral CD44v3 overexpression enhanced chronic phase chronic myeloid leukemia (CML) progenitor replating capacity, lentiviral shRNA knockdown abrogated these effects. Combined treatment with a humanized pan-CD44 monoclonal antibody and a breakpoint cluster region - ABL proto-oncogene 1, nonreceptor tyrosine kinase (BCR-ABL1) antagonist inhibited LSC maintenance in a niche-dependent manner. In summary, MBNL3 down-regulation-related reversion to an embryonic alternative splicing program, typified by CD44v3 overexpression, represents a previously unidentified mechanism governing malignant progenitor reprogramming in malignant microenvironments and provides a pivotal opportunity for selective BC LSC detection and therapeutic elimination. PMID:26621726

  20. SplAdder: identification, quantification and testing of alternative splicing events from RNA-Seq data

    PubMed Central

    Kahles, André; Ong, Cheng Soon; Zhong, Yi; Rätsch, Gunnar

    2016-01-01

    Motivation: Understanding the occurrence and regulation of alternative splicing (AS) is a key task towards explaining the regulatory processes that shape the complex transcriptomes of higher eukaryotes. With the advent of high-throughput sequencing of RNA (RNA-Seq), the diversity of AS transcripts could be measured at an unprecedented depth. Although the catalog of known AS events has grown ever since, novel transcripts are commonly observed when working with less well annotated organisms, in the context of disease, or within large populations. Whereas an identification of complete transcripts is technically challenging and computationally expensive, focusing on single splicing events as a proxy for transcriptome characteristics is fruitful and sufficient for a wide range of analyses. Results: We present SplAdder, an alternative splicing toolbox, that takes RNA-Seq alignments and an annotation file as input to (i) augment the annotation based on RNA-Seq evidence, (ii) identify alternative splicing events present in the augmented annotation graph, (iii) quantify and confirm these events based on the RNA-Seq data and (iv) test for significant quantitative differences between samples. Thereby, our main focus lies on performance, accuracy and usability. Availability: Source code and documentation are available for download at http://github.com/ratschlab/spladder. Example data, introductory information and a small tutorial are accessible via http://bioweb.me/spladder. Contacts: andre.kahles@ratschlab.org or gunnar.ratsch@ratschlab.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26873928

  1. Modulation of Bcl-x Alternative Splicing Induces Apoptosis of Human Hepatic Stellate Cells

    PubMed Central

    Wu, Lin; Mao, Chengqiong

    2016-01-01

    Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic viral hepatitis and, more recently, from fatty liver diseases. Activation and proliferation of hepatic stellate cells (HSCs) represent a key aspect of fibrogenesis and are associated with progressive reduction of HSC apoptosis. Bcl-x, an antiapoptotic member of Bcl-2 gene family, plays a role in apoptosis regulation in mammalian cells. Through alternative splicing, the Bcl-x gene yields two major protein isoforms with opposing functions, antiapoptotic Bcl-xL and proapoptotic Bcl-xS. This study aimed to investigate the role of Bcl-x and its alternate splicing in HSC apoptosis. The results indicated that the expression of Bcl-xL was dramatically higher than Bcl-2 in activated human HSCs. The relative expression of Bcl-xL over Bcl-xS increased gradually when HSCs were activated in cell culture, which was consistent with the increase in apoptosis resistance of activated HSCs. Redirection of Bcl-x splicing by an antisense oligonucleotide from the antiapoptotic isoform to the proapoptotic isoform induced death of HSCs without other apoptosis stimuli. We conclude that Bcl-x plays a role in regulation of HSC apoptosis and modulation of Bcl-x alternative splicing may become a novel molecular therapy for liver fibrosis. PMID:27579319

  2. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism.

    PubMed

    Corominas, Roser; Yang, Xinping; Lin, Guan Ning; Kang, Shuli; Shen, Yun; Ghamsari, Lila; Broly, Martin; Rodriguez, Maria; Tam, Stanley; Trigg, Shelly A; Fan, Changyu; Yi, Song; Tasan, Murat; Lemmens, Irma; Kuang, Xingyan; Zhao, Nan; Malhotra, Dheeraj; Michaelson, Jacob J; Vacic, Vladimir; Calderwood, Michael A; Roth, Frederick P; Tavernier, Jan; Horvath, Steve; Salehi-Ashtiani, Kourosh; Korkin, Dmitry; Sebat, Jonathan; Hill, David E; Hao, Tong; Vidal, Marc; Iakoucheva, Lilia M

    2014-04-11

    Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.

  3. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism

    PubMed Central

    Corominas, Roser; Yang, Xinping; Lin, Guan Ning; Kang, Shuli; Shen, Yun; Ghamsari, Lila; Broly, Martin; Rodriguez, Maria; Tam, Stanley; Trigg, Shelly A.; Fan, Changyu; Yi, Song; Tasan, Murat; Lemmens, Irma; Kuang, Xingyan; Zhao, Nan; Malhotra, Dheeraj; Michaelson, Jacob J.; Vacic, Vladimir; Calderwood, Michael A.; Roth, Frederick P.; Tavernier, Jan; Horvath, Steve; Salehi-Ashtiani, Kourosh; Korkin, Dmitry; Sebat, Jonathan; Hill, David E.; Hao, Tong; Vidal, Marc; Iakoucheva, Lilia M.

    2014-01-01

    Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases. PMID:24722188

  4. Identification of new alternative splice events in the TCIRG1 gene in different human tissues

    SciTech Connect

    Smirnova, Anna S.; Morgun, Andrey . E-mail: anemorgun@hotmail.com; Shulzhenko, Natalia; Silva, Ismael D.C.G.; Gerbase-DeLima, Maria

    2005-05-13

    Two transcript variants (TV) of the T cell immune regulator gene 1 (TCIRG1) have already been characterized. TV1 encodes a subunit of the osteoclast vacuolar proton pump and TV2 encodes a T cell inhibitory receptor. Based on the search in dbEST, we validated by RT-PCR six new alternative splice events in TCIRG1 in most of the 28 human tissues studied. In addition, we observed that transcripts using the TV1 transcription start site and two splice forms previously described in a patient with infantile malignant osteopetrosis are also expressed in various tissues of healthy individuals. Studies of these nine splice forms in cytoplasmic RNA of peripheral blood mononuclear cells showed that at least six of them could be efficiently exported from the nucleus. Since various products with nearly ubiquitous tissue distribution are generated from TCIRG1, this gene may be involved in other processes besides immune response and bone resorption.

  5. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment.

    PubMed

    Martínez-Montiel, Nancy; Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia; Martínez-Contreras, Rebeca D

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics. PMID:27610372

  6. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment

    PubMed Central

    Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics. PMID:27610372

  7. Alternative Splicing at the Intersection of Biological Timing, Development, and Stress Responses[OPEN

    PubMed Central

    Staiger, Dorothee; Brown, John W.S.

    2013-01-01

    High-throughput sequencing for transcript profiling in plants has revealed that alternative splicing (AS) affects a much higher proportion of the transcriptome than was previously assumed. AS is involved in most plant processes and is particularly prevalent in plants exposed to environmental stress. The identification of mutations in predicted splicing factors and spliceosomal proteins that affect cell fate, the circadian clock, plant defense, and tolerance/sensitivity to abiotic stress all point to a fundamental role of splicing/AS in plant growth, development, and responses to external cues. Splicing factors affect the AS of multiple downstream target genes, thereby transferring signals to alter gene expression via splicing factor/AS networks. The last two to three years have seen an ever-increasing number of examples of functional AS. At a time when the identification of AS in individual genes and at a global level is exploding, this review aims to bring together such examples to illustrate the extent and importance of AS, which are not always obvious from individual publications. It also aims to ensure that plant scientists are aware that AS is likely to occur in the genes that they study and that dynamic changes in AS and its consequences need to be considered routinely. PMID:24179132

  8. Myocardial alternative RNA splicing and gene expression profiling in early stage hypoplastic left heart syndrome.

    PubMed

    Ricci, Marco; Xu, Yanji; Hammond, Harriet L; Willoughby, David A; Nathanson, Lubov; Rodriguez, Maria M; Vatta, Matteo; Lipshultz, Steven E; Lincoln, Joy

    2012-01-01

    Hypoplastic Left Heart Syndrome (HLHS) is a congenital defect characterized by underdevelopment of the left ventricle and pathological compensation of the right ventricle. If untreated, HLHS is invariably lethal due to the extensive increase in right ventricular workload and eventual failure. Despite the clinical significance, little is known about the molecular pathobiological state of HLHS. Splicing of mRNA transcripts is an important regulatory mechanism of gene expression. Tissue specific alterations of this process have been associated with several cardiac diseases, however, transcriptional signature profiles related to HLHS are unknown. In this study, we performed genome-wide exon array analysis to determine differentially expressed genes and alternatively spliced transcripts in the right ventricle (RV) of six neonates with HLHS, compared to the RV and left ventricle (LV) from non-diseased control subjects. In HLHS, over 180 genes were differentially expressed and 1800 were differentially spliced, leading to changes in a variety of biological processes involving cell metabolism, cytoskeleton, and cell adherence. Additional hierarchical clustering analysis revealed that differential gene expression and mRNA splicing patterns identified in HLHS are unique compared to non-diseased tissue. Our findings suggest that gene expression and mRNA splicing are broadly dysregulated in the RV myocardium of HLHS neonates. In addition, our analysis identified transcriptome profiles representative of molecular biomarkers of HLHS that could be used in the future for diagnostic and prognostic stratification to improve patient outcome.

  9. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Zimmerly, Steven

    2014-06-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5' splice site located 8 nt upstream of the usual 5' GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1-EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5' splice site is shown to be affected by structures in addition to IBS1-EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3' exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression.

  10. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment

    PubMed Central

    Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics.

  11. Organization of early region 1B of human adenovirus type 2: identification of four differentially spliced mRNAs.

    PubMed Central

    Virtanen, A; Pettersson, U

    1985-01-01

    The mRNAs from early region 1B of adenovirus type 2 have been studied by Northern blot, S1 nuclease, and cDNA analysis. Two novel mRNAs, designated 14S and 14.5S, have been observed in addition to the previously identified 9S, 13S, and 22S mRNAs. They are 1.26 and 1.31 kilobases long and differ from the 13S and 22S mRNAs in being composed of three exons instead of two. Their two terminal exons are the same as those present in the 13S mRNA, whereas the middle exon is unique to each of the two novel mRNA species. The structures of the 14S and 14.5S mRNAs allow the prediction of their coding capacities: both mRNA species, like the 22S and 13S mRNAs, contain an uninterrupted translational reading frame encoding a 21,000-molecular-weight (21K) polypeptide. The 14S mRNA can, in addition, encode a 16.5K polypeptide which shares N-terminal and C-terminal sequences with the 55K polypeptide, known to be encoded by the 22S mRNA. The 14.5S mRNA species encodes a hypothetical 9.2K polypeptide which has the same N terminus as the 55K polypeptide but a unique C terminus. The two mRNAs differ in their kinetics of appearance; the 14.5S mRNA is preferentially expressed late after infection in contrast to the 14S mRNA, which is present in approximately equal amounts early and late after infection. Taken together with previously published information the results suggest that early region 1B of adenovirus type 2 encodes five proteins in addition to virion polypeptide IX. These have predicted molecular weights of 55,000, 21,000, 16,500, 9,200, and 8,100. Images PMID:3989911

  12. Transposable element insertions respecify alternative exon splicing in three Drosophila myosin heavy chain mutants.

    PubMed Central

    Davis, M B; Dietz, J; Standiford, D M; Emerson, C P

    1998-01-01

    Insertions of transposable elements into the myosin heavy chain (Mhc) locus disrupt the regulation of alternative pre-mRNA splicing for multi-alternative exons in the Mhc2, Mhc3, and Mhc4 mutants in Drosophila. Sequence and expression analyses show that each inserted element introduces a strong polyadenylation signal that defines novel terminal exons, which are then differentially recognized by the alternative splicing apparatus. Mhc2 and Mhc4 have insertion elements located within intron 7c and exon 9a, respectively, and each expresses a single truncated transcript that contains an aberrant terminal exon defined by the poly(A) signal of the inserted element and the 3' acceptor of the upstream common exon. In Mhc3, a poly(A) signal inserted into Mhc intron 7d defines terminal exons using either the upstream 3' acceptor of common exon 6 or the 7d acceptor, leading to the expression of 4.1- and 1.7-kb transcripts, respectively. Acceptor selection is regulated in Mhc3 transcripts, where the 3' acceptor of common Mhc exon 6 is preferentially selected in larvae, whereas the alternative exon 7d acceptor is favored in adults. These results reflect the adult-specific use of exon 7d and suggest that the normal exon 7 alternative splicing mechanism continues to influence the selection of exon 7d in Mhc3 transcripts. Overall, transposable element-induced disruptions in alternative processing demonstrate a role for the nonconsensus 3' acceptors in Mhc exons 7 and 9 alternative splicing regulation. PMID:9799262

  13. A protocol for visual analysis of alternative splicing in RNA-Seq data using integrated genome browser.

    PubMed

    Gulledge, Alyssa A; Vora, Hiral; Patel, Ketan; Loraine, Ann E

    2014-01-01

    Ultrahigh-throughput sequencing of cDNA (RNA-Seq) is an invaluable resource for investigating alternative splicing in an organism. Alternative splicing is a form of posttranscriptional regulation in which primary RNA transcripts from a single gene can be spliced in multiple ways leading to different RNA and protein products. In plants and other species, it has been shown that many genes involved in circadian regulation are alternatively spliced. As new RNA-Seq data sets become available, these data will lead to new insights into links between regulation RNA splicing and the circadian system. Analyzing RNA-Seq data sets requires software tools that can display RNA-Seq read alignments alongside gene models, enabling assessment of how treatments or developmental stages affect splicing patterns and production of novel variants. The Integrated Genome Browser (IGB) software program is a free and flexible desktop tool that enables discovery and quantification of alternative splicing. In this protocol, we use IGB and a cold-stress RNA-Seq data set to examine alternative splicing of Arabidopsis thaliana LHY, a circadian clock regulator. IGB is freely available from http://www.bioviz.org .

  14. Identification of alternative splice variants in Aspergillus flavus through comparison of multiple tandem MS search algorithms

    PubMed Central

    2011-01-01

    Background Database searching is the most frequently used approach for automated peptide assignment and protein inference of tandem mass spectra. The results, however, depend on the sequences in target databases and on search algorithms. Recently by using an alternative splicing database, we identified more proteins than with the annotated proteins in Aspergillus flavus. In this study, we aimed at finding a greater number of eligible splice variants based on newly available transcript sequences and the latest genome annotation. The improved database was then used to compare four search algorithms: Mascot, OMSSA, X! Tandem, and InsPecT. Results The updated alternative splicing database predicted 15833 putative protein variants, 61% more than the previous results. There was transcript evidence for 50% of the updated genes compared to the previous 35% coverage. Database searches were conducted using the same set of spectral data, search parameters, and protein database but with different algorithms. The false discovery rates of the peptide-spectrum matches were estimated < 2%. The numbers of the total identified proteins varied from 765 to 867 between algorithms. Whereas 42% (1651/3891) of peptide assignments were unanimous, the comparison showed that 51% (568/1114) of the RefSeq proteins and 15% (11/72) of the putative splice variants were inferred by all algorithms. 12 plausible isoforms were discovered by focusing on the consensus peptides which were detected by at least three different algorithms. The analysis found different conserved domains in two putative isoforms of UDP-galactose 4-epimerase. Conclusions We were able to detect dozens of new peptides using the improved alternative splicing database with the recently updated annotation of the A. flavus genome. Unlike the identifications of the peptides and the RefSeq proteins, large variations existed between the putative splice variants identified by different algorithms. 12 candidates of putative isoforms

  15. The neurofibromatosis 2 (NF2) tumor suppressor gene encodes multiple alternatively spliced transcripts.

    PubMed

    Pykett, M J; Murphy, M; Harnish, P R; George, D L

    1994-04-01

    Neurofibromatosis type 2 (NF2) is an autosomal dominantly-inherited disorder predisposing affected individuals to tumors of multiple cell types in the central nervous system, including meningiomas. A candidate tumor suppressor gene for this disorder has recently been cloned; the protein product of this gene has a predicted role in linking integral membrane proteins with the cytoskeleton. Utilizing reverse transcription-polymerase chain reaction (RT-PCR) analyses, we have identified a number of alternatively spliced transcription products encoded by the NF2 gene. These alternative splice variants were detected in RNA isolated from several sources, including primary leptomeningeal tissue and an established line of leptomeningeal cells (LMC). Several of these variants delete previously identified coding regions of this gene. Moreover, two of these splice variants add previously unrecognized exons to the NF2 coding region. These identified splice forms will serve as natural reagents for the functional dissection of the NF2 protein product(s). They also should be considered in studies investigating mutations of this gene in members of NF2 families and in tumor analyses.

  16. Alternative splicing of Drosophila Nmnat functions as a switch to enhance neuroprotection under stress

    PubMed Central

    Ruan, Kai; Zhu, Yi; Li, Chong; Brazill, Jennifer M.; Zhai, R. Grace

    2015-01-01

    Nicotinamide mononucleotide adenylyltransferase (NMNAT) is a conserved enzyme in the NAD synthetic pathway. It has also been identified as an effective and versatile neuroprotective factor. However, it remains unclear how healthy neurons regulate the dual functions of NMNAT and achieve self-protection under stress. Here we show that Drosophila Nmnat (DmNmnat) is alternatively spliced into two mRNA variants, RA and RB, which translate to protein isoforms with divergent neuroprotective capacities against spinocerebellar ataxia 1-induced neurodegeneration. Isoform PA/PC translated from RA is nuclear-localized with minimal neuroprotective ability, and isoform PB/PD translated from RB is cytoplasmic and has robust neuroprotective capacity. Under stress, RB is preferably spliced in neurons to produce the neuroprotective PB/PD isoforms. Our results indicate that alternative splicing functions as a switch that regulates the expression of functionally distinct DmNmnat variants. Neurons respond to stress by driving the splicing switch to produce the neuroprotective variant and therefore achieve self-protection. PMID:26616331

  17. Alternative splicing of Drosophila Nmnat functions as a switch to enhance neuroprotection under stress.

    PubMed

    Ruan, Kai; Zhu, Yi; Li, Chong; Brazill, Jennifer M; Zhai, R Grace

    2015-11-30

    Nicotinamide mononucleotide adenylyltransferase (NMNAT) is a conserved enzyme in the NAD synthetic pathway. It has also been identified as an effective and versatile neuroprotective factor. However, it remains unclear how healthy neurons regulate the dual functions of NMNAT and achieve self-protection under stress. Here we show that Drosophila Nmnat (DmNmnat) is alternatively spliced into two mRNA variants, RA and RB, which translate to protein isoforms with divergent neuroprotective capacities against spinocerebellar ataxia 1-induced neurodegeneration. Isoform PA/PC translated from RA is nuclear-localized with minimal neuroprotective ability, and isoform PB/PD translated from RB is cytoplasmic and has robust neuroprotective capacity. Under stress, RB is preferably spliced in neurons to produce the neuroprotective PB/PD isoforms. Our results indicate that alternative splicing functions as a switch that regulates the expression of functionally distinct DmNmnat variants. Neurons respond to stress by driving the splicing switch to produce the neuroprotective variant and therefore achieve self-protection.

  18. TASR-1 regulates alternative splicing of collagen genes in chondrogenic cells.

    PubMed

    Matsushita, Hiroshi; Blackburn, Michael L; Klineberg, Eric; Zielinska-Kwiatkowska, Anna; Bolander, Mark E; Sarkar, Gobinda; Suva, Larry J; Chansky, Howard A; Yang, Liu

    2007-05-01

    During the differentiation of chondroprogenitors into mature chondrocytes, the alternative splicing of collagen genes switches from longer isoforms to shorter ones. To investigate the underlying mechanisms, we infected mouse ATDC5 chondroprogenitor cells with retrovirus for stable expression of two closely related SR splicing factors. RT-PCR analysis revealed that TASR-1, but not TASR-2, influenced alternative splicing of type II and type XI collagens in ATDC5 cells. The effect of TASR-1 on splicing could be reversed with the addition of insulin. Results from our microarray analysis of ATDC5 cells showed that TASR-1 and TASR-2 differentially affect genes involved in the differentiation of chondrocytes. Of special interest is the finding that TASR-1 could down-regulate expression of type X collagen, a hallmark of hypertrophic chondrocytes. Immunohistostaining demonstrated that TASR-1 protein is more abundantly expressed than TASR-2 in mouse articular chondrocytes, raising the possibility that TASR-1 might be involved in phenotype maintenance of articular chondrocytes. PMID:17367759

  19. Validation of Alternative Transcript Splicing in Chicken Lines that Differ in Genetic Resistance to Marek's Disease.

    PubMed

    Kaya, Muhammet; Preeyanon, Likit; Dodgson, Jerry B; Cheng, Hans H

    2016-10-01

    Utilizing RNA-seq data, 1,574 candidate genes with alternative splicing were previously identified between two chicken lines that differ in Marek's disease (MD) genetic resistance under control and Marek's disease virus infection conditions. After filtering out 1,530 genes with splice variants in the first or last exon, 44 genes were screened for possible exon loss or gain using PCR and gel electrophoresis. Consequently, 7 genes exhibited visually detectable differential expression of splice variants between lines 6 (MD resistant) and 7 (MD susceptible), and the resultant PCR products verified by DNA sequencing. Birds from inbred line 6 have transcripts that preferentially retain an exon compared to line 7 chickens for ITGB2, SGPL1, and COMMD5. Birds from inbred line 7 have alleles that preferentially retain an exon compared to line 6 for MOCS2. CCBL2 exon 1a is absent and ATAD1 exon 2 is truncated by 87 nucleotides in transcripts expressed by line 7 compared to those from line 6. For CHTF18, line 6 transcripts have an indel mutation with 7 additional nucleotides in exon 21 compared to line 7. The current study validates 7 genes with alternatively spliced isomers between the two chicken lines, which helps provide potential underlying mechanisms for the phenotypic differences. PMID:27565867

  20. A secreted form of the human lymphocyte cell surface molecule CD8 arises from alternative splicing

    SciTech Connect

    Giblin, P.; Kavathas, P. ); Ledbetter, J.A. )

    1989-02-01

    The human lymphocyte differentiation antigen CD8 is encoded by a single gene that gives rise to a 33- to 34-kDa glycoprotein expressed on the cell surface as a dimer and in higher molecular mass forms. The authors demonstrate that the mRNA is alternatively spliced so that an exon encoding a transmembrane domain is deleted. This gives rise to a 30-kDa molecule that is secreted and exists primarily as a monomer. mRNA corresponding to both forms is present in peripheral blood lymphocytes, Con A-activated peripheral blood lymphocytes, and three CD8{sup +} T-cell lines, with the membrane form being the major species. However, differences in the ratio of mRNA for membrane CD8 and secreted CD8 exist. In addition, the splicing pattern observed differs from the pattern found for the mouse CD8 gene. This mRNA is also alternatively spliced, but an exon encoding a cytoplasmic region is deleted, giving rise to a cell surface molecule that differs in its cytoplasmic tail from the protein encoded by the longer mRNA. Neither protein is secreted. This is one of the first examples of a different splicing pattern between two homologous mouse and human genes giving rise to very different proteins. This represents one mechanism of generating diversity during speciation.

  1. TASR-1 regulates alternative splicing of collagen genes in chondrogenic cells.

    PubMed

    Matsushita, Hiroshi; Blackburn, Michael L; Klineberg, Eric; Zielinska-Kwiatkowska, Anna; Bolander, Mark E; Sarkar, Gobinda; Suva, Larry J; Chansky, Howard A; Yang, Liu

    2007-05-01

    During the differentiation of chondroprogenitors into mature chondrocytes, the alternative splicing of collagen genes switches from longer isoforms to shorter ones. To investigate the underlying mechanisms, we infected mouse ATDC5 chondroprogenitor cells with retrovirus for stable expression of two closely related SR splicing factors. RT-PCR analysis revealed that TASR-1, but not TASR-2, influenced alternative splicing of type II and type XI collagens in ATDC5 cells. The effect of TASR-1 on splicing could be reversed with the addition of insulin. Results from our microarray analysis of ATDC5 cells showed that TASR-1 and TASR-2 differentially affect genes involved in the differentiation of chondrocytes. Of special interest is the finding that TASR-1 could down-regulate expression of type X collagen, a hallmark of hypertrophic chondrocytes. Immunohistostaining demonstrated that TASR-1 protein is more abundantly expressed than TASR-2 in mouse articular chondrocytes, raising the possibility that TASR-1 might be involved in phenotype maintenance of articular chondrocytes.

  2. Global analysis of CPSF2-mediated alternative splicing: Integration of global iCLIP and transcriptome profiling data.

    PubMed

    Misra, Ashish; Ou, Jianhong; Zhu, Lihua Julie; Green, Michael R

    2015-12-01

    Alternative splicing is a key mechanism for generating proteome diversity, however the mechanisms regulating alternative splicing are poorly understood. Using a genome-wide RNA interference screening strategy, we identified cleavage and polyadenylation specificity factor (CPSF) and symplekin (SYMPK) as cofactors of the well-known splicing regulator RBFOX2. To determine the role of CPSF in alternative splicing on a genome-wide level, we performed paired-end RNA sequencing (RNA-seq) to compare splicing events in control cells and RBFOX2 or CPSF2 knockdown cells. We also performed individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) to identify direct binding targets of RBFOX2 and CPSF2. Here, we describe the experimental design, and the quality control and data analyses that were performed on the dataset. The raw sequencing data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE60392.

  3. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells

    PubMed Central

    Calabretta, Sara; Bielli, Pamela; Passacantilli, Ilaria; Pilozzi, Emanuela; Fendrich, Volker; Capurso, Gabriele; Delle Fave, Gianfranco; Sette, Claudio

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and incurable disease. Poor prognosis is due to multiple reasons, including acquisition of resistance to gemcitabine, the first line chemotherapeutic approach. Thus, there is a strong need for novel therapies, targeting more directly the molecular aberrations of this disease. We found that chronic exposure of PDAC cells to gemcitabine selected a subpopulation of cells that are drug-resistant (DR-PDAC cells). Importantly, alternative splicing of the pyruvate kinase gene (PKM) was differentially modulated in DR-PDAC cells, resulting in promotion of the cancer-related PKM2 isoform, whose high expression also correlated with shorter recurrence free survival in PDAC patients. Switching PKM splicing by antisense oligonucleotides to favour the alternative PKM1 variant rescued sensitivity of DR-PDAC cells to gemcitabine and cisplatin, suggesting that PKM2 expression is required to withstand drug-induced genotoxic stress. Mechanistically, up-regulation of the polypyrimidine-tract binding protein (PTBP1), a key modulator of PKM splicing, correlated with PKM2 expression in DR-PDAC cell lines. PTBP1 was recruited more efficiently to PKM pre-mRNA in DR- than in parental PDAC cells. Accordingly, knockdown of PTBP1 in DR-PDAC cells reduced its recruitment to the PKM pre-mRNA, promoted splicing of the PKM1 variant and abolished drug resistance. Thus, chronic exposure to gemcitabine leads to up-regulation of PTBP1 and modulation of PKM alternative splicing in PDAC cells, conferring resistance to the drug. These findings point to PKM2 and PTBP1 as new potential therapeutic targets to improve response of PDAC to chemotherapy. PMID:26234680

  4. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia☆

    PubMed Central

    Hulse, R.P.; Beazley-Long, N.; Hua, J.; Kennedy, H.; Prager, J.; Bevan, H.; Qiu, Y.; Fernandes, E.S.; Gammons, M.V.; Ballmer-Hofer, K.; Gittenberger de Groot, A.C.; Churchill, A.J.; Harper, S.J.; Brain, S.D.; Bates, D.O.; Donaldson, L.F.

    2014-01-01

    Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event – leading to the preferential expression of VEGF-A165b over VEGF165a – prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. PMID:25151644

  5. Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing.

    PubMed

    Treutlein, Barbara; Gokce, Ozgun; Quake, Stephen R; Südhof, Thomas C

    2014-04-01

    Neurexins are evolutionarily conserved presynaptic cell-adhesion molecules that are essential for normal synapse formation and synaptic transmission. Indirect evidence has indicated that extensive alternative splicing of neurexin mRNAs may produce hundreds if not thousands of neurexin isoforms, but no direct evidence for such diversity has been available. Here we use unbiased long-read sequencing of full-length neurexin (Nrxn)1α, Nrxn1β, Nrxn2β, Nrxn3α, and Nrxn3β mRNAs to systematically assess how many sites of alternative splicing are used in neurexins with a significant frequency, and whether alternative splicing events at these sites are independent of each other. In sequencing more than 25,000 full-length mRNAs, we identified a novel, abundantly used alternatively spliced exon of Nrxn1α and Nrxn3α (referred to as alternatively spliced sequence 6) that encodes a 9-residue insertion in the flexible hinge region between the fifth LNS (laminin-α, neurexin, sex hormone-binding globulin) domain and the third EGF-like sequence. In addition, we observed several larger-scale events of alternative splicing that deleted multiple domains and were much less frequent than the canonical six sites of alternative splicing in neurexins. All of the six canonical events of alternative splicing appear to be independent of each other, suggesting that neurexins may exhibit an even larger isoform diversity than previously envisioned and comprise thousands of variants. Our data are consistent with the notion that α-neurexins represent extracellular protein-interaction scaffolds in which different LNS and EGF domains mediate distinct interactions that affect diverse functions and are independently regulated by independent events of alternative splicing.

