Science.gov

Sample records for 1b mediates signaling

  1. Tomato Protein Kinase 1b Mediates Signaling of Plant Responses to Necrotrophic Fungi and Insect Herbivory[W

    PubMed Central

    AbuQamar, Synan; Chai, Mao-Feng; Luo, Hongli; Song, Fengming; Mengiste, Tesfaye

    2008-01-01

    The tomato protein kinase 1 (TPK1b) gene encodes a receptor-like cytoplasmic kinase localized to the plasma membrane. Pathogen infection, mechanical wounding, and oxidative stress induce expression of TPK1b, and reducing TPK1b gene expression through RNA interference (RNAi) increases tomato susceptibility to the necrotrophic fungus Botrytis cinerea and to feeding by larvae of tobacco hornworm (Manduca sexta) but not to the bacterial pathogen Pseudomonas syringae. TPK1b RNAi seedlings are also impaired in ethylene (ET) responses. Notably, susceptibility to Botrytis and insect feeding is correlated with reduced expression of the proteinase inhibitor II gene in response to Botrytis and 1-aminocyclopropane-1-carboxylic acid, the natural precursor of ET, but wild-type expression in response to mechanical wounding and methyl-jasmonate. TPK1b functions independent of JA biosynthesis and response genes required for resistance to Botrytis. TPK1b is a functional kinase with autophosphorylation and Myelin Basis Protein phosphorylation activities. Three residues in the activation segment play a critical role in the kinase activity and in vivo signaling function of TPK1b. In sum, our findings establish a signaling role for TPK1b in an ET-mediated shared defense mechanism for resistance to necrotrophic fungi and herbivorous insects. PMID:18599583

  2. RAC1b overexpression stimulates proliferation and NF-kB-mediated anti-apoptotic signaling in thyroid cancer cells.

    PubMed

    Faria, Márcia; Matos, Paulo; Pereira, Teresa; Cabrera, Rafael; Cardoso, Bruno A; Bugalho, Maria João; Silva, Ana Luísa

    2017-01-01

    Overexpression of tumor-associated RAC1b has been recently highlighted as one of the most promising targets for therapeutic intervention in colon, breast, lung and pancreatic cancer. RAC1b is a hyperactive variant of the small GTPase RAC1 and has been recently shown to be overexpressed in a subset of papillary thyroid carcinomas associated with unfavorable outcome. Using the K1 PTC derived cell line as an in vitro model, we observed that both RAC1 and RAC1b were able to induce a significant increase on NF-kB and cyclin D1 reporter activity. A clear p65 nuclear localization was found in cells transfected with RAC1b-WT, confirming NF-kB canonical pathway activation. Consistently, we observed a RAC1b-mediated decrease in IκBα (NF-kB inhibitor) protein levels. Moreover, we show that RAC1b overexpression stimulates G1/S progression and protects thyroid cells against induced apoptosis, the latter through a process involving the NF-kB pathway. Present data support previous findings suggesting an important role for RAC1b in the development of follicular cell-derived thyroid malignancies and point out NF-kB activation as one of the molecular mechanisms associated with the pro-tumorigenic advantage of RAC1b overexpression in thyroid carcinomas.

  3. RAC1b overexpression stimulates proliferation and NF-kB-mediated anti-apoptotic signaling in thyroid cancer cells

    PubMed Central

    Faria, Márcia; Matos, Paulo; Pereira, Teresa; Cabrera, Rafael; Cardoso, Bruno A.; Bugalho, Maria João

    2017-01-01

    Overexpression of tumor-associated RAC1b has been recently highlighted as one of the most promising targets for therapeutic intervention in colon, breast, lung and pancreatic cancer. RAC1b is a hyperactive variant of the small GTPase RAC1 and has been recently shown to be overexpressed in a subset of papillary thyroid carcinomas associated with unfavorable outcome. Using the K1 PTC derived cell line as an in vitro model, we observed that both RAC1 and RAC1b were able to induce a significant increase on NF-kB and cyclin D1 reporter activity. A clear p65 nuclear localization was found in cells transfected with RAC1b-WT, confirming NF-kB canonical pathway activation. Consistently, we observed a RAC1b-mediated decrease in IκBα (NF-kB inhibitor) protein levels. Moreover, we show that RAC1b overexpression stimulates G1/S progression and protects thyroid cells against induced apoptosis, the latter through a process involving the NF-kB pathway. Present data support previous findings suggesting an important role for RAC1b in the development of follicular cell-derived thyroid malignancies and point out NF-kB activation as one of the molecular mechanisms associated with the pro-tumorigenic advantage of RAC1b overexpression in thyroid carcinomas. PMID:28234980

  4. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice

    PubMed Central

    Nishio, Miki; Sugimachi, Keishi; Goto, Hiroki; Wang, Jia; Morikawa, Takumi; Miyachi, Yosuke; Takano, Yusuke; Hikasa, Hiroki; Itoh, Tohru; Suzuki, Satoshi O.; Kurihara, Hiroki; Aishima, Shinichi; Leask, Andrew; Sasaki, Takehiko; Nakano, Toru; Nishina, Hiroshi; Nishikawa, Yuji; Sekido, Yoshitaka; Nakao, Kazuwa; Shin-ya, Kazuo; Mimori, Koshi; Suzuki, Akira

    2016-01-01

    Mps One Binder Kinase Activator (MOB)1A/1B are core components of the Hippo pathway that coactivate large tumor suppressor homolog (LATS) kinases. Mob1a/1b double deficiency in mouse liver (LMob1DKO) results in hyperplasia of oval cells and immature cholangiocytes accompanied by inflammatory cell infiltration and fibrosis. More than half of mutant mice die within 3 wk of birth. All survivors eventually develop liver cancers, particularly combined hepatocellular and cholangiocarcinomas (cHC-CCs) and intrahepatic cholangiocellular carcinomas (ICCs), and die by age 60 wk. Because this phenotype is the most severe among mutant mice lacking a Hippo signaling component, MOB1A/1B constitute the critical hub of Hippo signaling in mammalian liver. LMob1DKO liver cells show hyperproliferation, increased cell saturation density, hepatocyte dedifferentiation, enhanced epithelial–mesenchymal transition and cell migration, and elevated transforming growth factor beta(TGF-β)2/3 production. These changes are strongly dependent on Yes-Associated Protein-1 (Yap1) and partially dependent on PDZ-binding motif (Taz) and Tgfbr2, but independent of connective tissue growth factor (Ctgf). In human liver cancers, YAP1 activation is frequent in cHC-CCs and ICCs and correlates with SMAD family member 2 activation. Drug screening revealed that antiparasitic macrocyclic lactones inhibit YAP1 activation in vitro and in vivo. Targeting YAP1/TAZ with these drugs in combination with inhibition of the TGF-β pathway may be effective treatment for cHC-CCs and ICCs. PMID:26699479

  5. The vasopressin-induced excitation of hypoglossal and facial motoneurons in young rats is mediated by V1a but not V1b receptors, and is independent of intracellular calcium signalling.

    PubMed

    Reymond-Marron, I; Tribollet, E; Raggenbass, M

    2006-09-01

    As a hormone, vasopressin binds to three distinct receptors: V1a and V1b receptors, which induce phospholipase-Cbeta (PLCbeta) activation and Ca2+ mobilization; and V2 receptors, which are coupled to adenylyl cyclase. V1a and V1b receptors are also present in neurons. In particular, hypoglossal (XII) and facial (VII) motoneurons are excited following vasopressin-V1a receptor binding. The aim of the present study was double: (i) to determine whether V1b receptors contribute to the excitatory effect of vasopressin in XII and VII motoneurons; and (ii) to establish whether the action of vasopressin on motoneurons is mediated by Ca2+ signalling. Patch-clamp recordings were performed in brainstem slices of young rats. Vasopressin depolarized the membrane or generated an inward current. By contrast, [1-deamino-4-cyclohexylalanine] arginine vasopressin (d[Cha4]AVP), a V1b agonist, had no effect. The action of vasopressin was suppressed by Phaa-D-Tyr(Et)-Phe-Gln-Asn-Lys-Pro-Arg-NH2, a V1a antagonist, but not by SSR149415, a V1b antagonist. Thus, the vasopressin-induced excitation of brainstem motoneurons was exclusively mediated by V1a receptors. Light microscopic autoradiography failed to detect V1b binding sites in the facial nucleus. In motoneurons loaded with GTP-gamma-S, a non-hydrolysable analogue of GTP, the effect of vasopressin was suppressed, indicating that neuronal V1a receptors are G-protein-coupled. Intracellular Ca2+ chelation suppressed a Ca2+-activated potassium current, but did not affect the vasopressin-evoked current. H7 and GF109203, inhibitors of protein kinase C, were without effect on the vasopressin-induced excitation. U73122 and D609, PLCbeta inhibitors, were also without effect. Thus, excitation of brainstem motoneurons by V1a receptor activation is probably mediated by a second messenger distinct from that associated with peripheral V1a receptors.

  6. ARID1B-mediated disorders: Mutations and possible mechanisms

    PubMed Central

    Sim, Joe C. H.; White, Susan M; Lockhart, Paul J.

    2015-01-01

    Summary Mutations in the gene encoding AT-rich interactive domain-containing protein 1B (ARID1B) were recently associated with multiple syndromes characterized by developmental delay and intellectual disability, in addition to nonsyndromic intellectual disability. While the majority of ARID1B mutations identified to date are predicted to result in haploinsufficiency, the underlying pathogenic mechanisms have yet to be fully understood. ARID1B is a DNA-binding subunit of the Brahma-associated factor chromatin remodelling complexes, which play a key role in the regulation of gene activity. The function of remodelling complexes can be regulated by their subunit composition, and there is some evidence that ARID1B is a component of the neuron-specific chromatin remodelling complex. This complex is involved in the regulation of stem/progenitor cells exiting the cell cycle and differentiating into postmitotic neurons. Recent research has indicated that alterations in the cell cycle contribute to the underlying pathogenesis of syndromes associated with ARID1B haploinsufficiency in fibroblasts derived from affected individuals. This review describes studies linking ARID1B to neurodevelopmental disorders and it summarizes the function of ARID1B to provide insights into the pathogenic mechanisms underlying ARID1B-mediated disorders. In conclusion, ARID1B is likely to play a key role in neurodevelopment and reduced levels of wild-type protein compromise normal brain development. Additional studies are required to determine the mechanisms by which impaired neural development contributes to the intellectual disability and speech impairment that are consistently observed in individuals with ARID1B haploinsufficiency. PMID:25674384

  7. CYP1B1-mediated Pathobiology of Primary Congenital Glaucoma.

    PubMed

    Faiq, Muneeb A; Dada, Rima; Qadri, Rizwana; Dada, Tanuj

    2015-01-01

    CYP1B1 is a dioxin-inducible enzyme belonging to the cytochrome P450 superfamily. It has been observed to be important in a variety of developmental processes including in utero development of ocular structures. Owing to its role in the developmental biology of eye, its dysfunction can lead to ocular developmental defects. This has been found to be true and CYP1B1 mutations have been observed in a majority of primary congenital glaucoma (PCG) patients from all over the globe. Primary congenital glaucoma is an irreversibly blinding childhood disorder (onset at birth or early infancy) typified by anomalous development of trabecular meshwork (TM). How CYP1B1 causes PCG is not known; however, some basic investigations have been reported. Understanding the CYP1B1 mediated etiopathomechanism of PCG is very important to identify targets for therapy and preventive management. In this perspective, we will make an effort to reconstruct the pathomechanism of PCG in the light of already reported information about the disease and the CYP1B1 gene. How to cite this article: Faiq MA, Dada R, Qadri R, Dada T. CYP1 B1-mediated Pathobiology of Primary Congenital Glaucoma. J Curr Glaucoma Pract 2015;9(3):77-80.

  8. CYP1B1-mediated Pathobiology of Primary Congenital Glaucoma

    PubMed Central

    Faiq, Muneeb A; Dada, Rima; Qadri, Rizwana

    2015-01-01

    ABSTRACT CYP1B1 is a dioxin-inducible enzyme belonging to the cytochrome P450 superfamily. It has been observed to be important in a variety of developmental processes including in utero development of ocular structures. Owing to its role in the developmental biology of eye, its dysfunction can lead to ocular developmental defects. This has been found to be true and CYP1B1 mutations have been observed in a majority of primary congenital glaucoma (PCG) patients from all over the globe. Primary congenital glaucoma is an irreversibly blinding childhood disorder (onset at birth or early infancy) typified by anomalous development of trabecular meshwork (TM). How CYP1B1 causes PCG is not known; however, some basic investigations have been reported. Understanding the CYP1B1 mediated etiopathomechanism of PCG is very important to identify targets for therapy and preventive management. In this perspective, we will make an effort to reconstruct the pathomechanism of PCG in the light of already reported information about the disease and the CYP1B1 gene. How to cite this article: Faiq MA, Dada R, Qadri R, Dada T. CYP1 B1-mediated Pathobiology of Primary Congenital Glaucoma. J Curr Glaucoma Pract 2015;9(3):77-80. PMID:26997841

  9. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling

    PubMed Central

    Vasileiou, Georgia; Ekici, Arif B.; Uebe, Steffen; Zweier, Christiane; Hoyer, Juliane; Engels, Hartmut; Behrens, Jürgen; Reis, André; Hadjihannas, Michel V.

    2015-01-01

    The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway. PMID:26340334

  10. Essential role of protein-tyrosine phosphatase 1B in the modulation of insulin signaling by acetaminophen in hepatocytes.

    PubMed

    Mobasher, Maysa Ahmed; de Toro-Martín, Juan; González-Rodríguez, Águeda; Ramos, Sonia; Letzig, Lynda G; James, Laura P; Muntané, Jordi; Álvarez, Carmen; Valverde, Ángela M

    2014-10-17

    Many drugs are associated with the development of glucose intolerance or deterioration in glycemic control in patients with pre-existing diabetes. We have evaluated the cross-talk between signaling pathways activated by acetaminophen (APAP) and insulin signaling in hepatocytes with or without expression of the protein-tyrosine phosphatase 1B (PTP1B) and in wild-type and PTP1B-deficient mice chronically treated with APAP. Human primary hepatocytes, Huh7 hepatoma cells with silenced PTP1B, mouse hepatocytes from wild-type and PTP1B-deficient mice, and a mouse model of chronic APAP treatment were used to examine the mechanisms involving PTP1B in the effects of APAP on glucose homeostasis and hepatic insulin signaling. In APAP-treated human hepatocytes at concentrations that did not induce death, phosphorylation of JNK and PTP1B expression and enzymatic activity were increased. APAP pretreatment inhibited activation of the early steps of insulin signaling and decreased Akt phosphorylation. The effects of APAP in insulin signaling were prevented by suramin, a PTP1B inhibitor, or rosiglitazone that decreased PTP1B levels. Likewise, PTP1B deficiency in human or mouse hepatocytes protected against APAP-mediated impairment in insulin signaling. These signaling pathways were modulated in mice with chronic APAP treatment, resulting in protection against APAP-mediated hepatic insulin resistance and alterations in islet alpha/beta cell ratio in PTP1B(-/-) mice. Our results demonstrate negative cross-talk between signaling pathways triggered by APAP and insulin signaling in hepatocytes, which is in part mediated by PTP1B. Moreover, our in vivo data suggest that chronic use of APAP may be associated with insulin resistance in the liver. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Essential Role of Protein-tyrosine Phosphatase 1B in the Modulation of Insulin Signaling by Acetaminophen in Hepatocytes*

    PubMed Central

    Mobasher, Maysa Ahmed; de Toro-Martín, Juan; González-Rodríguez, Águeda; Ramos, Sonia; Letzig, Lynda G.; James, Laura P.; Muntané, Jordi; Álvarez, Carmen; Valverde, Ángela M.

    2014-01-01

    Many drugs are associated with the development of glucose intolerance or deterioration in glycemic control in patients with pre-existing diabetes. We have evaluated the cross-talk between signaling pathways activated by acetaminophen (APAP) and insulin signaling in hepatocytes with or without expression of the protein-tyrosine phosphatase 1B (PTP1B) and in wild-type and PTP1B-deficient mice chronically treated with APAP. Human primary hepatocytes, Huh7 hepatoma cells with silenced PTP1B, mouse hepatocytes from wild-type and PTP1B-deficient mice, and a mouse model of chronic APAP treatment were used to examine the mechanisms involving PTP1B in the effects of APAP on glucose homeostasis and hepatic insulin signaling. In APAP-treated human hepatocytes at concentrations that did not induce death, phosphorylation of JNK and PTP1B expression and enzymatic activity were increased. APAP pretreatment inhibited activation of the early steps of insulin signaling and decreased Akt phosphorylation. The effects of APAP in insulin signaling were prevented by suramin, a PTP1B inhibitor, or rosiglitazone that decreased PTP1B levels. Likewise, PTP1B deficiency in human or mouse hepatocytes protected against APAP-mediated impairment in insulin signaling. These signaling pathways were modulated in mice with chronic APAP treatment, resulting in protection against APAP-mediated hepatic insulin resistance and alterations in islet alpha/beta cell ratio in PTP1B−/− mice. Our results demonstrate negative cross-talk between signaling pathways triggered by APAP and insulin signaling in hepatocytes, which is in part mediated by PTP1B. Moreover, our in vivo data suggest that chronic use of APAP may be associated with insulin resistance in the liver. PMID:25204659

  12. Pharmacokinetic effects of curcumin on docetaxel mediated by OATP1B1, OATP1B3 and CYP450s.

    PubMed

    Sun, Xiaolin; Li, Junxiu; Guo, Chaorui; Xing, Han; Xu, Jie; Wen, Yanli; Qiu, Zhixia; Zhang, Qiuyang; Zheng, Yi; Chen, Xijing; Zhao, Di

    2016-08-01

    Curcumin can synergistically enhance docetaxel's in vitro and in vivo antitumor activity and has been co-administrated with docetaxel in clinical trials. The aim of our study is to investigate the effect of curcumin on the pharmacokinetics of docetaxel and explore its mechanism on OATP1B1, OATP1B3 and human liver microsomes (HLMs). In rats, curcumin increased the docetaxel area under the plasma concentration-time curve (AUC0-8h) and the terminal half-life (t1/2) to 1.86- and 1.55-fold, respectively. Moreover, curcumin decreased the clearance (CL) of docetaxel to 52.1%. Human embryonic kidney 293 (HEK293) cells stably expressing OATP1B1 and OATP1B3 were used to observe the effects of curcumin on OATP1B1 and OATP1B3-mediated uptake of docetaxel. Curcumin exhibited potent inhibition on OATP1B1 and OATP1B3-mediated docetaxel uptake with IC50 values of 3.81 ± 1.19 μM and 33.70 ± 1.22 μM, respectively. The inhibition of curcumin on docetaxel metabolism in HLMs indicated that curcumin can modestly inhibit the metabolism of docetaxel with the IC50 value of 22.70 ± 1.13 μM and Ki value of 24.72 ± 4.24 μM. The preclinical and clinical improved docetaxel's therapeutic efficacy when co-administrated with curcumin may be due to the inhibition of curcumin on OATP1B1, OATP1B3 and HLMs activities. Close attention should be paid when combined treatment with docetaxel and curcumin carried out clinically.

  13. Cutting Edge: Resistance to Bacillus anthracis Infection Mediated by a Lethal Toxin Sensitive Allele of Nalp1b/Nlrp1b

    DTIC Science & Technology

    2010-01-01

    Nalp1b/Nlrp1b Lethal Toxin Sensitive Allele of Infection Mediated by aanthracis BacillusCutting Edge: Resistance to http://www.jimmunol.org/cgi/content...COVERED - 4. TITLE AND SUBTITLE Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin -sensitive allele of Nalp1b...Bacillus anthracis is associated with the production of lethal toxin (LT), which activates the murine Nalp1b/Nlrp1b inflammasome and induces caspase

  14. A novel STAT-like factor mediates lipopolysaccharide, interleukin 1 (IL-1), and IL-6 signaling and recognizes a gamma interferon activation site-like element in the IL1B gene.

    PubMed Central

    Tsukada, J; Waterman, W R; Koyama, Y; Webb, A C; Auron, P E

    1996-01-01

    Binding of many cytokines to their cognate receptors immediately activates Jak tyrosine kinases and their substrates, STAT (signal transducers and activators of transcription) DNA-binding proteins. The DNA binding targets of STATs are sequence elements related to the archetypal gamma interferon activation site, GAS. However, association of interleukin 1 (IL-1) with Jak-STAT signaling has remained unresolved. We now report an element termed LILRE (lipopolysaccharide [LPS] and IL-1-responsive element) in the human prointerleukin 1beta gene (IL1B) which can be immediately induced by either lipopolysaccharide (LPS) or IL-1 protein to bind a tyrosine-phosphorylated protein. This LPS- and IL-1-induced factor (LIL factor) is recognized by an antibody raised against the N terminus of Stat1, but not by those specific for either the C terminus of Stat1 or any other GAS-binding STAT. Phosphotyrosine (P-Tyr) specifically inhibits formation of the LIL factor-DNA complex, suggesting the importance of P-Tyr for the DNA-binding activity, as has been found for all STAT dimers. Analysis of DNA-binding specificity demonstrates that the LIL factor possesses a novel GAS-like binding activity that contrasts with those of other STATs in a requirement for a G residue at position 8 (TTCCTGAGA). Further investigation has revealed that IL-6, but neither IL-4 nor gamma interferon, activates the LIL factor. Thus, the existence of such a STAT-like factor (LIL-Stat) relates the LPS and IL-1 signaling pathway to other cytokine receptor signaling pathways via the activation of STATs. Moreover, the unique DNA-binding specificity and antigenicity of this factor suggest that LPS, IL-1, and IL-6 may use a common signaling pathway. PMID:8628285

  15. Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    PubMed

    Painter, Jodie N; O'Mara, Tracy A; Batra, Jyotsna; Cheng, Timothy; Lose, Felicity A; Dennis, Joe; Michailidou, Kyriaki; Tyrer, Jonathan P; Ahmed, Shahana; Ferguson, Kaltin; Healey, Catherine S; Kaufmann, Susanne; Hillman, Kristine M; Walpole, Carina; Moya, Leire; Pollock, Pamela; Jones, Angela; Howarth, Kimberley; Martin, Lynn; Gorman, Maggie; Hodgson, Shirley; De Polanco, Ma Magdalena Echeverry; Sans, Monica; Carracedo, Angel; Castellvi-Bel, Sergi; Rojas-Martinez, Augusto; Santos, Erika; Teixeira, Manuel R; Carvajal-Carmona, Luis; Shu, Xiao-Ou; Long, Jirong; Zheng, Wei; Xiang, Yong-Bing; Montgomery, Grant W; Webb, Penelope M; Scott, Rodney J; McEvoy, Mark; Attia, John; Holliday, Elizabeth; Martin, Nicholas G; Nyholt, Dale R; Henders, Anjali K; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Renner, Stefan P; Dörk, Thilo; Hillemanns, Peter; Dürst, Matthias; Runnebaum, Ingo; Lambrechts, Diether; Coenegrachts, Lieve; Schrauwen, Stefanie; Amant, Frederic; Winterhoff, Boris; Dowdy, Sean C; Goode, Ellen L; Teoman, Attila; Salvesen, Helga B; Trovik, Jone; Njolstad, Tormund S; Werner, Henrica M J; Ashton, Katie; Proietto, Tony; Otton, Geoffrey; Tzortzatos, Gerasimos; Mints, Miriam; Tham, Emma; Hall, Per; Czene, Kamila; Liu, Jianjun; Li, Jingmei; Hopper, John L; Southey, Melissa C; Ekici, Arif B; Ruebner, Matthias; Johnson, Nicola; Peto, Julian; Burwinkel, Barbara; Marme, Frederik; Brenner, Hermann; Dieffenbach, Aida K; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Depreeuw, Jeroen; Moisse, Matthieu; Chang-Claude, Jenny; Rudolph, Anja; Couch, Fergus J; Olson, Janet E; Giles, Graham G; Bruinsma, Fiona; Cunningham, Julie M; Fridley, Brooke L; Børresen-Dale, Anne-Lise; Kristensen, Vessela N; Cox, Angela; Swerdlow, Anthony J; Orr, Nicholas; Bolla, Manjeet K; Wang, Qin; Weber, Rachel Palmieri; Chen, Zhihua; Shah, Mitul; French, Juliet D; Pharoah, Paul D P; Dunning, Alison M; Tomlinson, Ian; Easton, Douglas F; Edwards, Stacey L; Thompson, Deborah J; Spurdle, Amanda B

    2015-03-01

    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk

    PubMed Central

    Painter, Jodie N.; O'Mara, Tracy A.; Batra, Jyotsna; Cheng, Timothy; Lose, Felicity A.; Dennis, Joe; Michailidou, Kyriaki; Tyrer, Jonathan P.; Ahmed, Shahana; Ferguson, Kaltin; Healey, Catherine S.; Kaufmann, Susanne; Hillman, Kristine M.; Walpole, Carina; Moya, Leire; Pollock, Pamela; Jones, Angela; Howarth, Kimberley; Martin, Lynn; Gorman, Maggie; Hodgson, Shirley; De Polanco, Ma. Magdalena Echeverry; Sans, Monica; Carracedo, Angel; Castellvi-Bel, Sergi; Rojas-Martinez, Augusto; Santos, Erika; Teixeira, Manuel R.; Carvajal-Carmona, Luis; Shu, Xiao-Ou; Long, Jirong; Zheng, Wei; Xiang, Yong-Bing; Montgomery, Grant W.; Webb, Penelope M.; Scott, Rodney J.; McEvoy, Mark; Attia, John; Holliday, Elizabeth; Martin, Nicholas G.; Nyholt, Dale R.; Henders, Anjali K.; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Renner, Stefan P.; Dörk, Thilo; Hillemanns, Peter; Dürst, Matthias; Runnebaum, Ingo; Lambrechts, Diether; Coenegrachts, Lieve; Schrauwen, Stefanie; Amant, Frederic; Winterhoff, Boris; Dowdy, Sean C.; Goode, Ellen L.; Teoman, Attila; Salvesen, Helga B.; Trovik, Jone; Njolstad, Tormund S.; Werner, Henrica M.J.; Ashton, Katie; Proietto, Tony; Otton, Geoffrey; Tzortzatos, Gerasimos; Mints, Miriam; Tham, Emma; Hall, Per; Czene, Kamila; Liu, Jianjun; Li, Jingmei; Hopper, John L.; Southey, Melissa C.; Ekici, Arif B.; Ruebner, Matthias; Johnson, Nicola; Peto, Julian; Burwinkel, Barbara; Marme, Frederik; Brenner, Hermann; Dieffenbach, Aida K.; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Depreeuw, Jeroen; Moisse, Matthieu; Chang-Claude, Jenny; Rudolph, Anja; Couch, Fergus J.; Olson, Janet E.; Giles, Graham G.; Bruinsma, Fiona; Cunningham, Julie M.; Fridley, Brooke L.; Børresen-Dale, Anne-Lise; Kristensen, Vessela N.; Cox, Angela; Swerdlow, Anthony J.; Orr, Nicholas; Bolla, Manjeet K.; Wang, Qin; Weber, Rachel Palmieri; Chen, Zhihua; Shah, Mitul; French, Juliet D.; Pharoah, Paul D.P.; Dunning, Alison M.; Tomlinson, Ian; Easton, Douglas F.; Edwards, Stacey L.; Thompson, Deborah J.; Spurdle, Amanda B.

    2015-01-01

    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10−14, odds ratio = 0.86, 95% confidence interval = 0.82–0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression. PMID:25378557

  17. Acute exercise suppresses hypothalamic PTP1B protein level and improves insulin and leptin signaling in obese rats.

    PubMed

    Chiarreotto-Ropelle, Eloize C; Pauli, Luciana S S; Katashima, Carlos K; Pimentel, Gustavo D; Picardi, Paty K; Silva, Vagner R R; de Souza, Claudio T; Prada, Patrícia O; Cintra, Dennys E; Carvalheira, José B C; Ropelle, Eduardo R; Pauli, José R

    2013-09-01

    Hypothalamic inflammation is associated with insulin and leptin resistance, hyperphagia, and obesity. In this scenario, hypothalamic protein tyrosine phosphatase 1B (PTP1B) has emerged as the key phosphatase induced by inflammation that is responsible for the central insulin and leptin resistance. Here, we demonstrated that acute exercise reduced inflammation and PTP1B protein level/activity in the hypothalamus of obese rodents. Exercise disrupted the interaction between PTP1B with proteins involved in the early steps of insulin (IRβ and IRS-1) and leptin (JAK2) signaling, increased the tyrosine phosphorylation of these molecules, and restored the anorexigenic effects of insulin and leptin in obese rats. Interestingly, the anti-inflammatory action and the reduction of PTP1B activity mediated by exercise occurred in an interleukin-6 (IL-6)-dependent manner because exercise failed to reduce inflammation and PTP1B protein level after the disruption of hypothalamic-specific IL-6 action in obese rats. Conversely, intracerebroventricular administration of recombinant IL-6 reproduced the effects of exercise, improving hypothalamic insulin and leptin action by reducing the inflammatory signaling and PTP1B activity in obese rats at rest. Taken together, our study reports that physical exercise restores insulin and leptin signaling, at least in part, by reducing hypothalamic PTP1B protein level through the central anti-inflammatory response.

  18. Inhibition of hepatocyte nuclear factor 1b induces hepatic steatosis through DPP4/NOX1-mediated regulation of superoxide.

    PubMed

    Long, Zi; Cao, Meng; Su, Shuhao; Wu, Guangyuan; Meng, Fansen; Wu, Hao; Liu, Jiangzheng; Yu, Weihua; Atabai, Kamran; Wang, Xin

    2017-09-21

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder that is closely associated with insulin resistance and type 2 diabetes. Previous studies have suggested that hepatocyte nuclear factor 1b (HNF1b) ameliorates insulin resistance. However, the role of HNF1b in the regulation of lipid metabolism and hepatic steatosis remains poorly understood. We found that HNF1b expression was decreased in steatotic livers. We injected mice with lentivirus (LV) expressing HNF1b shRNA to generate mice with hepatic knockdown of HNF1b. We also injected high fat (HF) diet-induced obese and db/db diabetic mice with LV expressing HNF1b to overexpress HNF1b. Knockdown of HNF1b increased hepatic lipid contents and induced insulin resistance in mice and in hepatocytes. Knockdown of HNF1b worsened HF diet-induced increases in hepatic lipid contents, liver injury and insulin resistance in mice and PA-induced lipid accumulation and impaired insulin signaling in hepatocytes. Moreover, overexpression of HNF1b alleviated HF diet-induced increases in hepatic lipid content and insulin resistance in mice. Knockdown of HNF1b increased expression of genes associated with lipogenensis and endoplasmic reticulum (ER) stress. DPP4 and NOX1 expression was increased by knockdown of HNF1b and HNF1b directly bound with the promoters of DPP4 and NOX1. Overexpression of DPP4 or NOX1 was associated with an increase in lipid droplets in hepatocytes and decreased expression of DPP4 or NOX1 suppressed the effects of knockdown of HNF1b knockdown on triglyceride (TG) formation and insulin signaling. Knockdown of HNF1b increased superoxide level and decreased glutathione content, which was inhibited by downregulation of DPP4 and NOX1. N-acetylcysteine (NAC) suppressed HNF1b knockdown-induced ER stress, TG formation and insulin resistance. Palmitic acid (PA) decreased HNF1b expression which was inhibited by NAC. Taken together, these studies demonstrate that HNF1b plays an essential role

  19. Adenovirus type 12 E1B 55-kilodalton oncoprotein promotes p53-mediated apoptotic response of ovarian cancer to cisplatin.

    PubMed

    Wang, Junnai; Gao, Qinglei; Li, Qiang

    2015-08-01

    The tumor suppressor p53-mediated apoptotic response plays an important role in cisplatin resistant in ovarian cancer. The adenovirus (Ad) type 12 E1B 55-kDa protein binds to p53 and inactivates its transcriptional transactivation function. In this study, we test the hypothesis that Ad12 E1B 55-kDa oncoprotein promotes p53-mediated apoptotic response of ovarian cancer to cisplatin. First, we observed the upregulation protein level of p53 target genes in cisplatin-resistant or cisplatin-sensitive ovarian cancer by Western blotting. Second, after transfection of Ad12 E1b 55-kDa expression plasmid, the expressions of p53 target genes in A2780 cells were further enhanced. Co-IP experiment demonstrated Ad12 E1b 55 kDa associated with p53. MTT assay confirmed that the cell proliferation was enhanced after transfection, as well as the enhanced cell inhibitory rate in the presence of cisplatin. Using flow cytometry, transfection of Ad12 E1B 55-kDa protein induced apoptosis and promoted S-phase transition in proliferation. Finally, results showed that all these changes promoted by Ad12 E1b 55 kDa were attenuated by the exposure of specific inhibitor of p53 signaling, pifithrin-α. Taken together, we concluded that Ad E1B 55-kDa oncoprotein promotes p53-mediated apoptotic response of ovarian cancer to cisplatin.

  20. Myosin 1b functions as an effector of EphB signaling to control cell repulsion

    PubMed Central

    Prospéri, Marie-Thérèse; Lépine, Priscilla; Dingli, Florent; Paul-Gilloteaux, Perrine; Martin, René; Loew, Damarys; Knölker, Hans-Joachim

    2015-01-01

    Eph receptors and their membrane-tethered ligands, the ephrins, have important functions in embryo morphogenesis and in adult tissue homeostasis. Eph/ephrin signaling is essential for cell segregation and cell repulsion. This process is accompanied by morphological changes and actin remodeling that drives cell segregation and tissue patterning. The actin cortex must be mechanically coupled to the plasma membrane to orchestrate the cell morphology changes. Here, we demonstrate that myosin 1b that can mechanically link the membrane to the actin cytoskeleton interacts with EphB2 receptors via its tail and is tyrosine phosphorylated on its tail in an EphB2-dependent manner. Myosin 1b regulates the redistribution of myosin II in actomyosin fibers and the formation of filopodia at the interface of ephrinB1 and EphB2 cells, which are two processes mediated by EphB2 signaling that contribute to cell repulsion. Together, our results provide the first evidence that a myosin 1 functions as an effector of EphB2/ephrinB signaling, controls cell morphology, and thereby cell repulsion. PMID:26195670

  1. Regulation of T Cell Receptor Signaling by DENND1B in TH2 Cells and Allergic Disease.

    PubMed

    Yang, Chiao-Wen; Hojer, Caroline D; Zhou, Meijuan; Wu, Xiumin; Wuster, Arthur; Lee, Wyne P; Yaspan, Brian L; Chan, Andrew C

    2016-01-14

    The DENN domain is an evolutionary conserved protein module found in all eukaryotes and serves as an exchange factor for Rab-GTPases to regulate diverse cellular functions. Variants in DENND1B are associated with development of childhood asthma and other immune disorders. To understand how DENND1B may contribute to human disease, Dennd1b(-/-) mice were generated and exhibit hyper-allergic responses following antigen challenge. Dennd1b(-/-) TH2, but not other TH cells, exhibit delayed receptor-induced T cell receptor (TCR) downmodulation, enhanced TCR signaling, and increased production of effector cytokines. As DENND1B interacts with AP-2 and Rab35, TH2 cells deficient in AP-2 or Rab35 also exhibit enhanced TCR-mediated effector functions. Moreover, human TH2 cells carrying asthma-associated DENND1B variants express less DENND1B and phenocopy Dennd1b(-/-) TH2 cells. These results provide a molecular basis for how DENND1B, a previously unrecognized regulator of TCR downmodulation in TH2 cells, contributes to asthma pathogenesis and how DENN-domain-containing proteins may contribute to other human disorders.

  2. Receptor-mediated stimulation of lipid signalling pathways in CHO cells elicits the rapid transient induction of the PDE1B isoform of Ca2+/calmodulin-stimulated cAMP phosphodiesterase.

    PubMed

    Spence, S; Rena, G; Sullivan, M; Erdogan, S; Houslay, M D

    1997-01-01

    Chinese hamster ovary cells (CHO cells) do not exhibit any Ca2+/calmodulin-stimulated cAMP phosphodiesterase (PDE1) activity. Challenge of CHO cells with agonists for endogenous P2-purinoceptors, lysophosphatidic acid receptors and thrombin receptors caused a similar rapid transient induction of PDE1 activity in each instance. This was also evident on noradrenaline challenge of a cloned CHO cell line transfected so as to overexpress alpha 1B-adrenoceptors. This novel PDE1 activity appeared within about 15 min of exposure to ligands, rose to a maximum value within 30 min to 1 h and then rapidly decreased. In each case, the expression of novel PDE1 activity was blocked by the transcriptional inhibitor actinomycin D. Challenge with insulin of either native CHO cells or a CHO cell line transfected so as to overexpress the human insulin receptor failed to induce PDE1 activity. Reverse transcriptase-PCR analyses, using degenerate primers able to detect the PDE1C isoform, did not amplify any fragment from RNA preparations of CHO cells expressing PDE1 activity, although they did so from the human thyroid carcinoma FTC133 cell line. Reverse transcriptase-PCR analyses, using degenerate primers able to detect the PDE1A and PDE1B isoforms, successfully amplified a fragment of the predicted size from RNA preparations of both CHO cells expressing PDE1 activity and human Jurkat T-cells. Sequencing of the PCR products, generated using the PDE1A/B primers, yielded a novel sequence which, by analogy with sequences reported for bovine and murine PDE1B forms, suggests that the PDE1 species induced in CHO cells through protein kinase C activation and that expressed in Jurkat T-cells are PDE1B forms.

  3. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3.

    PubMed

    Seithel, Annick; Eberl, Sonja; Singer, Katrin; Auge, Daniel; Heinkele, Georg; Wolf, Nadine B; Dörje, Frank; Fromm, Martin F; König, Jörg

    2007-05-01

    Macrolides may cause severe drug interactions due to the inhibition of metabolizing enzymes. Transporter-mediated uptake of drugs into cells [e.g., by members of the human organic anion transporting polypeptide (OATP) family] is a determinant of drug disposition and a prerequisite for subsequent metabolism. However whether macrolides are also inhibitors of uptake transporters, thereby providing an additional mechanism of drug interactions, has not been systematically studied. The human OATP family members OATP1B1 and OATP1B3 mediate the uptake of endogenous substances and drugs such as antibiotics and HMG-CoA reductase inhibitors (statins) into hepatocytes. In this study we investigated the potential role of these uptake transporters on macrolide-induced drug interactions. By using sulfobromophthalein (BSP) and the HMG-CoA reductase inhibitor pravastatin as substrates, the effects of the macrolides azithromycin, clarithromycin, erythromycin, and roxithromycin and of the ketolide telithromycin on the OATP1B1- and OATP1B3-mediated uptake were analyzed. These experiments demonstrated that the OATP1B1- and OATP1B3-mediated uptake of BSP and pravastatin can be inhibited by increasing concentrations of all macrolides except azithromycin. The IC50 values for the inhibition of OATP1B3-mediated BSP uptake were 11 microM for telithromycin, 32 microM for clarithromycin, 34 microM for erythromycin, and 37 microM for roxithromycin. These IC50 values were lower than the IC50 values for inhibition of OATP1B1-mediated BSP uptake (96-217 microM). These macrolides also inhibited in a concentration-dependent manner the OATP1B1- and OATP1B3-mediated uptake of pravastatin. In summary, these results indicate that alterations of uptake transporter function by certain macrolides/ketolides have to be considered as a potential additional mechanism underlying drug-drug interactions.

  4. Acute exercise decreases PTP-1B protein level and improves insulin signaling in the liver of old rats.

    PubMed

    de Moura, Leandro Pereira; Souza Pauli, Luciana Santos; Cintra, Dennys Esper; de Souza, Claudio Teodoro; da Silva, Adelino Sanchez Ramos; Marinho, Rodolfo; de Melo, Maria Alice Rostom; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2013-02-25

    It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRβ/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRβ/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging.

  5. Acute exercise decreases PTP-1B protein level and improves insulin signaling in the liver of old rats

    PubMed Central

    2013-01-01

    It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRβ/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRβ/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging. PMID:23442260

  6. The ganglioside GQ1b regulates BDNF expression via the NMDA receptor signaling pathway.

    PubMed

    Shin, Min Kyoo; Jung, Woo Ram; Kim, Hong Gi; Roh, Seung Eon; Kwak, Choong Hwan; Kim, Cheorl Ho; Kim, Sang Jeong; Kim, Kil Lyong

    2014-02-01

    Gangliosides are sialic acid-containing glycosphingolipids which play a role in neuronal functions. Among the gangliosides, tetrasialoganglioside GQ1b shows neurotrophic factor-like actions, such as increasing neurite outgrowth, cell proliferation, and long-term potentiation. In addition, we recently reported that GQ1b improves spatial learning and memory performance in naïve rats. However, it is still unknown how GQ1b exerts its diverse neuronal functions. Thus, we hypothesized that GQ1b might influence synaptic activity by regulating brain-derived neurotrophic factor (BDNF) expression, which is an important protein for synaptic plasticity and cognition. Interestingly, GQ1b treatment increased BDNF expression in GQ1b-null SH-SY5Y cell lines and rat primary cortical neurons. Additionally, we confirmed whether the observed effects were due to GQ1b or due to a ganglioside with fewer sialic acid molecules (GT1b and GD1b) created by the sialidases present on the plasma membranes, by directly applying GT1b and GD1b or GQ1b co-treated with a sialidase inhibitor. Treatment with GT1b or GD1b had no effect on BDNF expression, whereas co-treatment with a sialidase inhibitor and GQ1b significantly increased BDNF levels. Moreover, GQ1b restored the decreased BDNF expression induced by the ganglioside synthesis inhibitor, D-PDMP, in rat primary cortical neurons. GQ1b treatment significantly increased BDNF levels, whereas pretreatment with the N-methyl-d-aspartate (NMDA) receptor antagonist D-AP5 blocked the effects of GQ1b on BDNF expression, suggesting that GQ1b regulates BDNF expression via the NMDA receptor signaling. Finally, we performed an intracerebroventricular GQ1b injection, which resulted in increased prefrontal and hippocampal BDNF expression in vivo. These findings demonstrate, for the first time, that tetrasialoganglioside GQ1b regulates BDNF expression in vitro and in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The arginine vasopressin V1b receptor gene and prosociality: Mediation role of emotional empathy.

    PubMed

    Wu, Nan; Shang, Siyuan; Su, Yanjie

    2015-09-01

    The vasopressin V1b receptor (AVPR1B) gene has been shown to be closely associated with bipolar disorder and depression. However, whether it relates to positive social outcomes, such as empathy and prosocial behavior, remains unknown. This study explored the possible role of the AVPR1B gene rs28373064 in empathy and prosociality. A total of 256 men, who were genetically unrelated, non-clinical ethnic Han Chinese college students, participated in the study. Prosociality was tested by measuring the prosocial tendencies of cognitive and emotional empathy using the Interpersonal Reactivity Index (IRI). The single nucleotide polymorphism (SNP), rs28373064, was genotyped using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The results suggest that the AVPR1B gene rs28373064 is linked to emotional empathy and prosociality. The mediation analysis indicated that the effect of the AVPR1B gene on prosociality might be mediated by emotional empathy. This study demonstrated the link between the AVPR1B gene and prosociality and provided evidence that emotional empathy might mediate the relation between the AVPR1B gene and prosociality. © 2015 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  8. A Significant Role of the Truncated Ghrelin Receptor GHS-R1b in Ghrelin-induced Signaling in Neurons.

    PubMed

    Navarro, Gemma; Aguinaga, David; Angelats, Edgar; Medrano, Mireia; Moreno, Estefanía; Mallol, Josefa; Cortés, Antonio; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Lluís, Carme; Ferré, Sergi

    2016-06-17

    The truncated non-signaling ghrelin receptor growth hormone secretagogue R1b (GHS-R1b) has been suggested to simply exert a dominant negative role in the trafficking and signaling of the full and functional ghrelin receptor GHS-R1a. Here we reveal a more complex modulatory role of GHS-R1b. Differential co-expression of GHS-R1a and GHS-R1b, both in HEK-293T cells and in striatal and hippocampal neurons in culture, demonstrates that GHS-R1b acts as a dual modulator of GHS-R1a function: low relative GHS-R1b expression potentiates and high relative GHS-R1b expression inhibits GHS-R1a function by facilitating GHS-R1a trafficking to the plasma membrane and by exerting a negative allosteric effect on GHS-R1a signaling, respectively. We found a preferential Gi/o coupling of the GHS-R1a-GHS-R1b complex in HEK-293T cells and, unexpectedly, a preferential Gs/olf coupling in both striatal and hippocampal neurons in culture. A dopamine D1 receptor (D1R) antagonist blocked ghrelin-induced cAMP accumulation in striatal but not hippocampal neurons, indicating the involvement of D1R in the striatal GHS-R1a-Gs/olf coupling. Experiments in HEK-293T cells demonstrated that D1R co-expression promotes a switch in GHS-R1a-G protein coupling from Gi/o to Gs/olf, but only upon co-expression of GHS-R1b. Furthermore, resonance energy transfer experiments showed that D1R interacts with GHS-R1a, but only in the presence of GHS-R1b. Therefore, GHS-R1b not only determines the efficacy of ghrelin-induced GHS-R1a-mediated signaling but also determines the ability of GHS-R1a to form oligomeric complexes with other receptors, promoting profound qualitative changes in ghrelin-induced signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. HTLV-1 bZIP factor enhances TGF-β signaling through p300 coactivator.

    PubMed

    Zhao, Tiejun; Satou, Yorifumi; Sugata, Kenji; Miyazato, Paola; Green, Patrick L; Imamura, Takeshi; Matsuoka, Masao

    2011-08-18

    Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that is etiologically associated with adult T-cell leukemia. The HTLV-1 bZIP factor (HBZ), which is encoded by the minus strand of the provirus, is involved in both regulation of viral gene transcription and T-cell proliferation. We showed in this report that HBZ interacted with Smad2/3, and enhanced transforming growth factor-β (TGF-β)/Smad transcriptional responses in a p300-dependent manner. The N-terminal LXXLL motif of HBZ was responsible for HBZ-mediated TGF-β signaling activation. In a serial immunoprecipitation assay, HBZ, Smad3, and p300 formed a ternary complex, and the association between Smad3 and p300 was markedly enhanced in the presence of HBZ. In addition, HBZ could overcome the repression of the TGF-β response by Tax. Finally, HBZ expression resulted in enhanced transcription of Pdgfb, Sox4, Ctgf, Foxp3, Runx1, and Tsc22d1 genes and suppression of the Id2 gene; such effects were similar to those by TGF-β. In particular, HBZ induced Foxp3 expression in naive T cells through Smad3-dependent TGF-β signaling. Our results suggest that HBZ, by enhancing TGF-β signaling and Foxp3 expression, enables HTLV-1 to convert infected T cells into regulatory T cells, which is thought to be a critical strategy for virus persistence.

  10. The Adaptor Protein-1 μ1B Subunit Expands the Repertoire of Basolateral Sorting Signal Recognition in Epithelial Cells

    PubMed Central

    Guo, Xiaoli; Mattera, Rafael; Ren, Xuefeng; Chen, Yu; Retamal, Claudio; González, Alfonso; Bonifacino, Juan S.

    2014-01-01

    SUMMARY An outstanding question in protein sorting is why polarized epithelial cells express two isoforms of the μ1 subunit of the AP-1 clathrin adaptor complex: the ubiquitous μ1A and the epithelial-specific μ1B. Previous studies led to the notion that μ1A and μ1B mediate basolateral sorting predominantly from the trans-Golgi network (TGN) and recycling endosomes, respectively. Using improved analytical tools, however, we find that μ1A and μ1B largely colocalize with each other. They also colocalize to similar extents with TGN and recycling endosome markers, as well as with basolateral cargoes transiting biosynthetic and endocytic-recycling routes. Instead, the two isoforms differ in their signal-recognition specificity. In particular, μ1B preferentially binds a subset of signals from cargoes that are sorted basolaterally in a μ1B-dependent manner. We conclude that expression of distinct μ1 isoforms in epithelial cells expands the repertoire of signals recognized by AP-1 for sorting of a broader range of cargoes to the basolateral surface. PMID:24229647

  11. AP-1/σ1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory

    PubMed Central

    Glyvuk, Nataliya; Tsytsyura, Yaroslav; Geumann, Constanze; D'Hooge, Rudi; Hüve, Jana; Kratzke, Manuel; Baltes, Jennifer; Böning, Daniel; Klingauf, Jürgen; Schu, Peter

    2010-01-01

    Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1–σ1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1–σ1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three σ1 subunit isoforms: A, B and C. The expressions of σ1A and σ1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from σ1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The σ1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation. PMID:20203623

  12. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation

    PubMed Central

    Kwon, Yeo-Jung; Baek, Hyoung-Seok; Ye, Dong-Jin; Shin, Sangyun; Kim, Donghak; Chun, Young-Jin

    2016-01-01

    Cytochrome P450 1B1 (CYP1B1) is a major E2 hydroxylase involved in the metabolism of potential carcinogens. CYP1B1 expression has been reported to be higher in tumors compared to normal tissues, especially in hormone-related cancers including breast, ovary, and prostate tumors. To explore the role of CYP1B1 in cancer progression, we investigated the action of CYP1B1 in cells with increased CYP1B1 via the inducer 7,12-dimethylbenz[α]anthracene (DMBA) or an overexpression vector, in addition to decreased CYP1B1 via the inhibitor tetramethoxystilbene (TMS) or siRNA knockdown. We observed that CYP1B1 promoted cell proliferation, migration, and invasion in MCF-7 and MCF-10A cells. To understand its molecular mechanism, we measured key oncogenic proteins including β-catenin, c-Myc, ZEB2, and matrix metalloproteinases following CYP1B1 modulation. CYP1B1 induced epithelial-mesenchymal transition (EMT) and activated Wnt/β-catenin signaling via upregulation of CTNNB1, ZEB2, SNAI1, and TWIST1. Sp1, a transcription factor involved in cell growth and metastasis, was positively regulated by CYP1B1, and suppression of Sp1 expression by siRNA or DNA binding activity using mithramycin A blocked oncogenic transformation by CYP1B1. Therefore, we suggest that Sp1 acts as a key mediator for CYP1B1 action. Treatment with 4-hydroxyestradiol (4-OHE2), a major metabolite generated by CYP1B1, showed similar effects as CYP1B1 overexpression, indicating that CYP1B1 activity mediated various oncogenic events in cells. In conclusion, our data suggests that CYP1B1 promotes cell proliferation and metastasis by inducing EMT and Wnt/β-catenin signaling via Sp1 induction. PMID:26981862

  13. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation.

    PubMed

    Kwon, Yeo-Jung; Baek, Hyoung-Seok; Ye, Dong-Jin; Shin, Sangyun; Kim, Donghak; Chun, Young-Jin

    2016-01-01

    Cytochrome P450 1B1 (CYP1B1) is a major E2 hydroxylase involved in the metabolism of potential carcinogens. CYP1B1 expression has been reported to be higher in tumors compared to normal tissues, especially in hormone-related cancers including breast, ovary, and prostate tumors. To explore the role of CYP1B1 in cancer progression, we investigated the action of CYP1B1 in cells with increased CYP1B1 via the inducer 7,12-dimethylbenz[α]anthracene (DMBA) or an overexpression vector, in addition to decreased CYP1B1 via the inhibitor tetramethoxystilbene (TMS) or siRNA knockdown. We observed that CYP1B1 promoted cell proliferation, migration, and invasion in MCF-7 and MCF-10A cells. To understand its molecular mechanism, we measured key oncogenic proteins including β-catenin, c-Myc, ZEB2, and matrix metalloproteinases following CYP1B1 modulation. CYP1B1 induced epithelial-mesenchymal transition (EMT) and activated Wnt/β-catenin signaling via upregulation of CTNNB1, ZEB2, SNAI1, and TWIST1. Sp1, a transcription factor involved in cell growth and metastasis, was positively regulated by CYP1B1, and suppression of Sp1 expression by siRNA or DNA binding activity using mithramycin A blocked oncogenic transformation by CYP1B1. Therefore, we suggest that Sp1 acts as a key mediator for CYP1B1 action. Treatment with 4-hydroxyestradiol (4-OHE2), a major metabolite generated by CYP1B1, showed similar effects as CYP1B1 overexpression, indicating that CYP1B1 activity mediated various oncogenic events in cells. In conclusion, our data suggests that CYP1B1 promotes cell proliferation and metastasis by inducing EMT and Wnt/β-catenin signaling via Sp1 induction.

  14. Protein Tyrosine Phosphatase 1B, a major regulator of leptin-mediated control of cardiovascular function

    PubMed Central

    de Chantemèle, Eric J. Belin; Muta, Kenjiro; Mintz, James; Tremblay, Michel L.; Marrero, Mario B.; Fulton, David; Stepp, David W.

    2009-01-01

    Background Obesity causes hypertension and sympathoactivation, a process proposed to be mediated by leptin. Protein tyrosine phosphatase 1B (PTP1B), a major new pharmaceutical target to treat obesity and type II diabetes, constrains leptin’s metabolic actions, but the extent to which PTP1B regulates leptin’s cardiovascular effects is unclear. This study examined the hypothesis that PTP1B is a negative regulator of the cardiovascular effects of leptin. Methods and Results PTP1B KO mice had lower body fat but higher mean arterial pressure (MAP: 116±5 vs. 105±5 mmHg, p<0.05) than controls. Leptin infusion produced a greater anorexic effect in PTP1B KO mice and a marked increase in MAP (135±5 mmHg) in PTP1B KO mice only. Decreased MAP to ganglionic blockade was higher in PTP1B KO mice (−38±3% vs. −29±3%, p<0.05) suggesting increased sympathetic tone. PTP1B deletion blunted MAP responses to phenylephrine (PE) injection (55±10% vs. 93±7%, p<0.05). PE-induced aortic contraction was reduced in PTP1B KO mice (57.7±9 vs. 96.3±12% of KCl, p<0.05), consistent with desensitization to chronically elevated sympathetic tone. Furthermore, PTP1B deletion significantly reduced gene expression of three alpha-1 adrenergic receptor sub-types, consistent with blunted constriction to PE. Conclusion these data indicate that PTP1B is a key regulator of the cardiovascular effects of leptin and that reduced vascular adrenergic reactivity provides a compensatory limit to leptin’s effects on MAP. PMID:19687357

  15. Influence of Drug Formulation on OATP1B-Mediated Transport of Paclitaxel

    PubMed Central

    Nieuweboer, Annemieke J.M.; Hu, Shuiying; Hagenbuch, Bruno; Moghaddam-Helmantel, Inge Ghobadi; Gibson, Alice A.; de Bruijn, Peter; Mathijssen, Ron H. J.; Sparreboom, Alex

    2014-01-01

    Purpose Taxane antineoplastic agents are extensively taken up into hepatocytes by OATP1B-type transporters prior to metabolism and excretion. Because the biodistributional properties imposed upon these agents by different solubilizers drive clinically-important pharmacodynamic endpoints, we tested the hypothesis that the in vitro and in vivo interaction of taxanes with OATP1B transporters is affected by the choice of drug delivery system. Experimental Design Transport of paclitaxel, docetaxel, and cabazitaxel was studied in vitro using various cell lines transfected with OATP1B1, OATP1B3, or the rodent equivalent Oatp1b2. Pharmacokinetic studies were done in wildtype and Oatp1b2-knockout mice in the presence or absence of polysorbate 80 (PS80) or Kolliphor EL (formerly Cremophor EL; CrEL). Results Paclitaxel and docetaxel, but not cabazitaxel, were transported substrates of OATP1B1, OATP1B3, and Oatp1b2, and these transport processes were strongly reduced in the presence of clinically-relevant concentrations of PS80 and CrEL. In the absence of solubilizers, deficiency of Oatp1b2 in mice was associated with a significantly decreased taxane clearance due to a liver distribution defect (P<0.00001), but these kinetic changes were masked in the presence of PS80 or CrEL (P>0.05). Conclusions Our findings confirm the importance of OATP1B-type transporters in the hepatic elimination of taxanes, and that this process can be inhibited by PS80 and CrEL. These results suggest that the likelihood of drug-drug interactions mediated by these transporters is strongly dependent on the selected taxane solubilizer. PMID:24755470

  16. Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling.

    PubMed

    Wu, Chia-Lun; Buszard, Bree; Teng, Chun-Hung; Chen, Wei-Lin; Warr, Coral G; Tiganis, Tony; Meng, Tzu-Ching

    2011-10-01

    PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.

  17. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.

    PubMed

    Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B

    2015-11-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes.

  18. Integral role of PTP1B in adiponectin-mediated inhibition of oncogenic actions of leptin in breast carcinogenesis.

    PubMed

    Taliaferro-Smith, LaTonia; Nagalingam, Arumugam; Knight, Brandi Brandon; Oberlick, Elaine; Saxena, Neeraj K; Sharma, Dipali

    2013-01-01

    The molecular effects of obesity are mediated by alterations in the levels of adipocytokines. High leptin level associated with obese state is a major cause of breast cancer progression and metastasis, whereas adiponectin is considered a "guardian angel adipocytokine" for its protective role against various obesity-related pathogenesis including breast cancer. In the present study, investigating the role of adiponectin as a potential inhibitor of leptin, we show that adiponectin treatment inhibits leptin-induced clonogenicity and anchorage-independent growth. Leptin-stimulated migration and invasion of breast cancer cells is also effectively inhibited by adiponectin. Analyses of the underlying molecular mechanisms reveal that adiponectin suppresses activation of two canonical signaling molecules of leptin signaling axis: extracellular signal-regulated kinase (ERK) and Akt. Pretreatment of breast cancer cells with adiponectin protects against leptin-induced activation of ERK and Akt. Adiponectin increases expression and activity of the physiological inhibitor of leptin signaling, protein tyrosine phosphatase 1B (PTP1B), which is found to be integral to leptin-antagonist function of adiponectin. Inhibition of PTP1B blocks adiponectin-mediated inhibition of leptin-induced breast cancer growth. Our in vivo studies show that adenovirus-mediated adiponectin treatment substantially reduces leptin-induced mammary tumorigenesis in nude mice. Exploring therapeutic strategies, we demonstrate that treatment of breast cancer cells with rosiglitazone results in increased adiponectin expression and inhibition of migration and invasion. Rosiglitazone treatment also inhibits leptin-induced growth of breast cancer cells. Taken together, these data show that adiponectin treatment can inhibit the oncogenic actions of leptin through blocking its downstream signaling molecules and raising adiponectin levels could be a rational therapeutic strategy for breast carcinoma in obese patients

  19. Prodrug delivery of novel PTP1B inhibitors to enhance insulin signalling.

    PubMed

    Erbe, D V; Klaman, L D; Wilson, D P; Wan, Z-K; Kirincich, S J; Will, S; Xu, X; Kung, L; Wang, S; Tam, S; Lee, J; Tobin, J F

    2009-06-01

    A growing percentage of the population is resistant to two key hormones - insulin and leptin - as a result of increased obesity, often leading to significant health consequences such as type 2 diabetes. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of signalling by both of these hormones, so that inhibitors of this enzyme may provide promise for correcting endocrine abnormalities in both diabetes and obesity. As with other tyrosine phosphatases, identification of viable drug candidates targeting PTP1B has been elusive because of the nature of its active site. Beginning with novel phosphotyrosine mimetics, we have designed some of the most potent PTP1B inhibitors. However, their highly acidic structures limit intrinsic permeability and pharmacokinetics. Ester prodrugs of these inhibitors improve their drug-like properties with the goal of delivering these nanomolar inhibitors to the cytoplasm of cells within target tissues. In addition to identifying prodrugs that is able to deliver active drugs into cells to inhibit PTP1B and increase insulin signalling, these compounds were further modified to gain a variety of cleavage properties for targeting activity in vivo. One such prodrug candidate improved insulin sensitivity in ob/ob mice, with lowered fasting blood glucose levels seen in the context of lowered fasting insulin levels following 4 days of intraperitoneal dosing. The results presented in this study highlight the potential for design of orally active drug candidates targeting PTP1B, while also delineating the considerable challenges remaining.