  6. Alternative Splice Transcripts for MHC Class I-like MICA Encode Novel NKG2D Ligands with Agonist or Antagonist Functions.

    PubMed

    Gavlovsky, Pierre-Jean; Tonnerre, Pierre; Gérard, Nathalie; Nedellec, Steven; Daman, Andrew W; McFarland, Benjamin J; Charreau, Béatrice

    2016-08-01

    MHC class I chain-related proteins A and B (MICA and MICB) and UL16-binding proteins are ligands of the activating NKG2D receptor involved in cancer and immune surveillance of infection. Structurally, MICA/B proteins contain an α3 domain, whereas UL16-binding proteins do not. We identified novel alternative splice transcripts for MICA encoding five novel MICA isoforms: MICA-A, -B1, -B2, -C, and -D. Alternative splicing associates with MICA*015 and *017 and results from a point deletion (G) in the 5' splice donor site of MICA intron 4 leading to exon 3 and exon 4 skipping and/or deletions. These changes delete the α3 domain in all isoforms, and the α2 domain in the majority of isoforms (A, B1, C, and D). Endothelial and hematopoietic cells contained endogenous alternative splice transcripts and isoforms. MICA-B1, -B2, and -D bound NKG2D by surface plasmon resonance and were expressed at the cell surface. Functionally, MICA-B2 contains two extracellular domains (α1 and α2) and is a novel potent agonist ligand for NKG2D. We found that MICA-D is a new truncated form of MICA with weak affinity for NKG2D despite lacking α2 and α3 domains. MICA-D may functionally impair NKG2D activation by competing with full-length MICA or MICA-B2 for NKG2D engagement. Our study established NKG2D binding for recombinant MICA-B1 but found no function for this isoform. New truncated MICA isoforms exhibit a range of functions that may drive unexpected immune mechanisms and provide new tools for immunotherapy. PMID:27342847

  7. Alternative Splice Transcripts for MHC Class I-like MICA Encode Novel NKG2D Ligands with Agonist or Antagonist Functions.

    PubMed

    Gavlovsky, Pierre-Jean; Tonnerre, Pierre; Gérard, Nathalie; Nedellec, Steven; Daman, Andrew W; McFarland, Benjamin J; Charreau, Béatrice

    2016-08-01

    MHC class I chain-related proteins A and B (MICA and MICB) and UL16-binding proteins are ligands of the activating NKG2D receptor involved in cancer and immune surveillance of infection. Structurally, MICA/B proteins contain an α3 domain, whereas UL16-binding proteins do not. We identified novel alternative splice transcripts for MICA encoding five novel MICA isoforms: MICA-A, -B1, -B2, -C, and -D. Alternative splicing associates with MICA*015 and *017 and results from a point deletion (G) in the 5' splice donor site of MICA intron 4 leading to exon 3 and exon 4 skipping and/or deletions. These changes delete the α3 domain in all isoforms, and the α2 domain in the majority of isoforms (A, B1, C, and D). Endothelial and hematopoietic cells contained endogenous alternative splice transcripts and isoforms. MICA-B1, -B2, and -D bound NKG2D by surface plasmon resonance and were expressed at the cell surface. Functionally, MICA-B2 contains two extracellular domains (α1 and α2) and is a novel potent agonist ligand for NKG2D. We found that MICA-D is a new truncated form of MICA with weak affinity for NKG2D despite lacking α2 and α3 domains. MICA-D may functionally impair NKG2D activation by competing with full-length MICA or MICA-B2 for NKG2D engagement. Our study established NKG2D binding for recombinant MICA-B1 but found no function for this isoform. New truncated MICA isoforms exhibit a range of functions that may drive unexpected immune mechanisms and provide new tools for immunotherapy.

  8. Validation of alternative transcript splicing in chicken lines that differ in genetic resistance to Marek’s disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilizing RNA-seq data, 1,574 candidate genes with alternative splicing were previously identified between two chicken lines that differ in Marek’s disease (MD) genetic resistance under control and Marek’s disease virus infection conditions. After filtering out 1,530 genes with splice variants in th...

  9. MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: the new frontier in diabetes research.

    PubMed

    Juan-Mateu, Jonàs; Villate, Olatz; Eizirik, Décio L

    2016-05-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic β cells are killed by infiltrating immune cells and by cytokines released by these cells. This takes place in the context of a dysregulated dialogue between invading immune cells and target β cells, but the intracellular signals that decide β cell fate remain to be clarified. Alternative splicing (AS) is a complex post-transcriptional regulatory mechanism affecting gene expression. It regulates the inclusion/exclusion of exons into mature mRNAs, allowing individual genes to produce multiple protein isoforms that expand the proteome diversity. Functionally related transcript populations are co-ordinately spliced by master splicing factors, defining regulatory networks that allow cells to rapidly adapt their transcriptome in response to intra and extracellular cues. There is a growing interest in the role of AS in autoimmune diseases, but little is known regarding its role in T1D. In this review, we discuss recent findings suggesting that splicing events occurring in both immune and pancreatic β cells contribute to the pathogenesis of T1D. Splicing switches in T cells and in lymph node stromal cells are involved in the modulation of the immune response against β cells, while β cells exposed to pro-inflammatory cytokines activate complex splicing networks that modulate β cell viability, expression of neoantigens and susceptibility to immune-induced stress. Unveiling the role of AS in β cell functional loss and death will increase our understanding of T1D pathogenesis and may open new avenues for disease prevention and therapy. PMID:26628584

  10. Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model.

    PubMed

    Singh, Natalia N; Singh, Ravindra N

    2011-01-01

    Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene: SMN1 and SMN2. The two SMN genes code for identical proteins; however, SMN2 predominantly generates a shorter transcript due to skipping of exon 7, the last coding exon. Skipping of SMN2 exon 7 leads to production of a truncated SMN protein that is highly unstable. The inability of SMN2 to compensate for the loss of SMN1 results in spinal muscular atrophy (SMA), the second most prevalent genetic cause of infant mortality. Since SMN2 is almost universally present in SMA patients, correction of SMN2 exon 7 splicing holds the promise for cure. Consistently, SMN2 exon 7 splicing has emerged as one of the best studied splicing systems in humans. The vast amount of recent literature provides a clue that SMN2 exon 7 splicing is regulated by an intron definition mechanism, which does not require cross-exon communication as prerequisite for exon inclusion. Our conclusion is based on the prominent role of intronic cis-elements, some of them have emerged as the frontrunners among potential therapeutic targets of SMA. Further, the widely expressed T-cell-restricted intracellular antigen-1 (TIA1), a member of the Q-rich domain containing RNA-binding proteins, has recently been found to regulate SMN exon 7 splicing by binding to intron 7 sequences away from the 5′ ss. These findings make a strong argument for an "intron definition model", according to which regulatory sequences within a downstream intron are capable of enforcing exon inclusion even in the absence of a defined upstream 3′ ss of an alternatively spliced exon.

  11. Cell-specific alternative splicing of Drosophila Dscam2 is crucial for proper neuronal wiring.

    PubMed

    Lah, Grace Ji-Eun; Li, Joshua Shing Shun; Millard, S Sean

    2014-09-17

    How a finite number of genes specify a seemingly infinite number of neuronal connections is a central question in neurobiology. Alternative splicing has been proposed to increase proteome diversity in the brain. Here we show that cell-specific alternative splicing of a cell-surface protein is crucial for neuronal wiring. Down syndrome cell adhesion molecule 2 (Dscam2) is a conserved homophilic binding protein that can induce repulsion between opposing neurons. In the fly visual system, L1 and L2 neurons both require Dscam2 repulsion, but paradoxically, they also physically contact each other. We found that the cell-specific expression of two biochemically distinct alternative isoforms of Dscam2 prevents these cells from repelling each other. Phenotypes were observed in the axon terminals of L1 and L2 when they expressed the incorrect isoform, demonstrating a requirement for distinct isoforms. We conclude that cell-specific alternative splicing is a mechanism for achieving proper connectivity between neurons. PMID:25175881

  12. The complete local genotype–phenotype landscape for the alternative splicing of a human exon

    PubMed Central

    Julien, Philippe; Miñana, Belén; Baeza-Centurion, Pablo; Valcárcel, Juan; Lehner, Ben

    2016-01-01

    The properties of genotype–phenotype landscapes are crucial for understanding evolution but are not characterized for most traits. Here, we present a >95% complete local landscape for a defined molecular function—the alternative splicing of a human exon (FAS/CD95 exon 6, involved in the control of apoptosis). The landscape provides important mechanistic insights, revealing that regulatory information is dispersed throughout nearly every nucleotide in an exon, that the exon is more robust to the effects of mutations than its immediate neighbours in genotype space, and that high mutation sensitivity (evolvability) will drive the rapid divergence of alternative splicing between species unless it is constrained by selection. Moreover, the extensive epistasis in the landscape predicts that exonic regulatory sequences may diverge between species even when exon inclusion levels are functionally important and conserved by selection. PMID:27161764

  13. Activity-dependent alternative splicing increases persistent sodium current and promotes seizure

    PubMed Central

    Lin, Wei-Hsiang; Günay, Cengiz; Marley, Richard; Prinz, Astrid A.; Baines, Richard A.

    2012-01-01

    Activity of voltage-gated Na channels (Nav) is modified by alternative splicing. However, whether altered splicing of human Nav’s contributes to epilepsy remains to be conclusively shown. We show here that altered splicing of the Drosophila Nav (paralytic, DmNav) contributes to seizure-like behaviour in identified seizure-mutants. We focus attention on a pair of mutually-exclusive alternate exons (termed K and L), which form part of the voltage sensor (S4) in domain III of the expressed channel. The presence of exon L results in a large, non-inactivating, persistent INap. Many forms of human epilepsy are associated with an increase in this current. In wildtype (WT) Drosophila larvae ~70-80% of DmNav transcripts contain exon L, the remainder contain exon K. Splicing of DmNav to include exon L is increased to ~100% in both the slamdance and easily-shocked seizure-mutants. This change to splicing is prevented by reducing synaptic activity levels through exposure to the antiepileptic phenytoin or the inhibitory transmitter GABA. Conversely, enhancing synaptic activity in WT, by feeding of picrotoxin, is sufficient to increase INap and promote seizure through increased inclusion of exon L to 100%. We also show that the underlying activity-dependent mechanism requires the presence of Pasilla, an RNA-binding protein. Finally, we use computational modelling to show that increasing INap is sufficient to potentiate membrane excitability consistent with a seizure phenotype. Thus, increased synaptic excitation favors inclusion of exon L which, in turn, further increases neuronal excitability. Thus, at least in Drosophila, this self-reinforcing cycle may promote the incidence of seizure. PMID:22623672

  14. SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA.

    PubMed

    Meshorer, E; Bryk, B; Toiber, D; Cohen, J; Podoly, E; Dori, A; Soreq, H

    2005-11-01

    Long-lasting alternative splicing of neuronal acetylcholinesterase (AChE) pre-mRNA occurs during neuronal development and following stress, altering synaptic properties. To explore the corresponding molecular events, we sought to identify mRNAs encoding for abundant splicing factors in the prefrontal cortex (PFC) following stress. Here we show elevated levels of the splicing factor SC35 in stressed as compared with naïve mice. In cotransfections of COS-1 and HEK293 cells with an AChE minigene allowing 3' splice variations, SC35 facilitated a shift from the primary AChE-S to the stress-induced AChE-R variant, while ASF/SF2 caused the opposite effect. Transfection with chimeric constructs comprising of SC35 and ASF/SF2 RRM/RS domains identified the SC35 RRM as responsible for AChE mRNA's alternative splicing. In poststress PFC neurons, increased SC35 mRNA and protein levels coincided with selective increase in AChE-R mRNA. In the developing mouse embryo, cortical progenitor cells in the ventricular zone displayed transient SC35 elevation concomitant with dominance of AChE-R over AChE-S mRNA. Finally, transgenic mice overexpressing human AChE-R, but not those overexpressing AChE-S, showed significant elevation in neuronal SC35 levels, suggesting a reciprocal reinforcement process. Together, these findings point to an interactive relationship of SC35 with cholinergic signals in the long-lasting consequences of stress on nervous system plasticity and development.

  15. Alternative splice variants of AID are not stoichiometrically present at the protein level in chronic lymphocytic leukemia.

    PubMed

    Rebhandl, Stefan; Huemer, Michael; Zaborsky, Nadja; Gassner, Franz Josef; Catakovic, Kemal; Felder, Thomas Klaus; Greil, Richard; Geisberger, Roland

    2014-07-01

    Activation-induced deaminase (AID) is a DNA-mutating enzyme that mediates class-switch recombination as well as somatic hypermutation of antibody genes in B cells. Due to off-target activity, AID is implicated in lymphoma development by introducing genome-wide DNA damage and initiating chromosomal translocations such as c-myc/IgH. Several alternative splice transcripts of AID have been reported in activated B cells as well as malignant B cells such as chronic lymphocytic leukemia (CLL). As most commercially available antibodies fail to recognize alternative splice variants, their abundance in vivo, and hence their biological significance, has not been determined. In this study, we assessed the protein levels of AID splice isoforms by introducing an AID splice reporter construct into cell lines and primary CLL cells from patients as well as from WT and TCL1(tg) C57BL/6 mice (where TCL1 is T-cell leukemia/lymphoma 1). The splice construct is 5'-fused to a GFP-tag, which is preserved in all splice isoforms and allows detection of translated protein. Summarizing, we show a thorough quantification of alternatively spliced AID transcripts and demonstrate that the corresponding protein abundances, especially those of splice variants AID-ivs3 and AID-ΔE4, are not stoichiometrically equivalent. Our data suggest that enhanced proteasomal degradation of low-abundance proteins might be causative for this discrepancy.

  16. Structural and functional analyses of the sixth site of neurexin alternative splicing.

    PubMed

    Serova, O V; Radionov, N V; Shayahmetova, D M; Deyev, I E; Petrenko, A G

    2015-01-01

    In this study, we found the sixth site of alternative splicing (SS6) of neurexin 1a from the rat brain. This site is located between the fifth LNS and the third EGF-like domains. The insertion in the SS6 site corresponds to the 9-residue peptide VALMKADLQ, which is conserved among animals. We demonstrated that the SS6 insertion regulates tissue-specific expression of neurexin 1α.

  17. Plasma proteomics, the Human Proteome Project, and cancer-associated alternative splice variant proteins.

    PubMed

    Omenn, Gilbert S

    2014-05-01

    This article addresses three inter-related subjects: the development of the Human Plasma Proteome Peptide Atlas, the launch of the Human Proteome Project, and the emergence of alternative splice variant transcripts and proteins as important features of evolution and pathogenesis. The current Plasma Peptide Atlas provides evidence on which peptides have been detected for every protein confidently identified in plasma; there are links to their spectra and their estimated abundance, facilitating the planning of targeted proteomics for biomarker studies. The Human Proteome Project (HPP) combines a chromosome-centric C-HPP with a biology and disease-driven B/D-HPP, upon a foundation of mass spectrometry, antibody, and knowledgebase resource pillars. The HPP aims to identify the approximately 7000 "missing proteins" and to characterize all proteins and their many isoforms. Success will enable the larger research community to utilize newly-available peptides, spectra, informative MS transitions, and databases for targeted analyses of priority proteins for each organ and disease. Among the isoforms of proteins, splice variants have the special feature of greatly enlarging protein diversity without enlarging the genome; evidence is accumulating of striking differential expression of splice variants in cancers. In this era of RNA-sequencing and advanced mass spectrometry, it is no longer sufficient to speak simply of increased or decreased expression of genes or proteins without carefully examining the splice variants in the protein mixture produced from each multi-exon gene. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.

  18. Regulation of Neurexin 1[beta] Tertiary Structure and Ligand Binding through Alternative Splicing

    SciTech Connect

    Shen, Kaiser C.; Kuczynska, Dorota A.; Wu, Irene J.; Murray, Beverly H.; Sheckler, Lauren R.; Rudenko, Gabby

    2008-08-04

    Neurexins and neuroligins play an essential role in synapse function, and their alterations are linked to autistic spectrum disorder. Interactions between neurexins and neuroligins regulate inhibitory and excitatory synaptogenesis in vitro through a splice-insert signaling code. In particular, neurexin 1{beta} carrying an alternative splice insert at site SS{number_sign}4 interacts with neuroligin 2 (found predominantly at inhibitory synapses) but much less so with other neuroligins (those carrying an insert at site B and prevalent at excitatory synapses). The structure of neurexin 1{beta}+SS{number_sign}4 reveals dramatic rearrangements to the 'hypervariable surface', the binding site for neuroligins. The splice insert protrudes as a long helix into space, triggers conversion of loop {beta}10-{beta}11 into a helix rearranging the binding site for neuroligins, and rearranges the Ca{sup 2+}-binding site required for ligand binding, increasing its affinity. Our structures reveal the mechanism by which neurexin 1{beta} isoforms acquire neuroligin splice isoform selectivity.

  19. Complexity of the Alternative Splicing Landscape in Plants[C][W][OPEN

    PubMed Central

    Reddy, Anireddy S.N.; Marquez, Yamile; Kalyna, Maria; Barta, Andrea

    2013-01-01

    Alternative splicing (AS) of precursor mRNAs (pre-mRNAs) from multiexon genes allows organisms to increase their coding potential and regulate gene expression through multiple mechanisms. Recent transcriptome-wide analysis of AS using RNA sequencing has revealed that AS is highly pervasive in plants. Pre-mRNAs from over 60% of intron-containing genes undergo AS to produce a vast repertoire of mRNA isoforms. The functions of most splice variants are unknown. However, emerging evidence indicates that splice variants increase the functional diversity of proteins. Furthermore, AS is coupled to transcript stability and translation through nonsense-mediated decay and microRNA-mediated gene regulation. Widespread changes in AS in response to developmental cues and stresses suggest a role for regulated splicing in plant development and stress responses. Here, we review recent progress in uncovering the extent and complexity of the AS landscape in plants, its regulation, and the roles of AS in gene regulation. The prevalence of AS in plants has raised many new questions that require additional studies. New tools based on recent technological advances are allowing genome-wide analysis of RNA elements in transcripts and of chromatin modifications that regulate AS. Application of these tools in plants will provide significant new insights into AS regulation and crosstalk between AS and other layers of gene regulation. PMID:24179125

  20. Alternative Splicing of Neuronal Differentiation Factor TRF2 Regulated by HNRNPH1/H2.

    PubMed

    Grammatikakis, Ioannis; Zhang, Peisu; Panda, Amaresh C; Kim, Jiyoung; Maudsley, Stuart; Abdelmohsen, Kotb; Yang, Xiaoling; Martindale, Jennifer L; Motiño, Omar; Hutchison, Emmette R; Mattson, Mark P; Gorospe, Myriam

    2016-05-01

    During neuronal differentiation, use of an alternative splice site on the rat telomere repeat-binding factor 2 (TRF2) mRNA generates a short TRF2 protein isoform (TRF2-S) capable of derepressing neuronal genes. However, the RNA-binding proteins (RBPs) controlling this splicing event are unknown. Here, using affinity pull-down analysis, we identified heterogeneous nuclear ribonucleoproteins H1 and H2(HNRNPH) as RBPs specifically capable of interacting with the spliced RNA segment (exon 7) of Trf2 pre-mRNA. HNRNPH proteins prevent the production of the short isoform of Trf2 mRNA, as HNRNPH silencing selectively elevates TRF2-S levels. Accordingly, HNRNPH levels decline while TRF2-S levels increase during neuronal differentiation. In addition, CRISPR/Cas9-mediated deletion of hnRNPH2 selectively accelerates the NGF-triggered differentiation of rat pheochromocytoma cells into neurons. In sum, HNRNPH is a splicing regulator of Trf2 pre-mRNA that prevents the expression of TRF2-S, a factor implicated in neuronal differentiation. PMID:27117401

  1. Modeling Alternative Splicing Variants from RNA-Seq Data with Isoform Graphs

    PubMed Central

    Beretta, Stefano; Vedova, Gianluca Della; Pirola, Yuri; Rizzi, Raffaella

    2014-01-01

    Abstract Next-generation sequencing (NGS) technologies need new methodologies for alternative splicing (AS) analysis. Current computational methods for AS analysis from NGS data are mainly based on aligning short reads against a reference genome, while methods that do not need a reference genome are mostly underdeveloped. In this context, the main developed tools for NGS data focus on de novo transcriptome assembly (Grabherr et al., 2011; Schulz et al., 2012). While these tools are extensively applied for biological investigations and often show intrinsic shortcomings from the obtained results, a theoretical investigation of the inherent computational limits of transcriptome analysis from NGS data, when a reference genome is unknown or highly unreliable, is still missing. On the other hand, we still lack methods for computing the gene structures due to AS events under the above assumptions—a problem that we start to tackle with this article. More precisely, based on the notion of isoform graph (Lacroix et al., 2008), we define a compact representation of gene structures—called splicing graph—and investigate the computational problem of building a splicing graph that is (i) compatible with NGS data and (ii) isomorphic to the isoform graph. We characterize when there is only one representative splicing graph compatible with input data, and we propose an efficient algorithmic approach to compute this graph. PMID:24200390

  2. Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain

    PubMed Central

    Dembowski, Jill A.; An, Ping; Scoulos-Hanson, Maritsa; Yeo, Gene; Han, Joonhee; Fu, Xiang-Dong; Grabowski, Paula J.

    2012-01-01

    Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a) of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5′ splice site and negative regulation by several splicing factors, including SC35 (SRSF2) and ASF/SF2 (SRSF1), drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide. PMID:23008758

  3. Insulin receptor alternative splicing is regulated by insulin signaling and modulates beta cell survival

    PubMed Central

    Malakar, Pushkar; Chartarifsky, Lital; Hija, Ayat; Leibowitz, Gil; Glaser, Benjamin; Dor, Yuval; Karni, Rotem

    2016-01-01

    Type 2 Diabetes (T2DM) affects more than 300 million people worldwide. One of the hallmarks of T2DM is peripheral insulin resistance, in part due to unproductive insulin signaling through the insulin receptor. The insulin receptor (INSR) exists as two isoforms, INSR-A and INSR-B, which results from skipping or inclusion of exon 11 respectively. What determines the relative abundance of the different insulin receptor splice variants is unknown. Moreover, it is not yet clear what the physiological roles of each of the isoforms are in normal and diseased beta cells. In this study, we show that insulin induces INSR exon 11 inclusion in pancreatic beta cells in both human and mouse. This occurs through activation of the Ras-MAPK/ERK signaling pathway and up-regulation of the splicing factor SRSF1. Induction of exon 11 skipping by a splice-site competitive antisense oligonucleotide inhibited the MAPK-ERK signaling pathway downstream of the insulin receptor, sensitizing the pancreatic β-cell line MIN6 to stress-induced apoptosis and lipotoxicity. These results assign to insulin a regulatory role in INSR alternative splicing through the Ras-MAPK/ERK signaling pathway. We suggest that in beta cells, INSR-B has a protective role, while INSR-A expression sensitizes beta cells to programmed cell death. PMID:27526875

  4. HIV-1 Vpr N-terminal tagging affects alternative splicing of the viral genome

    PubMed Central

    Baeyens, Ann; Naessens, Evelien; Van Nuffel, Anouk; Weening, Karin E.; Reilly, Anne-Marie; Claeys, Eva; Trypsteen, Wim; Vandekerckhove, Linos; Eyckerman, Sven; Gevaert, Kris; Verhasselt, Bruno

    2016-01-01

    To facilitate studies on Vpr function in replicating HIV-1, we aimed to tag the protein in an infectious virus. First we showed that N-, but not C-terminal HA/FLAG tagging of Vpr protein preserves Vpr cytopathicity. Cloning the tags into proviral DNA however ablated viral production and replication. By construction of additional viral variants we could show this defect was not protein- but RNA-dependent and sequence specific, and characterized by oversplicing of the genomic RNA. Simulation of genomic RNA folding suggested that introduction of the tag sequence induced an alternative folding structure in a region enriched in splice sites and splicing regulatory sequences. In silico predictions identified the HA/His6-Vpr tagging in HIV-1 to affect mRNA folding less than HA/FLAG-Vpr tagging. In vitro infectivity and mRNA splice pattern improved but did not reach wild-type values. Thus, sequence-specific insertions may interfere with mRNA splicing, possibly due to altered RNA folding. Our results point to the complexity of viral RNA genome sequence interactions. This should be taken into consideration when designing viral manipulation strategies, for both research as for biological interventions. PMID:27721439

  5. ELAVL1 regulates alternative splicing of eIF4E transporter to promote postnatal angiogenesis

    PubMed Central

    Chang, Sung-Hee; Elemento, Olivier; Zhang, Jiasheng; Zhuang, Zhen W.; Simons, Michael; Hla, Timothy

    2014-01-01

    Posttranscriptional RNA regulation is important in determining the plasticity of cellular phenotypes. However, mechanisms of how RNA binding proteins (RBPs) influence cellular behavior are poorly understood. We show here that the RBP embryonic lethal abnormal vision like 1 (ELAVL1, also know as HuR) regulates the alternative splicing of eukaryotic translation initiation factor 4E nuclear import factor 1 (Eif4enif1), which encodes an eukaryotic translation initiation factor 4E transporter (4E-T) protein and suppresses the expression of capped mRNAs. In the absence of ELAVL1, skipping of exon 11 of Eif4enif1 forms the stable, short isoform, 4E-Ts. This alternative splicing event results in the formation of RNA processing bodies (PBs), enhanced turnover of angiogenic mRNAs, and suppressed sprouting behavior of vascular endothelial cells. Further, endothelial-specific Elavl1 knockout mice exhibited reduced revascularization after hind limb ischemia and tumor angiogenesis in oncogene-induced mammary cancer, resulting in attenuated blood flow and tumor growth, respectively. ELAVL1-regulated alternative splicing of Eif4enif1 leading to enhanced formation of PB and mRNA turnover constitutes a novel posttranscriptional mechanism critical for pathological angiogenesis. PMID:25422430

  6. ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing

    PubMed Central

    Martelli, Pier L.; D’Antonio, Mattia; Bonizzoni, Paola; Castrignanò, Tiziana; D’Erchia, Anna M.; D’Onorio De Meo, Paolo; Fariselli, Piero; Finelli, Michele; Licciulli, Flavio; Mangiulli, Marina; Mignone, Flavio; Pavesi, Giulio; Picardi, Ernesto; Rizzi, Raffaella; Rossi, Ivan; Valletti, Alessio; Zauli, Andrea; Zambelli, Federico; Casadio, Rita; Pesole, Graziano

    2011-01-01

    Alternative splicing is emerging as a major mechanism for the expansion of the transcriptome and proteome diversity, particularly in human and other vertebrates. However, the proportion of alternative transcripts and proteins actually endowed with functional activity is currently highly debated. We present here a new release of ASPicDB which now provides a unique annotation resource of human protein variants generated by alternative splicing. A total of 256 939 protein variants from 17 191 multi-exon genes have been extensively annotated through state of the art machine learning tools providing information of the protein type (globular and transmembrane), localization, presence of PFAM domains, signal peptides, GPI-anchor propeptides, transmembrane and coiled-coil segments. Furthermore, full-length variants can be now specifically selected based on the annotation of CAGE-tags and polyA signal and/or polyA sites, marking transcription initiation and termination sites, respectively. The retrieval can be carried out at gene, transcript, exon, protein or splice site level allowing the selection of data sets fulfilling one or more features settled by the user. The retrieval interface also enables the selection of protein variants showing specific differences in the annotated features. ASPicDB is available at http://www.caspur.it/ASPicDB/. PMID:21051348

  7. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake.

    PubMed

    Zhang, Zhaiyi; Shen, Manli; Gresch, Paul J; Ghamari-Langroudi, Masoud; Rabchevsky, Alexander G; Emeson, Ronald B; Stamm, Stefan

    2016-01-01

    The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome. PMID:27406820

  8. Adaptive thermal control of stem gravitropism through alternative RNA splicing in Arabidopsis.

    PubMed

    Ryu, Jae Yong; Kim, Joo-Young; Park, Chung-Mo

    2015-01-01

    Gravitropism is an important growth movement in response to gravity in virtually all higher plants: the roots showing positive gravitropism and the shoots showing negative gravitropism. The gravitropic orientation of plant organs is also influenced by environmental factors, such as light and temperature. It is known that a zinc finger (ZF)-containing transcription factor SHOOT GRAVITROPISM 5/INDETERMINATE DOMAIN 15 (SGR5/IDD15) mediates the early events of gravitropic responses occurring in inflorescence stems. We have recently found that SGR5 gene undergoes alternative splicing to produce 2 protein variants, the full-size SGR5α transcription factor and the truncated SGR5β form lacking functional ZF motifs. The SGR5β form inhibits SGR5α function possibly by forming nonfunctional heterodimers that are excluded from DNA binding. Notably, SGR5 alternative splicing is accelerated at high temperatures, resulting in a high-level accumulation of SGR5β proteins. Accordingly, transgenic plants overexpressing SGR5β exhibit a reduction in the negative gravitropism of inflorescence stems, as observed in the SGR5-defective mutant. It is proposed that the thermos-responsive alternative splicing of SGR5 gene provides an adaptation strategy by which plants protect the shoots from aerial heat frequently occurring in natural habitats.

  9. Adaptive thermal control of stem gravitropism through alternative RNA splicing in Arabidopsis

    PubMed Central

    Ryu, Jae Yong; Kim, Joo-Young; Park, Chung-Mo

    2015-01-01

    Gravitropism is an important growth movement in response to gravity in virtually all higher plants: the roots showing positive gravitropism and the shoots showing negative gravitropism. The gravitropic orientation of plant organs is also influenced by environmental factors, such as light and temperature. It is known that a zinc finger (ZF)-containing transcription factor SHOOT GRAVITROPISM 5/INDETERMINATE DOMAIN 15 (SGR5/IDD15) mediates the early events of gravitropic responses occurring in inflorescence stems. We have recently found that SGR5 gene undergoes alternative splicing to produce 2 protein variants, the full-size SGR5α transcription factor and the truncated SGR5β form lacking functional ZF motifs. The SGR5β form inhibits SGR5α function possibly by forming nonfunctional heterodimers that are excluded from DNA binding. Notably, SGR5 alternative splicing is accelerated at high temperatures, resulting in a high-level accumulation of SGR5β proteins. Accordingly, transgenic plants overexpressing SGR5β exhibit a reduction in the negative gravitropism of inflorescence stems, as observed in the SGR5-defective mutant. It is proposed that the thermos-responsive alternative splicing of SGR5 gene provides an adaptation strategy by which plants protect the shoots from aerial heat frequently occurring in natural habitats. PMID:26452406

  10. Alternative Splicing in Adhesion- and Motility-Related Genes in Breast Cancer

    PubMed Central

    Aversa, Rosanna; Sorrentino, Anna; Esposito, Roberta; Ambrosio, Maria Rosaria; Amato, Angela; Zambelli, Alberto; Ciccodicola, Alfredo; D’Apice, Luciana; Costa, Valerio

    2016-01-01

    Breast cancer is the most common tumor and the second leading cause of cancer death among woman, mainly caused by the metastatic spread. Tumor invasiveness is due to an altered expression of adhesion molecules. Among them, semaphorins are of peculiar interest. Cancer cells can manipulate alternative splicing patterns to modulate the expression of adhesion- and motility-related molecules, also at the isoform level. In this study, combining RNA-Sequencing on MCF-7 to targeted experimental validations—in human breast cell lines and breast tumor biopsies—we identified 12 new alternative splicing transcripts in genes encoding adhesion- and motility-related molecules, including semaphorins, their receptors and co-receptors. Among them, a new SEMA3F transcript is expressed in all breast cell lines and breast cancer biopsies, and is translated into a new semaphorin 3F isoform. In silico analysis predicted that most of the new putative proteins lack functional domains, potentially missing some functions and acquiring new ones. Our findings better describe the extent of alternative splicing in breast cancer and highlight the need to further investigate adhesion- and motility-related molecules to gain insights into breast cancer progression. PMID:26784191

  11. The role played by alternative splicing in antigenic variability in human endo-parasites

    PubMed Central

    2014-01-01

    Endo-parasites that affect humans include Plasmodium, the causative agent of malaria, which remains one of the leading causes of death in human beings. Despite decades of research, vaccines to this and other endo-parasites remain elusive. This is in part due to the hyper-variability of the parasites surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host’s immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-parasitic infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as parasitic infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of parasite surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the parasitic worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-parasites. PMID:24472559

  12. Adaptive thermal control of stem gravitropism through alternative RNA splicing in Arabidopsis.

    PubMed

    Ryu, Jae Yong; Kim, Joo-Young; Park, Chung-Mo

    2015-01-01

    Gravitropism is an important growth movement in response to gravity in virtually all higher plants: the roots showing positive gravitropism and the shoots showing negative gravitropism. The gravitropic orientation of plant organs is also influenced by environmental factors, such as light and temperature. It is known that a zinc finger (ZF)-containing transcription factor SHOOT GRAVITROPISM 5/INDETERMINATE DOMAIN 15 (SGR5/IDD15) mediates the early events of gravitropic responses occurring in inflorescence stems. We have recently found that SGR5 gene undergoes alternative splicing to produce 2 protein variants, the full-size SGR5α transcription factor and the truncated SGR5β form lacking functional ZF motifs. The SGR5β form inhibits SGR5α function possibly by forming nonfunctional heterodimers that are excluded from DNA binding. Notably, SGR5 alternative splicing is accelerated at high temperatures, resulting in a high-level accumulation of SGR5β proteins. Accordingly, transgenic plants overexpressing SGR5β exhibit a reduction in the negative gravitropism of inflorescence stems, as observed in the SGR5-defective mutant. It is proposed that the thermos-responsive alternative splicing of SGR5 gene provides an adaptation strategy by which plants protect the shoots from aerial heat frequently occurring in natural habitats. PMID:26452406

  13. Alternatively spliced variants of the cell adhesion molecule CD44 and tumour progression in colorectal cancer.

    PubMed Central

    Gotley, D. C.; Fawcett, J.; Walsh, M. D.; Reeder, J. A.; Simmons, D. L.; Antalis, T. M.

    1996-01-01

    Increased expression of alternatively spliced variants of the CD44 family of cell adhesion molecules has been associated with tumour metastasis. In the present study, expression of alternatively spliced variants of CD44 and their cellular distribution have been investigated in human colonic tumours and in the corresponding normal mucosa, in addition to benign adenomatous polyps. The expression of CD44 alternatively spliced variants has been correlated with tumour progression according to Dukes' histological stage. CD44 variant expression was determined by immunohistochemisty using monoclonal antibodies directed against specific CD44 variant domains together with RT-PCR analysis of CD44 variant mRNA expression in the same tissue specimens. We demonstrate that as well as being expressed in colonic tumour cells, the full range of CD44 variants, CD44v2-v10, are widely expressed in normal colonic crypt epithelium, predominantly in the crypt base. CD44v6, the epitope which is most commonly associated with tumour progression and metastasis, was not only expressed by many benign colonic tumours, but was expressed as frequently in normal basal crypt epithelium as in malignant colonic tumour cells, and surprisingly, was even absent from some metastatic colorectal tumours. Expression of none of the CD44 variant epitopes was found to be positively correlated with tumour progression or with colorectal tumour metastasis to the liver, results which are inconsistent with a role for CD44 variants as indicators of colonic cancer progression. Images Figure 2 Figure 3 Figure 5 Figure 6 PMID:8695347

  14. HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism

    PubMed Central

    Yu, Chi-Yi; Theusch, Elizabeth; Lo, Kathleen; Mangravite, Lara M.; Naidoo, Devesh; Kutilova, Mariya; Medina, Marisa W.

    2014-01-01

    3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGCR) encodes the rate-limiting enzyme in the cholesterol biosynthesis pathway and is inhibited by statins, a class of cholesterol-lowering drugs. Expression of an alternatively spliced HMGCR transcript lacking exon 13, HMGCR13(−), has been implicated in the variation of plasma LDL-cholesterol (LDL-C) and is the single most informative molecular marker of LDL-C response to statins. Given the physiological importance of this transcript, our goal was to identify molecules that regulate HMGCR alternative splicing. We recently reported gene expression changes in 480 lymphoblastoid cell lines (LCLs) after in vitro simvastatin treatment, and identified a number of statin-responsive genes involved in mRNA splicing. Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) was chosen for follow-up since rs3846662, an HMGCR SNP that regulates exon 13 skipping, was predicted to alter an HNRNPA1 binding motif. Here, we not only demonstrate that rs3846662 modulates HNRNPA1 binding, but also that sterol depletion of human hepatoma cell lines reduced HNRNPA1 mRNA levels, an effect that was reversed with sterol add-back. Overexpression of HNRNPA1 increased the ratio of HMGCR13(−) to total HMGCR transcripts by both directly increasing exon 13 skipping in an allele-related manner and specifically stabilizing the HMGCR13(−) transcript. Importantly, HNRNPA1 overexpression also diminished HMGCR enzyme activity, enhanced LDL-C uptake and increased cellular apolipoprotein B (APOB). rs1920045, an SNP associated with HNRNPA1 exon 8 alternative splicing, was also associated with smaller statin-induced reduction in total cholesterol from two independent clinical trials. These results suggest that HNRNPA1 plays a role in the variation of cardiovascular disease risk and statin response. PMID:24001602

  15. FOX-2 PROTEIN REGULATES THE ALTERNATE SPLICING OF SCLERODERMA -ASSOCIATED LYSYL HYDROXYLASE 2 mRNA

    PubMed Central

    Seth, Puneet; Yeowell, Heather N.

    2010-01-01

    Objective Scleroderma is a complex connective tissue disorder characterized by hardening and thickening of skin. One hallmark of scleroderma is excessive accumulation of collagen accompanied by increased levels of pyridinoline collagen cross-links derived from hydroxylysine residues in the collagen telopeptide domains. Lysyl hydroxylase 2 (LH2), an important alternately-spliced enzyme in collagen biosynthesis, acts as a collagen telopeptide hydroxylase. Changes in the pattern of LH2 alternative splicing, favoring increased inclusion of the alternatively-spliced LH2 exon 13A thereby increasing levels of the long transcript of LH2 [LH2(long)], are linked to scleroderma pathology. In this study we have examined the role played by RNA binding protein Fox-2 in regulating exon 13A inclusion that leads to the generation of scleroderma-associated LH2(long) mRNA. Methods and Results We report that over-expression of Fox-2 enhances inclusion of exon 13A and increases the generation of LH2(long) mRNA, whereas knockdown of Fox-2 decreases the LH2(long) transcripts. Mutational analysis of an LH2 minigene demonstrated that two of the four Fox binding motifs flanking LH2 exon 13A are required for its inclusion. In early passage fibroblasts derived from patients with systemic scleroderma, the knockdown of Fox-2 protein significantly decreased the endogenous levels of LH2(long) mRNA. Conclusions Fox-2 appears to play an integral role in the regulation of LH2 splicing. Knockdown of Fox-2 and other methods to decrease the levels of fibrosis-associated LH2(long) mRNA in primary scleroderma cells may suggest a novel approach to strategies directed against scleroderma. PMID:20131247

  16. [Apoptotic endonuclease EndoG induces alternative splicing of telomerase catalytic subunit hTERT and death of tumor cells].

    PubMed

    Zhdanov, D D; Vasina, D A; Orlova, V S; Gotovtseva, V Y; Bibikova, M V; Pokrovsky, V S; Pokrovskaya, M V; Aleksandrova, S S; Sokolov, N N

    2016-03-01

    Telomerase activity is known to be regulated by alternative splicing of its catalytic subunit hTERT (human Telomerase Reverse Transcriptase) mRNA. Induction of non-active spliced hTERT leads to inhibition of telomerase activity. However, very little is known about the mechanism of hTERT mRNA alternative splicing. The aim of this study was to determine the role of apoptotic endonuclease EndoG in alternative splicing of hTERT and telomerase activity. Strong correlation was found between expression of EndoG and hTERT splice-variants in 12 colon cancer cell lines. Overexpression of EndoG in СаСо-2 cells downregulated the expression of active full-length hTERT variant and upregulated non-active spliced variant. Reduction of full-length hTERT caused downregulation of telomerase activity, dramatically shortening of telomeres length during cell divisions, converting cells to the replicative senescence state, activation of apoptosis and finally cell death. These data indicated the participation of EndoG in alternative splicing of mRNA of telomerase catalytic subunit, regulation of telomerase activity and cell fate. PMID:27420614

  17. Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer

    PubMed Central

    Meseure, Didier; Vacher, Sophie; Lallemand, François; Alsibai, Kinan Drak; Hatem, Rana; Chemlali, Walid; Nicolas, Andre; De Koning, Leanne; Pasmant, Eric; Callens, Celine; Lidereau, Rosette; Morillon, Antonin; Bieche, Ivan

    2016-01-01

    Background: Epigenetic deregulation is considered as a new hallmark of cancer. The long non-coding RNA MALAT1 has been implicated in several cancers; however, its role in breast cancer is still little known. Methods: We used RT–PCR, in situ hybridisation, and RPPA methods to quantify (i) the full-length (FL) and an alternatively spliced variant (Δsv) of MALAT1, and (ii) a panel of transcripts and proteins involved in MALAT1 pathways, in a large series of breast tumours from patients with known clinical/pathological status and long-term outcome. Results: MALAT1 was overexpressed in 14% (63/446) of the breast tumours. MALAT1-overexpressed tumour epithelial cells showed marked diffuse nuclear signals and numerous huge nuclear speckles. Screening of the dbEST database led to the identification of Δsv-MALAT1, a major alternatively spliced MALAT1 transcript, with a very different expression pattern compared with FL-MALAT1. This alternative Δsv-MALAT1 transcript was mainly underexpressed (18.8%) in our breast tumour series. Multivariate analysis showed that alternative Δsv-MALAT1 transcript is an independent prognostic factor. Δsv-MALAT1 expression was associated with alterations of the pre-mRNAs alternative splicing machinery, and of the Drosha-DGCR8 complex required for non-coding RNA biogenesis. Alternative Δsv-MALAT1 transcript expression was associated to YAP protein status and with an activation of the PI3K-AKT pathway. Conclusions: Our results reveal a complex expression pattern of various MALAT1 transcript variants in breast tumours, and suggest that this pattern of expressions should be taken into account to evaluate MALAT1 as predictive biomarker and therapeutic target. PMID:27172249

  18. Alternative splicing of HLA-DQB transcripts and secretion of HLA-DQ beta-chain proteins: allelic polymorphism in splicing and polyadenylylation sites.

    PubMed Central

    Briata, P; Radka, S F; Sartoris, S; Lee, J S

    1989-01-01

    HLA class II antigens are highly polymorphic cell-surface proteins involved in initiation and regulation of the immune response. Allelic sequence variation primarily affects the structure of the first external domains of alpha and beta component chains. Here we provide evidence for other types of allelic polymorphism for the genes encoding these chains. Sequences of two cDNA clones corresponding to HLA-DQB mRNAs from an HLA-homozygous cell line exhibit both alternative splicing and read-through of polyadenylylation. Furthermore, alternative splicing that deletes the transmembrane exon is associated with only a subset of HLA-DQB alleles, while the polyadenylylation-site read-through is found in a larger subset. This suggest that polymorphic cis-acting elements within the HLA-DQB gene control both processing steps. Proteins, presumably encoded by alternatively spliced mRNAs lacking transmembrane exons, are immunoprecipitated with a monomorphic monoclonal antibody directed against HLA-DQ. These proteins are found in supernatants of cultured cell lines for which secretion is predicted, but not in those of cell lines that do not contain alternatively spliced mRNAs. Images PMID:2464826

  19. Role of Pnn in alternative splicing of a specific subset of lncRNAs of the corneal epithelium

    PubMed Central

    Joo, Jeong Hoon; Ryu, Danny; Peng, Qian

    2014-01-01

    Purpose: GG-H whole transcriptome array analysis suggested involvement of PININ (PNN) in the alternative splicing of multiple long non-coding RNAs (lncRNAs). To further investigate PNN’s role in regulating the alternative splicing of lncRNAs in a corneal epithelial context, we performed detailed analyses for detecting and identifying alternatively spliced lncRNAs. Methods: Total RNA was isolated from PNN knockdown human corneal epithelial (HCET) cells or Pnn-deficient mouse corneas, and subjected to real-time–PCR (RT–PCR) assays, and the alternatively spliced lncRNAs were counted. Alternatively spliced lncRNAs were detected with in situ hybridization with variant-specific RNA probes on human cornea sections. Results: Our analysis uncovered PNN’s impact on the transcript levels of several lncRNAs including Linc00085 and HAS2-AS1. Interestingly, a mouse ortholog of HAS2-AS1, Has2as, clearly exhibited a differential splicing pattern among three major splice variants in the Pnn-deficient mouse cornea. The sequence analyses and quantification of splice variants of candidate lncRNAs, including RP11-295B20.2, RP11–18I14.1, and RP11–322M19.1, demonstrated complex configuration of their splicing changes, with a significant impact of PNN on the process. Knockdown of PNN in HCET cells led to specific changes in the inclusion of multiple cassette exons as well as in the use of alternative splice sites in RP11–322M19.1 and RP11–18I14.1, resulting in considerable net changes in the ratio between the splice variants. Finally, in situ hybridization analyses revealed the presence of RP11–295G20.2 in the nuclei of corneal epithelial cells, but not in the stromal cells of the human cornea, while RP11–322M19.1 was present in epithelial and non-epithelial cells. Conclusions: The data suggest PNN’s role in the alternative splicing of a specific subset of lncRNAs might have a significant impact on the corneal epithelium. PMID:25489234

  20. Tuning of alternative splicing--switch from proto-oncogene to tumor suppressor.

    PubMed

    Shchelkunova, Aleksandra; Ermolinsky, Boris; Boyle, Meghan; Mendez, Ivan; Lehker, Michael; Martirosyan, Karen S; Kazansky, Alexander V

    2013-01-01

    STAT5B, a specific member of the STAT family, is intimately associated with prostate tumor progression. While the full form of STAT5B is thought to promote tumor progression, a naturally occurring truncated isoform acts as a tumor suppressor. We previously demonstrated that truncated STAT5 is generated by insertion of an alternatively spliced exon and results in the introduction of an early termination codon. Present approaches targeting STAT proteins based on inhibition of functional domains of STAT's, such as DNA-binding, cooperative binding (protein-protein interaction), dimerization and phosphorylation will halt the action of the entire gene, both the proto-oncogenic and tumor suppressor functions of Stat5B. In this report we develop a new approach aimed at inhibiting the expression of full-length STAT5B (a proto-oncogene) while simultaneously enhancing the expression of STAT5∆B (a tumor suppressor). We have demonstrated the feasibility of using steric-blocking splice-switching oligonucleotides (SSOs) with a complimentary sequence to the targeted exon-intron boundary to enhance alternative intron/exon retention (up to 10%). The functional effect of the intron/exon proportional tuning was validated by cell proliferation and clonogenic assays. The new scheme applies specific steric-blocking splice-switching oligonucleotides and opens an opportunity for anti-tumor treatment as well as for the alteration of functional abilities of other STAT proteins.

  1. Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission.

    PubMed

    Bark, Christina; Bellinger, Frederick P; Kaushal, Ashutosh; Mathews, James R; Partridge, L Donald; Wilson, Michael C

    2004-10-01

    Although the basic molecular components that promote regulated neurotransmitter release are well established, the contribution of these proteins as regulators of the plasticity of neurotransmission and refinement of synaptic connectivity during development is elaborated less fully. For example, during the period of synaptic growth and maturation in brain, the expression of synaptosomal protein 25 kDa (SNAP-25), a neuronal t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) essential for action potential-dependent neuroexocytosis, is altered through alternative splicing of pre-mRNA transcripts. We addressed the role of the two splice-variant isoforms of SNAP-25 with a targeted mouse mutation that impairs the shift from SNAP-25a to SNAP-25b. Most of these mutant mice die between 3 and 5 weeks of age, which coincides with the time when SNAP-25b expression normally reaches mature levels in brain and synapse formation is essentially completed. The altered expression of these SNAP-25 isoforms influences short-term synaptic function by affecting facilitation but not the initial probability of release. This suggests that mechanisms controlling alternative splicing between SNAP-25 isoforms contribute to a molecular switch important for survival that helps to guide the transition from immature to mature synaptic connections, as well as synapse regrowth and remodeling after neural injury.

  2. Transcriptome-wide targets of alternative splicing by RBM4 and possible role in cancer.

    PubMed

    Markus, M Andrea; Yang, Yee Hwa J; Morris, Brian J

    2016-04-01

    This study determined transcriptome-wide targets of the splicing factor RBM4 using Affymetrix GeneChip(®) Human Exon 1.0 ST Arrays and HeLa cells treated with RBM4-specific siRNA. This revealed 238 transcripts that were targeted for alternative splicing. Cross-linking and immunoprecipitation experiments identified 945 RBM4 targets in mouse HEK293 cells, 39% of which were ascribed to "alternative splicing" by in silico pathway analysis. Mouse embryonic stem cells transfected with Rbm4 siRNA hairpins exhibited reduced colony numbers and size consistent with involvement of RBM4 in cell proliferation. RBM4 cDNA probing of a cancer cDNA array involving 18 different tumor types from 13 different tissues and matching normal tissue found overexpression of RBM4 mRNA (p<0.01) in cervical, breast, lung, colon, ovarian and rectal cancers. Many RBM4 targets we identified have been implicated in these cancers. In conclusion, our findings reveal transcriptome-wide targets of RBM4 and point to potential cancer-related targets and mechanisms that may involve RBM4. PMID:26898347

  3. CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness.

    PubMed

    Branco da Cunha, Cristiana; Klumpers, Darinka D; Koshy, Sandeep T; Weaver, James C; Chaudhuri, Ovijit; Seruca, Raquel; Carneiro, Fátima; Granja, Pedro L; Mooney, David J

    2016-08-01

    Two-dimensional (2D) cultures often fail to mimic key architectural and physical features of the tumor microenvironment. Advances in biomaterial engineering allow the design of three-dimensional (3D) cultures within hydrogels that mimic important tumor-like features, unraveling cancer cell behaviors that would not have been observed in traditional 2D plastic surfaces. This study determined how 3D cultures impact CD44 alternative splicing in gastric cancer (GC) cells. In 3D cultures, GC cells lost expression of the standard CD44 isoform (CD44s), while gaining CD44 variant 6 (CD44v6) expression. This splicing switch was reversible, accelerated by nutrient shortage and delayed at lower initial cell densities, suggesting an environmental stress-induced response. It was further shown to be dependent on the hydrogel matrix mechanical properties and accompanied by the upregulation of genes involved in epithelial-mesenchymal transition (EMT), metabolism and angiogenesis. The 3D cultures reported here revealed the same CD44 alternative splicing pattern previously observed in human premalignant and malignant gastric lesions. These findings indicate that fundamental features of 3D cultures - such as soluble factors diffusion and mechanical cues - influence CD44 expression in GC cells. Moreover, this study provides a new model system to study CD44 dysfunction, whose role in cancer has been in the spotlight for decades.

  4. IL-1β promotes Th17 differentiation by inducing alternative splicing of FOXP3

    PubMed Central

    Mailer, Reiner K. W.; Joly, Anne-Laure; Liu, Sang; Elias, Szabolcs; Tegner, Jesper; Andersson, John

    2015-01-01

    CD4+FOXP3+ regulatory T (Treg) cells are essential for maintaining immunological self-tolerance. Treg cell development and function depend on the transcription factor FOXP3, which is present in several distinct isoforms due to alternative splicing. Despite the importance of FOXP3 in the proper maintenance of Treg cells, the regulation and functional consequences of FOXP3 isoform expression remains poorly understood. Here, we show that in human Treg cells IL-1β promotes excision of FOXP3 exon 7. FOXP3 is not only expressed by Treg cells but is also transiently expressed when naïve T cells differentiate into Th17 cells. Forced splicing of FOXP3 into FOXP3Δ2Δ7 strongly favored Th17 differentiation in vitro. We also found that patients with Crohn’s disease express increased levels of FOXP3 transcripts lacking exon 7, which correlate with disease severity and IL-17 production. Our results demonstrate that alternative splicing of FOXP3 modulates T cell differentiation. These results highlight the importance of characterizing FOXP3 expression on an isoform basis and suggest that immune responses may be manipulated by modulating the expression of FOXP3 isoforms, which has broad implications for the treatment of autoimmune diseases. PMID:26441347

  5. RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum

    PubMed Central

    2013-01-01

    Background The genome of Fusarium graminearum has been sequenced and annotated previously, but correct gene annotation remains a challenge. In addition, posttranscriptional regulations, such as alternative splicing and RNA editing, are poorly understood in F. graminearum. Here we took advantage of RNA-Seq to improve gene annotations and to identify alternative splicing and RNA editing in F. graminearum. Results We identified and revised 655 incorrectly predicted gene models, including revisions of intron predictions, intron splice sites and prediction of novel introns. 231 genes were identified with two or more alternative splice variants, mostly due to intron retention. Interestingly, the expression ratios between different transcript isoforms appeared to be developmentally regulated. Surprisingly, no RNA editing was identified in F. graminearum. Moreover, 2459 novel transcriptionally active regions (nTARs) were identified and our analysis indicates that many of these could be missed genes. Finally, we identified the 5′ UTR and/or 3′ UTR sequences of 7666 genes. A number of representative novel gene models and alternatively spliced genes were validated by reverse transcription polymerase chain reaction and sequencing of the generated amplicons. Conclusions We have developed novel and efficient strategies to identify alternatively spliced genes and incorrect gene models based on RNA-Seq data. Our study identified hundreds of alternatively spliced genes in F. graminearum and for the first time indicated that alternative splicing is developmentally regulated in filamentous fungi. In addition, hundreds of incorrect predicted gene models were identified and revised and thousands of nTARs were discovered in our study, which will be helpful for the future genomic and transcriptomic studies in F. graminearum. PMID:23324402

  6. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis.

    PubMed

    Cheng, Albert W; Shi, Jiahai; Wong, Piu; Luo, Katherine L; Trepman, Paula; Wang, Eric T; Choi, Heejo; Burge, Christopher B; Lodish, Harvey F

    2014-07-24

    The scope and roles of regulated isoform gene expression during erythroid terminal development are poorly understood. We identified hundreds of differentiation-associated isoform changes during terminal erythropoiesis. Sequences surrounding cassette exons of skipped exon events are enriched for motifs bound by the Muscleblind-like (MBNL) family of splicing factors. Knockdown of Mbnl1 in cultured murine fetal liver erythroid progenitors resulted in a strong block in erythroid differentiation and disrupted the developmentally regulated exon skipping of Ndel1 mRNA, which is bound by MBNL1 and critical for erythroid terminal proliferation. These findings reveal an unanticipated scope of the alternative splicing program and the importance of Mbnl1 during erythroid terminal differentiation.

  7. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis

    PubMed Central

    Cheng, Albert W.; Shi, Jiahai; Wong, Piu; Luo, Katherine L.; Trepman, Paula; Wang, Eric T.; Choi, Heejo; Lodish, Harvey F.

    2014-01-01

    The scope and roles of regulated isoform gene expression during erythroid terminal development are poorly understood. We identified hundreds of differentiation-associated isoform changes during terminal erythropoiesis. Sequences surrounding cassette exons of skipped exon events are enriched for motifs bound by the Muscleblind-like (MBNL) family of splicing factors. Knockdown of Mbnl1 in cultured murine fetal liver erythroid progenitors resulted in a strong block in erythroid differentiation and disrupted the developmentally regulated exon skipping of Ndel1 mRNA, which is bound by MBNL1 and critical for erythroid terminal proliferation. These findings reveal an unanticipated scope of the alternative splicing program and the importance of Mbnl1 during erythroid terminal differentiation. PMID:24869935

  8. Complex changes in alternative pre-mRNA splicing play a central role in the Epithelial-Mesenchymal Transition (EMT)

    PubMed Central

    Warzecha, Claude C.; Carstens, Russ P.

    2012-01-01

    The epithelial to mesenchymal transition (EMT) is an important developmental process that is also implicated in disease pathophysiology, such as cancer progression and metastasis. A wealth of literature in recent years has identified important transcriptional regulators and large-scale changes in gene expression programs that drive the phenotypic changes that occur during the EMT. However, in the past couple of years it has become apparent that extensive changes in alternative splicing also play a profound role in shaping the changes in cell behavior that characterize the EMT. While long known splicing switches in FGFR2 and p120-catenin provided hints of a larger program of EMT-associated alternative splicing, the recent identification of the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) began to reveal this genome-wide post-transcriptional network. Several studies have now demonstrated the truly vast extent of this alternative splicing program. The global switches in splicing associated with the EMT add an important additional layer of post-transcriptional control that works in harmony with transcriptional and epigenetic regulation to effect complex changes in cell shape, polarity, and behavior that mediate transitions between epithelial and mesenchymal cell states. Future challenges include the need to investigate the functional consequences of these splicing switches at both the individual gene as well as systems level. PMID:22548723

  9. Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing.

    PubMed

    Shahzad, K; Rauf, M; Ahmed, M; Malik, Z A; Habib, I; Ahmed, Z; Mahmood, K; Ali, R; Masmoudi, K; Lemtiri-Chlieh, F; Gehring, C; Berkowitz, G A; Saeed, N A

    2015-07-01

    Intron retention in transcripts and the presence of 5' and 3' splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K(+) transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K(+) uptake restored growth in medium containing hygromycin in the presence of different concentrations of K(+) and mediated hypersensitivity to Na(+) . HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K(+) and Na(+) concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  10. Titration of serine/arginine (SR) splicing factors during adenoviral infection modulates E1A pre-mRNA alternative splicing.

    PubMed

    Himmelspach, M; Cavaloc, Y; Chebli, K; Stévenin, J; Gattoni, R

    1995-10-01

    Alternative splicing of the adenovirus-2 E1A pre-mRNA involves the use of three 5' splice sites and is modulated during infection because the 13S mRNA and 9S mRNA reactions are predominant during the early and late periods, respectively. We had previously reproduced in vitro the 13S to 9S modulation with nuclear extracts isolated from infected HeLa cells and shown that high molecular weight viral RNAs are involved in this modulation, most likely by sequestering or titrating general splicing factors. To further test this hypothesis, we titrated splicing factors from an uninfected nuclear extract using competitor RNA or by progressive inactivation of splicing factors with monoclonal antibodies. We found that the 13S to 9S modulation occurs when titrating only with certain RNAs (essentially adenoviral RNAs), and also by progressively inactivating the 9G8 SR splicing factor. The demonstration that late nuclear extracts contain levels of active SR splicing factors limiting for the 13S reaction has been made by complementation experiments. We show that late nuclear extracts do not complement SR factor-deficient extracts, whereas late extracts treated with micrococcal nuclease complement them. Furthermore, complementation of late nuclear extracts with each of the three 30-35-kDa SR factors (9G8, SC35, and SF2/ASF) restores an efficient 13S mRNA reaction. Thus, our results provide evidence that the 13S to 9S modulation is triggered through a titration of SR factors required for the 13S mRNA reaction by major late transcripts that accumulate in nuclei late in infection.