  20. Deletion of protein tyrosine phosphatase 1b in proopiomelanocortin neurons reduces neurogenic control of blood pressure and protects mice from leptin- and sympatho-mediated hypertension.

    PubMed

    Bruder-Nascimento, Thiago; Butler, Benjamin R; Herren, David J; Brands, Michael W; Bence, Kendra K; Belin de Chantemèle, Eric J

    2015-12-01

    Protein tyrosine phosphatase 1b (Ptp1b), which represses leptin signaling, is a promising therapeutic target for obesity. Genome wide deletion of Ptp1b, increases leptin sensitivity, protects mice from obesity and diabetes, but alters cardiovascular function by increasing blood pressure (BP). Leptin-control of metabolism is centrally mediated and involves proopiomelanocortin (POMC) neurons. Whether these neurons contribute to leptin-mediated increases in BP remain unclear. We hypothesized that increasing leptin signaling in POMC neurons with Ptp1b deletion will sensitize the cardiovascular system to leptin and enhance neurogenic control of BP. We analyzed the cardiovascular phenotype of Ptp1b+/+ and POMC-Ptp1b-/- mice, at baseline and after 7 days of leptin infusion or sympatho-activation with phenylephrine. POMCPtp1b deletion did not alter baseline cardiovascular hemodynamics (BP, heart rate) but reduced BP response to ganglionic blockade and plasma catecholamine levels that suggests a decreased neurogenic control of BP. In contrast, POMC-Ptp1b deletion increased vascular adrenergic reactivity and aortic α-adrenergic receptors expression. Chronic leptin treatment reduced vascular adrenergic reactivity and blunted diastolic and mean BP increases in POMC-Ptp1b-/- mice only. Similarly POMC-Ptp1b-/- mice exhibited a blunted increased in diastolic and mean BP accompanied by a gradual reduction in adrenergic reactivity in response to chronic vascular sympatho-activation with phenylephrine. Together these data rule out our hypothesis but suggest that deletion of Ptp1b in POMC neurons protects from leptin- and sympatho-mediated increases in BP. Vascular adrenergic desensitization appears as a protective mechanism against hypertension, and POMC-Ptp1b as a key therapeutic target for the treatment of metabolic and cardiovascular dysfunctions associated with obesity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Protein tyrosine phosphatases PTP-1B, SHP-2, and PTEN facilitate Rb/E2F-associated apoptotic signaling.

    PubMed

    Morales, Liza D; Casillas Pavón, Edgar A; Shin, Jun Wan; Garcia, Alexander; Capetillo, Mario; Kim, Dae Joon; Lieman, Jonathan H

    2014-01-01

    To maintain tissue homeostasis, apoptosis is functionally linked to the cell cycle through the retinoblastoma (Rb)/E2F pathway. When the Rb tumor suppressor protein is functionally inactivated, E2F1 elicits an apoptotic response through both intrinsic (caspase-9 mediated) and extrinsic (caspase-8 mediated) apoptotic pathways in order to eliminate hyperproliferative cells. Rb/E2F-associated apoptosis has been demonstrated to be associated with the loss of constitutive transcriptional repression by Rb/E2F complexes and mediated by caspase-8. Protein tyrosine phosphatases (PTPs) PTP-1B and SHP-2 have been previously shown to be directly activated by loss of Rb/E2F repression during Rb/E2F-associated apoptosis. In this current study, we demonstrate that the PTEN tumor suppressor is also directly activated by loss of Rb/E2F repression. We also demonstrate that PTP-1B, SHP-2, and PTEN play a functional role in Rb/E2F-associated apoptosis. Knockdown of PTP1B, SHP2, or PTEN expression with small interfering RNA (siRNA) in apoptotic cells increases cell viability and rescues cells from the Rb/E2F-associated apoptotic response. Furthermore, rescue from apoptosis coincides with inhibition of caspase-8 and caspase-3 cleavage (activation). Our results indicate PTP-1B, SHP-2, and PTEN all play a functional role in Rb/E2F-associated apoptotic signal transduction and provide further evidence that PTP-1B, SHP-2, and PTEN can contribute to tumor suppression through an Rb/E2F-associated mechanism.

  2. Modulating the Strength and Threshold of NOTCH Oncogenic Signals by mir-181a-1/b-1

    PubMed Central

    Wang, Song; Schaffert, Steven; Gong, Xue; Yue, Sibiao; Luong, Richard; Min, Hyeyoung; Yashiro-Ohtani, Yumi; Davis, Mark; Pear, Warren; Chen, Chang-Zheng

    2012-01-01

    Oncogenes, which are essential for tumor initiation, development, and maintenance, are valuable targets for cancer therapy. However, it remains a challenge to effectively inhibit oncogene activity by targeting their downstream pathways without causing significant toxicity to normal tissues. Here we show that deletion of mir-181a-1/b-1 expression inhibits the development of Notch1 oncogene-induced T cell acute lymphoblastic leukemia (T-ALL). mir-181a-1/b-1 controls the strength and threshold of Notch activity in tumorigenesis in part by dampening multiple negative feedback regulators downstream of NOTCH and pre-T cell receptor (TCR) signaling pathways. Importantly, although Notch oncogenes utilize normal thymic progenitor cell genetic programs for tumor transformation, comparative analyses of mir-181a-1/b-1 function in normal thymocyte and tumor development demonstrate that mir-181a-1/b-1 can be specifically targeted to inhibit tumor development with little toxicity to normal development. Finally, we demonstrate that mir-181a-1/b-1, but not mir-181a-2b-2 and mir-181-c/d, controls the development of normal thymic T cells and leukemia cells. Together, these results illustrate that NOTCH oncogene activity in tumor development can be selectively inhibited by targeting the molecular networks controlled by mir-181a-1/b-1. PMID:22916024

  3. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice

    PubMed Central

    Kraus, Anna E.; Gale, Daniel; White, Gilbert C.; VanSluys, Jillian

    2008-01-01

    Angiogenesis is the main mechanism of vascular remodeling during late development and, after birth, in wound healing. Perturbations of angiogenesis occur in cancer, diabetes, ischemia, and inflammation. While much progress has been made in identifying factors that control angiogenesis, the understanding of the precise molecular mechanisms involved is incomplete. Here we identify a small GTPase, Rap1b, as a positive regulator of angiogenesis. Rap1b-deficient mice had a decreased level of Matrigel plug and neonatal retinal neovascularization, and aortas isolated from Rap1b-deficient animals had a reduced microvessel sprouting response to 2 major physiological regulators of angiogenesis: vascular endothelial growth factor (VEGF) and basic fibroblasts growth factor (bFGF), indicating an intrinsic defect in endothelial cells. Proliferation of retinal endothelial cells in situ and in vitro migration of lung endothelial cells isolated from Rap1b-deficient mice were inhibited. At the molecular level, activation of 2 MAP kinases, p38 MAPK and p42/44 ERK, important regulators of endothelial migration and proliferation, was decreased in Rap1b-deficient endothelial cells in response to VEGF stimulation. These studies provide evidence that Rap1b is required for normal angiogenesis and reveal a novel role of Rap1 in regulation of proangiogenic signaling in endothelial cells. PMID:17993608

  4. Sphingosine 1-phosphate-mediated α1B-adrenoceptor desensitization and phosphorylation. Direct and paracrine/autocrine actions

    PubMed Central

    Castillo-Badillo, Jean A.; Molina-Muñoz, Tzindilú; Romero-Ávila, M. Teresa; Vázquez-Macías, Aleida; Rivera, Richard; Chun, Jerold; García-Sáinz, J. Adolfo

    2012-01-01

    Sphingosine-1-phosphate-induced α1B-adrenergic receptor desensitization and phosphorylation was studied in rat-1 fibroblasts stably expressing enhanced green fluorescent protein-tagged adrenoceptors. Sphingosine-1-phosphate induced adrenoceptor desensitization and phosphorylation through a signaling cascade that involved phosphoinositide 3-kinase and protein kinase C activities. The autocrine/paracrine role of sphingosine-1-phosphate was also studied. It was observed that activation of receptor tyrosine kinases, such as insulin growth factor-1 (IGF-I) and epidermal growth factor (EGF) receptors increased sphingosine kinase activity. Such activation and consequent production of sphingosine-1-phosphate appears to be functionally relevant in IGF-I- and EGF-induced α1B-adrenoceptor phosphorylation and desensitization as evidenced by the following facts: a) expression of a catalytically inactive (dominant-negative) mutant of sphingosine kinase 1 or b) S1P1 receptor knockdown markedly reduced this growth factor action. This action of sphingosine-1-phosphate involves EGF receptor transactivation. In addition, taking advantage of the presence of the eGFP tag in the receptor construction, we showed that S1P was capable of inducing α1B-adrenergic receptor internalization and that its autocrine/paracrine generation was relevant for internalization induced by IGF-I. Four distinct hormone receptors and two autocrine/paracrine mediators participate in IGF-I receptor- α1B-adrenergic receptor crosstalk. PMID:22019450

  5. DYRK1B blocks canonical and promotes non-canonical Hedgehog signaling through activation of the mTOR/AKT pathway

    PubMed Central

    Singh, Rajeev; Dhanyamraju, Pavan Kumar; Lauth, Matthias

    2017-01-01

    Hedgehog (Hh) signaling plays important roles in embryonic development and in tumor formation. Apart from the well-established stimulation of the GLI family of transcription factors, Hh ligands promote the phosphorylation and activation of mTOR and AKT kinases, yet the molecular mechanism underlying these processes are unknown. Here, we identify the DYRK1B kinase as a mediator between Hh signaling and mTOR/AKT activation. In fibroblasts, Hh signaling induces DYRK1B protein expression, resulting in activation of the mTOR/AKT kinase signaling arm. Furthermore, DYRK1B exerts positive and negative feedback regulation on the Hh pathway itself: It negatively interferes with SMO-elicited canonical Hh signaling, while at the same time it provides positive feed-forward functions by promoting AKT-mediated GLI stability. Due to the fact that the mTOR/AKT pathway is itself subject to strong negative feedback regulation, pharmacological inhibition of DYRK1B results in initial upregulation followed by downregulation of AKT phosphorylation and GLI stabilization. Addressing this issue therapeutically, we show that a pharmacological approach combining a DYRK1B antagonist with an mTOR/AKT inhibitor results in strong GLI1 targeting and in pronounced cytotoxicity in human pancreatic and ovarian cancer cells. PMID:27903983

  6. Divergence and Conservation of the Major UPR Branch IRE1-bZIP Signaling Pathway across Eukaryotes

    PubMed Central

    Zhang, Lingrui; Zhang, Changwei; Wang, Aiming

    2016-01-01

    The unfolded protein response (UPR) is crucial to life by regulating the cellular response to the stress in the endoplasmic reticulum (ER) imposed by abiotic and biotic cues such as heat shock and viral infection. The inositol requiring enzyme 1 (IRE1) signaling pathway activated by the IRE1-mediated unconventional splicing of HAC1 in yeast, bZIP60 in plants and XBP1 in metazoans, is the most ancient branch of the UPR. In this study, we systematically examined yeast IRE1p-HAC1, plant IRE1A/IRE1B-bZIP60 and human hIRE1-XBP1 pairs. We found that, unlike bZIP60, XBP1 is unable to functionally swap HAC1p in yeast, and that the inter-species heterotypic interactions among HAC1p, bZIP60 and XBP1 are not permitted. These data demonstrate evolutionary divergence of the downstream signaling of IRE1-bZIP. We also discovered that the dual cytosolic domains of plant IRE1s act in vivo in a mechanism consistent with IRE1p and hIRE1, and that plant IRE1B not only interacts with IRE1p but also forms typical IRE1 dynamic foci in yeast. Thus, the upstream components of the IRE1 signaling branch including IRE1 activation and action mechanisms are highly conserved. Taken together these data advance the molecular understanding of evolutionary divergence and conservation of the IRE1 signaling pathway across kingdoms. PMID:27256815

  7. High diversity and no significant selection signal of human ADH1B gene in Tibet

    PubMed Central

    2012-01-01

    Background ADH1B is one of the most studied human genes with many polymorphic sites. One of the single nucleotide polymorphism (SNP), rs1229984, coding for the Arg48His substitution, have been associated with many serious diseases including alcoholism and cancers of the digestive system. The derived allele, ADH1B*48His, reaches high frequency only in East Asia and Southwest Asia, and is highly associated with agriculture. Micro-evolutionary study has defined seven haplogroups for ADH1B based on seven SNPs encompassing the gene. Three of those haplogroups, H5, H6, and H7, contain the ADH1B*48His allele. H5 occurs in Southwest Asia and the other two are found in East Asia. H7 is derived from H6 by the derived allele of rs3811801. The H7 haplotype has been shown to have undergone significant positive selection in Han Chinese, Hmong, Koreans, Japanese, Khazak, Mongols, and so on. Methods In the present study, we tested whether Tibetans also showed evidence for selection by typing 23 SNPs in the region covering the ADH1B gene in 1,175 individuals from 12 Tibetan populations representing all districts of the Tibet Autonomous Region. Multiple statistics were estimated to examine the gene diversities and positive selection signals among the Tibetans and other populations in East Asia. Results The larger Tibetan populations (Qamdo, Lhasa, Nagqu, Nyingchi, Shannan, and Shigatse) comprised mostly farmers, have around 12% of H7, and 2% of H6. The smaller populations, living on hunting or recently switched to farming, have lower H7 frequencies (Tingri 9%, Gongbo 8%, Monba and Sherpa 6%). Luoba (2%) and Deng (0%) have even lower frequencies. Long-range haplotype analyses revealed very weak signals of positive selection for H7 among Tibetans. Interestingly, the haplotype diversity of H7 is higher in Tibetans than in any other populations studied, indicating a longer diversification history for that haplogroup in Tibetans. Network analysis on the long-range haplotypes revealed

  8. Standard Time and Frequency Signal Dissemination Service Via Indian Domestic Satellite INSAT-1B

    DTIC Science & Technology

    1987-12-01

    New Delhi-110012, India ABSTRACT INSAT-1B is a multipurpose Indian Domestic Satellite parked on the equator at 74’E. It has twelve transponders in C...already being commercially manufactured in India. The design of the STFS decoder as discussed in section 4 has been finalized at NPL and a prototype...Band and two in C/S Band. One of the narrowband injected carriers in one C/S band transponder is dedicated for Standard Time and Frequency Signal

  9. IRE1/bZIP60-Mediated Unfolded Protein Response Plays Distinct Roles in Plant Immunity and Abiotic Stress Responses

    PubMed Central

    Blanco, Francisca; Boatwright, Jon Lucas; Moreno, Ignacio; Jordan, Melissa R.; Chen, Yani; Brandizzi, Federica; Dong, Xinnian

    2012-01-01

    Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in

  10. Neuronal androgen receptor regulates insulin sensitivity via suppression of hypothalamic NF-κB-mediated PTP1B expression.

    PubMed

    Yu, I-Chen; Lin, Hung-Yun; Liu, Ning-Chun; Sparks, Janet D; Yeh, Shuyuan; Fang, Lei-Ya; Chen, Lumin; Chang, Chawnshang

    2013-02-01

    Clinical investigations highlight the increased incidence of metabolic syndrome in prostate cancer (PCa) patients receiving androgen deprivation therapy (ADT). Studies using global androgen receptor (AR) knockout mice demonstrate that AR deficiency results in the development of insulin resistance in males. However, mechanisms by which AR in individual organs coordinately regulates insulin sensitivity remain unexplored. Here we tested the hypothesis that functional AR in the brain contributes to whole-body insulin sensitivity regulation and to the metabolic abnormalities developed in AR-deficient male mice. The mouse model selectively lacking AR in the central nervous system and AR-expressing GT1-7 neuronal cells were established and used to delineate molecular mechanisms in insulin signaling modulated by AR. Neuronal AR deficiency leads to reduced insulin sensitivity in middle-aged mice. Neuronal AR regulates hypothalamic insulin signaling by repressing nuclear factor-κB (NF-κB)-mediated induction of protein-tyrosine phosphatase 1B (PTP1B). Hypothalamic insulin resistance leads to hepatic insulin resistance, lipid accumulation, and visceral obesity. The functional deficiency of AR in the hypothalamus leads to male mice being more susceptible to the effects of high-fat diet consumption on PTP1B expression and NF-κB activation. These findings suggest that in men with PCa undergoing ADT, reduction of AR function in the brain may contribute to insulin resistance and visceral obesity. Pharmacotherapies targeting neuronal AR and NF-κB may be developed to combat the metabolic syndrome in men receiving ADT and in elderly men with age-associated hypogonadism.

  11. Neuronal Androgen Receptor Regulates Insulin Sensitivity via Suppression of Hypothalamic NF-κB–Mediated PTP1B Expression

    PubMed Central

    Yu, I-Chen; Lin, Hung-Yun; Liu, Ning-Chun; Sparks, Janet D.; Yeh, Shuyuan; Fang, Lei-Ya; Chen, Lumin; Chang, Chawnshang

    2013-01-01

    Clinical investigations highlight the increased incidence of metabolic syndrome in prostate cancer (PCa) patients receiving androgen deprivation therapy (ADT). Studies using global androgen receptor (AR) knockout mice demonstrate that AR deficiency results in the development of insulin resistance in males. However, mechanisms by which AR in individual organs coordinately regulates insulin sensitivity remain unexplored. Here we tested the hypothesis that functional AR in the brain contributes to whole-body insulin sensitivity regulation and to the metabolic abnormalities developed in AR-deficient male mice. The mouse model selectively lacking AR in the central nervous system and AR-expressing GT1-7 neuronal cells were established and used to delineate molecular mechanisms in insulin signaling modulated by AR. Neuronal AR deficiency leads to reduced insulin sensitivity in middle-aged mice. Neuronal AR regulates hypothalamic insulin signaling by repressing nuclear factor-κB (NF-κB)–mediated induction of protein-tyrosine phosphatase 1B (PTP1B). Hypothalamic insulin resistance leads to hepatic insulin resistance, lipid accumulation, and visceral obesity. The functional deficiency of AR in the hypothalamus leads to male mice being more susceptible to the effects of high-fat diet consumption on PTP1B expression and NF-κB activation. These findings suggest that in men with PCa undergoing ADT, reduction of AR function in the brain may contribute to insulin resistance and visceral obesity. Pharmacotherapies targeting neuronal AR and NF-κB may be developed to combat the metabolic syndrome in men receiving ADT and in elderly men with age-associated hypogonadism. PMID:23139353

  12. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex

    PubMed Central

    Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J.; Espinosa, Ana; Molnár, Zoltán

    2016-01-01

    Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. PMID:27151949

  13. The protein tyrosine phosphatase PTP1B is a negative regulator of CD40 and BAFF-R signaling and controls B cell autoimmunity

    PubMed Central

    Hobeika, Elias; Biesen, Robert; Kollert, Florian; Taddeo, Adriano; Voll, Reinhard E.; Hiepe, Falk

    2014-01-01

    Tyrosine phosphorylation of signaling molecules that mediate B cell activation in response to various stimuli is tightly regulated by protein tyrosine phosphatases (PTPs). PTP1B is a ubiquitously expressed tyrosine phosphatase with well-characterized functions in metabolic signaling pathways. We show here that PTP1B negatively regulates CD40, B cell activating factor receptor (BAFF-R), and TLR4 signaling in B cells. Specifically, PTP1B counteracts p38 mitogen-activated protein kinase (MAPK) activation by directly dephosphorylating Tyr182 of this kinase. Mice with a B cell–specific PTP1B deficiency show increased T cell–dependent immune responses and elevated total serum IgG. Furthermore, aged animals develop systemic autoimmunity with elevated serum anti-dsDNA, spontaneous germinal centers in the spleen, and deposition of IgG immune complexes and C3 in the kidney. In a clinical setting, we observed that B cells of rheumatoid arthritis patients have significantly reduced PTP1B expression. Our data suggest that PTP1B plays an important role in the control of B cell activation and the maintenance of immunological tolerance. PMID:24590766

  14. Modulation of cellular insulin signaling and PTP1B effects by lipid metabolites in skeletal muscle cells.

    PubMed

    Obanda, Diana N; Cefalu, William T

    2013-08-01

    Normal glucose regulation is achieved by having adequate insulin secretion and effective glucose uptake/disposal. Excess lipids in peripheral tissues - skeletal muscle, liver and adipose tissue - may attenuate insulin signaling through the protein kinase B (AKt) pathway and up-regulate protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling. We studied accumulation of lipid metabolites [triglycerides (TAGs), diglycerides (DAGs)] and ceramides in relation to insulin signaling and expression and phosphorylation of PTP1B by preincubating rat skeletal muscle cells (L6 myotubes) with three saturated and three unsaturated free fatty acids (FFAs) (200 μM). Cells were also evaluated in the presence of wortmannin, an inhibitor of phosphatidylinositol 3-kinases and thus AKt (0-100 nM). Unsaturated FFAs increased DAGs, TAGs and PTP1B expression significantly, but cells remained insulin sensitive as assessed by robust AKt and PTP1B phosphorylation at serine (Ser) 50, Ser 398 and tyrosine 152. Saturated palmitic and stearic acids increased ceramides, up-regulated PTP1B, and had AKt and PTP1B phosphorylation at Ser 50 impaired. We show a significant correlation between phosphorylation levels of AKt and of PTP1B at Ser 50 (R(2)=0.84, P<.05). The same was observed with increasing wortmannin dose (R(2)=0.73, P<.05). Only FFAs that increased ceramides caused impairment of AKt and PTP1B phosphorylation at Ser 50. PTP1B overexpression in the presence of excess lipids may not directly cause insulin resistance unless it is accompanied by decreased PTP1B phosphorylation. A clear relationship between PTP1B phosphorylation levels at Ser 50 and its negative effect on insulin signaling is shown. Copyright © 2013. Published by Elsevier Inc.

  15. Cyp1b1 Mediates Periostin Regulation of Trabecular Meshwork Development by Suppression of Oxidative Stress

    PubMed Central

    Zhao, Yun; Wang, Shoujian; Sorenson, Christine M.; Teixeira, Leandro; Dubielzig, Richard R.; Peters, Donna M.; Conway, Simon J.; Jefcoate, Colin R.

    2013-01-01

    Mutation in CYP1B1 has been reported for patients with congenital glaucoma. However, the underlying mechanisms remain unknown. Here we show increased diurnal intraocular pressure (IOP) in Cyp1b1-deficient (Cyp1b1−/−) mice. Cyp1b1−/− mice presented ultrastructural irregular collagen distribution in their trabecular meshwork (TM) tissue along with increased oxidative stress and decreased levels of periostin (Postn). Increased levels of oxidative stress and decreased levels of Postn were also detected in human glaucomatous TM tissues. Furthermore, Postn-deficient mice exhibited TM tissue ultrastructural abnormalities similar to those of Cyp1b1−/− mice. Administration of the antioxidant N-acetylcysteine (NAC) restored structural abnormality of TM tissue in Cyp1b1−/− mice. In addition, TM cells prepared from Cyp1b1−/− mice exhibited increased oxidative stress, altered adhesion, and decreased levels of Postn. These aberrant cellular responses were reversed in the presence of NAC or by restoration of Cyp1b1 expression. Cyp1b1 knockdown or inhibition of CYP1B1 activity in Cyp1b1+/+ TM cells resulted in a Cyp1b1−/− phenotype. Thus, metabolic activity of CYP1B1 contributes to oxidative homeostasis and ultrastructural organization and function of TM tissue through modulation of Postn expression. PMID:23979599

  16. Differential Expression of OATP1B3 Mediates Unconjugated Testosterone Influx.

    PubMed

    Sissung, Tristan M; Ley, Ariel M; Strope, Jonathan D; McCrea, Edel M; Beedie, Shaunna L; Peer, Cody J; Shukla, Suneet; van Velkinburgh, Jennifer C; Reece, Kelie; Troutman, Sarah; Campbell, Tessa; Fernandez, Elena; Huang, Phoebe; Smith, Jordan; Thakkar, Nilay; Venzon, David; Brenner, Steffan; Lee, Wooin; Merino, Maria J; Luo, Ji; Jager, Walter; Chau, Cindy H; Price, Douglas K; Figg, William D

    2017-04-07

    Castration resistant prostate cancer (CRPC) has greater intratumoral testosterone concentrations than similar tumors from eugonadal men; simple diffusion does not account for this observation. The present study was undertaken to ascertain the androgen uptake kinetics, functional, and clinical relevance of de novo expression of the steroid hormone transporter OATP1B3 (SLCO1B3). Experiments testing the cellular uptake of androgens suggest that testosterone is an excellent substrate of OATP1B3 (KM=23.2µM; VMAX=321.6pmol/mg/min), and cells expressing a doxycycline-inducible SLCO1B3 construct had greater uptake of a clinically relevant concentration of 3H-testosterone (50nM; 1.6-fold, P=0.0027). When compared to Slco1b2 (-/-) mice, Slco1b2 (-/-)/hSLCO1B3 knockins had greater hepatic uptake (15% greater AUC, P=0.0040) and lower plasma exposure to 3H-testosterone (17% lower AUC, P=0.0030). Of 82 transporters genes, SLCO1B3 is the second-most differentially-expressed transporter in CRPC cell lines (116-fold vs androgen sensitive cells), with a differentially-spliced cancer-type ct-SLCO1B3 making up the majority of SLCO1B3 expression. Overexpression of SLCO1B3 in androgen responsive cells results in 1.5- to 2-fold greater testosterone uptake whereas siRNA knockdown of SLCO1B3 in CRPC cells did not change intracellular testosterone concentration. Primary human prostate tumors express SLCO1B3 to a greater extent than ct-SLCO1B3 (26% of total SLCO1B3 expression vs 0.08%), suggesting that androgen uptake in these tumor cells also is greater. Non-liver tumors do not differentially express SLCO1B3.

  17. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia

    PubMed Central

    Perez Bay, Andres E; Schreiner, Ryan; Mazzoni, Francesca; Carvajal-Gonzalez, Jose M; Gravotta, Diego; Perret, Emilie; Lehmann Mantaras, Gullermo; Zhu, Yuan-Shan; Rodriguez-Boulan, Enrique J

    2013-01-01

    Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial-specific clathrin adaptor AP-1B. Some native epithelia lack AP-1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP-1B-deficient epithelia to relocate AP-1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP-1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP-1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus-end kinesin KIF16B and non-centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a-dependent TfR recycling pathway of non-polarized cells. They define a transcytotic pathway important for the physiology of native AP-1B-deficient epithelia and report the first microtubule motor involved in transcytosis. PMID:23749212

  18. Protein-tyrosine phosphatase 1B (PTP1B) is a novel regulator of central brain-derived neurotrophic factor and tropomyosin receptor kinase B (TrkB) signaling.

    PubMed

    Ozek, Ceren; Kanoski, Scott E; Zhang, Zhong-Yin; Grill, Harvey J; Bence, Kendra K

    2014-11-14

    Neuronal protein-tyrosine phosphatase 1B (PTP1B) deficiency in mice results in enhanced leptin signaling and protection from diet-induced obesity; however, whether additional signaling pathways in the brain contribute to the metabolic effects of PTP1B deficiency remains unclear. Here, we show that the tropomyosin receptor kinase B (TrkB) receptor is a direct PTP1B substrate and implicate PTP1B in the regulation of the central brain-derived neurotrophic factor (BDNF) signaling. PTP1B interacts with activated TrkB receptor in mouse brain and human SH-SY5Y neuroblastoma cells. PTP1B overexpression reduces TrkB phosphorylation and activation of downstream signaling pathways, whereas PTP1B inhibition augments TrkB signaling. Notably, brains of Ptpn1(-/-) mice exhibit enhanced TrkB phosphorylation, and Ptpn1(-/-) mice are hypersensitive to central BDNF-induced increase in core temperature. Taken together, our findings demonstrate that PTP1B is a novel physiological regulator of TrkB and that enhanced BDNF/TrkB signaling may contribute to the beneficial metabolic effects of PTP1B deficiency.

  19. Protein tyrosine phosphatase 1B negatively regulates S100A9-mediated lung damage during respiratory syncytial virus exacerbations

    PubMed Central

    Foronjy, Robert F.; Ochieng, Pius O.; Salathe, Matthias A.; Dabo, Abdoulaye J.; Eden, Edward; Baumlin, Nathalie; Cummins, Neville; Barik, Sailen; Campos, Michael; Thorp, Edward B.; Geraghty, Patrick

    2015-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has anti-inflammatory potential but PTP1B responses are desensitized in the lung by prolonged cigarette smoke exposure. Here we investigate whether PTP1B expression impacts lung disease severity during respiratory syncytial viral (RSV) exacerbations of chronic obstructive pulmonary disease (COPD). Ptp1b-/- mice infected with RSV exhibit exaggerated immune cell infiltration, damaged epithelial cell barriers, cytokine production and increased apoptosis. Elevated expression of S100A9, a damage-associated molecular pattern molecule, was observed in the lungs of Ptp1b-/- mice during RSV infection. Utilizing a neutralizing anti-S100A9 IgG antibody, it was determined that extracellular S100A9 signaling significantly impacts lung damage during RSV infection. Pre-exposure to cigarette smoke desensitized PTP1B activity, which coincided with enhanced S100A9 secretion and inflammation in wild type animals during RSV infection. S100A9 levels in human bronchoalveolar lavage fluid had an inverse relationship with lung function in healthy subjects, smokers and COPD subjects. Fully differentiated human bronchial epithelial cells isolated from COPD donors cultured at the air liquid interface secreted more S100A9 than cells from healthy donors or smokers following RSV infection. Together, these findings show that reduced PTP1B responses contribute to disease symptoms in part by enhancing S100A9 expression during viral-associated COPD exacerbations. PMID:26813343

  20. Protein tyrosine phosphatase 1B negatively regulates S100A9-mediated lung damage during respiratory syncytial virus exacerbations.

    PubMed

    Foronjy, R F; Ochieng, P O; Salathe, M A; Dabo, A J; Eden, E; Baumlin, N; Cummins, N; Barik, S; Campos, M; Thorp, E B; Geraghty, P

    2016-09-01

    Protein tyrosine phosphatase 1B (PTP1B) has anti-inflammatory potential but PTP1B responses are desensitized in the lung by prolonged cigarette smoke exposure. Here we investigate whether PTP1B expression affects lung disease severity during respiratory syncytial viral (RSV) exacerbations of chronic obstructive pulmonary disease (COPD). Ptp1b(-/-) mice infected with RSV exhibit exaggerated immune cell infiltration, damaged epithelial cell barriers, cytokine production, and increased apoptosis. Elevated expression of S100A9, a damage-associated molecular pattern molecule, was observed in the lungs of Ptp1b(-/-) mice during RSV infection. Utilizing a neutralizing anti-S100A9 IgG antibody, it was determined that extracellular S100A9 signaling significantly affects lung damage during RSV infection. Preexposure to cigarette smoke desensitized PTP1B activity that coincided with enhanced S100A9 secretion and inflammation in wild-type animals during RSV infection. S100A9 levels in human bronchoalveolar lavage fluid had an inverse relationship with lung function in healthy subjects, smokers, and COPD subjects. Fully differentiated human bronchial epithelial cells isolated from COPD donors cultured at the air liquid interface secreted more S100A9 than cells from healthy donors or smokers following RSV infection. Together, these findings show that reduced PTP1B responses contribute to disease symptoms in part by enhancing S100A9 expression during viral-associated COPD exacerbations.

  1. ANGIOTENSIN II-INDUCED VASCULAR SMOOTH MUSCLE CELL MIGRATION AND GROWTH ARE MEDIATED BY CYTOCHROME P450 1B1-DEPENDENT SUPEROXIDE GENERATION

    PubMed Central

    Yaghini, Fariborz A.; Song, Chi Young; Lavrentyev, Eduard N.; Ghafoor, Hafiz U. B.; Fang, Xiao R.; Estes, Anne M.; Campbell, William B.; Malik, Kafait U.

    2010-01-01

    Cytochrome P450 1B1, expressed in vascular smooth muscle cells, can metabolize arachidonic acid in vitro into several products including 12- and 20-hydroxyeicosatetraenoic acids that stimulate vascular smooth muscle cell growth. This study was conducted to determine if cytochrome P450 1B1 contributes to angiotensin II-induced rat aortic smooth muscle cell migration, proliferation and protein synthesis. Ang II stimulated migration of these cells, measured by the wound healing approach, by 1.78 fold and DNA synthesis, measured by [3H]thymidine incorporation, by 1.44 fold after 24 hours, and protein synthesis, measured by [3H]leucine incorporation, by 1.40 fold after 48 hours. Treatment of vascular smooth muscle cells with the cytochrome P450 1B1 inhibitor, 2, 4, 3′, 5′-tetramethoxystilbene, or transduction of these cells with adenovirus cytochrome P450 1B1 shRNA, but not its scrambled control, reduced the activity of this enzyme and abolished angiotensin II- and arachidonic acid-induced cell migration, [3H]thymidine and [3H]leucine incorporation. Metabolism of arachidonic acid to 5-, 12-, 15- and 20-hydoxyeicosatetraenoic acids in these cells was not altered, but angiotensin II- and arachidonic acid-induced reactive oxygen species production and extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase, activity were inhibited by 2, 4, 3′, 5′-tetramethoxystilbene and cytochrome P450 1B1 shRNA, and by tempol that inactivates reactive oxygen species. Tempol did not alter cytochrome P450 1B1 activity. These data suggest that angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by reactive oxygen species generated from arachidonic acid by cytochrome P450 1B1 and activation of extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase. PMID:20439821

  2. Integral Role of PTP1B in Adiponectin-Mediated Inhibition of Oncogenic Actions of Leptin in Breast Carcinogenesis1 2

    PubMed Central

    Taliaferro-Smith, LaTonia; Nagalingam, Arumugam; Knight, Brandi Brandon; Oberlick, Elaine; Saxena, Neeraj K; Sharma, Dipali

    2013-01-01

    The molecular effects of obesity are mediated by alterations in the levels of adipocytokines. High leptin level associated with obese state is a major cause of breast cancer progression and metastasis, whereas adiponectin is considered a “guardian angel adipocytokine” for its protective role against various obesity-related pathogenesis including breast cancer. In the present study, investigating the role of adiponectin as a potential inhibitor of leptin, we show that adiponectin treatment inhibits leptin-induced clonogenicity and anchorage-independent growth. Leptin-stimulated migration and invasion of breast cancer cells is also effectively inhibited by adiponectin. Analyses of the underlying molecular mechanisms reveal that adiponectin suppresses activation of two canonical signaling molecules of leptin signaling axis: extracellular signal-regulated kinase (ERK) and Akt. Pretreatment of breast cancer cells with adiponectin protects against leptin-induced activation of ERK and Akt. Adiponectin increases expression and activity of the physiological inhibitor of leptin signaling, protein tyrosine phosphatase 1B (PTP1B), which is found to be integral to leptin-antagonist function of adiponectin. Inhibition of PTP1B blocks adiponectin-mediated inhibition of leptin-induced breast cancer growth. Our in vivo studies show that adenovirus-mediated adiponectin treatment substantially reduces leptin-induced mammary tumorigenesis in nude mice. Exploring therapeutic strategies, we demonstrate that treatment of breast cancer cells with rosiglitazone results in increased adiponectin expression and inhibition of migration and invasion. Rosiglitazone treatment also inhibits leptin-induced growth of breast cancer cells. Taken together, these data show that adiponectin treatment can inhibit the oncogenic actions of leptin through blocking its downstream signaling molecules and raising adiponectin levels could be a rational therapeutic strategy for breast carcinoma in obese

  3. Protein tyrosine phosphatase 1B modulates GSK3β/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity

    PubMed Central

    Mobasher, M A; González-Rodriguez, Á; Santamaría, B; Ramos, S; Martín, M Á; Goya, L; Rada, P; Letzig, L; James, L P; Cuadrado, A; Martín-Pérez, J; Simpson, K J; Muntané, J; Valverde, A M

    2013-01-01

    Acute hepatic failure secondary to acetaminophen (APAP) poisoning is associated with high mortality. Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of tyrosine kinase growth factor signaling. In the liver, this pathway confers protection against injury. However, the involvement of PTP1B in the intracellular networks activated by APAP is unknown. We have assessed PTP1B expression in APAP-induced liver failure in humans and its role in the molecular mechanisms that regulate the balance between cell death and survival in human and mouse hepatocytes, as well as in a mouse model of APAP-induced hepatotoxicity. PTP1B expression was increased in human liver tissue removed during liver transplant from patients for APAP overdose. PTP1B was upregulated by APAP in primary human and mouse hepatocytes together with the activation of c-jun (NH2) terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), resulting in cell death. Conversely, Akt phosphorylation and the antiapoptotic Bcl2 family members BclxL and Mcl1 were decreased. PTP1B deficiency in mouse protects hepatocytes against APAP-induced cell death, preventing glutathione depletion, reactive oxygen species (ROS) generation and activation of JNK and p38 MAPK. APAP-treated PTP1B−/− hepatocytes showed enhanced antioxidant defense through the glycogen synthase kinase 3 (GSK3)β/Src kinase family (SKF) axis, delaying tyrosine phosphorylation of the transcription factor nuclear factor-erythroid 2-related factor (Nrf2) and its nuclear exclusion, ubiquitination and degradation. Insulin-like growth factor-I receptor-mediated signaling decreased in APAP-treated wild-type hepatocytes, but was maintained in PTP1B−/− cells or in wild-type hepatocytes with reduced PTP1B levels by RNA interference. Likewise, both signaling cascades were modulated in mice, resulting in less severe APAP hepatotoxicity in PTP1B−/− mice. Our results demonstrated that PTP1B is a central player of the mechanisms

  4. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway.

    PubMed

    Wang, Hao; Sun, Xiaoxu; Zhang, Ning; Ji, Zhouye; Ma, Zhanqiang; Fu, Qiang; Qu, Rong; Ma, Shiping

    2017-10-04

    Cognitive impairment has been recognized as a typical characteristic of neurodegenerative disease in diabetes mellitus (DM) and this cognitive dysfunction may be a risk factor for Alzheimer's disease (AD). Ferulic acid, a phenolic compound commonly found in a range of plants, has emerged various properties including anti-inflammatory and neuroprotective effects. In the present study, the protective activities and relevant mechanisms of ferulic acid were evaluated in diabetic rats with cognitive deficits, which were induced by a high-glucose-fat (HGF) diet and low dose of streptozotocin (STZ). It was observed that ferulic acid significantly increased body weight and decreased blood glucose levels. Meanwhile, ferulic acid could markedly ameliorate spatial memory of diabetic rats in Morris water maze (MWM) and decrease AD-like pathologic changes (Aβ deposition and Tau phosphorylation) in the hippocampus, which might be correlated with the inhibition of inflammatory cytokines release and reduction of protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, the levels of brain insulin signal molecules p-IRS, p-Akt and p-GSK3β were also investigated. We found that ferulic acid administration restored the alterations in insulin signaling. In conclusion, ferulic acid exhibited beneficial effects on diabetes-induced cognition lesions, which was involved in the regulation of PTP1B and insulin signaling pathway. We suppose that PTP1B inhibition may represent a promising approach to correct abnormal signaling linked to diabetes-induced cognitive impairment. Copyright © 2017. Published by Elsevier Inc.

  5. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice.

    PubMed

    Hakim, Fahed; Wang, Yang; Carreras, Alba; Hirotsu, Camila; Zhang, Jing; Peris, Eduard; Gozal, David

    2015-01-01

    Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP-/+ transgenic mice. Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP -/+ mice. SF induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of ER stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target. © 2014 Associated Professional Sleep Societies, LLC.

  6. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B.

    PubMed

    Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue

    2016-10-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.

  7. Detection of HCV genotypes 1b and 2a by a reverse transcription loop-mediated isothermal amplification assay.

    PubMed

    Zhao, Na; Liu, Jinxia; Sun, Dianxing

    2016-12-09

    Hepatitis C virus (HCV) genotypes 1b and 2a are the major cause of liver disease in northern China; however, conventional detection tools are labor-consuming, technically demanding, and costly. Here, we assessed the specificity, sensitivity, and clinical utility of reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for detection of HCV genotypes 1b and 2a. Firstly, clinical samples were collected from HCV genotype 1b and 2a infected patients and the RNA were extracted. Secondly, specificity of RT-LAMP assay for detection HCV genotypes 1b and 2a were tested against viral genomes of other hepatitis viruses. Sensitivity of RT-LAMP assay was determined using serial dilutions of standard HCV genotypes 1b and 2a. The amplified products were detected by both electrophoresis and calcein/Mn(2+) -dependent visual methods. Finally, we compared the clinical detection rate of RT-LAMP to that of real-time PCR. RT-LAMP assay showed high specificity to detect HCV genotypes 1b and 2b since there was no cross-reactivity with other hepatitis viruses. Sensitivity of RT-LAMP was 100 IU/mL for both genotypes detected by either electrophoresis or calcein/Mn(2+) -dependent visual methods. The detection rate of RT-LAMP assay in clinical samples was also comparable to that of real-time PCR without significant difference between the both assays. This study proposes a newly developed RT-LAMP assay for detection of HCV genotypes 1b and 2a. RT-LAMP is highly specific, sensitive, and simple diagnostic tool which would be useful for screening and early diagnosis of HCV especially in resource-limited environments.

  8. Chronic Sleep Fragmentation During the Sleep Period Induces Hypothalamic Endoplasmic Reticulum Stress and PTP1b-Mediated Leptin Resistance in Male Mice

    PubMed Central

    Hakim, Fahed; Wang, Yang; Carreras, Alba; Hirotsu, Camila; Zhang, Jing; Peris, Eduard; Gozal, David

    2015-01-01

    Background: Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. Methods: Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP −/+ transgenic mice. Results: Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP −/+ mice. Conclusions: Sleep fragmentation (SF) induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of endoplasmic reticulum (ER) stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target. Citation: Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E, Gozal D. Chronic sleep

  9. Evidence that vasopressin V1b receptors mediate the transition to excessive drinking in ethanol-dependent rats.

    PubMed

    Edwards, Scott; Guerrero, Miguel; Ghoneim, Ola M; Roberts, Edward; Koob, George F

    2012-01-01

    Alcoholism is a devastating condition that represents a progression from initial alcohol use to dependence. Although most individuals are capable of consuming alcohol in a limited fashion, the development of alcohol dependence in a subset of individuals is often associated with negative emotional states (including anxiety and depression). Since the alleviation of this negative motivational state via excessive alcohol consumption often becomes a central goal of alcoholics, the transition from initial use to dependence is postulated to be associated with a transition from positive to negative reinforcement mechanisms. Vasopressin is a neuropeptide known to potentiate the effects of CRF on the HPA axis, and emerging evidence also suggests a role for centrally located vasopressin acting on V(1b) receptors in the regulation of stress- and anxiety-like behaviors in rodents. The present study determined state-dependent alterations in vasopressin/V(1b) R signaling in an animal model of ethanol dependence. The V(1b) R antagonist SSR149415 dose-dependently reduced excessive levels of ethanol self-administration observed in dependent animals without affecting the limited levels of ethanol drinking in non-dependent animals. Ethanol self-administration reduced V(1b) receptor levels in the basolateral amygdala of non-dependent animals, a neuroadaptation that could theoretically facilitate the positive reinforcing effects of alcohol. In contrast, V(1b) R levels were seemingly restored in ethanol-dependent rats, a switch that may in part underlie a transition from positive to negative reinforcement mechanisms with dependence. Together, our data suggest a key role for vasopressin/V(1b) R signaling in the transition to ethanol dependence.

  10. Mediation of noradrenaline-induced contractions of rat aorta by the alpha 1B-adrenoceptor subtype.

    PubMed Central

    Testa, R; Guarneri, L; Poggesi, E; Simonazzi, I; Taddei, C; Leonardi, A

    1995-01-01

    1. The subtypes of alpha 1-adrenoceptor mediating contractions to exogenous noradrenaline (NA) in rat aorta have been examined in both biochemical and functional studies. 2. Incubation of rat aortic membranes with the irreversible alpha 1B-adrenoceptor antagonist, chloroethylclonidine (CEC: 10 microM) did not change the KD of [3H]-prazosin binding in comparison to untreated membranes, but reduced by 88% the total number of binding sites (Bmax). 3. Contractions of rat aortic strips to NA after CEC (50 microM for 30 min) incubation followed by repetitive washing, showed a marked shift in the potency of NA and a partial reduction in the maximum response. The residual contractions to NA after CEC incubation were not affected by prazosin (10 nM). 4. The competitive antagonists prazosin, terazosin, (R)-YM-12617, phentolamine, 5-methylurapidil and spiperone inhibited contractions to NA with estimated pA2 values of 9.85, 8.54, 9.34, 7.71, 7.64 and 8.41, respectively. 5. The affinity of the same antagonists for the alpha 1A- and alpha 1B- adrenoceptors was evaluated by utilizing membranes from rat hippocampus pretreated with CEC, and rat liver, respectively. 5-Methylurapidil and phentolamine were confirmed as selective for the alpha 1A-adrenoceptors, whereas spiperone was alpha 1B-selective. 6. A significant correlation was found between the pA2 values of the alpha 1-adrenoceptor antagonists tested and their affinity for the alpha 1B-adrenoceptor subtype, but not for the alpha 1A-subtype. 7. In conclusion, these findings indicate that in rat aorta most of the contraction is mediated by alpha 1B-adrenoceptors, and that the potency (pA2) of an antagonist in this tissue should be related to its antagonistic effect on this subtype of the alpha 1-adrenoceptor population. PMID:7773533

  11. Oral-nasopharyngeal dendritic cells mediate T cell-independent IgA class switching on B-1 B cells.

    PubMed

    Kataoka, Kosuke; Fujihashi, Keiko; Terao, Yutaka; Gilbert, Rebekah S; Sekine, Shinichi; Kobayashi, Ryoki; Fukuyama, Yoshiko; Kawabata, Shigetada; Fujihashi, Kohtaro

    2011-01-01

    Native cholera toxin (nCT) as a nasal adjuvant was shown to elicit increased levels of T-independent S-IgA antibody (Ab) responses through IL-5- IL-5 receptor interactions between CD4+ T cells and IgA+ B-1 B cells in murine submandibular glands (SMGs) and nasal passages (NPs). Here, we further investigate whether oral-nasopharyngeal dendritic cells (DCs) play a central role in the induction of B-1 B cell IgA class switch recombination (CSR) for the enhancement of T cell-independent (TI) mucosal S-IgA Ab responses. High expression levels of activation-induced cytidine deaminase, Iα-Cμ circulation transcripts and Iμ-Cα transcripts were seen on B-1 B cells purified from SMGs and NPs of both TCRβ⁻/⁻ mice and wild-type mice given nasal trinitrophenyl (TNP)-LPS plus nCT, than in the same tissues of mice given nCT or TNP-LPS alone. Further, DCs from SMGs, NPs and NALT of mice given nasal TNP-LPS plus nCT expressed significantly higher levels of a proliferation-inducing ligand (APRIL) than those in mice given TNP-LPS or nCT alone, whereas the B-1 B cells in SMGs and NPs showed elevated levels of transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI) expression. Interestingly, high frequencies of IgA+ B-1 B cells were induced when peritoneal IgA⁻ IgM+ B cells were stimulated with mucosal DCs from mice given nasal TNP-LPS plus nCT. Taken together, these findings show that nasal nCT plays a key role in the enhancement of mucosal DC-mediated TI IgA CSR by B-1 B cells through their interactions with APRIL and TACI.

  12. Kisspeptin Mediated Signaling in Cancer.

    PubMed

    Jabeen, Saima; Qureshi, Muhammad Zahid; Javed, Zeeshan; Iqbal, Muhammad Javed; Ismail, Muhammad; Farooqi, Ammad Ahmad

    2016-01-01

    Research over the years has gradually and sequentially highlighted contributory role of hypothalamic- based kisspeptin-signaling axis as a major positive modulator of the neuroendocrinological reproductive axis in mammals. However, a series of landmark studies provided convincing evidence of role of this signaling in regulation of cancer development and progression. It is becoming progressively more understandable that loss or reduction of KISS1 expression in different human cancers correlates inversely with progression of tumor, metastasizing potential and survival. In this review we have attempted to provide an overview highlight of the most recent updates addressing metastasis- suppressing role of KISS1. We also summarize interplay of microRNA and KISS1 in cancer. The miRNA regulation of different genes is a rapidly expanding area of research however, the community lacks a deep understanding of miRNA regulation of KISS1. Recently, emerging laboratory findings have shown that KISS1 is transcriptionally controlled by TCF21 that is in turn regulated by miR-21. Therefore, there is an urgent need for further study of how miRNA directly or indirectly influences KISS1 at the posttranscriptional level. There is also a lack of evidence regarding natural agents that mediate upregulation or downregulation of KISS1. Increasing the knowledge of the KISS1/KISS1R signaling axis will be helpful in achieving personalized medicine.

  13. Assessment of different virus-mediated approaches for retinal gene therapy of Usher 1B.

    PubMed

    Lopes, Vanda S; Diemer, Tanja; Williams, David S

    2014-01-01

    Usher syndrome type 1B, which is characterized by congenital deafness and progressive retinal degeneration, is caused by the loss of the function of MYO7A. Prevention of the retinal degeneration should be possible by delivering functional MYO7A to retinal cells. Although this approach has been used successfully in clinical trials for Leber congenital amaurosis (LCA2), it remains a challenge for Usher 1B because of the large size of the MYO7A cDNA. Different viral vectors have been tested for use in MYO7A gene therapy. Here, we review approaches with lentiviruses, which can accommodate larger genes, as well as attempts to use adeno-associated virus (AAV), which has a smaller packaging capacity. In conclusion, both types of viral vector appear to be effective. Despite concerns about the ability of lentiviruses to access the photoreceptor cells, a phenotype of the photoreceptors of Myo7a-mutant mice can be corrected. And although MYO7A cDNA is significantly larger than the nominal carrying capacity of AAV, AAV-MYO7A in single vectors also corrected Myo7a-mutant phenotypes in photoreceptor and RPE cells. Interestingly, however, a dual AAV vector approach was found to be much less effective.

  14. PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner

    PubMed Central

    Spalinger, Marianne R.; Lang, Silvia; Gottier, Claudia; Dai, Xuezhi; Rawlings, David J.; Chan, Andrew C.; Rogler, Gerhard; Scharl, Michael

    2017-01-01

    ABSTRACT A variant within the gene locus encoding PTPN22 (protein tyrosine phosphatase, non-receptor type 22) emerged as an important risk factor for auto-inflammatory disorders, including rheumatoid arthritis, systemic lupus erythematosus and type 1 diabetes, but at the same time protects from Crohn disease, one of the 2 main forms of inflammatory bowel diseases. We have previously shown that loss of PTPN22 results in decreased NLRP3 (NLR family pyrin domain containing 3) activation and that this effect is mediated via enhanced NLRP3 phosphorylation. However, it is unclear how phosphorylation of NLRP3 mediates its inhibition. Here, we demonstrate that loss of macroautophagy/autophagy abrogates the inhibitory effect on NLRP3 activation observed upon loss of PTPN22. Phosphorylated, but not nonphosphorylated NLRP3 is found in autophagosomes, indicating that NLRP3 phosphorylation mediates its inactivation via promoting sequestration into phagophores, the precursors to autophagosomes. This finding shows that autophagy and NLRP3 inflammasome activation are connected, and that PTPN22 plays a key role in the regulation of those 2 pathways. Given its role in inflammatory disorders, PTPN22 might be an attractive therapeutic target, and understanding the cellular mechanisms modulated by PTPN22 is of crucial importance. PMID:28786745

  15. Low level exposure to inorganic mercury interferes with B cell receptor signaling in transitional type 1 B cells.

    PubMed

    Gill, R; McCabe, M J; Rosenspire, A J

    2017-09-01

    Mercury (Hg) has been implicated as a factor contributing to autoimmune disease in animal models and humans. However the mechanism by which this occurs has remained elusive. Since the discovery of B cells it has been appreciated by immunologists that during the normal course of B cell development, some immature B cells must be generated that produce immunoglobulin reactive to self-antigens (auto-antibodies). However in the course of normal development, the vast majority of immature auto-reactive B cells are prevented from maturing by processes collectively known as tolerance. Autoimmune disease arises when these mechanisms of tolerance are disrupted. In the B cell compartment, it is firmly established that tolerance depends in part upon negative selection of self-reactive immature (transitional type 1) B cells. In these cells negative selection depends upon signals generated by the B Cell Receptor (BCR), in the sense that those T1 B cells who's BCRs most strongly bind to, and so generate the strongest signals to self-antigens are neutralized. In this report we have utilized multicolor phosphoflow cytometry to show that in immature T1 B cells Hg attenuates signal generation by the BCR through mechanisms that may involve Lyn, a key tyrosine kinase in the BCR signal transduction pathway. We suggest that exposure to low, environmentally relevant levels of Hg, disrupts tolerance by interfering with BCR signaling in immature B cells, potentially leading to the appearance of mature auto-reactive B cells which have the ability to contribute to auto-immune disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Definition of a major p53 binding site on Ad2E1B58K protein and a possible nuclear localization signal on the Ad12E1B54K protein.

    PubMed

    Grand, R J; Parkhill, J; Szestak, T; Rookes, S M; Roberts, S; Gallimore, P H

    1999-01-28

    Previous studies have established that adenovirus 2/5 early region 1B (Ad E1B) 58K protein binds p53 strongly and co-localizes with it to cytoplasmic dense bodies whilst the homologous Ad12E1B54K protein binds only weakly and co-localizes primarily to the nucleus in Ad12E1 transformed cells. We have used these properties of the E1B proteins from different viral serotypes to map the p53 binding site on the Ad2/5 protein. A set of chimaeric genes was constructed containing different proportions of the Ad12 and Ad2E1B DNA. These, together with Ad12E1A and E1B19K DNA, were transfected into baby rat kidney cells and transformed lines isolated. From an examination of the properties of these Ad12/Ad2E1B fusion proteins in co-immunoprecipitation and subcellular localization experiments it has been concluded that the p53 binding site on Ad2E1B58K protein lies between amino acids 216 and 235 and that the homologous region on Ad12E1B54K protein also binds p53. In addition, a unique nuclear localization signal is located on Ad12E1B54K between residues 228 and 239. We suggest that primary structure differences in these regions of the Ad2 and Ad12E1B proteins are responsible for the different subcellular localizations in AdE1 transformants.

  17. Expression of novel neurotrophin-1/B-cell stimulating factor-3 (NNT-1/BSF-3) in murine pituitary folliculostellate TtT/GF cells: pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide-induced stimulation of NNT-1/BSF-3 is mediated by protein kinase A, protein kinase C, and extracellular-signal-regulated kinase1/2 pathways.

    PubMed

    Vlotides, George; Zitzmann, Kathrin; Hengge, Sabine; Engelhardt, Dieter; Stalla, Gunter K; Auernhammer, Christoph J

    2004-02-01

    Novel neurotrophin-1/B cell stimulating factor-3 (NNT-1/BSF-3) is a gp130 cytokine potently stimulating corticotroph proopiomelanocortin gene expression and ACTH secretion by a Janus kinase-signal transducer and activator of transcription (JAK-STAT)-dependent mechanism. In the current study, we examined the regulation of NNT-1/BSF-3 mRNA expression in murine pituitary folliculostellate TtT/GF cells using Northern blot technique. A 5- to 9-fold and a 4- to 7-fold induction in NNT-1/BSF-3 mRNA expression was observed between 2 and 6 h stimulation with the protein kinase C (PKC) stimulus phorbol-12-myristate-13-acetate (100 nm) and the protein kinase A (PKA) stimulus Bu(2)cAMP (5 mm), respectively. Pituitary adenylate cyclase-activating polypeptide (PACAP-38, 50 nm) and vasoactive intestinal peptide (VIP, 50 nm) also stimulated NNT-1/BSF-3 mRNA expression 5- to 9-fold between 2 and 6 h. Preincubation with PKC and PKA inhibitors such as H-7 (20 microm), GF109203X (50 microm), and H-89 (50 microm) decreased the stimulatory effects of PACAP and VIP. Both PACAP-38 and VIP also rapidly induced ERK1/2 phosphorylation and their stimulatory effect on NNT-1/BSF-3 mRNA expression was reduced by the MAPK kinase/ERK kinase (MEK) inhibitor U0126 (10 microm). Dexamethasone (10(-7) m) was a potent inhibitor of phorbol-12-myristate-13-acetate-induced NNT-1/BSF-3 expression. RT-PCR analysis demonstrated TtT/GF cells to express the short and the hop variant but not the hip variant of the PACAP-1 receptor (PAC1-R). In addition, TtT/GF cells express the VIP/PACAP-2 receptor (VPAC2-R). In summary, NNT-1/BSF-3 is expressed in pituitary folliculostellate TtT/GF cells and induced by PKC-, PKA-, and ERK1/2-dependent mechanisms. The novel gp130 cytokine NNT-1/BSF-3 derived from folliculostellate cells might act as a paracrine neuroimmunoendocrine modulator of pituitary corticotroph function.