  11. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway

    SciTech Connect

    White, Eric S.; Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Muro, Andres F.

    2010-10-01

    Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-{beta}, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten{sup -/-} fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten{sup -/-} cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten{sup -/-} cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

  12. Genome-wide prediction of cis-acting RNA elements regulating tissue-specific pre-mRNA alternative splicing

    PubMed Central

    Wang, Xin; Wang, Kejun; Radovich, Milan; Wang, Yue; Wang, Guohua; Feng, Weixing; Sanford, Jeremy R; Liu, Yunlong

    2009-01-01

    Background Human genes undergo various patterns of pre-mRNA splicing across different tissues. Such variation is primarily regulated by trans-acting factors that bind on exonic and intronic cis-acting RNA elements (CAEs). Here we report a computational method to mechanistically identify cis-acting RNA elements that contribute to the tissue-specific alternative splicing pattern. This method is an extension of our previous model, SplicingModeler, which predicts the significant CAEs that contribute to the splicing differences between two tissues. In this study, we introduce tissue-specific functional levels estimation step, which allows evaluating regulatory functions of predicted CAEs that are involved in more than two tissues. Results Using a publicly available Affymetrix Genechip® Human Exon Array dataset, our method identifies 652 cis-acting RNA elements (CAEs) across 11 human tissues. About one third of predicted CAEs can be mapped to the known RBP (RNA binding protein) binding sites or match with other predicted exonic splicing regulator databases. Interestingly, the vast majority of predicted CAEs are in intronic regulatory regions. A noticeable exception is that many exonic elements are found to regulate the alternative splicing between cerebellum and testes. Most identified elements are found to contribute to the alternative splicing between two tissues, while some are important in multiple tissues. This suggests that genome-wide alternative splicing patterns are regulated by a combination of tissue-specific cis-acting elements and "general elements" whose functional activities are important but differ across multiple tissues. Conclusion In this study, we present a model-based computational approach to identify potential cis-acting RNA elements by considering the exon splicing variation as the combinatorial effects of multiple cis-acting regulators. This methodology provides a novel evaluation on the functional levels of cis-acting RNA elements by estimating

  13. Cross-regulation between an alternative splicing activator and a transcription repressor controls neurogenesis.

    PubMed

    Raj, Bushra; O'Hanlon, Dave; Vessey, John P; Pan, Qun; Ray, Debashish; Buckley, Noel J; Miller, Freda D; Blencowe, Benjamin J

    2011-09-01

    Neurogenesis requires the concerted action of numerous genes that are regulated at multiple levels. However, how different layers of gene regulation are coordinated to promote neurogenesis is not well understood. We show that the neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100/SRRM4) negatively regulates REST (NRSF), a transcriptional repressor of genes required for neurogenesis. nSR100 directly promotes alternative splicing of REST transcripts to produce a REST isoform (REST4) with greatly reduced repressive activity, thereby activating expression of REST targets in neural cells. Conversely, REST directly represses nSR100 in nonneural cells to prevent the activation of neural-specific splicing events. Consistent with a critical role for nSR100 in the inhibition of REST activity, blocking nSR100 expression in the developing mouse brain impairs neurogenesis. Our results thus reveal a fundamental role for direct regulatory interactions between a splicing activator and transcription repressor in the control of the multilayered regulatory programs required for neurogenesis. PMID:21884984

  14. T cell activation regulates CD6 alternative splicing by transcription dynamics and SRSF1.

    PubMed

    da Glória, Vânia G; Martins de Araújo, Mafalda; Mafalda Santos, Ana; Leal, Rafaela; de Almeida, Sérgio F; Carmo, Alexandre M; Moreira, Alexandra

    2014-07-01

    The T cell-surface glycoprotein CD6 is a modulator of cellular responses and has been implicated in several autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and psoriasis. During Ag presentation, CD6 is targeted to the immunological synapse in a ligand binding-dependent manner, in which CD6 domain 3 directly contacts CD166, expressed on the APC. T cell activation results in the induction of CD6Δd3, an alternatively spliced isoform that lacks the ligand-binding domain and thus no longer localizes at the immunological synapse. In this study, we investigated the molecular mechanisms regulating the expression of CD6Δd3 upon human primary T cell activation. Using chromatin immunoprecipitation, we observed an increase in RNA polymerase II occupancy along the CD6 gene and augmented CD6 transcription. We showed that activation leads to transcription-related chromatin modifications, revealed by higher CD6 acetylation levels. Modulation of chromatin conformation using a histone deacetylase inhibitor that increases transcription rate causes an increase of exon 5 skipping. We further showed that the splicing factor SRSF1 binds to a regulatory element in CD6 intron 4, activating exon 5 splicing and promoting exon 5 inclusion. Concomitant with T cell activation-induced exon 5 skipping, we observed a downregulation of SRSF1. Using RNA immunoprecipitation, we showed that in activated T cells, SRSF1 recruitment to the CD6 transcript is impaired by increased chromatin acetylation levels. We propose that upon T cell activation, SRSF1 becomes limiting, and its function in CD6 exon 5 splicing is countered by an increase in CD6 transcription, dependent on chromatin acetylation.

  15. Differential regulation of alternative 3{prime} splicing of {epsilon} messenger RNA variants

    SciTech Connect

    Diaz-Sanchez, D.; Zhang, K.; Saxon, A.

    1995-08-15

    Alternative 3{prime} splicing of the one active human {epsilon} heavy chain gene results in variants of {epsilon} mRNA encoding distinct IgE proteins. The same relative amounts of these {epsilon} mRNA variants were produced by non-atopic donor B cells when driven in a variety of T-dependent or T-independent systems. The most abundant variants were those for classic secreted {epsilon} and a novel secreted form (CH4-M2{double_prime}). In contrast, cells from subjects with high levels of serum IgE secondary to parasitic infection or atopy spontaneously produced higher relative levels of the CH4-M2{prime} {epsilon} mRNA variant, lower relative amounts of both the membrane and CH4-M2{double_prime} secreted variants, and very low levels of the CH4{prime}-CH5 variant. The existence of and corresponding changes in levels of the CH4-M2{prime}-enclosed secreted protein were demonstrated. IL-10 induced this same differential expression of {epsilon} splice variants in vitro when used to costimulate IL-4 plus CD40-driven B cells and could differentially enhance the production of CH4-M2{prime} protein by established IgE-secreting cell lines. Inhibition of IgE by cross-linking the low affinity IgE receptor (CD23) decreased the levels of {epsilon} mRNA and resulted in a distinct pattern of {epsilon} mRNA characterized by a dramatic decrease in CH4-M2{prime} splice variant. IL-6, IL-2, or IFN-{gamma} did not change the {epsilon} mRNA pattern. Overall, the absolute and relative amounts of the different {epsilon} mRNA splice variants produced appear to be controlled in a differentiation-related fashion.

  16. The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform

    PubMed Central

    Dichmann, Darwin S; Walentek, Peter; Harland, Richard M

    2014-01-01

    SUMMARY Alternative splicing is pervasive in vertebrates, yet little is known about most isoforms or their regulation. transformer-2b (tra2b) encodes a splicing regulator whose endogenous function is poorly understood. Tra2b knockdown in Xenopus results in embryos with multiple defects, including defective somitogenesis. Using RNA-seq, we identify 142 splice changes, mostly intron retention and exon skipping, of which 89% are not in current annotations. A previously not described isoform of wnt11b retains the last intron, resulting in a truncated ligand (Wnt11b-short). We show that this isoform acts as a dominant-negative in cardiac gene induction and pronephric tubule formation. To determine the contribution of Wnt11b-short to the tra2b phenotype, we induce retention of intron4 in wnt11b, which recapitulates the failure to form somites but not other tra2b morphant defects. This alternative splicing of a Wnt ligand adds intricacy to a complex signaling pathway and highlights intron retention as a regulatory mechanism. PMID:25620705

  17. Alternative Splicing of Rice WRKY62 and WRKY76 Transcription Factor Genes in Pathogen Defense.

    PubMed

    Liu, Jiqin; Chen, Xujun; Liang, Xiaoxing; Zhou, Xiangui; Yang, Fang; Liu, Jia; He, Sheng Yang; Guo, Zejian

    2016-06-01

    The WRKY family of transcription factors (TFs) functions as transcriptional activators or repressors in various signaling pathways. In this study, we discovered that OsWRKY62 and OsWRKY76, two genes of the WRKY IIa subfamily, undergo constitutive and inducible alternative splicing. The full-length OsWRKY62.1 and OsWRKY76.1 proteins formed homocomplexes and heterocomplexes, and the heterocomplex dominates in the nuclei when analyzed in Nicotiana benthamiana leaves. Transgenic overexpression of OsWRKY62.1 and OsWRKY76.1 in rice (Oryza sativa) enhanced plant susceptibility to the blast fungus Magnaporthe oryzae and the leaf blight bacterium Xanthomonas oryzae pv oryzae, whereas RNA interference and loss-of-function knockout plants exhibited elevated resistance. The dsOW62/76 and knockout lines of OsWRKY62 and OsWRKY76 also showed greatly increased expression of defense-related genes and the accumulation of phytoalexins. The ratio of full-length versus truncated transcripts changed in dsOW62/76 plants as well as in response to pathogen infection. The short alternative OsWRKY62.2 and OsWRKY76.2 isoforms could interact with each other and with full-length proteins. OsWRKY62.2 showed a reduced repressor activity in planta, and two sequence determinants required for the repressor activity were identified in the amino terminus of OsWRKY62.1. The amino termini of OsWRKY62 and OsWRKY76 splice variants also showed reduced binding to the canonical W box motif. These results not only enhance our understanding of the DNA-binding property, the repressor sequence motifs, and the negative feedback regulation of the IIa subfamily of WRKYs but also provide evidence for alternative splicing of WRKY TFs during the plant defense response. PMID:27208272

  18. Alternative Splicing Generates a Novel Truncated Cav1.2 Channel in Neonatal Rat Heart*

    PubMed Central

    Liao, Ping; Yu, Dejie; Hu, Zhenyu; Liang, Mui Cheng; Wang, Jue Jin; Yu, Chye Yun; Ng, Gandi; Yong, Tan Fong; Soon, Jia Lin; Chua, Yeow Leng; Soong, Tuck Wah

    2015-01-01

    L-type Cav1.2 Ca2+ channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca2+ channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavβ subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca2+ ions at a much lower level. PMID:25694430

  19. Stress-induced alternative gene splicing in mind-body medicine.

    PubMed

    Rossi, Ernest Lawrence

    2004-01-01

    Recent research documents how psychosocial stress can alter the expression of the acetylcholinesterase gene to generate at least 3 alternative proteins that are implicated in a wide variety of normal mind-body functions, as well as pathologies. These range from early embryological development, plasticity of the brain in adulthood, post-traumatic stress disorder (PTSD), and stress-associated dysfunctions of the central nervous, endocrine, and immune systems, to age-related neuropathologies. Such stress-induced alternative gene splicing is proposed here as a major mind-body pathway of psychosocial genomics-the modulation of gene expression by creative psychological, social, and cultural processes. We explore the types of research that are now needed to investigate how stress-induced alternative splicing of the acetylcholinesterase gene may play a pivotal role in the deep psychobiology of psychotherapy, meditation, spiritual rituals, and the experiencing of positive humanistic values that have been associated with mind-body medicine, such as compassion, beneficence, serenity, forgiveness, and gratitude.

  20. Alternative splicing of the tuberous sclerosis 2 (TSC2) gene in human and mouse tissues

    SciTech Connect

    Xu, Lin; Sterner, C.; Maheshwar, M.M.

    1995-06-10

    The recently isolated gene for tuberous sclerosis 2 (TSC2) encodes a 5.5.kb transcript that is widely expressed. The TSC2 gene product, named tuberin, is a 1784-amino-acid protein that shows a small stretch of homology to the GTPase activating protein rap1GAP. We have detected a novel variant of the TSC2 mRNA lacking 129 nucleotides, predicting an in-frame deletion of 43 amino acids spanning codons 946-988 of tuberin. This 129-bp deletion precisely corresponds to exon 25 of the TSC2 gene suggesting that alternative splicing leads to production of two forms of transcripts designated isoforms 1 and 2. Further molecular analysis revealed a third isoform exhibiting a deletion of 44 amino acids spanning codons 946-989 of tuberin. Amino acid 989 is a Ser residue encoded by the first codon of exon 26. The two isoforms also exist in newborn and adult mouse tissues, reinforcing the potential functional importance of these alternatively spliced products. These alternative isoforms should have implications for efforts aimed at identifying mutations in TSC patients. The distinct polypeptides encoded by the TSC2 gene may have different targets as well as functions involved in the regulation of cell growth. 26 refs., 4 figs.

  1. Stress-induced alternative gene splicing in mind-body medicine.

    PubMed

    Rossi, Ernest Lawrence

    2004-01-01

    Recent research documents how psychosocial stress can alter the expression of the acetylcholinesterase gene to generate at least 3 alternative proteins that are implicated in a wide variety of normal mind-body functions, as well as pathologies. These range from early embryological development, plasticity of the brain in adulthood, post-traumatic stress disorder (PTSD), and stress-associated dysfunctions of the central nervous, endocrine, and immune systems, to age-related neuropathologies. Such stress-induced alternative gene splicing is proposed here as a major mind-body pathway of psychosocial genomics-the modulation of gene expression by creative psychological, social, and cultural processes. We explore the types of research that are now needed to investigate how stress-induced alternative splicing of the acetylcholinesterase gene may play a pivotal role in the deep psychobiology of psychotherapy, meditation, spiritual rituals, and the experiencing of positive humanistic values that have been associated with mind-body medicine, such as compassion, beneficence, serenity, forgiveness, and gratitude. PMID:15356952

  2. Intron Retention in the Alternatively Spliced Region of RON Results from Weak 3’ Splice Site Recognition

    PubMed Central

    Smith, Lindsay D.; Lucas, Christian M.; Eperon, Ian C.

    2013-01-01

    The RON gene encodes a tyrosine kinase receptor for macrophage-stimulating protein. A constitutively active isoform that arises by skipping of exon 11 is expressed in carcinomas and contributes to an invasive phenotype. However, a high proportion of the mRNA expressed from the endogenous gene, or from transfected minigenes, appears to retain introns 10 and 11. It is not known whether this represents specific repression or the presence of weak splicing signals. We have used chimeric pre-mRNAs spliced in vitro to investigate the reason for intron retention. A systematic test showed that, surprisingly, the exon sequences known to modulate exon 11 skipping were not limiting, but the 3’ splice site regions adjacent to exons 11 and 12 were too weak to support splicing when inserted into a globin intron. UV-crosslinking experiments showed binding of hnRNP F/H just 5’ of these regions, but the hnRNP F/H target sequences did not mediate inhibition. Instead, the failure of splicing is linked to weak binding of U2AF65, and spliceosome assembly stalls prior to formation of any of the ATP-dependent complexes. We discuss mechanisms by which U2AF65 binding is facilitated in vivo. PMID:24155930

  3. Divergent Expression and Metabolic Functions of Human Glucuronosyltransferases through Alternative Splicing.

    PubMed

    Rouleau, Michèle; Tourancheau, Alan; Girard-Bock, Camille; Villeneuve, Lyne; Vaucher, Jonathan; Duperré, Anne-Marie; Audet-Delage, Yannick; Gilbert, Isabelle; Popa, Ion; Droit, Arnaud; Guillemette, Chantal

    2016-09-27

    Maintenance of cellular homeostasis and xenobiotic detoxification is mediated by 19 human UDP-glucuronosyltransferase enzymes (UGTs) encoded by ten genes that comprise the glucuronidation pathway. Deep RNA sequencing of major metabolic organs exposes a substantial expansion of the UGT transcriptome by alternative splicing, with variants representing 20% to 60% of canonical transcript expression. Nearly a fifth of expressed variants comprise in-frame sequences that may create distinct structural and functional features. Follow-up cell-based assays reveal biological functions for these alternative UGT proteins. Some isoforms were found to inhibit or induce inactivation of drugs and steroids in addition to perturbing global cell metabolism (energy, amino acids, nucleotides), cell adhesion, and proliferation. This work highlights the biological relevance of alternative UGT expression, which we propose increases protein diversity through the evolution of metabolic regulators from specific enzymes. PMID:27681425

  4. Divergent Expression and Metabolic Functions of Human Glucuronosyltransferases through Alternative Splicing.

    PubMed

    Rouleau, Michèle; Tourancheau, Alan; Girard-Bock, Camille; Villeneuve, Lyne; Vaucher, Jonathan; Duperré, Anne-Marie; Audet-Delage, Yannick; Gilbert, Isabelle; Popa, Ion; Droit, Arnaud; Guillemette, Chantal

    2016-09-27

    Maintenance of cellular homeostasis and xenobiotic detoxification is mediated by 19 human UDP-glucuronosyltransferase enzymes (UGTs) encoded by ten genes that comprise the glucuronidation pathway. Deep RNA sequencing of major metabolic organs exposes a substantial expansion of the UGT transcriptome by alternative splicing, with variants representing 20% to 60% of canonical transcript expression. Nearly a fifth of expressed variants comprise in-frame sequences that may create distinct structural and functional features. Follow-up cell-based assays reveal biological functions for these alternative UGT proteins. Some isoforms were found to inhibit or induce inactivation of drugs and steroids in addition to perturbing global cell metabolism (energy, amino acids, nucleotides), cell adhesion, and proliferation. This work highlights the biological relevance of alternative UGT expression, which we propose increases protein diversity through the evolution of metabolic regulators from specific enzymes.

  5. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development.

    PubMed

    Zhang, Xiao-Ning; Mount, Stephen M

    2009-07-01

    The serine-arginine-rich (SR) proteins constitute a conserved family of pre-mRNA splicing factors. In Arabidopsis (Arabidopsis thaliana), they are encoded by 19 genes, most of which are themselves alternatively spliced. In the case of SR45, the use of alternative 3' splice sites 21 nucleotides apart generates two alternatively spliced isoforms. Isoform 1 (SR45.1) has an insertion relative to isoform 2 (SR45.2) that replaces a single arginine with eight amino acids (TSPQRKTG). The biological implications of SR45 alternative splicing have been unclear. A previously described loss-of-function mutant affecting both isoforms, sr45-1, shows several developmental defects, including defects in petal development and root growth. We found that the SR45 promoter is highly active in regions with actively growing and dividing cells. We also tested the ability of each SR45 isoform to complement the sr45-1 mutant by overexpression of isoform-specific green fluorescent protein (GFP) fusion proteins. As expected, transgenic plants overexpressing either isoform displayed both nuclear speckles and GFP fluorescence throughout the nucleoplasm. We found that SR45.1-GFP complements the flower petal phenotype, but not the root growth phenotype. Conversely, SR45.2-GFP complements root growth but not floral morphology. Mutation of a predicted phosphorylation site within the alternatively spliced segment, SR45.1-S219A-GFP, does not affect complementation. However, a double mutation affecting both serine-219 and the adjacent threonine-218 (SR45.1-T218A + S219A-GFP) behaves like isoform 2, complementing the root but not the floral phenotype. In conclusion, our study provides evidence that the two alternatively spliced isoforms of SR45 have distinct biological functions. PMID:19403727

  6. RNA-Seq of Arabidopsis Pollen Uncovers Novel Transcription and Alternative Splicing1[C][W][OA

    PubMed Central

    Loraine, Ann E.; McCormick, Sheila; Estrada, April; Patel, Ketan; Qin, Peng

    2013-01-01

    Pollen grains of Arabidopsis (Arabidopsis thaliana) contain two haploid sperm cells enclosed in a haploid vegetative cell. Upon germination, the vegetative cell extrudes a pollen tube that carries the sperm to an ovule for fertilization. Knowing the identity, relative abundance, and splicing patterns of pollen transcripts will improve our understanding of pollen and allow investigation of tissue-specific splicing in plants. Most Arabidopsis pollen transcriptome studies have used the ATH1 microarray, which does not assay splice variants and lacks specific probe sets for many genes. To investigate the pollen transcriptome, we performed high-throughput sequencing (RNA-Seq) of Arabidopsis pollen and seedlings for comparison. Gene expression was more diverse in seedling, and genes involved in cell wall biogenesis were highly expressed in pollen. RNA-Seq detected at least 4,172 protein-coding genes expressed in pollen, including 289 assayed only by nonspecific probe sets. Additional exons and previously unannotated 5′ and 3′ untranslated regions for pollen-expressed genes were revealed. We detected regions in the genome not previously annotated as expressed; 14 were tested and 12 were confirmed by polymerase chain reaction. Gapped read alignments revealed 1,908 high-confidence new splicing events supported by 10 or more spliced read alignments. Alternative splicing patterns in pollen and seedling were highly correlated. For most alternatively spliced genes, the ratio of variants in pollen and seedling was similar, except for some encoding proteins involved in RNA splicing. This study highlights the robustness of splicing patterns in plants and the importance of ongoing annotation and visualization of RNA-Seq data using interactive tools such as Integrated Genome Browser. PMID:23590974

  7. Alternative messenger RNA splicing of autophagic gene Beclin 1 in human B-cell acute lymphoblastic leukemia cells.

    PubMed

    Niu, Yu-Na; Liu, Qing-Qing; Zhang, Su-Ping; Yuan, Na; Cao, Yan; Cai, Jin-Yang; Lin, Wei-Wei; Xu, Fei; Wang, Zhi-Jian; Chen, Bo; Wang, Jian-Rong

    2014-01-01

    Beclin 1 is a key factor for initiation and regulation of autophagy, which is a cellular catabolic process involved in tumorigenesis. To investigate the role of alternative splicing of Beclin1 in the regulation of autophagy in leukemia cells, Beclin1 mRNA from 6 different types of cell lines and peripheral blood mononuclear cells from 2 healthy volunteers was reversely transcribed, subcloned, and screened for alternative splicing. New transcript variants were analyzed by DNA sequencing. A transcript variant of Beclin 1 gene carrying a deletion of exon 11, which encoded a C-terminal truncation of Beclin 1 isoform, was found. The alternative isoform was assessed by bioinformatics, immunoblotting and subcellular localization. The results showed that this variable transcript is generated by alternative 3' splicing, and its translational product displayed a reduced activity in induction of autophagy by starvation, indicating that the spliced isoform might function as a dominant negative modulator of autophagy. Our findings suggest that the alternative splicing of Beclin 1 might play important roles in leukemogenesis regulated by autophagy.

  8. Structural and functional analyses of Barth syndrome-causing mutations and alternative splicing in the tafazzin acyltransferase domain

    PubMed Central

    Hijikata, Atsushi; Yura, Kei; Ohara, Osamu; Go, Mitiko

    2015-01-01

    Tafazzin is a mitochondrial phospholipid transacylase, and its mutations cause Barth syndrome (BTHS). Human tafazzin gene produces four distinct alternatively spliced transcripts. To understand the molecular mechanisms of tafazzin deficiency, we performed an atomic resolution analysis of the influence of the BTHS mutations and of alternative splicing on the structure and function of tafazzin. From the three-dimensional (3D) homology modeling of tafazzin, we identified candidate amino acid residues that contribute to cardiolipin binding and to mitochondrial membrane associations that facilitate acyl-transfer reactions. Primate specific exon 5, which is alternatively spliced, is predicted to correspond to an intrinsically unstructured region in the protein. We proposed that this region should change the substrate-binding affinity and/or contribute to primate-specific molecular interactions. Exon 7, another alternatively spliced exon, encodes a region forming a part of the putative substrate-binding cleft, suggesting that the gene products lacking exon 7 will lose their substrate-binding ability. We demonstrate a clear localization of the BTHS mutations at residues responsible for membrane association, substrate binding, and the conformational stability of tafazzin. These findings provide new insights into the function of defective tafazzin and the pathogenesis of BTHS at the level of protein 3D structure and the evolution of alternatively spliced exons in primates. PMID:25941633

  9. Quantitative evaluation of alternatively spliced mRNA isoforms by label-free real-time plasmonic sensing.

    PubMed

    Huertas, César S; Carrascosa, L G; Bonnal, S; Valcárcel, J; Lechuga, L M

    2016-04-15

    Alternative splicing of mRNA precursors enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression. Current methodologies for monitoring alternative splicing demand elaborate procedures and often present difficulties in discerning between closely related isoforms, e.g. due to cross-hybridization during their detection. Herein, we report a general methodology using a Surface Plasmon Resonance (SPR) biosensor for label-free monitoring of alternative splicing events in real-time, without any cDNA synthesis or PCR amplification requirements. We applied this methodology to RNA isolated from HeLa cells for the quantification of alternatively spliced isoforms of the Fas gene, involved in cancer progression through regulation of programmed cell death. We demonstrate that our methodology is isoform-specific, with virtually no cross-hybridization, achieving limits of detection (LODs) in the picoMolar (pM) range. Similar results were obtained for the detection of the BCL-X gene mRNA isoforms. The results were independently validated by RT-qPCR, with excellent concordance in the determination of isoform ratios. The simplicity and robustness of this biosensor technology can greatly facilitate the exploration of alternative splicing biomarkers in disease diagnosis and therapy.

  10. NR0B1A: an alternatively spliced form of NR0B1.

    PubMed

    Ho, John; Zhang, Yao-Hua; Huang, Bing-Ling; McCabe, Edward R B

    2004-12-01

    The orphan nuclear receptor DAX1 (dosage-sensitive sex reversal-AHC critical region on the X chromosome gene 1), encoded by the NR0B1 gene, plays important roles in the development of the hypothalamic-pituitary-adrenal/gonadal (HPAG) axis as well as in sex determination. Mutations in NR0B1 cause the X-linked cytomegalic form of adrenal hypoplasia congenita (AHC), and associated hypogonadotropic hypogonadism (HH). Over-expression of NR0B1 results in sex reversal in mice and duplication of the 160kb DSS locus in human patients results in a sex-reversed phenotype (XY females). The purpose of these investigations was to determine if alternatively spliced forms of NR0B1 existed. Analysis of expressed sequence tag data predicted a truncated isoform of DAX1. We confirmed the presence of an alternatively spliced form of NR0B1, which we will refer to as NR0B1A, by reverse transcriptase-polymerase chain reaction (RT-PCR), and will refer to the deduced protein isoform as DAX1A. Sequencing of the NR0B1A cDNA revealed slight differences from the recently described splice form, DAX1alpha. NR0B1A is encoded by NR0B1 exon 1 and exon 2A located within the 3385 nt intron between NR0B1 exons 1 and 2. Exon 2A includes 35 nt of coding sequence. NR0B1A encodes a deduced protein sequence, DAX1A, of 400 amino acids compared with 470 amino acids for DAX1. RT-PCR detected expression of NR0B1A in adrenal gland, testis, ovary, and pancreas. The identification of NR0B1A and the deduced DAX1A requires reinterpretation of many previous experiments involving expression and knockout of NR0B1 and DAX1.

  11. Genome-wide analysis of shoot growth-associated alternative splicing in moso bamboo.

    PubMed

    Li, Long; Hu, Tao; Li, Xueping; Mu, Shaohua; Cheng, Zhanchao; Ge, Wei; Gao, Jian

    2016-08-01

    Alternative splicing (AS) significantly enhances transcriptome complexity and is differentially regulated in a wide variety of physiological processes in plants, including shoot growth. Presently, the functional implications and conservation of AS occurrences are not well understood in the moso bamboo genome. To analyze the global changes in AS during moso bamboo shoot growth, fast-growing shoots collected at seven different heights and culms after leaf expansion were sequenced using the Illumina HiSeq™ 2000 sequencing platform. It was found that approximately 60.74 % of all genes were alternatively spliced, with intron retention (IR) being the most frequent AS event (27.43 %). Statistical analysis demonstrated that variations of AS frequency and AS types were significantly correlated with changes in gene features and gene transcriptional level. According to the phylogenetic analysis of isoform expression data and AS frequency, the bamboo shoot growth could be divided into four different growth periods, including winter bamboo shoot (S1), early growth period (S2-S5), late growth period (S6 and S7), and mature period (CK). In addition, our data also showed that the winter bamboo shoot had the highest number of AS events. Twenty-six putative Serine/arginine-rich (SR) proteins were identified, producing a total of 109 transcripts. AS events were frequently and specifically regulated by SR splicing factors throughout shoot growth, resulting in changes to the original open reading frame (ORF) and subsequently changes to conserved domains. The AS product-isoforms showed regular expression change during the whole shoot growth period, thus influencing shoot growth. All together, these data indicate that AS events are adjusted to different growth stages, providing briefness and efficient means of gene regulation. This study will provide a very useful clue for future functional analyses.