  18. The α1B-adrenoceptor subtype mediates adrenergic vasoconstriction in mouse retinal arterioles with damaged endothelium

    PubMed Central

    Böhmer, Tobias; Manicam, Caroline; Steege, Andreas; Michel, Martin C; Pfeiffer, Norbert; Gericke, Adrian

    2014-01-01

    BACKGROUND AND PURPOSE The α1-adrenoceptor family plays a critical role in regulating ocular perfusion by mediating responses to catecholamines. The purpose of the present study was to determine the contribution of individual α1-adrenoceptor subtypes to adrenergic vasoconstriction of retinal arterioles using gene-targeted mice deficient in one of the three adrenoceptor subtypes (α1A-AR−/−, α1B-AR−/− and α1D-AR−/− respectively). EXPERIMENTAL APPROACH Using real-time PCR, mRNA expression for individual α1-adrenoceptor subtypes was determined in murine retinal arterioles. To assess the functional relevance of the three α1-adrenoceptor subtypes for mediating vascular responses, retinal vascular preparations from wild-type mice and mice deficient in individual α1-adrenoceptor subtypes were studied in vitro using video microscopy. KEY RESULTS Retinal arterioles expressed mRNA for all three α1-adrenoceptor subtypes. In functional studies, arterioles from wild-type mice with intact endothelium responded only negligibly to the α1-adrenoceptor agonist phenylephrine. In endothelium-damaged arterioles from wild-type mice, phenylephrine evoked concentration-dependent constriction that was attenuated by the α1-adrenoceptor blocker prazosin. Strikingly, phenylephrine only minimally constricted endothelium-damaged retinal arterioles from α1B-AR−/− mice, whereas arterioles from α1A-AR−/− and α1D-AR−/− mice constricted similarly to arterioles from wild-type mice. Constriction to U46619 was similar in endothelium-damaged retinal arterioles from all four mouse genotypes. CONCLUSIONS AND IMPLICATIONS The present study is the first to demonstrate that α1-adrenoceptor-mediated vasoconstriction in murine retinal arterioles is buffered by the endothelium. When the endothelium is damaged, a vasoconstricting role of the α1B-adrenoceptor subtype is unveiled. Hence, the α1B-adrenoceptor may represent a target to selectively modulate retinal blood flow

  19. Medaka osmotic stress transcription factor 1b (Ostf1b/TSC22D3-2) triggers hyperosmotic responses of different ion transporters in medaka gill and human embryonic kidney cells via the JNK signalling pathway.

    PubMed

    Tse, William K F; Lai, K P; Takei, Y

    2011-12-01

    Eukaryotic cells undergo rapid regulatory processes to maintain cellular homeostasis upon osmotic stress. In fishes, gill epithelial cells play main roles in these processes. Although osmoregulatory functions of fish gills have been well studied, little is known about the underlying mechanisms, particularly the hypertonic-induced signalling pathways during osmotic stress. This study reports for the first time on the osmo-sensing signal cascade that related to the medaka osmotic stress transcription factor 1 (Ostf1), a hypertonic induced immediate early gene, under hypertonic stress. Quantitative real-time PCR showed the rapid increase of Ostf1 in gill after transfer of medaka from fresh water to 50% seawater; particularly Ostf1b whose mRNA expression increased to 4 folds at 0.5h and reached to 10 folds at 6h after the transfer. The in vivo knockdown of Ostf1b profoundly inhibited SEK and JNK phosphorylation, but not p38 and ERK phosphorylation in the medaka gill tissue. To further investigate the possible role of Ostf1b in the JNK pathway, Ostf1b was ectopically expressed in HEK293 cells. Results indicated that Ostf1b is a downstream target of SEK and JNK and exerts a positive feedback loop on the JNK signalling pathway via activation of GCK and/or MLK3 proteins. Additionally, MAPK inhibitors experiments suggested that activation of the JNK pathway by hypertonicity is involved in the maintenance of Ostf1b stability, which in turn provides continuous stimulation of GCK for JNK phosphorylation. Lastly, changes in transcription levels of different water/ion transporters were found in knockdown or ecoptic over-expression of Ostf1b in medaka gills and human embryonic kidney cells, suggesting the role of Ostf1b in modulation of critical water channel/ion transporters during osmotic stress.

  20. Utility of Oatp1a/1b-knockout and OATP1B1/3-humanized mice in the study of OATP-mediated pharmacokinetics and tissue distribution: case studies with pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein.

    PubMed

    Higgins, J William; Bao, Jing Q; Ke, Alice B; Manro, Jason R; Fallon, John K; Smith, Philip C; Zamek-Gliszczynski, Maciej J

    2014-01-01

    Although organic anion transporting polypeptide (OATP)-mediated hepatic uptake is generally conserved between rodents and humans at a gross pharmacokinetic level, the presence of three major hepatic OATPs with broad overlap in substrate and inhibitor affinity, and absence of rodent-human orthologs preclude clinical translation of single-gene knockout/knockin findings. At present, changes in pharmacokinetics and tissue distribution of pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein were studied in oatp1a/1b-knockout mice lacking the three major hepatic oatp isoforms, and in knockout mice with liver-specific knockin of human OATP1B1 or OATP1B3. Relative to wild-type controls, oatp1a/1b-knockout mice exhibited 1.6- to 19-fold increased intravenous and 2.1- to 115-fold increased oral drug exposure, due to 33%-75% decreased clearance, 14%-60% decreased volume of distribution, and ≤74-fold increased oral bioavailability, with the magnitude of change depending on the contribution of oatp1a/1b to pharmacokinetics. Hepatic drug distribution was 4.2- to 196-fold lower in oatp1a/1b-knockout mice; distributional attenuation was less notable in kidney, brain, cardiac, and skeletal muscle. Knockin of OATP1B1 or OATP1B3 partially restored control clearance, volume, and bioavailability values (24%-142% increase, ≤47% increase, and ≤77% decrease vs. knockout, respectively), such that knockin pharmacokinetic profiles were positioned between knockout and wild-type mice. Consistent with liver-specific humanization, only hepatic drug distribution was partially restored (1.3- to 6.5-fold increase vs. knockout). Exposure and liver distribution changes in OATP1B1-humanized versus knockout mice predicted the clinical impact of OATP1B1 on oral exposure and contribution to human hepatic uptake of statins within 1.7-fold, but only after correcting for human/humanized mouse liver relative protein expression factor (OATP1B1 = 2.2, OATP1B3 = 0.30).

  1. Chordin and dickkopf-1b are essential for the formation of head structures through activation of the FGF signaling pathway in zebrafish.

    PubMed

    Tanaka, Shingo; Hosokawa, Hiroshi; Weinberg, Eric S; Maegawa, Shingo

    2017-04-15

    The ability of the Spemann organizer to induce dorsal axis formation is dependent on downstream factors of the maternal Wnt/β-catenin signaling pathway. The fibroblast growth factor (FGF) signaling pathway has been identified as one of the downstream components of the maternal Wnt/β-catenin signaling pathway. The ability of the FGF signaling pathway to induce the formation of a dorsal axis with a complete head structure requires chordin (chd) expression; however, the molecular mechanisms involved in this developmental process, due to activation of FGF signaling, remain unclear. In this study, we showed that activation of the FGF signaling pathway induced the formation of complete head structures through the expression of chd and dickkopf-1b (dkk1b). Using the organizer-deficient maternal mutant, ichabod, we identified dkk1b as a novel downstream factor in the FGF signaling pathway. We also demonstrate that dkk1b expression is necessary, after activation of the FGF signaling pathway, to induce neuroectoderm patterning along the anteroposterior (AP) axis and for formation of complete head structures. Co-injection of chd and dkk1b mRNA resulted in the formation of a dorsal axis with a complete head structure in ichabod embryos, confirming the role of these factors in this developmental process. Unexpectedly, we found that chd induced dkk1b expression in ichabod embryos at the shield stage. However, chd failed to maintain dkk1b expression levels in cells of the shield and, subsequently, in the cells of the prechordal plate after mid-gastrula stage. In contrast, activation of the FGF signaling pathway maintained the dkk1b expression from the beginning of gastrulation to early somitogenesis. In conclusion, activation of the FGF signaling pathway induces the formation of a dorsal axis with a complete head structure through the expression of chd and subsequent maintenance of dkk1b expression levels.

  2. Downregulation of Organic Anion Transporting Polypeptide (OATP) 1B1 Transport Function by Lysosomotropic Drug Chloroquine: Implication in OATP-Mediated Drug-Drug Interactions.

    PubMed

    Alam, Khondoker; Pahwa, Sonia; Wang, Xueying; Zhang, Pengyue; Ding, Kai; Abuznait, Alaa H; Li, Lang; Yue, Wei

    2016-03-07

    Organic anion transporting polypeptide (OATP) 1B1 mediates the hepatic uptake of many drugs including lipid-lowering statins. Decreased OATP1B1 transport activity is often associated with increased systemic exposure of statins and statin-induced myopathy. Antimalarial drug chloroquine (CQ) is also used for long-term treatment of rheumatoid arthritis and systemic lupus erythematosus. CQ is lysosomotropic and inhibits protein degradation in lysosomes. The current studies were designed to determine the effects of CQ on OATP1B1 protein degradation, OATP1B1-mediated transport in OATP1B1-overexpressing cell line, and statin uptake in human sandwich-cultured hepatocytes (SCH). Treatment with lysosome inhibitor CQ increased OATP1B1 total protein levels in HEK293-OATP1B1 cells and in human SCH as determined by OATP1B1 immunoblot. In HEK293-FLAG-tagged OATP1B1 stable cell line, co-immunofluorescence staining indicated that intracellular FLAG-OATP1B1 is colocalized with lysosomal associated membrane glycoprotein (LAMP)-2, a marker protein of late endosome/lysosome. Enlarged LAMP-2-positive vacuoles with FLAG-OATP1B1 protein retained inside were readily detected in CQ-treated cells, consistent with blocking lysosomal degradation of OATP1B1 by CQ. In HEK293-OATP1B1 cells, without pre-incubation, CQ concentrations up to 100 μM did not affect OATP1B1-mediated [(3)H]E217G accumulation. However, pre-incubation with CQ at clinically relevant concentration(s) significantly decreased [(3)H]E217G and [(3)H]pitavastatin accumulation in HEK293-OATP1B1 cells and [(3)H]pitavastatin accumulation in human SCH. CQ pretreatment (25 μM, 2 h) resulted in ∼1.9-fold decrease in Vmax without affecting Km of OATP1B1-mediated [(3)H]E217G transport in HEK293-OATP1B1 cells. Pretreatment with monensin and bafilomycin A1, which also have lysosome inhibition activity, significantly decreased OATP1B1-mediated transport in HEK293-OATP1B1 cells. Pharmacoepidemiologic studies using data from the U.S. Food

  3. 5-HT 1A/1B receptor-mediated effects of the selective serotonin reuptake inhibitor, citalopram, on sleep: studies in 5-HT 1A and 5-HT 1B knockout mice.

    PubMed

    Monaca, Christelle; Boutrel, Benjamin; Hen, René; Hamon, Michel; Adrien, Joëlle

    2003-05-01

    Selective serotonin reuptake inhibitors (SSRIs) are extensively used for the treatment of depression. Aside from their antidepressant properties, they provoke a deficit in paradoxical sleep (PS) that is most probably mediated by the transporter blockade-induced increase in serotonin concentration in the extracellular space. Such an effect can be accounted for by the action of serotonin at various types of serotonergic receptors involved in PS regulation, among which the 5-HT(1A) and 5-HT(1B) types are the best candidates. According to this hypothesis, we examined the effects of citalopram, the most selective SSRI available to date, on sleep in the mouse after inactivation of 5-HT(1A) or 5-HT(1B) receptors, either by homologous recombination of their encoding genes, or pharmacological blockade with selective antagonists. For this purpose, sleep parameters of knockout mice that do not express these receptors and their wild-type counterparts were monitored during 8 h after injection of citalopram alone or in association with 5-HT(1A) or 5-HT(1B) receptor antagonists. Citalopram induced mainly a dose-dependent inhibition of PS during 2-6 h after injection, which was observed in wild-type and 5-HT(1B)-/- mice, but not in 5-HT(1A)-/- mutants. This PS inhibition was fully antagonized by pretreatment with the 5-HT(1A) antagonist WAY 100635, but only partially with the 5-HT(1B) antagonist GR 127935. These data indicate that the action of the SSRI citalopram on sleep in the mouse is essentially mediated by 5-HT(1A) receptors. Such a mechanism of action provides further support to the clinical strategy of antidepressant augmentation by 5-HT(1A) antagonists, because the latter would also counteract the direct sleep-inhibitory side-effects of SSRIs.

  4. Signaling Pathways Mediating Alcohol Effects

    PubMed Central

    Ron, Dorit

    2013-01-01

    Ethanol’s effects on intracellular signaling pathways contribute to acute effects of ethanol as well as to neuroadaptive responses to repeated ethanol exposure. In this chapter we review recent discoveries that demonstrate how ethanol alters signaling pathways involving several receptor tyrosine kinases and intracellular tyrosine and serine-threonine kinases, with consequences for regulation of cell surface receptor function, gene expression, protein translation, neuronal excitability and animal behavior. We also describe recent work that demonstrates a key role for ethanol in regulating the function of scaffolding proteins that organize signaling complexes into functional units. Finally, we review recent exciting studies demonstrating ethanol modulation of DNA and histone modification and the expression of microRNAs, indicating epigenetic mechanisms by which ethanol regulates neuronal gene expression and addictive behaviors. PMID:21877259

  5. Regulation of Signaling at Regions of Cell-Cell Contact by Endoplasmic Reticulum-Bound Protein-Tyrosine Phosphatase 1B

    PubMed Central

    Haj, Fawaz G.; Sabet, Ola; Kinkhabwala, Ali; Wimmer-Kleikamp, Sabine; Roukos, Vassilis; Han, Hong-Mei; Grabenbauer, Markus; Bierbaum, Martin; Antony, Claude; Neel, Benjamin G.; Bastiaens, Philippe I.

    2012-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed PTP that is anchored to the endoplasmic reticulum (ER). PTP1B dephosphorylates activated receptor tyrosine kinases after endocytosis, as they transit past the ER. However, PTP1B also can access some plasma membrane (PM)-bound substrates at points of cell-cell contact. To explore how PTP1B interacts with such substrates, we utilized quantitative cellular imaging approaches and mathematical modeling of protein mobility. We find that the ER network comes in close proximity to the PM at apparently specialized regions of cell-cell contact, enabling PTP1B to engage substrate(s) at these sites. Studies using PTP1B mutants show that the ER anchor plays an important role in restricting its interactions with PM substrates mainly to regions of cell-cell contact. In addition, treatment with PTP1B inhibitor leads to increased tyrosine phosphorylation of EphA2, a PTP1B substrate, specifically at regions of cell-cell contact. Collectively, our results identify PM-proximal sub-regions of the ER as important sites of cellular signaling regulation by PTP1B. PMID:22655028

  6. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    PubMed

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE.

  7. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene

    PubMed Central

    Hadjighassem, Mahmoud R.; Galaraga, Kimberly; Albert, Paul R.

    2015-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A–DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A–DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2–DRE complexes were distinguished from Freud-1–DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter–reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A–DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE. PMID:21155902

  8. Aldo-keto reductase 1b7, a novel marker for renin cells, is regulated by cyclic AMP signaling

    PubMed Central

    Lin, Eugene E.; Pentz, Ellen S.; Sequeira-Lopez, Maria Luisa S.

    2015-01-01

    We previously identified aldo-keto reductase 1b7 (AKR1B7) as a marker for juxtaglomerular renin cells in the adult mouse kidney. However, the distribution of renin cells varies dynamically, and it was unknown whether AKR1B7 maintains coexpression with renin in response to different developmental, physiological, and pathological situations, and furthermore, whether similar factor(s) simultaneously regulate both proteins. We show here that throughout kidney development, AKR1B7 expression—together with renin—is progressively restricted in the kidney arteries toward the glomerulus. Subsequently, when formerly renin-expressing cells reacquire renin expression, AKR1B7 is reexpressed as well. This pattern of coexpression persists in extreme pathological situations, such as deletion of the genes for aldosterone synthase or Dicer. However, the two proteins do not colocalize within the same organelles: renin is found in the secretory granules, whereas AKR1B7 localizes to the endoplasmic reticulum. Interestingly, upon deletion of the renin gene, AKR1B7 expression is maintained in a pattern mimicking the embryonic expression of renin, while ablation of renin cells resulted in complete abolition of AKR1B7 expression. Finally, we demonstrate that AKR1B7 transcription is controlled by cAMP. Cultured cells of the renin lineage reacquire the ability to express both renin and AKR1B7 upon elevation of intracellular cAMP. In vivo, deleting elements of the cAMP-response pathway (CBP/P300) results in a stark decrease in AKR1B7- and renin-positive cells. In summary, AKR1B7 is expressed within the renin cell throughout development and perturbations to homeostasis, and AKR1B7 is regulated by cAMP levels within the renin cell. PMID:26180185

  9. Evidence for hSNM1B/Apollo functioning in the HSP70 mediated DNA damage response.

    PubMed

    Anders, Marco; Mattow, Jens; Digweed, Martin; Demuth, Ilja

    2009-06-01

    The hSNM1B/Apollo protein is involved in the cellular response to DNA-damage as well as in the maintenance of telomeres during S-phase. TRF2 has been shown to interact physically with hSNM1B. As a core component of shelterin, TRF2 functions in organization and protection of telomeres. However, TRF2 was also shown to have a role in the early DNA-damage response, suggesting that hSNM1B and TRF2 cooperate in this dual function. Here we have used Tandem-Affinity-Purification in combination with mass spectrometry to identify additional binding partners of hSNM1B. This revealed HSC70, HSP72, HSP60 and beta-Tubulin to be hSNM1B-interactors. We have confirmed the interaction of hSNM1B and HSP70 in co-immunoprecipitation assays and found that hSNM1B binds to a C-terminal fragment of HSP72, known to contain the substrate binding domain. Depletion of HSP72 in human fibroblasts resulted in a significant reduction of nuclear hSNM1B foci. We also found the phosphorylation of CHK1 at serine 317 to be attenuated in response to UVC irradiation as a consequence of hSNM1B depletion, a result which extends our previous findings on the DNA-damage response function of hSNM1B. HSP70 chaperones have been implicated in the maintenance of genome stability and their expression is often aberrant in cancer. Our results presented here, suggest that the role in genome stability might not be specific to HSP70 but rather can be attributed, at least in part, to hSNM1B. This, together with its stimulating effect on ATM and ATR substrate phosphorylation in response to DNA-damage qualify hSNM1B as a putative target in cancer therapy.

  10. ABLATION OF THE UPR–MEDIATOR CHOP RESTORES MOTOR FUNCTION AND REDUCES DEMYELINATION IN CHARCOT MARIE TOOTH 1B MICE

    PubMed Central

    Pennuto, Maria; Tinelli, Elisa; Malaguti, MariaChiara; Del Carro, Ubaldo; D'Antonio, Maurizio; Ron, David; Quattrini, Angelo; Feltri, M. Laura; Wrabetz, Lawrence

    2008-01-01

    SUMMARY Deletion of serine 63 from P0 glycoprotein (P0S63del) causes Charcot-Marie-Tooth 1B neuropathy in humans, and P0S63del produces a very similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum and fails to be incorporated into myelin. Here we report that P0S63del is globally misfolded and Schwann cells mount a consequential canonical unfolded protein response (UPR), that includes expression of the transcription factor CHOP, previously associated with apoptosis in ER-stressed cells. UPR activation and CHOP expression respond dynamically to P0S63del levels and are reversible, but are associated with only limited apoptosis of Schwann cells. Nonetheless, Chop ablation in S63del mice completely rescues their motor deficit and reduces active demyelination two-fold. This is the first indication that signaling through the CHOP arm of the UPR provokes demyelination in inherited neuropathy. In addition, S63del mice provide a unique opportunity to explore how cells can dysfunction yet survive in prolonged ER stress—important for neurodegeneration related to misfolded proteins. PMID:18255032

  11. ROS and ROS-Mediated Cellular Signaling

    PubMed Central

    Zhang, Jixiang; Wang, Xiaoli; Vikash, Vikash; Ye, Qing; Wu, Dandan; Liu, Yulan; Dong, Weiguo

    2016-01-01

    It has long been recognized that an increase of reactive oxygen species (ROS) can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion channels and transporters (Ca2+ and mPTP), and modifying protein kinase and Ubiquitination/Proteasome System. PMID:26998193

  12. Ahcyl2 upregulates NBCe1-B via multiple serine residues of the PEST domain-mediated association.

    PubMed

    Park, Pil Whan; Ahn, Jeong Yeal; Yang, Dongki

    2016-07-01

    Inositol-1,4,5-triphosphate [IP3] receptors binding protein released with IP3 (IRBIT) was previously reported as an activator of NBCe1-B. Recent studies have characterized IRBIT homologue S-Adenosylhomocysteine hydrolase-like 2 (AHCYL2). AHCYL2 is highly homologous to IRBIT (88%) and heteromerizes with IRBIT. The two important domains in the N-terminus of AHCYL2 are a PEST domain and a coiled-coil domain which are highly comparable to those in IRBIT. Therefore, in this study, we tried to identify the role of those domains in mouse AHCYL2 (Ahcyl2), and we succeeded in identifying PEST domain of Ahcyl2 as a regulation region for NBCe1-B activity. Site directed mutagenesis and coimmunoprecipitation assay showed that NBCe1-B binds to the N-terminal Ahcyl2-PEST domain, and its binding is determined by the phosphorylation of 4 critical serine residues (Ser151, Ser154, Ser157, and Ser160) in Ahcyl2 PEST domain. Also we revealed that 4 critical serine residues in Ahcyl2 PEST domain are indispensable for the activation of NBCe1-B using measurement of intracellular pH experiment. Thus, these results suggested that the NBCe1-B is interacted with 4 critical serine residues in Ahcyl2 PEST domain, which play an important role in intracellular pH regulation through NBCe1-B.

  13. PAR1b Promotes Cell–Cell Adhesion and Inhibits Dishevelled-mediated Transformation of Madin-Darby Canine Kidney Cells

    PubMed Central

    Elbert, Maya; Cohen, David

    2006-01-01

    Mammalian Par1 is a family of serine/threonine kinases comprised of four homologous isoforms that have been associated with tumor suppression and differentiation of epithelial and neuronal cells, yet little is known about their cellular functions. In polarizing kidney epithelial (Madin-Darby canine kidney [MDCK]) cells, the Par1 isoform Par1b/MARK2/EMK1 promotes the E-cadherin–dependent compaction, columnarization, and cytoskeletal organization characteristic of differentiated columnar epithelia. Here, we identify two functions of Par1b that likely contribute to its role as a tumor suppressor in epithelial cells. 1) The kinase promotes cell–cell adhesion and resistance of E-cadherin to extraction by nonionic detergents, a measure for the association of the E-cadherin cytoplasmic domain with the actin cytoskeleton, which is critical for E-cadherin function. 2) Par1b attenuates the effect of Dishevelled (Dvl) expression, an inducer of wnt signaling that causes transformation of epithelial cells. Although Dvl is a known Par1 substrate in vitro, we determined, after mapping the PAR1b-phosphorylation sites in Dvl, that PAR1b did not antagonize Dvl signaling by phosphorylating the wnt-signaling molecule. Instead, our data suggest that both proteins function antagonistically to regulate the assembly of functional E-cadherin–dependent adhesion complexes. PMID:16707567

  14. Combined neural inactivation of suppressor of cytokine signaling-3 and protein-tyrosine phosphatase-1B reveals additive, synergistic, and factor-specific roles in the regulation of body energy balance.

    PubMed

    Briancon, Nadege; McNay, David E; Maratos-Flier, Eleftheria; Flier, Jeffrey S

    2010-12-01

    The adipokine hormone leptin triggers signals in the brain that ultimately lead to decreased feeding and increased energy expenditure. However, obesity is most often associated with elevated plasma leptin levels and leptin resistance. Suppressor of cytokine signaling (SOCS)-3 and protein-tyrosine phosphatase 1B (PTP-1B) are two endogenous inhibitors of tyrosine kinase signaling pathways and suppress both insulin and leptin signaling via different molecular mechanisms. Brain-specific inactivation of these genes individually in the mouse partially protects against diet-induced obesity (DIO) and insulin resistance. The aim of this study was to investigate possible genetic interactions between these two genes to determine whether combined reduction in these inhibitory activities results in synergistic, epistatic, or additive effects on energy balance control. We generated mice with combined inactivation of the genes coding for SOCS-3 and PTP-1B in brain cells, examined their sensitivity to hormone action, and analyzed the contribution of each gene to the resulting phenotype. Surprisingly, the Nestin-Cre mice used to mediate gene inactivation displayed a phenotype. Nonetheless, combined inactivation of SOCS-3 and PTP-1B in brain revealed additive effects on several parameters, including partial resistance to DIO and associated glucose intolerance. In addition, synergistic effects were observed for body length and weight, suggesting possible compensatory mechanisms for the absence of either inhibitor. Moreover, a SOCS-3-specific lean phenotype was revealed on the standard diet. These results show that the biological roles of SOCS-3 and PTP-1B do not fully overlap and that targeting both factors might improve therapeutic effects of their inhibition in obesity and type 2 diabetes.

  15. Characterization of 5-HT receptors mediating constriction of porcine carotid arteriovenous anastomoses; involvement of 5-HT1B/1D and novel receptors

    PubMed Central

    De Vries, Peter; Villalón, Carlos M; Heiligers, Jan P C; Saxena, Pramod R

    1998-01-01

    It was previously shown that porcine cranial arteriovenous anastomoses (AVAs) constrict to 5-hydroxytryptamine (5-HT), ergotamine, dihydroergotamine, as well as sumatriptan and that sumatriptan acts exclusively via 5-HT1B/1D receptors. The present study was devoted to establish the contribution of 5-HT1B/1D receptors in the constriction of AVAs elicited by 5-HT (in presence of 0.5 mg kg−1 ketanserin), ergotamine and dihydroergotamine in anaesthetized pigs.Intracarotid infusion of 5-HT (2 μg kg−1 min−1) and intravenous doses of ergotamine (2.5–20 μg kg−1) and dihydroergotamine (3–100 μg kg−1) reduced AVA and increased nutrient blood flows and vascular conductances. The vasodilator response to 5-HT, observed mainly in the skin and ear, was much more prominent than that of the ergot alkaloids.Treatment with the 5-HT1B/1D receptor antagonist GR127935 (0.5 mg kg−1, i.v.) significantly attenuated both ergot-induced AVA constriction and arteriolar dilatation, whereas GR127935 only slightly affected the carotid vascular effects of 5-HT.The results suggest that 5-HT constricts carotid AVAs primarily via receptors, which seem to differ from those (5-HT1B/1D) stimulated by sumatriptan. The ergot alkaloids produce AVA constriction for a substantial part via 5-HT1B/1D receptors, but also stimulate unidentified receptors. Both these non-5-HT1B/1D receptors may be targets for the development of novel antimigraine drugs.The moderate vasodilator response to the ergot derivatives seems to be mediated, at least in part, by 5-HT1B/1D receptors, whereas the arteriolar dilatation caused by 5-HT may be mediated by other, possibly 5-HT7 receptors. PMID:9605562

  16. Cancer cachexia: mediators, signaling, and metabolic pathways.

    PubMed

    Fearon, Kenneth C H; Glass, David J; Guttridge, Denis C

    2012-08-08

    Cancer cachexia is characterized by a significant reduction in body weight resulting predominantly from loss of adipose tissue and skeletal muscle. Cachexia causes reduced cancer treatment tolerance and reduced quality and length of life, and remains an unmet medical need. Therapeutic progress has been impeded, in part, by the marked heterogeneity of mediators, signaling, and metabolic pathways both within and between model systems and the clinical syndrome. Recent progress in understanding conserved, molecular mechanisms of skeletal muscle atrophy/hypertrophy has provided a downstream platform for circumventing the variations and redundancy in upstream mediators and may ultimately translate into new targeted therapies.

  17. Carnosol, a Constituent of Zyflamend, Inhibits Aryl Hydrocarbon Receptor-Mediated Activation of CYP1A1 and CYP1B1 Transcription and Mutagenesis

    PubMed Central

    Mohebati, Arash; Guttenplan, Joseph B.; Kochhar, Amit; Zhao, Zhong-Lin; Kosinska, Wieslawa; Subbaramaiah, Kotha; Dannenberg, Andrew J.

    2012-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated member of the basic-helix-loop-helix family of transcription factors, plays a significant role in polycyclic aromatic hydrocarbon (PAH) induced carcinogenesis. In the upper aerodigestive tract of humans, tobacco smoke, a source of PAHs, activates the AhR leading to increased expression of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to genotoxic metabolites. Inhibitors of Hsp90 ATPase cause a rapid decrease in levels of AhR, an Hsp90 client protein, and thereby block PAH-mediated induction of CYP1A1 and CYP1B1. The main objective of this study was to determine whether Zyflamend, a polyherbal preparation, suppressed PAH-mediated induction of CYP1A1 and CYP1B1 and inhibited DNA adduct formation and mutagenesis. We also investigated whether carnosol, one of multiple phenolic antioxidants in Zyflamend, had similar inhibitory effects. Treatment of cell lines derived from oral leukoplakia (MSK-Leuk1) and skin (HaCaT) with benzo[a]pyrene (B[a]P), a prototypic PAH, induced CYP1A1 and CYP1B1 transcription, resulting in enhanced levels of message and protein. Both Zyflamend and carnosol suppressed these effects of B[a]P. Notably, both Zyflamend and carnosol inhibited Hsp90 ATPase activity and caused a rapid reduction in AhR levels. The formation of B[a]P induced DNA adducts and mutagenesis were also inhibited by Zyflamend and carnosol. Collectively, these results show that Zyflamend and carnosol inhibit Hsp90 ATPase leading to reduced levels of AhR, suppression of B[a]P-mediated induction of CYP1A1 and CYP1B1 and inhibition of mutagenesis. Carnosol-mediated inhibition of Hsp90 ATPase activity can help explain the chemopreventive activity of herbs such as Rosemary, which contain this phenolic antioxidant. PMID:22374940

  18. Receptor-mediated signaling in Aspergillus fumigatus

    PubMed Central

    Grice, C. M.; Bertuzzi, M.; Bignell, E. M.

    2013-01-01

    Aspergillus fumigatus is the most pathogenic species among the Aspergilli, and the major fungal agent of human pulmonary infection. To prosper in diverse ecological niches, Aspergilli have evolved numerous mechanisms for adaptive gene regulation, some of which are also crucial for mammalian infection. Among the molecules which govern such responses, integral membrane receptors are thought to be the most amenable to therapeutic modulation. This is due to the localization of these molecular sensors at the periphery of the fungal cell, and to the prevalence of small molecules and licensed drugs which target receptor-mediated signaling in higher eukaryotic cells. In this review we highlight the progress made in characterizing receptor-mediated environmental adaptation in A. fumigatus and its relevance for pathogenicity in mammals. By presenting a first genomic survey of integral membrane proteins in this organism, we highlight an abundance of putative seven transmembrane domain (7TMD) receptors, the majority of which remain uncharacterized. Given the dependency of A. fumigatus upon stress adaptation for colonization and infection of mammalian hosts, and the merits of targeting receptor-mediated signaling as an antifungal strategy, a closer scrutiny of sensory perception and signal transduction in this organism is warranted. PMID:23430083

  19. Genetic variants of PPAR-gamma coactivator 1B augment NLRP3-mediated inflammation in gouty arthritis.

    PubMed

    Chang, Wan-Chun; Jan Wu, Yeong-Jian; Chung, Wen-Hung; Lee, Yun-Shien; Chin, See-Wen; Chen, Ting-Jui; Chang, Yu-Sun; Chen, Der-Yuan; Hung, Shuen-Iu

    2017-03-01

    Gout is characterized by recurrent attacks of arthritis with hyperuricaemia and urate crystal-induced inflammation. Although urate transporters are known as risk factors, the immunogenetics of gouty inflammation remains unclear. This study aimed to investigate the genetic association between immune/metabolism regulators and gout. We enrolled 448 gout patients and 943 population controls from Taiwan; all were Han Chinese. We screened association between gout and 22 variants of candidate genes, including NLRP3 , caspase 1, peroxisome proliferator-activated receptor-γ, proliferator-activated receptor-γ coactivator 1α ( PPARGC1A ) and 1β ( PPARGC1B ). The association was validated by replication and combined-sample analyses. Functional assays were performed by quantitative PCR, ELISA, siRNA knockdown and transfection using THP-1 cells, peripheral blood mononuclear cells and synovial cells from patients. Gouty arthritis exhibited significant association with variants of peroxisome PPARGC1B , which included a missense single nucleotide polymorphism, rs45520937 [P = 6.66 × 10 -9 ; odds ratio (95% CI): 1.85 (1.51, 2.28)]. Expression of PPARGC1B and NLRP3 was induced in urate crystal-activated THP-1, peripheral blood mononuclear cells and synovial cells from gout patients in acute stage. siRNA knockdown of PPARGC1B upregulated NLRP3 in urate crystal-activated macrophages. Compared with the wild-type carriers, patients with the risk A allele of rs45520937 showed statistically increased NLRP3 (P = 0.044) and plasma IL-1β (P = 0.006). Transfection of PPARGC1B cDNA with rs45520937 A allele to macrophages significantly augmented the expression of NLRP3 and IL-1β. Genetic variants of PPARGC1B are significantly associated with gout, and a missense single nucleotide polymorphism, rs45520937, augments NLRP3 and IL-1β expression. These data suggest that variants of PPARGC1B , a regulator of metabolism and inflammation, contribute to the pathogenesis of gouty arthritis.

  20. Receptor-mediated signaling at plasmodesmata.

    PubMed

    Faulkner, Christine

    2013-01-01

    Plasmodesmata (PD) generate continuity between plant cells via the cytoplasm, endoplasmic reticulum (ER) and plasma membrane (PM), allowing movement of different classes of molecules between cells. Proteomic data indicates that the PD PM hosts many receptors and receptor kinases, as well as lipid raft and tetraspanin enriched microdomain associated proteins, suggesting the hypothesis that the PD PM is specialized with respect to both composition and function. PD-located receptor proteins and receptor kinases are responsible for perception of microbe associated molecular patterns at PD and initiate signaling that mediates changes to PD flux. In addition, developmentally relevant receptor kinases have different interactions dependent upon whether located at the PD PM or the cellular PM. The implications of these findings are that receptor-mediated signaling in PD membranes differs from that in the cellular PM and, in light the identification of PD-located proteins associated with membrane microdomains and the role of membrane microdomains in analogous signaling processes in animals, suggests that the PD PM contains specialized signaling platforms.

  1. TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome

    PubMed Central

    Ochiai, Hiroshi; Miyamoto, Tatsuo; Kanai, Akinori; Hosoba, Kosuke; Sakuma, Tetsushi; Kudo, Yoshiki; Asami, Keiko; Ogawa, Atsushi; Watanabe, Akihiro; Kajii, Tadashi; Yamamoto, Takashi; Matsuura, Shinya

    2014-01-01

    Cancer-prone syndrome of premature chromatid separation with mosaic variegated aneuploidy [PCS (MVA) syndrome] is a rare autosomal recessive disorder characterized by constitutional aneuploidy and a high risk of childhood cancer. We previously reported monoallelic mutations in the BUB1B gene (encoding BUBR1) in seven Japanese families with the syndrome. No second mutation was found in the opposite allele of any of the families studied, although a conserved BUB1B haplotype and a decreased transcript were identified. To clarify the molecular pathology of the second allele, we extended our mutational search to a candidate region surrounding BUB1B. A unique single nucleotide substitution, G > A at ss802470619, was identified in an intergenic region 44 kb upstream of a BUB1B transcription start site, which cosegregated with the disorder. To examine whether this is the causal mutation, we designed a transcription activator-like effector nuclease–mediated two-step single-base pair editing strategy and biallelically introduced this substitution into cultured human cells. The cell clones showed reduced BUB1B transcripts, increased PCS frequency, and MVA, which are the hallmarks of the syndrome. We also encountered a case of a Japanese infant with PCS (MVA) syndrome carrying a homozygous single nucleotide substitution at ss802470619. These results suggested that the nucleotide substitution identified was the causal mutation of PCS (MVA) syndrome. PMID:24344301

  2. Maternal marginal iodine deficiency limits dendritic growth of cerebellar purkinje cells in rat offspring by NF-κB signaling and MAP1B.

    PubMed

    Yu, Ye; Dong, Jing; Wang, Yuan; Wang, Yi; Min, Hui; Shan, Zhongyan; Teng, Weiping; Chen, Jie

    2017-04-01

    Iodine deficiency (ID) during early pregnancy had an adverse effect on children's psychomotor and motor function. It is worth noting that maternal marginal ID tends to be a common public health problem. Whether marginal ID potentially had adverse effects on the development of cerebellum and the underlying mechanisms remain unclear. Therefore, our aim was to study the effects of marginal ID on the dendritic growth in filial cerebellar Purkinje cells (PCs) and the underlying mechanism. In the present study, we established Wistar rat models by feeding dam rats with a diet deficient in iodine and deionized water supplemented with potassium iodide. We examined the total dendritic length using immunofluorescence, and Western blot analysis was conducted to investigate the activity of nuclear factor-κB (NF-κB) signaling and microtubule-associated protein 1B (MAP1B). Our results showed that marginal ID reduced the total dendritic length of cerebellar PCs, slightly down-regulated the activity of NF-κB signaling and decreased MAP1B in cerebellar PCs on postnatal day (PN) 7, PN14, and PN21. Our study may support the hypothesis that decreased T4 induced by marginal ID limits PCs dendritic growth, which may involve in the disturbance of NF-κB signaling and MAP1B on the cerebellum. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1241-1251, 2017.

  3. An Lmx1b-miR135a2 Regulatory Circuit Modulates Wnt1/Wnt Signaling and Determines the Size of the Midbrain Dopaminergic Progenitor Pool

    PubMed Central

    Anderegg, Angela; Lin, Hsin-Pin; Chen, Jun-An; Caronia-Brown, Giuliana; Cherepanova, Natalya; Yun, Beth; Joksimovic, Milan; Rock, Jason; Harfe, Brian D.; Johnson, Randy; Awatramani, Rajeshwar

    2013-01-01

    MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS) development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function. Wnt1 is a key morphogen in the embryonic midbrain, and directs proliferation, survival, patterning and neurogenesis. We reveal an autoregulatory negative feedback loop between the transcription factor Lmx1b and a newly characterized microRNA, miR135a2, which modulates the extent of Wnt1/Wnt signaling and the size of the dopamine progenitor domain. Conditional gain of function studies reveal that Lmx1b promotes Wnt1/Wnt signaling, and thereby increases midbrain size and dopamine progenitor allocation. Conditional removal of Lmx1b has the opposite effect, in that expansion of the dopamine progenitor domain is severely compromised. Next, we provide evidence that microRNAs are involved in restricting dopamine progenitor allocation. Conditional loss of Dicer1 in embryonic stem cells (ESCs) results in expanded Lmx1a/b+ progenitors. In contrast, forced elevation of miR135a2 during an early window in vivo phenocopies the Lmx1b conditional knockout. When En1::Cre, but not Shh::Cre or Nes::Cre, is used for recombination, the expansion of Lmx1a/b+ progenitors is selectively reduced. Bioinformatics and luciferase assay data suggests that miR135a2 targets Lmx1b and many genes in the Wnt signaling pathway, including Ccnd1, Gsk3b, and Tcf7l2. Consistent with this, we demonstrate that this mutant displays reductions in the size of the Lmx1b/Wnt1 domain and range of canonical Wnt signaling. We posit that microRNA modulation of the Lmx1b/Wnt axis in the early midbrain/isthmus could determine midbrain size and allocation of dopamine progenitors. Since canonical Wnt activity has recently been recognized as a key ingredient for

  4. HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors

    PubMed Central

    Shimura, Kazuya; Onishi, Chiho; Iyoda, Tomonori; Inaba, Kayo

    2017-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. To enhance cell-to-cell transmission of HTLV-1, the virus increases the number of infected cells in vivo. HTLV-1 bZIP factor (HBZ) is constitutively expressed in HTLV-1 infected cells and ATL cells and promotes T-cell proliferation. However, the detailed mechanism by which it does so remains unknown. Here, we show that HBZ enhances the proliferation of expressing T cells after stimulation via the T-cell receptor. HBZ promotes this proliferation by influencing the expression and function of multiple co-inhibitory receptors. HBZ suppresses the expression of BTLA and LAIR-1 in HBZ expressing T cells and ATL cells. Expression of T cell immunoglobulin and ITIM domain (TIGIT) and Programmed cell death 1 (PD-1) was enhanced, but their suppressive effect on T-cell proliferation was functionally impaired. HBZ inhibits the co-localization of SHP-2 and PD-1 in T cells, thereby leading to impaired inhibition of T-cell proliferation and suppressed dephosphorylation of ZAP-70 and CD3ζ. HBZ does this by interacting with THEMIS, which associates with Grb2 and SHP-2. Thus, HBZ interacts with the SHP containing complex, impedes the suppressive signal from PD-1 and TIGIT, and enhances the proliferation of T cells. Although HBZ was present in both the nucleus and the cytoplasm of T cells, HBZ was localized largely in the nucleus by suppressed expression of THEMIS by shRNA. This indicates that THEMIS is responsible for cytoplasmic localization of HBZ in T cells. Since THEMIS is expressed only in T-lineage cells, HBZ mediated inhibition of the suppressive effects of co-inhibitory receptors accounts for how HTLV-1 induces proliferation only of T cells in vivo. This study reveals that HBZ targets co-inhibitory receptors to cause the proliferation of infected cells. PMID:28046066

  5. 1B/(−)IRE DMT1 Expression during Brain Ischemia Contributes to Cell Death Mediated by NF-κB/RelA Acetylation at Lys310

    PubMed Central

    Ingrassia, Rosaria; Lanzillotta, Annamaria; Sarnico, Ilenia; Benarese, Marina; Blasi, Francesco; Borgese, Laura; Bilo, Fabjola; Depero, Laura; Chiarugi, Alberto; Spano, Pier Franco; Pizzi, Marina

    2012-01-01

    The molecular mechanisms responsible for increasing iron and neurodegeneration in brain ischemia are an interesting area of research which could open new therapeutic approaches. Previous evidence has shown that activation of nuclear factor kappa B (NF-κB) through RelA acetylation on Lys310 is the prerequisite for p50/RelA-mediated apoptosis in cellular and animal models of brain ischemia. We hypothesized that the increase of iron through a NF-κB-regulated 1B isoform of the divalent metal transporter-1 (1B/DMT1) might contribute to post-ischemic neuronal damage. Both in mice subjected to transient middle cerebral artery occlusion (MCAO) and in neuronally differentiated SK-N-SH cells exposed to oxygen-glucose-deprivation (OGD), 1A/DMT1 was only barely expressed while the 1B/DMT1 without iron-response-element (−IRE) protein and mRNA were early up-regulated. Either OGD or over-expression of 1B/(−)IRE DMT1 isoform significantly increased iron uptake, as detected by total reflection X-ray fluorescence, and iron-dependent cell death. Iron chelation by deferoxamine treatment or (−)IRE DMT1 RNA silencing displayed significant neuroprotection against OGD which concomitantly decreased intracellular iron levels. We found evidence that 1B/(−)IRE DMT1 was a target gene for RelA activation and acetylation on Lys310 residue during ischemia. Chromatin immunoprecipitation analysis of the 1B/DMT1 promoter showed there was increased interaction with RelA and acetylation of H3 histone during OGD exposure of cortical neurons. Over-expression of wild-type RelA increased 1B/DMT1 promoter-luciferase activity, the (−)IRE DMT1 protein, as well as neuronal death. Expression of the acetylation-resistant RelA-K310R construct, which carried a mutation from lysine 310 to arginine, but not the acetyl-mimic mutant RelA-K310Q, down-regulated the 1B/DMT1 promoter, consequently offering neuroprotection. Our data showed that 1B/(−)IRE DMT1 expression and intracellular iron influx are

  6. 5-HT1B receptor-mediated contractions in human temporal artery: evidence from selective antagonists and 5-HT receptor mRNA expression

    PubMed Central

    Verheggen, R; Hundeshagen, A G; Brown, A M; Schindler, M; Kaumann, A J

    1998-01-01

    In the human temporal artery both 5-HT1-like and 5-HT2A receptors mediate the contractile effects of 5-hydroxytryptamine (5-HT) and we have suggested that the 5-HT1-like receptors resemble more closely recombinant 5-HT1B than 5-HT1D receptors. To investigate further which subtype is involved, we investigated the blockade of 5-HT-induced contractions by the 5-HT1B-selective antagonist SB-224289 (2,3,6,7-tetrahydro-1′-methyl-5-{2-methyl-4′[(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-yl] carbonyl} furo[2,3-f]indole-3-spiro-4′-piperidine oxalate) and the 5-HT1D-selective antagonist BRL-15572 (1-phenyl-3[4-3-chlorophenyl piperazin-1-yl] phenylpropan-2-ol). We also used RT-PCR to search for the mRNA of 5-HT1B, 5-HT1D and other 5-HT receptors.The contractile effects of 5-HT in temporal artery rings were partially antagonized by SB-224289 (20, 200 nM) (apparent KB=1 nM) and ketanserin (1 μM) but not by BRL-15572 (500 nM).Sumatriptan evoked contractions (EC50, 170 nM) that were resistant to blockade by BRL-15572 (500 nM) but antagonized by SB-224289 (20, 200 nM).The potency of 5-HT (EC50) was estimated to be 94 nM for the ketanserin-sensitive receptor and 34 nM for the SB-224289-sensitive receptor. The fraction of maximal 5-HT response mediated through SB-224289-sensitive receptors was 0.20–0.67, the remainder being mediated through ketanserin-sensitive receptors.We detected arterial receptor mRNA for the following receptors (incidence): 5-HT1B (8/8), 5-HT1D (2/8), 5-HT1F (0/4), 5-HT2A (0/8), 5-HT2B (0/8), 5-HT2C (0/8), 5-HT4 (4/8) and 5-HT7 (4/8).We conclude that the ketanserin-resistant fraction of the 5-HT effects and the effects of sumatriptan are mediated by 5-HT1B receptors. The lack of antagonism by BRL-15572 rules out 5-HT1D receptors as mediators of the contractile effects of 5-HT and sumatriptan. PMID:9723944

  7. CYLD-Mediated Signaling and Diseases

    PubMed Central

    Mathis, Bryan J.; Lai, Yimu; Qu, Chen; Janicki, Joseph S.; Cui, Taixing

    2015-01-01

    The conserved cylindromatosis (CYLD) codes for a deubiquitinating enzyme and is a crucial regulator of diverse cellular processes such as immune responses, inflammation, death, and proliferation. It directly regulates multiple key signaling cascades, such as the Nuclear Factor kappa B [NF-kB] and the Mitogen-Activated Protein Kinase (MAPK) pathways, by its catalytic activity on polyubiquitinated key intermediates. Several lines of emerging evidence have linked CYLD to the pathogenesis of various maladies, including cancer, poor infection control, lung fibrosis, neural development, and now cardiovascular dysfunction. While CYLD-mediated signaling is cell type and stimuli specific, the activity of CYLD is tightly controlled by phosphorylation and other regulators such as Snail. This review explores a broad selection of current and past literature regarding CYLD’s expression, function and regulation with emerging reports on its role in cardiovascular disease. PMID:25342597

  8. Polychlorinated biphenyls-153 induces metabolic dysfunction through activation of ROS/NF-κB signaling via downregulation of HNF1b.

    PubMed

    Wu, Hao; Yu, Weihua; Meng, Fansen; Mi, Jie; Peng, Jie; Liu, Jiangzheng; Zhang, Xiaodi; Hai, Chunxu; Wang, Xin

    2017-03-07

    Polychlorinated biphenyls (PCB) is a major type of persistent organic pollutants (POPs) that act as endocrine-disrupting chemicals. In the current study, we examined the mechanism underlying the effect of PCB-153 on glucose and lipid metabolism in vivo and in vitro. We found that PCB-153 induced per se and worsened high fat diet (HFD)-resulted increase of blood glucose level and glucose and insulin intolerance. In addition, PCB-153 induced per se and worsened HFD-resulted increase of triglyceride content and adipose mass. Moreover, PCB-153 concentration-dependently inhibited insulin-dependent glucose uptake and lipid accumulation in cultured hepatocytes and adipocytes. PCB-153 induced the expression and nuclear translocation of p65 NF-κB and the expression of its downstream inflammatory markers, and worsened HFD-resulted increase of those inflammatory markers. Inhibition of NF-κB significantly suppressed PCB-153-induced inflammation, lipid accumulation and decrease of glucose uptake. PCB-153 induced oxidative stress and decreased hepatocyte nuclear factor 1b (HNF1b) and glutathione peroxidase 1 (GPx1) expression in vivo and in vitro. Overexpression of HNF1b increased GPx1 expression, decreased ROS level, decreased Srebp1, ACC and FAS expression, and inhibited PCB-153-resulted oxidative stress, NF-κB-mediated inflammation, and final glucose/lipid metabolic disorder. Our results suggest that dysregulation of HNF1b/ROS/NF-κB plays an important role in PCB-153-induced glucose/lipid metabolic disorder.

  9. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    SciTech Connect

    Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  10. Signalling pathways activated by 5-HT(1B)/5-HT(1D) receptors in native smooth muscle and primary cultures of rabbit renal artery smooth muscle cells.

    PubMed

    Hinton, J M; Hill, P; Jeremy, J; Garland, C

    2000-01-01

    The potential of primary cultures of rabbit renal artery vascular smooth muscle cells (VSMCs) was assessed as a means to investigate the signalling pathways linked to 5-hydroxytryptamine (5-HT) 5-HT(1B)/5-HT(1D) receptors in native arteries. In renal artery segments denuded of endothelium, incubated with ketanserin and prazosin (each 1 microM), and prestimulated with 20 mM K(+) Krebs buffer, 5-HT and CP 93,129, a 5-HT(1B) receptor agonist, evoked concentration-dependent contractions. GR 127935, a 5-HT(1B)/5-HT(1D) receptor antagonist, significantly antagonised 5-HT-evoked contractions at nanomolar concentrations. Reverse transcription polymerase chain reaction (RT-PCR) of mRNA from smooth muscle cells from the isolated renal artery and from primary cultures of VSMCs from the same artery expressed mRNA transcripts for the 5-HT(1B) receptor and the 5-HT(1D) receptor in both preparations. The sequence of the PCR fragments corresponded to the known sequence for these receptors. Application of 5-HT evoked a concentration-dependent, pertussis toxin (PTx)-sensitive reduction in cyclic AMP in both cultured cells and intact artery (cyclic AMP concentration reduced by 65.53 +/- 3.33 and 52.65 +/- 5.34% from basal with 10 microM 5-HT, respectively). The effect of 10 microM 5-HT on cAMP was increased in the presence of 20 mM K(+) (reduced by 82.50 +/- 2.50 and 87.54 +/- 3.97%, respectively). In intact arteries, contraction through 5-HT(1B)/5-HT(1D) receptors was significantly attenuated by inhibitors of phosphatidylinositol 3-kinase (wortmannin) and activated mitogen-activated protein kinase (MAPK), MEK (U0126). In the cultured VSMCs, activated MAPK was identified by immunocytochemistry and immunoblotting after stimulation with 5-HT, but only if 20 mM K(+) was present at the onset of stimulation. These data provide the first direct evidence that 5-HT(1B)/5-HT(1B) receptors are linked to the activation of MAPK and indicate that primary cultures of renal VSMCs could provide a

  11. The Nogo-C2/Nogo Receptor Complex Regulates the Morphogenesis of Zebrafish Lateral Line Primordium through Modulating the Expression of dkk1b, a Wnt Signal Inhibitor

    PubMed Central

    Han, Hao-Wei; Chou, Chih-Ming; Chu, Cheng-Ying; Cheng, Chia-Hsiung; Yang, Chung-Hsiang; Hung, Chin-Chun; Hwang, Pung-Pung; Lee, Shyh-Jye; Liao, Yung-Feng; Huang, Chang-Jen

    2014-01-01

    The fish lateral line (LL) is a mechanosensory system closely related to the hearing system of higher vertebrates, and it is composed of several neuromasts located on the surface of the fish. These neuromasts can detect changes in external water flow, to assist fish in maintaining a stationary position in a stream. In the present study, we identified a novel function of Nogo/Nogo receptor signaling in the formation of zebrafish neuromasts. Nogo signaling in zebrafish, like that in mammals, involves three ligands and four receptors, as well as three co-receptors (TROY, p75, and LINGO-1). We first demonstrated that Nogo-C2, NgRH1a, p75, and TROY are able to form a Nogo-C2 complex, and that disintegration of this complex causes defective neuromast formation in zebrafish. Time-lapse recording of the CldnB::lynEGFP transgenic line revealed that functional obstruction of the Nogo-C2 complex causes disordered morphogenesis, and reduces rosette formation in the posterior LL (PLL) primordium during migration. Consistent with these findings, hair-cell progenitors were lost from the PLL primordium in p75, TROY, and Nogo-C2/NgRH1a morphants. Notably, the expression levels of pea3, a downstream marker of Fgf signaling, and dkk1b, a Wnt signaling inhibitor, were both decreased in p75, TROY, and Nogo-C2/NgRH1a morphants; moreover, dkk1b mRNA injection could rescue the defects in neuromast formation resulting from knockdown of p75 or TROY. We thus suggest that a novel Nogo-C2 complex, consisting of Nogo-C2, NgRH1a, p75, and TROY, regulates Fgf signaling and dkk1b expression, thereby ensuring stable organization of the PLL primordium. PMID:24466042

  12. Inhibition of protein tyrosine phosphatase 1B and regulation of insulin signalling markers by caffeoyl derivatives of chicory ( Cichorium intybus) salad leaves.

    PubMed

    Muthusamy, V S; Saravanababu, C; Ramanathan, M; Bharathi Raja, R; Sudhagar, S; Anand, S; Lakshmi, B S

    2010-09-01

    Evaluations of molecular mechanisms of dietary plants with their active molecules are essential for the complete exploration of their nutritive and therapeutic value. In the present study, we investigated the effect of chicory (Cichorium intybus) salad leaves in inhibiting protein tyrosine phosphatase 1B (PTP1B), and evaluated their role in modulating the key markers involved in insulin cell signalling and adipogenesis using 3T3-L1 adipocytes. Bioactivity-directed purification studies enlightened the additive effects of chlorogenic acid (CGA) along with other caffeic acid derivatives present in methanolic extract of C. intybus (CME). Incubation of CME and CGA with 3T3-L1 adipocytes significantly enhanced the 2-deoxy-d-3[H]-glucose uptake and inhibited adipogenesis through altering the expressions of insulin signalling and adipogenesis markers. Extending to an in vivo model, the effect of CME was also investigated on insulin sensitivity in high-fat diet with low streptozotocin-induced diabetic rats. Supplementation of CME for 2 weeks reinstated the insulin sensitivity along with plasma metabolic profile. The present results demonstrate that the caffeoyl derivatives of chicory salad leaves show promising pharmacological effect on energy homoeostasis via PTP1B inhibition both in vitro and in vivo.

  13. CREPT/RPRD1B, a Recently Identified Novel Protein Highly Expressed in Tumors, Enhances the β-Catenin·TCF4 Transcriptional Activity in Response to Wnt Signaling*

    PubMed Central

    Zhang, Yanquan; Liu, Chunxiao; Duan, Xiaolin; Ren, Fangli; Li, Shan; Jin, Zhe; Wang, Yinyin; Feng, Yarui; Liu, Zewen; Chang, Zhijie

    2014-01-01

    CREPT (cell cycle-related and expression elevated protein in tumor)/RPRD1B (regulation of nuclear pre-mRNA domain-containing protein 1B), highly expressed during tumorigenesis, was shown to enhance transcription of CCND1 and to promote cell proliferation by interacting with RNA polymerase II. However, which signaling pathway is involved in CREPT-mediated activation of gene transcription remains unclear. In this study, we reveal that CREPT participates in transcription of the Wnt/β-catenin signaling activated genes through the β-catenin and the TCF4 complex. Our results demonstrate that CREPT interacts with both β-catenin and TCF4, and enhances the association of β-catenin with TCF4, in response to Wnt stimulation. Furthermore, CREPT was shown to occupy at TCF4 binding sites (TBS) of the promoters of Wnt-targeted genes under Wnt stimulation. Interestingly, depletion of CREPT resulted in decreased occupancy of β-catenin on TBS, and over-expression of CREPT enhances the activity of the β-catenin·TCF4 complex to initiate transcription of Wnt target genes, which results in up-regulated cell proliferation and invasion. Our study suggests that CREPT acts as an activator to promote transcriptional activity of the β-catenin·TCF4 complex in response to Wnt signaling. PMID:24982424

  14. Target of rapamycin signaling mediates vacuolar fragmentation.

    PubMed

    Stauffer, Bobbiejane; Powers, Ted

    2017-02-01

    In eukaryotic cells, cellular homeostasis requires that different organelles respond to intracellular as well as environmental signals and modulate their behavior as conditions demand. Understanding the molecular mechanisms required for these changes remains an outstanding goal. One such organelle is the lysosome/vacuole, which undergoes alterations in size and number in response to environmental and physiological stimuli. Changes in the morphology of this organelle are mediated in part by the equilibrium between fusion and fission processes. While the fusion of the yeast vacuole has been studied intensively, the regulation of vacuolar fission remains poorly characterized by comparison. In recent years, a number of studies have incorporated genome-wide visual screens and high-throughput microscopy to identify factors required for vacuolar fission in response to diverse cellular insults, including hyperosmotic and endoplasmic reticulum stress. Available evidence now demonstrates that the rapamycin-sensitive TOR network, a master regulator of cell growth, is required for vacuolar fragmentation in response to stress. Importantly, many of the genes identified in these studies provide new insights into potential links between the vacuolar fission machinery and TOR signaling. Together these advances both extend our understanding of the regulation of vacuolar fragmentation in yeast as well as underscore the role of analogous events in mammalian cells.

  15. Application of a Fuzzy Neural Network Model in Predicting Polycyclic Aromatic Hydrocarbon- Mediated Perturbations of the Cyp1b1 Transcriptional Regulatory Network in Mouse Skin

    PubMed Central

    Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave one out cross-validation. Predictions were within 1 log2 fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. PMID:23274566

  16. Isoliquiritigenin impairs insulin signaling and adipocyte differentiation through the inhibition of protein-tyrosine phosphatase 1B oxidation in 3T3-L1 preadipocytes.

    PubMed

    Park, Sun-Ji; Choe, Young-Geun; Kim, Jung-Hak; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-07-01

    Isoliquritigenin (ISL) is an abundant dietary flavonoid with a chalcone structure, which is an important constituent in Glycyrrhizae Radix (GR). ISL exhibits anti-oxidant activity, and this activity has been shown to play a beneficial role in various health conditions. However, it is unclear whether the anti-oxidant activity of ISL affects insulin signaling pathway and lipid accumulation of adipocytes. We sought to investigate the effects and molecular mechanisms of ISL on insulin-stimulated adipogenesis in 3T3-L1 cells. We investigated whether ISL attenuates insulin-induced Reactive Oxygen Species (ROS) generation, and whether ISL inhibits the lipid accumulation and the expression of adipogenic-genes during the differentiation of 3T3-L1 cells. ISL blocked the ROS generation, suppressed the lipid accumulation and the expression of adipocyte-specific proteins, which are increased in response to insulin stimulation during adipocyte differentiation of 3T3-L1 cells. We also investigated whether the anti-oxidant capacity of ISL is involved in regulating the molecular events of insulin-signaling cascade in 3T3-L1 adipocytes. ISL restores PTP1B activity by inhibiting PTP1B oxidation and IR/PI3K/AKT phosphorylation during the early stages of insulin-induced adipogenesis. Our findings show that the anti-oxidant capacity of ISL attenuated insulin IR/PI3K/AKT signaling through inhibition of PTP1B oxidation, and ultimately attenuated insulin-induced adipocyte differentiation of 3T3-L1 cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling

    PubMed Central

    Drusenheimer, Nadja; Migdal, Bernhard; Jäckel, Sandra; Tveriakhina, Lena; Scheider, Kristina; Schulz, Katharina; Gröper, Jieny; Köhrer, Karl; Klein, Thomas

    2015-01-01

    CC2D1A and CC2D1B belong to the evolutionary conserved Lgd protein family with members in all multi-cellular animals. Several functions such as centrosomal cleavage, involvement in signalling pathways, immune response and synapse maturation have been described for CC2D1A. Moreover, the Drosophila melanogaster ortholog Lgd was shown to be involved in the endosomal trafficking of the Notch receptor and other transmembrane receptors and physically interacts with the ESCRT-III component Shrub/CHMP4. To determine if this function is conserved in mammals we generated and characterized Cc2d1a and Cc2d1b conditional knockout mice. While Cc2d1b deficient mice displayed no obvious phenotype, we found that Cc2d1a deficient mice as well as conditional mutants that lack CC2D1A only in the nervous system die shortly after birth due to respiratory distress. This finding confirms the suspicion that the breathing defect is caused by the central nervous system. However, an involvement in centrosomal function could not be confirmed in Cc2d1a deficient MEF cells. To analyse an influence on Notch signalling, we generated intestine specific Cc2d1a mutant mice. These mice did not display any alterations in goblet cell number, proliferating cell number or expression of the Notch reporter Hes1-emGFP, suggesting that CC2D1A is not required for Notch signalling. However, our EM analysis revealed that the average size of endosomes of Cc2d1a mutant cells, but not Cc2d1b mutant cells, is increased, indicating a defect in endosomal morphogenesis. We could show that CC2D1A and its interaction partner CHMP4B are localised on endosomes in MEF cells, when the activity of the endosomal protein VPS4 is reduced. This indicates that CC2D1A cycles between the cytosol and the endosomal membrane. Additionally, in rescue experiments in D. melanogaster, CC2D1A and CC2D1B were able to functionally replace Lgd. Altogether our data suggest a functional conservation of the Lgd protein family in the ESCRT

  18. Primary cilia signaling mediates intraocular pressure sensation.

    PubMed

    Luo, Na; Conwell, Michael D; Chen, Xingjuan; Kettenhofen, Christine Insinna; Westlake, Christopher J; Cantor, Louis B; Wells, Clark D; Weinreb, Robert N; Corson, Timothy W; Spandau, Dan F; Joos, Karen M; Iomini, Carlo; Obukhov, Alexander G; Sun, Yang

    2014-09-02

    Lowe syndrome is a rare X-linked congenital disease that presents with congenital cataracts and glaucoma, as well as renal and cerebral dysfunction. OCRL, an inositol polyphosphate 5-phosphatase, is mutated in Lowe syndrome. We previously showed that OCRL is involved in vesicular trafficking to the primary cilium. Primary cilia are sensory organelles on the surface of eukaryotic cells that mediate mechanotransduction in the kidney, brain, and bone. However, their potential role in the trabecular meshwork (TM) in the eye, which regulates intraocular pressure, is unknown. Here, we show that TM cells, which are defective in glaucoma, have primary cilia that are critical for response to pressure changes. Primary cilia in TM cells shorten in response to fluid flow and elevated hydrostatic pressure, and promote increased transcription of TNF-α, TGF-β, and GLI1 genes. Furthermore, OCRL is found to be required for primary cilia to respond to pressure stimulation. The interaction of OCRL with transient receptor potential vanilloid 4 (TRPV4), a ciliary mechanosensory channel, suggests that OCRL may act through regulation of this channel. A novel disease-causing OCRL allele prevents TRPV4-mediated calcium signaling. In addition, TRPV4 agonist GSK 1016790A treatment reduced intraocular pressure in mice; TRPV4 knockout animals exhibited elevated intraocular pressure and shortened cilia. Thus, mechanotransduction by primary cilia in TM cells is implicated in how the eye senses pressure changes and highlights OCRL and TRPV4 as attractive therapeutic targets for the treatment of glaucoma. Implications of OCRL and TRPV4 in primary cilia function may also shed light on mechanosensation in other organ systems.

  19. Primary cilia signaling mediates intraocular pressure sensation

    PubMed Central

    Luo, Na; Conwell, Michael D.; Chen, Xingjuan; Kettenhofen, Christine Insinna; Westlake, Christopher J.; Cantor, Louis B.; Wells, Clark D.; Weinreb, Robert N.; Corson, Timothy W.; Spandau, Dan F.; Joos, Karen M.; Iomini, Carlo; Obukhov, Alexander G.; Sun, Yang

    2014-01-01

    Lowe syndrome is a rare X-linked congenital disease that presents with congenital cataracts and glaucoma, as well as renal and cerebral dysfunction. OCRL, an inositol polyphosphate 5-phosphatase, is mutated in Lowe syndrome. We previously showed that OCRL is involved in vesicular trafficking to the primary cilium. Primary cilia are sensory organelles on the surface of eukaryotic cells that mediate mechanotransduction in the kidney, brain, and bone. However, their potential role in the trabecular meshwork (TM) in the eye, which regulates intraocular pressure, is unknown. Here, we show that TM cells, which are defective in glaucoma, have primary cilia that are critical for response to pressure changes. Primary cilia in TM cells shorten in response to fluid flow and elevated hydrostatic pressure, and promote increased transcription of TNF-α, TGF-β, and GLI1 genes. Furthermore, OCRL is found to be required for primary cilia to respond to pressure stimulation. The interaction of OCRL with transient receptor potential vanilloid 4 (TRPV4), a ciliary mechanosensory channel, suggests that OCRL may act through regulation of this channel. A novel disease-causing OCRL allele prevents TRPV4-mediated calcium signaling. In addition, TRPV4 agonist GSK 1016790A treatment reduced intraocular pressure in mice; TRPV4 knockout animals exhibited elevated intraocular pressure and shortened cilia. Thus, mechanotransduction by primary cilia in TM cells is implicated in how the eye senses pressure changes and highlights OCRL and TRPV4 as attractive therapeutic targets for the treatment of glaucoma. Implications of OCRL and TRPV4 in primary cilia function may also shed light on mechanosensation in other organ systems. PMID:25143588

  20. Regulation of insulin and type 1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins.

    PubMed

    Desbuquois, Bernard; Carré, Nadège; Burnol, Anne-Françoise

    2013-02-01

    The effects of insulin and type 1 insulin-like growth factor (IGF-1) on metabolism, growth and survival are mediated by their association with specific receptor tyrosine kinases, which results in both receptor and substrate phosphorylation. Phosphotyrosine residues on receptors and substrates provide docking sites for signaling proteins containing SH2 (Src homology 2) domains, including molecular adaptors. This review focuses on the regulation of insulin/IGF-1 signaling and action by two adaptor families with a similar domain organization: the growth factor receptor-bound proteins Grb7/10/14 and the SH2B proteins. Both Grb10/14 and SH2B1/B2 associate with the activation loop of insulin/IGF-1 receptors through their SH2 domains, but association of Grb10/14 also involves their unique BPS domain. Consistent with Grb14 binding as a pseudosubstrate to the kinase active site, insulin/IGF-induced activation of receptors and downstream signaling pathways in cultured cells is inhibited by Grb10/14 adaptors, but is potentiated by SH2B1/B2 adaptors. Accordingly, Grb10 and Grb14 knockout mice show improved insulin/IGF sensitivity in vivo, and, for Grb10, overgrowth and increased skeketal muscle and pancreatic β-cell mass. Conversely, SH2B1-depleted mice display insulin and IGF-1 resistance, with peripheral depletion leading to reduced adiposity and neuronal depletion leading to obesity through associated leptin resistance. Grb10/14 and SH2B1 adaptors also modulate insulin/IGF-1 action by interacting with signaling components downstream of receptors and exert several tissue-specific effects. The identification of Grb10/14 and SH2B1 as physiological regulators of insulin signaling and action, together with observations that variants at their gene loci are associated with obesity and/or insulin resistance, highlight them as potential therapeutic targets for these conditions.

  1. Heat shock protein 90 inhibitors suppress aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and DNA adduct formation.

    PubMed

    Hughes, Duncan; Guttenplan, Joseph B; Marcus, Craig B; Subbaramaiah, Kotha; Dannenberg, Andrew J

    2008-11-01

    The aryl hydrocarbon receptor (AhR), a client protein of heat shock protein 90 (HSP90), plays a significant role in polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis. Tobacco smoke, a source of PAHs, activates the AhR, leading to enhanced transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to genotoxic metabolites. The main objectives of this study were to determine whether HSP90 inhibitors suppress PAH-mediated induction of CYP1A1 and CYP1B1 or block benzo(a)pyrene [B(a)P]-induced formation of DNA adducts. Treatment of cell lines derived from oral leukoplakia (MSK-Leuk1) or esophageal squamous cell carcinoma (KYSE450) with a saline extract of tobacco smoke, B(a)P, or dioxin induced CYP1A1 and CYP1B1 transcription, resulting in enhanced levels of message and protein. Inhibitors of HSP90 [17-allylamino-17-demethoxygeldanamycin (17-AAG); celastrol] suppressed these inductive effects of PAHs. Treatment with 17-AAG and celastrol also caused a rapid and marked decrease in amounts of AhR protein without modulating levels of HSP90. The formation of B(a)P-induced DNA adducts in MSK-Leuk1 cells was inhibited by 17-AAG, celastrol, and alpha-naphthoflavone, a known AhR antagonist. The reduction in B(a)P-induced DNA adducts was due, at least in part, to reduced metabolic activation of B(a)P. Collectively, these results suggest that 17-AAG and celastrol, inhibitors of HSP90, suppress the activation of AhR-dependent gene expression, leading, in turn, to reduced formation of B(a)P-induced DNA adducts. Inhibitors of HSP90 may have a role in chemoprevention in addition to cancer therapy.

  2. H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence.

    PubMed

    Chicas, Agustin; Kapoor, Avnish; Wang, Xiaowo; Aksoy, Ozlem; Evertts, Adam G; Zhang, Michael Q; Garcia, Benjamin A; Bernstein, Emily; Lowe, Scott W

    2012-06-05

    Cellular senescence is a tumor-suppressive program that involves chromatin reorganization and specific changes in gene expression that trigger an irreversible cell-cycle arrest. Here we combine quantitative mass spectrometry, ChIP deep-sequencing, and functional studies to determine the role of histone modifications on chromatin structure and gene-expression alterations associated with senescence in primary human cells. We uncover distinct senescence-associated changes in histone-modification patterns consistent with a repressive chromatin environment and link the establishment of one of these patterns--loss of H3K4 methylation--to the retinoblastoma tumor suppressor and the H3K4 demethylases Jarid1a and Jarid1b. Our results show that Jarid1a/b-mediated H3K4 demethylation contributes to silencing of retinoblastoma target genes in senescent cells, suggesting a mechanism by which retinoblastoma triggers gene silencing. Therefore, we link the Jarid1a and Jarid1b demethylases to a tumor-suppressor network controlling cellular senescence.

  3. H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence

    PubMed Central

    Chicas, Agustin; Kapoor, Avnish; Wang, Xiaowo; Aksoy, Ozlem; Evertts, Adam G.; Zhang, Michael Q.; Garcia, Benjamin A.; Bernstein, Emily; Lowe, Scott W.

    2012-01-01

    Cellular senescence is a tumor-suppressive program that involves chromatin reorganization and specific changes in gene expression that trigger an irreversible cell-cycle arrest. Here we combine quantitative mass spectrometry, ChIP deep-sequencing, and functional studies to determine the role of histone modifications on chromatin structure and gene-expression alterations associated with senescence in primary human cells. We uncover distinct senescence-associated changes in histone-modification patterns consistent with a repressive chromatin environment and link the establishment of one of these patterns—loss of H3K4 methylation—to the retinoblastoma tumor suppressor and the H3K4 demethylases Jarid1a and Jarid1b. Our results show that Jarid1a/b-mediated H3K4 demethylation contributes to silencing of retinoblastoma target genes in senescent cells, suggesting a mechanism by which retinoblastoma triggers gene silencing. Therefore, we link the Jarid1a and Jarid1b demethylases to a tumor-suppressor network controlling cellular senescence. PMID:22615382

  4. Evidence for 5-HT1B/1D and 5-HT2A receptors mediating constriction of the canine internal carotid circulation

    PubMed Central

    Centurión, David; Ortiz, Mario I; Sánchez-López, Araceli; De Vries, Peter; Saxena, Pramod R; Villalón, Carlos M

    2001-01-01

    The present study has investigated the preliminary pharmacological profile of the receptors mediating vasoconstriction to 5-hydroxytryptamine (5-HT) in the internal carotid bed of vagosympathectomised dogs. One minute intracarotid infusions of the agonists 5-HT (0.1–10 μg min−1), sumatriptan (0.3–10 μg min−1; 5-HT1B/1D), 5-methoxytryptamine (1–100 μg min−1; 5-HT1, 5-HT2, 5-HT4, 5-ht6 and 5-HT7) or DOI (0.31–10 μg min−1; 5-HT2), but not 5-carboxamidotryptamine (0.01–0.3 μg min−1; 5-HT1, 5-ht5A and 5-HT7), 1-(m-chlorophenyl)-biguanide (mCPBG; 1–1000 μg min−1; 5-HT3) or cisapride (1–1000 μg min−1; 5-HT4), resulted in dose-dependent decreases in internal carotid blood flow, without changing blood pressure or heart rate. The vasoconstrictor responses to 5-HT, which remained unaffected after saline, were resistant to blockade by i.v. administration of the antagonists ritanserin (100 μg kg−1; 5-HT2A/2B/2C) in combination with tropisetron (3000 μg kg−1; 5-HT3/4) or the cyclo-oxygenase inhibitor, indomethacin (5000 μg kg−1), but were abolished by the 5-HT1B/1D receptor antagonist, GR127935 (30 μg kg−1). Interestingly, after administration of GR127935, the subsequent administration of ritanserin unmasked a dose-dependent vasodilator component. GR127935 or saline did not practically modify the vasoconstrictor effects of 5-MeO-T. In animals receiving GR127935, the subsequent administration of ritanserin abolished the vasoconstrictor responses to 5-MeO-T unmasking a dose-dependent vasodilator component. The vasoconstriction induced by sumatriptan was antagonized by GR127935, but not by ritanserin. Furthermore, ritanserin (100 μg kg−1) or ketanserin (100 μg kg−1; 5-HT2A), but not GR127935, abolished DOI-induced vasoconstrictor responses. The above results suggest that 5-HT-induced internal carotid vasoconstriction is predominantly mediated by 5-HT1B/1D and 5-HT2A receptors

  5. Activation of oncogenic tyrosine kinase signaling promotes insulin receptor-mediated cone photoreceptor survival

    PubMed Central

    Rajala, Ammaji; Wang, Yuhong; Rajala, Raju V.S.

    2016-01-01

    In humans, daylight vision is primarily mediated by cone photoreceptors. These cells die in age-related retinal degenerations. Prolonging the life of cones for even one decade would have an enormous beneficial effect on usable vision in an aging population. Photoreceptors are postmitotic, but shed 10% of their outer segments daily, and must synthesize the membrane and protein equivalent of a proliferating cell each day. Although activation of oncogenic tyrosine kinase and inhibition of tyrosine phosphatase signaling is known to be essential for tumor progression, the cellular regulation of this signaling in postmitotic photoreceptor cells has not been studied. In the present study, we report that a novel G-protein coupled receptor–mediated insulin receptor (IR) signaling pathway is regulated by non-receptor tyrosine kinase Src through the inhibition of protein tyrosine phosphatase IB (PTP1B). We demonstrated the functional significance of this pathway through conditional deletion of IR and PTP1B in cones, in addition to delaying the death of cones in a mouse model of cone degeneration by activating the Src. This is the first study demonstrating the molecular mechanism of a novel signaling pathway in photoreceptor cells, which provides a window of opportunity to save the dying cones in retinal degenerative diseases. PMID:27391439

  6. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3

    PubMed Central

    Suga, Takahiro; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu

    2017-01-01

    Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74–14.7 μM for OATP1B1 and 0.47–15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PMID:28060902

  7. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3.

    PubMed

    Suga, Takahiro; Yamaguchi, Hiroaki; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu

    2017-01-01

    Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74-14.7 μM for OATP1B1 and 0.47-15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3.

  8. TNFRSF1B — EDRN Public Portal

    Cancer.gov

    TNFRSF1B, also known as TNFr2, a single-pass type I member of the TNF-receptor superfamily, forms a heterocomplex with TNF-receptor 1 that mediates the recruitment of two anti-apoptotic proteins, c-IAP1 and c-IAP2, which possess E3 ubiquitin ligase activity. Although the function of IAPs in TNF-receptor signalling is unknown, c-IAP1 is thought to potentiate TNF-induced apoptosis by the ubiquitination and degradation of TNF-receptor-associated factor 2, which mediates anti-apoptotic signals. Knockout studies in mice also suggest that TNFr2 plays a role in protecting neurons from apoptosis by stimulating antioxidative pathways.

  9. BAFF receptor and TACI in B-1b cell maintenance and antibacterial responses.

    PubMed

    Dickinson, Gregory S; Akkoyunlu, Mustafa; Bram, Richard J; Alugupalli, Kishore R

    2015-12-01

    Although evidence of the protective immunity conferred by B-1b cells (CD19(+) B220(+) IgM(hi) Mac1(+) CD5(-)) has been established, the mechanisms governing the maintenance and activation of B-1b cells following pathogen encounter remain unclear. B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) mediate their function in mature B cells through the BAFF receptor (BAFFR) and transmembrane activator and CAML interactor (TACI). BAFFR-deficient mice have lower numbers of B-1b cells, and this reduction is directly proportional to BAFFR levels. The generation of B-1b cells is also dependent on the strength of B cell receptor (BCR) signaling. Mice with impaired BCR signaling, such as X-linked immunodeficient (xid) mice, have B-1b cell deficiency, indicating that both BCR- and BAFFR-mediated signaling are critical for B-1b cell homeostasis. Borrelia hermsii induces expansion and persistence of B-1b cells in xid mice, and these B-1b cells provide a heightened protective response. Toll-like receptor (TLR)-mediated stimulation of xid B cells results in a significant increase in TACI expression and restoration of TACI-mediated functions. The activation of TLR signaling by B. hermsii and BCR/TLR costimulation-mediated upregulation of BAFFR and TACI on B-1b cells suggests that B-1b cell maintenance and function following bacterial exposure may depend on BAFFR- and TACI-mediated signaling. In fact, the loss of both BAFFR and TACI results in a greater impairment in anti-B. hermsii responses compared to deficiency of BAFFR or TACI alone. © 2015 New York Academy of Sciences.

  10. CD1b-mediated T cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection.

    PubMed

    Moody, D B; Guy, M R; Grant, E; Cheng, T Y; Brenner, M B; Besra, G S; Porcelli, S A

    2000-10-02

    T cells recognize microbial glycolipids presented by CD1 proteins, but there is no information regarding the generation of natural glycolipid antigens within infected tissues. Therefore, we determined the molecular basis of CD1b-restricted T cell recognition of mycobacterial glycosylated mycolates, including those produced during tissue infection in vivo. Transfection of the T cell receptor (TCR) alpha and beta chains from a glucose monomycolate (GMM)-specific T cell line reconstituted GMM recognition in TCR-deficient T lymphoblastoma cells. This TCR-mediated response was highly specific for natural mycobacterial glucose-6-O-(2R, 3R) monomycolate, including the precise structure of the glucose moiety, the stereochemistry of the mycolate lipid, and the linkage between the carbohydrate and the lipid. Mycobacterial production of antigenic GMM absolutely required a nonmycobacterial source of glucose that could be supplied by adding glucose to media at concentrations found in mammalian tissues or by infecting tissue in vivo. These results indicate that mycobacteria synthesized antigenic GMM by coupling mycobacterial mycolates to host-derived glucose. Specific T cell recognition of an epitope formed by interaction of host and pathogen biosynthetic pathways provides a mechanism for immune response to those pathogenic mycobacteria that have productively infected tissues, as distinguished from ubiquitous, but innocuous, environmental mycobacteria.

  11. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species.

    PubMed

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-02-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.

  12. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer’s Therapy?

    PubMed Central

    Vieira, Marcelo N. N.; Lyra e Silva, Natalia M.; Ferreira, Sergio T.; De Felice, Fernanda G.

    2017-01-01

    Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer’s disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD. PMID:28197094

  13. HER2+ Cancer Cell Dependence on PI3K vs. MAPK Signaling Axes Is Determined by Expression of EGFR, ERBB3 and CDKN1B

    PubMed Central

    Lahdenranta, Johanna; Onsum, Matthew D.; Nielsen, Ulrik B.; Schoeberl, Birgit; McDonagh, Charlotte F.

    2016-01-01

    Understanding the molecular pathways by which oncogenes drive cancerous cell growth, and how dependence on such pathways varies between tumors could be highly valuable for the design of anti-cancer treatment strategies. In this work we study how dependence upon the canonical PI3K and MAPK cascades varies across HER2+ cancers, and define biomarkers predictive of pathway dependencies. A panel of 18 HER2+ (ERBB2-amplified) cell lines representing a variety of indications was used to characterize the functional and molecular diversity within this oncogene-defined cancer. PI3K and MAPK-pathway dependencies were quantified by measuring in vitro cell growth responses to combinations of AKT (MK2206) and MEK (GSK1120212; trametinib) inhibitors, in the presence and absence of the ERBB3 ligand heregulin (NRG1). A combination of three protein measurements comprising the receptors EGFR, ERBB3 (HER3), and the cyclin-dependent kinase inhibitor p27 (CDKN1B) was found to accurately predict dependence on PI3K/AKT vs. MAPK/ERK signaling axes. Notably, this multivariate classifier outperformed the more intuitive and clinically employed metrics, such as expression of phospho-AKT and phospho-ERK, and PI3K pathway mutations (PIK3CA, PTEN, and PIK3R1). In both cell lines and primary patient samples, we observed consistent expression patterns of these biomarkers varies by cancer indication, such that ERBB3 and CDKN1B expression are relatively high in breast tumors while EGFR expression is relatively high in other indications. The predictability of the three protein biomarkers for differentiating PI3K/AKT vs. MAPK dependence in HER2+ cancers was confirmed using external datasets (Project Achilles and GDSC), again out-performing clinically used genetic markers. Measurement of this minimal set of three protein biomarkers could thus inform treatment, and predict mechanisms of drug resistance in HER2+ cancers. More generally, our results show a single oncogenic transformation can have differing

  14. Dark matter signals in deflected mirage mediation

    SciTech Connect

    Holmes, Michael

    2010-02-10

    We investigate the parameter space of a specific class of model within the deflected mirage mediation (DMM) scenario. We look at neutralino properties and compute the thermal relic density as well as interaction rates with xenon direct detection experiments. We find that there are portions of the parameter space which are in line with the current WMAP constraints. Further we find that none of the investigated parameter space is in conflict with current bounds from the Xenon10 experiment and that future large-scale liquid xenon experiments will probe a large portion of the model space.

  15. The c-Myc Target Glycoprotein1bα Links Cytokinesis Failure to Oncogenic Signal Transduction Pathways in Cultured Human Cells

    PubMed Central

    Li, Youjun; Prochownik, Edward V.; Saunders, William S.

    2010-01-01

    An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbα), a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbα in a p53-deficient background. GpIbα was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbα. PMID:20520840

  16. Modulation of Toll-interleukin 1 receptor mediated signaling.

    PubMed

    Li, Xiaoxia; Qin, Jinzhong

    2005-04-01

    Toll-like receptors (TLRs) belong to the Toll-interleukin 1 receptor superfamily, which is defined by a common intracellular Toll-IL-1 receptor (TIR) domain. A group of TIR domain containing adaptors (MyD88, TIRAP, TRIF and TRAM), are differentially recruited to the Toll-IL-1 receptors, contributing to the specificity of signaling. The IL-1 mediated signaling pathway serves as a "prototype" for other family members. Genetic and biochemical studies reveal that IL-1R uses adaptor molecule MyD88 to mediate a very complex pathway, involving a cascade of kinases organized by multiple adapter molecules into signaling complexes, leading to activation of the transcription factor NFkappaB. Several Toll-like receptors utilize variations of the "prototype" pathway by employing different adaptor molecules. Double-stranded RNA triggered, TLR3-mediated signaling is independent of MyD88, IRAK4, and IRAK. The adapter molecule TRIF is utilized by TLR3 to mediate the activation of NFkappaB and IRF3. LPS-induced, TLR4-mediated signaling employs multiple TIR-domain containing adaptors, MyD88/TIRAP to mediate NFkappaB activation, TRIF/TRAM for IRF3 activation. Recent studies have also begun to unravel how these pathways are negatively regulated. SIGIRR (also known as TIR8), a member of TIR superfamily that does not activate the transcription factors NFkappaB and IRF3, instead negatively modulates responses. Cells from SIGIRR-null mice show enhanced activation in response to either IL-1 or certain Toll ligands. In addition to SIGIRR, several other negative regulators have been shown to inhibit the TIR signaling, including ST2, IRAKM, MyD88s, SOCS1, and Triad3A. The coordinated positive and negative regulation of the TIR signaling ensures the appropriate modulation of the innate and inflammatory responses.

  17. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    SciTech Connect

    Liu, Zhi-Qin; Liu, Ting; Chen, Chuan; Li, Ming-Yan; Wang, Zi-Yu; Chen, Ruo-song; Wei, Gui-xiang; Wang, Xiao-yi; Luo, Du-Qiang

    2015-05-15

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo.

  18. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice.

    PubMed

    Liu, Zhi-Qin; Liu, Ting; Chen, Chuan; Li, Ming-Yan; Wang, Zi-Yu; Chen, Ruo-Song; Wei, Gui-Xiang; Wang, Xiao-Yi; Luo, Du-Qiang

    2015-05-15

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties.

  19. A role for lipid-mediated signaling in plant gravitropism.

    PubMed

    Smith, Caroline M; Desai, Mintu; Land, Eric S; Perera, Imara Y

    2013-01-01

    Gravitropism is a universal plant response. It is initiated by the sensing of the primary signal (mass or pressure), which is then converted into chemical signals that are transduced and propagated in a precise spatial and temporal fashion, resulting in a differential growth response. Our thesis is that membrane lipids and lipid-mediated signaling pathways play critical roles in the initial signaling and in the establishment of polarity. In this review, we highlight results from recent literature and discuss the major questions that remain unanswered.

  20. Dissection of salicylic acid-mediated defense signaling networks

    PubMed Central

    2009-01-01

    The small phenolic molecule salicylic acid (SA) plays a key role in plant defense. Significant progress has been made recently in understanding SA-mediated defense signaling networks. Functional analysis of a large number of genes involved in SA biosynthesis and regulation of SA accumulation and signal transduction has revealed distinct but interconnecting pathways that orchestrate the control of plant defense. Further studies utilizing combinatorial approaches in genetics, molecular biology, biochemistry and genomics will uncover finer details of SA-mediated defense networks as well as further insights into the crosstalk of SA with other defense signaling pathways. The complexity of defense networks illustrates the capacity of plants to integrate multiple developmental and environmental signals into a tight control of the costly defense responses. PMID:19820324

  1. Direct access to pyrido/pyrrolo[2,1-b]quinazolin-9(1H)-ones through silver-mediated intramolecular alkyne hydroamination reactions

    PubMed Central

    Wang, Hengshuai; Jiao, Shengchao; Chen, Kerong; Zhang, Xu; Zhao, Linxiang; Liu, Dan; Liu, Hong

    2015-01-01

    Summary We report a synthetic methodology for the construction of the fused heterocyclic compounds pyrido[2,1-b]quinazolin-9(1H)-ones and pyrrolo[2,1-b]quinazolin-9(1H)-ones through an AgOTf-catalyzed intramolecular alkyne hydroamination reaction. The methodology is applicable to a wide scope of substrates and produces a series of fused quinazolinone heterocycles in good to excellent yields. PMID:25977715

  2. The Transmembrane Adaptor Protein SIT Inhibits TCR-Mediated Signaling

    PubMed Central

    Arndt, Börge; Krieger, Tina; Kalinski, Thomas; Thielitz, Anja; Reinhold, Dirk; Roessner, Albert; Schraven, Burkhart; Simeoni, Luca

    2011-01-01

    Transmembrane adaptor proteins (TRAPs) organize signaling complexes at the plasma membrane, and thus function as critical linkers and integrators of signaling cascades downstream of antigen receptors. We have previously shown that the transmembrane adaptor protein SIT regulates the threshold for thymocyte selection. Moreover, T cells from SIT-deficient mice are hyperresponsive to CD3 stimulation and undergo enhanced lymphopenia-induced homeostatic proliferation, thus indicating that SIT inhibits TCR-mediated signaling. Here, we have further addressed how SIT regulates signaling cascades in T cells. We demonstrate that the loss of SIT enhances TCR-mediated Akt activation and increased phosphorylation/inactivation of Foxo1, a transcription factor of the Forkhead family that inhibits cell cycle progression and regulates T-cell homeostasis. We have also shown that CD4+ T cells from SIT-deficient mice display increased CD69 and CD40L expression indicating an altered activation status. Additional biochemical analyses further revealed that suppression of SIT expression by RNAi in human T cells resulted in an enhanced proximal TCR signaling. In summary, the data identify SIT as an important modulator of TCR-mediated signaling that regulates T-cell activation, homeostasis and tolerance. PMID:21957439

  3. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish.

    PubMed

    Gokey, Jason J; Dasgupta, Agnik; Amack, Jeffrey D

    2015-11-01

    Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry.

  4. Comparative analyses of lysophosphatidic acid receptor-mediated signaling.

    PubMed

    Fukushima, Nobuyuki; Ishii, Shoichi; Tsujiuchi, Toshifumi; Kagawa, Nao; Katoh, Kazutaka

    2015-06-01

    Lysophosphatidic acid (LPA) is a bioactive lipid mediator that activates G protein-coupled LPA receptors to exert fundamental cellular functions. Six LPA receptor genes have been identified in vertebrates and are classified into two subfamilies, the endothelial differentiation genes (edg) and the non-edg family. Studies using genetically engineered mice, frogs, and zebrafish have demonstrated that LPA receptor-mediated signaling has biological, developmental, and pathophysiological functions. Computational analyses have also identified several amino acids (aa) critical for LPA recognition by human LPA receptors. This review focuses on the evolutionary aspects of LPA receptor-mediated signaling by comparing the aa sequences of vertebrate LPA receptors and LPA-producing enzymes; it also summarizes the LPA receptor-dependent effects commonly observed in mouse, frog, and fish.

  5. Autocrine motility factor modulates EGF-mediated invasion signaling

    PubMed Central

    Kho, Dhong Hyo; Zhang, Tianpeng; Balan, Vitaly; Yi, Wang; Ha, Seung-Wook; Xie, Youming; Raz, Avraham

    2014-01-01

    Autocrine motility factor (AMF) enhances invasion by breast cancer cells, but how its secretion and effector signaling are controlled in the tumor microenvironment is not fully understood. In this study, we investigated these issues with a chimeric AMF that is secreted at high levels through a canonical ER/Golgi pathway. Using this tool, we found that AMF enhances tumor cell motility by activating AKT/ERK, altering actin organization and stimulating β-catenin/TCF and AP-1 transcription. EGF enhanced secretion of AMF through its casein kinase 2-mediated phosphorylation. RNAi-mediated attenuation of AMF expression inhibited EGF-induced invasion by suppressing ERK signaling. Conversely, exogenous AMF overcame the inhibitory effect of EGFR inhibitor gefitinib on invasive motility by activating HER2 signaling. Taken together, our findings show how AMF modulates EGF-induced invasion while affecting acquired resistance to cytotoxic drugs in the tumor microenvironment. PMID:24576828

  6. Calcium/calmodulin-mediated signal network in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2003-01-01

    Various extracellular stimuli elicit specific calcium signatures that can be recognized by different calcium sensors. Calmodulin, the predominant calcium receptor, is one of the best-characterized calcium sensors in eukaryotes. In recent years, completion of the Arabidopsis genome project and advances in functional genomics have helped to identify and characterize numerous calmodulin-binding proteins in plants. There are some similarities in Ca(2+)/calmodulin-mediated signaling in plants and animals. However, plants possess multiple calmodulin genes and many calmodulin target proteins, including unique protein kinases and transcription factors. Some of these proteins are likely to act as "hubs" during calcium signal transduction. Hence, a better understanding of the function of these calmodulin target proteins should help in deciphering the Ca(2+)/calmodulin-mediated signal network and its role in plant growth, development and response to environmental stimuli.

  7. Calcium/calmodulin-mediated signal network in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2003-01-01

    Various extracellular stimuli elicit specific calcium signatures that can be recognized by different calcium sensors. Calmodulin, the predominant calcium receptor, is one of the best-characterized calcium sensors in eukaryotes. In recent years, completion of the Arabidopsis genome project and advances in functional genomics have helped to identify and characterize numerous calmodulin-binding proteins in plants. There are some similarities in Ca(2+)/calmodulin-mediated signaling in plants and animals. However, plants possess multiple calmodulin genes and many calmodulin target proteins, including unique protein kinases and transcription factors. Some of these proteins are likely to act as "hubs" during calcium signal transduction. Hence, a better understanding of the function of these calmodulin target proteins should help in deciphering the Ca(2+)/calmodulin-mediated signal network and its role in plant growth, development and response to environmental stimuli.

  8. TES Level 1B

    Atmospheric Science Data Center

    2014-12-08

    TES Level 1B data files contain radiometric calibrated spectral radiances and their ... and some engineering data are also provided. A Level 1B data file contains data from a single TES orbit for one focal ... as the Aura orbit number at the time of the South Pole apex crossing. version id represents the version identification number, ...

  9. Commensal-Epithelial Signaling Mediated via Formyl Peptide Receptors

    PubMed Central

    Wentworth, Christy C.; Jones, Rheinallt M.; Kwon, Young Man; Nusrat, Asma; Neish, Andrew S.

    2010-01-01

    Commensal bacteria and/or their products engender beneficial effects to the mammalian gut, including stimulating physiological cellular turnover and enhancing wound healing, without activating overt inflammation. In the present study, we observed commensal bacteria-mediated activation of the noninflammatory extracellular signal-regulated kinase[ERK]/mitogen-activated protein kinase and Akt signaling pathways in gut epithelial cells and delineated a mechanism for this bacterially activated signaling. All tested strains of commensal bacteria induced ERK phosphorylation without stimulating pro-inflammatory phospho-IκB or pro-apoptotic phospho-c-Jun NH2-terminal kinase, with Lactobacillus species being most potent. This pattern of signaling activation was recapitulated using the peptide N-formyl-Met-Leu-Phe, a bacterial product known to stimulate signaling events in mammalian phagocytes. Sensing of N-formyl-Met-Leu-Phe by gut epithelial cells occurs via recently characterized formyl peptide receptors located in the plasma membrane. Both commensal bacteria and N-formyl-Met-Leu-Phe application to the apical surface of polarized gut epithelial cells resulted in specific formyl peptide receptor activation. In addition, pretreatment of model epithelia and murine colon with Boc2 (a specific peptide antagonist) or pertussis toxin (a Gi-protein inhibitor) abolished commensal-mediated ERK phosphorylation. Taken together, these data show that commensal bacteria specifically activate the ERK/mitogen-activated protein kinase pathway in an formyl peptide receptor-dependent manner, delineating a mechanism by which commensal bacteria contribute to cellular signaling in gut epithelia. PMID:21037077

  10. Commensal-epithelial signaling mediated via formyl peptide receptors.

    PubMed

    Wentworth, Christy C; Jones, Rheinallt M; Kwon, Young Man; Nusrat, Asma; Neish, Andrew S

    2010-12-01

    Commensal bacteria and/or their products engender beneficial effects to the mammalian gut, including stimulating physiological cellular turnover and enhancing wound healing, without activating overt inflammation. In the present study, we observed commensal bacteria-mediated activation of the noninflammatory extracellular signal-regulated kinase[ERK]/mitogen-activated protein kinase and Akt signaling pathways in gut epithelial cells and delineated a mechanism for this bacterially activated signaling. All tested strains of commensal bacteria induced ERK phosphorylation without stimulating pro-inflammatory phospho-IκB or pro-apoptotic phospho-c-Jun NH(2)-terminal kinase, with Lactobacillus species being most potent. This pattern of signaling activation was recapitulated using the peptide N-formyl-Met-Leu-Phe, a bacterial product known to stimulate signaling events in mammalian phagocytes. Sensing of N-formyl-Met-Leu-Phe by gut epithelial cells occurs via recently characterized formyl peptide receptors located in the plasma membrane. Both commensal bacteria and N-formyl-Met-Leu-Phe application to the apical surface of polarized gut epithelial cells resulted in specific formyl peptide receptor activation. In addition, pretreatment of model epithelia and murine colon with Boc2 (a specific peptide antagonist) or pertussis toxin (a G(i)-protein inhibitor) abolished commensal-mediated ERK phosphorylation. Taken together, these data show that commensal bacteria specifically activate the ERK/mitogen-activated protein kinase pathway in an formyl peptide receptor-dependent manner, delineating a mechanism by which commensal bacteria contribute to cellular signaling in gut epithelia.

  11. NGF-activated protein tyrosine phosphatase 1B mediates the phosphorylation and degradation of I-kappa-Balpha coupled to NF-kappa-B activation, thereby controlling dendrite morphology.

    PubMed

    Chacón, Pedro J; Arévalo, María Angeles; Tébar, Alfredo Rodríguez

    2010-04-01

    NGF diminishes dendrite complexity in cultured hippocampal neurons by decreasing the number of primary and secondary dendrites, while increasing the length of those that remain. The transduction pathway used by NGF to provoke dendrite elongation involves the activation of NF-kappa-B and the expression of the homologues of Enhancer-of-split 1 gene. Here, we define important steps that link NGF with NF-kappa-B activation, through the activity of protein tyrosine phosphatase 1B (PTP1B). Binding of NGF to p75(NTR) stimulates PTP1B activity, which can be blocked by either pharmacological inhibition of the phosphatase or by transfecting neurons with a dn PTP1B isoform, whereby NGF is no longer able to stimulate dendrite growth. Indeed, overexpressing PTP1B alone provoked dendrite growth and further studies revealed a role for the src kinase downstream of PTP1B. Again, loss of src activity largely cancelled out the capacity of NGF to promote dendrite growth, whereas overexpression of v-src in neurons was sufficient to promote dendrite growth. Finally, the NGF/p75(NTR)/PTP1B/src kinase pathway led to the tyrosine phosphorylation of I-kappa-Balpha prior to its degradation, an event that is necessary for NF-kappa-B activation. Indeed, the dendrite growth response to NGF was lost when neurons were transfected with a mutant form of I-kappa-Balpha that lacks tyr42. Thus, our data suggest that PTP1B fulfils a central role in the NGF signalling that controls dendrite patterning in hippocampal neurons.

  12. PACRG, a protein linked to ciliary motility, mediates cellular signaling.

    PubMed

    Loucks, Catrina M; Bialas, Nathan J; Dekkers, Martijn P J; Walker, Denise S; Grundy, Laura J; Li, Chunmei; Inglis, P Nick; Kida, Katarzyna; Schafer, William R; Blacque, Oliver E; Jansen, Gert; Leroux, Michel R

    2016-07-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon-associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan.

  13. PACRG, a protein linked to ciliary motility, mediates cellular signaling

    PubMed Central

    Loucks, Catrina M.; Bialas, Nathan J.; Dekkers, Martijn P. J.; Walker, Denise S.; Grundy, Laura J.; Li, Chunmei; Inglis, P. Nick; Kida, Katarzyna; Schafer, William R.; Blacque, Oliver E.; Jansen, Gert; Leroux, Michel R.

    2016-01-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon–associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan. PMID:27193298

  14. HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2.

    PubMed

    Heliot, Claire; Desgrange, Audrey; Buisson, Isabelle; Prunskaite-Hyyryläinen, Renata; Shan, Jingdong; Vainio, Seppo; Umbhauer, Muriel; Cereghini, Silvia

    2013-02-01

    The nephron is a highly specialised segmented structure that provides essential filtration and resorption renal functions. It arises by formation of a polarised renal vesicle that differentiates into a comma-shaped body and then a regionalised S-shaped body (SSB), with the main prospective segments mapped to discrete domains. The regulatory circuits involved in initial nephron patterning are poorly understood. We report here that HNF1B, a transcription factor known to be involved in ureteric bud branching and initiation of nephrogenesis, has an additional role in segment fate acquisition. Hnf1b conditional inactivation in murine nephron progenitors results in rudimentary nephrons comprising a glomerulus connected to the collecting system by a short tubule displaying distal fates. Renal vesicles develop and polarise normally but fail to progress to correctly patterned SSBs. Major defects are evident at late SSBs, with altered morphology, reduction of a proximo-medial subdomain and increased apoptosis. This is preceded by strong downregulation of the Notch pathway components Lfng, Dll1 and Jag1 and the Irx1/2 factors, which are potential regulators of proximal and Henle's loop segment fates. Moreover, HNF1B is recruited to the regulatory sequences of most of these genes. Overexpression of a HNF1B dominant-negative construct in Xenopus embryos causes downregulation specifically of proximal and intermediate pronephric segment markers. These results show that HNF1B is required for the acquisition of a proximo-intermediate segment fate in vertebrates, thus uncovering a previously unappreciated function of a novel SSB subcompartment in global nephron segmentation and further differentiation.

  15. Protein Interaction and Na/K-ATPase-Mediated Signal Transduction.

    PubMed

    Cui, Xiaoyu; Xie, Zijian

    2017-06-14

    The Na/K-ATPase (NKA), or Na pump, is a member of the P-type ATPase superfamily. In addition to pumping ions across cell membrane, it is engaged in assembly of multiple protein complexes in the plasma membrane. This assembly allows NKA to perform many non-pumping functions including signal transduction that are important for animal physiology and disease progression. This article will focus on the role of protein interaction in NKA-mediated signal transduction, and its potential utility as target for developing new therapeutics.

  16. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    SciTech Connect

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ahmad, Javed; Siddiqui, Maqsood A.; Dwivedi, Sourabh; Khan, Shams T.; Musarrat, Javed

    2013-12-01

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe{sub 2}O{sub 4}-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe{sub 2}O{sub 4}-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe{sub 2}O{sub 4}-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT{sup 2} Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p < 0.01) population of ZnFe{sub 2}O{sub 4}-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe{sub 2}O{sub 4}-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe{sub 2}O{sub 4}-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe{sub 2}O{sub 4}-NPs in cells of placental origin • WISH cells treated with ZnFe{sub 2}O{sub 4}-NPs exhibited cytoplasmic

  17. Fundamental Issues of Melatonin-Mediated Stress Signaling in Plants

    PubMed Central

    Shi, Haitao; Chen, Keli; Wei, Yunxie; He, Chaozu

    2016-01-01

    As a widely known hormone in animals, melatonin (N-acetyl-5-methoxytryptamine) has been more and more popular research topic in various aspects of plants. To summarize the these recent advances, this review focuses on the regulatory effects of melatonin in plant response to multiple abiotic stresses including salt, drought, cold, heat and oxidative stresses and biotic stress such as pathogen infection. We highlight the changes of endogenous melatonin levels under stress conditions, and the extensive metabolome, transcriptome, and proteome reprogramming by exogenous melatonin application. Moreover, melatonin-mediated stress signaling and underlying mechanism in plants are extensively discussed. Much more is needed to further study in detail the mechanisms of melatonin-mediated stress signaling in plants. PMID:27512404

  18. Protein kinase mediated upregulation of endothelin A, endothelin B and 5-hydroxytryptamine 1B/1D receptors during organ culture in rat basilar artery

    PubMed Central

    Hansen-Schwartz, Jacob; Svensson, Carl-Lennart; Xu, Cang-Bao; Edvinsson, Lars

    2002-01-01

    Organ culture has been shown to upregulate both endothelin (ET) and 5-hydroxytryptamine 1B/1D (5-HT1B/1D) receptors in rat cerebral arteries. The purpose of the present study was to investigate the involvement of protein kinases, especially protein kinases C (PKC) and A (PKA) in this process. The effect of inhibiting protein kinases during organ culture with staurosporine (unspecific protein kinase inhitor), RO 31-7549 (specific inhibitor of classical PKC's) and H 89 (specific inhibitor of PKA) was examined using in vitro pharmacological examination of cultured vessel segments with ET-1 (unspecific ETA and ETB agonist), S6c (specific ETB agonist) and 5-CT (5-HT1 agonist). Levels of mRNA coding for the ETA, ETB, 5-HT1B and 5-HT1D receptors were analysed using real-time RT–PCR. Classical PKC's are critically involved in the appearance of the ETB receptor; co-culture with RO 31-7549 abolished the contractile response (6.9±1.8%) and reduced the ETB receptor mRNA by 44±4% as compared to the cultured control. Correlation between decreased ETB receptor mRNA and abolished contractile function indicates upstream involvement of PKC. Inhibition of PKA generally had an enhancing effect on the induced changes giving rise to a 7–25% increase in Emax in response to ET-1, S6c and 5-CT as compared to the cultured control. Staurosporine inhibited the culture induced upregulation of the response of both the ETA and the 5-HT1B/1D receptors, but had no significant effect on the mRNA levels of these receptors. This lack of correlation indicates an additional downstream involvement of protein kinases. PMID:12183337

  19. Different pathways of ( sup 3 H)inositol phosphate formation mediated by. alpha. 1a- and. alpha. 1b-adrenergic receptors

    SciTech Connect

    Wilson, K.M.; Minneman, K.P. )

    1990-10-15

    The types of inositol phosphates (InsPs) formed in response to activation of alpha 1-adrenergic receptor subtypes were determined in collagenase-dispersed renal cells and hepatocytes by high pressure liquid chromatography separation. In hepatocytes, which contain only the alpha 1b subtype, norepinephrine stimulated rapid (10-s) formation of (3H)Ins(1,4,5)P3 and (3H)Ins(1,3,4)P3 and slower (5-min) formation of Ins(1,4)P2 and Ins(1)P. Selective inactivation of alpha 1b receptors by chloroethylclonidine almost completely blocked the effects of norepinephrine in hepatocytes. In renal cells, which contain both alpha 1a and alpha 1b receptors in a 60:40 ratio, norepinephrine did not significantly increase the size of any peaks until 5 min after agonist activation. At this time, only a peak eluting with Ins(1)P and one eluting shortly after Ins(1,4)P2 were significantly elevated. Incubation with norepinephrine for 2 h caused small but significant increases in peaks co-eluting with Ins(1)P and Ins(1,4,5)P3 in renal cells; however, only the increase in Ins(1)P was inhibited by chloroethylclonidine pretreatment. Extraction under neutral conditions suggested that cyclic InsPs may be the primary compounds formed in response to norepinephrine in renal cells. Removal of extracellular Ca2+ caused a 60% reduction in the InsP response to norepinephrine in renal cells but had no effect in hepatocytes. These results suggest that activation of alpha 1a and alpha 1b receptor subtypes results in formation of different InsPs and that the response to alpha 1a activation may require influx of extracellular Ca2+.

  20. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling

    PubMed Central

    Breunig, Joshua J.; Sarkisian, Matthew R.; Arellano, Jon I.; Morozov, Yury M.; Ayoub, Albert E.; Sojitra, Sonal; Wang, Baolin; Flavell, Richard A.; Rakic, Pasko; Town, Terrence

    2008-01-01

    Primary cilia are present on mammalian neurons and glia, but their function is largely unknown. We generated conditional homozygous mutant mice for a gene we termed Stumpy. Mutants lack cilia and have conspicuous abnormalities in postnatally developing brain regions, including a hypoplasic hippocampus characterized by a primary deficiency in neural stem cells known as astrocyte-like neural precursors (ALNPs). Previous studies suggested that primary cilia mediate sonic hedgehog (Shh) signaling. Here, we find that loss of ALNP cilia leads to abrogated Shh activity, increased cell cycle exit, and morphological abnormalities in ALNPs. Processing of Gli3, a mediator of Shh signaling, is also altered in the absence of cilia. Further, key mediators of the Shh pathway localize to ALNP cilia. Thus, selective targeting of Shh machinery to primary cilia confers to ALNPs the ability to differentially respond to Shh mitogenic signals compared to neighboring cells. Our data suggest these organelles are cellular “antennae” critically required to modulate ALNP behavior. PMID:18728187

  1. Bacteria-Induced Uroplakin Signaling Mediates Bladder Response to Infection

    PubMed Central

    Thumbikat, Praveen; Berry, Ruth E.; Zhou, Ge; Billips, Benjamin K.; Yaggie, Ryan E.; Zaichuk, Tetiana; Sun, Tung-Tien; Schaeffer, Anthony J.; Klumpp, David J.

    2009-01-01

    Urinary tract infections are the second most common infectious disease in humans and are predominantly caused by uropathogenic E. coli (UPEC). A majority of UPEC isolates express the type 1 pilus adhesin, FimH, and cell culture and murine studies demonstrate that FimH is involved in invasion and apoptosis of urothelial cells. FimH initiates bladder pathology by binding to the uroplakin receptor complex, but the subsequent events mediating pathogenesis have not been fully characterized. We report a hitherto undiscovered signaling role for the UPIIIa protein, the only major uroplakin with a potential cytoplasmic signaling domain, in bacterial invasion and apoptosis. In response to FimH adhesin binding, the UPIIIa cytoplasmic tail undergoes phosphorylation on a specific threonine residue by casein kinase II, followed by an elevation of intracellular calcium. Pharmacological inhibition of these signaling events abrogates bacterial invasion and urothelial apoptosis in vitro and in vivo. Our studies suggest that bacteria-induced UPIIIa signaling is a critical mediator of bladder responses to insult by uropathogenic E. coli. PMID:19412341

  2. CXCR4 chemokine receptor signaling mediates pain in diabetic neuropathy

    PubMed Central

    2014-01-01

    Background Painful Diabetic Neuropathy (PDN) is a debilitating syndrome present in a quarter of diabetic patients that has a substantial impact on their quality of life. Despite this significant prevalence and impact, current therapies for PDN are only partially effective. Moreover, the cellular mechanisms underlying PDN are not well understood. Neuropathic pain is caused by a variety of phenomena including sustained excitability in sensory neurons that reduces the pain threshold so that pain is produced in the absence of appropriate stimuli. Chemokine signaling has been implicated in the pathogenesis of neuropathic pain in a variety of animal models. We therefore tested the hypothesis that chemokine signaling mediates DRG neuronal hyperexcitability in association with PDN. Results We demonstrated that intraperitoneal administration of the specific CXCR4 antagonist AMD3100 reversed PDN in two animal models of type II diabetes. Furthermore DRG sensory neurons acutely isolated from diabetic mice displayed enhanced SDF-1 induced calcium responses. Moreover, we demonstrated that CXCR4 receptors are expressed by a subset of DRG sensory neurons. Finally, we observed numerous CXCR4 expressing inflammatory cells infiltrating into the DRG of diabetic mice. Conclusions These data suggest that CXCR4/SDF-1 signaling mediates enhanced calcium influx and excitability in DRG neurons responsible for PDN. Simultaneously, CXCR4/SDF-1 signaling may coordinate inflammation in diabetic DRG that could contribute to the development of pain in diabetes. Therefore, targeting CXCR4 chemokine receptors may represent a novel intervention for treating PDN. PMID:24961298

  3. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways

    PubMed Central

    Ye, Huaxun; Liu, Sanzhen; Tang, Buyun; Chen, Jiani; Xie, Zhouli; Nolan, Trevor M.; Jiang, Hao; Guo, Hongqing; Lin, Hung-Ying; Li, Lei; Wang, Yanqun; Tong, Hongning; Zhang, Mingcai; Chu, Chengcai; Li, Zhaohu; Aluru, Maneesha; Aluru, Srinivas; Schnable, Patrick S.; Yin, Yanhai

    2017-01-01

    Brassinosteroids (BRs) regulate plant growth and stress responses via the BES1/BZR1 family of transcription factors, which regulate the expression of thousands of downstream genes. BRs are involved in the response to drought, however the mechanistic understanding of interactions between BR signalling and drought response remains to be established. Here we show that transcription factor RD26 mediates crosstalk between drought and BR signalling. When overexpressed, BES1 target gene RD26 can inhibit BR-regulated growth. Global gene expression studies suggest that RD26 can act antagonistically to BR to regulate the expression of a subset of BES1-regulated genes, thereby inhibiting BR function. We show that RD26 can interact with BES1 protein and antagonize BES1 transcriptional activity on BR-regulated genes and that BR signalling can also repress expression of RD26 and its homologues and inhibit drought responses. Our results thus reveal a mechanism coordinating plant growth and drought tolerance. PMID:28233777

  4. A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling

    PubMed Central

    Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vögtle, Nora F.; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E.; Huang, Cher X.; Harden, Mark Michael; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D.; Stokes, Matthew P.; Silva, Jeffrey C.; Bell, George W.; MacArthur, Daniel G.; Ruland, Jürgen; Meisinger, Chris; Lodish, Harvey F.

    2015-01-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells. PMID:26438848

  5. A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling.

    PubMed

    Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vögtle, Nora F; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E; Huang, Cher X; Harden, Mark Michael; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D; Stokes, Matthew P; Silva, Jeffrey C; Bell, George W; MacArthur, Daniel G; Ruland, Jürgen; Meisinger, Chris; Lodish, Harvey F

    2015-10-20

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells.

  6. The inhibitory effect of combination treatment with leptin and cannabinoid CB1 receptor agonist on food intake and body weight gain is mediated by serotonin 1B and 2C receptors.

    PubMed

    Wierucka-Rybak, M; Wolak, M; Juszczak, M; Drobnik, J; Bojanowska, E

    2016-06-01

    Previous studies reported that the co-injection of leptin and cannabinoid CB1 receptor antagonists reduces food intake and body weight in rats, and this effect is more profound than that induced by these compounds individually. Additionally, serotonin mediates the effects of numerous anorectic drugs. To investigate whether serotonin interacts with leptin and endocannabinoids to affect food intake and body weight, we administered 5-hydroxytryptamine(HT)1B and 5-hydroxytryptamine(HT)2C serotonin receptor antagonists (3 mg/kg GR 127935 and 0.5 mg/kg SB 242084, respectively) to male Wistar rats treated simultaneously with leptin (100 μg/kg) and the CB1 receptor inverse agonist AM 251 (1 mg/kg) for 3 days. In accordance with previous findings, the co-injection of leptin and AM 251, but not the individual injection of each drug, resulted in a significant decrease in food intake and body weight gain. Blockade of the 5-HT1B and 5-HT2C receptors completely abolished the leptin- and AM 251-induced anorectic and body-weight-reducing effects. These results suggest that serotonin mediates the leptin- and AM 251-dependent regulation of feeding behavior in rats via the 5-HT1B and 5-HT2C receptors.

  7. Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1.

    PubMed

    Feng, Mingxiao; Kim, Jae-Yean

    2015-10-01

    It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) (SCF(TIR1/AFB)) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional SCF(TIR1/AFB) auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

  8. MenaINV mediates synergistic cross-talk between signaling pathways driving chemotaxis and haptotaxis

    PubMed Central

    Oudin, Madeleine J.; Miller, Miles A.; Klazen, Joelle A. Z.; Kosciuk, Tatsiana; Lussiez, Alisha; Hughes, Shannon K.; Tadros, Jenny; Bear, James E.; Lauffenburger, Douglas A.; Gertler, Frank B.

    2016-01-01

    Directed cell migration, a key process in metastasis, arises from the combined influence of multiple processes, including chemotaxis—the directional movement of cells to soluble cues—and haptotaxis—the migration of cells on gradients of substrate-bound factors. However, it is unclear how chemotactic and haptotactic pathways integrate with each other to drive overall cell behavior. MenaINV has been implicated in metastasis by driving chemotaxis via dysregulation of phosphatase PTP1B and more recently in haptotaxis via interaction with integrin α5β1. Here we find that MenaINV-driven haptotaxis on fibronectin (FN) gradients requires intact signaling between α5β1 integrin and the epidermal growth factor receptor (EGFR), which is influenced by PTP1B. Furthermore, we show that MenaINV-driven haptotaxis and ECM reorganization both require the Rab-coupling protein RCP, which mediates α5β1 and EGFR recycling. Finally, MenaINV promotes synergistic migratory response to combined EGF and FN in vitro and in vivo, leading to hyperinvasive phenotypes. Together our data demonstrate that MenaINV is a shared component of multiple prometastatic pathways that amplifies their combined effects, promoting synergistic cross-talk between RTKs and integrins. PMID:27559126

  9. Growth hormone STAT5-mediated signaling and its modulation in mice liver during the growth period.

    PubMed

    Martinez, Carolina S; Piazza, Verónica G; Ratner, Laura D; Matos, Marina N; González, Lorena; Rulli, Susana B; Miquet, Johanna G; Sotelo, Ana I

    2013-01-01

    Postnatal growth exhibits two instances of rapid growth in mice: the first is perinatal and independent of growth hormone (GH), the second is peripuberal and GH-dependent. Signal transducer and activator of transcription 5b (STAT5b) is the main GH-signaling mediator and it is related to IGF1 synthesis and somatic growth. The aim of this work was to assess differential STAT5 sensitivity to GH during the growth period in mouse liver of both sexes. Three representative ages were selected: 1-week-old animals, in the GH-independent phase of growth; 2.5-week-old mice, at the onset of the GH-dependent phase of growth; and 9-week-old young adults. GH-signaling mediators were assessed by immunoblotting, quantitative RT-PCR and immunohistochemistry. GH-induced STAT5 phosphorylation is low at one-week and maximal at 2.5-weeks of age when compared to young adults, accompanied by higher protein content at the onset of growth. Suppressor CIS and phosphatase PTP1B exhibit high levels in one-week animals, which gradually decline, while SOCS2 and SOCS3 display higher levels at adulthood. Nuclear phosphorylated STAT5 is low in one-week animals while in 2.5-week animals it is similar to 9-week control; expression of SOCS3, an early response GH-target gene, mimics this pattern. STAT5 coactivators glucocorticoid receptor (GR) and hepatic nuclear factor 1 (HNF1) abundance is higher in adulthood. Therefore, GH-induced STAT5 signaling presents age-dependent activity in liver, with its maximum coinciding with the onset of GH-dependent phase of growth, accompanied by an age-dependent variation of modulating factors. This work contributes to elucidate the molecular mechanisms implicated in GH responsiveness during growth.