  12. Genome-wide analysis of shoot growth-associated alternative splicing in moso bamboo.

    PubMed

    Li, Long; Hu, Tao; Li, Xueping; Mu, Shaohua; Cheng, Zhanchao; Ge, Wei; Gao, Jian

    2016-08-01

    Alternative splicing (AS) significantly enhances transcriptome complexity and is differentially regulated in a wide variety of physiological processes in plants, including shoot growth. Presently, the functional implications and conservation of AS occurrences are not well understood in the moso bamboo genome. To analyze the global changes in AS during moso bamboo shoot growth, fast-growing shoots collected at seven different heights and culms after leaf expansion were sequenced using the Illumina HiSeq™ 2000 sequencing platform. It was found that approximately 60.74 % of all genes were alternatively spliced, with intron retention (IR) being the most frequent AS event (27.43 %). Statistical analysis demonstrated that variations of AS frequency and AS types were significantly correlated with changes in gene features and gene transcriptional level. According to the phylogenetic analysis of isoform expression data and AS frequency, the bamboo shoot growth could be divided into four different growth periods, including winter bamboo shoot (S1), early growth period (S2-S5), late growth period (S6 and S7), and mature period (CK). In addition, our data also showed that the winter bamboo shoot had the highest number of AS events. Twenty-six putative Serine/arginine-rich (SR) proteins were identified, producing a total of 109 transcripts. AS events were frequently and specifically regulated by SR splicing factors throughout shoot growth, resulting in changes to the original open reading frame (ORF) and subsequently changes to conserved domains. The AS product-isoforms showed regular expression change during the whole shoot growth period, thus influencing shoot growth. All together, these data indicate that AS events are adjusted to different growth stages, providing briefness and efficient means of gene regulation. This study will provide a very useful clue for future functional analyses. PMID:27170010

  13. Enhancement of dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using sugar beet molasses as alternative carbon source.

    PubMed

    Alves, Luís; Paixão, Susana M

    2014-03-01

    There are several problems limiting an industrial application of fossil fuel biodesulfurization, and one of them is the cost of culture media used to grow the microorganisms involved in the process. In this context, the utilization of alternative carbon sources resulting from agro-industrial by-products could be a strategy to reduce the investment in the operating expenses of a future industrial application. Recently, Gordonia alkanivorans 1B was described as a fructophilic desulfurizing bacterium, and this characteristic opens a new interest in alternative carbon sources rich in fructose. Thus, the goal of this study was to evaluate the utilization of sugar beet molasses (SBM) in the dibenzothiophene (DBT) desulfurization process using strain 1B. SBM firstly treated with 0.25% BaCl2 (w/v) was used after sucrose acidic hydrolysis or in a simultaneous saccharification and fermentation process with a Zygosaccharomyces bailii Talf1 invertase (1%), showing promising results. In optimal conditions, strain 1B presented a μ max of 0.0795 h(-1), and all DBT was converted to 2-hydroxybiphenyl (250 μM) within 48 h with a maximum production rate of 7.78 μM h(-1). Our results showed the high potential of SBM to be used in a future industrial fossil fuel biodesulfurization process using strain 1B.

  14. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data.

    PubMed

    Shen, Shihao; Park, Juw Won; Lu, Zhi-xiang; Lin, Lan; Henry, Michael D; Wu, Ying Nian; Zhou, Qing; Xing, Yi

    2014-12-23

    Ultra-deep RNA sequencing (RNA-Seq) has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We previously developed multivariate analysis of transcript splicing (MATS), a statistical method for detecting differential alternative splicing between two RNA-Seq samples. Here we describe a new statistical model and computer program, replicate MATS (rMATS), designed for detection of differential alternative splicing from replicate RNA-Seq data. rMATS uses a hierarchical model to simultaneously account for sampling uncertainty in individual replicates and variability among replicates. In addition to the analysis of unpaired replicates, rMATS also includes a model specifically designed for paired replicates between sample groups. The hypothesis-testing framework of rMATS is flexible and can assess the statistical significance over any user-defined magnitude of splicing change. The performance of rMATS is evaluated by the analysis of simulated and real RNA-Seq data. rMATS outperformed two existing methods for replicate RNA-Seq data in all simulation settings, and RT-PCR yielded a high validation rate (94%) in an RNA-Seq dataset of prostate cancer cell lines. Our data also provide guiding principles for designing RNA-Seq studies of alternative splicing. We demonstrate that it is essential to incorporate biological replicates in the study design. Of note, pooling RNAs or merging RNA-Seq data from multiple replicates is not an effective approach to account for variability, and the result is particularly sensitive to outliers. The rMATS source code is freely available at rnaseq-mats.sourceforge.net/. As the popularity of RNA-Seq continues to grow, we expect rMATS will be useful for studies of alternative splicing in diverse RNA-Seq projects. PMID:25480548

  15. Quantification of type II procollagen splice forms using Alternative Transcript-qPCR (AT-qPCR)

    PubMed Central

    McAlinden, Audrey; Shim, Kyu-Hwan; Wirthlin, Louisa; Ravindran, Soumya; Hering, Thomas M.

    2012-01-01

    During skeletal development, the onset of chondrogenic differentiation is marked by expression of the α1(II) procollagen Col2a1) gene. Exon 2 of Col2a1 codes for a cysteine-rich von Willebrand factor C-like domain. Chondroprogenitors express the exon 2-containing IIA and IID splice forms by utilizing adjacent 5′ splice sites separated by 3 base pairs. There is a shift to expression of the shorter, exon 2-lacking IIB splice form with further differentiation. Alternative splicing analysis of Col2a1 splice forms has often relied upon semi-quantitative PCR, using a single set of PCR primers to amplify multiple splice forms. We show that this widely used method is inaccurate due to mismatched amplification efficiency of different-sized PCR products. We have developed the TaqMan®-based AT-qPCR (Alternative Transcript-qPCR) assay to more accurately quantify alternatively spliced mRNA, and demonstrate the measurement of Col2a1 splice form expression in differentiating ATDC5 cells in vitro and in wild type mouse embryonic and postnatal cartilage in vivo. The AT-qPCR assay is based on the use of a multiple amplicon standard (MAS) plasmid, containing a chemically synthesized cluster of splice site-spanning PCR amplicons, to quantify alternative splice forms by standard curve-based qPCR. The MAS plasmid designed for Col2a1 also contained an 18S rRNA amplicon for sample normalization, and an amplicon corresponding to a region spanning exon 52-53 to measure total Col2a1 mRNA. In mouse E12.5 to P70 cartilage, we observed the expected switch between the IIA and IIB splice forms; no IID or IIC splice products were observed. However, in the ATDC5 cultures, predominant expression of the IIA and IID splice forms was found at all times in culture. Additionally, we observed that the sum of the IIA, IIB and IID splice forms comprises only a small fraction of Col2a1 transcripts containing the constitutive exon 52-53 junction. We conclude from our results that the majority of ATDC5

  16. Computational analysis of translational readthrough proteins in Drosophila and yeast reveals parallels to alternative splicing

    PubMed Central

    Pancsa, Rita; Macossay-Castillo, Mauricio; Kosol, Simone; Tompa, Peter

    2016-01-01

    In translational readthrough (TR) the ribosome continues extending the nascent protein beyond the first in-frame termination codon. Due to the lack of dedicated analyses of eukaryotic TR cases, the associated functional-evolutionary advantages are still unclear. Here, based on a variety of computational methods, we describe the structural and functional properties of previously proposed D. melanogaster and S. cerevisiae TR proteins and extensions. We found that in D. melanogaster TR affects long proteins in mainly regulatory roles. Their TR-extensions are structurally disordered and rich in binding motifs, which, together with their cell-type- and developmental stage-dependent inclusion, suggest that similarly to alternatively spliced exons they rewire cellular interaction networks in a temporally and spatially controlled manner. In contrast, yeast TR proteins are rather short and fulfil mainly housekeeping functions, like translation. Yeast extensions usually lack disorder and linear motifs, which precludes elucidating their functional relevance with sufficient confidence. Therefore we propose that by being much more restricted and by lacking clear functional hallmarks in yeast as opposed to fruit fly, TR shows remarkable parallels with alternative splicing. Additionally, the lack of conservation of TR extensions among orthologous TR proteins suggests that TR-mediated functions may be generally specific to lower taxonomic levels. PMID:27561673

  17. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing.

    PubMed

    Gökirmak, Tufan; Campanale, Joseph P; Reitzel, Adam M; Shipp, Lauren E; Moy, Gary W; Hamdoun, Amro

    2016-06-01

    The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals.

  18. Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells

    PubMed Central

    Alló, Mariano; Agirre, Eneritz; Bessonov, Sergey; Bertucci, Paola; Gómez Acuña, Luciana; Buggiano, Valeria; Bellora, Nicolás; Singh, Babita; Petrillo, Ezequiel; Blaustein, Matías; Miñana, Belén; Dujardin, Gwendal; Pozzi, Berta; Pelisch, Federico; Bechara, Elías; Agafonov, Dmitry E.; Srebrow, Anabella; Lührmann, Reinhard; Valcárcel, Juan; Eyras, Eduardo; Kornblihtt, Alberto R.

    2014-01-01

    The roles of Argonaute proteins in cytoplasmic microRNA and RNAi pathways are well established. However, their implication in small RNA-mediated transcriptional gene silencing in the mammalian cell nucleus is less understood. We have recently shown that intronic siRNAs cause chromatin modifications that inhibit RNA polymerase II elongation and modulate alternative splicing in an Argonaute-1 (AGO1)-dependent manner. Here we used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to investigate the genome-wide distribution of AGO1 nuclear targets. Unexpectedly, we found that about 80% of AGO1 clusters are associated with cell-type-specific transcriptional enhancers, most of them (73%) overlapping active enhancers. This association seems to be mediated by long, rather than short, enhancer RNAs and to be more prominent in intragenic, rather than intergenic, enhancers. Paradoxically, crossing ChIP-seq with RNA-seq data upon AGO1 depletion revealed that enhancer-bound AGO1 is not linked to the global regulation of gene transcription but to the control of constitutive and alternative splicing, which was confirmed by an individual gene analysis explaining how AGO1 controls inclusion levels of the cassette exon 107 in the SYNE2 gene. PMID:25313066

  19. Computational analysis of translational readthrough proteins in Drosophila and yeast reveals parallels to alternative splicing.

    PubMed

    Pancsa, Rita; Macossay-Castillo, Mauricio; Kosol, Simone; Tompa, Peter

    2016-01-01

    In translational readthrough (TR) the ribosome continues extending the nascent protein beyond the first in-frame termination codon. Due to the lack of dedicated analyses of eukaryotic TR cases, the associated functional-evolutionary advantages are still unclear. Here, based on a variety of computational methods, we describe the structural and functional properties of previously proposed D. melanogaster and S. cerevisiae TR proteins and extensions. We found that in D. melanogaster TR affects long proteins in mainly regulatory roles. Their TR-extensions are structurally disordered and rich in binding motifs, which, together with their cell-type- and developmental stage-dependent inclusion, suggest that similarly to alternatively spliced exons they rewire cellular interaction networks in a temporally and spatially controlled manner. In contrast, yeast TR proteins are rather short and fulfil mainly housekeeping functions, like translation. Yeast extensions usually lack disorder and linear motifs, which precludes elucidating their functional relevance with sufficient confidence. Therefore we propose that by being much more restricted and by lacking clear functional hallmarks in yeast as opposed to fruit fly, TR shows remarkable parallels with alternative splicing. Additionally, the lack of conservation of TR extensions among orthologous TR proteins suggests that TR-mediated functions may be generally specific to lower taxonomic levels. PMID:27561673

  20. Induction of apoptosis by the overexpression of an alternative splicing variant of mitochondrial thioredoxin reductase.

    PubMed

    Chang, En Young; Son, Seong-Kweon; Ko, Hyun Sook; Baek, Suk-Hwan; Kim, Jung Hye; Kim, Jae-Ryong

    2005-12-15

    Mammalian cells harbor two forms of thioredoxin reductase (TrxR), cytosolic TrxR1 and mitochondrial TrxR2, both of which are involved in the redox regulation of cell growth and apoptosis. Furthermore, several alternative splicing variants of TrxR1 and TrxR2 have been identified. However, little remains known with regard to their functions in cells. Here, we report an alternative splicing variant of TrxR2 (TrxR2A), which displays a 3-bp deletion in the coding region and an insertion of 1228 bp in the 3'-UTR, between the stop codon and the SECIS element, of the TrxR2 cDNA. In order to determine the cellular function of TrxR2A, we established TrxR2A-inducible HeLa cell lines in which TrxR2A transcription was regulated via a Tet-off expression system. We observed that the induction of TrxR2A resulted in increased apoptosis, due to the reduction of NADPH and alterations in cellular ROS levels. These results suggest that TrxR2A may play a vital role in the regulation of TrxR2 and may confer functional complexity onto the thioredoxin system. PMID:16298692

  1. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing.

    PubMed

    Gökirmak, Tufan; Campanale, Joseph P; Reitzel, Adam M; Shipp, Lauren E; Moy, Gary W; Hamdoun, Amro

    2016-06-01

    The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals. PMID:27053522

  2. Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase.

    PubMed

    Wei, Zhiyi; Xu, Zhiwen; Liu, Xiaotian; Lo, Wing-Sze; Ye, Fei; Lau, Ching-Fun; Wang, Feng; Zhou, Jie J; Nangle, Leslie A; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2016-02-18

    Many human tRNA synthetases evolved alternative functions outside of protein synthesis. These functions are associated with over 200 splice variants (SVs), most of which are catalytic nulls that engender new biology. While known to regulate non-translational activities, little is known about structures resulting from natural internal ablations of any protein. Here, we report analysis of two closely related, internally deleted, SVs of homodimeric human tyrosyl-tRNA synthetase (TyrRS). In spite of both variants ablating a portion of the catalytic core and dimer-interface contacts of native TyrRS, each folded into a distinct stable structure. Biochemical and nuclear magnetic resonance (NMR) analysis showed that the internal deletion of TyrRSΔE2-4 SV gave an alternative, neomorphic dimer interface 'orthogonal' to that of native TyrRS. In contrast, the internal C-terminal splice site of TyrRSΔE2-3 prevented either dimerization interface from forming, and yielded a predominantly monomeric protein. Unlike ubiquitous TyrRS, the neomorphs showed clear tissue preferences, which were distinct from each other. The results demonstrate a sophisticated structural plasticity of a human tRNA synthetase for architectural reorganizations that are preferentially elicited in specific tissues. PMID:26773056

  3. SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in Arabidopsis[W

    PubMed Central

    Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng

    2012-01-01

    Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380

  4. Bovine Herpesvirus 4 Modulates Its β-1,6-N-Acetylglucosaminyltransferase Activity through Alternative Splicing

    PubMed Central

    Lété, Céline; Markine-Goriaynoff, Nicolas; Machiels, Bénédicte; Pang, Poh-Choo; Xiao, Xue; Canis, Kevin; Suzuki, Masami; Fukuda, Minoru; Dell, Anne; Haslam, Stuart M.; Vanderplasschen, Alain

    2015-01-01

    enzyme which is a key enzyme for the synthesis of complex O-glycans. In this study, we show that, in contrast to cellular homologues, this virus has evolved to alternatively express two proteins from this gene. While the first one is enzymatically active, the second results from the alternative splicing of the region encoding the catalytic site of the enzyme. We postulate that this regulatory mechanism could allow the virus to modulate the synthesis of some particular glycans for function at the location and/or the moment of infection. PMID:26656682

  5. A novel alternative splicing isoform of NF2 identified in human Schwann cells

    PubMed Central

    Su, Fang; Zhou, Zhengguang; Su, Wen; Wang, Zishu; Wu, Qiong

    2016-01-01

    Vestibular schwannoma (VS) is a benign, slow-growing cranial tumor that originates from the hypertrophy of Schwann cells. The majority of sporadic VS are unilateral, and the mechanisms underlying VS tumorigenesis are not fully understood. The human neurofibromin 2 (NF2) gene encodes the tumor suppressor protein merlin and the NF2 transcript can be alternatively spliced to form numerous isoforms. The present study investigated human Schwann cells (HSCs) at the mRNA and protein level to understand the function of the alternative splicing (AS) isoform of NF2. The total RNA of HSCs was isolated and the full-length coding sequence of NF2 was amplified. The amplified products were excised from agarose gels, purified and sequenced. NF2 at a protein level was assayed by immunoprecipitation and western blot analysis. The full-length and spliced NF2 forms were amplified by polymerase chain reaction (PCR) from the HSC complementary DNA and ligated into eukaryotic expression vector pcDNA3.1(+). The plasmids were transfected into the HSC HEI-193 cell line and cell proliferation assays were performed using Cell Counting Kit-8. PCR analysis using HSC total RNA as a template revealed the presence of a shortened NF2 transcript, which was due to splicing at the 3′-end of the NF2 mRNA. Sequence analysis confirmed that this AS isoform omitted exons 11, 12, 13, 14, 15 and 16. Immunoprecipitation and western blot analysis demonstrated that the AS isoform was highly expressed in the HSCs at 38 kDa, while the wild-type (WT) isoform, which was expected at 66 kDa, was undetectable. Transfection and cell proliferation assays revealed that the WT isoform exhibited significant growth inhibition, while the AS isoform did not suppress cell growth. In conclusion, the present study detected AS NF2 isoforms in HSC for the first time, and investigated the function of the principle AS isoform. The present study suggests that although HSCs have an undetectable level of WT isoform of the NF2 protein

  6. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain

    PubMed Central

    Olsen, Shaun K.; Li, James Y.H.; Bromleigh, Carrie; Eliseenkova, Anna V.; Ibrahimi, Omar A.; Lao, Zhimin; Zhang, Fuming; Linhardt, Robert J.; Joyner, Alexandra L.; Mohammadi, Moosa

    2006-01-01

    Two of the four human FGF8 splice isoforms, FGF8a and FGF8b, are expressed in the mid-hindbrain region during development. Although the only difference between these isoforms is the presence of an additional 11 amino acids at the N terminus of FGF8b, these isoforms possess remarkably different abilities to pattern the midbrain and anterior hindbrain. To reveal the structural basis by which alternative splicing modulates the organizing activity of FGF8, we solved the crystal structure of FGF8b in complex with the “c” splice isoform of FGF receptor 2 (FGFR2c). Using surface plasmon resonance (SPR), we also characterized the receptor-binding specificity of FGF8a and FGF8b, the “b” isoform of FGF17 (FGF17b), and FGF18. The FGF8b-FGFR2c structure shows that alternative splicing permits a single additional contact between phenylalanine 32 (F32) of FGF8b and a hydrophobic groove within Ig domain 3 of the receptor that is also present in FGFR1c, FGFR3c, and FGFR4. Consistent with the structure, mutation of F32 to alanine reduces the affinity of FGF8b toward all these receptors to levels characteristic of FGF8a. More importantly, analysis of the mid-hindbrain patterning ability of the FGF8bF32A mutant in chick embryos and murine midbrain explants shows that this mutation functionally converts FGF8b to FGF8a. Moreover, our data suggest that the intermediate receptor-binding affinities of FGF17b and FGF18, relative to FGF8a and FGF8b, also account for the distinct patterning abilities of these two ligands. We also show that the mode of FGF8 receptor-binding specificity is distinct from that of other FGFs and provide the first biochemical evidence for a physiological FGF8b-FGFR1c interaction during mid-hindbrain development. Consistent with the indispensable role of FGF8 in embryonic development, we show that the FGF8 mode of receptor binding appeared as early as in nematodes and has been preserved throughout evolution. PMID:16384934

  7. Structural Basis by Which Alternative Splicing Modulates the Organizer Activity of FGF8 in the Brain

    SciTech Connect

    Olsen,S.; Li, J.; Eliseenkova, A.; Ibrahimi, O.; Lao, Z.; Zhang, F.; Linhardt, R.; Joyner, A.; Mohammadi, M.

    2006-01-01

    Two of the four human FGF8 splice isoforms, FGF8a and FGF8b, are expressed in the mid-hindbrain region during development. Although the only difference between these isoforms is the presence of an additional 11 amino acids at the N terminus of FGF8b, these isoforms possess remarkably different abilities to pattern the midbrain and anterior hindbrain. To reveal the structural basis by which alternative splicing modulates the organizing activity of FGF8, we solved the crystal structure of FGF8b in complex with the 'c' splice isoform of FGF receptor 2 (FGFR2c). Using surface plasmon resonance (SPR), we also characterized the receptor-binding specificity of FGF8a and FGF8b, the 'b' isoform of FGF17 (FGF17b), and FGF18. The FGF8b-FGFR2c structure shows that alternative splicing permits a single additional contact between phenylalanine 32 (F32) of FGF8b and a hydrophobic groove within Ig domain 3 of the receptor that is also present in FGFR1c, FGFR3c, and FGFR4. Consistent with the structure, mutation of F32 to alanine reduces the affinity of FGF8b toward all these receptors to levels characteristic of FGF8a. More importantly, analysis of the mid-hindbrain patterning ability of the FGF8b{sup F32A} mutant in chick embryos and murine midbrain explants shows that this mutation functionally converts FGF8b to FGF8a. Moreover, our data suggest that the intermediate receptor-binding affinities of FGF17b and FGF18, relative to FGF8a and FGF8b, also account for the distinct patterning abilities of these two ligands. We also show that the mode of FGF8 receptor-binding specificity is distinct from that of other FGFs and provide the first biochemical evidence for a physiological FGF8b-FGFR1c interaction during mid-hindbrain development. Consistent with the indispensable role of FGF8 in embryonic development, we show that the FGF8 mode of receptor binding appeared as early as in nematodes and has been preserved throughout evolution.

  8. Loss of Pnn expression attenuates expression levels of SR family splicing factors and modulates alternative pre-mRNA splicing in vivo

    SciTech Connect

    Chiu Yali; Ouyang Pin . E-mail: ouyang@mail.cgu.edu.tw

    2006-03-10

    SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function.

  9. Loss of Pnn expression attenuates expression levels of SR family splicing factors and modulates alternative pre-mRNA splicing in vivo.

    PubMed

    Chiu, Yali; Ouyang, Pin

    2006-03-10

    SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function. PMID:16430868

  10. An extensive program of periodic alternative splicing linked to cell cycle progression

    PubMed Central

    Dominguez, Daniel; Tsai, Yi-Hsuan; Weatheritt, Robert; Wang, Yang; Blencowe, Benjamin J; Wang, Zefeng

    2016-01-01

    Progression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1300 genes with cell cycle-dependent AS changes. These genes are significantly enriched in functions linked to cell cycle control, yet they do not significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level undergoes cell cycle-dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various cancers. These results thus reveal a large program of CLK1-regulated periodic AS intimately associated with cell cycle control. DOI: http://dx.doi.org/10.7554/eLife.10288.001 PMID:27015110

  11. Targeted alternative splicing of TAF4: a new strategy for cell reprogramming

    PubMed Central

    Kazantseva, Jekaterina; Sadam, Helle; Neuman, Toomas; Palm, Kaia

    2016-01-01

    Reprogramming of somatic cells has become a versatile tool for biomedical research and for regenerative medicine. In the current study, we show that manipulating alternative splicing (AS) is a highly potent strategy to produce cells for therapeutic applications. We demonstrate that silencing of hTAF4-TAFH activity of TAF4 converts human facial dermal fibroblasts to melanocyte-like (iMel) cells. iMel cells produce melanin and express microphthalmia-associated transcription factor (MITF) and its target genes at levels comparable to normal melanocytes. Reprogramming of melanoma cells by manipulation with hTAF4-TAFH activity upon TAFH RNAi enforces cell differentiation towards chondrogenic pathway, whereas ectoptic expression of TAF4 results in enhanced multipotency and neural crest-like features in melanoma cells. In both cell states, iMels and cancer cells, hTAF4-TAFH activity controls migration by supporting E- to N-cadherin switches. From our data, we conclude that targeted splicing of hTAF4-TAFH coordinates AS of other TFIID subunits, underscoring the role of TAF4 in synchronised changes of Pol II complex composition essential for efficient cellular reprogramming. Taken together, targeted AS of TAF4 provides a unique strategy for generation of iMels and recapitulating stages of melanoma progression. PMID:27499390

  12. Insect herbivory elicits genome-wide alternative splicing responses in Nicotiana attenuata.

    PubMed

    Ling, Zhihao; Zhou, Wenwu; Baldwin, Ian T; Xu, Shuqing

    2015-10-01

    Changes in gene expression and alternative splicing (AS) are involved in many responses to abiotic and biotic stresses in eukaryotic organisms. In response to attack and oviposition by insect herbivores, plants elicit rapid changes in gene expression which are essential for the activation of plant defenses; however, the herbivory-induced changes in AS remain unstudied. Using mRNA sequencing, we performed a genome-wide analysis on tobacco hornworm (Manduca sexta) feeding-induced AS in both leaves and roots of Nicotiana attenuata. Feeding by M. sexta for 5 h reduced total AS events by 7.3% in leaves but increased them in roots by 8.0% and significantly changed AS patterns in leaves and roots of existing AS genes. Feeding by M. sexta also resulted in increased (in roots) and decreased (in leaves) transcript levels of the serine/arginine-rich (SR) proteins that are involved in the AS machinery of plants and induced changes in SR gene expression that were jasmonic acid (JA)-independent in leaves but JA-dependent in roots. Changes in AS and gene expression elicited by M. sexta feeding were regulated independently in both tissues. This study provides genome-wide evidence that insect herbivory induces changes not only in the levels of gene expression but also in their splicing, which might contribute to defense against and/or tolerance of herbivory. PMID:26306554

  13. Impact of Ultrabithorax alternative splicing on Drosophila embryonic nervous system development.

    PubMed

    Geyer, Aenne; Koltsaki, Ioanna; Hessinger, Christian; Renner, Simone; Rogulja-Ortmann, Ana

    2015-11-01

    Hox genes control divergent segment identities along the anteroposterior body axis of bilateral animals by regulating a large number of processes in a cell context-specific manner. How Hox proteins achieve this functional diversity is a long-standing question in developmental biology. In this study we investigate the role of alternative splicing in functional specificity of the Drosophila Hox gene Ultrabithorax (Ubx). We focus specifically on the embryonic central nervous system (CNS) and provide a description of temporal expression patterns of three major Ubx isoforms during development of this tissue. These analyses imply distinct functions for individual isoforms in different stages of neural development. We also examine the set of Ubx isoforms expressed in two isoform-specific Ubx mutant strains and analyze for the first time the effects of splicing defects on regional neural stem cell (neuroblast) identity. Our findings support the notion of specific isoforms having different effects in providing individual neuroblasts with positional identity along the anteroposterior body axis, as well as being involved in regulation of progeny cell fate.

  14. Comprehensive identification of internal structure and alternative splicing events in circular RNAs.

    PubMed

    Gao, Yuan; Wang, Jinfeng; Zheng, Yi; Zhang, Jinyang; Chen, Shuai; Zhao, Fangqing

    2016-01-01

    Although previous studies demonstrated circular RNAs (circRNAs) does not exclusively comprise mRNA exons, no study has extensively explored their internal structure. By combining an algorithm with long-read sequencing data and experimental validation, we, for the first time, comprehensively investigate internal components of circRNAs in 10 human cell lines and 62 fruit fly samples, and reveal the prevalence of alternative splicing (AS) events within circRNAs. Significantly, a large proportion of circRNA AS exons can hardly be detected in mRNAs and are enriched with binding sites of distinct splicing factors from those enriched in mRNA exons. We find that AS events in circRNAs have a preference towards nucleus localization and exhibit tissue- and developmental stage-specific expression patterns. This study suggests an independent regulation on the biogenesis or decay of AS events in circRNAs and the identified circular AS isoforms provide targets for future studies on circRNA formation and function. PMID:27350239

  15. Comprehensive identification of internal structure and alternative splicing events in circular RNAs

    PubMed Central

    Gao, Yuan; Wang, Jinfeng; Zheng, Yi; Zhang, Jinyang; Chen, Shuai; Zhao, Fangqing

    2016-01-01

    Although previous studies demonstrated circular RNAs (circRNAs) does not exclusively comprise mRNA exons, no study has extensively explored their internal structure. By combining an algorithm with long-read sequencing data and experimental validation, we, for the first time, comprehensively investigate internal components of circRNAs in 10 human cell lines and 62 fruit fly samples, and reveal the prevalence of alternative splicing (AS) events within circRNAs. Significantly, a large proportion of circRNA AS exons can hardly be detected in mRNAs and are enriched with binding sites of distinct splicing factors from those enriched in mRNA exons. We find that AS events in circRNAs have a preference towards nucleus localization and exhibit tissue- and developmental stage-specific expression patterns. This study suggests an independent regulation on the biogenesis or decay of AS events in circRNAs and the identified circular AS isoforms provide targets for future studies on circRNA formation and function. PMID:27350239

  16. Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism

    NASA Astrophysics Data System (ADS)

    Zandany, Nitzan; Marciano, Shir; Magidovich, Elhanan; Frimerman, Teddy; Yehezkel, Rinat; Shem-Ad, Tzilhav; Lewin, Limor; Abdu, Uri; Orr, Irit; Yifrach, Ofer

    2015-03-01

    Ion channel clustering at the post-synaptic density serves a fundamental role in action potential generation and transmission. Here, we show that interaction between the Shaker Kv channel and the PSD-95 scaffold protein underlying channel clustering is modulated by the length of the intrinsically disordered C terminal channel tail. We further show that this tail functions as an entropic clock that times PSD-95 binding. We thus propose a ‘ball and chain’ mechanism to explain Kv channel binding to scaffold proteins, analogous to the mechanism describing channel fast inactivation. The physiological relevance of this mechanism is demonstrated in that alternative splicing of the Shaker channel gene to produce variants of distinct tail lengths resulted in differential channel cell surface expression levels and clustering metrics that correlate with differences in affinity of the variants for PSD-95. We suggest that modulating channel clustering by specific spatial-temporal spliced variant targeting serves a fundamental role in nervous system development and tuning.