  10. Specific Inhibition of the Distribution of Lobeglitazone to the Liver by Atorvastatin in Rats: Evidence for a Rat Organic Anion Transporting Polypeptide 1B2-Mediated Interaction in Hepatic Transport.

    PubMed

    Yim, Chang-Soon; Jeong, Yoo-Seong; Lee, Song-Yi; Pyeon, Wonji; Ryu, Heon-Min; Lee, Jong-Hwa; Lee, Kyeong-Ryoon; Maeng, Han-Joo; Chung, Suk-Jae

    2017-03-01

    Cytochrome P450 enzymes and human organic anion transporting polypeptide (OATP) 1B1 are reported to be involved in the pharmacokinetics of lobeglitazone (LB), a new peroxisome proliferator-activated receptor γ agonist. Atorvastatin (ATV), a substrate for CYP3A and human OATP1B1, is likely to be coadministered with LB in patients with the metabolic syndrome. We report herein on a study of potential interactions between LB and ATV in rats. When LB was administered intravenously with ATV, the systemic clearance and volume of distribution at steady state for LB remained unchanged (2.67 ± 0.63 ml/min per kg and 289 ± 20 ml/kg, respectively), compared with that of LB without ATV (2.34 ± 0.37 ml/min per kg and 271 ± 20 ml/kg, respectively). Although the tissue-to-plasma partition coefficient (Kp) of LB was not affected by ATV in most major tissues, the liver Kp for LB was decreased by ATV coadministration. Steady-state liver Kp values for three levels of LB were significantly decreased as a result of ATV coadministration. LB uptake was inhibited by ATV in rat OATP1B2-overexpressing Madin-Darby canine kidney cells and in isolated rat hepatocytes in vitro. After incorporating the kinetic parameters for the in vitro studies into a physiologically based pharmacokinetics model, the characteristics of LB distribution to the liver were consistent with the findings of the in vivo study. It thus appears that the distribution of LB to the liver is mediated by the hepatic uptake of transporters such as rat OATP1B2, and carrier-mediated transport is involved in the liver-specific drug-drug interaction between LB and ATV in vivo.

  11. Mitotic wavefronts mediated by mechanical signaling in early Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Kang, Louis; Idema, Timon; Liu, Andrea; Lubensky, Tom

    2013-03-01

    Mitosis in the early Drosophila embryo demonstrates spatial and temporal correlations in the form of wavefronts that travel across the embryo in each cell cycle. This coordinated phenomenon requires a signaling mechanism, which we suggest is mechanical in origin. We have constructed a theoretical model that supports nonlinear wavefront propagation in a mechanically-excitable medium. Previously, we have shown that this model captures quantitatively the wavefront speed as it varies with cell cycle number, for reasonable values of the elastic moduli and damping coefficient of the medium. Now we show that our model also captures the displacements of cell nuclei in the embryo in response to the traveling wavefront. This new result further supports that mechanical signaling may play an important role in mediating mitotic wavefronts.

  12. Pronephric Tubulogenesis Requires Daam1-Mediated Planar Cell Polarity Signaling

    PubMed Central

    Gomez de la Torre Canny, Sol; Jang, Chuan-Wei; Cho, Kyucheol; Ji, Hong; Wagner, Daniel S.; Jones, Elizabeth A.; Habas, Raymond

    2011-01-01

    Canonical β-catenin-mediated Wnt signaling is essential for the induction of nephron development. Noncanonical Wnt/planar cell polarity (PCP) pathways contribute to processes such as cell polarization and cytoskeletal modulation in several tissues. Although PCP components likely establish the plane of polarization in kidney tubulogenesis, whether PCP effectors directly modulate the actin cytoskeleton in tubulogenesis is unknown. Here, we investigated the roles of Wnt PCP components in cytoskeletal assembly during kidney tubule morphogenesis in Xenopus laevis and zebrafish. We found that during tubulogenesis, the developing pronephric anlagen expresses Daam1 and its interacting Rho-GEF (WGEF), which compose one PCP/noncanonical Wnt pathway branch. Knockdown of Daam1 resulted in reduced expression of late pronephric epithelial markers with no apparent effect upon early markers of patterning and determination. Inhibiting various points in the Daam1 signaling pathway significantly reduced pronephric tubulogenesis. These data indicate that pronephric tubulogenesis requires the Daam1/WGEF/Rho PCP pathway. PMID:21804089

  13. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation.

    PubMed

    Chung, Eunhee; Yeung, Fan; Leinwand, Leslie A

    2012-05-01

    Although the signaling pathways underlying exercise-induced cardiac adaptation have been extensively studied, little is known about the molecular mechanisms that result in the response of the heart to pregnancy. The objective of this study was to define the morphological, functional, and gene expression patterns that define the hearts of pregnant mice, and to identify the signaling pathways that mediate this response. Mice were divided into three groups: nonpregnant diestrus control, midpregnancy, and late pregnancy. Both time points of pregnancy were associated with significant cardiac hypertrophy. The prosurvival signaling cascades of Akt and ERK1/2 were activated in the hearts of pregnant mice, while the stress kinase, p38, was decreased. Given the activation of Akt in pregnancy and its known role in cardiac hypertrophy, the hypertrophic response to pregnancy was tested in mice expressing a cardiac-specific activated (myristoylated) form of Akt (myrAkt) or a cardiac-specific constitutively active (antipathologic hypertrophic) form of its downstream target, glycogen synthase kinase 3β (caGSK3β). The pregnancy-induced hypertrophic responses of hearts from these mice were significantly attenuated. Finally, we tested whether pregnancy-associated sex hormones could induce hypertrophy and alter signaling pathways in isolated neonatal rat ventricular myocytes (NRVMs). In fact, progesterone, but not estradiol treatment increased NRVM cell size via phosphorylation of ERK1/2. Inhibition of MEK1 effectively blocked progesterone-induced cellular hypertrophy. Taken together, our study demonstrates that pregnancy-induced cardiac hypertrophy is mediated by activation of Akt and ERK1/2 pathways.

  14. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation

    PubMed Central

    Chung, Eunhee; Yeung, Fan

    2012-01-01

    Although the signaling pathways underlying exercise-induced cardiac adaptation have been extensively studied, little is known about the molecular mechanisms that result in the response of the heart to pregnancy. The objective of this study was to define the morphological, functional, and gene expression patterns that define the hearts of pregnant mice, and to identify the signaling pathways that mediate this response. Mice were divided into three groups: nonpregnant diestrus control, midpregnancy, and late pregnancy. Both time points of pregnancy were associated with significant cardiac hypertrophy. The prosurvival signaling cascades of Akt and ERK1/2 were activated in the hearts of pregnant mice, while the stress kinase, p38, was decreased. Given the activation of Akt in pregnancy and its known role in cardiac hypertrophy, the hypertrophic response to pregnancy was tested in mice expressing a cardiac-specific activated (myristoylated) form of Akt (myrAkt) or a cardiac-specific constitutively active (antipathologic hypertrophic) form of its downstream target, glycogen synthase kinase 3β (caGSK3β). The pregnancy-induced hypertrophic responses of hearts from these mice were significantly attenuated. Finally, we tested whether pregnancy-associated sex hormones could induce hypertrophy and alter signaling pathways in isolated neonatal rat ventricular myocytes (NRVMs). In fact, progesterone, but not estradiol treatment increased NRVM cell size via phosphorylation of ERK1/2. Inhibition of MEK1 effectively blocked progesterone-induced cellular hypertrophy. Taken together, our study demonstrates that pregnancy-induced cardiac hypertrophy is mediated by activation of Akt and ERK1/2 pathways. PMID:22345431

  15. Janus kinase-2 signaling mediates apoptosis in rat cardiomyocytes.

    PubMed

    Mascareno, Eduardo; Beckles, Daniel L; Siddiqui, M A Q

    2005-11-01

    We tested the hypothesis that activation Jak2, which is prominently involved in the up-regulation of the renin-angiotensin system (RAS), constitutes a focal point in relaying signals triggered by a Angiotensin II (Ang II) and hypoxia/reoxygenation separately to cause an enhanced susceptibility of cardiac myocyte to apoptotic cell death. Ang II-treated adult cardiomyocytes in culture exhibited an increased level of apoptosis that accompanied activation of pro-apoptotic as well as anti-apoptotic signaling pathways. We observed increased phosphorylation of Jak2 kinase, Stat1, JNK, with increased expression of Bax protein, followed by an increase in caspase-1 and caspase-3 activity. Activation of these pro-apoptotic pathways was blocked by the Jak2 pharmacological inhibitor, Tyrphostin AG490. We also observed an increase in phosphorylation of cardioprotective pathway components, namely S6 ribosomal protein, and heat shock protein 27 (HSP27). Likewise, the oxidative stress, via the hypoxia/reoxygenation treatment of rat adult cardiomyocytes, produced apoptosis that was dependent upon activation of Jak2. The apoptotic response was not only reduced by Losartan, an inverse agonist of the AT1, receptor, but by treatment with AG490 as well. Taken together, these observations provide clear evidence in favor of Jak2 signaling as mediator of the apoptotic response in cardiomyocytes. However, there was a concomitant induction of cytoprotective signaling that presumably provides a negative feed-back to the deleterious effects of the agonist.

  16. Signaling mechanisms that mediate invasion in prostate cancer cells.

    PubMed

    Bonaccorsi, L; Marchiani, S; Muratori, M; Carloni, V; Forti, G; Baldi, E

    2004-12-01

    Recent evidence indicates that androgen-sensitive prostate cancer cells have a less malignant phenotype characterized by reduced migration and invasion. We investigated whether the presence of the androgen receptor could affect EGFR-mediated signaling by evaluating autotransphosphorylation of the receptor as well as activation of the downstream signaling pathway PI3K/AKT. Immunoprecipitation studies demonstrated a reduction of EGF-induced tyrosine phosphorylation of EGFR in PC3-AR cells. In addition, EGF-stimulated PI3K activity, a key signaling pathway for invasion of these cells, was decreased in PC3-AR cells and further reduced by treatment with R1881, indicating decreased functionality of EGFR. Our results suggest that the expression of androgen receptors by transfection in PC3 cells confers a less malignant phenotype by interfering with EGFR autophosphorylation and signaling leading to invasion in response to EGF. We used the selective tyrosine kinase inhibitor of the EGFR gefitinib (also known as Iressa or ZD1839) to further investigate the role of EGFR in the invasion and growth of PC cells. We demonstrate that in the androgen-insensitive cell lines PC3 and DU145 this compound was able to decrease in vitro invasion of Matrigel by inhibiting EGFR autotransphosphorylation and subsequent PI3K activation. Gefitinib may be useful in the treatment of androgen-independent prostate cancer to limit not only the proliferation but also the invasion of these tumors.

  17. Maintenance of Bone Homeostasis by DLL1-Mediated Notch Signaling.

    PubMed

    Muguruma, Yukari; Hozumi, Katsuto; Warita, Hiroyuki; Yahata, Takashi; Uno, Tomoko; Ito, Mamoru; Ando, Kiyoshi

    2016-10-13

    Adult bone mass is maintained through a balance of the activities of osteoblasts and osteoclasts. Although Notch signaling has been shown to maintain bone homeostasis by controlling the commitment, differentiation, and function of cells in both the osteoblast and osteoclast lineages, the precise mechanisms by which Notch performs such diverse and complex roles in bone physiology remain unclear. By using a transgenic approach that modified the expression of delta-like 1 (DLL1) or Jagged1 (JAG1) in an osteoblast-specific manner, we investigated the ligand-specific effects of Notch signaling in bone homeostasis. This study demonstrated for the first time that the proper regulation of DLL1 expression, but not JAG1 expression, in osteoblasts is essential for the maintenance of bone remodeling. DLL1-induced Notch signaling was responsible for the expansion of the bone-forming cell pool by promoting the proliferation of committed but immature osteoblasts. However, DLL1-Notch signaling inhibited further differentiation of the expanded osteoblasts to become fully matured functional osteoblasts, thereby substantially decreasing bone formation. Osteoblast-specific expression of DLL1 did not alter the intrinsic differentiation ability of cells of the osteoclast lineage. However, maturational arrest of osteoblasts caused by the DLL1 transgene impaired the maturation and function of osteoclasts due to a failed osteoblast-osteoclast coupling, resulting in severe suppression of bone metabolic turnover. Taken together, DLL1-mediated Notch signaling is critical for proper bone remodeling as it regulates the differentiation and function of both osteoblasts and osteoclasts. Our study elucidates the importance of ligand-specific activation of Notch signaling in the maintenance of bone homeostasis. This article is protected by copyright. All rights reserved.

  18. RANK-mediated signaling network and cancer metastasis.

    PubMed

    Chu, Gina Chia-Yi; Chung, Leland W K

    2014-09-01

    Cancer metastasis is highly inefficient and complex. Common features of metastatic cancer cells have been observed using cancer cell lines and genetically reconstituted mouse and human tumor xenograft models. These include cancer cell interaction with the tumor microenvironment and the ability of cancer cells to sense extracellular stimuli and adapt to adverse growth conditions. This review summarizes the coordinated response of cancer cells to soluble growth factors, such as RANKL, by a unique feed forward mechanism employing coordinated upregulation of RANKL and c-Met with downregulation of androgen receptor. The RANK-mediated signal network was found to drive epithelial to mesenchymal transition in prostate cancer cells, promote osteomimicry and the ability of prostate cancer cells to assume stem cell and neuroendocrine phenotypes, and confer the ability of prostate cancer cells to home to bone. Prostate cancer cells with activated RANK-mediated signal network were observed to recruit and even transform the non-tumorigenic prostate cancer cells to participate in bone and soft tissue colonization. The coordinated regulation of cancer cell invasion and metastasis by the feed forward mechanism involving RANKL, c-Met, transcription factors, and VEGF-neuropilin could offer new therapeutic opportunities to target prostate cancer bone and soft tissue metastases.

  19. RANK-mediated signaling network and cancer metastasis

    PubMed Central

    Chu, Chia-Yi Gina; Chung, Leland W. K.

    2014-01-01

    Cancer metastasis is highly inefficient and complex. Common features of metastatic cancer cells have been observed using cancer cell lines and genetically reconstituted mouse and human tumor xenograft models. These include cancer cell interaction with the tumor microenvironment, and the ability of cancer cells to sense extracellular stimuli and adapt to adverse growth conditions. This review summarizes the coordinated response of cancer cells to soluble growth factors, such as RANKL, by a unique forward feedback mechanism employing coordinated upregulation of RANKL and c-Met with downregulation of androgen receptor. The RANK-mediated signal network was found to drive epithelial to mesenchymal transition in prostate cancer cells, promote osteomimicry and the ability of prostate cancer cells to assume stem cell and neuroendocrine phenotypes, and confer the ability of prostate cancer cells to home to bone. Prostate cancer cells with activated RANK-mediated signal network were observed to recruit and even transform the non-tumorigenic prostate cancer cells to participate in bone and soft tissue colonization. The coordinated regulation of cancer cell invasion and metastasis by the forward feedback mechanism involving RANKL, c-Met, transcription factors and VEGF-neuropilin could offer new therapeutic opportunities to target prostate cancer bone and soft tissue metastases. PMID:24398859

  20. Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways

    PubMed Central

    Hsu, Ted M; Hahn, Joel D; Konanur, Vaibhav R; Noble, Emily E; Suarez, Andrea N; Thai, Jessica; Nakamoto, Emily M; Kanoski, Scott E

    2015-01-01

    Feeding behavior rarely occurs in direct response to metabolic deficit, yet the overwhelming majority of research on the biology of food intake control has focused on basic metabolic and homeostatic neurobiological substrates. Most animals, including humans, have habitual feeding patterns in which meals are consumed based on learned and/or environmental factors. Here we illuminate a novel neural system regulating higher-order aspects of feeding through which the gut-derived hormone ghrelin communicates with ventral hippocampus (vHP) neurons to stimulate meal-entrained conditioned appetite. Additional results show that the lateral hypothalamus (LHA) is a critical downstream substrate for vHP ghrelin-mediated hyperphagia and that vHP ghrelin activated neurons communicate directly with neurons in the LHA that express the neuropeptide, orexin. Furthermore, activation of downstream orexin-1 receptors is required for vHP ghrelin-mediated hyperphagia. These findings reveal novel neurobiological circuitry regulating appetite through which ghrelin signaling in hippocampal neurons engages LHA orexin signaling. DOI: http://dx.doi.org/10.7554/eLife.11190.001 PMID:26745307

  1. Triton 2 (1B)

    NASA Technical Reports Server (NTRS)

    Clark, Michelle L.; Meiss, A. G.; Neher, Jason R.; Rudolph, Richard H.

    1994-01-01

    The goal of this project was to perform a detailed design analysis on a conceptually designed preliminary flight trainer. The Triton 2 (1B) must meet the current regulations in FAR Part 23. The detailed design process included the tasks of sizing load carrying members, pulleys, bolts, rivets, and fuselage skin for the safety cage, empennage, and control systems. In addition to the regulations in FAR Part 23, the detail design had to meet established minimums for environmental operating conditions and material corrosion resistance.

  2. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells.

    PubMed

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A; Ahmad, Javed; Siddiqui, Maqsood A; Dwivedi, Sourabh; Khan, Shams T; Musarrat, Javed

    2013-12-01

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe2O4-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe2O4-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48h of ZnFe2O4-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT(2) Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p<0.01) population of ZnFe2O4-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe2O4-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe2O4-NPs induced cellular and genetic damage.

  3. Chaperone-mediated specificity in Ras and Rap signaling.

    PubMed

    Azoulay-Alfaguter, Inbar; Strazza, Marianne; Mor, Adam

    2015-01-01

    Ras and Rap proteins are closely related small guanosine triphosphatase (GTPases) that share similar effector-binding domains but operate in a very different signaling networks; Ras has a dominant role in cell proliferation, while Rap mediates cell adhesion. Ras and Rap proteins are regulated by several shared processes such as post-translational modification, phosphorylation, activation by guanine exchange factors and inhibition by GTPase-activating proteins. Sub-cellular localization and trafficking of these proteins to and from the plasma membrane are additional important regulatory features that impact small GTPases function. Despite its importance, the trafficking mechanisms of Ras and Rap proteins are not completely understood. Chaperone proteins play a critical role in trafficking of GTPases and will be the focus of the discussion in this work. We will review several aspects of chaperone biology focusing on specificity toward particular members of the small GTPase family. Understanding this specificity should provide key insights into drug development targeting individual small GTPases.

  4. Heat Shock Protein 27 Mediated Signaling in Viral Infection

    PubMed Central

    Rajaiya, Jaya; Yousuf, Mohammad A.; Singh, Gurdeep; Stanish, Heather; Chodosh, James

    2013-01-01

    Heat shock proteins (HSPs) play a critical role in many intracellular processes, including apoptosis and delivery of other proteins to intracellular compartments. Small HSPs have been shown previously to participate in many cellular functions, including IL-8 induction. Human adenovirus infection activates intracellular signaling, involving particularly the c-Src and mitogen-activated protein kinases [Natarajan, K., et al. (2003) J. Immunol. 170, 6234–6243]. HSP27 and MK2 are also phosphorylated, and c-Src, and its downstream targets, p38, ERK1/2, and c-Jun-terminal kinase (JNK), differentially mediate IL-8 and MCP-1 expression. Specifically, activation and translocation of transcription factor NFκB-p65 occurs in a p38-dependent fashion [Rajaiya, J., et al. (2009) Mol. Vision 15, 2879–2889]. Herein, we report a novel role for HSP27 in an association of p38 with NFκB-p65. Immunoprecipitation assays of virus-infected but not mock-infected cells revealed a signaling complex including p38 and NFκB-p65. Transfection with HSP27 short interfering RNA (siRNA) but not scrambled RNA disrupted this association and reduced the level of IL-8 expression. Transfection with HSP27 siRNA also reduced the level of nuclear localization of NFκB-p65 and p38. By use of tagged p38 mutants, we found that amino acids 279–347 of p38 are necessary for the association of p38 with NFκB-p65. These studies strongly suggest that HSP27, p38, and NFκB-p65 form a signalosome in virus-infected cells and influence downstream expression of pro-inflammatory mediators. PMID:22734719

  5. Cherry Valley Ducks Mitochondrial Antiviral-Signaling Protein-Mediated Signaling Pathway and Antiviral Activity Research

    PubMed Central

    Li, Ning; Hong, Tianqi; Li, Rong; Wang, Yao; Guo, Mengjiao; Cao, Zongxi; Cai, Yumei; Liu, Sidang; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Mitochondrial antiviral-signaling protein (MAVS), an adaptor protein of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mediated signal pathway, is involved in innate immunity. In this study, Cherry Valley duck MAVS (duMAVS) was cloned from the spleen and analyzed. duMAVS was determined to have a caspase activation and recruitment domain at N-terminal, followed by a proline-rich domain and a transmembrane domain at C-terminal. Quantitative real-time PCR indicated that duMAVS was expressed in all tissues tested across a broad expression spectrum. The expression of duMAVS was significantly upregulated after infection with duck Tembusu virus (DTMUV). Overexpression of duMAVS could drive the activation of interferon (IFN)-β, nuclear factor-κB, interferon regulatory factor 7, and many downstream factors (such as Mx, PKR, OAS, and IL-8) in duck embryo fibroblast cells. What is more, RNA interference further confirmed that duMAVS was an important adaptor for IFN-β activation. The antiviral assay showed that duMAVS could suppress the various viral replications (DTMUV, novel reovirus, and duck plague virus) at early stages of infection. Overall, these results showed that the main signal pathway mediated by duMAVS and it had a broad-spectrum antiviral ability. This research will be helpful to better understanding the innate immune system of ducks. PMID:27708647

  6. Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors.

    PubMed

    van Koppen, C J; Meyer zu Heringdorf, D; Alemany, R; Jakobs, K H

    2001-04-27

    Based on the finding that G protein-coupled receptors (GPCRs) can induce Ca2+ mobilization, apparently independent of the phospholipase C (PLC)/inositol-1,4,5-trisphosphate (IP3) pathway, we investigated whether sphingosine kinase, which generates sphingosine-1-phosphate (SPP), is involved in calcium signaling by mAChR and other GPCRs. Inhibition of sphingosine kinase by DL-threo-dihydrosphingosine and N,/N-dimethylsphingosine markedly inhibited [Ca2+]i increases elicited by M2 and M3 mAChRs in HEK-293 cells without affecting PLC activation. Activation of M2 and M3 mAChR rapidly and transiently stimulated production of SPP. Furthermore, microinjection of SPP into HEK-293 cells induced rapid and transient Ca2+ mobilization. Pretreatment of HEK-293 cells with the calcium chelator BAPTA/AM fully blocked mAChR-induced SPP production. On the other hand, incubation of HEK-293 cells with calcium ionophores activated SPP production. Similar findings were obtained for formyl peptide and P2Y2 purinergic receptors in HL-60 cells. On the basis of these studies we propose, that following initial IP3 production by receptor-mediated PLC activation, a local discrete increase in [Ca2+]i induces sphingosine kinase stimulation, which ultimately leads to full calcium mobilization. Thus, sphingosine kinase activation most likely represents an amplification system for calcium signaling by mAChRs and other GPCRs.

  7. Luminal Ca2+ dynamics during IP3R mediated signals

    NASA Astrophysics Data System (ADS)

    Lopez, Lucia F.; Ponce Dawson, Silvina

    2016-06-01

    The role of cytosolic Ca2+ on the kinetics of Inositol 1,4,5-triphosphate receptors (IP3Rs) and on the dynamics of IP3R-mediated Ca2+ signals has been studied at large both experimentally and by modeling. The role of luminal Ca2+ has not been investigated with that much detail although it has been found that it is relevant for signal termination in the case of Ca2+ release through ryanodine receptors. In this work we present the results of observing the dynamics of luminal and cytosolic Ca2+ simultaneously in Xenopus laevis oocytes. Combining observations and modeling we conclude that there is a rapid mechanism that guarantees the availability of free Ca2+ in the lumen even when a relatively large Ca2+ release is evoked. Comparing the dynamics of cytosolic and luminal Ca2+ during a release, we estimate that they are consistent with a 80% of luminal Ca2+ being buffered. The rapid availability of free luminal Ca2+ correlates with the observation that the lumen occupies a considerable volume in several regions across the images.

  8. Ultrafast action potentials mediate kilohertz signaling at a central synapse.

    PubMed

    Ritzau-Jost, Andreas; Delvendahl, Igor; Rings, Annika; Byczkowicz, Niklas; Harada, Harumi; Shigemoto, Ryuichi; Hirrlinger, Johannes; Eilers, Jens; Hallermann, Stefan

    2014-10-01

    Fast synaptic transmission is important for rapid information processing. To explore the maximal rate of neuronal signaling and to analyze the presynaptic mechanisms, we focused on the input layer of the cerebellar cortex, where exceptionally high action potential (AP) frequencies have been reported in vivo. With paired recordings between presynaptic cerebellar mossy fiber boutons and postsynaptic granule cells, we demonstrate reliable neurotransmission up to ∼1 kHz. Presynaptic APs are ultrafast, with ∼100 μs half-duration. Both Kv1 and Kv3 potassium channels mediate the fast repolarization, rapidly inactivating sodium channels ensure metabolic efficiency, and little AP broadening occurs during bursts of up to 1.5 kHz. Presynaptic Cav2.1 (P/Q-type) calcium channels open efficiently during ultrafast APs. Furthermore, a subset of synaptic vesicles is tightly coupled to Ca(2+) channels, and vesicles are rapidly recruited to the release site. These data reveal mechanisms of presynaptic AP generation and transmitter release underlying neuronal kHz signaling.

  9. Endocannabinoid signaling mediates oxytocin-driven social reward.

    PubMed

    Wei, Don; Lee, DaYeon; Cox, Conor D; Karsten, Carley A; Peñagarikano, Olga; Geschwind, Daniel H; Gall, Christine M; Piomelli, Daniele

    2015-11-10

    Marijuana exerts profound effects on human social behavior, but the neural substrates underlying such effects are unknown. Here we report that social contact increases, whereas isolation decreases, the mobilization of the endogenous marijuana-like neurotransmitter, anandamide, in the mouse nucleus accumbens (NAc), a brain structure that regulates motivated behavior. Pharmacological and genetic experiments show that anandamide mobilization and consequent activation of CB1 cannabinoid receptors are necessary and sufficient to express the rewarding properties of social interactions, assessed using a socially conditioned place preference test. We further show that oxytocin, a neuropeptide that reinforces parental and social bonding, drives anandamide mobilization in the NAc. Pharmacological blockade of oxytocin receptors stops this response, whereas chemogenetic, site-selective activation of oxytocin neurons in the paraventricular nucleus of the hypothalamus stimulates it. Genetic or pharmacological interruption of anandamide degradation offsets the effects of oxytocin receptor blockade on both social place preference and cFos expression in the NAc. The results indicate that anandamide-mediated signaling at CB1 receptors, driven by oxytocin, controls social reward. Deficits in this signaling mechanism may contribute to social impairment in autism spectrum disorders and might offer an avenue to treat these conditions.

  10. BMP4 signaling mediates Zeb family in developing mouse tooth.

    PubMed

    Shin, Jeong-Oh; Kim, Eun-Jung; Cho, Kyoung-Won; Nakagawa, Eizo; Kwon, Hyuk-Jae; Cho, Sung-Won; Jung, Han-Sung

    2012-06-01

    Tooth morphogenesis is regulated by sequential and reciprocal interaction between oral epithelium and neural-crest-derived ectomesenchyme. The interaction is controlled by various signal molecules such as bone morphogenetic protein (BMP), Hedgehog, fibroblast growth factor (FGF), and Wnt. Zeb family is known as a transcription factor, which is essential for neural development and neural-crest-derived tissues, whereas the role of the Zeb family in tooth development remains unclear. Therefore, this study aimed to investigate the expression profiles of Zeb1 and Zeb2 during craniofacial development focusing on mesenchyme of palate, hair follicle, and tooth germ from E12.5 to E16.5. In addition, we examined the interaction between Zeb family and BMP4 during tooth development. Both Zeb1 and Zeb2 were expressed at mesenchyme of the palate, hair follicle, and tooth germ throughout the stages. In the case of tooth germ at the cap stage, the expression of Zeb1 and Zeb2 was lost in epithelium-separated dental mesenchyme. However, the expression of Zeb1 and Zeb2 in the dental mesenchyme was recovered by Bmp4 signaling via BMP4-soaked bead and tissue recombination. Our results suggest that Zeb1 and Zeb2, which were mediated by BMP4, play an important role in neural-crest-derived craniofacial organ morphogenesis, such as tooth development.

  11. Oleuropein Mediated Targeting of Signaling Network in Cancer.

    PubMed

    Fayyaz, Sundas; Aydin, Tuba; Cakir, Ahmet; Gasparri, Maria Luisa; Panici, Pierluigi Benedetti; Farooqi, Ammad Ahmad

    2016-01-01

    Cancer is a multifaceted and genomically complex disease. Rapidly accumulating preclinical and clinical studies are emphasizing on wide ranging molecular mechanisms that underpin cancer development, progression and metastasis. Intratumor heterogeneity, loss of apoptosis, rapidly developing resistance against molecular therapeutics and off-target effects are some of the deeply studied resistance mechanisms. Data obtained through high-throughput technologies has considerably enhanced our understanding of the intracellular signaling cascades frequently dysregulated spatio-temporally. There is an ever-expanding list of synthetic and natural agents reported to activate tumor suppressor genes and inhibit oncogenes in cancer cells. Markedly reduced tumor growth has also been documented in xenografted mice administered with phytochemicals. Oleuropein is a bioactive ingredient isolated from various sources and there is evidence of complete regression of tumors in 9- 12 days in mice orally administered with Oleuropein. In this review we summarize recent developments in use of Oleuropein as an anticancer agent. Extraction and isolation of Oleuropein and how it modulates intracellular signaling network to induce apoptosis in cancer cells. Human epidermal growth factor receptor 2 (HER2) frequently overexpressed in breast cancer cells is inhibited by Oleuropein. Interestingly, trastuzumab efficacy was notably enhanced in Oleuropein treated breast cancer cells. There is still insufficient information related to Oleuropein mediated microRNA regulation in cancer cells. We still do not have information about regulation of different signaling cascades by Oleuropein which are deregulated in cancer. Future studies must converge on a deeper analysis of target molecular network of Oleuropein and its efficacy as a tumor growth inhibitor in xenografted mice.

  12. The 5-HT1-like receptors mediating inhibition of sympathetic vasopressor outflow in the pithed rat: operational correlation with the 5-HT1A, 5-HT1B and 5-HT1D subtypes

    PubMed Central

    Villalón, Carlos M; Centurión, David; Rabelo, Gonzalo; de Vries, Peter; Saxena, Pramod R; Sánchez-López, Araceli

    1998-01-01

    It has been suggested that the inhibition of sympathetically-induced vasopressor responses produced by 5-hydroxytryptamine (5-HT) in pithed rats is mediated by 5-HT1-like receptors. The present study has re-analysed this suggestion with regard to the classification schemes recently proposed by the NC-IUPHAR subcommittee on 5-HT receptors.Intravenous (i.v.) continuous infusions of 5-HT and the 5-HT1 receptor agonists, 8-OH-DPAT (5-HT1A), indorenate (5-HT1A), CP 93,129 (5-HT1B) and sumatriptan (5-HT1B/1D), resulted in a dose-dependent inhibition of sympathetically-induced vasopressor responses.The sympatho-inhibitory responses induced by 5-HT, 8-OH-DPAT, indorenate, CP 93,129 or sumatriptan were analysed before and after i.v. treatment with blocking doses of the putative 5-HT receptor antagonists, WAY 100635 (5-HT1A), cyanopindolol (5-HT1A/1B) or GR 127935 (5-HT1B/1D). Thus, after WAY 100635, the responses to 5-HT and indorenate, but not to 8-OH-DPAT, CP 93,129 and sumatriptan, were blocked. After cyanopindolol, the responses to 5-HT, indorenate and CP 93,129 were abolished, whilst those to 8-OH-DPAT and sumatriptan (except at the lowest frequency of stimulation) remained unaltered. In contrast, after GR 127935, the responses to 5-HT, CP 93,129 and sumatriptan, but not to 8-OH-DPAT and indorenate, were abolished.In additional experiments, the inhibition induced by 5-HT was not modified after 5-HT7 receptor blocking doses of mesulergine.The above results suggest that the 5-HT1-like receptors, which inhibit the sympathetic vasopressor outflow in pithed rats, display the pharmacological profile of the 5-HT1A, 5-HT1B and 5-HT1D, but not that of 5-HT7, receptors. PMID:9692787

  13. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection

    PubMed Central

    Fonouni-Farde, Camille; Tan, Sovanna; Baudin, Maël; Brault, Mathias; Wen, Jiangqi; Mysore, Kirankumar S.; Niebel, Andreas; Frugier, Florian; Diet, Anouck

    2016-01-01

    Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections. PMID:27586842

  14. Characterization of NAADP-mediated calcium signaling in human spermatozoa

    SciTech Connect

    Sánchez-Tusie, A.A.; Vasudevan, S.R.; Churchill, G.C.; Nishigaki, T.; Treviño, C.L.

    2014-01-10

    Highlights: •Human sperm cells synthesize NAADP. •NAADP-AM mediates [Ca{sup 2+}]{sub i} increases in human sperm in the absence of [Ca{sup 2+}]{sub o}. •Human sperm have two acidic compartments located in the head and midpiece. -- Abstract: Ca{sup 2+} signaling in spermatozoa plays a crucial role during processes such as capacitation and release of the acrosome, but the underlying molecular mechanisms still remain unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca{sup 2+}-releasing second messenger in a variety of cellular processes. The presence of a NAADP synthesizing enzyme in sea urchin sperm has been previously reported, suggesting a possible role of NAADP in sperm Ca{sup 2+} signaling. In this work we used in vitro enzyme assays to show the presence of a novel NAADP synthesizing enzyme in human sperm, and to characterize its sensitivity to Ca{sup 2+} and pH. Ca{sup 2+} fluorescence imaging studies demonstrated that the permeable form of NAADP (NAADP-AM) induces intracellular [Ca{sup 2+}] increases in human sperm even in the absence of extracellular Ca{sup 2+}. Using LysoTracker®, a fluorescent probe that selectively accumulates in acidic compartments, we identified two such stores in human sperm cells. Their acidic nature was further confirmed by the reduction in staining intensity observed upon inhibition of the endo-lysosomal proton pump with Bafilomycin, or after lysosomal bursting with glycyl-L-phenylalanine-2-naphthylamide. The selective fluorescent NAADP analog, Ned-19, stained the same subcellular regions as LysoTracker®, suggesting that these stores are the targets of NAADP action.

  15. Dynamic kisspeptin receptor trafficking modulates kisspeptin-mediated calcium signaling.

    PubMed

    Min, Le; Soltis, Kathleen; Reis, Ana Claudia S; Xu, Shuyun; Kuohung, Wendy; Jain, Manisha; Carroll, Rona S; Kaiser, Ursula B

    2014-01-01

    Kisspeptin receptor (KISS1R) signaling plays a critical role in the regulation of reproduction. We investigated the role of kisspeptin-stimulated KISS1R internalization, recycling, and degradation in the modulation of KISS1R signaling. Kisspeptin stimulation of Chinese hamster ovary or GT1-7 cells expressing KISS1R resulted in a biphasic increase in intracellular Ca(2+) ([Ca(2+)]i), with a rapid acute increase followed by a more sustained second phase. In contrast, stimulation of the TRH receptor, another Gq/11-coupled receptor, resulted in a much smaller second-phase [Ca(2+)]i response. The KISS1R-mediated second-phase [Ca(2+)]i response was abolished by removal of kisspeptin from cell culture medium. Notably, the second-phase [Ca(2+)]i response was also inhibited by dynasore, brefeldin A, and phenylarsine oxide, which inhibit receptor internalization and recycling, suggesting that KISS1R trafficking contributes to the sustained [Ca(2+)]i response. We further demonstrated that KISS1R undergoes dynamic ligand-dependent and -independent recycling. We next investigated the fate of the internalized kisspeptin-KISS1R complex. Most internalized kisspeptin was released extracellularly in degraded form within 1 hour, suggesting rapid processing of the internalized kisspeptin-KISS1R complex. Using a biotinylation assay, we demonstrated that degradation of cell surface KISS1R was much slower than that of the internalized ligand, suggesting dissociated processing of the internalized kisspeptin-KISS1R complex. Taken together, our results suggest that the sustained calcium response to kisspeptin is dependent on the continued presence of extracellular ligand and is the result of dynamic KISS1R trafficking.

  16. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    SciTech Connect

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  17. Metabotropic glutamate receptor-mediated signaling in neuroglia

    PubMed Central

    Loane, David J.; Stoica, Bogdan A.; Faden, Alan I.

    2011-01-01

    Metabotropic glutamate (mGlu) receptors are G-protein-coupled receptors, which include eight subtypes that have been classified into three groups (I–III) based upon sequence homology, signal transduction mechanism and pharmacological profile. Although most studied with regard to neuronal function and modulation, mGlu receptors are also expressed by neuroglia-including astrocytes, microglia and oligodendrocytes. Activation of mGlu receptors on neuroglia under both physiologic and pathophysiologic conditions mediates numerous actions that are essential for intrinsic glial cell function, as well as for glial–neuronal interactions. Astrocyte mGlu receptors play important physiological roles in regulating neurotransmission and maintaining neuronal homeostasis. However, mGlu receptors on astrocytes and microglia also serve to modulate cell death and neurological function in a variety of pathophysiological conditions such as acute and chronic neurodegenerative disorders. The latter effects are complex and bi-directional, depending on which mGlu receptor sub-types are activated. PMID:22662309

  18. Redox regulation of resveratrol-mediated switching of death signal into survival signal.

    PubMed

    Das, Samarjit; Khan, Nadeem; Mukherjee, Subhendu; Bagchi, Debasis; Gurusamy, Narasimman; Swartz, Harold; Das, Dipak K

    2008-01-01

    In this study, we determined the changes in the intracellular redox environment of the heart during ischemia and reperfusion and the effects of resveratrol on such changes. Because redox regulation by thioredoxin (Trx) plays a crucial role in signal transduction and cytoprotection against ROS, the effects of resveratrol on the changes in the amounts of thioredoxin were monitored in an attempt to determine the role of intracellular thioredoxin in resveratrol-mediated changes in intracellular redox environment and its role in resveratrol-mediated cardioprotection. Rats were randomly divided into four groups: group I, control (rats were gavaged with vehicle only); group II, rats were gavaged with 2.5 mg/kg body wt resveratrol per day for 10 days; group III, rats were given resveratrol for 10 days, but on the 7th day, they were treated with shRNA against Trx-1; group IV, rats were given resveratrol for 10 days, but were injected (iv) with cisplatin (1 mg/kg body wt) on days 1, 3, 5, 7, and 9. In concert, two groups of mice (Dn-Trx-1) and a corresponding wild-type group were also gavaged with 2.5 mg/kg body wt resveratrol for 10 days. After 10 days, isolated rat and mouse hearts perfused via working mode were made globally ischemic for 30 min followed by 2 h of reperfusion. Ischemia/reperfusion developed an infarct size of about 40% and resulted in about 25% apoptotic cardiomyocytes, which were reduced by resveratrol. Cisplatin, but not shRNA-Trx-1, abolished the cardioprotective abilities of resveratrol. In the experiments with mouse hearts, similar to rat hearts, resveratrol significantly reduced the ischemia/reperfusion-mediated increase in infarct size and apoptosis in both groups. MDA formation, a presumptive marker for lipid peroxidation, was increased in the I/R group and reduced in the resveratrol group, and resveratrol-mediated reduction in MDA formation was abolished with cisplatin, but not with shRNA-Trx-1. I/R-induced reduction in GSH/GSSH ratio was

  19. The GR127935-sensitive 5-HT1 receptors mediating canine internal carotid vasoconstriction: resemblance to the 5-HT1B, but not to the 5-HT1D or 5-ht1F, receptor subtype

    PubMed Central

    Centurión, David; Sánchez-López, Araceli; De Vries, Peter; Saxena, Pramod R; Villalón, Carlos M

    2001-01-01

    This study has further investigated the pharmacological profile of the GR127935-sensitive 5-HT1 receptors mediating vasoconstriction in the internal carotid bed of anaesthetized vagosympathectomized dogs. One-minute intracarotid infusions of the agonists 5-hydroxytryptamine (5-HT; 0.1–10 μg min−1; endogenous ligand) and sumatriptan (0.3–10 μg min−1; 5-HT1B/1D), but not PNU-142633 (1–1000 μg min−1; 5-HT1D) or LY344864 (1–1000 μg min−1; 5-ht1F), produced dose-dependent decreases in internal carotid blood flow without changing blood pressure or heart rate. The responses to 5-HT were apparently resistant to blockade by i.v. administration of the antagonists SB224289 (300 μg kg−1; 5-HT1B), BRL15572 (300 μg kg−1; 5-HT1D) or ritanserin (100 μg kg−1; 5-HT2). In contrast, the responses to sumatriptan were antagonized by SB224289, but not by BRL15572. In the animals receiving SB224289, but not those receiving BRL15572, the subsequent administration of ritanserin abolished the 5-HT-induced vasoconstriction and unmasked a vasodilator component. Similarly, in ritanserin-treated animals, the subsequent administration of SB224289, but not BRL15572, completely blocked the 5-HT-induced vasoconstriction, revealing vasodilatation. In animals receiving initially BRL15572, the subsequent administration of SB224289 did not affect (except at 10 μg min−1) the vasoconstrictor responses to 5-HT. Notably, in animals pretreated with 1000 μg kg−1 of mesulergine, a 5-HT2/7 receptor antagonist, 5-HT produced a dose-dependent vasoconstriction, which was practically abolished by SB224289. After BRL15572, no further blockade was produced and the subsequent administration of ritanserin was similarly inactive. These results suggest that the GR127935-sensitive 5-HT1 receptors mediating canine internal carotid vasoconstriction resemble the 5-HT1B but not the 5-HT1D or 5-ht1F, receptor subtype. PMID:11226129

  20. Interferon Beta-1b Injection

    MedlinePlus

    Interferon beta-1b injection is used to reduce episodes of symptoms in patients with relapsing-remitting (course ... and problems with vision, speech, and bladder control). Interferon beta-1b is in a class of medications ...

  1. Interferon Gamma-1b Injection

    MedlinePlus

    Interferon gamma-1b injection is used to reduce the frequency and severity of serious infections in people ... with severe, malignant osteopetrosis (an inherited bone disease). Interferon gamma-1b is in a class of medications ...

  2. Orai and TRPC channel characterization in FcεRI-mediated calcium signaling and mediator secretion in human mast cells.

    PubMed

    Wajdner, Hannah E; Farrington, Jasmine; Barnard, Claire; Peachell, Peter T; Schnackenberg, Christine G; Marino, Joseph P; Xu, Xiaoping; Affleck, Karen; Begg, Malcolm; Seward, Elizabeth P

    2017-03-01

    Inappropriate activation of mast cells via the FcεRI receptor leads to the release of inflammatory mediators and symptoms of allergic disease. Calcium influx is a critical regulator of mast cell signaling and is required for exocytosis of preformed mediators and for synthesis of eicosanoids, cytokines and chemokines. Studies in rodent and human mast cells have identified Orai calcium channels as key contributors to FcεRI-initiated mediator release. However, until now the role of TRPC calcium channels in FcεRI-mediated human mast cell signaling has not been published. Here, we show evidence for the expression of Orai 1,2, and 3 and TRPC1 and 6 in primary human lung mast cells and the LAD2 human mast cell line but, we only find evidence of functional contribution of Orai and not TRPC channels to FcεRI-mediated calcium entry. Calcium imaging experiments, utilizing an Orai selective antagonist (Synta66) showed the contribution of Orai to FcεRI-mediated signaling in human mast cells. Although, the use of a TRPC3/6 selective antagonist and agonist (GSK-3503A and GSK-2934A, respectively) did not reveal evidence for TRPC6 contribution to FcεRI-mediated calcium signaling in human mast cells. Similarly, inactivation of STIM1-regulated TRPC1 in human mast cells (as tested by transfecting cells with STIM1-KK(684-685)EE - TRPC1 gating mutant) failed to alter FcεRI-mediated calcium signaling in LAD2 human mast cells. Mediator release assays confirm that FcεRI-mediated calcium influx through Orai is necessary for histamine and TNFα release but is differentially involved in the generation of cytokines and eicosanoids.

  3. Expression and localization of aquaporin 1b during oocyte development in the Japanese eel (Anguilla japonica).

    PubMed

    Kagawa, Hirohiko; Kishi, Takafumi; Gen, Koichiro; Kazeto, Yukinori; Tosaka, Ryota; Matsubara, Hajime; Matsubara, Takahiro; Sawaguchi, Sayumi

    2011-05-27

    To elucidate the molecular mechanisms underling hydration during oocyte maturation, we characterized the structure of Japanese eel (Anguilla japonica) novel-water selective aquaporin 1 (AQP1b) that thought to be involved in oocyte hydration. The aqp1b cDNA encodes a 263 amino acid protein that includes the six potential transmembrane domains and two Asn-Pro-Ala motifs. Reverse transcription-polymerase chain reaction showed transcription of Japanese eel aqp1b in ovary and testis but not in the other tissues. In situ hybridization studies with the eel aqp1b cRNA probe revealed intense eel aqp1b signal in the oocytes at the perinucleolus stage and the signals became faint during the process of oocyte development. Light microscopic immunocytochemical analysis of ovary revealed that the Japanese eel AQP1b was expressed in the cytoplasm around the yolk globules which were located in the peripheral region of oocytes during the primary yolk globule stage; thereafter, the immunoreactivity was observed throughout the cytoplasm of oocyte as vitellogenesis progressed. The immunoreactivity became localized around the large membrane-limited yolk masses which were formed by the fusion of yolk globules during the oocyte maturation phase. These results together indicate that AQP1b, which is synthesized in the oocyte during the process of oocyte growth, is essential for mediating water uptake into eel oocytes.

  4. Expression and localization of aquaporin 1b during oocyte development in the Japanese eel (Anguilla japonica)

    PubMed Central

    2011-01-01

    To elucidate the molecular mechanisms underling hydration during oocyte maturation, we characterized the structure of Japanese eel (Anguilla japonica) novel-water selective aquaporin 1 (AQP1b) that thought to be involved in oocyte hydration. The aqp1b cDNA encodes a 263 amino acid protein that includes the six potential transmembrane domains and two Asn-Pro-Ala motifs. Reverse transcription-polymerase chain reaction showed transcription of Japanese eel aqp1b in ovary and testis but not in the other tissues. In situ hybridization studies with the eel aqp1b cRNA probe revealed intense eel aqp1b signal in the oocytes at the perinucleolus stage and the signals became faint during the process of oocyte development. Light microscopic immunocytochemical analysis of ovary revealed that the Japanese eel AQP1b was expressed in the cytoplasm around the yolk globules which were located in the peripheral region of oocytes during the primary yolk globule stage; thereafter, the immunoreactivity was observed throughout the cytoplasm of oocyte as vitellogenesis progressed. The immunoreactivity became localized around the large membrane-limited yolk masses which were formed by the fusion of yolk globules during the oocyte maturation phase. These results together indicate that AQP1b, which is synthesized in the oocyte during the process of oocyte growth, is essential for mediating water uptake into eel oocytes. PMID:21615964

  5. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    SciTech Connect

    Charlson, Aaron T.; Zeliadt, Nicholette A.; Wattenberg, Elizabeth V.

    2009-12-01

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  6. Chromium-containing traditional Chinese medicine, Tianmai Xiaoke Tablet improves blood glucose through activating insulin-signaling pathway and inhibiting PTP1B and PCK2 in diabetic rats.

    PubMed

    Zhang, Qian; Xiao, Xin-Hua; Li, Ming; Li, Wen-Hui; Yu, Miao; Zhang, Hua-Bing; Ping, Fan; Wang, Zhi-Xin; Zheng, Jia

    2014-05-01

    Chromium is an essential mineral that is thought to be necessary for normal glucose homeostasis. Numerous studies give evidence that chromium picolinate can modulate blood glucose and insulin resistance. The main ingredient of Tianmai Xiaoke (TMXK) Tablet is chromium picolinate. In China, TMXK Tablet is used to treat type 2 diabetes. This study investigated the effect of TMXK on glucose metabolism in diabetic rats to explore possible underlying molecular mechanisms for its action. Diabetes was induced in rats by feeding a high-fat diet and subcutaneously injection with a single dose of streptozotocin (50 mg/kg, tail vein). One week after streptozotocin-injection, model rats were divided into diabetic group, low dose of TMXK group and high dose of TMXK group. Eight normal rats were used as normal control. After 8 weeks of treatment, skeletal muscle was obtained and was analyzed using Roche NimbleGen mRNA array and quantitative polymerase chain reaction (qPCR). Fasting blood glucose, oral glucose tolerance test and homeostasis model assessment of insulin resistance (HOMA-IR) index were also measured. The authors found that the administration of TMXK Tablet can reduce the fasting blood glucose and fasting insulin level and HOMA-IR index. The authors also found that 2 223 genes from skeletal muscle of the high-dose TMXK group had significant changes in expression (1 752 increased, 471 decreased). Based on Kyoto encyclopedia of genes and genomes pathway analysis, the most three significant pathways were "insulin signaling pathway", "glycolysis/gluconeogenesis" and "citrate cycle (TCA)". qPCR showed that relative levels of forkhead box O3 (FoxO3), phosphoenolpyruvate carboxykinase 2 (Pck2), and protein tyrosine phosphatase 1B (Ptp1b) were significantly decreased in the high-dose TMXK group, while v-akt murine thymoma viral oncogene homolog 1 (Akt1) and insulin receptor substrate 2 (Irs2) were increased. Our data show that TMXK Tablet reduces fasting glucose level and

  7. Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line

    PubMed Central

    Fahrmayr, C; König, J; Auge, D; Mieth, M; Münch, K; Segrestaa, J; Pfeifer, T; Treiber, A; Fromm, MF

    2013-01-01

    Background and Purpose Hepatic uptake (e.g. by OATP1B1), phase I and II metabolism (e.g. by CYP3A4, UGT1A1) and subsequent biliary excretion (e.g. by MRP2) are key determinants for the pharmacokinetics of numerous drugs. However, stably transfected cell models for the simultaneous investigation of transport and phase I and II metabolism of drugs are lacking. Experimental Approach A newly established quadruple-transfected MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 cell line was used to investigate metabolism and transcellular transport of the endothelin receptor antagonist bosentan. Key Results Intracellular accumulation of bosentan equivalents (i.e. parent compound and metabolites) was significantly lower in all cell lines expressing MRP2 compared to cell lines lacking this transporter (P < 0.001). Accordingly, considerably higher amounts of bosentan equivalents were detectable in the apical compartments of cell lines with MRP2 expression (P < 0.001). HPLC and LC-MS measurements revealed that mainly unchanged bosentan accumulated in intracellular and apical compartments. Furthermore, the phase I metabolites Ro 48–5033 and Ro 47–8634 were detected intracellularly in cell lines expressing CYP3A4. Additionally, a direct glucuronide of bosentan could be identified intracellularly in cell lines expressing UGT1A1 and in the apical compartments of cell lines expressing UGT1A1 and MRP2. Conclusions and Implications These in vitro data indicate that bosentan is a substrate of UGT1A1. Moreover, the efflux transporter MRP2 mediates export of bosentan and most likely also of bosentan glucuronide in the cell system. Taken together, cell lines simultaneously expressing transport proteins and metabolizing enzymes represent additional useful tools for the investigation of the interplay of transport and metabolism of drugs. PMID:23387445

  8. Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line.

    PubMed

    Fahrmayr, C; König, J; Auge, D; Mieth, M; Münch, K; Segrestaa, J; Pfeifer, T; Treiber, A; Fromm, Mf

    2013-05-01

    Hepatic uptake (e.g. by OATP1B1), phase I and II metabolism (e.g. by CYP3A4, UGT1A1) and subsequent biliary excretion (e.g. by MRP2) are key determinants for the pharmacokinetics of numerous drugs. However, stably transfected cell models for the simultaneous investigation of transport and phase I and II metabolism of drugs are lacking. A newly established quadruple-transfected MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 cell line was used to investigate metabolism and transcellular transport of the endothelin receptor antagonist bosentan. Intracellular accumulation of bosentan equivalents (i.e. parent compound and metabolites) was significantly lower in all cell lines expressing MRP2 compared to cell lines lacking this transporter (P < 0.001). Accordingly, considerably higher amounts of bosentan equivalents were detectable in the apical compartments of cell lines with MRP2 expression (P < 0.001). HPLC and LC-MS measurements revealed that mainly unchanged bosentan accumulated in intracellular and apical compartments. Furthermore, the phase I metabolites Ro 48-5033 and Ro 47-8634 were detected intracellularly in cell lines expressing CYP3A4. Additionally, a direct glucuronide of bosentan could be identified intracellularly in cell lines expressing UGT1A1 and in the apical compartments of cell lines expressing UGT1A1 and MRP2. These in vitro data indicate that bosentan is a substrate of UGT1A1. Moreover, the efflux transporter MRP2 mediates export of bosentan and most likely also of bosentan glucuronide in the cell system. Taken together, cell lines simultaneously expressing transport proteins and metabolizing enzymes represent additional useful tools for the investigation of the interplay of transport and metabolism of drugs. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  9. Berberine inhibits PTP1B activity and mimics insulin action.

    PubMed

    Chen, Chunhua; Zhang, Yuebo; Huang, Cheng

    2010-07-02

    Type 2 diabetes patients show defects in insulin signal transduction that include lack of insulin receptor, decrease in insulin stimulated receptor tyrosine kinase activity and receptor-mediated phosphorylation of insulin receptor substrates (IRSs). A small molecule that could target insulin signaling would be of significant advantage in the treatment of diabetes. Berberine (BBR) has recently been shown to lower blood glucose levels and to improve insulin resistance in db/db mice partly through the activation of AMP-activated protein kinase (AMPK) signaling and induction of phosphorylation of insulin receptor (IR). However, the underlying mechanism remains largely unknown. Here we report that BBR mimics insulin action by increasing glucose uptake ability by 3T3-L1 adipocytes and L6 myocytes in an insulin-independent manner, inhibiting phosphatase activity of protein tyrosine phosphatase 1B (PTP1B), and increasing phosphorylation of IR, IRS1 and Akt in 3T3-L1 adipocytes. In diabetic mice, BBR lowers hyperglycemia and improves impaired glucose tolerance, but does not increase insulin release and synthesis. The results suggest that BBR represents a different class of anti-hyperglycemic agents.

  10. Tyrosine-based signal mediates LRP6 receptor endocytosis and desensitization of Wnt/β-catenin pathway signaling.

    PubMed

    Liu, Chia-Chen; Kanekiyo, Takahisa; Roth, Barbara; Bu, Guojun

    2014-10-03

    Wnt/β-catenin signaling orchestrates a number of critical events including cell growth, differentiation, and cell survival during development. Misregulation of this pathway leads to various human diseases, specifically cancers. Endocytosis and phosphorylation of the LDL receptor-related protein 6 (LRP6), an essential co-receptor for Wnt/β-catenin signaling, play a vital role in mediating Wnt/β-catenin signal transduction. However, its regulatory mechanism is not fully understood. In this study, we define the mechanisms by which LRP6 endocytic trafficking regulates Wnt/β-catenin signaling activation. We show that LRP6 mutant with defective tyrosine-based signal in its cytoplasmic tail has an increased cell surface distribution and decreased endocytosis rate. These changes in LRP6 endocytosis coincide with an increased distribution to caveolae, increased phosphorylation, and enhanced Wnt/β-catenin signaling. We further demonstrate that treatment of Wnt3a ligands or blocking the clathrin-mediated endocytosis of LRP6 leads to a redistribution of wild-type receptor to lipid rafts. The LRP6 tyrosine mutant also exhibited an increase in signaling activation in response to Wnt3a stimulation when compared with wild-type LRP6, and this activation is suppressed when caveolae-mediated endocytosis is blocked. Our results reveal molecular mechanisms by which LRP6 endocytosis routes regulate its phosphorylation and the strength of Wnt/β-catenin signaling, and have implications on how this pathway can be modulated in human diseases.

  11. Fem1b promotes ubiquitylation and suppresses transcriptional activity of Gli1.

    PubMed

    Gilder, Andrew S; Chen, Yong-Bin; Jackson, Ramon J; Jiang, Jin; Maher, Joseph F

    2013-10-25

    The mammalian Fem1b gene encodes a homolog of FEM-1, a protein in the sex-determination pathway of the nematode Caenorhabditis elegans. Fem1b and FEM-1 proteins each contain a VHL-box motif that mediates their interaction with certain E3 ubiquitin ligase complexes. In C. elegans, FEM-1 negatively regulates the transcription factor TRA-1, and functions as an E3 ubiquitin ligase substrate recognition subunit to target TRA-1 for ubiquitylation. TRA-1 is homologous to the mammalian Gli1 protein, a transcription factor that mediates Hedgehog signaling as well as having Hedgehog-independent functions. Whether the interaction between nematode FEM-1 and TRA-1 proteins is conserved, between corresponding mammalian homologs, has not been reported. Herein, we show that Fem1b interacts with Gli1 within cells, and directly binds Gli1. Fem1b also promotes ubiquitylation of Gli1, suppresses transcriptional activation by Gli1, and attenuates an oncogenic Gli1 autoregulatory loop in cancer cells, all dependent on the VHL-box of Fem1b. These findings have implications for understanding the cellular functions of Fem1b, and the regulation of Gli1 oncoprotein activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Exosome-mediated inflammasome signaling after central nervous system injury.

    PubMed

    de Rivero Vaccari, Juan Pablo; Brand, Frank; Adamczak, Stephanie; Lee, Stephanie W; Perez-Barcena, Jon; Wang, Michael Y; Bullock, M Ross; Dietrich, W Dalton; Keane, Robert W

    2016-01-01

    Neuroinflammation is a response against harmful effects of diverse stimuli and participates in the pathogenesis of brain and spinal cord injury (SCI). The innate immune response plays a role in neuroinflammation following CNS injury via activation of multiprotein complexes termed inflammasomes that regulate the activation of caspase 1 and the processing of the pro-inflammatory cytokines IL-1β and IL-18. We report here that the expression of components of the nucleotide-binding and oligomerization domain (NOD)-like receptor protein-1 (NLRP-1) inflammasome, apoptosis speck-like protein containing a caspase recruitment domain (ASC), and caspase 1 are significantly elevated in spinal cord motor neurons and cortical neurons after CNS trauma. Moreover, NLRP1 inflammasome proteins are present in exosomes derived from CSF of SCI and traumatic brain-injured patients following trauma. To investigate whether exosomes could be used to therapeutically block inflammasome activation in the CNS, exosomes were isolated from embryonic cortical neuronal cultures and loaded with short-interfering RNA (siRNA) against ASC and administered to spinal cord-injured animals. Neuronal-derived exosomes crossed the injured blood-spinal cord barrier, and delivered their cargo in vivo, resulting in knockdown of ASC protein levels by approximately 76% when compared to SCI rats treated with scrambled siRNA. Surprisingly, siRNA silencing of ASC also led to a significant decrease in caspase 1 activation and processing of IL-1β after SCI. These findings indicate that exosome-mediated siRNA delivery may be a strong candidate to block inflammasome activation following CNS injury. We propose the following signaling cascade for inflammasome activation in peripheral tissues after CNS injury: CNS trauma induces inflammasome activation in the nervous system and secretion of exosomes containing inflammasome protein cargo into cerebral spinal fluid. The inflammasome containing exosomes then fuse with target

  13. Mechanisms of Biased β-Arrestin-Mediated Signaling Downstream from the Cannabinoid 1 Receptor

    PubMed Central

    Delgado-Peraza, Francheska; Ahn, Kwang H.; Nogueras-Ortiz, Carlos; Mungrue, Imran N.; Mackie, Ken; Kendall, Debra A.

    2016-01-01

    Activation of G protein-coupled receptors results in multiple waves of signaling that are mediated by heterotrimeric G proteins and the scaffolding proteins β-arrestin 1/2. Ligands can elicit full or subsets of cellular responses, a concept defined as ligand bias or functional selectivity. However, our current understanding of β-arrestin-mediated signaling is still very limited. Here we provide a comprehensive view of β-arrestin-mediated signaling from the cannabinoid 1 receptor (CB1R). By using a signaling biased receptor, we define the cascades, specific receptor kinases, and molecular mechanism underlying β-arrestin-mediated signaling: We identify the interaction kinetics of CB1R and β-arrestin 1 during their endocytic trafficking as directly proportional to its efficacy. Finally, we demonstrate that signaling results in the control of genes clustered around prosurvival and proapoptotic functions among others. Together, these studies constitute a comprehensive description of β-arrestin-mediated signaling from CB1Rs and suggest modulation of receptor endocytic trafficking as a therapeutic approach to control β-arrestin-mediated signaling. PMID:27009233

  14. Involvement of suppressor of cytokine signalling-1-mediated degradation of MyD88-adaptor-like protein in the suppression of Toll-like receptor 2-mediated signalling by the murine C-type lectin SIGNR1-mediated signalling.

    PubMed

    Ohtani, Makoto; Iyori, Mitsuhiro; Saeki, Ayumi; Tanizume, Naoho; Into, Takeshi; Hasebe, Akira; Totsuka, Yasunori; Shibata, Ken-ichiro

    2012-01-01

    Dendritic cells recognize pathogens through pattern recognition receptors such as Toll-like receptors and phagocytose and digest them by phagocytic receptors for antigen presentation. This study was designed to clarify the cross-talk between recognition and phagocytosis of microbes in dendritic cells. The murine dendritic cell line XS106 cells were stimulated with the murine C-type lectin SIGNR1 ligand lipoarabinomannan and the Toll-like receptor 2 ligand FSL-1. The co-stimulation significantly suppressed FSL-1-mediated activation of NF-κB as well as production of TNF-α, IL-6 and IL-12p40 in a dose-dependent manner. The suppression was significantly but not completely recovered by knock-down of SIGNR1. SIGNR1 was associated with Toll-like receptor 2 in XS106 cells. The co-stimulation upregulated the expression of suppressor of cytokine signalling-1 in XS106 cells, the knock-down of which almost completely recovered the suppression of the FSL-1-mediated cytokine production by lipoarabinomannan. In addition, it was found that the MyD88-adaptor-like protein in XS106 cells was degraded by co-stimulation with FSL-1 and lipoarabinomannan in the absence, but not the presence, of the proteasome inhibitor MG132 and the degradation was inhibited by knock-down of suppressor of cytokine signalling-1. This study suggests that Toll-like receptor 2-mediated signalling is negatively regulated by SIGNR1-mediated signalling in dendritic cells, possibly through suppressor of cytokine signalling-1-mediated degradation of the MyD88-adaptor-like protein. © 2011 Blackwell Publishing Ltd.

  15. Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation.

    PubMed

    Kim, Joung Min; Jeong, Seong Wook; Yang, Jihoon; Lee, Seong Heon; Kim, Woon Mo; Jeong, Seongtae; Bae, Hong Beom; Yoon, Myung Ha; Choi, Jeong Il

    2015-07-23

    Previous electrophysiological studies demonstrated a limited role of 5-hydroxytryptamine 3 receptor (5-HT3R), but facilitatory role of 5-HT1AR and 5-HT1BR in spinal nociceptive processing of carrageenan-induced inflammatory pain. The release of spinal 5-HT was shown to peak in early-phase and return to baseline in late-phase of carrageenan inflammation. We examined the role of the descending serotonergic projections involving 5-HT1AR, 5-HT1BR, and 5-HT3R in mechanical allodynia of early- (first 4h) and late-phase (24h after) carrageenan-induced inflammation. Intrathecal administration of 5-HT produced a significant anti-allodynic effect in late-phase, but not in early-phase. Similarly, intrathecal 5-HT1AR agonist (8-OH-DPAT) attenuated the intensity of late-phase allodynia in a dose dependent fashion which was antagonized by 5-HT1AR antagonist (WAY-100635), but produced no effect on the early-phase allodynia. However, other agonists or antagonists of 5-HT1BR (CP-93129, SB-224289) and 5-HT3R (m-CPBG, ondansetron) did not produce any anti- or pro-allodynic effect in both early- and late- phase allodynia. These results suggest that spinal 5-HT1A, but not 5-HT1B or 5-HT3 receptors mediate descending serotonergic inhibition on nociceptive processing of late-phase mechanical allodynia in carrageenan-induced inflammation.

  16. Signaling-mediated control of ubiquitin ligases in endocytosis.

    PubMed

    Polo, Simona

    2012-03-15

    Ubiquitin-dependent regulation of endocytosis plays an important part in the control of signal transduction, and a critical issue in the understanding of signal transduction therefore relates to regulation of ubiquitination in the endocytic pathway. We discuss here what is known of the mechanisms by which signaling controls the activity of the ubiquitin ligases that specifically recognize the targets of ubiquitination on the endocytic pathway, and suggest alternative mechanisms that deserve experimental investigation.

  17. The Notch signaling pathway as a mediator of tumor survival.

    PubMed

    Capaccione, Kathleen M; Pine, Sharon R

    2013-07-01

    The Notch signaling pathway is evolutionarily conserved and responsible for cell fate determination in the developing embryo and mature tissue. At the molecular level, ligand binding activates Notch signaling by liberating the Notch intracellular domain, which then translocates into the nucleus and activates gene transcription. Despite the elegant simplicity of this pathway, which lacks secondary messengers or a signaling cascade, Notch regulates gene expression in a highly context- and cell-type-dependent manner. Notch signaling is frequently dysregulated, most commonly by overactivation, across many cancers and confers a survival advantage on tumors, leading to poorer outcomes for patients. Recent studies demonstrate how Notch signaling increases tumor cell proliferation and provide evidence that active Notch signaling maintains the cancer stem-cell pool, induces epithelial-mesenchymal transition and promotes chemoresistance. These studies imply that pharmacological inhibition of Notch signaling may refine control of cancer therapy and improve patient survival. Gamma secretase inhibitors (GSIs) are drugs that inhibit Notch signaling and may be successful in controlling cancer cell growth in conjunction with standard chemotherapy, but substantial side effects have hampered their widespread use. Recent efforts have been aimed at the development of antibodies against specific Notch receptors and ligands with the hope of limiting side effects while providing the same therapeutic benefit as GSIs. Together, studies characterizing Notch signaling and modulation have offered hope that refined methods targeting Notch may become powerful tools in anticancer therapeutics.

  18. Tissue-specific insulin signaling mediates female sexual attractiveness.

    PubMed

    Fedina, Tatyana Y; Arbuthnott, Devin; Rundle, Howard D; Promislow, Daniel E L; Pletcher, Scott D

    2017-08-01

    Individuals choose their mates so as to maximize reproductive success, and one important component of this choice is assessment of traits reflecting mate quality. Little is known about why specific traits are used for mate quality assessment nor about how they reflect it. We have previously shown that global manipulation of insulin signaling, a nutrient-sensing pathway governing investment in survival versus reproduction, affects female sexual attractiveness in the fruit fly, Drosophila melanogaster. Here we demonstrate that these effects on attractiveness derive from insulin signaling in the fat body and ovarian follicle cells, whose signals are integrated by pheromone-producing cells called oenocytes. Functional ovaries were required for global insulin signaling effects on attractiveness, and manipulations of insulin signaling specifically in late follicle cells recapitulated effects of global manipulations. Interestingly, modulation of insulin signaling in the fat body produced opposite effects on attractiveness, suggesting a competitive relationship with the ovary. Furthermore, all investigated tissue-specific insulin signaling manipulations that changed attractiveness also changed fecundity in the corresponding direction, pointing to insulin pathway activity as a reliable link between fecundity and attractiveness cues. The cues themselves, cuticular hydrocarbons, responded distinctly to fat body and follicle cell manipulations, indicating independent readouts of the pathway activity from these two tissues. Thus, here we describe a system in which female attractiveness results from an apparent connection between attractiveness cues and an organismal state of high fecundity, both of which are created by lowered insulin signaling in the fat body and increased insulin signaling in late follicle cells.

  19. The small GTPase Rap1b negatively regulates neutrophil chemotaxis and transcellular diapedesis by inhibiting Akt activation.

    PubMed

    Kumar, Sachin; Xu, Juying; Kumar, Rupali Sani; Lakshmikanthan, Sribalaji; Kapur, Reuben; Kofron, Matthew; Chrzanowska-Wodnicka, Magdalena; Filippi, Marie-Dominique

    2014-08-25

    Neutrophils are the first line of cellular defense in response to infections and inflammatory injuries. However, neutrophil activation and accumulation into tissues trigger tissue damage due to release of a plethora of toxic oxidants and proteases, a cause of acute lung injury (ALI). Despite its clinical importance, the molecular regulation of neutrophil migration is poorly understood. The small GTPase Rap1b is generally viewed as a positive regulator of immune cell functions by controlling bidirectional integrin signaling. However, we found that Rap1b-deficient mice exhibited enhanced neutrophil recruitment to inflamed lungs and enhanced susceptibility to endotoxin shock. Unexpectedly, Rap1b deficiency promoted the transcellular route of diapedesis through endothelial cell. Increased transcellular migration of Rap1b-deficient neutrophils in vitro was selectively mediated by enhanced PI3K-Akt activation and invadopodia-like protrusions. Akt inhibition in vivo suppressed excessive Rap1b-deficient neutrophil migration and associated endotoxin shock. The inhibitory action of Rap1b on PI3K signaling may be mediated by activation of phosphatase SHP-1. Thus, this study reveals an unexpected role for Rap1b as a key suppressor of neutrophil migration and lung inflammation.

  20. Dynein-mediated trafficking negatively regulates LET-23 EGFR signaling

    PubMed Central

    Skorobogata, Olga; Meng, Jassy; Gauthier, Kimberley; Rocheleau, Christian E.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signaling is essential for animal development, and increased signaling underlies many human cancers. Identifying the genes and cellular processes that regulate EGFR signaling in vivo will help to elucidate how this pathway can become inappropriately activated. Caenorhabditis elegans vulva development provides an in vivo model to genetically dissect EGFR signaling. Here we identified a mutation in dhc-1, the heavy chain of the cytoplasmic dynein minus end–directed microtubule motor, in a genetic screen for regulators of EGFR signaling. Despite the many cellular functions of dynein, DHC-1 is a strong negative regulator of EGFR signaling during vulva induction. DHC-1 is required in the signal-receiving cell and genetically functions upstream or in parallel to LET-23 EGFR. LET-23 EGFR accumulates in cytoplasmic foci in dhc-1 mutants, consistent with mammalian cell studies in which dynein is shown to regulate late endosome trafficking of EGFR with the Rab7 GTPase. However, we found different distributions of LET-23 EGFR foci in rab-7 versus dhc-1 mutants, suggesting that dynein functions at an earlier step of LET-23 EGFR trafficking to the lysosome than RAB-7. Our results demonstrate an in vivo role for dynein in limiting LET-23 EGFR signaling via endosomal trafficking. PMID:27654944

  1. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  2. Signalling pathways mediating type I interferon gene expression.

    PubMed

    Edwards, Michael R; Slater, Louise; Johnston, Sebastian L

    2007-09-01

    Type I interferon-alpha/beta play an essential role in immunity to viruses. While interferon-beta has been used as a model of a complex promoter, many of the signalling pathways leading to interferon-beta gene expression remain controversial. Recent milestones include the discovery of Toll-like receptors and RNA helicases that signal via a novel kinase complex composed of I kappa B kinase-iota/epsilon or TANK binding kinase-1. This review provides a timely summary of this rapidly expanding field, focusing specifically on the various viral RNA binding molecules and their associated signalling pathways.

  3. The Role of AGE/RAGE Signaling in Diabetes-Mediated Vascular Calcification

    PubMed Central

    2016-01-01

    AGE/RAGE signaling has been a well-studied cascade in many different disease states, particularly diabetes. Due to the complex nature of the receptor and multiple intersecting pathways, the AGE/RAGE signaling mechanism is still not well understood. The purpose of this review is to highlight key areas of AGE/RAGE mediated vascular calcification as a complication of diabetes. AGE/RAGE signaling heavily influences both cellular and systemic responses to increase bone matrix proteins through PKC, p38 MAPK, fetuin-A, TGF-β, NFκB, and ERK1/2 signaling pathways in both hyperglycemic and calcification conditions. AGE/RAGE signaling has been shown to increase oxidative stress to promote diabetes-mediated vascular calcification through activation of Nox-1 and decreased expression of SOD-1. AGE/RAGE signaling in diabetes-mediated vascular calcification was also attributed to increased oxidative stress resulting in the phenotypic switch of VSMCs to osteoblast-like cells in AGEs-induced calcification. Researchers found that pharmacological agents and certain antioxidants decreased the level of calcium deposition in AGEs-induced diabetes-mediated vascular calcification. By understanding the role the AGE/RAGE signaling cascade plays diabetes-mediated vascular calcification will allow for pharmacological intervention to decrease the severity of this diabetic complication. PMID:27547766

  4. Differential action of chlorinated polycyclic aromatic hydrocarbons on aryl hydrocarbon receptor-mediated signaling in breast cancer cells.

    PubMed

    Ohura, Takeshi; Morita, Maki; Kuruto-Niwa, Ryoko; Amagai, Takashi; Sakakibara, Hiroyuki; Shimoi, Kayoko

    2010-04-01

    Chlorinated polycyclic aromatic hydrocarbons (ClPAHs), which are a series of halogenated aromatic hydrocarbons, have been found in the environment. The primary step in their metabolic activation seems to be associated with aryl hydrocarbon receptor (AhR)-mediated induction of the cytochrome P450 (CYP) 1 family, although the evidence remains unclear. In this study, we first investigated the effects of five ClPAHs with three to five rings and the corresponding parent PAHs on the expression of CYP1A1 and 1B1 in human breast cancer MCF-7 cells. For the targeted ClPAHs, Western blot analysis of ClPAH-induced CYP1A1 and 1B1 showed an enhancement in activities in comparison with induction by the corresponding parent PAHs, and the effects of chlorination were especially prominent in phenanthrene. In a further study, using 6-chlorobenzo[a]pyrene (6-ClBaP), cotreatment with 17beta-estradiol showed an increase in the expression of CYP1B1 mRNA but not CYP1A1 mRNA. Since the AhR ligand has been reported to induce formation of an AhR-estrogen receptor (ER) complex, which stimulates transcription of ER target genes, the effects of ClPAHs in MCF-7 cells transfected with estrogen response elements-regulated green fluorescent protein (GFP) reporter genes were also investigated in this study. 6-ClBaP induced a dose-dependent increase in GFP expression related to ER signaling through AhR activation in the cells, but 3,9,10-trichlorophenanthrene (3,9,10-Cl(3)ClPhe) did not, despite its ability to activate AhR. Furthermore, we investigated the effect of ClPAHs on the expression of the endogenous ER-responsive genes, cathepsin D, in MCF-7 cells. 6-ClBaP stimulated expression of the ER-responsive genes but 3,9,10-Cl(3)ClPhe did not, as in the GFP expression system. These results suggest that estrogenic action mediated ER signaling through AhR activation does not necessarily occur for every ligand that can activate AhR.

  5. Strv1-b Flight Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Technology Research Vehicle (STRV-1b) is discussed. The STRV-1b is a small (100 watt) satellite flown by the British Defense Research Agency (DRA). The mission goal is to fly new and emerging space technologies at a more reasonable cost in a short-term timeframe. The STRV-1b's orbit can be described as a geosynchronous transfer orbit (GTO) with a perigee of 200 km, an apogee of 36,000 km (geosynchronous earth orbit (GEO)), and a period of 10.5 hours. The Phillips Laboratory plans to use the STRV-1b to test up to 20 advanced experimental photovoltaic cells. The discussion is presented in vugraph form.

  6. An epidemic process mediated by a decaying diffusing signal

    NASA Astrophysics Data System (ADS)

    Faria, Fernando P.; Dickman, Ronald

    2012-06-01

    We study a stochastic epidemic model consisting of elements (organisms in a community or cells in tissue) with fixed positions, in which damage or disease is transmitted by diffusing agents ('signals') emitted by infected individuals. The signals decay as well as diffuse; since they are assumed to be produced in large numbers, the signal concentration is treated deterministically. The model, which includes four cellular states (susceptible, transformed, depleted, and removed), admits various interpretations: spread of an infection or infectious disease, or of damage in a tissue in which injured cells may themselves provoke further damage, and as a description of the so-called radiation-induced bystander effect, in which the signals are molecules capable of inducing cell damage and/or death in unirradiated cells. The model exhibits a continuous phase transition between spreading and nonspreading phases. We formulate two mean-field theory (MFT) descriptions of the model, one of which ignores correlations between the cellular state and the signal concentration, and another that treats such correlations in an approximate manner. Monte Carlo simulations of the spread of infection on the square lattice yield values for the critical exponents and the fractal dimension consistent with the dynamic percolation universality class.

  7. Phosphoinositide 3-kinase mediated signaling in lobster olfactory receptor neurons

    PubMed Central

    Corey, Elizabeth A.; Bobkov, Yuriy; Pezier, Adeline; Ache, Barry W.

    2010-01-01

    In vertebrates and some invertebrates, odorant molecules bind to G protein-coupled receptors (GPCRs) on olfactory receptor neurons (ORNs) to initiate signal transduction. Phosphoinositide 3-kinase (PI3K) activity has been implicated physiologically in olfactory signal transduction, suggesting a potential role for a GPCR-activated class I PI3K. Using isoform-specific antibodies, we identified a protein in the olfactory signal transduction compartment of lobster ORNs that is antigenically similar to mammalian PI3Kγ and cloned a gene for a PI3K with amino acid homology with PI3Kβ. The lobster olfactory PI3K co-immunoprecipitates with the G protein α and β subunits, and an odorant-evoked increase in phosphatidylinositol (3,4,5)-trisphosphate can be detected in the signal transduction compartment of the ORNs. PI3Kγ and β isoform-specific inhibitors reduce the odorant-evoked output of lobster ORNs in vivo. Collectively, these findings provide evidence that PI3K is indeed activated by odorant receptors in lobster ORNs and further support the potential involvement of G protein activated PI3K signaling in olfactory transduction. PMID:20132480

  8. Ras Family Small GTPase-mediated Neuroprotective Signaling in Stroke

    PubMed Central

    Shi, Geng-Xian; Andres, Douglas A.; Cai, Weikang

    2012-01-01

    Selective neuronal cell death is one of the major causes of neuronal damage following stroke, and cerebral cells naturally mobilize diverse survival signaling pathways to protect against ischemia. Importantly, therapeutic strategies designed to improve endogenous anti-apoptotic signaling appear to hold great promise in stroke treatment. While a variety of complex mechanisms have been implicated in the pathogenesis of stroke, the overall mechanisms governing the balance between cell survival and death are not well-defined. Ras family small GTPases are activated following ischemic insults, and in turn, serve as intrinsic switches to regulate neuronal survival and regeneration. Their ability to integrate diverse intracellular signal transduction pathways makes them critical regulators and potential therapeutic targets for neuronal recovery after stroke. This article highlights the contribution of Ras family GTPases to neuroprotective signaling cascades, including mitogen-activated protein kinase (MAPK) family protein kinase- and AKT/PKB-dependent signaling pathways as well as the regulation of cAMP response element binding (CREB), Forkhead box O (FoxO) and hypoxia-inducible factor 1(HIF1) transcription factors, in stroke. PMID:21521171

  9. Notch signalling mediates reproductive constraint in the adult worker honeybee.

    PubMed

    Duncan, Elizabeth J; Hyink, Otto; Dearden, Peter K

    2016-08-03

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen.

  10. Notch signalling mediates reproductive constraint in the adult worker honeybee

    PubMed Central

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  11. Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases.

    PubMed

    Brandes, Ralf P; Weissmann, Norbert; Schröder, Katrin

    2014-08-01

    The only known function of the Nox family of NADPH oxidases is the production of reactive oxygen species (ROS). Some Nox enzymes show high tissue-specific expression and the ROS locally produced are required for synthesis of hormones or tissue components. In the cardiovascular system, Nox enzymes are low abundant and function as redox-modulators. By reacting with thiols, nitric oxide (NO) or trace metals, Nox-derived ROS elicit a plethora of cellular responses required for physiological growth factor signaling and the induction and adaptation to pathological processes. The interactions of Nox-derived ROS with signaling elements in the cardiovascular system are highly diverse and will be detailed in this article, which is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".

  12. Legume LysM receptors mediate symbiotic and pathogenic signalling.

    PubMed

    Kelly, Simon; Radutoiu, Simona; Stougaard, Jens

    2017-10-01

    Legume-rhizobia symbiosis is coordinated through the production and perception of signal molecules by both partners with legume LysM receptor kinases performing a central role in this process. Receptor complex formation and signalling outputs derived from these are regulated through ligand binding and further modulated by a diverse variety of interactors. The challenge now is to understand the molecular mechanisms of these reported interactors. Recently attributed roles of LysM receptors in the perception of rhizobial exopolysaccharide, distinguishing between pathogens and symbionts, and assembly of root and rhizosphere communities expand on the importance of these receptors. These studies also highlight challenges, such as identification of cognate ligands, formation of responsive receptor complexes and separation of downstream signal transduction pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Inflammatory Signals Enhance Piezo2-Mediated Mechanosensitive Currents

    PubMed Central

    Dubin, Adrienne E.; Schmidt, Manuela; Mathur, Jayanti; Petrus, Matthew J.; Xiao, Bailong; Coste, Bertrand; Patapoutian, Ardem

    2012-01-01

    Summary Heightened nociceptor function caused by inflammatory mediators such as bradykinin contributes to increased pain perception (hyperalgesia) to noxious mechanical and thermal stimuli. While sensitization of the heat transducer TRPV1 largely subserves thermal hyperalgesia, cellular mechanisms underlying mechanical hyperalgesia have been elusive. The role of the mechanically-activated (MA) channel piezo2 (known as FAM38B) present in mammalian sensory neurons is unknown. We test the hypothesis that piezo2 activity is enhanced by bradykinin, an algogenic peptide that induces mechanical hyperalgesia within minutes. Piezo2 current amplitude is increased and inactivation slowed by bradykinin 2 receptor (BDKRB2) activation in heterologous expression systems. Protein Kinase A (PKA) and Protein Kinase C (PKC) agonists enhance piezo2 activity. BDKRB2-mediated effects are abolished by PKA and PKC inhibitors. Finally, piezo2-dependent MA currents in a class of native sensory neurons are enhanced 8-fold by bradykinin via PKA and PKC. Thus, piezo2 sensitization may contribute to PKA- and PKC-mediated mechanical hyperalgesia. PMID:22921401

  14. Inflammatory signals enhance piezo2-mediated mechanosensitive currents.

    PubMed

    Dubin, Adrienne E; Schmidt, Manuela; Mathur, Jayanti; Petrus, Matthew J; Xiao, Bailong; Coste, Bertrand; Patapoutian, Ardem

    2012-09-27

    Heightened nociceptor function caused by inflammatory mediators such as bradykinin (BK) contributes to increased pain sensitivity (hyperalgesia) to noxious mechanical and thermal stimuli. Although it is known that sensitization of the heat transducer TRPV1 largely subserves thermal hyperalgesia, the cellular mechanisms underlying mechanical hyperalgesia have been elusive. The role of the mechanically activated (MA) channel piezo2 (known as FAM38B) present in mammalian sensory neurons is unknown. We test the hypothesis that piezo2 activity is enhanced by BK, an algogenic peptide that induces mechanical hyperalgesia within minutes. Piezo2 current amplitude is increased and inactivation is slowed by bradykinin receptor beta 2 (BDKRB2) activation in heterologous expression systems. Protein kinase A (PKA) and protein kinase C (PKC) agonists enhance piezo2 activity. BDKRB2-mediated effects are abolished by PKA and PKC inhibitors. Finally, piezo2-dependent MA currents in a class of native sensory neurons are enhanced 8-fold by BK via PKA and PKC. Thus, piezo2 sensitization may contribute to PKA- and PKC-mediated mechanical hyperalgesia. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Calcium signaling as a mediator of cell energy demand and a trigger to cell death

    PubMed Central

    Bhosale, Gauri; Sharpe, Jenny A.; Sundier, Stephanie Y.

    2015-01-01

    Calcium signaling is pivotal to a host of physiological pathways. A rise in calcium concentration almost invariably signals an increased cellular energy demand. Consistent with this, calcium signals mediate a number of pathways that together serve to balance energy supply and demand. In pathological states, calcium signals can precipitate mitochondrial injury and cell death, especially when coupled to energy depletion and oxidative or nitrosative stress. This review explores the mechanisms that couple cell signaling pathways to metabolic regulation or to cell death. The significance of these pathways is exemplified by pathological case studies, such as those showing loss of mitochondrial calcium uptake 1 in patients and ischemia/reperfusion injury. PMID:26375864

  16. Receptor-mediated signalling in plants: molecular patterns and programmes

    PubMed Central

    Tör, Mahmut; Lotze, Michael T.; Holton, Nicholas

    2009-01-01

    A highly evolved surveillance system in plants is able to detect a broad range of signals originating from pathogens, damaged tissues, or altered developmental processes, initiating sophisticated molecular mechanisms that result in defence, wound healing, and development. Microbe-associated molecular pattern molecules (MAMPs), damage-associated molecular pattern molecules (DAMPs), virulence factors, secreted proteins, and processed peptides can be recognized directly or indirectly by this surveillance system. Nucleotide binding-leucine rich repeat proteins (NB-LRR) are intracellular receptors and have been targeted by breeders for decades to elicit resistance to crop pathogens in the field. Receptor-like kinases (RLKs) or receptor like proteins (RLPs) are membrane bound signalling molecules with an extracellular receptor domain. They provide an early warning system for the presence of potential pathogens and activate protective immune signalling in plants. In addition, they act as a signal amplifier in the case of tissue damage, establishing symbiotic relationships and effecting developmental processes. The identification of several important ligands for the RLK-type receptors provided an opportunity to understand how plants differentiate, how they distinguish beneficial and detrimental stimuli, and how they co-ordinate the role of various types of receptors under varying environmental conditions. The diverse roles of extra-and intracellular plant receptors are examined here and the recent findings on how they promote defence and development is reviewed. PMID:19628572

  17. G proteins as regulators in ethylene-mediated hypoxia signaling.

    PubMed

    Steffens, Bianka; Sauter, Margret

    2010-04-01

    Waterlogging or flooding are frequently or constitutively encountered by many plant species. The resulting reduction in endogenous O2 concentration poses a severe threat. Numerous adaptations at the anatomical, morphological and metabolic level help plants to either escape low oxygen conditions or to endure them. Formation of aerenchyma or rapid shoot elongation are escape responses, as is the formation of adventitious roots. The metabolic shift from aerobic respiration to anaerobic fermentation contributes to a basal energy supply at low oxygen conditions. Ethylene plays a central role in hypoxic stress signaling, and G proteins have been recognized as crucial signal transducers in various hypoxic signaling pathways. The programmed death of parenchyma cells that results in hypoxia-induced aerenchyma formation is an ethylene response. In maize, aerenchyma are induced in the absence of ethylene when G proteins are constitutively activated. Similarly, ethylene induced death of epidermal cells that cover adventitious roots at the stem node of rice is strictly dependent on heterotrimeric G protein activity. Knock down of the unique Gα gene RGA1 in rice prevents epidermal cell death. Finally, in Arabidopsis, induction of alcohol dehydrogenase with resulting increased plant survival relies on the balanced activities of a small Rop G protein and its deactivating protein RopGAP4. Identifying the general mechanisms of G protein signaling in hypoxia adaptation of plants is one of the tasks ahead.

  18. ROS-mediated redox signaling during cell differentiation in plants.

    PubMed

    Schmidt, Romy; Schippers, Jos H M

    2015-08-01

    Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mechanisms of cytoskeleton-mediated mechanical signal transmission in cells

    PubMed Central

    Hwang, Yongyun; Gouget, Cecile L.M.; Barakat, Abdul I.

    2012-01-01

    Recent experiments have demonstrated very rapid long-distance transmission of mechanical forces within cells. Because the speed of this transmission greatly exceeds that of reaction-diffusion signaling, it has been conjectured that it occurs via the propagation of elastic waves through the actin stress fiber network. To explore the plausibility of this conjecture, we recently developed a model of small amplitude stress fiber deformations in prestressed viscoelastic stress fibers subjected to external forces. The model results demonstrated that rapid mechanical signal transmission is only possible when the external force is applied orthogonal to the stress fiber axis and that the dynamics of this transmission are governed by a balance between the prestress in the stress fiber and the stress fiber's material viscosity. The present study, which is a follow-up on our previous model, uses dimensional analysis to: (1) further evaluate the plausibility of the elastic wave conjecture and (2) obtain insight into mechanical signal transmission dynamics in simple stress fiber networks. We show that the elastic wave scenario is likely not the mechanism of rapid mechanical signal transmission in actin stress fibers due to the highly viscoelastic character of these fibers. Our analysis also demonstrates that the time constant characterizing mechanical stimulus transmission is strongly dependent on the topology of the stress fiber network, implying that network organization plays an important role in determining the dynamics of cellular responsiveness to mechanical stimulation. PMID:23336020

  20. The canonical Wg signaling modulates Bsk-mediated cell death in Drosophila

    PubMed Central

    Zhang, S; Chen, C; Wu, C; Yang, Y; Li, W; Xue, L

    2015-01-01

    Cell death is an essential regulatory mechanism for removing unneeded cells in animal development and tissue homeostasis. The c-Jun N-terminal kinase (JNK) pathway has pivotal roles in the regulation of cell death in response to various intrinsic and extrinsic stress signals. The canonical Wingless (Wg) signaling has been implicated in cell proliferation and cell fate decisions, whereas its role in cell death remains largely elusive. Here, we report that activated Bsk (the Drosophila JNK homolog) induced cell death is mediated by the canonical Wg signaling. First, loss of Wg signaling abrogates Bsk-mediated caspase-independent cell death. Second, activation of Wg signaling promotes cell death in a caspase-independent manner. Third, activation of Bsk signaling results in upregulated transcription of wingless (wg) gene. Finally, Wg pathway participates in the physiological function of Bsk signaling in development. These findings not only reveal a previously undiscovered role of Wg signaling in Bsk-mediated cell death, but also provide a novel mechanism for the interplay between the two important signaling pathways in development. PMID:25855961

  1. Extranuclear Signaling Effects Mediated by the Estrogen Receptor

    DTIC Science & Technology

    2008-03-01

    of the author( s ) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other...Mediated by the Estrogen Receptor 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-05-1-0241 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Erin...O’Neill, B.S. 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: eionson@uchicago.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND

  2. Generation of a conditional mouse model to target Acvr1b disruption in adult tissues.

    PubMed

    Ripoche, Doriane; Gout, Johann; Pommier, Roxane M; Jaafar, Rami; Zhang, Chang X; Bartholin, Laurent; Bertolino, Philippe

    2013-02-01

    Alk4 is a type I receptor that belongs to the transforming growth factor-beta (TGF-β) family. It takes part in the signaling of TGF-β ligands such as Activins, Gdfs, and Nodal that had been demonstrated to participate in numerous mechanisms ranging from early embryonic development to adult-tissue homeostasis. Evidences indicate that Alk4 is a key regulator of many embryonic processes, but little is known about its signaling in adult tissues and in pathological conditions where Alk4 mutations had been reported. Conventional deletion of Alk4 gene (Acvr1b) results in early embryonic lethality prior gastrulation, which has precluded study of Alk4 functions in postnatal and adult mice. To circumvent this problem, we have generated a conditional Acvr1b floxed-allele by flanking the fifth and sixth exons of the Acvr1b gene with loxP sites. Cre-mediated deletion of the floxed allele generates a deleted allele, which behaves as an Acvr1b null allele leading to embryonic lethality in homozygous mutant animals. A tamoxifen-inducible approach to target disruption of Acvr1b specifically in adult tissues was used and proved to be efficient for studying Alk4 functions in various organs. We report, therefore, a novel conditional model allowing investigation of biological role played by Alk4 in a variety of tissue-specific contexts.

  3. Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice

    PubMed Central

    Nishio, Miki; Hamada, Koichi; Kawahara, Kohichi; Sasaki, Masato; Noguchi, Fumihito; Chiba, Shuhei; Mizuno, Kensaku; Suzuki, Satoshi O.; Dong, Youyi; Tokuda, Masaaki; Morikawa, Takumi; Hikasa, Hiroki; Eggenschwiler, Jonathan; Yabuta, Norikazu; Nojima, Hiroshi; Nakagawa, Kentaro; Hata, Yutaka; Nishina, Hiroshi; Mimori, Koshi; Mori, Masaki; Sasaki, Takehiko; Mak, Tak W.; Nakano, Toru; Itami, Satoshi; Suzuki, Akira

    2012-01-01

    Mps one binder 1a (MOB1A) and MOB1B are key components of the Hippo signaling pathway and are mutated or inactivated in many human cancers. Here we show that intact Mob1a or Mob1b is essential for murine embryogenesis and that loss of the remaining WT Mob1 allele in Mob1aΔ/Δ1btr/+ or Mob1aΔ/+1btr/tr mice results in tumor development. Because most of these cancers resembled trichilemmal carcinomas, we generated double-mutant mice bearing tamoxifen-inducible, keratinocyte-specific homozygous-null mutations of Mob1a and Mob1b (kDKO mice). kDKO mice showed hyperplastic keratinocyte progenitors and defective keratinocyte terminal differentiation and soon died of malnutrition. kDKO keratinocytes exhibited hyperproliferation, apoptotic resistance, impaired contact inhibition, enhanced progenitor self renewal, and increased centrosomes. Examination of Hippo pathway signaling in kDKO keratinocytes revealed that loss of Mob1a/b altered the activities of the downstream Hippo mediators LATS and YAP1. Similarly, YAP1 was activated in some human trichilemmal carcinomas, and some of these also exhibited MOB1A/1B inactivation. Our results clearly demonstrate that MOB1A and MOB1B have overlapping functions in skin homeostasis, and exert their roles as tumor suppressors by regulating downstream elements of the Hippo pathway. PMID:23143302

  4. Heat Shock 70-kDa Protein 5 (Hspa5) Is Essential for Pronephros Formation by Mediating Retinoic Acid Signaling*

    PubMed Central

    Shi, Weili; Xu, Gang; Wang, Chengdong; Sperber, Steven M.; Chen, Yonglong; Zhou, Qin; Deng, Yi; Zhao, Hui

    2015-01-01

    Heat shock 70-kDa protein 5 (Hspa5), also known as binding immunoglobulin protein (Bip) or glucose-regulated protein 78 (Grp78), belongs to the heat shock protein 70 kDa family. As a multifunctional protein, it participates in protein folding and calcium homeostasis and serves as an essential regulator of the endoplasmic reticulum (ER) stress response. It has also been implicated in signal transduction by acting as a receptor or co-receptor residing at the plasma membrane. Its function during embryonic development, however, remains largely elusive. In this study, we used morpholino antisense oligonucleotides (MOs) to knock down Hspa5 activity in Xenopus embryos. In Hspa5 morphants, pronephros formation was strongly inhibited with the reduction of pronephric marker genes Lim homeobox protein 1 (lhx1), pax2, and β1 subunit of Na/K-ATPase (atp1b1). Pronephros tissue was induced in vitro by treating animal caps with all-trans-retinoic acid and activin. Depletion of Hspa5 in animal caps, however, blocked the induction of pronephros as well as reduced the expression of retinoic acid (RA)-responsive genes, suggesting that knockdown of Hspa5 attenuated RA signaling. Knockdown of Hspa5 in animal caps resulted in decreased expression of lhx1, a transcription factor directly regulated by RA signaling and essential for pronephros specification. Co-injection of Hspa5MO with lhx1 mRNA partially rescued the phenotype induced by Hspa5MO. These results suggest that the RA-Lhx1 signaling cascade is involved in Hspa5MO-induced pronephros malformation. This study shows that Hspa5, a key regulator of the unfolded protein response, plays an essential role in pronephros formation, which is mediated in part through RA signaling during early embryonic development. PMID:25398881

  5. EGF receptor signaling blocks aryl hydrocarbon receptor-mediated transcription and cell differentiation in human epidermal keratinocytes

    PubMed Central

    Sutter, Carrie Hayes; Yin, Hong; Li, Yunbo; Mammen, Jennifer S.; Bodreddigari, Sridevi; Stevens, Gaylene; Cole, Judith A.; Sutter, Thomas R.

    2009-01-01

    Dioxin is an extremely potent carcinogen. In highly exposed people, the most commonly observed toxicity is chloracne, a pathological response of the skin. Most of the effects of dioxin are attributed to its activation of the aryl hydrocarbon receptor (AHR), a transcription factor that binds to the Ah receptor nuclear translocator (ARNT) to regulate the transcription of numerous genes, including CYP1A1 and CYP1B1. In cultures of normal human epidermal keratinocytes dioxin accelerates cell differentiation, as measured by the formation of cornified envelopes. We show that this acceleration is mediated by the AHR; also, that dioxin increases the expression of several genes known to be regulated by ARNT, which have critical roles in the cornification and epidermal barrier function of the skin. Importantly, we demonstrate that all of these responses are opposed by ligand-activation of the EGF receptor (R), an important regulator of keratinocyte cell fate. In the CYP1A1 enhancer, EGFR activation prevents recruitment of the p300 coactivator, although not affecting the binding of the AHR or ARNT. The total cellular level of p300 protein does not decrease, and overexpression of p300 relieves EGFR-mediated repression of transcription, indicating that p300 is a critical target for the repression of the AHR complex by EGFR signaling. These results provide a mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin is able to disrupt epidermal homeostasis and identify EGFR signaling as a regulator of the AHR. This signaling may modulate the incidence and severity of chloracne and be of therapeutic relevance to human poisonings by dioxin. PMID:19255421

  6. AIP1-mediated stress signaling in atherosclerosis and arteriosclerosis.

    PubMed

    Zhang, Jiqin; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang

    2015-05-01

    AIP1 (ASK1-interacting protein-1; encoded by the DAB2IP gene), a signaling scaffolding protein, is abundantly expressed in vascular endothelial cells (EC). While it was initially discovered as an apoptosis signal-regulating kinase 1 (ASK1)-interacting protein, AIP1 broadly suppresses inflammatory responses triggered by cytokines and stresses such as TNF, LPS, VEGF, and endoplasmic reticulum (ER) stress in EC (therefore, AIP1 is an anti-inflammatory protein). Human genome-wide association study (GWAS) has identified DAB2IP gene variants conferring susceptibility to cardiovascular diseases. Consistently, a global or vascular EC-specific deletion of DAB2IP in mice strongly enhances inflammatory responses and exacerbates atherosclerosis and graft arteriosclerosis progression in mouse models. Mechanisms for AIP1 function and regulation associated with human cardiovascular diseases need further investigations.

  7. Sonic hedgehog signaling pathway mediates development of hepatocellular carcinoma.

    PubMed

    Cai, Heng; Li, Hongxing; Li, Jingmin; Li, Xiaoyan; Li, Yana; Shi, Yan; Wang, Dong

    2016-10-15

    Although abnormal activation of the sonic hedgehog (Shh) signaling pathway has been demonstrated in human hepatocellular carcinoma (HCC) patients and in most HCC cell lines, the mechanism by which the Shh pathway promotes the development of HCC remains uncertain. Using a liver cancer model induced by diethylnitrosamine (DEN) which mimics the process from liver injury, abnormal hepatocyte proliferation, and hepatocirrhosis to hepatocyte canceration, we investigated the abnormal activation of the Shh pathway by examining the expression of Shh, patched-1 (Ptch), smoothened (SMO), and glioma-associated oncogene-1 (Gli1) genes. During this process, the expression of CDK1 and cyclin B1 protein, which are two components of the M-phase promoting factor (MPF) controlling G2/M transition, was also examined to explore the potential relationship between Shh activation and cell cycle progression. We observed that the cells with Shh, Ptch, and Gli1 protein expression were mainly distributed in hyperplastic nodule, cancerous node, the epithelia of interlobular bile duct, and precancerous tissues. A gradually increasing tendency of the positive expression rate of Shh, Ptch, and Gli1 proteins in the process from the beginning normal tissue to the final cancer formation was revealed. The cyclin B1 and CDK1 expression level was higher in the DEN-induced rats as compared with normal rats, and their expression was mainly distributed in the portal area of the liver, hyperplastic nodule, cancerous node, and precancerous tissues. Our results suggested that the Shh signaling pathway is activated during liver carcinogenesis, and activated Shh signaling promotes the cell proliferation by facilitating the G2/M transition through increasing the expression of cyclin B1 and CDK1 protein, which eventually results in the development of liver cancer. Better understanding of the Shh signaling pathway in HCC may contribute to the development of novel therapeutic strategies in inhibiting cell

  8. Physiological Stress Mediates the Honesty of Social Signals

    PubMed Central

    Bortolotti, Gary R.; Mougeot, Francois; Martinez-Padilla, Jesus; Webster, Lucy M. I.; Piertney, Stuart B.

    2009-01-01

    Background Extravagant ornaments used as social signals evolved to advertise their bearers' quality. The Immunocompetence Handicap Hypothesis proposes that testosterone-dependent ornaments reliably signal health and parasite resistance; however, empirical studies have shown mixed support. Alternatively, immune function and parasite resistance may be indirectly or directly related to glucocorticoid stress hormones. We propose that an understanding of the interplay between the individual and its environment, particularly how they cope with stressors, is crucial for understanding the honesty of social signals. Methodology/Principal Findings We analyzed corticosterone deposited in growing feathers as an integrated measure of hypothalamic-pituitary-adrenal activity in a wild territorial bird, the red grouse Lagopus lagopus scoticus. We manipulated two key, interrelated components, parasites and testosterone, which influence both ornamentation and fitness. Birds were initially purged of parasites, and later challenged with parasites or not, while at the same time being given testosterone or control implants, using a factorial experimental design. At the treatment level, testosterone enhanced ornamentation, while parasites reduced it, but only in males not implanted with testosterone. Among individuals, the degree to which both parasites and testosterone had an effect was strongly dependent on the amount of corticosterone in the feather grown during the experiment. The more stressors birds had experienced (i.e., higher corticosterone), the more parasites developed, and the less testosterone enhanced ornamentation. Conclusions/Significance With this unique focus on the individual, and a novel, integrative, measure of response to stressors, we show that ornamentation is ultimately a product of the cumulative physiological response to environmental challenges. These findings lead toward a more realistic concept of honesty in signaling as well as a broader discussion of the

  9. Scaffold-mediated gating of Cdc42 signalling flux

    PubMed Central

    Rapali, Péter; Mitteau, Romain; Braun, Craig; Massoni-Laporte, Aurèlie; Ünlü, Caner; Bataille, Laure; Arramon, Floriane Saint; Gygi, Steven P; McCusker, Derek

    2017-01-01

    Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways. DOI: http://dx.doi.org/10.7554/eLife.25257.001 PMID:28304276

  10. Structural basis for angiopoietin-1–mediated signaling initiation

    SciTech Connect

    Yu, Xuehong; Seegar, Tom C. M.; Dalton, Annamarie C.; Tzvetkova-Robev, Dorothea; Goldgur, Yehuda; Rajashankar, Kanagalaghatta R.; Nikolov, Dimitar B.; Barton, William A.

    2013-04-30

    Angiogenesis is a complex cellular process involving multiple regulatory growth factors and growth factor receptors. Among them, the ligands for the endothelial-specific tunica intima endothelial receptor tyrosine kinase 2 (Tie2) receptor kinase, angiopoietin-1 (Ang1) and Ang2, play essential roles in balancing vessel stability and regression during both developmental and tumor-induced angiogenesis. Despite possessing a high degree of sequence identity, Ang1 and Ang2 have distinct functional roles and cell-signaling characteristics. Here, we present the crystal structures of Ang1 both unbound and in complex with the Tie2 ectodomain. Comparison of the Ang1-containing structures with their Ang2-containing counterparts provide insight into the mechanism of receptor activation and reveal molecular surfaces important for interactions with Tie2 coreceptors and associated signaling proteins. Using structure-based mutagenesis, we identify a loop within the angiopoietin P domain, adjacent to the receptor-binding interface, which confers the specific agonist/antagonist properties of the molecule. We demonstrate using cell-based assays that an Ang2 chimera containing the Ang1 loop sequence behaves functionally similarly to Ang1 as a constitutive Tie2 agonist, able to efficiently dissociate the inhibitory Tie1/Tie2 complex and elicit Tie2 clustering and downstream signaling.

  11. Signalling through phospholipase C interferes with clathrin-mediated endocytosis.

    PubMed

    Carvou, Nicolas; Norden, Anthony G W; Unwin, Robert J; Cockcroft, Shamshad

    2007-01-01

    We investigated if phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2) hydrolysis by phospholipase C activation through cell surface receptors would interfere with clathrin-mediated endocytosis as recruitment of clathrin assembly proteins is PtdIns(4,5)P2-dependent. In the WKPT renal epithelial cell line, endocytosed insulin and beta2-glycoprotein I (beta2gpI) were observed in separate compartments, although endocytosis of both ligands was clathrin-dependent as demonstrated by expression of the clathrin-binding C-terminal domain of AP180 (AP180-C). The two uptake mechanisms were different as only insulin uptake was reduced when the mu2-subunit of the adaptor complex AP-2 was silenced by RNA interference. ATP receptors are expressed at the apical surface of renal cells and, thus, we examined the effect of extracellular ATP on insulin and beta2gpI uptake. ATP stimulated phospholipase C activity, and also suppressed uptake of insulin, but not beta2gpI. This effect was reversed by the PLC inhibitor U-73122. In polarized cell cultures, insulin uptake was apical, whereas beta2gpI uptake was through the basolateral membrane, thus providing an explanation for selective inhibition of insulin endocytosis by ATP. Taken together, these results demonstrate that stimulation of apical G-protein-coupled P2Y receptors, which are coupled to phospholipase C activation diminishes clathrin-mediated endocytosis without interfering with basolateral endocytic mechanisms.

  12. Crosstalk between Wnt signaling and Phorbol ester-mediated PKC signaling in MCF-7 human breast cancer cells.

    PubMed

    Kim, Soyoung; Chun, So-Young; Kwon, Yun-Suk; Nam, Kyung-Soo

    2016-02-01

    Although many studies have implicated the crosstalk between the Wnt and PKC signaling pathways in tumor initiation and progression, the molecular roles of PKC isoforms in the Wnt signaling pathway remain poorly understood. In this study, we explored the contribution of PKC isoforms to canonical and noncanonical Wnt signaling pathway in mediating cell migration and an epithelial-mesenchymal transition (EMT). When MCF-7 cells were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) for up to 3 weeks, the effect of TPA on Wnt signaling pathway was dramatically different depending on the exposure time. The short term exposure (3 days) of MCF-7 cells to TPA exhibited significant induction of Wnt5a expression, along with the enhanced expression of PKC-α, to promote cell migration, which suggested that activation of noncanonical Wnt signaling pathway is associated with PKC-α. However, the chronic exposure (3 weeks) of cells to TPA completely suppressed Wnt5a expression and the expression of PKC-η and PKC-δ, whereas the expression of Wnt3a and PKC-θ were up-regulated to activate the canonical Wnt signaling pathway. Moreover, the loss of epithelial markers, including E-cadherin and GATA-3, suggested that chronic exposure of TPA stimulates EMT. Taken together, our data suggest that PKC-θ positively regulates the canonical Wnt signaling pathway, and that PKC-η and PKC-δ negatively modulate this signaling pathway.

  13. Phylogeography of E1b1b1b-M81 haplogroup and analysis of its subclades in Morocco.

    PubMed

    Reguig, Ahmed; Harich, Nourdin; Barakat, Abdelhamid; Rouba, Hassan

    2014-01-01

    In this study we analyzed 295 unrelated Berber-speaking men from northern, central, and southern Morocco to characterize frequency of the E1b1b1b-M81 haplogroup and to refine the phylogeny of its subclades: E1b1b1b1-M107, E1b1b1b2-M183, and E1b1b1b2a-M165. For this purpose, we typed four biallelic polymorphisms: M81, M107, M183, and M165. A large majority of the Berber-speaking male lineages belonged to the Y-chromosomal E1b1b1b-M81 haplogroup. The frequency ranged from 79.1% to 98.5% in all localities sampled. E1b1b1b2-M183 was the most dominant subclade in our samples, ranging from 65.1% to 83.1%. In contrast, the E1b1b1b1-M107 and E1b1b1b2a-M165 subclades were not found in our samples. Our results suggest a predominance of the E1b1b1b-M81 haplogroup among Moroccan Berber-speaking males with a decreasing gradient from south to north. The most prevalent subclade in this haplogroup was E1b1b1b2-M183, for which diffferences among these three groups were statistically significant between central and southern groups. Copyright © 2014 Wayne State University Press, Detroit, Michigan 48201-1309.

  14. Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis.

    PubMed

    Masterson, Joanne C; McNamee, Eóin N; Fillon, Sophie A; Hosford, Lindsay; Harris, Rachel; Fernando, Shahan D; Jedlicka, Paul; Iwamoto, Ryo; Jacobsen, Elizabeth; Protheroe, Cheryl; Eltzschig, Holger K; Colgan, Sean P; Arita, Makoto; Lee, James J; Furuta, Glenn T

    2015-08-01

    Eosinophils reside in the colonic mucosa and increase significantly during disease. Although a number of studies have suggested that eosinophils contribute to the pathogenesis of GI inflammation, the expanding scope of eosinophil-mediated activities indicate that they also regulate local immune responses and modulate tissue inflammation. We sought to define the impact of eosinophils that respond to acute phases of colitis in mice. Acute colitis was induced in mice by administration of dextran sulfate sodium, 2,4,6-trinitrobenzenesulfonic acid or oxazolone to C57BL/6J (control) or eosinophil deficient (PHIL) mice. Eosinophils were also depleted from mice using antibodies against interleukin (IL)-5 or by grafting bone marrow from PHIL mice into control mice. Colon tissues were collected and analysed by immunohistochemistry, flow cytometry and reverse transcription PCR; lipids were analysed by mass spectroscopy. Eosinophil-deficient mice developed significantly more severe colitis, and their colon tissues contained a greater number of neutrophils, than controls. This compensatory increase in neutrophils was accompanied by increased levels of the chemokines CXCL1 and CXCL2, which attract neutrophils. Lipidomic analyses of colonic tissue from eosinophil-deficient mice identified a deficiency in the docosahexaenoic acid-derived anti-inflammatory mediator 10, 17- dihydroxydocosahexaenoic acid (diHDoHE), namely protectin D1 (PD1). Administration of an exogenous PD1-isomer (10S, 17S-DiHDoHE) reduced the severity of colitis in eosinophil-deficient mice. The PD1-isomer also attenuated neutrophil infiltration and reduced levels of tumour necrosis factor-α, IL-1β, IL-6 and inducible NO-synthase in colons of mice. Finally, in vitro assays identified a direct inhibitory effect of PD1-isomer on neutrophil transepithelial migration. Eosinophils exert a protective effect in acute mouse colitis, via production of anti-inflammatory lipid mediators. Published by the BMJ Publishing

  15. Oleanane triterpenes as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Camellia japonica.

    PubMed

    Uddin, Mohammad Nasir; Sharma, Govinda; Yang, Jun-Li; Choi, Hong Seok; Lim, Seong-Il; Kang, Keon Wook; Oh, Won Keun

    2014-07-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role in metabolic signaling, thereby making it an exciting drug target for type 2 diabetes and obesity. Besides, there is substantial evidence that shows its overexpression is involved in breast cancer, which suggests that selective PTP1B inhibition might be effective in breast cancer treatment. As part of our continuous research on PTP1B inhibitors from medicinal plants, four oleanane-type triterpenes were isolated from an EtOAc-soluble extract of fruit peels of Camellia japonica (Theaceae), together with 6 previously known compounds of this class. Their structures were determined on the basis of spectroscopic data analysis (UV, IR, (1)H and (13)CNMR, HMBC, HSQC, NOESY, and MS). All isolates were evaluated for their inhibitory effects on PTP1B, as well as their cytotoxic effects against human breast cancer cell lines MCF7, MCF7/ADR, and MDA-MB-231. Several compounds with OH-3 or/and COOH-28 functionalities showed strong PTP1B inhibitory activity (IC50 values ranging from 3.77±0.11 to 6.40±0.81 μM) as well as significant cytotoxicity (IC50 values ranging from 0.51±0.05 to 13.55±1.44 μM).

  16. Tumor Vascular Changes Mediated by Inhibition of Oncogenic Signaling

    PubMed Central

    Qayum, Naseer; Muschel, Ruth J.; Im, Jae Hong; Balathasan, Lukxmi; Koch, Cameron J.; Patel, Sonal; McKenna, W. Gillies; Bernhard, Eric J.

    2009-01-01

    Many inhibitors of the EGFR-RAS-PI3 kinase-AKT signaling pathway are in clinical use or under development for cancer therapy. Here we show that treatment of mice bearing human tumor xenografts with inhibitors that block EGFR, RAS, PI3 kinase or AKT resulted in prolonged and durable enhancement of tumor vascular flow, perfusion and decreased tumor hypoxia. The vessels in the treated tumors had decreased tortuosity and increased internodal length accounting for the functional alterations. Inhibition of tumor growth cannot account for these results as the drugs were given at doses that did not alter tumor growth. The tumor cell itself was an essential target as HT1080 tumors that lack EGFR did not respond to an EGFR inhibitor, but did respond with vascular alterations to RAS or PI3 Kinase inhibition. We extended these observations to spontaneously arising tumors in MMTV-neu mice. These tumors also responded to PI3 kinase inhibition with decreased tumor hypoxia, increased vascular flow and morphological alterations of their vessels including increased vascular maturity and acquisition of pericyte markers. These changes are similar to the vascular normalization that has been described after anti-angiogenic treatment of xenografts. One difficulty in the use of vascular normalization as a therapeutic strategy has been its limited duration. In contrast, blocking tumor cell RAS-PI3K-AKT signaling led to persistent vascular changes that might be incorporated into clinical strategies based on improvement of vascular flow or decreased hypoxia. These results indicate that vascular alterations must be considered as a consequence of signaling inhibition in cancer therapy. PMID:19622766

  17. The Polycystin complex mediates WNT/Ca2+ signaling

    PubMed Central

    Nesin, Vasyl; Tran, Uyen; Outeda, Patricia; Bai, Chang-Xi; Keeling, Jacob; Maskey, Dipak; Watnick, Terry; Wessely, Oliver; Tsiokas, Leonidas

    2016-01-01

    WNT ligands induce Ca2+ signaling on target cells. PKD1 (Polycystin 1) is considered an orphan, atypical G protein coupled receptor complexed with TRPP2 (Polycystin 2 or PKD2), a Ca2+-permeable ion channel. Inactivating mutations in their genes cause autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases. Here, we show that WNTs bind to the extracellular domain of PKD1 and induce whole cell currents and Ca2+ influx dependent on TRPP2. Pathogenic PKD1 or PKD2 mutations that abrogate complex formation, compromise cell surface expression of PKD1, or reduce TRPP2 channel activity suppress activation by WNTs. Pkd2−/− fibroblasts lack WNT-induced Ca2+ currents and are unable to polarize during directed cell migration. In Xenopus embryos, PKD1, Dishevelled 2 (DVL2), and WNT9A act within the same pathway to preserve normal tubulogenesis. These data define PKD1 as a WNT (co)receptor and implicate defective WNT/Ca2+ signaling as one of the causes of ADPKD. PMID:27214281

  18. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    PubMed

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. CYP1B1 and hormone-induced cancer.