  17. PDK2-mediated alternative splicing switches Bnip3 from cell death to cell survival.

    PubMed

    Gang, Hongying; Dhingra, Rimpy; Lin, Junjun; Hai, Yan; Aviv, Yaron; Margulets, Victoria; Hamedani, Mohammad; Thanasupawat, Thatchawan; Leygue, Etienne; Klonisch, Thomas; Davie, James R; Kirshenbaum, Lorrie A

    2015-09-28

    Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1-6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcinomas and promoted survival. Reciprocal inhibition of the Bnip3Δex3/Bnip3FL isoform ratio by inhibiting pyruvate dehydrogenase kinase isoform 2 (PDK2) in Panc-1 cells rapidly induced mitochondrial perturbations and cell death. The findings of the present study reveal a novel survival pathway that functionally couples the unique glycolytic phenotype in cancer cells to hypoxia resistance via a PDK2-dependent mechanism that switches Bnip3 from cell death to survival. Discovery of the survival Bnip3Δex3 isoform may fundamentally explain how certain cells resist Bnip3 and avert death during hypoxia.

  18. Insect herbivory elicits genome-wide alternative splicing responses in Nicotiana attenuata.

    PubMed

    Ling, Zhihao; Zhou, Wenwu; Baldwin, Ian T; Xu, Shuqing

    2015-10-01

    Changes in gene expression and alternative splicing (AS) are involved in many responses to abiotic and biotic stresses in eukaryotic organisms. In response to attack and oviposition by insect herbivores, plants elicit rapid changes in gene expression which are essential for the activation of plant defenses; however, the herbivory-induced changes in AS remain unstudied. Using mRNA sequencing, we performed a genome-wide analysis on tobacco hornworm (Manduca sexta) feeding-induced AS in both leaves and roots of Nicotiana attenuata. Feeding by M. sexta for 5 h reduced total AS events by 7.3% in leaves but increased them in roots by 8.0% and significantly changed AS patterns in leaves and roots of existing AS genes. Feeding by M. sexta also resulted in increased (in roots) and decreased (in leaves) transcript levels of the serine/arginine-rich (SR) proteins that are involved in the AS machinery of plants and induced changes in SR gene expression that were jasmonic acid (JA)-independent in leaves but JA-dependent in roots. Changes in AS and gene expression elicited by M. sexta feeding were regulated independently in both tissues. This study provides genome-wide evidence that insect herbivory induces changes not only in the levels of gene expression but also in their splicing, which might contribute to defense against and/or tolerance of herbivory.

  19. Chemical Modifications Mark Alternatively Spliced and Uncapped Messenger RNAs in Arabidopsis[OPEN

    PubMed Central

    Vandivier, Lee E.; Silverman, Ian M.; Wang, Li-San

    2015-01-01

    Posttranscriptional chemical modification of RNA bases is a widespread and physiologically relevant regulator of RNA maturation, stability, and function. While modifications are best characterized in short, noncoding RNAs such as tRNAs, growing evidence indicates that mRNAs and long noncoding RNAs (lncRNAs) are likewise modified. Here, we apply our high-throughput annotation of modified ribonucleotides (HAMR) pipeline to identify and classify modifications that affect Watson-Crick base pairing at three different levels of the Arabidopsis thaliana transcriptome (polyadenylated, small, and degrading RNAs). We find this type of modifications primarily within uncapped, degrading mRNAs and lncRNAs, suggesting they are the cause or consequence of RNA turnover. Additionally, modifications within stable mRNAs tend to occur in alternatively spliced introns, suggesting they regulate splicing. Furthermore, these modifications target mRNAs with coherent functions, including stress responses. Thus, our comprehensive analysis across multiple RNA classes yields insights into the functions of covalent RNA modifications in plant transcriptomes. PMID:26561561

  20. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana

    PubMed Central

    Raczynska, Katarzyna Dorota; Stepien, Agata; Kierzkowski, Daniel; Kalak, Malgorzata; Bajczyk, Mateusz; McNicol, Jim; Simpson, Craig G.; Szweykowska-Kulinska, Zofia; Brown, John W. S.; Jarmolowski, Artur

    2014-01-01

    How alternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcriptase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 5′ splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not correspond to the changes observed in the se-1 mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1 and DCL1, and is similar to the regulation of AS in which CBC is involved. PMID:24137006

  1. Targeted alternative splicing of TAF4: a new strategy for cell reprogramming.

    PubMed

    Kazantseva, Jekaterina; Sadam, Helle; Neuman, Toomas; Palm, Kaia

    2016-01-01

    Reprogramming of somatic cells has become a versatile tool for biomedical research and for regenerative medicine. In the current study, we show that manipulating alternative splicing (AS) is a highly potent strategy to produce cells for therapeutic applications. We demonstrate that silencing of hTAF4-TAFH activity of TAF4 converts human facial dermal fibroblasts to melanocyte-like (iMel) cells. iMel cells produce melanin and express microphthalmia-associated transcription factor (MITF) and its target genes at levels comparable to normal melanocytes. Reprogramming of melanoma cells by manipulation with hTAF4-TAFH activity upon TAFH RNAi enforces cell differentiation towards chondrogenic pathway, whereas ectoptic expression of TAF4 results in enhanced multipotency and neural crest-like features in melanoma cells. In both cell states, iMels and cancer cells, hTAF4-TAFH activity controls migration by supporting E- to N-cadherin switches. From our data, we conclude that targeted splicing of hTAF4-TAFH coordinates AS of other TFIID subunits, underscoring the role of TAF4 in synchronised changes of Pol II complex composition essential for efficient cellular reprogramming. Taken together, targeted AS of TAF4 provides a unique strategy for generation of iMels and recapitulating stages of melanoma progression. PMID:27499390

  2. Differential gene expression and alternative splicing between diploid and tetraploid watermelon

    PubMed Central

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A.; Vajja, Venkata G.; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K.; Levi, Amnon; Wehner, Todd; Reddy, Umesh K.

    2015-01-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits. PMID:25520388

  3. PDK2-mediated alternative splicing switches Bnip3 from cell death to cell survival

    PubMed Central

    Gang, Hongying; Dhingra, Rimpy; Lin, Junjun; Hai, Yan; Aviv, Yaron; Margulets, Victoria; Hamedani, Mohammad; Thanasupawat, Thatchawan; Leygue, Etienne; Klonisch, Thomas; Davie, James R.

    2015-01-01

    Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1–6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcinomas and promoted survival. Reciprocal inhibition of the Bnip3Δex3/Bnip3FL isoform ratio by inhibiting pyruvate dehydrogenase kinase isoform 2 (PDK2) in Panc-1 cells rapidly induced mitochondrial perturbations and cell death. The findings of the present study reveal a novel survival pathway that functionally couples the unique glycolytic phenotype in cancer cells to hypoxia resistance via a PDK2-dependent mechanism that switches Bnip3 from cell death to survival. Discovery of the survival Bnip3Δex3 isoform may fundamentally explain how certain cells resist Bnip3 and avert death during hypoxia. PMID:26416963

  4. PDK2-mediated alternative splicing switches Bnip3 from cell death to cell survival.

    PubMed

    Gang, Hongying; Dhingra, Rimpy; Lin, Junjun; Hai, Yan; Aviv, Yaron; Margulets, Victoria; Hamedani, Mohammad; Thanasupawat, Thatchawan; Leygue, Etienne; Klonisch, Thomas; Davie, James R; Kirshenbaum, Lorrie A

    2015-09-28

    Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1-6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcinomas and promoted survival. Reciprocal inhibition of the Bnip3Δex3/Bnip3FL isoform ratio by inhibiting pyruvate dehydrogenase kinase isoform 2 (PDK2) in Panc-1 cells rapidly induced mitochondrial perturbations and cell death. The findings of the present study reveal a novel survival pathway that functionally couples the unique glycolytic phenotype in cancer cells to hypoxia resistance via a PDK2-dependent mechanism that switches Bnip3 from cell death to survival. Discovery of the survival Bnip3Δex3 isoform may fundamentally explain how certain cells resist Bnip3 and avert death during hypoxia. PMID:26416963

  5. Differential gene expression and alternative splicing between diploid and tetraploid watermelon.

    PubMed

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A; Vajja, Venkata G; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K; Levi, Amnon; Wehner, Todd; Reddy, Umesh K

    2015-03-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits.

  6. Structural Basis for Regulation of GPR56/ADGRG1 by Its Alternatively Spliced Extracellular Domains.

    PubMed

    Salzman, Gabriel S; Ackerman, Sarah D; Ding, Chen; Koide, Akiko; Leon, Katherine; Luo, Rong; Stoveken, Hannah M; Fernandez, Celia G; Tall, Gregory G; Piao, Xianhua; Monk, Kelly R; Koide, Shohei; Araç, Demet

    2016-09-21

    Adhesion G protein-coupled receptors (aGPCRs) play critical roles in diverse neurobiological processes including brain development, synaptogenesis, and myelination. aGPCRs have large alternatively spliced extracellular regions (ECRs) that likely mediate intercellular signaling; however, the precise roles of ECRs remain unclear. The aGPCR GPR56/ADGRG1 regulates both oligodendrocyte and cortical development. Accordingly, human GPR56 mutations cause myelination defects and brain malformations. Here, we determined the crystal structure of the GPR56 ECR, the first structure of any complete aGPCR ECR, in complex with an inverse-agonist monobody, revealing a GPCR-Autoproteolysis-Inducing domain and a previously unidentified domain that we term Pentraxin/Laminin/neurexin/sex-hormone-binding-globulin-Like (PLL). Strikingly, PLL domain deletion caused increased signaling and characterizes a GPR56 splice variant. Finally, we show that an evolutionarily conserved residue in the PLL domain is critical for oligodendrocyte development in vivo. Thus, our results suggest that the GPR56 ECR has unique and multifaceted regulatory functions, providing novel insights into aGPCR roles in neurobiology. PMID:27657451

  7. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer

    SciTech Connect

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing; Sun, Shiqin; Chen, Xiangmei; Lu, Fengmin

    2014-04-25

    Highlights: • The expression of Fbx4 was significantly lower in HCC tissues. • Novel splicing variants of Fbx4 were identified. • These novel variants are much more abundant in human cancer tissues and cells. • The novel Fbx4 isoforms could promote cell proliferation and migration in vitro. • These isoforms showed less capability for cyclin D1 binding and degradation. - Abstract: Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168–245nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant

  8. Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish

    PubMed Central

    Chen, Nai-Yu; Nagarajan, Govindarajulu; Chiou, Pinwen Peter

    2015-01-01

    Toll-like receptor 9 (TLR9) recognizes and binds unmethylated CpG motifs in DNA, which are found in the genomes of bacteria and DNA viruses. In fish, Tlr9 is highly diverse, with the number of introns ranging from 0 to 4. A fish Tlr9 gene containing two introns has been reported to express two alternatively spliced isoforms, namely gTLR9A (full-length) and gTLR9B (with a truncated Cʹ-terminal signal transducing domain), whose regulation and function remain unclear. Here, we report a unique regulatory mechanism of gTLR9 signaling in orange-spotted grouper (Epinephelus coioides), whose gTlr9 sequence also contains two introns. We demonstrated that the grouper gTlr9 gene indeed has the capacity to produce two gTLR9 isoforms via alternative RNA splicing. We found that gTLR9B could function as a negative regulator to suppress gTLR9 signaling as demonstrated by the suppression of downstream gene expression. Following stimulation with CpG oligodeoxynucleotide (ODN), gTLR9A and gTLR9B were observed to translocate into endosomes and co-localize with ODN and the adaptor protein gMyD88. Both gTLR9A and gTLR9B could interact with gMyD88; however, gTLR9B could not interact with downstream IRAK4 and TRAF6. Further analysis of the expression profile of gTlr9A and gTlr9B upon immune-stimulation revealed that the two isoforms were differentially regulated in a time-dependent manner. Overall, these data suggest that fish TLR9B functions as a negative regulator, and that its temporal expression is mediated by alternative RNA splicing. This has not been observed in mammalian TLR9s and might have been acquired relatively recently in the evolution of fish. PMID:25955250

  9. GLiMMPS: robust statistical model for regulatory variation of alternative splicing using RNA-seq data

    PubMed Central

    2013-01-01

    To characterize the genetic variation of alternative splicing, we develop GLiMMPS, a robust statistical method for detecting splicing quantitative trait loci (sQTLs) from RNA-seq data. GLiMMPS takes into account the individual variation in sequencing coverage and the noise prevalent in RNA-seq data. Analyses of simulated and real RNA-seq datasets demonstrate that GLiMMPS outperforms competing statistical models. Quantitative RT-PCR tests of 26 randomly selected GLiMMPS sQTLs yielded a validation rate of 100%. As population-scale RNA-seq studies become increasingly affordable and popular, GLiMMPS provides a useful tool for elucidating the genetic variation of alternative splicing in humans and model organisms. PMID:23876401

  10. Organization, structure and alternate splicing of the murine RFC-1 gene encoding a folate transporter.

    PubMed

    Tolner, B; Roy, K; Sirotnak, F M

    1997-04-11

    The structural organization of the murine RFC-1 gene encoding a folate transporter has been determined. The entire nucleotide sequence of the L1210 cell RFC-1 cDNA, the 3'- and 5'-untranslated regions and the coding sequence were found to be distributed in eight exons, including six primary exons and alternates to exon 1 and exon 5, spanning 10.4 kb. Splice variants were identified in an L1210 cell cDNA library. The most common incorporates exons 1 through 6, encoding a 58-kDa polypeptide. The two least common incorporate exons 1 and 2, a truncated version of exon 3 and exons 4 through 6; or exons 1 through 4, an alternate to exon 5, and exon 6, encoding polypeptides of 53.6 and 43.4 kDa, respectively. A fourth variant reported earlier (GenBank/EMBL accession No. L36539) by others incorporates what we have found to be an alternate of exon 1 and exons 2 through 6. A relatively GC-rich region of the genome just 5' of exon 1 as well as exon 1a appears to be distinctly promoter-like and encodes a number of putative cis-acting elements. The findings pertaining to alternates of exon 1 suggest that the transcription of RFC-1 variants results from two different promoters.

  11. Large-scale identification and characterization of alternative splicing variants of human gene transcripts using 56 419 completely sequenced and manually annotated full-length cDNAs

    PubMed Central

    Takeda, Jun-ichi; Suzuki, Yutaka; Nakao, Mitsuteru; Barrero, Roberto A.; Koyanagi, Kanako O.; Jin, Lihua; Motono, Chie; Hata, Hiroko; Isogai, Takao; Nagai, Keiichi; Otsuki, Tetsuji; Kuryshev, Vladimir; Shionyu, Masafumi; Yura, Kei; Go, Mitiko; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Wiemann, Stefan; Nomura, Nobuo; Sugano, Sumio; Gojobori, Takashi; Imanishi, Tadashi

    2006-01-01

    We report the first genome-wide identification and characterization of alternative splicing in human gene transcripts based on analysis of the full-length cDNAs. Applying both manual and computational analyses for 56 419 completely sequenced and precisely annotated full-length cDNAs selected for the H-Invitational human transcriptome annotation meetings, we identified 6877 alternative splicing genes with 18 297 different alternative splicing variants. A total of 37 670 exons were involved in these alternative splicing events. The encoded protein sequences were affected in 6005 of the 6877 genes. Notably, alternative splicing affected protein motifs in 3015 genes, subcellular localizations in 2982 genes and transmembrane domains in 1348 genes. We also identified interesting patterns of alternative splicing, in which two distinct genes seemed to be bridged, nested or having overlapping protein coding sequences (CDSs) of different reading frames (multiple CDS). In these cases, completely unrelated proteins are encoded by a single locus. Genome-wide annotations of alternative splicing, relying on full-length cDNAs, should lay firm groundwork for exploring in detail the diversification of protein function, which is mediated by the fast expanding universe of alternative splicing variants. PMID:16914452

  12. Alternative splicing of the guanine nucleotide-binding regulatory protein Go alpha generates four distinct mRNAs.

    PubMed Central

    Murtagh, J J; Moss, J; Vaughan, M

    1994-01-01

    Go alpha a guanine nucleotide-binding (G) protein abundant in brain and other neural tissues, has been implicated in ion channel regulation. Concerted efforts in several laboratories have revealed multiple Go alpha mRNAs and protein isoforms in different contexts. Go alpha is a single copy gene in mammalian species, although the structure, number and tissue localization of Go alpha mRNAs reported by investigators are inconsistent. To define the cell-specific expression of alternatively spliced variants of Go alpha mRNA, we employed several strategies, including Northern hybridizations with sequences-specific oligonucleotides, selective digestions of Go alpha mRNA using RNase H, and adaptations of the polymerase chain reaction. Four distinct alternatively spliced variants were identified, a 5.7-kb Go alpha 2 mRNA and three Go alpha 1 mRNAs with different 3' UTRs. The UTRs of the three Go alpha 1s are composed of different combinations of what have been referred to as UTR-A and UTR-B. The sequences of the spliced segments are well conserved among mammalian species, suggesting a functional role for these alternatively spliced 3' UTRs in post-transcriptional and/or tissue-specific regulation of Go alpha expression. The position of the intron-exon splice boundary at nucleotide 31 following T of the TGA stop codon is conserved in the Gi alpha 2 and Gi alpha 3 genes, consistent with the notion that similar alternative splicing of 3' UTRs occurs in products of these related genes. Images PMID:8139926

  13. Neu differentiation factors: A family of alternatively spliced neuronal and mesenchymal factors

    SciTech Connect

    Ben-Baruch, N.; Yarden Y.

    1994-12-31

    The Neu proto-oncogene (also called ErbB-2 and HER-2) encodes a tyrosine kinase transmembrane receptor homologous to the epidermal growth factor (EGF-R). Overexpression, a point-mutation, and co-expression with EGF-R activate the oncogenic potential of the Neu protein by permanent coupling to signal transducing pathways. The search for ligands that elevate tyrosine phosphorylation of Neu led to the discovery of a 44-kDa glycoprotein that acts either as a differentiation factor or as a mitogen for mammary tumor cells. This protein, termed Neu differentiation factor (NDF), is derived from a transmembrane precursor that contains an EGF-like motif and an immunoglobulin-like domain. Alternative splicing generates a dozen NDF-related proteins that are expressed in a variety of mesenchymal and neuronal tissues. This unprecedented multiplicity raises the possibility that different isoforms fulfill distinct biological roles. 22 refs., 2 figs., 1 tab.

  14. Sequence Discrimination by Alternatively Spliced Isoforms of a DNA Binding Zinc Finger Domain

    NASA Astrophysics Data System (ADS)

    Gogos, Joseph A.; Hsu, Tien; Bolton, Jesse; Kafatos, Fotis C.

    1992-09-01

    Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.

  15. Alternative splicing in the 5' moiety of the H-2Kd gene transcript.

    PubMed Central

    Transy, C; Lalanne, J L; Kourilsky, P

    1984-01-01

    The H-2Kd gene, which encodes a mouse major transplantation antigen, was transfected into L TK- mouse fibroblasts. Two transcripts of the gene were detected by S1 nuclease mapping analysis. They correspond to two previously characterized cDNA clones isolated from DBA/2 mouse liver RNA, leading to the conclusion that the H-2Kd gene gives rise to two distinct transcripts through an alternate use of splicing sites. The non-canonical RNA potentially encodes a so far undescribed H-2Kd-like molecule. It is present in all tissues tested (liver, spleen, thymus, kidney) albeit in lower amounts (approximately 10-fold less) than the canonical RNA coding for H-2Kd. Images Fig. 2. Fig. 3. PMID:6094182

  16. TMEM16A alternative splicing isoforms in Xenopus tropicalis: distribution and functional properties.

    PubMed

    Huanosta-Gutiérrez, A; Espino-Saldaña, A E; Reyes, J P; Pétriz, A; Miledi, R; Martínez-Torres, A

    2014-04-18

    Oocytes of Xenopus tropicalis elicit a Ca(2+)-dependent outwardly rectifying, low-activating current (ICl,Ca) that is inhibited by Cl(-) channel blockers. When inactivated, ICl,Ca shows an exponentially decaying tail current that is related to currents generated by TMEM16A ion channels. Accordingly, RT-PCR revealed the expression of five alternatively spliced isoforms of TMEM16A in oocytes, which, after expression in HEK-293 cells, gave rise to fully functional Cl(-) channels. Upon hyperpolarization to -80 mV a transient current was observed only in isoforms that carry the exon 1d, coding for two potentially phosphorylatable Threonine residues. The identified isoforms are differentially expressed in several tissues of the frog. Thus, it appears that X. tropicalis oocytes express TMEM16A that gives rise to a Ca(2+)-dependent Cl(-) current, which is different from the previously reported voltage-dependent outwardly rectifying Cl(-) current. PMID:24661876

  17. The relationship between HMGCR genetic variation, alternative splicing, and statin efficacy.

    PubMed

    Medina, Marisa Wong

    2010-06-01

    Statins are a class of cholesterol lowering drugs that inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the enzyme which catalyzes the rate limiting step of cholesterol biosynthesis. Although numerous trials have demonstrated statin efficacy in the reduction of cardiovascular disease risk, there is substantial variation between individuals in the magnitude of plasma LDL-cholesterol reduction. Pharmacogenetic studies have identified HMGCR genetic variation associated with this inter-individual variation. Here we describe how these studies lead to the discovery that HMGCR alternative splicing of exon 13 is not only a marker, but also a determinant of statin efficacy; not only for the treatment of hypercholesterolemia, but also as a chemopreventive agent for colorectal cancer.

  18. The alternative splicing factor Nova2 regulates vascular development and lumen formation.

    PubMed

    Giampietro, Costanza; Deflorian, Gianluca; Gallo, Stefania; Di Matteo, Anna; Pradella, Davide; Bonomi, Serena; Belloni, Elisa; Nyqvist, Daniel; Quaranta, Valeria; Confalonieri, Stefano; Bertalot, Giovanni; Orsenigo, Fabrizio; Pisati, Federica; Ferrero, Elisabetta; Biamonti, Giuseppe; Fredrickx, Evelien; Taveggia, Carla; Wyatt, Chris D R; Irimia, Manuel; Di Fiore, Pier Paolo; Blencowe, Benjamin J; Dejana, Elisabetta; Ghigna, Claudia

    2015-01-01

    Vascular lumen formation is a fundamental step during angiogenesis; yet, the molecular mechanisms underlying this process are poorly understood. Recent studies have shown that neural and vascular systems share common anatomical, functional and molecular similarities. Here we show that the organization of endothelial lumen is controlled at the post-transcriptional level by the alternative splicing (AS) regulator Nova2, which was previously considered to be neural cell-specific. Nova2 is expressed during angiogenesis and its depletion disrupts vascular lumen formation in vivo. Similarly, Nova2 depletion in cultured endothelial cells (ECs) impairs the apical distribution and the downstream signalling of the Par polarity complex, resulting in altered EC polarity, a process required for vascular lumen formation. These defects are linked to AS changes of Nova2 target exons affecting the Par complex and its regulators. Collectively, our results reveal that Nova2 functions as an AS regulator in angiogenesis and is a novel member of the 'angioneurins' family. PMID:26446569

  19. Phosphorylation and Alternative Splicing of 7B2 Reduce Prohormone Convertase 2 Activation

    PubMed Central

    Ramos-Molina, Bruno

    2015-01-01

    FAM20C is a secretory kinase responsible for the phosphorylation of multiple secreted proteins in mammalian cells; it has been shown to phosphorylate serine residues within a variety of different bone proteins. In this work we demonstrate that FAM20C also phosphorylates threonines, specifically those within the N-terminal domain of the neuroendocrine chaperone 7B2. Analysis of the primary sequence of 7B2 revealed that three threonine residues in its N-terminal domain are located within FAM20C consensus motifs: Thr73, Thr99, and Thr111. The individual substitution of Thr73 and Thr111 residues by neutral alanines caused a marked decrease in the total phosphorylation of 7B2. Furthermore, the phosphomimetic substitution of Thr111 by Glu clearly diminished the ability of 7B2 to activate pro-prohormone convertase 2 (PC2) in 7B2-lacking SK-N-MC neuroblastoma cells, suggesting that the phosphorylation of this residue critically impacts the 7B2-proPC2 interaction. However, the phosphomimetic mutation did not alter 7B2's ability to function as an antiaggregant for human islet amyloid polypeptide. FAM20C-mediated phosphorylation of a common alternatively spliced variant of human 7B2 that lacks Ala100 (thus eliminating the Thr99 phosphorylation consensus site) was similar to the Ala-containing protein, but this variant did not activate proPC2 as efficiently as the Ala-containing protein. Although threonines within 7B2 were phosphorylated efficiently, FAM20C was incapable of performing the well-known regulatory threonine phosphorylation of the molecular chaperone binding immunoglobulin protein. Taken together, these results indicate that FAM20C plays a role in 7B2-mediated proPC2 activation by phosphorylating residue Thr111; and that 7B2 function is regulated by alternative splicing. PMID:25811241

  20. Alternative splicing of interleukin-33 and type 2 inflammation in asthma

    PubMed Central

    Gordon, Erin D.; Simpson, Laura J.; Rios, Cydney L.; Ringel, Lando; Peters, Michael C.; Wesolowska-Andersen, Agata; Gonzalez, Jeanmarie R.; MacLeod, Hannah J.; Christian, Laura S.; Barry, Liam; Woodruff, Prescott G.; Ansel, K. Mark; Nocka, Karl; Seibold, Max A.; Fahy, John V.

    2016-01-01

    Type 2 inflammation occurs in a large subgroup of asthmatics, and novel cytokine-directed therapies are being developed to treat this population. In mouse models, interleukin-33 (IL-33) activates lung resident innate lymphoid type 2 cells (ILC2s) to initiate airway type 2 inflammation. In human asthma, which is chronic and difficult to model, the role of IL-33 and the target cells responsible for persistent type 2 inflammation remain undefined. Full-length IL-33 is a nuclear protein and may function as an “alarmin” during cell death, a process that is uncommon in chronic stable asthma. We demonstrate a previously unidentified mechanism of IL-33 activity that involves alternative transcript splicing, which may operate in stable asthma. In human airway epithelial cells, alternative splicing of the IL-33 transcript is consistently present, and the deletion of exons 3 and 4 (Δ exon 3,4) confers cytoplasmic localization and facilitates extracellular secretion, while retaining signaling capacity. In nonexacerbating asthmatics, the expression of Δ exon 3,4 is strongly associated with airway type 2 inflammation, whereas full-length IL-33 is not. To further define the extracellular role of IL-33 in stable asthma, we sought to determine the cellular targets of its activity. Comprehensive flow cytometry and RNA sequencing of sputum cells suggest basophils and mast cells, not ILC2s, are the cellular sources of type 2 cytokines in chronic asthma. We conclude that IL-33 isoforms activate basophils and mast cells to drive type 2 inflammation in chronic stable asthma, and novel IL-33 inhibitors will need to block all biologically active isoforms. PMID:27432971

  1. Alternative splicing of interleukin-33 and type 2 inflammation in asthma.

    PubMed

    Gordon, Erin D; Simpson, Laura J; Rios, Cydney L; Ringel, Lando; Lachowicz-Scroggins, Marrah E; Peters, Michael C; Wesolowska-Andersen, Agata; Gonzalez, Jeanmarie R; MacLeod, Hannah J; Christian, Laura S; Yuan, Shaopeng; Barry, Liam; Woodruff, Prescott G; Ansel, K Mark; Nocka, Karl; Seibold, Max A; Fahy, John V

    2016-08-01

    Type 2 inflammation occurs in a large subgroup of asthmatics, and novel cytokine-directed therapies are being developed to treat this population. In mouse models, interleukin-33 (IL-33) activates lung resident innate lymphoid type 2 cells (ILC2s) to initiate airway type 2 inflammation. In human asthma, which is chronic and difficult to model, the role of IL-33 and the target cells responsible for persistent type 2 inflammation remain undefined. Full-length IL-33 is a nuclear protein and may function as an "alarmin" during cell death, a process that is uncommon in chronic stable asthma. We demonstrate a previously unidentified mechanism of IL-33 activity that involves alternative transcript splicing, which may operate in stable asthma. In human airway epithelial cells, alternative splicing of the IL-33 transcript is consistently present, and the deletion of exons 3 and 4 (Δ exon 3,4) confers cytoplasmic localization and facilitates extracellular secretion, while retaining signaling capacity. In nonexacerbating asthmatics, the expression of Δ exon 3,4 is strongly associated with airway type 2 inflammation, whereas full-length IL-33 is not. To further define the extracellular role of IL-33 in stable asthma, we sought to determine the cellular targets of its activity. Comprehensive flow cytometry and RNA sequencing of sputum cells suggest basophils and mast cells, not ILC2s, are the cellular sources of type 2 cytokines in chronic asthma. We conclude that IL-33 isoforms activate basophils and mast cells to drive type 2 inflammation in chronic stable asthma, and novel IL-33 inhibitors will need to block all biologically active isoforms. PMID:27432971

  2. Long Non-Coding RNA and Alternative Splicing Modulations in Parkinson's Leukocytes Identified by RNA Sequencing

    PubMed Central

    Soreq, Lilach; Guffanti, Alessandro; Salomonis, Nathan; Simchovitz, Alon; Israel, Zvi; Bergman, Hagai; Soreq, Hermona

    2014-01-01

    The continuously prolonged human lifespan is accompanied by increase in neurodegenerative diseases incidence, calling for the development of inexpensive blood-based diagnostics. Analyzing blood cell transcripts by RNA-Seq is a robust means to identify novel biomarkers that rapidly becomes a commonplace. However, there is lack of tools to discover novel exons, junctions and splicing events and to precisely and sensitively assess differential splicing through RNA-Seq data analysis and across RNA-Seq platforms. Here, we present a new and comprehensive computational workflow for whole-transcriptome RNA-Seq analysis, using an updated version of the software AltAnalyze, to identify both known and novel high-confidence alternative splicing events, and to integrate them with both protein-domains and microRNA binding annotations. We applied the novel workflow on RNA-Seq data from Parkinson's disease (PD) patients' leukocytes pre- and post- Deep Brain Stimulation (DBS) treatment and compared to healthy controls. Disease-mediated changes included decreased usage of alternative promoters and N-termini, 5′-end variations and mutually-exclusive exons. The PD regulated FUS and HNRNP A/B included prion-like domains regulated regions. We also present here a workflow to identify and analyze long non-coding RNAs (lncRNAs) via RNA-Seq data. We identified reduced lncRNA expression and selective PD-induced changes in 13 of over 6,000 detected leukocyte lncRNAs, four of which were inversely altered post-DBS. These included the U1 spliceosomal lncRNA and RP11-462G22.1, each entailing sequence complementarity to numerous microRNAs. Analysis of RNA-Seq from PD and unaffected controls brains revealed over 7,000 brain-expressed lncRNAs, of which 3,495 were co-expressed in the leukocytes including U1, which showed both leukocyte and brain increases. Furthermore, qRT-PCR validations confirmed these co-increases in PD leukocytes and two brain regions, the amygdala and substantia

  3. Alternative promoter usage and mRNA splicing pathways for parathyroid hormone-related protein in normal tissues and tumours.