    PubMed

    Gajjar, Ketan; Martin-Hirsch, Pierre L; Martin, Francis L

    2012-11-01

    Cancers in hormone-responsive tissues (e.g., breast, ovary, endometrium, prostate) occur at high incidence rates worldwide. However, their genetic basis remains poorly understood. Studies to date suggest that endogenous/exogenous oestrogen and environmental carcinogens may play a role in development and/or progression of hormone-induced cancers via oxidative oestrogen metabolism. Cytochrome P450 1B1 is a key enzyme in its oestrogen metabolism pathway, giving rise to hydroxylation and conjugation. Although CYP1B1 is expressed in many cancers, particularly high levels of expression are observed in oestrogen-mediated disease. CYP1B1 is more readily found in tumour tissue compared to normal. Given the role of CYP1B1 in pro-carcinogen and oestrogen metabolism, polymorphisms in CYP1B1 could result in modifications in its enzyme activity and subsequently lead to hormone-mediated carcinogenesis. CYP1B1 may also be involved in progression of the disease by altering the tissue response to hormones and clinical response to chemotherapy. The exact mechanism behind these events is complex and unclear. Only a few functional single nucleotide polymorphisms of CYP1B1 are known to result in amino acid substitutions and have been extensively investigated. Studies examining the contribution of different CYP1B1 alleles to hormone-mediated cancer risks are inconsistent. The main focus of this review is to appraise the available studies linking the pathogenesis of the hormone-induced cancers to various CYP1B1 polymorphisms. Additionally, we explore the role of a neuronal protein, γ-synuclein, in CYP1B1-mediated pathogenesis.

  20. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression

    PubMed Central

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E.; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-01-01

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA–RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits. PMID:25916845

  1. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression.

    PubMed

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-05-26

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA-RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits.

  2. [TIR domain--containing adaptors regulate TLR-mediated signaling pathways].

    PubMed

    Yamamoto, Masahiro; Akira, Shizuo

    2004-12-01

    Recognition of pathogens by Toll-like receptors (TLRs) triggers innate immune responses via signaling pathways mediated by several Toll/IL-1R (TIR) domain-containing adaptors such as MyD88, TIRAP, and TRIF. MyD88 is a common adaptor that is essential for proinflammatory cytokine production, whereas TRIF mediates the MyD88-independent pathway from TLR3 and TLR4 that is responsible for type I interferon production in response to double-stranded RNA and LPS, respectively. TIRAP specifically participates in the MyD88-dependent pathways shared by TLR2 and TLR4, and TRAM is essential for the TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors play an important role in the TLR mediated signaling pathways.

  3. Novel vistas of calcium-mediated signalling in the thalamus.

    PubMed

    Pape, Hans-Christian; Munsch, Thomas; Budde, Thomas

    2004-05-01

    Traditionally, the role of calcium ions (Ca(2+)) in thalamic neurons has been viewed as that of electrical charge carriers. Recent experimental findings in thalamic cells have only begun to unravel a highly complex Ca(2+) signalling network that exploits extra- and intracellular Ca(2+) sources. In thalamocortical relay neurons, interactions between T-type Ca(2+) channel activation, Ca(2+)-dependent regulation of adenylyl cyclase activity and the hyperpolarization-activated cation current ( I(h)) regulate oscillatory burst firing during periods of sleep and generalized epilepsy, while a functional triad between Ca(2+) influx through high-voltage-activated (most likely L-type) Ca(2+) channels, Ca(2+)-induced Ca(2+) release via ryanodine receptors (RyRs) and a repolarizing mechanism (possibly via K(+) channels of the BK(Ca) type) supports tonic spike firing as required during wakefulness. The mechanisms seem to be located mostly at dendritic and somatic sites, respectively. One functional compartment involving local GABAergic interneurons in certain thalamic relay nuclei is the glomerulus, in which the dendritic release of GABA is regulated by Ca(2+) influx via canonical transient receptor potential channels (TRPC), thereby presumably enabling transmitters of extrathalamic input systems that are coupled to phospholipase C (PLC)-activating receptors to control feed-forward inhibition in the thalamus. Functional interplay between T-type Ca(2+) channels in dendrites and the A-type K(+) current controls burst firing, contributing to the range of oscillatory activity observed in these interneurons. GABAergic neurons in the reticular thalamic (RT) nucleus recruit a specific set of Ca(2+)-dependent mechanisms for the generation of rhythmic burst firing, of which a particular T-type Ca(2+) channel in the dendritic membrane, the Ca(2+)-dependent activation of non-specific cation channels ( I(CAN)) and of K(+) channels (SK(Ca) type) are key players. Glial Ca(2+) signalling in

  4. Methods for Modeling Brassinosteroid-Mediated Signaling in Plant Development.

    PubMed

    Frigola, David; Caño-Delgado, Ana I; Ibañes, Marta

    2017-01-01

    Mathematical modeling of biological processes is a useful tool to draw conclusions that are contained in the data, but not directly reachable, as well as to make predictions and select the most efficient follow-up experiments. Here we outline a method to model systems of a few proteins that interact transcriptionally and/or posttranscriptionally, by representing the system as Ordinary Differential Equations and to study the model dynamics and stationary states. We exemplify this method by focusing on the regulation by the brassinosteroid (BR) signaling component BRASSINOSTEROID INSENSITIVE1 ETHYL METHYL SULFONATE SUPPRESSOR1 (BES1) of BRAVO, a quiescence-regulating transcription factor expressed in the quiescent cells of Arabidopsis thaliana roots. The method to extract the stationary states and the dynamics is provided as a Mathematica code and requires basic knowledge of the Mathematica software to be executed.

  5. P2 receptor-mediated signaling in mast cell biology.

    PubMed

    Bulanova, Elena; Bulfone-Paus, Silvia

    2010-03-01

    Mast cells are widely recognized as effector cells of allergic inflammatory reactions. They contribute to the pathogenesis of different chronic inflammatory diseases, wound healing, fibrosis, thrombosis/fibrinolysis, and anti-tumor immune responses. In this paper, we summarized the role of P2X and P2Y receptors in mast cell activation and effector functions. Mast cells are an abundant source of ATP which is stored in their granules and secreted upon activation. We discuss the contribution of mast cells to the extracellular ATP release and to the maintenance of extracellular nucleotides pool. Recent publications highlight the importance of purinergic signaling for the pathogenesis of chronic airway inflammation. Therefore, the role of ATP and P2 receptors in allergic inflammation with focus on mast cells was analyzed. Finally, ATP functions as mast cell autocrine/paracrine factor and as messenger in intercellular communication between mast cells, nerves, and glia in the central nervous system.

  6. Autotaxin-mediated lipid signaling intersects with LIF and BMP signaling to promote the naive pluripotency transcription factor program

    PubMed Central

    Kime, Cody; Sakaki-Yumoto, Masayo; Goodrich, Leeanne; Hayashi, Yohei; Sami, Salma; Derynck, Rik; Asahi, Michio; Panning, Barbara; Yamanaka, Shinya; Tomoda, Kiichiro

    2016-01-01

    Developmental signaling molecules are used for cell fate determination, and understanding how their combinatorial effects produce the variety of cell types in multicellular organisms is a key problem in biology. Here, we demonstrate that the combination of leukemia inhibitory factor (LIF), bone morphogenetic protein 4 (BMP4), lysophosphatidic acid (LPA), and ascorbic acid (AA) efficiently converts mouse primed pluripotent stem cells (PSCs) into naive PSCs. Signaling by the lipid LPA through its receptor LPAR1 and downstream effector Rho-associated protein kinase (ROCK) cooperated with LIF signaling to promote this conversion. BMP4, which also stimulates conversion to naive pluripotency, bypassed the need for exogenous LPA by increasing the activity of the extracellular LPA-producing enzyme autotaxin (ATX). We found that LIF and LPA-LPAR1 signaling affect the abundance of signal transducer and activator of transcription 3 (STAT3), which induces a previously unappreciated Kruppel-like factor (KLF)2-KLF4-PR domain 14 (PRDM14) transcription factor circuit key to establish naive pluripotency. AA also affects this transcription factor circuit by controlling PRDM14 expression. Thus, our study reveals that ATX-mediated autocrine lipid signaling promotes naive pluripotency by intersecting with LIF and BMP4 signaling. PMID:27738243

  7. Intrinsic disorder mediates cooperative signal transduction in STIM1.

    PubMed

    Furukawa, Yukio; Teraguchi, Shunsuke; Ikegami, Takahisa; Dagliyan, Onur; Jin, Lin; Hall, Damien; Dokholyan, Nikolay V; Namba, Keiichi; Akira, Shizuo; Kurosaki, Tomohiro; Baba, Yoshihiro; Standley, Daron M

    2014-05-15

    Intrinsically disordered domains have been reported to play important roles in signal transduction networks by introducing cooperativity into protein-protein interactions. Unlike intrinsically disordered domains that become ordered upon binding, the EF-SAM domain in the stromal interaction molecule (STIM) 1 is distinct in that it is ordered in the monomeric state and partially unfolded in its oligomeric state, with the population of the two states depending on the local Ca(2+) concentration. The oligomerization of STIM1, which triggers extracellular Ca(2+) influx, exhibits cooperativity with respect to the local endoplasmic reticulum Ca(2+) concentration. Although the physiological importance of the oligomerization reaction is well established, the mechanism of the observed cooperativity is not known. Here, we examine the response of the STIM1 EF-SAM domain to changes in Ca(2+) concentration using mathematical modeling based on in vitro experiments. We find that the EF-SAM domain partially unfolds and dimerizes cooperatively with respect to Ca(2+) concentration, with Hill coefficients and half-maximal activation concentrations very close to the values observed in vivo for STIM1 redistribution and extracellular Ca(2+) influx. Our mathematical model of the dimerization reaction agrees quantitatively with our analytical ultracentrifugation-based measurements and previously published free energies of unfolding. A simple interpretation of these results is that Ca(2+) loss effectively acts as a denaturant, enabling cooperative dimerization and robust signal transduction. We present a structural model of the Ca(2+)-unbound EF-SAM domain that is consistent with a wide range of evidence, including resistance to proteolytic cleavage of the putative dimerization portion.

  8. Beta2-adrenergic receptor signaling mediates corneal epithelial wound repair.

    PubMed

    Ghoghawala, Shahed Y; Mannis, Mark J; Pullar, Christine E; Rosenblatt, Mark I; Isseroff, R Rivkah

    2008-05-01

    Beta-adrenergic receptor (AR) antagonists are frequently prescribed ophthalmic drugs, yet previous investigations into how catecholamines affect corneal wound healing have yielded conflicting With the use of an integrated pharmacologic and genetic approach, the authors investigated how the beta-AR impacts corneal epithelial healing. Migratory rates of cultured adult murine corneal epithelial (AMCE) cells and in vivo corneal wound healing were examined in beta2-AR(+/+) and beta2-AR(-/-) mice. Signaling pathways were evaluated by immunoblotting. results. The beta-AR agonist isoproterenol decreased AMCE cell migratory speed to 70% of untreated controls, and this was correlated with a 0.60-fold decrease in levels of activated phospho-ERK (P-ERK). Treatment with the beta-AR antagonist (timolol) increased speed 33% and increased P-ERK 2.4-fold (P < 0.05). The same treatment protocols had no effect on AMCE cells derived from beta2-AR(-/-) mice; all treatment groups showed statistically equivalent migratory speeds and ERK phosphorylation. In beta2-AR(+/+) animals, the beta-AR agonist (isoproterenol) delayed the rate of in vivo corneal wound healing by 79%, whereas beta-AR antagonist (timolol) treatment increased the rate of healing by 16% (P < 0.05) compared with saline-treated controls. In contrast, in the beta2-AR(-/-) mice, all treatment groups demonstrated equivalent rates of wound healing. Additionally, murine corneal epithelial cell expressed the catecholamine-synthesizing enzyme tyrosine hydroxylase and detectable levels of epinephrine (184.5 pg/mg protein). The authors provide evidence of an endogenous autocrine catecholamine signaling pathway dependent on an intact beta2-AR for the modulation of corneal epithelial wound repair.

  9. Staphylococcal Superantigens Spark Host-Mediated Danger Signals

    PubMed Central

    Krakauer, Teresa; Pradhan, Kisha; Stiles, Bradley G.

    2016-01-01

    Staphylococcal enterotoxin B (SEB) of Staphylococcus aureus, and related superantigenic toxins produced by myriad microbes, are potent stimulators of the immune system causing a variety of human diseases from transient food poisoning to lethal toxic shock. These protein toxins bind directly to specific Vβ regions of T-cell receptors (TCR) and major histocompatibility complex (MHC) class II on antigen-presenting cells, resulting in hyperactivation of T lymphocytes and monocytes/macrophages. Activated host cells produce excessive amounts of proinflammatory cytokines and chemokines, especially tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. Because of superantigen-induced T cells skewed toward TH1 helper cells, and the induction of proinflammatory cytokines, superantigens can exacerbate autoimmune diseases. Upon TCR/MHC ligation, pathways induced by superantigens include the mitogen-activated protein kinase cascades and cytokine receptor signaling, resulting in activation of NFκB and the phosphoinositide 3-kinase/mammalian target of rapamycin pathways. Various mouse models exist to study SEB-induced shock including those with potentiating agents, transgenic mice and an “SEB-only” model. However, therapeutics to treat toxic shock remain elusive as host response genes central to pathogenesis of superantigens have only been identified recently. Gene profiling of a murine model for SEB-induced shock reveals novel molecules upregulated in multiple organs not previously associated with SEB-induced responses. The pivotal genes include intracellular DNA/RNA sensors, apoptosis/DNA damage-related molecules, immunoproteasome components, as well as antiviral and IFN-stimulated genes. The host-wide induction of these, and other, antimicrobial defense genes provide evidence that SEB elicits danger signals resulting in multi-organ damage and toxic

  10. Interleukin-6-mediated signaling in adrenal medullary chromaffin cells.

    PubMed

    Jenkins, Danielle E; Sreenivasan, Dharshini; Carman, Fiona; Samal, Babru; Eiden, Lee E; Bunn, Stephen J

    2016-12-01

    The pro-inflammatory cytokines, tumor necrosis factor-α, and interleukin-1β/α modulate catecholamine secretion, and long-term gene regulation, in chromaffin cells of the adrenal medulla. Since interleukin-6 (IL6) also plays a key integrative role during inflammation, we have examined its ability to affect both tyrosine hydroxylase activity and adrenomedullary gene transcription in cultured bovine chromaffin cells. IL6 caused acute tyrosine/threonine phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and serine/tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3). Consistent with ERK1/2 activation, IL6 rapidly increased tyrosine hydroxylase phosphorylation (serine-31) and activity, as well as up-regulated genes, encoding secreted proteins including galanin, vasoactive intestinal peptide, gastrin-releasing peptide, and parathyroid hormone-like hormone. The effects of IL6 on the entire bovine chromaffin cell transcriptome were compared to those generated by G-protein-coupled receptor (GPCR) agonists (histamine and pituitary adenylate cyclase-activating polypeptide) and the cytokine receptor agonists (interferon-α and tumor necrosis factor-α). Of 90 genes up-regulated by IL6, only 16 are known targets of IL6 in the immune system. Those remaining likely represent a combination of novel IL6/STAT3 targets, ERK1/2 targets and, potentially, IL6-dependent genes activated by IL6-induced transcription factors, such as hypoxia-inducible factor 1α. Notably, genes induced by IL6 include both neuroendocrine-specific genes activated by GPCR agonists, and transcripts also activated by the cytokines. These results suggest an integrative role for IL6 in the fine-tuning of the chromaffin cell response to a wide range of physiological and paraphysiological stressors, particularly when immune and endocrine stimuli converge. © 2016 International Society for Neurochemistry.

  11. Differential Calcium Signaling Mediated by Voltage-Gated Calcium Channels in Rat Retinal Ganglion Cells and Their Unmyelinated Axons

    PubMed Central

    Sargoy, Allison; Sun, Xiaoping

    2014-01-01

    Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs) in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC) regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury. PMID:24416240

  12. C terminus of RGS-GAIP-interacting protein conveys neuropilin-1-mediated signaling during angiogenesis.

    PubMed

    Wang, Ling; Mukhopadhyay, Debabrata; Xu, Xiaolei

    2006-07-01

    Initially, it was thought that there was no intracellular signaling mediated by NRP-1 alone in response to its ligands. However, the emerging data from our group as well as others suggest that the signaling through NRP-1 actually promotes angiogenesis and is mediated through its C-terminal domain and downstream molecules such as phosphoinositide 3-kinase. Hence, understanding the signal transduction pathways mediated by NRP-1 and identification of its downstream molecules are of importance. By using both in vivo zebrafish model and in vitro tissue culture system, we have shown that the C-terminal three amino acids of NRP-1 (SEA-COOH) are required for NRP-1-mediated angiogenesis. Furthermore, knocking down of RGS-GAIP-interacting protein C terminus (GIPC) in zebrafish, which is associated with C-terminal domain of NRP-1, exhibits similar vasculature phenotypes to those from NRP-1 null. Specific and effective silencing of GIPC in vascular endothelium results in inhibition of NRP-1-mediated migration. In both cases as described, PDZ domain of GIPC is responsible for its function. Taken together, our data suggest a novel role of GIPC in angiogenesis and vessel formation and also support our hypothesis that NRP-1 can facilitate downstream signaling to promote angiogenesis through GIPC.

  13. Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells

    PubMed Central

    Philipp, Stephan; Fuchslocher Chico, Johaiber; Saggau, Carina; Fritsch, Jürgen; Föll, Alexandra; Plenge, Johannes; Arenz, Christoph; Pinkert, Thomas; Kalthoff, Holger; Trauzold, Anna; Schmitz, Ingo; Schütze, Stefan; Adam, Dieter

    2016-01-01

    Recently, a type of regulated necrosis (RN) called necroptosis was identified to be involved in many pathophysiological processes and emerged as an alternative method to eliminate cancer cells. However, only a few studies have elucidated components of TRAIL-mediated necroptosis useful for anticancer therapy. Therefore, we have compared this type of cell death to tumor necrosis factor (TNF)-mediated necroptosis and found similar signaling through acid and neutral sphingomyelinases, the mitochondrial serine protease HtrA2/Omi, Atg5, and vacuolar H+-ATPase. Notably, executive mechanisms of both TRAIL- and TNF-mediated necroptosis are independent of poly(ADP-ribose) polymerase 1 (PARP-1), and depletion of p38α increases the levels of both types of cell death. Moreover, we found differences in signaling between TNF- and TRAIL-mediated necroptosis, e.g., a lack of involvement of ubiquitin carboxyl hydrolase L1 (UCH-L1) and Atg16L1 in executive mechanisms of TRAIL-mediated necroptosis. Furthermore, we discovered indications of an altered involvement of mitochondrial components, since overexpression of the mitochondrial protein Bcl-2 protected Jurkat cells from TRAIL- and TNF-mediated necroptosis, and overexpression of Bcl-XL diminished only TRAIL-induced necroptosis in Colo357 cells. Furthermore, TRAIL does not require receptor internalization and endosome-lysosome acidification to mediate necroptosis. Taken together, pathways described for TRAIL-mediated necroptosis and differences from those for TNF-mediated necroptosis might be unique targets to increase or modify necroptotic signaling and eliminate tumor cells more specifically in future anticancer approaches. PMID:27528614

  14. EXOSOME-MEDIATED INFLAMMASOME SIGNALING AFTER CENTRAL NERVOUS SYSTEM INJURY

    PubMed Central

    de Rivero Vaccari, Juan Pablo; Brand, Frank; Adamczak, Stephanie; Lee, Stephanie W.; Barcena, Jon Perez; Wang, Michael Y.; Bullock, M. Ross; Dietrich, W. Dalton; Keane, Robert W.

    2015-01-01

    Neuroinflammation is a response against harmful effects of diverse stimuli and participates in the pathogenesis of brain and spinal cord injury (SCI). The innate immune response plays a role in neuroinflammation following central nervous system (CNS) injury via activation of multi-protein complexes termed inflammasomes that regulate the activation of caspase-1 and the processing of the pro-inflammatory cytokines IL-1β and IL-18. We report here that the expression of components of the nucleotide-binding-and-oligomerization domain (NOD)-like receptor protein-1 (NLRP-1) inflammasome, apoptosis speck-like protein containing a caspase recruitment domain (ASC) and caspase-1 are significantly elevated in spinal cord motor neurons and cortical neurons after CNS trauma. Moreover, NLRP1 inflammasome proteins are present in exosomes derived from cerebrospinal fluid (CSF) of SCI and traumatic brain-injured patients following trauma. To investigate whether exosomes could be used to therapeutically block inflammasome activation in the CNS, exosomes were isolated from embryonic cortical neuronal cultures and loaded with short-interfering RNA (siRNA) against ASC and administered to spinal cord-injured animals. Neuronal-derived exosomes crossed the injured blood-spinal cord barrier, and delivered their cargo in vivo, resulting in knock down of ASC protein levels by approximately 76% when compared to SCI rats treated with scrambled siRNA. Surprisingly, siRNA silencing of ASC also led to a significant decrease in caspase-1 activation and processing of IL-1β after SCI. These findings indicate that exosome-mediated siRNA delivery may be a strong candidate to block inflammasome activation following CNS injury. PMID:25628216

  15. Arabinosylated lipoarabinomannan (Ara-LAM) mediated intracellular mechanisms against tuberculosis infection: involvement of protein kinase C (PKC) mediated signaling.

    PubMed

    Das, Shibali; Bhattacharjee, Oindrila; Goswami, Avranil; Pal, Nishith K; Majumdar, Subrata

    2015-03-01

    Tuberculosis causes severe immunosuppression thereby ensuring the loss of the host protective immune responses. During Mycobacterium tuberculosis infection, the pathogen modulates TLR-2 receptor down-stream signaling, indicating the possible involvement of TLR-2 in the regulation of the host immune response. Moreover, different PKC isoforms are also involved in the course of infection. Arabinosylated lipoarabinomannan (Ara-LAM) possesses immuno-modulatory properties which induce the pro-inflammatory responses via induction of TLR-2-mediated signaling. Here, we found that pretreatment of M. tuberculosis-infected macrophages with Ara-LAM caused a significant increase in the conventional PKC expression along with their active association with TLR-2. This association activated the TLR-2 -mediated downstream signaling, facilitating the activation of MAP kinase P38. All these events culminated in the up-regulation of proinflammatory response, which was abrogated by treatment with PKC-α and P38 inhibitors. Moreover, pretreatment of macrophages with Ara-LAM abrogated the IL-10 production while restored MHC-II expression in the infected macrophages. This study demonstrates that Ara-LAM confers protection against tuberculosis via TLR-2/PKC signaling crosstalk which is responsible for the induction of host protective immune response against tuberculosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Contribution of OATP1B1 and OATP1B3 to the Disposition of Sorafenib and Sorafenib-Glucuronide

    PubMed Central

    Zimmerman, Eric I.; Hu, Shuiying; Roberts, Justin L.; Gibson, Alice A.; Orwick, Shelley J.; Li, Lie; Sparreboom, Alex; Baker, Sharyn D.

    2013-01-01

    Purpose Many tyrosine kinase inhibitors (TKIs) undergo extensive hepatic metabolism, but mechanisms of their hepatocellular uptake remain poorly understood. We hypothesized that liver uptake of TKIs is mediated by the solute carriers OATP1B1 and OATP1B3. Experimental Design Transport of crizotinib, dasatinib, gefitinib, imatinib, nilotinib, pazopanib, sorafenib, sunitinib, vandetanib, and vemurafenib was studied in vitro using artificial membranes (PAMPA) and HEK293 cell lines stably transfected with OATP1B1, OATP1B3, or the ortholog mouse transporter, Oatp1b2. Pharmacokinetic studies were performed with Oatp1b2-knockout mice and humanized OATP1B1- or OATP1B3-transgenic mice. Results All 10 TKIs were identified as substrates of OATP1B1, OATP1B3, or both. Transport of sorafenib was investigated further, since its diffusion was particularly low in the PAMPA assay (<4%) compared to other TKIs that were transported by both OATP1B1 and OATP1B3. While Oatp1b2 deficiency in vivo had minimal influence on parent and active metabolite N-oxide drug exposure, plasma levels of the glucuronic-acid metabolite of sorafenib (sorafenib-glucuronide) were increased >8-fold in Oatp1b2-knockout mice. This finding was unrelated to possible changes in intrinsic metabolic capacity for sorafenib-glucuronide formation in hepatic or intestinal microsomes ex vivo. Ensuing experiments revealed that sorafenib-glucuronide was itself a transported substrate of Oatp1b2 (17.5-fold vs control), OATP1B1 (10.6-fold), and OATP1B3 (6.4-fold), and introduction of the human transporters in Oatp1b2-knockout mice provided partial restoration of function. Conclusions These findings signify a unique role for OATP1B1 and OATP1B3 in the elimination of sorafenib-glucuronide, and suggest a role for these transporters in the in vivo handling of glucuronic acid conjugates of drugs. PMID:23340295

  17. TWEAK inhibits TRAF2-mediated CD40 signaling by destabilization of CD40 signaling complexes.

    PubMed

    Salzmann, Steffen; Lang, Isabell; Rosenthal, Alevtina; Schäfer, Viktoria; Weisenberger, Daniela; Carmona Arana, José Antonio; Trebing, Johannes; Siegmund, Daniela; Neumann, Manfred; Wajant, Harald

    2013-09-01

    We found recently that TNF-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor-inducible-14 (Fn14) by virtue of their strong capability to reduce the freely available cytoplasmic pool of TNFR-associated factor (TRAF)2 and cellular inhibitors of apoptosis (cIAPs) antagonize the functions of these molecules in TNFR1 signaling, resulting in sensitization for apoptosis and inhibition of classical NF-κB signaling. In this study, we demonstrate that priming of cells with TWEAK also interferes with activation of the classical NF-κB pathway by CD40. Likewise, there was strong inhibition of CD40 ligand (CD40L)-induced activation of MAPKs in TWEAK-primed cells. FACS analysis and CD40L binding studies revealed unchanged CD40 expression and normal CD40L-CD40 interaction in TWEAK-primed cells. CD40L immunoprecipitates, however, showed severely reduced amounts of CD40 and CD40-associated proteins, indicating impaired formation or reduced stability of CD40L-CD40 signaling complexes. The previously described inhibitory effect of TWEAK on TNFR1 signaling has been traced back to reduced activity of the TNFR1-associated TRAF2-cIAP1/2 ubiquitinase complex and did not affect the stability of the immunoprecipitable TNFR1 receptor complex. Thus, the inhibitory effect of TWEAK on CD40 signaling must be based at least partly on other mechanisms. In line with this, signaling by the CD40-related TRAF2-interacting receptor TNFR2 was also attenuated but still immunoprecipitable in TWEAK-primed cells. Collectively, we show that Fn14 activation by soluble TWEAK impairs CD40L-CD40 signaling complex formation and inhibits CD40 signaling and thus identify the Fn14-TWEAK system as a potential novel regulator of CD40-related cellular functions.

  18. Regulation of PKC Mediated Signaling by Calcium during Visceral Leishmaniasis

    PubMed Central

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C.

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  19. The Xenopus Amygdala Mediates Socially Appropriate Vocal Communication Signals

    PubMed Central

    Ballagh, Irene H.; Kelley, Darcy B.

    2013-01-01

    Social interaction requires that relevant sensory information is collected, classified, and distributed to the motor areas that initiate an appropriate behavioral response. Vocal exchanges, in particular, depend on linking auditory processing to an appropriate motor expression. Because of its role in integrating sensory information for the purpose of action selection, the amygdala has been implicated in social behavior in many mammalian species. Here, we show that two nuclei of the extended amygdala play essential roles in vocal communication in the African clawed frog, Xenopus laevis. Transport of fluorescent dextran amines identifies the X. laevis central amygdala (CeA) as a target for ascending auditory information from the central thalamic nucleus and as a major afferent to the vocal pattern generator of the hindbrain. In the isolated (ex vivo) brain, electrical stimulation of the CeA, or the neighboring bed nucleus of the stria terminalis (BNST), initiates bouts of fictive calling. In vivo, lesioning the CeA of males disrupts the production of appropriate vocal responses to females and to broadcasts of female calls. Lesioning the BNST in males produces an overall decrease in calling behavior. Together, these results suggest that the anuran CeA evaluates the valence of acoustic cues and initiates socially appropriate vocal responses to communication signals, whereas the BNST plays a role in the initiation of vocalizations. PMID:24005304

  20. Plasmodesmata-mediated intercellular signaling during plant growth and development

    PubMed Central

    Yadav, Shri R.; Yan, Dawei; Sevilem, Iris; Helariutta, Ykä

    2014-01-01

    Plasmodesmata (PD) are cytoplasmic channels that connect neighboring cells for cell-to-cell communication. PD structure and function vary temporally and spatially to allow formation of symplastic domains during different stages of plant development. Reversible deposition of callose at PD plays an important role in controlling molecular trafficking through PD by regulating their size exclusion limit. Previously, we reported several semi-dominant mutants for CALLOSE SYNTHASE 3 (CALS3) gene, which overproduce callose at PD in Arabidopsis. By combining two of these mutations in a LexA-VP16-ER (XVE)-based estradiol inducible vector system, a tool known as the “icals3m system” was developed to temporally obstruct the symplastic connections in a specified spatial domain. The system has been successfully tested and used, in combination with other methods, to investigate the route for mobile signals such as the SHR protein, microRNA165/6, and cytokinins in Arabidopsis roots, and also to understand the role of symplastic domain formation during lateral root development. We envision that this tool may also be useful for identifying tissue-specific symplastic regulatory networks and to analyze symplastic movement of metabolites. PMID:24596574

  1. Substance P Signaling Mediates BMP Dependent Heterotopic Ossification

    PubMed Central

    Kan, Lixin; Lounev, Vitali Y; Pignolo, Robert J; Duan, Lishu; Liu, Yijie; Stock, Stuart R; McGuire, Tammy L; Lu, Bao; Gerard, Norma P; Shore, Eileen M; Kaplan, Frederick S; Kessler, John A

    2012-01-01

    Heterotopic ossification (HO) is a disabling condition associated with neurologic injury, inflammation, and overactive BMP signaling. The inductive factors involved in lesion formation are unknown. We found that the expression of the neuro-inflammatory factor Substance P (SP) is dramatically increased in early lesional tissue in patients who have either fibrodysplasia ossificans progressiva (FOP) or acquired HO, and in three independent mouse models of HO. In Nse-BMP4, a mouse model of HO, robust HO forms in response to tissue injury; however null mutations of the preprotachykinin gene encoding SP prevent HO. Importantly, ablation of SP+ sensory neurons, treatment with an antagonist of SP receptor NK1r, deletion of NK1r gene, or genetic down-regulation of NK1r-expressing mast cells also profoundly inhibits injury-induced HO. These observations establish a potent neuro-inflammatory induction and amplification circuit for BMP-dependent HO lesion formation, and identify novel molecular targets for prevention of HO. PMID:21748788

  2. Plasmodesmata-mediated intercellular signaling during plant growth and development.

    PubMed

    Yadav, Shri R; Yan, Dawei; Sevilem, Iris; Helariutta, Ykä

    2014-01-01

    Plasmodesmata (PD) are cytoplasmic channels that connect neighboring cells for cell-to-cell communication. PD structure and function vary temporally and spatially to allow formation of symplastic domains during different stages of plant development. Reversible deposition of callose at PD plays an important role in controlling molecular trafficking through PD by regulating their size exclusion limit. Previously, we reported several semi-dominant mutants for CALLOSE SYNTHASE 3 (CALS3) gene, which overproduce callose at PD in Arabidopsis. By combining two of these mutations in a LexA-VP16-ER (XVE)-based estradiol inducible vector system, a tool known as the "icals3m system" was developed to temporally obstruct the symplastic connections in a specified spatial domain. The system has been successfully tested and used, in combination with other methods, to investigate the route for mobile signals such as the SHR protein, microRNA165/6, and cytokinins in Arabidopsis roots, and also to understand the role of symplastic domain formation during lateral root development. We envision that this tool may also be useful for identifying tissue-specific symplastic regulatory networks and to analyze symplastic movement of metabolites.

  3. TLR signals posttranscriptionally regulate the cytokine trafficking mediator sortilin

    PubMed Central

    Yabe-Wada, Toshiki; Matsuba, Shintaro; Takeda, Kazuya; Sato, Tetsuya; Suyama, Mikita; Ohkawa, Yasuyuki; Takai, Toshiyuki; Shi, Haifeng; Philpott, Caroline C.; Nakamura, Akira

    2016-01-01

    Regulating the transcription, translation and secretion of cytokines is crucial for controlling the appropriate balance of inflammation. Here we report that the sorting receptor sortilin plays a key role in cytokine production. We observed interactions of sortilin with multiple cytokines including IFN-α, and sortilin depletion in plasmacytoid dendritic cells (pDCs) led to a reduction of IFN-α secretion, suggesting a pivotal role of sortilin in the exocytic trafficking of IFN-α in pDCs. Moreover, sortilin mRNA was degraded posttranscriptionally upon stimulation with various TLR ligands. Poly-rC-binding protein 1 (PCBP1) recognized the C-rich element (CRE) in the 3′ UTR of sortilin mRNA, and depletion of PCBP1 enhanced the degradation of sortilin transcripts, suggesting that PCBP1 can act as a trans-acting factor to stabilize sortilin transcripts. The nucleotide-binding ability of PCBP1 was impaired by zinc ions and alterations of intracellular zinc affect sortilin expression. PCBP1 may therefore control the stability of sortilin transcripts by sensing intracellular zinc levels. Collectively, our findings provide insights into the posttranslational regulation of cytokine production through the posttranscriptional control of sortilin expression by TLR signals. PMID:27220277

  4. Negative regulation of IL-17-mediated signaling and inflammation by ubiquitin-specific protease 25

    PubMed Central

    Zhong, Bo; Liu, Xikui; Wang, Xiaohu; Chang, Seon Hee; Liu, Xindong; Wang, Aibo; Reynolds, Joseph M.; Dong, Chen

    2012-01-01

    Interleukin 17 (IL-17) plays an important role in infection and autoimmunity; how it signals remains poorly understood. In this study, we identified ubiquitin-specific protease 25 (USP25) as a negative regulator of IL-17-mediated signaling and inflammation. Overexpression of USP25 inhibited IL-17-triggered signaling, while USP25 deficiency resulted in increased phosphorylation of IκBα and Jnk, increased expression of chemokines and cytokines as well as prolonged half-life of Cxcl1 mRNA following IL-17 treatment. Consistently, Usp25-/- mice exhibited increased sensitivity to IL-17-dependent inflammation and autoimmunity in vivo. Mechanistically, IL-17 stimulation induced the association of USP25 with TRAF5 and TRAF6 and USP25 induced removal of Act1-mediated K63-linked ubiquitination in TRAF5 and TRAF6. Thus, our results demonstrate that USP25 is a deubiquitinating enzyme (DUB) that negatively regulates IL-17-triggered signaling. PMID:23042150

  5. Scaffold mediated regulation of MAPK signaling and cytoskeletal dynamics: A perspective

    PubMed Central

    Pullikuth, Ashok K.; Catling, Andrew D.

    2008-01-01

    Cell migration is critical for many physiological processes and is often misregulated in developmental disorders and pathological conditions including cancer and neurodegeneration. MAPK signaling and the Rho family of proteins are known regulators of cell migration that exert their influence on cellular cytoskeleton during cell adhesion and migration. Here we review data supporting the view that localized ERK signaling mediated through recently identified scaffold proteins may regulate cell migration. PMID:17553668

  6. Relationship Between Pak-Mediated Cell Death and Stress-Activated Kinase Signaling in Breast Cancer

    DTIC Science & Technology

    2000-02-01

    part of the cell death execution machinery. Here we show that a correlation exists in breast cancer cells between caspase- dependent cleavage of the...inhibits its activity might allow us to specifically inhibit signaling pathways downstream of Pak and evaluate how the cell death process is affected. In...a biochemical approach screening for substrates and possible mediators of cell death signaling components via Pak kinases we identified a guanine

  7. Redox regulation of protein tyrosine phosphatase 1B by manipulation of dietary selenium affects the triglyceride concentration in rat liver.

    PubMed

    Mueller, Andreas S; Klomann, Sandra D; Wolf, Nicole M; Schneider, Sandra; Schmidt, Rupert; Spielmann, Julia; Stangl, Gabriele; Eder, Klaus; Pallauf, Josef

    2008-12-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key enzyme in the counter-regulation of insulin signaling and in the stimulation of fatty acid synthesis. Selenium (Se), via the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), is involved in the removal of H(2)O(2) and organic peroxides, which are critical compounds in the modulation of PTP1B activity via glutathionylation. Our study with growing rats investigated how the manipulation of dietary Se concentration influences the regulation of PTP1B and lipogenic effects mediated by PTP1B. Weanling albino rats were divided into 3 groups of 10. The negative control group (NC) was fed a Se-deficient diet for 8 wk. Rats in groups Se75 and Se150 received diets supplemented with 75 or 150 microg Se/kg. Se supplementation of the rats strongly influenced expression and activity of the selenoenzymes cytosolic GPx, plasma GPx, phospholipidhydroperoxide GPx, and cytosolic TrxR, and liver PTP1B. Liver PTP1B activity was significantly higher in groups Se75 and Se150 than in the NC group and this was attributed to a lowered inhibition of the enzyme by glutathionylation. The increased liver PTP1B activity in groups Se75 and Se150 resulted in 1.1- and 1.4-fold higher liver triglyceride concentrations than in the NC rats. The upregulation of the sterol regulatory element binding protein-1c and of fatty acid synthase, 2 PTP1B targets, provided a possible explanation for the lipogenic effect of PTP1B due to the manipulation of dietary Se. We therefore conclude that redox-regulated proteins, such as PTP1B, represent important interfaces between dietary antioxidants such as Se and the regulation of metabolic processes.

  8. Bovine embryo-oviduct interaction in vitro reveals an early cross talk mediated by BMP signaling.

    PubMed

    García, Elina V; Hamdi, Meriem; Barrera, Antonio D; Sánchez-Calabuig, María J; Gutiérrez-Adán, Alfonso; Rizos, Dimitrios

    2017-05-01

    Signaling components of bone morphogenetic proteins (BMPs) are expressed in an anatomically and temporally regulated fashion in bovine oviduct. However, a local response of this signaling to the presence of the embryo has yet to be elucidated. The aim of the present study was to evaluate if early embryo-oviduct interaction induces changes in the gene expression of BMP signaling components. For this purpose, we used an in vitro co-culture system to investigate the local interaction between bovine oviductal epithelial cells (BOEC) from the isthmus region with early embryos during two developmental periods: before (from the 2-cell to 8-cell stage) or during (from the 8-cell to 16-cell stage) the main phase of embryonic genome activation (EGA). Exposure to embryos, irrespective of the period, significantly reduced the relative abundance of BMPR1B, BMPR2, SMAD1, SMAD6 and ID2 mRNAs in BOEC. In contrast, embryos that interacted with BOEC before EGA showed a significant increase in the relative abundance of SMAD1 mRNA at the 8-cell stage compared to embryos cultured without BOEC. Moreover, embryos at the 16-cell stage that interacted with BOEC during EGA showed a significant increase in BMPR1B, BMPR2 and ID2 mRNA. These results demonstrate that embryo-oviduct interaction in vitro induces specific changes in the transcriptional levels of BMP signaling, causing a bidirectional response that reduces the expression levels of this signaling in the oviductal cells while increases them in the early embryo. This suggests that BMP signaling pathway could be involved in an early cross talk between the bovine embryo and the oviduct during the first stages of development.

  9. How do pleiotropic kinase hubs mediate specific signaling by TNFR superfamily members?

    PubMed Central

    Schröfelbauer, Bärbel; Hoffmann, Alexander

    2012-01-01

    Summary Tumor necrosis factor receptor (TNFR) superfamily members mediate the cellular response to a wide variety of biological inputs. The responses range from cell death, survival, differentiation, proliferation, to the regulation of immunity. All these physiological responses are regulated by a limited number of highly pleiotropic kinases. The fact that the same signaling molecules are involved in transducing signals from TNFR superfamily members that regulate different and even opposing processes raises the question of how their specificity is determined. Regulatory strategies that can contribute to signaling specificity include scaffolding to control kinase specificity, combinatorial use of several signal transducers, and temporal control of signaling. In this review, we discuss these strategies in the context of TNFR superfamily member signaling. PMID:22017429

  10. Cyclic nucleotide gated channel and Ca²⁺-mediated signal transduction during plant senescence signaling.

    PubMed

    Ma, Wei; Berkowitz, Gerald A

    2011-03-01

    Previous studies reveal that both Ca(2+) and nitric oxide (NO) play pivotal roles in the plant senescence signaling cascade. However, not much is known about the molecular identity of the Ca(2+) entry during senescence programming and its relationship to the downstream NO signal. Our recent study shows that Arabidopsis cyclic nucleotide gated channel2 (CNGC2) contributes to Ca(2+) uptake and senescence signaling. The CNGC2 loss-of-function mutant dnd1 displays reduced Ca(2+) accumulation in leaves and a series of early senescence phenotypes compared to wild type (WT). Notably, endogenous NO content in dnd1 leaves is lower than leaves of WT. Application of an NO donor can effectively rescue a number of early senescence phenotypes found in the dnd1 plants. Current evidence supports the notion that NO functions as a negative regulator in senescence signaling and our model supports this point. In this article, we expand our discussion of CNGC2 mediated Ca(2+) uptake and other related signaling components involved in the plant senescence signaling cascade.

  11. Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs.

    PubMed

    Scholz, Paul; Mohrhardt, Julia; Jansen, Fabian; Kalbe, Benjamin; Haering, Claudia; Klasen, Katharina; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  12. Early signaling network in rice PRR-mediated and R-mediated immunity.

    PubMed

    Kawano, Yoji; Shimamoto, Ko

    2013-08-01

    Recent studies on plant immunity and pathogen infection have revealed sophisticated forms of plant-pathogen interaction. Considerable progress has been made recently in our understanding of the molecular mechanism underlying chitin signaling in rice. The identification and characterization of two direct substrates, OsRacGEF1 and OsRLCK185, as components in the chitin receptor complex of OsCERK1 have revealed how pattern recognition receptors transduce pathogen signals to downstream molecules in rice. In this review, we highlight these and other recent studies that have contributed to our current understanding of the signaling network in rice immunity, especially with regard to pattern recognition receptors, disease resistance (R) proteins, and their downstream targets.

  13. miRNA-mediated auxin signalling repression during Vat-mediated aphid resistance in Cucumis melo.

    PubMed

    Sattar, Sampurna; Addo-Quaye, Charles; Thompson, Gary A

    2016-06-01

    Resistance to Aphis gossypii in melon is attributed to the presence of the single dominant R gene virus aphid transmission (Vat), which is biologically expressed as antibiosis, antixenosis and tolerance. However, the mechanism of resistance is poorly understood at the molecular level. Aphid-induced transcriptional changes, including differentially expressed miRNA profiles that correspond to resistance interaction have been reported in melon. The potential regulatory roles of miRNAs in Vat-mediated aphid resistance were further revealed by identifying the specific miRNA degradation targets. A total of 70 miRNA:target pairs, including 28 novel miRNA:target pairs, for the differentially expressed miRNAs were identified: 11 were associated with phytohormone regulation, including six miRNAs that potentially regulate auxin interactions. A model for a redundant regulatory system of miRNA-mediated auxin insensitivity is proposed that incorporates auxin perception, auxin modification and auxin-regulated transcription. Chemically inhibiting the transport inhibitor response-1 (TIR-1) auxin receptor in susceptible melon tissues provides in vivo support for the model of auxin-mediated impacts on A. gossypii resistance.

  14. Exogenous and Endogeneous Disialosyl Ganglioside GD1b Induces Apoptosis of MCF-7 Human Breast Cancer Cells

    PubMed Central

    Ha, Sun-Hyung; Lee, Ji-Min; Kwon, Kyung-Min; Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Cho, Seung-Hak; Lee, Kichoon; Chang, Young-Chae; Lee, Young-Choon; Choi, Hee-Jung; Chung, Tae-Wook; Ha, Ki-Tae; Chang, Hyeun-Wook; Kim, Cheorl-Ho

    2016-01-01

    Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI) staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose) polymerase), without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2) gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis. PMID:27144558

  15. Exogenous and Endogeneous Disialosyl Ganglioside GD1b Induces Apoptosis of MCF-7 Human Breast Cancer Cells.

    PubMed

    Ha, Sun-Hyung; Lee, Ji-Min; Kwon, Kyung-Min; Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Cho, Seung-Hak; Lee, Kichoon; Chang, Young-Chae; Lee, Young-Choon; Choi, Hee-Jung; Chung, Tae-Wook; Ha, Ki-Tae; Chang, Hyeun-Wook; Kim, Cheorl-Ho

    2016-04-30

    Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI) staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose) polymerase), without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2) gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis.

  16. 5-hydroxytryptamine2C receptor activation inhibits 5-hydroxytryptamine1B-like receptor function via arachidonic acid metabolism.

    PubMed

    Berg, K A; Maayani, S; Clarke, W P

    1996-10-01

    We previously reported that in Chinese hamster ovary (CHO) cells, 5-hydroxytryptamine (5-HT)1B-like (CHO/5-HT1B) receptor-mediated inhibition of forskolin-stimulated cAMP accumulation is inhibited by activation of transfected human 5-HT2C receptors but not 5-HT2A receptors. In the current study, we investigated the mechanism involved in the regulation of receptor-mediated inhibition of adenylyl cyclase as a means to further elucidate differences between the signal transduction cascades of the 5-HT2A and 5-HT2C receptor subtypes. Activation of 5-HT2C receptors with 5-HT or (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane increased release of arachidonic acid via a phospholipase A2 (PLA2)-dependent mechanism. Incubation with (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (1 microM) abolished 5-carboxamidotryptamine (5 nM)-mediated inhibition of forskolin-stimulated cAMP accumulation, which was blocked by the PLA2 inhibitor mepacrine (100 microM) and the cyclooxygenase inhibitor indomethacin (2 microM). Furthermore, purinergic receptor-mediated PLA2 activation as well as direct activation of PLA2 with melittin reduced CHO/5-HT1B responsiveness. These data indicate that activation of the PLA2/arachidonic acid signaling cascade mediates 5-HT2C receptor regulation of the CHO/5-HT1B receptor pathway. Consistent with our previous report and in contrast to activation of 5-HT2C or purinergic receptors, activation of 5-HT2A receptors had no effect on CHO/5-HT1B receptor function, although 5-HT2A receptor-mediated activation of PLA2 was measured. Interestingly, purinergic receptor-mediated inhibition of CHO/5-HT1B receptor function was blocked when 5-HT2A receptors were activated simultaneously. These data suggest that the lack of 5-HT2A mediated regulation of CHO/5-HT1B receptors may be due to activation of a third pathway (in addition to PLC and PLA2 pathways), which results in the inhibition of the production or the actions of a cyclooxygenase-dependent arachidonic

  17. Regulation of Breast Cancer Cell Motility by Golgi-Mediated Signaling

    DTIC Science & Technology

    2011-09-01

    localized to the Golgi apparatus (Figure 4A) where it interfered with Dbs function, and limited Cdc42 activation. Next we determined whether this was...in the Golgi apparatus is required to support directed migration, but not overall cell movement, per se. Since Golgi reorientation is thought to be...Motility by Golgi -Mediated Signaling PRINCIPAL INVESTIGATOR: Ian Paul Whitehead, Ph.D

  18. Extracellular signal-regulated kinase 2 signaling in the hippocampal dentate gyrus mediates the antidepressant effects of testosterone.

    PubMed

    Carrier, Nicole; Kabbaj, Mohamed

    2012-04-01

    Human and animal studies suggest that testosterone may have antidepressant effects. In this study, we sought to investigate the molecular mechanisms underlying the antidepressant effects of testosterone within the hippocampus, an area that is fundamental in the etiology of depression. The effects of testosterone replacements in gonadectomized adult male rats were investigated using the sucrose preference and forced swim tests. We explored possible effects of testosterone on hippocampal neurogenesis and gene expression of stress-related molecules. Through the use of viral vectors, we pursued the antidepressant molecular mechanism(s) of testosterone in mediating anhedonia and manipulated extracellular signal-regulated kinase 2 (ERK2) expression in the dentate gyrus in gonadectomized rats with testosterone replacements. Testosterone had antidepressant effects, likely mediated by aromatization to estrogen metabolites, in the sucrose preference and forced swim tests despite having no effects on hippocampal cell proliferation or survival. We found a testosterone-dependent regulation of hippocampal ERK2 expression. Functionally, reducing ERK2 activity within the dentate gyrus induced anhedonia in gonadectomized rats receiving testosterone supplementation, whereas the overexpression of ERK2 rescued this behavior in gonadectomized rats. These results implicate a role for ERK2 signaling within the dentate gyrus area of the hippocampus as a key mediator of the antidepressant effects of testosterone. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: a novel target for antihypertensive agents.

    PubMed

    Malik, Kafait U; Jennings, Brett L; Yaghini, Fariborz A; Sahan-Firat, Seyhan; Song, Chi Young; Estes, Anne M; Fang, Xiao R

    2012-08-01

    The aim of this review is to discuss the contribution of cytochrome P450 (CYP) 1B1 in vascular smooth muscle cell growth, hypertension, and associated pathophysiology. CYP1B1 is expressed in cardiovascular and renal tissues, and mediates angiotensin II (Ang II)-induced activation of NADPH oxidase and generation of reactive oxygen species (ROS), and vascular smooth muscle cell migration, proliferation, and hypertrophy. Moreover, CYP1B1 contributes to the development and/or maintenance of hypertension produced by Ang II-, deoxycorticosterone (DOCA)-salt-, and N(ω)-nitro-L-arginine methyl ester-induced hypertension and in spontaneously hypertensive rats. The pathophysiological changes, including cardiovascular hypertrophy, increased vascular reactivity, endothelial and renal dysfunction, injury and inflammation associated with Ang II- and/or DOCA-salt induced hypertension in rats, and Ang II-induced hypertension in mice are minimized by inhibition of CYP1B1 activity with 2,4,3',5'-tetramethoxystilbene or by Cyp1b1 gene disruption in mice. These pathophysiological changes appear to be mediated by increased production of ROS via CYP1B1-dependent NADPH oxidase activity and extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and c-Src. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Contribution of Cytochrome P450 1B1 to Hypertension and Associated Pathophysiology: A Novel Target for Antihypertensive Agents

    PubMed Central

    Malik, Kafait U.; Jennings, Brett L.; Yaghini, Fariborz A.; Sahan-Firat, Seyhan; Song, Chi Young; Estes, Anne M.; Fang, Xiao R.

    2012-01-01

    The aim of this review is to discuss the contribution of cytochrome P450 (CYP) 1B1 in vascular smooth muscle cell growth, hypertension, and associated pathophysiology. CYP1B1 is expressed in cardiovascular and renal tissues, and mediates angiotensin II (Ang II)-induced activation of NADPH oxidase and generation of reactive oxygen species (ROS), and vascular smooth muscle cell migration, proliferation, and hypertrophy. Moreover, CYP1B1 contributes to the development and/or maintenance of hypertension produced by Ang II-, deoxycorticosterone Nω-nitro-(DOCA)-salt-, and L-arginine methyl ester-induced hypertension and in spontaneously hypertensive rats. The pathophysiological changes, including cardiovascular hypertrophy, increased vascular reactivity, endothelial and renal dysfunction, injury and inflammation associated with Ang II- and/or DOCA-salt induced hypertension in rats, and Ang II-induced hypertension in mice are minimized by inhibition of CYP1B1 activity with 2,4,3′,5′-tetramethoxystilbene or by Cyp1b1 gene disruption in mice. These pathophysiological changes appear to be mediated by increased production of ROS via CYP1B1-dependent NADPH oxidase activity and extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and c-Src. PMID:22210049

  1. At the crossroads: EGFR and PTHrP signaling in cancer-mediated diseases of bone

    PubMed Central

    Nickerson, Nicole; Riese, David J.; Hollenhorst, Peter C.; Lorch, Gwendolen; Foley, Anne M.

    2014-01-01

    The epidermal growth factor receptor is a well-established cancer therapeutic target due to its stimulation of proliferation, motility, and resistance to apoptosis. Recently, additional roles for the receptor have been identified in growth of metastases. Similar to development, metastatic spread requires signaling interactions between epithelial-derived tumor cells and mesenchymal derivatives of the microenvironment. This necessitates reactivation of developmental signaling molecules, including the hypercalcemia factor parathyroid hormone-related protein. This review covers the variations of epidermal growth factor receptor signaling in cancers that produce bone metastases, regulation of parathyroid hormone-related protein, and evidence that the two molecules drive cancer-mediated diseases of bone. PMID:22684584

  2. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects.

    PubMed

    Kojima, Shuji; Ohshima, Yasuhiro; Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi

    2017-01-01

    Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.

  3. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects

    PubMed Central

    Ohshima, Yasuhiro; Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi

    2017-01-01

    Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells. PMID:28250717

  4. Spiraeoside inhibits mast cells activation and IgE-mediated allergic responses by suppressing phospholipase C-γ-mediated signaling.

    PubMed

    Kim, Jung Kuk; Seo, Young-Kyo; Park, Sehoon; Park, Soo-Ah; Lim, Seyoung; Lee, Susie; Kwon, Ohman; Seo, Jeong Kon; Choi, Ung-Kyu; Ryu, Sung Ho; Suh, Pann-Ghill

    2015-06-01

    Mast cells are responsible for IgE-mediated allergic responses through the secretion of various inflammatory cytokines and mediators. Therefore, the pharmacological regulation of mast cell activation is an important goal in the development of novel anti-allergic drugs. In this study, we found that spiraeoside (SP) inhibits mast cell activation and allergic responses in vivo. SP dose-dependently inhibited the degranulation induced by IgE-antigen (Ag) stimulation in RBL-2H3 mast cells without cytotoxic effects. At the molecular level, SP reduced the Ag-induced phosphorylation and subsequent activation of phospholipase C-γ2 (PLC-γ2). Moreover, SP inhibited the phosphorylation of spleen tyrosine kinase (Syk), linker for activation of T cells (LAT), and downstream MAPKs, such as ERK1/2, p38, and JNK, eventually attenuating expression of TNF-α and IL-4. Finally, we found that SP significantly inhibited IgE-mediated passive cutaneous anaphylaxis (PCA) in mice. Taken together, our results strongly suggest that SP suppresses IgE-mediated mast cell activation and allergic responses by inhibiting Lyn-induced PLC-γ2/MAPK signaling in mast cells.

  5. Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans

    PubMed Central

    Chen, He; Li, Huirong; Wang, Dayong

    2017-01-01

    Graphene oxide (GO) can be potentially used in many medical and industrial fields. Using assay system of Caenorhabditis elegans, we identified the NLG-1/Neuroligin-mediated neuronal signaling dysregulated by GO exposure. In nematodes, GO exposure significantly decreased the expression of NLG-1, a postsynaptic cell adhesion protein. Loss-of-function mutation of nlg-1 gene resulted in a susceptible property of nematodes to GO toxicity. Rescue experiments suggested that NLG-1 could act in AIY interneurons to regulate the response to GO exposure. In the AIY interneurons, PKC-1, a serine/threonine protein kinase C (PKC) protein, was identified as the downstream target for NLG-1 in the regulation of response to GO exposure. LIN-45, a Raf protein in ERK signaling pathway, was further identified as the downstream target for PKC-1 in the regulation of response to GO exposure. Therefore, GO may dysregulate NLG-1-mediated molecular signaling in the interneurons, and a neuronal signaling cascade of NLG-1-PKC-1-LIN-45 was raised to be required for the control of response to GO exposure. More importantly, intestinal RNAi knockdown of daf-16 gene encoding a FOXO transcriptional factor in insulin signaling pathway suppressed the resistant property of nematodes overexpressing NLG-1 to GO toxicity, suggesting the possible link between neuronal NLG-1 signaling and intestinal insulin signaling in the regulation of response to GO exposure. PMID:28128356

  6. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma

    PubMed Central

    Agarwal, Rashmi; March, Daniel; Voigt, Clifford

    2016-01-01

    Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notch signaling was evaluated. Skeletal muscle atrophy was observed in the sarcoma-bearing mice, and Notch signaling was highly active in both tumor tissues and the atrophic skeletal muscles. Systemic inhibition of Notch signaling reduced muscle atrophy. In vitro coculture of osteosarcoma cells with muscle-derived stem cells (MDSCs) isolated from normal mice resulted in decreased myogenic potential of MDSCs, while the application of Notch inhibitor was able to rescue this repressed myogenic potential. We further observed that Notch-activating factors reside in the exosomes of osteosarcoma cells, which activate Notch signaling in MDSCs and subsequently repress myogenesis. Our results revealed that signaling between tumor and muscle via the Notch pathway may play an important role in mediating the skeletal muscle atrophy seen in cancer cachexia. PMID:27378829

  7. Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Chen, He; Li, Huirong; Wang, Dayong

    2017-01-01

    Graphene oxide (GO) can be potentially used in many medical and industrial fields. Using assay system of Caenorhabditis elegans, we identified the NLG-1/Neuroligin-mediated neuronal signaling dysregulated by GO exposure. In nematodes, GO exposure significantly decreased the expression of NLG-1, a postsynaptic cell adhesion protein. Loss-of-function mutation of nlg-1 gene resulted in a susceptible property of nematodes to GO toxicity. Rescue experiments suggested that NLG-1 could act in AIY interneurons to regulate the response to GO exposure. In the AIY interneurons, PKC-1, a serine/threonine protein kinase C (PKC) protein, was identified as the downstream target for NLG-1 in the regulation of response to GO exposure. LIN-45, a Raf protein in ERK signaling pathway, was further identified as the downstream target for PKC-1 in the regulation of response to GO exposure. Therefore, GO may dysregulate NLG-1-mediated molecular signaling in the interneurons, and a neuronal signaling cascade of NLG-1-PKC-1-LIN-45 was raised to be required for the control of response to GO exposure. More importantly, intestinal RNAi knockdown of daf-16 gene encoding a FOXO transcriptional factor in insulin signaling pathway suppressed the resistant property of nematodes overexpressing NLG-1 to GO toxicity, suggesting the possible link between neuronal NLG-1 signaling and intestinal insulin signaling in the regulation of response to GO exposure.