    PubMed Central

    Southby, J.; O'Keeffe, L. M.; Martin, T. J.; Gillespie, M. T.

    1995-01-01

    The parathyroid hormone-related protein (PTHrP) gene consists of nine exons and allows the production of multiple PTHrP mRNA species via the use of three promoters and 5' and 3' alternative splicing; as a result of 3' alternative splicing one of three protein isoforms may be produced. This organisation has potential for tissue-specific splicing patterns. We examined PTHrP mRNA expression and splicing patterns in a series of tumours and normal tissues, using the sensitive reverse transcription-polymerase chain reaction (RT-PCR) technique. Use of promoter 3 and mRNA specifying the 141 amino acid PTHrP isoform were detected in all samples. Transcripts encoding the 139 amino acid isoform were detected in all but two samples. Use of promoters 1 and 2 was less widespread as was detection of mRNA encoding the 173 amino acid isoform. While different PTHrP splicing patterns were observed between tumours, no tissue- or tumour-specific transcripts were detected. In comparing normal and tumour tissue from the same patient, an increase in the number of promoters utilised was observed in the tumour tissue. Furthermore, mRNA for the PTH/PTHrP receptor was detected in all samples, thus the PTHrP produced by these tumours may potentially act in an autocrine or paracrine fashion. Images Figure 2 PMID:7669584

  4. THE GRK4 SUBFAMILY OF G PROTEIN-COUPLED RECEPTOR KINASES: ALTERNATIVE SPLICING, GENE ORGANIZATION, AND SEQUENCE CONSERVATION

    EPA Science Inventory

    The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.

    Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.

    Department of Medicine, Howard Hughes Medical Institute, Duke Univer...

  5. Identification, mRNA Expression, and Functional Analysis of Chitin Synthase 1 Gene and Its Two Alternative Splicing Variants in Oriental Fruit Fly, Bactrocera dorsalis

    PubMed Central

    Yang, Wen-Jia; Xu, Kang-Kang; Cong, Lin; Wang, Jin-Jun

    2013-01-01

    Two alternative splicing variants of chitin synthase 1 gene (BdCHS1) were cloned and characterized from the oriental fruit fly, Bactrocera dorsalis (Hendel). The cDNA of both variants (BdCHS1a and BdCHS1b) consisted of 5,552 nucleotides (nt), with an open reading frame (ORF) of 4,776 nt, encoding a protein of 1,592 amino acid residues, plus 685- and 88-nt of 5′- and 3′-noncoding regions, respectively. The alternative splicing site was located between positions 3,784-3,960 and formed a pair of mutually exclusive exons (a/b) that were same in size (177 nt), but showed only 65% identity at the nucleotide level. During B. dorsalis growth and development, BdCHS1 and BdCHS1a were both mainly expressed during the larval-pupal and pupal-adult transitions, while BdCHS1b was mainly expressed during pupal-adult metamorphosis and in the middle of the pupal stage. BdCHS1a was predominately expressed in the integument whereas BdCHS1b was mainly expressed in the trachea. The 20-hydroxyecdysone (20E) induced the expression of BdCHS1 and its variants. Injection of dsRNA of BdCHS1, BdCHS1a, and BdCHS1b into third-instar larvae significantly reduced the expression levels of the corresponding variants, generated phenotypic defects, and killed most of the treated larvae. Furthermore, silencing of BdCHS1 and BdCHS1a had a similar result in that the larva was trapped in old cuticle and died without tanning completely, while silencing of BdCHS1b has no effect on insect morphology. These results demonstrated that BdCHS1 plays an important role in the larval-pupal transition and the expression of BdCHS1 in B. dorsalis is regulated by 20E. PMID:23569438

  6. Alternative splicing determines the function of CYP4F3 by switching substrate specificity.

    PubMed

    Christmas, P; Jones, J P; Patten, C J; Rock, D A; Zheng, Y; Cheng, S M; Weber, B M; Carlesso, N; Scadden, D T; Rettie, A E; Soberman, R J

    2001-10-12

    Diversity of cytochrome P450 function is determined by the expression of multiple genes, many of which have a high degree of identity. We report that the use of alternate exons, each coding for 48 amino acids, generates isoforms of human CYP4F3 that differ in substrate specificity, tissue distribution, and biological function. Both isoforms contain a total of 520 amino acids. CYP4F3A, which incorporates exon 4, inactivates LTB4 by omega-hydroxylation (Km = 0.68 microm) but has low activity for arachidonic acid (Km = 185 microm); it is the only CYP4F isoform expressed in myeloid cells in peripheral blood and bone marrow. CYP4F3B incorporates exon 3 and is selectively expressed in liver and kidney; it is also the predominant CYP4F isoform in trachea and tissues of the gastrointestinal tract. CYP4F3B has a 30-fold higher Km for LTB4 compared with CYP4F3A, but it utilizes arachidonic acid as a substrate for omega-hydroxylation (Km = 22 microm) and generates 20-HETE, an activator of protein kinase C and Ca2+/calmodulin-dependent kinase II. Homology modeling demonstrates that the alternative exon has a position in the molecule which could enable it to contribute to substrate interactions. The results establish that tissue-specific alternative splicing of pre-mRNA can be used as a mechanism for changing substrate specificity and increasing the functional diversity of cytochrome P450 genes.

  7. Alternative splicing of the AGAMOUS orthologous gene in double flower of Magnolia stellata (Magnoliaceae).

    PubMed

    Zhang, Bo; Liu, Zhi-Xiong; Ma, Jiang; Song, Yi; Chen, Fa-Ju

    2015-12-01

    Magnolia stellata is a woody ornamental shrub with more petaloid tepals than related plants from family Magnoliaceae. Recent studies revealed that expression changes in an AGAMOUS (AG) orthologous gene could resulted in double flowers with increased numbers of petals. We isolated three transcripts encoding different isoforms of a single AG orthologous gene, MastAG, mastag_2 and mastag_3, from M. stellata. Sequence alignments and Southern blot analyses suggested that MastAG was a single-copy gene in M. stellata genomes, and that mastag_2 and mastag_3 were abnormally spliced isoforms of MastAG. An 144bp exon skipping in MastAG results in the truncated mastag_2 protein lacking the completely I domain and 18 aa of the K1 subdomain, whereas an 165bp exon skipping of MastAG produces a truncated mastag_3 protein lacking 6 aa of the K3 subdomain and the completely C terminal region. Expression analyses showed that three alternative splicing (AS) isoforms expressed only in developing stamens and carpels. Functional analyses revealed that MastAG could mimic the endogenous AG to specify carpel identity, but failed to regulate stamen development in an Arabidopsis ag-1 mutant. Moreover, the key domain or subdomain deletions represented by mastag_2 and mastag_3 resulted in loss of C-function. However, ectopic expression of mastag_2 in Arabidopsis produced flowers with sepals converted into carpeloid organs, but without petals and stamens, whereas ectopic expression of mastag_3 in Arabidopsis could mimic the flower phenotype of the ag mutant and produced double flowers with homeotic transformation of stamens into petals and carpels into another ag flower. Our results also suggest that mastag_3 holds some potential for biotechnical engineering to create multi-petal phenotypes in commercial ornamental cultivars.

  8. Alternative splicing of the AGAMOUS orthologous gene in double flower of Magnolia stellata (Magnoliaceae).

    PubMed

    Zhang, Bo; Liu, Zhi-Xiong; Ma, Jiang; Song, Yi; Chen, Fa-Ju

    2015-12-01

    Magnolia stellata is a woody ornamental shrub with more petaloid tepals than related plants from family Magnoliaceae. Recent studies revealed that expression changes in an AGAMOUS (AG) orthologous gene could resulted in double flowers with increased numbers of petals. We isolated three transcripts encoding different isoforms of a single AG orthologous gene, MastAG, mastag_2 and mastag_3, from M. stellata. Sequence alignments and Southern blot analyses suggested that MastAG was a single-copy gene in M. stellata genomes, and that mastag_2 and mastag_3 were abnormally spliced isoforms of MastAG. An 144bp exon skipping in MastAG results in the truncated mastag_2 protein lacking the completely I domain and 18 aa of the K1 subdomain, whereas an 165bp exon skipping of MastAG produces a truncated mastag_3 protein lacking 6 aa of the K3 subdomain and the completely C terminal region. Expression analyses showed that three alternative splicing (AS) isoforms expressed only in developing stamens and carpels. Functional analyses revealed that MastAG could mimic the endogenous AG to specify carpel identity, but failed to regulate stamen development in an Arabidopsis ag-1 mutant. Moreover, the key domain or subdomain deletions represented by mastag_2 and mastag_3 resulted in loss of C-function. However, ectopic expression of mastag_2 in Arabidopsis produced flowers with sepals converted into carpeloid organs, but without petals and stamens, whereas ectopic expression of mastag_3 in Arabidopsis could mimic the flower phenotype of the ag mutant and produced double flowers with homeotic transformation of stamens into petals and carpels into another ag flower. Our results also suggest that mastag_3 holds some potential for biotechnical engineering to create multi-petal phenotypes in commercial ornamental cultivars. PMID:26706078

  9. Kinetic properties of alternatively spliced isoforms of laccase-2 from Tribolium castaneum and Anopheles gambiae

    PubMed Central

    Gorman, Maureen J.; Sullivan, Lucinda I.; Nguyen, Thi D. T.; Dai, Huaien; Arakane, Yasuyuki; Dittmer, Neal T.; Syed, Lateef U.; Li, Jun; Hua, Duy H.; Kanost, Michael R.

    2011-01-01

    Laccase-2 is a highly conserved multicopper oxidase that functions in insect cuticle pigmentation and tanning. In many species, alternative splicing gives rise to two laccase-2 isoforms. A comparison of laccase-2 sequences from three orders of insects revealed eleven positions at which there are conserved differences between the A and B isoforms. Homology modeling suggested that these eleven residues are not part of the substrate binding pocket. To determine whether the isoforms have different kinetic properties, we compared the activity of laccase-2 isoforms from Tribolium castaneum and Anopheles gambiae. We partially purified the four laccases as recombinant enzymes and analyzed their ability to oxidize a range of laccase substrates. The predicted endogenous substrates tested were dopamine, N-acetyldopamine (NADA), N-β-alanyldopamine (NBAD) and dopa, which were detected in T. castaneum previously and in A. gambiae as part of this study. Two additional diphenols (catechol and hydroquinone) and one non-phenolic substrate (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) were also tested. We observed no major differences in substrate specificity between the A and B isoforms. Dopamine, NADA and NBAD were oxidized with catalytic efficiencies ranging from 51 – 550 min−1 mM−1. These results support the hypothesis that dopamine, NADA and NBAD are endogenous substrates for both isoforms of laccase-2. Catalytic efficiencies associated with dopa oxidation were low, ranging from 8 – 30 min−1 mM−1; in comparison, insect tyrosinase oxidized dopa with a catalytic efficiency of 201 min−1 mM−1. We found that dopa had the highest redox potential of the four endogenous substrates, and this property of dopa may explain its poor oxidation by laccase-2. We conclude that laccase-2 splice isoforms are likely to oxidize the same substrates in vivo, and additional experiments will be required to discover any isoform-specific functions. PMID:22198355

  10. Molecular analysis of human argininosuccinate lyase: Mutant characterization and alternative splicing of the coding region

    SciTech Connect

    Walker, D.C. ); McCloskey, D.A.; Simard, L.R.; McInnes, R.R. )

    1990-12-01

    Argininosuccinic acid lyase (ASAL) deficiency is a clinically heterogeneous autosomal recessive urea cycle disorder. The authors previously established by complementation analysis that 29 ASAL-deficient patients have heterogeneous mutations in a single gene. To prove that the ASAL structural gene is the affected locus, they sequenced polymerase chain reaction-amplified ASAL cDNA of a representative mutant from the single complementation group. Fibroblast strain 944 from a late-onset patient who was the product of a consanguineous mating, had only a single base-pair change in the coding region, a C-283{r arrow} T transition at a CpG dinucleotide in exon 3. This substitution converts Arg-95 to Cys (R95C), occurs in a stretch of 13 residues that is identical in yeast and human ASAL, and was present in both of the patient's alleles but not in 14 other mutant or 10 normal alleles. They observed that amplified cDNA from mutant 944 and normal cells (liver, keratinocytes, lymphoblasts, and fibroblasts) contained, in addition to the expected 5{prime} 513-base-pair band, a prominent 318-base-pair ASAL band formed by the splicing of exon 2 from the transcript. The short transcript maintains the ASAL reading frame but removes Lys-51, a residue that may be essential for catalysis, since it binds the argininosuccinate substrate. They conclude (i) that the identification of the R95C mutation in strain 944 demonstrates that virtually all ASAL deficiency results from defects in the ASAL structural gene and (ii) that minor alternative splicing of the coding region occurs at the ASAL locus.

  11. Alternative splicing isoform in succinate dehydrogenase complex, subunit C causes downregulation of succinate-coenzyme Q oxidoreductase activity in mitochondria.

    PubMed

    Satoh, Nana; Yokoyama, Chikako; Itamura, Noriaki; Miyajima-Nakano, Yoshiharu; Hisatomi, Hisashi

    2015-01-01

    Mitochondrial succinate dehydrogenase (SDH) is localized to the inner mitochondrial membrane and is responsible for the redox of succinic acid. SDH is a tetrameric iron-sulfur flavoprotein of the tricarboxylic acid cycle and respiratory chain. The SDH complex, subunit C (SDHC) transcript has deletion-type alternative splicing sites. Generally, alternative splicing produces variant proteins and expression patterns, as products of different genes. In certain cases, specific alternative splicing variants (ASVs) have been associated with human disease. Due to a frameshift mutation causing loss of the heme binding region, the SDHC Δ5 isoform (lacking exon 5) exhibits no SDHC activity. To investigate whether the SDHC splicing variants can function as dominant-negative inhibitors, SDHC ASVs were overexpressed in HCT-15 human colorectal cancer cells. Using real-time reverse transcription-polymerase chain reaction, a dominant-negative effect of the Δ5 isoform on SDHC mRNA was shown. In addition, Δ5 overexpression increased the levels of reactive oxygen species. Furthermore, in the Δ5 isoform-overexpressing cells, SDH activity was reduced. SDHC activation is a significant event during the electron transport chain, and the function of the SDHC Δ5 variant may be significant for the differentiation of tumor cells. PMID:25435987

  12. Identification of recurrent regulated alternative splicing events across human solid tumors

    PubMed Central

    Danan-Gotthold, Miri; Golan-Gerstl, Regina; Eisenberg, Eli; Meir, Keren; Karni, Rotem; Levanon, Erez Y.

    2015-01-01

    Cancer is a complex disease that involves aberrant gene expression regulation. Discriminating the modified expression patterns driving tumor biology from the many that have no or little contribution is important for understanding cancer molecular basis. Recurrent deregulation patterns observed in multiple cancer types are enriched for such driver events. Here, we studied splicing alterations in hundreds of matched tumor and normal RNA-seq samples of eight solid cancer types. We found hundreds of cassette exons for which splicing was altered in multiple cancer types and identified a set of highly frequent altered splicing events. Specific splicing regulators, including RBFOX2, MBNL1/2 and QKI, appear to account for many splicing alteration events in multiple cancer types. Together, our results provide a first global analysis of regulated splicing alterations in cancer and identify common events with a potential causative role in solid tumor development. PMID:25908786

  13. G to A substitution in 5{prime} donor splice site of introns 18 and 48 of COL1A1 gene of type I collagen results in different splicing alternatives in osteogenesis imperfecta type I cell strains

    SciTech Connect

    Willing, M.; Deschenes, S.

    1994-09-01

    We have identified a G to A substitution in the 5{prime} donor splice site of intron 18 of one COL1A1 allele in two unrelated families with osteogenesis imperfecta (OI) type I. A third OI type I family has a G to A substitution at the identical position in intron 48 of one COL1A1 allele. Both mutations abolish normal splicing and lead to reduced steady-state levels of mRNA from the mutant COL1A1 allele. The intron 18 mutation leads to both exon 18 skipping in the mRNA and to utilization of a single alternative splice site near the 3{prime} end of exon 18. The latter results in deletion of the last 8 nucleotides of exon 18 from the mRNA, a shift in the translational reading-frame, and the creation of a premature termination codon in exon 19. Of the potential alternative 5{prime} splice sites in exon 18 and intron 18, the one utilized has a surrounding nucleotide sequence which most closely resembles that of the natural splice site. Although a G to A mutation was detected at the identical position in intron 48 of one COL1A1 allele in another OI type I family, nine complex alternative splicing patterns were identified by sequence analysis of cDNA clones derived from fibroblast mRNA from this cell strain. All result in partial or complete skipping of exon 48, with in-frame deletions of portions of exons 47 and/or 49. The different patterns of RNA splicing were not explained by their sequence homology with naturally occuring 5{prime} splice sites, but rather by recombination between highly homologous exon sequences, suggesting that we may not have identified the major splicing alternative(s) in this cell strain. Both G to A mutations result in decreased production of type I collagen, the common biochemical correlate of OI type I.

  14. Mitogen-Activated Protein Kinase Phosphorylation of Splicing Factor 45 (SPF45) Regulates SPF45 Alternative Splicing Site Utilization, Proliferation, and Cell Adhesion

    PubMed Central

    Al-Ayoubi, Adnan M.; Zheng, Hui; Liu, Yuying; Bai, Tao

    2012-01-01

    The regulation of alternative mRNA splicing factors by extracellular cues and signal transduction cascades is poorly understood. Using an engineered extracellular signal-regulated kinase 2 (ERK2) that can utilize ATP analogs, we have identified the alternative mRNA splicing factor 45 (SPF45), which is overexpressed in cancer, as a novel coimmunoprecipitating ERK2 substrate. ERK2 phosphorylated SPF45 on Thr71 and Ser222 in vitro and in cells in response to H-RasV12, B-RAF-V600E, and activated MEK1. Jun N-terminal kinase 1 (JNK1) and p38α also phosphorylated SPF45 in vitro and associated with SPF45 in cells. SPF45 was differentially phosphorylated in cells by all three mitogen-activated protein (MAP) kinases in response to phorbol myristate acid (PMA), H2O2, UV, and anisomycin stimulation. ERK and p38 activation decreased SPF45-dependent exon 6 exclusion from fas mRNA in a minigene assay in cells. Stable overexpression of SPF45 in SKOV-3 cells dramatically inhibited cell proliferation in a phosphorylation-dependent manner through inhibition of ErbB2 expression. SPF45 overexpression also induced EDA inclusion into fibronectin transcripts and fibronectin expression in a phosphorylation-dependent and -independent manner, respectively, specifically affecting cellular adhesion to a fibronectin matrix. These data identify SPF45 as the first splicing factor regulated by multiple MAP kinase pathways and show effects of both SPF45 overexpression and phosphorylation. PMID:22615491

  15. A genome wide analysis of alternative splicing events during the osteogenic differentiation of human cartilage endplate-derived stem cells.

    PubMed

    Shang, Jin; Wang, Honggang; Fan, Xin; Shangguan, Lei; Liu, Huan

    2016-08-01

    Low back pain is a prevalent disease, which leads to suffering and disabilities in a vast number of individuals. Degenerative disc diseases are usually the underlying causes of low back pain. However, the pathogenesis of degenerative disc diseases is highly complex and difficult to determine. Current therapies for degenerative disc diseases are various. In particular, cell-based therapies have proven to be effective and promising. Our research group has previously isolated and identified the cartilage endplate‑derived stem cells. In addition, alternative splicing is a sophisticated regulatory mechanism, which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. The present study continued to investigate alternative splicing events in osteogenic differentiation of cartilage endplate‑derived stem cells. An Affymetrix Human Transcriptome Array 2.0 was used to detect splicing changes between the control and differentiated samples. Additionally, molecular function and pathway analysis were also performed. Following rigorous bioinformatics analysis of the data, 3,802 alternatively spliced genes were identified, and 10 of these were selected for validation by reverse transcription‑polymerase chain reaction. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis also revealed numerous enriched GO terms and signaling pathways. To the best of our knowledge, the present study is the first to investigate alternative splicing mechanisms in osteogenic differentiation of stem cells on a genome‑wide scale. The illumination of molecular mechanisms of stem cell osteogenic differentiation may assist the development novel bioengineered methods to treat degenerative disc diseases.

  16. A genome wide analysis of alternative splicing events during the osteogenic differentiation of human cartilage endplate-derived stem cells.

    PubMed

    Shang, Jin; Wang, Honggang; Fan, Xin; Shangguan, Lei; Liu, Huan

    2016-08-01

    Low back pain is a prevalent disease, which leads to suffering and disabilities in a vast number of individuals. Degenerative disc diseases are usually the underlying causes of low back pain. However, the pathogenesis of degenerative disc diseases is highly complex and difficult to determine. Current therapies for degenerative disc diseases are various. In particular, cell-based therapies have proven to be effective and promising. Our research group has previously isolated and identified the cartilage endplate‑derived stem cells. In addition, alternative splicing is a sophisticated regulatory mechanism, which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. The present study continued to investigate alternative splicing events in osteogenic differentiation of cartilage endplate‑derived stem cells. An Affymetrix Human Transcriptome Array 2.0 was used to detect splicing changes between the control and differentiated samples. Additionally, molecular function and pathway analysis were also performed. Following rigorous bioinformatics analysis of the data, 3,802 alternatively spliced genes were identified, and 10 of these were selected for validation by reverse transcription‑polymerase chain reaction. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis also revealed numerous enriched GO terms and signaling pathways. To the best of our knowledge, the present study is the first to investigate alternative splicing mechanisms in osteogenic differentiation of stem cells on a genome‑wide scale. The illumination of molecular mechanisms of stem cell osteogenic differentiation may assist the development novel bioengineered methods to treat degenerative disc diseases. PMID:27278552

  17. MYCN controls an alternative RNA splicing program in high-risk metastatic neuroblastoma.

    PubMed

    Zhang, Shile; Wei, Jun S; Li, Samuel Q; Badgett, Tom C; Song, Young K; Agarwal, Saurabh; Coarfa, Cristian; Tolman, Catherine; Hurd, Laura; Liao, Hongling; He, Jianbin; Wen, Xinyu; Liu, Zhihui; Thiele, Carol J; Westermann, Frank; Asgharzadeh, Shahab; Seeger, Robert C; Maris, John M; Guidry Auvil, Jamie M; Smith, Malcolm A; Kolaczyk, Eric D; Shohet, Jason; Khan, Javed

    2016-02-28

    The molecular mechanisms underlying the aggressive behavior of MYCN driven neuroblastoma (NBL) is under intense investigation; however, little is known about the impact of this family of transcription factors on the splicing program. Here we used high-throughput RNA sequencing to systematically study the expression of RNA isoforms in stage 4 MYCN-amplified NBL, an aggressive subtype of metastatic NBL. We show that MYCN-amplified NBL tumors display a distinct gene splicing pattern affecting multiple cancer hallmark functions. Six splicing factors displayed unique differential expression patterns in MYCN-amplified tumors and cell lines, and the binding motifs for some of these splicing factors are significantly enriched in differentially-spliced genes. Direct binding of MYCN to promoter regions of the splicing factors PTBP1 and HNRNPA1 detected by ChIP-seq demonstrates that MYCN controls the splicing pattern by direct regulation of the expression of these key splicing factors. Furthermore, high expression of PTBP1 and HNRNPA1 was significantly associated with poor overall survival of stage4 NBL patients (p ≤ 0.05). Knocking down PTBP1, HNRNPA1 and their downstream target PKM2, an isoform of pro-tumor-growth, result in repressed growth of NBL cells. Therefore, our study reveals a novel role of MYCN in controlling global splicing program through regulation of splicing factors in addition to its well-known role in the transcription program. These findings suggest a therapeutically potential to target the key splicing factors or gene isoforms in high-risk NBL with MYCN-amplification.

  18. MiasDB: A Database of Molecular Interactions Associated with Alternative Splicing of Human Pre-mRNAs

    PubMed Central

    Xing, Yongqiang; Zhao, Xiujuan; Yu, Tao; Liang, Dong; Li, Jun; Wei, Guanyun; Liu, Guoqing; Cui, Xiangjun; Zhao, Hongyu; Cai, Lu

    2016-01-01

    Alternative splicing (AS) is pervasive in human multi-exon genes and is a major contributor to expansion of the transcriptome and proteome diversity. The accurate recognition of alternative splice sites is regulated by information contained in networks of protein-protein and protein-RNA interactions. However, the mechanisms leading to splice site selection are not fully understood. Although numerous databases have been built to describe AS, molecular interaction databases associated with AS have only recently emerged. In this study, we present a new database, MiasDB, that provides a description of molecular interactions associated with human AS events. This database covers 938 interactions between human splicing factors, RNA elements, transcription factors, kinases and modified histones for 173 human AS events. Every entry includes the interaction partners, interaction type, experimental methods, AS type, tissue specificity or disease-relevant information, a simple description of the functionally tested interaction in the AS event and references. The database can be queried easily using a web server (http://47.88.84.236/Miasdb). We display some interaction figures for several genes. With this database, users can view the regulation network describing AS events for 12 given genes. PMID:27167218

  19. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

    PubMed

    Barberán-Soler, Sergio; Fontrodona, Laura; Ribó, Anna; Lamm, Ayelet T; Iannone, Camilla; Cerón, Julián; Lehner, Ben; Valcárcel, Juan

    2014-09-25

    Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations.

  20. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    SciTech Connect

    Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki; Yagi, Hiroaki; Shigaki-Miyamoto, Kaya; Toyota, Syukichi; Azuma, Yuko; Igarashi, Masayuki; Tani, Tokio

    2014-03-28

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A){sup +}RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A){sup +} RNAs comprising mRNAs and poly (A){sup +} non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A){sup +} RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.

  1. Functional Consequences for Apoptosis by Transcription Elongation Regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95 Alternative Splicing

    PubMed Central

    Montes, Marta; Coiras, Mayte; Becerra, Soraya; Moreno-Castro, Cristina; Mateos, Elena; Majuelos, Jara; Oliver, F. Javier; Hernández-Munain, Cristina; Alcamí, José; Suñé, Carlos

    2015-01-01

    Here, we present evidence for a specific role of the splicing-related factor TCERG1 in regulating apoptosis in live cells by modulating the alternative splicing of the apoptotic genes Bcl-x and Fas. We show that TCERG1 modulates Bcl-x alternative splicing during apoptosis and its activity in Bcl-x alternative splicing correlates with the induction of apoptosis, as determined by assessing dead cells, sub-G1-phase cells, annexin-V binding, cell viability, and cleavage of caspase-3 and PARP-1. Furthermore, the effect of TCERG1 on apoptosis involved changes in mitochondrial membrane permeabilization. We also found that depletion of TCERG1 reduces the expression of the activated form of the pro-apoptotic mitochondrial membrane protein Bak, which remains inactive by heterodimerizing with Bcl-xL, preventing the initial step of cytochrome c release in Bak-mediated mitochondrial apoptosis. In addition, we provide evidence that TCERG1 also participates in the death receptor-mediated apoptosis pathway. Interestingly, TCERG1 also modulates Fas/CD95 alternative splicing. We propose that TCERG1 sensitizes a cell to apoptotic agents, thus promoting apoptosis by regulating the alternative splicing of both the Bcl-x and Fas/CD95 genes. Our findings may provide a new link between the control of alternative splicing and the molecular events leading to apoptosis. PMID:26462236

  2. Plant Gene and Alternatively Spliced Variant Annotator. A plant genome annotation pipeline for rice gene and alternatively spliced variant identification with cross-species expressed sequence tag conservation from seven plant species.

    PubMed

    Chen, Feng-Chi; Wang, Sheng-Shun; Chaw, Shu-Miaw; Huang, Yao-Ting; Chuang, Trees-Juen

    2007-03-01

    The completion of the rice (Oryza sativa) genome draft has brought unprecedented opportunities for genomic studies of the world's most important food crop. Previous rice gene annotations have relied mainly on ab initio methods, which usually yield a high rate of false-positive predictions and give only limited information regarding alternative splicing in rice genes. Comparative approaches based on expressed sequence tags (ESTs) can compensate for the drawbacks of ab initio methods because they can simultaneously identify experimental data-supported genes and alternatively spliced transcripts. Furthermore, cross-species EST information can be used to not only offset the insufficiency of same-species ESTs but also derive evolutionary implications. In this study, we used ESTs from seven plant species, rice, wheat (Triticum aestivum), maize (Zea mays), barley (Hordeum vulgare), sorghum (Sorghum bicolor), soybean (Glycine max), and Arabidopsis (Arabidopsis thaliana), to annotate the rice genome. We developed a plant genome annotation pipeline, Plant Gene and Alternatively Spliced Variant Annotator (PGAA). Using this approach, we identified 852 genes (931 isoforms) not annotated in other widely used databases (i.e. the Institute for Genomic Research, National Center for Biotechnology Information, and Rice Annotation Project) and found 87% of them supported by both rice and nonrice EST evidence. PGAA also identified more than 44,000 alternatively spliced events, of which approximately 20% are not observed in the other three annotations. These novel annotations represent rich opportunities for rice genome research, because the functions of most of our annotated genes are currently unknown. Also, in the PGAA annotation, the isoforms with non-rice-EST-supported exons are significantly enriched in transporter activity but significantly underrepresented in transcription regulator activity. We have also identified potential lineage-specific and conserved isoforms, which are

  3. Ectopic expression of new alternative splice variant of Smac/DIABLO increases mammospheres formation

    PubMed Central

    Martinez-Ruiz, Gustavo U; Victoria-Acosta, Georgina; Vazquez-Santillan, Karla I; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Ceballos-Cancino, Gisela; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2014-01-01

    Smac-α is a mitochondrial protein that, during apoptosis, is translocated to the cytoplasm, where it negatively regulates members of the inhibitor of apoptosis (IAP) family via the IAP-binding motif (IBM) contained within its amino-terminus. Here, we describe a new alternative splice variant from Smac gene, which we have named Smac-ε. Smac-ε lacks both an IBM and a mitochondrial-targeting signal (MTS) element. Smac-ε mRNA exhibits a tissue-specific expression pattern in healthy human tissues as well as in several cancer cell lines. The steady-state levels of endogenous Smac-ε protein is regulated by the proteasomal pathway. When ectopically expressed, this isoform presents a cytosolic localization and is unable to associate with or to regulate the expression of X-linked Inhibitor of apoptosis protein, the best-studied member of IAP family. Nevertheless, over-expression of Smac-ε increases mammosphere formation. Whole genome expression analyses from these mammospheres show activation of several pro-survival and growth pathways, including Estrogen-Receptor signaling. In conclusion, our results support the functionality of this new Smac isoform. PMID:25337193

  4. Extensive changes to alternative splicing patterns following allopolyploidy in natural and resynthesized polyploids.

    PubMed

    Zhou, Renchao; Moshgabadi, Noushin; Adams, Keith L

    2011-09-20

    Polyploidy has been a common process during the evolution of eukaryotes, especially plants, leading to speciation and the evolution of new gene functions. Gene expression levels and patterns can change, and gene silencing can occur in allopolyploids--phenomena sometimes referred to as "transcriptome shock." Alternative splicing (AS) creates multiple mature mRNAs from a single type of precursor mRNA. Here we examined the evolution of AS patterns after polyploidy, with natural and two resynthesized allotetraploid Brassica napus lines, using RT-PCR and sequencing assays of 82 AS events in duplicated gene pairs (homeologs). Comparing the AS patterns between the two homeologs in natural B. napus revealed that many of the gene pairs show different AS patterns, with a few showing variation that was organ specific or induced by abiotic stress treatments. In the resynthesized allotetraploids, 26-30% of the duplicated genes showed changes in AS compared with the parents, including many cases of AS event loss after polyploidy. Parallel losses of many AS events after allopolyploidy were detected in the two independently resynthesized lines. More changes occurred in parallel between the two lines than changes specific to each line. The PASTICCINO gene showed partitioning of two AS events between the two homeologs in the resynthesized allopolyploids. AS changes after allopolyploidy were much more common than homeolog silencing. Our findings indicate that AS patterns can change rapidly after polyploidy, that many genes are affected, and that AS changes are an important component of the transcriptome shock experienced by new allopolyploids.

  5. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy

    PubMed Central

    Wojtkowiak-Szlachcic, Agnieszka; Taylor, Katarzyna; Stepniak-Konieczna, Ewa; Sznajder, Lukasz J.; Mykowska, Agnieszka; Sroka, Joanna; Thornton, Charles A.; Sobczak, Krzysztof

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by expansion of CTG triplet repeats in 3′-untranslated region of DMPK gene. The pathomechanism of DM1 is driven by accumulation of toxic transcripts containing expanded CUG repeats (CUGexp) in nuclear foci which sequester several factors regulating RNA metabolism, such as Muscleblind-like proteins (MBNLs). In this work, we utilized very short chemically modified antisense oligonucleotides composed exclusively of locked nucleic acids (all-LNAs) complementary to CUG repeats, as potential therapeutic agents against DM1. Our in vitro data demonstrated that very short, 8- or 10-unit all-LNAs effectively bound the CUG repeat RNA and prevented the formation of CUGexp/MBNL complexes. In proliferating DM1 cells as well as in skeletal muscles of DM1 mouse model the all-LNAs induced the reduction of the number and size of CUGexp foci and corrected MBNL-sensitive alternative splicing defects with high efficacy and specificity. The all-LNAs had low impact on the cellular level of CUGexp-containing transcripts and did not affect the expression of other transcripts with short CUG repeats. Our data strongly indicate that short all-LNAs complementary to CUG repeats are a promising therapeutic tool against DM1. PMID:25753670

  6. Structural Insights into RNA Recognition by the Alternate-Splicing Regulator CUG-Binding Protein 1

    SciTech Connect

    M Teplova; J Song; H Gaw; A Teplov; D Patel

    2011-12-31

    CUG-binding protein 1 (CUGBP1) regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of myotonic dystrophy. CUGBP1 harbors three RRM domains and preferentially targets UGU-rich mRNA elements. We describe crystal structures of CUGBP1 RRM1 and tandem RRM1/2 domains bound to RNAs containing tandem UGU(U/G) elements. Both RRM1 in RRM1-RNA and RRM2 in RRM1/2-RNA complexes use similar principles to target UGU(U/G) elements, with recognition mediated by face-to-edge stacking and water-mediated hydrogen-bonding networks. The UG step adopts a left-handed Z-RNA conformation, with the syn guanine recognized through Hoogsteen edge-protein backbone hydrogen-bonding interactions. NMR studies on the RRM1/2-RNA complex establish that both RRM domains target tandem UGUU motifs in solution, whereas filter-binding assays identify a preference for recognition of GU over AU or GC steps. We discuss the implications of CUGBP1-mediated targeting and sequestration of UGU(U/G) elements on pre-mRNA alternative-splicing regulation, translational regulation, and mRNA decay.

  7. Genome-wide analysis of alternative splicing during human heart development

    PubMed Central

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-01-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development. PMID:27752099

  8. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation

    PubMed Central

    Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre

    2016-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3′ UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type–specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3′ UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. PMID:26546131

  9. The alternative splicing factor Nova2 regulates vascular development and lumen formation

    PubMed Central

    Giampietro, Costanza; Deflorian, Gianluca; Gallo, Stefania; Di Matteo, Anna; Pradella, Davide; Bonomi, Serena; Belloni, Elisa; Nyqvist, Daniel; Quaranta, Valeria; Confalonieri, Stefano; Bertalot, Giovanni; Orsenigo, Fabrizio; Pisati, Federica; Ferrero, Elisabetta; Biamonti, Giuseppe; Fredrickx, Evelien; Taveggia, Carla; Wyatt, Chris D. R.; Irimia, Manuel; Di Fiore, Pier Paolo; Blencowe, Benjamin J.; Dejana, Elisabetta; Ghigna, Claudia

    2015-01-01

    Vascular lumen formation is a fundamental step during angiogenesis; yet, the molecular mechanisms underlying this process are poorly understood. Recent studies have shown that neural and vascular systems share common anatomical, functional and molecular similarities. Here we show that the organization of endothelial lumen is controlled at the post-transcriptional level by the alternative splicing (AS) regulator Nova2, which was previously considered to be neural cell-specific. Nova2 is expressed during angiogenesis and its depletion disrupts vascular lumen formation in vivo. Similarly, Nova2 depletion in cultured endothelial cells (ECs) impairs the apical distribution and the downstream signalling of the Par polarity complex, resulting in altered EC polarity, a process required for vascular lumen formation. These defects are linked to AS changes of Nova2 target exons affecting the Par complex and its regulators. Collectively, our results reveal that Nova2 functions as an AS regulator in angiogenesis and is a novel member of the ‘angioneurins' family. PMID:26446569

  10. Molecular cloning and functional characterization of a mouse gene upregulated by lipopolysaccharide treatment reveals alternative splicing

    SciTech Connect

    Du, Kejun; Chen, Yaoming; Dai, Zongming; Bi, Yuan; Cai, Tongjian; Hou, Lichao; Chai, Yubo; Song, Qinghe; Chen, Sumin; Luo, Wenjing; Chen, Jingyuan

    2010-01-01

    Treatment of mouse cells with lipopolysaccharide (LPS) potently initiates an inflammatory response, but the underlying mechanisms are unclear. We therefore sought to characterize cDNA sequences of a new mouse LPS-responsive gene, and to evaluate the effects of MLrg. Full-length cDNAs were obtained from LPS-treated NIH3T3 cells. We report that the MLrg gene produces two alternative splice products (GenBank Accession Nos. (DQ316984) and (DQ320011)), respectively, encoding MLrgW and MLrgS polypeptides. Both proteins contain zinc finger and leucine zipper domains and are thus potential regulators of transcription. Expression of MLrgW and MLrgS were robustly upregulated following LPS treatment, and the proteins were localized predominantly in the nuclear membrane and cytoplasm. In stable transfectants over-expressing MLrgW the proportion of cells in G1 phase was significantly reduced, while in cells over-expressing MLrgS the proportion of cells in G2 was significantly increased; both proteins are thus potential regulators of cell cycle progression. Upregulation of MLrgW and MLrgS may be an important component of the LPS inflammatory pathway and of the host response to infection with GNB.

  11. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis

    PubMed Central

    Kalyna, Maria; Simpson, Craig G.; Syed, Naeem H.; Lewandowska, Dominika; Marquez, Yamile; Kusenda, Branislav; Marshall, Jacqueline; Fuller, John; Cardle, Linda; McNicol, Jim; Dinh, Huy Q.; Barta, Andrea; Brown, John W. S.

    2012-01-01

    Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT–PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5′ or 3′UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3′-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes. PMID:22127866

  12. Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity

    SciTech Connect

    Wada, Akihiro; Wong, Pooi-Fong; Hojo, Hironobu; Hasegawa, Makoto; Ichinose, Akitoyo; Llanes, Rafael; Kubo, Yoshinao; Senba, Masachika; Ichinose, Yoshio

    2013-05-03

    Highlights: • Alarin inhibits the growth of E. coli but not S. aureus. • Alarin’s potency is comparable to LL-37 in inhibiting the growth of E. coli. • Alarin can cause bacterial membrane blebbing. • Alalin does not induce hemolysis on erythrocytes. -- Abstract: Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radial diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.

  13. Comprehensive analysis of alternative splicing in Digitalis purpurea by strand-specific RNA-Seq.

    PubMed

    Wu, Bin; Suo, Fengmei; Lei, Wanjun; Gu, Lianfeng

    2014-01-01

    Digitalis purpurea (D. purpurea) is one of the most important medicinal plants and is well known in the treatment of heart failure because of the cardiac glycosides that are its main active compounds. However, in the absence of strand specific sequencing information, the post-transcriptional mechanism of gene regulation in D. purpurea thus far remains unknown. In this study, a strand-specific RNA-Seq library was constructed and sequenced using Illumina HiSeq platforms to characterize the transcriptome of D. purpurea with a focus on alternative splicing (AS) events and the effect of AS on protein domains. De novo RNA-Seq assembly resulted in 48,475 genes. Based on the assembled transcripts, we reported a list of 3,265 AS genes, including 5,408 AS events in D. purpurea. Interestingly, both glycosyltransferases and monooxygenase, which were involved in the biosynthesis of cardiac glycosides, are regulated by AS. A total of 2,422 AS events occurred in coding regions, and 959 AS events were located in the regions of 882 unique protein domains, which could affect protein function. This D. purpurea transcriptome study substantially increased the expressed sequence resource and presented a better understanding of post-transcriptional regulation to further facilitate the medicinal applications of D. purpurea for human health.

  14. S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1

    PubMed Central

    Ben-Hur, Vered; Denichenko, Polina; Siegfried, Zahava; Maimon, Avi; Krainer, Adrian; Davidson, Ben; Karni, Rotem

    2016-01-01

    Ribosomal S6 Kinase 1 (S6K1) is a major mTOR downstream signaling molecule which regulates cell size and translation efficiency. Here we report that short isoforms of S6K1 are over-produced in breast cancer cell lines and tumors. Overexpression of S6K1 short isoforms induces transformation of human breast epithelial cells. The long S6K1 variant (Iso-1) induced opposite effects: It inhibits Ras-induced transformation and tumor formation, while its knockdown or knockout induced transformation, suggesting that Iso-1 has a tumor suppressor activity. We further found that S6K1 short isoforms bind and activate mTORC1, elevating 4E-BP1 phosphorylation, cap-dependent translation and Mcl-1 protein levels. Both a phosphorylation-defective 4E-BP1 mutant and the mTORC1 inhibitor rapamycin partially blocked the oncogenic effects of S6K1 short isoforms, suggesting that these are mediated by mTORC1 and 4E-BP1. Thus, alternative splicing of S6K1 acts as a molecular switch in breast cancer cells elevating oncogenic isoforms that activate mTORC1. PMID:23273915

  15. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    SciTech Connect

    Kewley, Robyn J. . E-mail: rkewley@csu.edu.au; Whitelaw, Murray L.

    2005-12-09

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer.

  16. Expression and functional significance of alternatively spliced CS1 fibronectin in rheumatoid arthritis microvasculature.

    PubMed Central

    Elices, M J; Tsai, V; Strahl, D; Goel, A S; Tollefson, V; Arrhenius, T; Wayner, E A; Gaeta, F C; Fikes, J D; Firestein, G S

    1994-01-01

    Expression of fibronectin (FN) isoforms containing CS1, a 25-amino acid sequence present within the alternatively spliced IIICS region of FN, has been analyzed in rheumatoid arthritis (RA) synovium. Unexpectedly, CS1-containing FN variants were exclusively found on endothelium but not extracellular matrix (ECM) of RA synovium. Lumenal expression of CS1 on RA endothelial cells, as observed by electron microscopy, correlated with inflammation in RA, since normal synovium expressed little CS1 without appreciable decrease in ECM FN. CS1 expression on human endothelial cells was further shown by FN mRNA analyses. In adhesion assays on frozen RA synovial sections, T lymphoblastoid cells expressing functionally activated alpha 4 beta 1 integrin specifically attached to the intravascular surface of RA endothelium. Binding was abrogated by both anti-alpha 4 integrin and CS1 peptides. Our observations suggest direct involvement of CS1-containing FN in recruitment of alpha 4 beta 1-expressing mononuclear leukocytes in synovitis, and provide basis for therapeutic intervention in RA. Images PMID:8282813

  17. Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing

    PubMed Central

    Tejedor, J. Ramón; Tilgner, Hagen; Iannone, Camilla; Guigó, Roderic; Valcárcel, Juan

    2015-01-01

    The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease. PMID:25904137

  18. Radiation-induced alternative transcription and splicing events and their applicability to practical biodosimetry

    PubMed Central

    Macaeva, Ellina; Saeys, Yvan; Tabury, Kevin; Janssen, Ann; Michaux, Arlette; Benotmane, Mohammed A.; De Vos, Winnok H.; Baatout, Sarah; Quintens, Roel

    2016-01-01

    Accurate assessment of the individual exposure dose based on easily accessible samples (e.g. blood) immediately following a radiological accident is crucial. We aimed at developing a robust transcription-based signature for biodosimetry from human peripheral blood mononuclear cells irradiated with different doses of X-rays (0.1 and 1.0 Gy) at a dose rate of 0.26 Gy/min. Genome-wide radiation-induced changes in mRNA expression were evaluated at both gene and exon level. Using exon-specific qRT-PCR, we confirmed that several biomarker genes are alternatively spliced or transcribed after irradiation and that different exons of these genes exhibit significantly different levels of induction. Moreover, a significant number of radiation-responsive genes were found to be genomic neighbors. Using three different classification models we found that gene and exon signatures performed equally well on dose prediction, as long as more than 10 features are included. Together, our results highlight the necessity of evaluating gene expression at the level of single exons for radiation biodosimetry in particular and transcriptional biomarker research in general. This approach is especially advisable for practical gene expression-based biodosimetry, for which primer- or probe-based techniques would be the method of choice. PMID:26763932

  19. Three distinct human thymopoietins are derived from alternatively spliced mRNAs.

    PubMed Central

    Harris, C A; Andryuk, P J; Cline, S; Chan, H K; Natarajan, A; Siekierka, J J; Goldstein, G

    1994-01-01

    Thymopoietin (TP) was originally isolated as a 5-kDa 49-aa protein from bovine thymus in studies of the effects of thymic extracts on neuromuscular transmission and was subsequently observed to affect T-cell differentiation and function. We now report the isolation of cDNA clones for three alternatively spliced mRNAs that encode three distinct human T-cell TPs. Proteins encoded by these mRNAs, which we have named TP alpha (75 kDa), TP beta (51 kDa), and TP gamma (39 kDa), contain identical N-terminal regions, including sequences nearly identical to that of the originally isolated 49-aa protein, but divergent C-terminal regions. TP mRNAs are expressed in many tissues, most abundantly in adult thymus and fetal liver of the tissues so far examined. Distinct structural domains and functional motifs in TPs alpha, beta, and gamma suggest that the proteins have unique functions and may be directed to distinct subcellular compartments. Images PMID:7517549

  20. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation.

    PubMed

    Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre

    2016-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3' UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. PMID:26546131

  1. Analysis of an alternatively spliced exon of the neurofibromatosis type 1 gene in cultured melanocytes from patients with neurofibromatosis 1.

    PubMed

    Eisenbarth, I; Hoffmeyer, S; Kaufmann, D; Assum, G; Krone, W

    1995-01-01

    Neurofibromatosis type 1 (NF1) is characterized by clinical features that primarily affect tissues derived from the neural crest (neurofibromas, café-aulait macules). Because aberrant regulation of alternative splicing in the NF1 gene transcript may be of functional significance, cultured melanocytes from café-aulait macules (CALM), as an example of benign NF1 lesions, were examined for the expression of the different alternative splice products of this gene. Both kinds of NF1 messengers (type 1 and 2) were found not only in CALM melanocytes but also in keratinocytes, fibroblasts and blood cells. Except in blood cells, there was a predominance of the type 2 transcript. Melanocytes from NF1 patients and healthy donors showed similar expression patterns under several culture conditions. Our results suggest that the development of CALM does not correlate with a switch in the ratio of type 1 to type 2 NF1 messenger RNA.

  2. Potential control of human immunodeficiency virus type 1 asp expression by alternative splicing in the upstream untranslated region.

    PubMed

    Barbagallo, Michael S; Birch, Katherine E; Deacon, Nicholas J; Mosse, Jennifer A

    2012-07-01

    The negative-sense asp open reading frame (ORF) positioned opposite to the human immunodeficiency virus type 1 (HIV-1) env gene encodes the 189 amino acid, membrane-associated ASP protein. Negative-sense transcription, regulated by long terminal repeat sequences, has been observed early in HIV-1 infection in vitro. All subtypes of HIV-1 were scanned to detect the negative-sense asp ORF and to identify potential regulatory sequences. A series of highly conserved upstream short open reading frames (sORFs) was identified. This potential control region from HIV-1(NL4-3), containing six sORFs, was cloned upstream of the reporter gene EGFP. Expression by transfection of HEK293 cells indicated that the introduction of this sORF region inhibits EGFP reporter expression; analysis of transcripts revealed no significant changes in levels of EGFP mRNA. Reverse transcriptase-polymerase chain reaction analysis (RT-PCR) further demonstrated that the upstream sORF region undergoes alternative splicing in vitro. The most abundant product is spliced to remove sORFs I to V, leaving only the in-frame sORF VI upstream of asp. Sequence analysis revealed the presence of typical splice donor- and acceptor-site motifs. Mutation of the highly conserved splice donor and acceptor sites modulates, but does not fully relieve, inhibition of EGFP production. The strong conservation of asp and its sORFs across all HIV-1 subtypes suggests that the asp gene product may have a role in the pathogenesis of HIV-1. Alternative splicing of the upstream sORF region provides a potential mechanism for controlling expression of the asp gene.

  3. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome.

    PubMed

    Li, Ronghui; Dong, Qiping; Yuan, Xinni; Zeng, Xin; Gao, Yu; Chiao, Cassandra; Li, Hongda; Zhao, Xinyu; Keles, Sunduz; Wang, Zefeng; Chang, Qiang

    2016-06-01

    Mutations in the human MECP2 gene cause Rett syndrome (RTT), a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain. In addition to transcription regulators, we found that MeCP2 physically interacts with several modulators of RNA splicing, including LEDGF and DHX9. These interactions are disrupted by RTT causing mutations, suggesting that they may play a role in RTT pathogenesis. Consistent with the idea, deep RNA sequencing revealed misregulation of hundreds of splicing events in the cortex of Mecp2 knockout mice. To reveal the functional consequence of altered RNA splicing due to the loss of MeCP2, we focused on the regulation of the splicing of the flip/flop exon of Gria2 and other AMPAR genes. We found a significant splicing shift in the flip/flop exon toward the flop inclusion, leading to a faster decay in the AMPAR gated current and altered synaptic transmission. In summary, our study identified direct physical interaction between MeCP2 and splicing factors, a novel MeCP2 target gene, and established functional connection between a specific RNA splicing change and synaptic phenotypes in RTT mice. These results not only help our understanding of the molecular function of MeCP2, but also reveal potential drug targets for future therapies. PMID:27352031

  4. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome

    PubMed Central

    Li, Ronghui; Dong, Qiping; Yuan, Xinni; Zeng, Xin; Gao, Yu; Li, Hongda; Keles, Sunduz; Wang, Zefeng; Chang, Qiang

    2016-01-01

    Mutations in the human MECP2 gene cause Rett syndrome (RTT), a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain. In addition to transcription regulators, we found that MeCP2 physically interacts with several modulators of RNA splicing, including LEDGF and DHX9. These interactions are disrupted by RTT causing mutations, suggesting that they may play a role in RTT pathogenesis. Consistent with the idea, deep RNA sequencing revealed misregulation of hundreds of splicing events in the cortex of Mecp2 knockout mice. To reveal the functional consequence of altered RNA splicing due to the loss of MeCP2, we focused on the regulation of the splicing of the flip/flop exon of Gria2 and other AMPAR genes. We found a significant splicing shift in the flip/flop exon toward the flop inclusion, leading to a faster decay in the AMPAR gated current and altered synaptic transmission. In summary, our study identified direct physical interaction between MeCP2 and splicing factors, a novel MeCP2 target gene, and established functional connection between a specific RNA splicing change and synaptic phenotypes in RTT mice. These results not only help our understanding of the molecular function of MeCP2, but also reveal potential drug targets for future therapies. PMID:27352031

  5. PTBP1-dependent regulation of USP5 alternative RNA splicing plays a role in glioblastoma tumorigenesis.

    PubMed

    Izaguirre, Daisy I; Zhu, Wen; Hai, Tao; Cheung, Hannah C; Krahe, Ralf; Cote, Gilbert J

    2012-11-01

    Aberrant RNA splicing is thought to play a key role in tumorigenesis. The assessment of its specific contributions is limited by the complexity of information derived from genome-wide array-based approaches. We describe how performing splicing factor-specific comparisons using both tumor and cell line data sets may more readily identify physiologically relevant tumor-specific splicing events. Affymetrix exon array data derived from glioblastoma (GBM) tumor samples with defined polypyrimidine tract-binding protein 1 (PTBP1) levels were compared with data from U251 GBM cells with and without PTBP1 knockdown. This comparison yielded overlapping gene sets that comprised only a minor fraction of each data set. The identification of a novel GBM-specific splicing event involving the USP5 gene led us to further examine its role in tumorigenesis. In GBM, USP5 generates a shorter isoform 2 through recognition of a 5' splice site within exon 15. Production of the USP5 isoform 2 was strongly correlated with PTBP1 expression in GBM tumor samples and cell lines. Splicing regulation was consistent with the presence of an intronic PTBP1 binding site and could be modulated through antisense targeting of the isoform 2 splice site to force expression of isoform 1 in GBM cells. The forced expression of USP5 isoform 1 in two GBM cell lines inhibited cell growth and migration, implying an important role for USP5 splicing in gliomagenesis. These results support a role for aberrant RNA splicing in tumorigenesis and suggest that changes in relatively few genes may be sufficient to drive the process.

  6. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae).

    PubMed

    Wang, Ying; Fan, Hai-Wei; Huang, Hai-Jian; Xue, Jian; Wu, Wen-Juan; Bao, Yan-Yuan; Xu, Hai-Jun; Zhu, Zeng-Rong; Cheng, Jia-An; Zhang, Chuan-Xi

    2012-09-01

    Chitin synthase (CHS) is an enzyme that is required for chitin formation in insect cuticles and other tissues. In this study, CHS genes from two destructive rice insect pests, the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus, were cloned. Phylogenetic analysis showed that these genes belonged to class CHS1 of the CHS gene family. Most insects possess two CHS genes (CHS1 and CHS2); however, genome and transcriptome searches showed that N. lugens possibly possess only CHS1 in both databases. Two transcript variants (CHS1a and CHS1b) resulting from exclusively alternative splicing (exon 19a or 19b in N. lugens) were identified for each of the two rice planthopper CHS1s. Gene structure comparison using the genomes that are currently sequenced showed that the CHS1 genes in all insects except Acyrthosiphon pisum have two transcript variants. Transcription of NlCHS1a reached its highest level just after molting, whereas NlCHS1b reached its highest expression level 1-2 days before molting. Injection of the N. lugens nymphs with double-strand RNA (dsRNA) of CHS1, CHS1a and CHS1b reduced the corresponding variant transcript levels and exhibited subsequent phenotypes. Silencing of CHS1 and CHS1a resulted in elongated distal wing pads and the "wasp-waisted" or crimpled cuticle phenotypes and eventually died, whereas the phenotypes caused by injection of NlCHS1b dsRNA seem not so obvious although slightly increased mortality was observed. Our results suggest that N. lugens likely lacks CHS2 and CHS1 may be efficient target gene for RNAi-based N. lugens control. PMID:22634163

  7. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae).

    PubMed

    Wang, Ying; Fan, Hai-Wei; Huang, Hai-Jian; Xue, Jian; Wu, Wen-Juan; Bao, Yan-Yuan; Xu, Hai-Jun; Zhu, Zeng-Rong; Cheng, Jia-An; Zhang, Chuan-Xi

    2012-09-01

    Chitin synthase (CHS) is an enzyme that is required for chitin formation in insect cuticles and other tissues. In this study, CHS genes from two destructive rice insect pests, the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus, were cloned. Phylogenetic analysis showed that these genes belonged to class CHS1 of the CHS gene family. Most insects possess two CHS genes (CHS1 and CHS2); however, genome and transcriptome searches showed that N. lugens possibly possess only CHS1 in both databases. Two transcript variants (CHS1a and CHS1b) resulting from exclusively alternative splicing (exon 19a or 19b in N. lugens) were identified for each of the two rice planthopper CHS1s. Gene structure comparison using the genomes that are currently sequenced showed that the CHS1 genes in all insects except Acyrthosiphon pisum have two transcript variants. Transcription of NlCHS1a reached its highest level just after molting, whereas NlCHS1b reached its highest expression level 1-2 days before molting. Injection of the N. lugens nymphs with double-strand RNA (dsRNA) of CHS1, CHS1a and CHS1b reduced the corresponding variant transcript levels and exhibited subsequent phenotypes. Silencing of CHS1 and CHS1a resulted in elongated distal wing pads and the "wasp-waisted" or crimpled cuticle phenotypes and eventually died, whereas the phenotypes caused by injection of NlCHS1b dsRNA seem not so obvious although slightly increased mortality was observed. Our results suggest that N. lugens likely lacks CHS2 and CHS1 may be efficient target gene for RNAi-based N. lugens control.

  8. Structure of the human laminin {gamma}2 chain gene (LAMC2): Alternative splicing with different tissue distribution of two transcripts

    SciTech Connect

    Airenne, T.; Haakana, H.; Kallunki, T.

    1996-02-15

    This article discusses the exon-intron structure and tissue distribution of the laminin {gamma}2 chain (LAMC2) gene, which is mutated in some cases of junctional epidermolysis bullosa. The article also discusses the transcription and splicing of this gene, which result in alternative uses of the last two exons of the gene. The different tissue distributions of the transcripts indicate different functions for the gene in vivo. 36 refs., 8 figs., 3 tabs.

  9. Alternatively Spliced Genes as Biomarkers for Schizophrenia, Bipolar Disorder and Psych