  8. Systematic modeling for the insulin signaling network mediated by IRS(1) and IRS(2).

    PubMed

    Huang, Can; Wu, Ming; Du, Jun; Liu, Di; Chan, Christina

    2014-08-21

    The hepatic insulin signaling mediated by insulin receptor substrates IRS1 and IRS2 plays a central role in maintaining glucose homeostasis under different physiological conditions. Although functions of individual components in the signaling network have been extensively studied, our knowledge is still limited with regard to how the signals are integrated and coordinated in the complex network to render their functional roles. In this study, we construct systematic models for the insulin signaling network mediated by IRS1 and IRS2, through the integration of current knowledge in the literature into mathematical models of insulin signaling pathways. We hypothesize that the specificity of the IRS signaling mechanisms emerges from the wiring and kinetics of the entire network. A discrete dynamic model is first constructed to account for the numerous dynamic features in the system, i.e., complex feedback circuits, different regulatory time-scales and cross-talks between pathways. Our simulation shows that the wiring of the network determines different functions of IRS1 and IRS2. We further collate and reconstruct a kinetic model of the network as a system of ordinary differential equations to provide an informative model for predicting phenotypes. A sensitivity analysis is applied to identify essential regulators for the signaling process.

  9. NLK-mediated phosphorylation of HDAC1 negatively regulates Wnt signaling

    PubMed Central

    Masoumi, Katarzyna Chmielarska; Daams, Renée; Sime, Wondossen; Siino, Valentina; Ke, Hengning; Levander, Fredrik; Massoumi, Ramin

    2017-01-01

    The Wnt signaling pathway is essential in regulating various cellular processes. Different mechanisms of inhibition for Wnt signaling have been proposed. Besides β-catenin degradation through the proteasome, nemo-like kinase (NLK) is another molecule that is known to negatively regulate Wnt signaling. However, the mechanism by which NLK mediates the inhibition of Wnt signaling was not known. In the present study, we used primary embryonic fibroblast cells isolated from NLK-deficient mice and showed that these cells proliferate faster and have a shorter cell cycle than wild-type cells. In NLK-knockout cells, we observed sustained interaction between Lef1 and β-catenin, leading to elevated luciferase reporter of β-catenin/Lef1–mediated transcriptional activation. The mechanism for the reduced β-catenin/Lef1 promoter activation was explained by phosphorylation of HDAC1 at serine 421 via NLK. The phosphorylation of HDAC1 was achieved only in the presence of wild-type NLK because a catalytically inactive mutant of NLK was unable to phosphorylate HDAC1 and reduced the luciferase reporter of β-catenin/Lef1–mediated transcriptional activation. This result suggests that NLK and HDAC1 together negatively regulate Wnt signaling, which is vital in preventing aberrant proliferation of nontransformed primary fibroblast cells. PMID:27903773

  10. Dopaminergic signaling mediates the motivational response underlying the opponent process to chronic but not acute nicotine.

    PubMed

    Grieder, Taryn E; Sellings, Laurie H; Vargas-Perez, Hector; Ting-A-Kee, Ryan; Siu, Eric C; Tyndale, Rachel F; van der Kooy, Derek

    2010-03-01

    The mesolimbic dopamine (DA) system is implicated in the processing of the positive reinforcing effect of all drugs of abuse, including nicotine. It has been suggested that the dopaminergic system is also involved in the aversive motivational response to drug withdrawal, particularly for opiates, however, the role for dopaminergic signaling in the processing of the negative motivational properties of nicotine withdrawal is largely unknown. We hypothesized that signaling at dopaminergic receptors mediates chronic nicotine withdrawal aversions and that dopaminergic signaling would differentially mediate acute vs dependent nicotine motivation. We report that nicotine-dependent rats and mice showed conditioned place aversions to an environment paired with abstinence from chronic nicotine that were blocked by the DA receptor antagonist alpha-flupenthixol (alpha-flu) and in DA D(2) receptor knockout mice. Conversely, alpha-flu pretreatment had no effect on preferences for an environment paired with abstinence from acute nicotine. Taken together, these results suggest that dopaminergic signaling is necessary for the opponent motivational response to nicotine in dependent, but not non-dependent, rodents. Further, signaling at the DA D(2) receptor is critical in mediating withdrawal aversions in nicotine-dependent animals. We suggest that the alleviation of nicotine withdrawal primarily may be driving nicotine motivation in dependent animals.

  11. Connecting G protein signaling to chemoattractant-mediated cell polarity and cytoskeletal reorganization.

    PubMed

    Liu, Youtao; Lacal, Jesus; Firtel, Richard A; Kortholt, Arjan

    2016-10-07

    The directional movement towards extracellular chemical gradients, a process called chemotaxis, is an important property of cells. Central to eukaryotic chemotaxis is the molecular mechanism by which chemoattractant-mediated activation of G-protein coupled receptors (GPCRs) induces symmetry breaking in the activated downstream signaling pathways. Studies with mainly Dictyostelium and mammalian neutrophils as experimental systems have shown that chemotaxis is mediated by a complex network of signaling pathways. Recently, several labs have used extensive and efficient proteomic approaches to further unravel this dynamic signaling network. Together these studies showed the critical role of the interplay between heterotrimeric G-protein subunits and monomeric G proteins in regulating cytoskeletal rearrangements during chemotaxis. Here we highlight how these proteomic studies have provided greater insight into the mechanisms by which the heterotrimeric G protein cycle is regulated, how heterotrimeric G proteins-induced symmetry breaking is mediated through small G protein signaling, and how symmetry breaking in G protein signaling subsequently induces cytoskeleton rearrangements and cell migration.

  12. Mouse mammary tumor virus suppresses apoptosis of mammary epithelial cells through ITAM-mediated signaling.

    PubMed

    Kim, Hyoung H; Grande, Shannon M; Monroe, John G; Ross, Susan R

    2012-12-01

    Many receptors in hematopoietic cells use a common signaling pathway that relies on a highly conserved immunoreceptor tyrosine-based activation motif (ITAM), which signals through Src family tyrosine kinases. ITAM-bearing proteins are also found in many oncogenic viruses, including the mouse mammary tumor virus (MMTV) envelope (Env). We previously showed that MMTV Env expression transformed normal mammary epithelial cells and that Src kinases were important mediators in this transformation. To study how ITAM signaling affects mammary cell transformation, we utilized mammary cell lines expressing two different ITAM-containing proteins, one encoding a MMTV provirus and the other a B cell receptor fusion protein. ITAM-expressing cells were resistant to both serum starvation- and chemotherapeutic drug-induced apoptosis, whereas cells transduced with these molecules bearing ITAM mutations were indistinguishable from untransduced cells in their sensitivity to these treatments. We also found that Src kinase was activated in the MMTV-expressing cells and that MMTV-induced apoptosis resistance was completely restored by the Src inhibitor PP2. In vivo, MMTV infection delayed involution-induced apoptosis in the mouse mammary gland. Our results show that MMTV suppresses apoptosis through ITAM-mediated Src tyrosine kinase signaling. These studies could lead to the development of effective treatment of nonhematopoietic cell cancers in which ITAM-mediated signaling plays a role.

  13. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages.

    PubMed

    Crowley, M T; Costello, P S; Fitzer-Attas, C J; Turner, M; Meng, F; Lowell, C; Tybulewicz, V L; DeFranco, A L

    1997-10-06

    Receptors on macrophages for the Fc region of IgG (FcgammaR) mediate a number of responses important for host immunity. Signaling events necessary for these responses are likely initiated by the activation of Src-family and Syk-family tyrosine kinases after FcgammaR cross-linking. Macrophages derived from Syk-deficient (Syk-) mice were defective in phagocytosis of particles bound by FcgammaRs, as well as in many FcgammaR-induced signaling events, including tyrosine phosphorylation of a number of cellular substrates and activation of MAP kinases. In contrast, Syk- macrophages exhibited normal responses to another potent macrophage stimulus, lipopolysaccharide. Phagocytosis of latex beads and Escherichia coli bacteria was also not affected. Syk- macrophages exhibited formation of polymerized actin structures opposing particles bound to the cells by FcgammaRs (actin cups), but failed to proceed to internalization. Interestingly, inhibitors of phosphatidylinositol 3-kinase also blocked FcgammaR-mediated phagocytosis at this stage. Thus, PI 3-kinase may participate in a Syk-dependent signaling pathway critical for FcgammaR-mediated phagocytosis. Macrophages derived from mice deficient for the three members of the Src-family of kinases expressed in these cells, Hck, Fgr, and Lyn, exhibited poor Syk activation upon FcgammaR engagement, accompanied by a delay in FcgammaR-mediated phagocytosis. These observations demonstrate that Syk is critical for FcgammaR-mediated phagocytosis, as well as for signal transduction in macrophages. Additionally, our findings provide evidence to support a model of sequential tyrosine kinase activation by FcgammaR's analogous to models of signaling by the B and T cell antigen receptors.

  14. Effect of interferon-β1b on CXCR4-dependent chemotaxis in T cells from multiple sclerosis patients

    PubMed Central

    Wostradowski, T; Gudi, V; Pul, R; Gingele, S; Lindquist, J A; Stangel, M; Lindquist, S

    2015-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease triggered by infiltration of activated T cells into the central nervous system. Interferon (IFN)-β is an established, safe and effective treatment for patients with relapsing–remitting MS (RRMS). The cytokine can inhibit leucocyte infiltration into the central nervous system; however, little is known about the precise molecular mechanisms. Previously, in vitro application of IFN-β1b was shown to reduce CXCL12/CXCR4-mediated monocyte migration. Here, we analysed the effects of IFN-β1b on CXCR4-dependent T cell function. In vitro exposure to IFN-β1b (1000 U/ml) for 20 h reduced CXCR4-dependent chemotaxis of primary human T cells from healthy individuals and patients with RRMS. Investigating the IFN-β1b/CXCR4 signalling pathways, we found no difference in phosphorylation of ZAP70, ERK1/2 and AKT despite an early induction of the negative regulator of G-protein signalling, RGS1 by IFN-β1b. However, CXCR4 surface expression was reduced. Quantitative real time-PCR revealed a similar reduction in CXCR4-mRNA, and the requirement of several hours' exposure to IFN-β1b supports a transcriptional regulation. Interestingly, T cells from MS patients showed a lower CXCR4 expression than T cells from healthy controls, which was not reduced further in patients under IFN-β1b therapy. Furthermore, we observed no change in CXCL12-dependent chemotaxis in RRMS patients. Our results demonstrate clearly that IFN-β1b can impair the functional response to CXCR4 by down-regulating its expression, but also points to the complex in vivo effects of IFN-β1b therapy. PMID:26212126

  15. EphB4 forward signalling mediates angiogenesis caused by CCM3/PDCD10-ablation.

    PubMed

    You, Chao; Zhao, Kai; Dammann, Philipp; Keyvani, Kathy; Kreitschmann-Andermahr, Ilonka; Sure, Ulrich; Zhu, Yuan

    2017-04-01

    CCM3, also named as PDCD10, is a ubiquitous protein expressed in nearly all tissues and in various types of cells. It is essential for vascular development and post-natal vessel maturation. Loss-of-function mutation of CCM3 predisposes for the familial form of cerebral cavernous malformation (CCM). We have previously shown that knock-down of CCM3 stimulated endothelial angiogenesis via impairing DLL4-Notch signalling; moreover, loss of endothelial CCM3 stimulated tumour angiogenesis and promoted tumour growth. The present study was designed to further elucidate the inside signalling pathway involved in CCM3-ablation-mediated angiogenesis. Here we report for the first time that silencing endothelial CCM3 led to a significant up-regulation of EphB4 mRNA and protein expression and to an increased kinase activity of EphB4, concomitantly accompanied by an activation of Erk1/2, which was reversed by treatment with the specific EphB4 kinase inhibitor NVP-BHG712 (NVP), indicating that silencing CCM3 activates EphB4 kinase forward signalling. Furthermore, treatment with NVP rescued the hyper-angiogenic phenotype induced by knock-down of endothelial CCM3 in vitro and in vivo. Additional study demonstrated that the activation of EphB4 forward signalling in endothelial cells under basal condition and after CCM3-silence was modulated by DLL4/Notch signalling, relying EphB4 at downstream of DLL4/Notch signalling. We conclude that angiogenesis induced by CCM3-silence is mediated by the activation of EphB4 forward signalling. The identified endothelial signalling pathway of CCM3-DLL4/Notch-EphB4-Erk1/2 may provide an insight into mechanism of CCM3-ablation-mediated angiogenesis and could potentially contribute to novel therapeutic concepts for disrupting aberrant angiogenesis in CCM and in hyper-vascularized tumours.

  16. STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling.

    PubMed

    Arimoto, Kei-Ichiro; Löchte, Sara; Stoner, Samuel A; Burkart, Christoph; Zhang, Yue; Miyauchi, Sayuri; Wilmes, Stephan; Fan, Jun-Bao; Heinisch, Jürgen J; Li, Zhi; Yan, Ming; Pellegrini, Sandra; Colland, Frédéric; Piehler, Jacob; Zhang, Dong-Er

    2017-03-01

    Type I interferons (IFNs) are multifunctional cytokines that regulate immune responses and cellular functions but also can have detrimental effects on human health. A tight regulatory network therefore controls IFN signaling, which in turn may interfere with medical interventions. The JAK-STAT signaling pathway transmits the IFN extracellular signal to the nucleus, thus resulting in alterations in gene expression. STAT2 is a well-known essential and specific positive effector of type I IFN signaling. Here, we report that STAT2 is also a previously unrecognized, crucial component of the USP18-mediated negative-feedback control in both human and mouse cells. We found that STAT2 recruits USP18 to the type I IFN receptor subunit IFNAR2 via its constitutive membrane-distal STAT2-binding site. This mechanistic coupling of effector and negative-feedback functions of STAT2 may provide novel strategies for treatment of IFN-signaling-related human diseases.

  17. Plant volatile-mediated signalling and its application in agriculture: successes and challenges.

    PubMed

    Pickett, John A; Khan, Zeyaur R

    2016-12-01

    856 I. 856 II. 857 III. 858 IV. 859 V. 860 VI. 862 VII. 863 VIII. 864 IX. 866 866 References 866 SUMMARY: The mediation of volatile secondary metabolites in signalling between plants and other organisms has long been seen as presenting opportunities for sustainable crop protection. Initially, exploitation of interactions between plants and other organisms, particularly insect pests, foundered because of difficulties in delivering, sustainably, the signal systems for crop protection. We now have mounting and, in some cases, clear practical evidence for successful delivery by companion cropping or next-generation genetic modification (GM). At the same time, the type of plant signalling being exploited has expanded to signalling from plants to organisms antagonistic to pests, and to plant stress-induced, or primed, plant-to-plant signalling for defence and growth stimulation.

  18. Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons.

    PubMed

    Evans, Jennifer A; Leise, Tanya L; Castanon-Cervantes, Oscar; Davidson, Alec J

    2013-11-20

    Interactions among suprachiasmatic nucleus (SCN) neurons are required for robust circadian rhythms entrained to local time. To investigate these signaling mechanisms, we developed a functional coupling assay that uniquely captures the dynamic process by which SCN neurons interact. As a population, SCN neurons typically display synchronized rhythms with similar peak times, but will peak 6-12 hr apart after in vivo exposure to long days. Once they are removed from these conditions, SCN neurons resynchronize through a phase-dependent coupling process mediated by both vasoactive intestinal polypeptide (VIP) and GABAA signaling. Notably, GABAA signaling contributes to coupling when the SCN network is in an antiphase configuration, but opposes synchrony under steady-state conditions. Further, VIP acts together with GABAA signaling to couple the network in an antiphase configuration, but promotes synchrony under steady-state conditions by counteracting the actions of GABAA signaling. Thus, SCN neurons interact through nonredundant coupling mechanisms influenced by the state of the network.

  19. Slit-Robo signaling mediates lymphangiogenesis and promotes tumor lymphatic metastasis.

    PubMed

    Yang, Xiao-Mei; Han, Hai-Xiong; Sui, Fei; Dai, Yu-Min; Chen, Ming; Geng, Jian-Guo

    2010-05-28

    The Slit family of guidance cues binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit-Robo signaling had been reported to function as chemoattractive signal for vascular endothelial cells during angiogenesis. In this study, we found that Robo1 was expressed in lymphatic endothelial cells to mediate the migration and tube formation of these cells upon Slit2 stimulation, which were specifically inhibited by the function-blocking antibody R5 to Slit2/Robo1 interaction. To further explore the lymphangiogenic effect and significance mediated by Slit-Robo signaling, we intercrossed Slit2 transgenic mice with a non-metastatic RIP1-Tag2 mouse tumor model, and found that transgenic overexpression of Slit2 significantly enhanced tumor lymphangiogenesis and subsequently promoted mesenteric lymph node metastasis of pancreatic islet tumors. Taken together, our findings reveal that through interacting with Robo1, Slit2 is a novel and potent lymphangiogenic factor and contributes to tumor lymphatic metastasis.

  20. ATP oscillations mediate inductive action of FGF and Shh signalling on prechondrogenic condensation.

    PubMed

    Kwon, Hyuck Joon

    2013-01-01

    Skeletal patterns are prefigured by prechondrogenic condensation. Morphogens such as fibroblast growth factor (FGF) and sonic hedgehog (Shh) specify the skeletal patterns in limb development. However, how morphogens regulate prechondrogenic condensation has remained unclear. Recently, it was demonstrated that synchronized Adenosine triphosphate (ATP) oscillations play a critical role in prechondrogenic condensation. Thus, the present study has focused on whether ATP oscillations mediate the actions of major developmental morphogens such as FGF and Shh on prechondrogenic condensation. It has been shown that both FGF and Shh signalling promoted cellular condensation but not chondrogenic differentiation and also induced ATP oscillations. In addition, blockage of FGF and Shh signalling prevented both ATP oscillations and prechondrogenic condensation. Furthermore, it was found that inhibition of ATP oscillations suppressed FGF/Shh-induced prechondrogenic condensation. These results indicate that ATP oscillations mediate the actions of FGF and Shh signalling on prechondrogenic condensation. This study proposes that morphogens organize skeletal patterns via ATP oscillations.

  1. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  2. Structural insight into the MC4R conformational changes via different agonist-mediated receptor signaling.

    PubMed

    Yang, Yingkui; Chen, Min; Dimmitt, Reed; Harmon, Carroll M

    2014-11-18

    The melanocortin-4 receptor (MC4R) plays a key role in the regulation of food intake and body weight. Previous studies indicate that α-melanocyte stimulating hormone (α-MSH) binds to MC4R and activates three signal pathways (cAMP, calcium, and mitogen-activated protein kinase pathways), whereas MC4R synthetic agonist THIQ can activate only the cAMP pathway. The molecular basis of the MC4R responsible for different ligand-mediated signaling is unknown. We hypothesize that different MC4R agonists can stabilize different MC4R conformations and result in ligand-mediated signal transduction. In this study, we examined the effect of the MC4R conformational change in cAMP signaling pathways mediated by different agonists by cross-linking two transmembrane helices (TM3 and TM6). We generated and tested 11 single and 8 double mutations that are located at the end of TM3 and beginning of TM6 in MC4R. Our results indicate that (1) single or double mutations of the MC4R did not significantly alter cAMP production induced by NDP-MSH compared to that of wild-type MC4R except single mutation 243H (the mutation 243H significantly decreased cAMP production mediated by NDP-MSH or THIQ due to a low level of receptor expression at the cell surface), (2) the mutation 247H significantly decreased THIQ-mediated cAMP production but not NDP-MSH, and (3) the receptor cAMP signaling pathway activation by THIQ is blocked in the presence of Zn(2+) with the double mutation I150/242H but activation by NDP-MSH is not, suggesting that the activated conformation of MC4R mediated by NDP-MSH and THIQ is different. This study provides insight into the molecular basis of MC4R responsible for receptor signaling mediated by different agonists.

  3. Hippocampal bone morphogenetic protein signaling mediates behavioral effects of antidepressant treatment

    PubMed Central

    Brooker, Sarah M.; Gobeske, Kevin T.; Chen, Jessie; Peng, Chian-Yu; Kessler, John A.

    2016-01-01

    Many antidepressants stimulate adult hippocampal neurogenesis, but the mechanisms by which they increase neurogenesis and modulate behavior are incompletely understood. Here we show that hippocampal bone morphogenetic protein (BMP) signaling is modulated by antidepressant treatment, and that the changes in BMP signaling mediate effects of antidepressant treatment on neural progenitor cell proliferation and behavior. Treatment with the selective serotonin reuptake inhibitor fluoxetine suppressed BMP signaling in the adult mouse hippocampus both by decreasing levels of BMP4 ligand and increasing production of the BMP inhibitor noggin. Increasing BMP signaling in the hippocampus via viral overexpression of BMP4 blocked the effects of fluoxetine on proliferation in the dentate gyrus and on depressive behavior. Conversely, inhibiting BMP signaling via viral overexpression of noggin in the hippocampus or infusion of noggin into the ventricles exerted antidepressant and anxiolytic activity along with an increase in hippocampal neurogenesis. Similarly, conditional genetic deletion of the type II BMP receptor in Ascl1-expressing cells promoted neurogenesis and reduced anxiety- and depression-like behaviors, suggesting that neural progenitor cells contribute to the effects of BMP signaling on affective behavior. These observations indicate that BMP signaling in the hippocampus regulates depressive behavior, and that decreasing BMP signaling may be required for the effects of some antidepressants. Thus BMP signaling is a new and powerful potential target for the treatment of depression. PMID:27698430

  4. Signal-Induced Transcriptional Activation by Dif Requires the dTRAP80 Mediator Module

    PubMed Central

    Park, Jin Mo; Kim, Jung Mo; Kim, Lark Kyun; Kim, Se Nyun; Kim-Ha, Jeongsil; Hoe Kim, Jung; Kim, Young-Joon

    2003-01-01

    The Mediator complex is the major multiprotein transcriptional coactivator complex in Drosophila melanogaster. Mediator components interact with diverse sets of transcriptional activator proteins to elicit the sophisticated regulation of gene expression. The distinct phenotypes associated with certain mutations in some of the Mediator genes and the specific in vitro interactions of Mediator gene products with transcriptional activator proteins suggest the presence of activator-specific binding subunits within the Mediator complex. However, the physiological relevance of these selective in vitro interactions has not been addressed. Therefore, we analyzed dTRAP80, one of the putative activator-binding subunits of the Mediator, for specificity of binding to a number of natural transcriptional activators from Drosophila. Among the group of activator proteins that requires the Mediator complex for transcriptional activation, only a subset of these proteins interacted with dTRAP80 in vitro and only these dTRAP80-interacting activators were defective for activation under dTRAP80-deficient in vivo conditions. In particular, activation of Drosophila antimicrobial peptide drosomycin gene expression by the NF-κB-like transcription factor Dif during induction of the Toll signaling pathway was dependent on the dTRAP80 module. These results, and the indirect support from the dTRAP80 artificial recruitment assay, indicate that dTRAP80 serves as a genuine activator-binding target responsible for a distinct group of activators. PMID:12556495

  5. A novel function of peroxiredoxin 1 (Prx-1) in apoptosis signal-regulating kinase 1 (ASK1)-mediated signaling pathway.

    PubMed

    Kim, So Yong; Kim, Tae Jin; Lee, Ki-Young

    2008-06-11

    We report a novel function of peroxiredoxin-1 (Prx-1) in the ASK1-mediated signaling pathway. Prx-1 interacts with ASK1 via the thioredoxin-binding domain of ASK1 and this interaction is highly inducible by H2O2. However, catalytic mutants of Prx1, C52A, C173A, and C52A/C173A, could not undergo H2O2 inducible interactions, indicating that the redox-sensitive catalytic activity of Prx-1 is required for the interaction with ASK1. Prx-1 overexpression inhibited the activation of ASK1, and resulted in the inhibition of downstream signaling cascades such as the MKK3/6 and p38 pathway. In Prx-1 knockdown cells, ASK1, p38, and JNK were quickly activated, leading to apoptosis in response to H2O2. These findings suggest a negative role of Prx-1 in ASK1-induced apoptosis.

  6. Sonic Hedgehog Signaling Mediates Epithelial–Mesenchymal Communication and Promotes Renal Fibrosis

    PubMed Central

    Ding, Hong; Zhou, Dong; Hao, Sha; Zhou, Lili; He, Weichun; Nie, Jing; Hou, Fan Fan

    2012-01-01

    Sonic hedgehog (Shh) signaling is a developmental signal cascade that plays an essential role in regulating embryogenesis and tissue homeostasis. Here, we investigated the potential role of Shh signaling in renal interstitial fibrogenesis. Ureteral obstruction induced Shh, predominantly in the renal tubular epithelium of the fibrotic kidneys. Using Gli1lacZ knock-in mice, we identified renal interstitial fibroblasts as Shh-responding cells. In cultured renal fibroblasts, recombinant Shh protein activated Gli1 and induced α-smooth muscle actin (α-SMA), desmin, fibronectin, and collagen I expression, suggesting that Shh signaling promotes myofibroblast activation and matrix production. Blockade of Shh signaling with cyclopamine abolished the Shh-mediated induction of Gli1, Snail1, α-SMA, fibronectin, and collagen I. In vivo, the kidneys of Gli1-deficient mice were protected against the development of interstitial fibrosis after obstructive injury. In wild-type mice, cyclopamine did not affect renal Shh expression but did inhibit induction of Gli1, Snail1, and α-SMA. In addition, cyclopamine reduced matrix expression and mitigated fibrotic lesions. These results suggest that tubule-derived Shh mediates epithelial–mesenchymal communication by targeting interstitial fibroblasts after kidney injury. We conclude that Shh/Gli1 signaling plays a critical role in promoting fibroblast activation, production of extracellular matrix, and development of renal interstitial fibrosis. PMID:22302193

  7. Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination

    PubMed Central

    Sun, Xiaoqiang; Bao, Jiguang; You, Zhuhong; Chen, Xing; Cui, Jun

    2016-01-01

    The efficacy of pharmacological perturbation to the signaling transduction network depends on the network topology. However, whether and how signaling dynamics mediated by crosstalk contributes to the drug resistance are not fully understood and remain to be systematically explored. In this study, motivated by a realistic signaling network linked by crosstalk between EGF/EGFR/Ras/MEK/ERK pathway and HGF/HGFR/PI3K/AKT pathway, we develop kinetic models for several small networks with typical crosstalk modules to investigate the role of the architecture of crosstalk in inducing drug resistance. Our results demonstrate that crosstalk inhibition diminishes the response of signaling output to the external stimuli. Moreover, we show that signaling crosstalk affects the relative sensitivity of drugs, and some types of crosstalk modules that could yield resistance to the targeted drugs were identified. Furthermore, we quantitatively evaluate the relative efficacy and synergism of drug combinations. For the modules that are resistant to the targeted drug, we identify drug targets that can not only increase the relative drug efficacy but also act synergistically. In addition, we analyze the role of the strength of crosstalk in switching a module between drug-sensitive and drug-resistant. Our study provides mechanistic insights into the signaling crosstalk-mediated mechanisms of drug resistance and provides implications for the design of synergistic drug combinations to reduce drug resistance. PMID:27590512

  8. Extracellular signal-regulated kinase signaling in the ventral tegmental area mediates cocaine-induced synaptic plasticity and rewarding effects.

    PubMed

    Pan, Bin; Zhong, Peng; Sun, Dalong; Liu, Qing-song

    2011-08-03

    Drugs of abuse such as cocaine induce long-term synaptic plasticity in the reward circuitry, which underlies the formation of drug-associated memories and addictive behavior. We reported previously that repeated cocaine exposure in vivo facilitates long-term potentiation (LTP) in dopamine neurons of the ventral tegmental area (VTA) by reducing the strength of GABAergic inhibition and that endocannabinoid-dependent long-term depression at inhibitory synapses (I-LTD) constitutes a mechanism for cocaine-induced reduction of GABAergic inhibition. The present study investigated the downstream signaling mechanisms and functional consequences of I-LTD in the VTA in the rat. Extracellular signal-regulated kinase (ERK) signaling has been implicated in long-term synaptic plasticity, associative learning, and drug addiction. We tested the hypothesis that VTA ERK activity is required for I-LTD and cocaine-induced long-term synaptic plasticity and behavioral effects. We show that the activation of receptors required for I-LTD increased ERK1/2 phosphorylation and inhibitors of ERK activation blocked I-LTD. We further demonstrate that ERK mediates cocaine-induced reduction of GABAergic inhibition and facilitation of LTP induction. Finally, we show that cocaine conditioned place preference (CPP) training (15 mg/kg; four pairings) increased ERK1/2 phosphorylation in the VTA, while bilateral intra-VTA injections of a CB(1) antagonist or an inhibitor of ERK activation attenuated ERK1/2 phosphorylation and the acquisition, but not the expression, of CPP to cocaine. Our study has identified the CB(1) and ERK signaling cascade as a key mediator of several forms of cocaine-induced synaptic plasticity and provided evidence linking long-term synaptic plasticity in the VTA to rewarding effects of cocaine.

  9. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    PubMed

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  10. A new mechanism for spatial pattern formation via lateral and protrusion-mediated lateral signalling

    PubMed Central

    Hunter, Ginger L.; Baum, Buzz

    2016-01-01

    Tissue organization and patterning are critical during development when genetically identical cells take on different fates. Lateral signalling plays an important role in this process by helping to generate self-organized spatial patterns in an otherwise uniform collection of cells. Recent data suggest that lateral signalling can be mediated both by junctional contacts between neighbouring cells and via cellular protrusions that allow non-neighbouring cells to interact with one another at a distance. However, it remains unclear precisely how signalling mediated by these distinct types of cell–cell contact can physically contribute to the generation of complex patterns without the assistance of diffusible morphogens or pre-patterns. To explore this question, in this work we develop a model of lateral signalling based on a single receptor/ligand pair as exemplified by Notch and Delta. We show that allowing the signalling kinetics to differ at junctional versus protrusion-mediated contacts, an assumption inspired by recent data which show that the cleavage of Notch in several systems requires both Delta binding and the application of mechanical force, permits individual cells to act to promote both lateral activation and lateral inhibition. Strikingly, under this model, in which Delta can sequester Notch, a variety of patterns resembling those typical of reaction–diffusion systems is observed, together with more unusual patterns that arise when we consider changes in signalling kinetics, and in the length and distribution of protrusions. Importantly, these patterns are self-organizing—so that local interactions drive tissue-scale patterning. Together, these data show that protrusions can, in principle, generate different types of patterns in addition to contributing to long-range signalling and to pattern refinement. PMID:27807273

  11. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling

    PubMed Central

    2010-01-01

    Background Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable. Results To investigate the roles CPKs play in a herbivore response-signaling pathway, we screened the characteristics of Arabidopsis CPK mutants damaged by a feeding generalist herbivore, Spodoptera littoralis. Following insect attack, the cpk3 and cpk13 mutants showed lower transcript levels of plant defensin gene PDF1.2 compared to wild-type plants. The CPK cascade was not directly linked to the herbivory-induced signaling pathways that were mediated by defense-related phytohormones such as jasmonic acid and ethylene. CPK3 was also suggested to be involved in a negative feedback regulation of the cytosolic Ca2+ levels after herbivory and wounding damage. In vitro kinase assays of CPK3 protein with a suite of substrates demonstrated that the protein phosphorylates transcription factors (including ERF1, HsfB2a and CZF1/ZFAR1) in the presence of Ca2+. CPK13 strongly phosphorylated only HsfB2a, irrespective of the presence of Ca2+. Furthermore, in vivo agroinfiltration assays showed that CPK3-or CPK13-derived phosphorylation of a heat shock factor (HsfB2a) promotes PDF1.2 transcriptional activation in the defense response. Conclusions These results reveal the involvement of two Arabidopsis CPKs (CPK3 and CPK13) in the herbivory-induced signaling network via HsfB2a-mediated regulation of the defense-related transcriptional machinery. This cascade is not involved in the phytohormone-related signaling pathways, but rather directly impacts transcription factors for defense responses. PMID:20504319

  12. Cellular insulin resistance disrupts leptin-mediated control of neuronal signaling and transcription.

    PubMed

    Nazarians-Armavil, Anaies; Menchella, Jonathan A; Belsham, Denise D

    2013-06-01

    Central resistance to the actions of insulin and leptin is associated with the onset of obesity and type 2 diabetes mellitus, whereas leptin and insulin signaling is essential for both glucose and energy homeostasis. Although it is known that leptin resistance can lead to attenuated insulin signaling, whether insulin resistance can lead to or exacerbate leptin resistance is unknown. To investigate the molecular events underlying crosstalk between these signaling pathways, immortalized hypothalamic neuronal models, rHypoE-19 and mHypoA-2/10, were used. Prolonged insulin exposure was used to induce cellular insulin resistance, and thereafter leptin-mediated regulation of signal transduction and gene expression was assessed. Leptin directly repressed agouti-related peptide mRNA levels but induced urocortin-2, insulin receptor substrate (IRS)-1, IRS2, and IR transcription, through leptin-mediated phosphatidylinositol 3-kinase/Akt activation. Neuronal insulin resistance, as assessed by attenuated Akt phosphorylation, blocked leptin-mediated signal transduction and agouti-related peptide, urocortin-2, IRS1, IRS2, and insulin receptor synthesis. Insulin resistance caused a substantial decrease in insulin receptor protein levels, forkhead box protein 1 phosphorylation, and an increase in suppressor of cytokine signaling 3 protein levels. Cellular insulin resistance may cause or exacerbate neuronal leptin resistance and, by extension, obesity. It is essential to unravel the effects of neuronal insulin resistance given that both peripheral, as well as the less widely studied central insulin resistance, may contribute to the development of metabolic, reproductive, and cardiovascular disorders. This study provides improved understanding of the complex cellular crosstalk between insulin-leptin signal transduction that is disrupted during neuronal insulin resistance.

  13. Pyrimidine-based compounds modulate CXCR2-mediated signaling and receptor turnover.

    PubMed

    Ha, Helen; Neamati, Nouri

    2014-07-07

    Chemokine receptor CXCR2 is expressed on various immune cells and is essential for neutrophil recruitment and angiogenesis at sites of acute and chronic inflammation caused by tissue injury or infection. Because of its role in inflammation, it has been implicated in a number of immune-mediated inflammatory diseases such as psoriasis, arthritis, COPD, cystic fibrosis, asthma, and various types of cancer. CXCR2 and its ligands are up-regulated in cancer cells as well as the tumor microenvironment, promoting tumor growth, angiogenesis, and invasiveness. Although pharmaceutical companies have pursued the development of CXCR2-specific small-molecule inhibitors as anti-inflammatory agents within the last decades, there are currently no clinically approved CXCR2 inhibitors. Using a high-throughput, cell-based assay specific for CXCR2, we screened an in-house library of structurally diverse compounds and identified a class of pyrimidine-based compounds that alter CXCR2-mediated second messenger signaling. Our lead compound, CX797, inhibited IL8-mediated cAMP signaling and receptor degradation while specifically up-regulating IL8-mediated β-arrestin-2 recruitment. CX797 also inhibited IL8-mediated cell migration. Mechanistic comparison of CX797 and a previously reported CXCR2 inhibitor, SB265610, show these two classes of compounds have a distinct mechanism of action on CXCR2.

  14. Attenuation of Inhibitory Prostaglandin E2 Signaling in Human Lung Fibroblasts Is Mediated by Phosphodiesterase 4

    PubMed Central

    Michalski, Joel; Kanaji, Nobuhiro; Liu, Xiangde; Nogel, Steve; Wang, Xingqi; Basma, Hesham; Nakanishi, Masanori; Sato, Tadashi; Gunji, Yoko; Fahrid, Maha; Nelson, Amy; Muller, Kai-Christian; Holz, Olaf; Magnussen, Helgo; Rabe, Klaus F.; Toews, Myron L.

    2012-01-01

    The etiology of chronic obstructive pulmonary disease (COPD) is complex and involves an aberrant inflammatory response. Prostaglandin (PG)E2 is elevated in COPD, is a key modulator of lung fibroblast functions, and may influence COPD progression. Most studies evaluating the effects of PGE2 on lung fibroblasts have used acute exposures. The current study evaluated whether longer-term exposure would induce attenuation of PGE2 signaling as part of an autoregulatory pathway. Human fetal lung fibroblasts were pretreated with PGE2 for 24 hours, and migration and cAMP accumulation in response to acute stimulation with PGE2 were assessed. Fibroblasts from adults with and without COPD were pretreated, and migration was assessed. PGE2 pretreatment attenuated subsequent PGE2-mediated inhibition of chemotaxis and cAMP stimulation. This attenuation was predominantly due to an increase in phosphodiesterase (PDE)4-mediated degradation of cAMP rather than to decreased activation of PGE2 receptors (receptor desensitization). Albuterol- and iloprost-mediated signaling were also attenuated after PGE2 pretreatment, suggesting that activation of PDE4 was able to broadly modulate multiple cAMP-coupled pathways. Lung fibroblasts from adult control subjects pretreated with PGE2 also developed attenuation of PGE2-mediated inhibition of chemotaxis. In contrast, fibroblasts obtained from patients with COPD maintained inhibitory PGE2 signaling after PGE2 pretreatment. These data identify a PDE4-mediated attenuation of PGE2 inhibitory signaling in normal fibroblasts that appears to be altered in COPD fibroblasts. These alterations may contribute to COPD pathogenesis and could provide novel therapeutic targets. PMID:23043089

  15. Spatial signalling mediated by the transforming growth factor-β signalling pathway during tooth formation

    PubMed Central

    He, Xin-Yu; Sun, Ke; Xu, Ruo-Shi; Tan, Jia-Li; Pi, Cai-Xia; Wan, Mian; Peng, Yi-Ran; Ye, Ling; Zheng, Li-Wei; Zhou, Xue-Dong

    2016-01-01

    Tooth development relies on sequential and reciprocal interactions between the epithelial and mesenchymal tissues, and it is continuously regulated by a variety of conserved and specific temporal-spatial signalling pathways. It is well known that suspensions of tooth germ cells can form tooth-like structures after losing the positional information provided by the epithelial and mesenchymal tissues. However, the particular stage in which the tooth germ cells start to form tooth-like structures after losing their positional information remains unclear. In this study, we investigated the reassociation of tooth germ cells suspension from different morphological stages during tooth development and the phosphorylation of Smad2/3 in this process. Four tooth morphological stages were designed in this study. The results showed that tooth germ cells formed odontogenic tissue at embryonic day (E) 14.5, which is referred to as the cap stage, and they formed tooth-like structures at E16.5, which is referred to as the early bell stage, and E18.5, which is referred to as the late bell stage. Moreover, the transforming growth factor-β signalling pathway might play a role in this process. PMID:27982023

  16. Spatial signalling mediated by the transforming growth factor-β signalling pathway during tooth formation.

    PubMed

    He, Xin-Yu; Sun, Ke; Xu, Ruo-Shi; Tan, Jia-Li; Pi, Cai-Xia; Wan, Mian; Peng, Yi-Ran; Ye, Ling; Zheng, Li-Wei; Zhou, Xue-Dong

    2016-12-16

    Tooth development relies on sequential and reciprocal interactions between the epithelial and mesenchymal tissues, and it is continuously regulated by a variety of conserved and specific temporal-spatial signalling pathways. It is well known that suspensions of tooth germ cells can form tooth-like structures after losing the positional information provided by the epithelial and mesenchymal tissues. However, the particular stage in which the tooth germ cells start to form tooth-like structures after losing their positional information remains unclear. In this study, we investigated the reassociation of tooth germ cells suspension from different morphological stages during tooth development and the phosphorylation of Smad2/3 in this process. Four tooth morphological stages were designed in this study. The results showed that tooth germ cells formed odontogenic tissue at embryonic day (E) 14.5, which is referred to as the cap stage, and they formed tooth-like structures at E16.5, which is referred to as the early bell stage, and E18.5, which is referred to as the late bell stage. Moreover, the transforming growth factor-β signalling pathway might play a role in this process.

  17. Dissecting the serotonergic food signal stimulating sensory-mediated aversive behavior in C. elegans.

    PubMed

    Harris, Gareth; Korchnak, Amanda; Summers, Philip; Hapiak, Vera; Law, Wen Jing; Stein, Andrew M; Komuniecki, Patricia; Komuniecki, Richard

    2011-01-01

    Nutritional state often modulates olfaction and in Caenorhabditis elegans food stimulates aversive responses mediated by the nociceptive ASH sensory neurons. In the present study, we have characterized the role of key serotonergic neurons that differentially modulate aversive behavior in response to changing nutritional status. The serotonergic NSM and ADF neurons play antagonistic roles in food stimulation. NSM 5-HT activates SER-5 on the ASHs and SER-1 on the RIA interneurons and stimulates aversive responses, suggesting that food-dependent serotonergic stimulation involves local changes in 5-HT levels mediated by extrasynaptic 5-HT receptors. In contrast, ADF 5-HT activates SER-1 on the octopaminergic RIC interneurons to inhibit food-stimulation, suggesting neuron-specific stimulatory and inhibitory roles for SER-1 signaling. Both the NSMs and ADFs express INS-1, an insulin-like peptide, that appears to cell autonomously inhibit serotonergic signaling. Food also modulates directional decisions after reversal is complete, through the same serotonergic neurons and receptors involved in the initiation of reversal, and the decision to continue forward or change direction after reversal is dictated entirely by nutritional state. These results highlight the complexity of the "food signal" and serotonergic signaling in the modulation of sensory-mediated aversive behaviors.

  18. 15-Oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways.

    PubMed

    Snyder, Nathaniel W; Golin-Bisello, Franca; Gao, Yang; Blair, Ian A; Freeman, Bruce A; Wendell, Stacy Gelhaus

    2015-06-05

    Bioactive lipids govern cellular homeostasis and pathogenic inflammatory processes. Current dogma holds that bioactive lipids, such as prostaglandins and lipoxins, are inactivated by 15-hydroxyprostaglandin dehydrogenase (15PGDH). In contrast, the present results reveal that catabolic "inactivation" of hydroxylated polyunsaturated fatty acids (PUFAs) yields electrophilic α,β-unsaturated ketone derivatives. These endogenously produced species are chemically reactive signaling mediators that induce tissue protective events. Electrophilic fatty acids diversify the proteome through post-translational alkylation of nucleophilic cysteines in key transcriptional regulatory proteins and enzymes that govern cellular metabolic and inflammatory homeostasis. 15PGDH regulates these processes as it is responsible for the formation of numerous electrophilic fatty acids including the arachidonic acid metabolite, 15-oxoeicosatetraenoic acid (15-oxoETE). Herein, the role of 15-oxoETE in regulating signaling responses is reported. In cell cultures, 15-oxoETE activates Nrf2-regulated antioxidant responses (AR) and inhibits NF-κB-mediated pro-inflammatory responses via IKKβ inhibition. Inhibition of glutathione S-transferases using ethacrynic acid incrementally increased the signaling capacity of 15-oxoETE by decreasing 15-oxoETE-GSH adduct formation. This work demonstrates that 15PGDH plays a role in the regulation of cell and tissue homeostasis via the production of electrophilic fatty acid signaling mediators.

  19. Stochastic simulation of notch signaling reveals novel factors that mediate the differentiation of neural stem cells.

    PubMed

    Tzou, Wen-Shyong; Lo, Ying-Tsang; Pai, Tun-Wen; Hu, Chin-Hwa; Li, Chung-Hao

    2014-07-01

    Notch signaling controls cell fate decisions and regulates multiple biological processes, such as cell proliferation, differentiation, and apoptosis. Computational modeling of the deterministic simulation of Notch signaling has provided important insight into the possible molecular mechanisms that underlie the switch from the undifferentiated stem cell to the differentiated cell. Here, we constructed a stochastic model of a Notch signaling model containing Hes1, Notch1, RBP-Jk, Mash1, Hes6, and Delta. mRNA and protein were represented as a discrete state, and 334 reactions were employed for each biochemical reaction using a graphics processing unit-accelerated Gillespie scheme. We employed the tuning of 40 molecular mechanisms and revealed several potential mediators capable of enabling the switch from cell stemness to differentiation. These effective mediators encompass different aspects of cellular regulations, including the nuclear transport of Hes1, the degradation of mRNA (Hes1 and Notch1) and protein (Notch1), the association between RBP-Jk and Notch intracellular domain (NICD), and the cleavage efficiency of the NICD. These mechanisms overlap with many modifiers that have only recently been discovered to modulate the Notch signaling output, including microRNA action, ubiquitin-mediated proteolysis, and the competitive binding of the RBP-Jk-DNA complex. Moreover, we identified the degradation of Hes1 mRNA and nuclear transport of Hes1 as the dominant mechanisms that were capable of abolishing the cell state transition induced by other molecular mechanisms.

  20. Calmodulin physically interacts with the erythropoietin receptor and enhances Jak2-mediated signaling

    SciTech Connect

    Kakihana, Kazuhiko; Yamamoto, Masahide; Iiyama, Mitsuko; Miura, Osamu . E-mail: miura.hema@tmd.ac.jp

    2005-09-23

    Stimulation of the erythropoietin receptor (EpoR) induces a transient increase in intracellular Ca{sup 2+} level as well as activation of the Jak2 tyrosine kinase to stimulate various downstream signaling pathways. Here, we demonstrate that the universal Ca{sup 2+} receptor calmodulin (CaM) binds EpoR in a Ca{sup 2+}-dependent manner in vitro. Binding studies using various EpoR mutants in hematopoietic cells showed that CaM binds the membrane-proximal 65-amino-acid cytoplasmic region (amino acids 258-312) of EpoR that is critical for activation of Jak2-mediated EpoR signaling. Structurally unrelated CaM antagonists, W-13 and CMZ, inhibited activation of Jak2-mediated EpoR signaling pathways, whereas W-12, a W-13 analog, did not show any significant inhibitory effect. Moreover, overexpression of CaM augmented Epo-induced tyrosine phosphorylation of the EpoR. W-13, but not W-12, also inhibited Epo-induced proliferation and survival. Together, these results indicate that CaM binds to the membrane-proximal EpoR cytoplasmic region and plays an essential role in activation of Jak2-mediated EpoR signaling.

  1. Porphyromonas gingivalis-mediated signaling through TLR4 mediates persistent HIV infection of primary macrophages

    PubMed Central

    Agosto, Luis M.; Hirnet, Juliane B.; Michaels, Daniel H.; Shaik-Dasthagirisaheb, Yazdani B.; Gibson, Frank C.; Viglianti, Gregory; Henderson, Andrew J.

    2016-01-01

    Periodontal infections contribute to HIV-associated co-morbidities in the oral cavity and provide a model to interrogate the dysregulation of macrophage function, inflammatory disease progression, and HIV replication during co-infections. We investigated the effect of Porphyromonas gingivalis on the establishment of HIV infection in monocyte-derived macrophages. HIV replication in macrophages was significantly repressed in the presence of P. gingivalis. This diminished viral replication was due partly to a decrease in the expression of integrated HIV provirus. HIV repression depended upon signaling through TLR4 as knock-down of TLR4 with siRNA rescued HIV expression. Importantly, HIV expression was reactivated upon removal of P. gingivalis. Our observations suggest that exposure of macrophages to Gram-negative bacteria influence the establishment and maintenance of HIV persistence in macrophages through a TLR4-dependent mechanism. PMID:27639573

  2. Extracellular acidosis impairs P2Y receptor-mediated Ca(2+) signalling and migration of microglia.

    PubMed

    Langfelder, Antonia; Okonji, Emeka; Deca, Diana; Wei, Wei-Chun; Glitsch, Maike D

    2015-04-01

    Microglia are the resident macrophage and immune cell of the brain and are critically involved in combating disease and assaults on the brain. Virtually all brain pathologies are accompanied by acidosis of the interstitial fluid, meaning that microglia are exposed to an acidic environment. However, little is known about how extracellular acidosis impacts on microglial function. The activity of microglia is tightly controlled by 'on' and 'off' signals, the presence or absence of which results in generation of distinct phenotypes in microglia. Activation of G protein coupled purinergic (P2Y) receptors triggers a number of distinct behaviours in microglia, including activation, migration, and phagocytosis. Using pharmacological tools and fluorescence imaging of the murine cerebellar microglia cell line C8B4, we show that extracellular acidosis interferes with P2Y receptor-mediated Ca(2+) signalling in these cells. Distinct P2Y receptors give rise to signature intracellular Ca(2+) signals, and Ca(2+) release from stores and Ca(2+) influx are differentially affected by acidotic conditions: Ca(2+) release is virtually unaffected, whereas Ca(2+) influx, mediated at least in part by store-operated Ca(2+) channels, is profoundly inhibited. Furthermore, P2Y1 and P2Y6-mediated stimulation of migration is inhibited under conditions of extracellular acidosis, whereas basal migration independent of P2Y receptor activation is not. Taken together, our results demonstrate that an acidic microenvironment impacts on P2Y receptor-mediated Ca(2+) signalling, thereby influencing microglial responses and responsiveness to extracellular signals. This may result in altered behaviour of microglia under pathological conditions compared with microglial responses in healthy tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1).

    PubMed

    Lee, Hannah H; Ho, Richard H

    2017-06-01

    OATP1B1 (SLCO1B1) is predominantly expressed at the basolateral membrane of hepatocytes and is critically important for the hepatic uptake and clearance of numerous drug substrates and endogenous compounds. In general, the organic anion transporting polypeptides (OATP; SLCO) represent a superfamily of uptake transporters that mediate the sodium-independent transport of a diverse range of amphipathic organic compounds including bile salts, steroid conjugates, thyroid hormones, anionic peptides, numerous drugs and other xenobiotic substances. OATP1B1 is highly polymorphic and a number of relevant and ethnically dependent polymorphisms have been identified and functionally characterized. In particular, the SLCO1B1 521T>C and 388A>G polymorphisms are commonly occurring variants in ethnically diverse populations and numerous in vitro and clinical studies have evaluated the consequences of these variants to interindividual differences in drug disposition and response. OATP1B1 is particularly important for the disposition of HMG-CoA reductase inhibitors, or statins, as it is known to efficiently transport most statins to their site of action within hepatocytes. Many studies have focused on the consequences of OATP1B1 variants to statin disposition in vitro and in vivo and would suggest that genetic variability in SLCO1B1 has important implications for statin pharmacokinetics, risk for statin-induced myopathy, and modulation of statin treatment response. This review describes what is currently known regarding SLCO1B1 genotype, OATP1B1 protein expression and interindividual and interethnic consequences to drug disposition, with particular focus on statin pharmacokinetics and implications for drug response and toxicity. © 2016 The British Pharmacological Society.

  4. Role of CD137 signaling in dengue virus-mediated apoptosis

    SciTech Connect

    Nagila, Amar; Netsawang, Janjuree; Srisawat, Chatchawan; Noisakran, Sansanee; Morchang, Atthapan; Yasamut, Umpa; Puttikhunt, Chunya; Kasinrerk, Watchara; and others

    2011-07-08

    Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  5. Suppressing background signals in solid state NMR via the Electronic Mixing-Mediated Annihilation (EMMA) method.

    PubMed

    Mollica, Giulia; Ziarelli, Fabio; Tintaru, Aura; Thureau, Pierre; Viel, Stéphane

    2012-05-01

    A simple procedure to effectively suppress background signals arising from various probe head components (e.g. stator, rotors, inserts) in solid state NMR is presented. Similarly to the ERETIC™ method, which uses an electronic signal as an internal standard for quantification, the proposed scheme is based on an electronically generated time-dependent signal that is injected into the receiver coil of the NMR probe head during signal acquisition. More specifically, the line shape, width and frequency of this electronic signal are determined by deconvoluting the background signal in the frequency domain. This deconvoluted signal is then converted into a time-dependent function through inverse Fourier Transform, which is used to generate the shaped pulse that is fed into the receiver coil during the acquisition of the Free Induction Decay. The power of the shaped pulse is adjusted to match the intensity of the background signal, and its phase is shifted by 180° with respect to the receiver reference phase. This so-called Electronic Mixing-Mediated Annihilation (EMMA) methodology is demonstrated here with a (13)C Single Pulse Magic Angle Spinning spectrum of an isotopically enriched (13)C histidine solid sample recorded under quantitative conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Suppressing background signals in solid state NMR via the Electronic Mixing-Mediated Annihilation (EMMA) method

    NASA Astrophysics Data System (ADS)

    Mollica, Giulia; Ziarelli, Fabio; Tintaru, Aura; Thureau, Pierre; Viel, Stéphane

    2012-05-01

    A simple procedure to effectively suppress background signals arising from various probe head components (e.g. stator, rotors, inserts) in solid state NMR is presented. Similarly to the ERETIC™ method, which uses an electronic signal as an internal standard for quantification, the proposed scheme is based on an electronically generated time-dependent signal that is injected into the receiver coil of the NMR probe head during signal acquisition. More specifically, the line shape, width and frequency of this electronic signal are determined by deconvoluting the background signal in the frequency domain. This deconvoluted signal is then converted into a time-dependent function through inverse Fourier Transform, which is used to generate the shaped pulse that is fed into the receiver coil during the acquisition of the Free Induction Decay. The power of the shaped pulse is adjusted to match the intensity of the background signal, and its phase is shifted by 180° with respect to the receiver reference phase. This so-called Electronic Mixing-Mediated Annihilation (EMMA) methodology is demonstrated here with a 13C Single Pulse Magic Angle Spinning spectrum of an isotopically enriched 13C histidine solid sample recorded under quantitative conditions.

  7. Smad3 phosphoisoform-mediated signaling during sporadic human colorectal carcinogenesis.

    PubMed

    Matsuzaki, K

    2006-06-01

    Transforming growth factor-beta (TGF-beta) signaling occurring during human colorectal carcinogenesis involves a shift in TGF-beta function, reducing the cytokine's antiproliferative effect, while increasing actions that promote invasion and metastasis. TGF-beta signaling involves phosphorylation of Smad3 at serine residues 208 and 213 in the linker region and serine residues 423 and 425 in the C-terminal region. Exogenous TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), changing unphosphorylated Smad3 to its phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker phosphorylated Smad3 (pSmad3L). Either pSmad3C or pSmad3L oligomerizes with Smad4, and translocates into nuclei. While the TbetaRI/pSmad3C pathway inhibits growth of normal epithelial cells in vivo, JNK/pSmad3L-mediated signaling promotes tumor cell invasion and extracellular matrix synthesis by activated mesenchymal cells. Furthermore, hepatocyte growth factor signaling interacts with TGF-beta to activate the JNK/pSmad3L pathway, accelerating nuclear transport of cytoplasmic pSmad3L. This reduces accessibility of unphosphorylated Smad3 to membrane-anchored TbetaRI, preventing Smad3C phosphorylation, pSmad3C-mediated transcription, and antiproliferative effects of TGF-beta on epithelial cells. As neoplasia progresses from normal colorectal epithelium through adenoma to invasive adenocarcinoma with distant metastasis, nuclear pSmad3L gradually increases while pSmad3C decreases. The shift from TbetaRI/pSmad3C-mediated to JNK/pSmad3L-mediated signaling is a major mechanism orchestrating a complex transition of TGF-beta signaling during sporadic human colorectal carcinogenesis. This review summarizes the recent understanding of Smad3 phosphoisoform-mediated signaling, particularly 'cross-talk' between Smad3 and JNK pathways that cooperatively promote oncogenic activities. Understanding of these actions should help to develop more effective

  8. Once upon a time there was beta-catenin in cadherin-mediated signalling.

    PubMed

    Gavard, Julie; Mège, René-Marc

    2005-12-01

    beta-Catenin was initially characterized as a protein interacting with the cadherin cytoplasmic tail and regulating cell-cell contacts and actin cytoskeleton interactions. Moreover, the gene coding for the Drosophila orthologue of beta-catenin, armadillo, was independently identified downstream of wingless in the segment-polarity signalling pathway. In fact, beta-catenin/Armadillo turned out to be key mediators of the Wnt/Wingless pathways in vertebrates and invertebrates. beta-Catenin participates in both adhesion and signalling functions in a mutually exclusive manner; bound to cadherins at the plasma membrane or 'unbound' in cytosolic or nuclear complexes. This model had placed beta-catenin at the crossroads between cadherin and Wnt signalling, leading to the dogma of inhibition of beta-catenin signalling by cadherins.

  9. Hippo Signaling Mediators Yap and Taz Are Required in the Epicardium for Coronary Vasculature Development.

    PubMed

    Singh, Anamika; Ramesh, Sindhu; Cibi, Dasan Mary; Yun, Lim Sze; Li, Jun; Li, Li; Manderfield, Lauren J; Olson, Eric N; Epstein, Jonathan A; Singh, Manvendra K

    2016-05-17

    Formation of the coronary vasculature is a complex and precisely coordinated morphogenetic process that begins with the formation of epicardium. The epicardium gives rise to many components of the coronary vasculature, including fibroblasts, smooth muscle cells, and endothelium. Hippo signaling components have been implicated in cardiac development and regeneration. However, a role of Hippo signaling in the epicardium has not been explored. Employing a combination of genetic and pharmacological approaches, we demonstrate that inhibition of Hippo signaling mediators Yap and Taz leads to impaired epicardial epithelial-to-mesenchymal transition (EMT) and a reduction in epicardial cell proliferation and differentiation into coronary endothelial cells. We provide evidence that Yap and Taz control epicardial cell behavior, in part by regulating Tbx18 and Wt1 expression. Our findings show a role for Hippo signaling in epicardial cell proliferation, EMT, and cell fate specification during cardiac organogenesis.

  10. Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development

    PubMed Central

    Singh, Anamika; Ramesh, Sindhu; Cibi, Dasan Mary; Yun, Lim Sze; Li, Jun; Li, Li; Manderfield, Lauren J.; Olson, Eric N.; Epstein, Jonathan A.; Singh, Manvendra K.

    2016-01-01

    Summary Formation of the coronary vasculature is a complex and precisely coordinated morphogenetic process that begins with the formation of epicardium. The epicardium gives rise to many components of the coronary vasculature, including fibroblasts, smooth muscle cells and endothelium. Hippo signaling components have been implicated in cardiac development and regeneration. However a role of Hippo signaling in the epicardium has not been explored. Employing a combination of genetic and pharmacological approaches, we demonstrate that inhibition of Hippo signaling mediators Yap and Taz leads to impaired epicardial epithelial-to-mesenchymal transition (EMT) and a reduction in epicardial cell proliferation and differentiation into coronary endothelial cells. We provide evidence that Yap and Taz control epicardial cell behavior, in part by regulating Tbx18 and Wt1 expression. Our findings show a role for Hippo signaling in epicardial cell proliferation, EMT and cell fate specification during cardiac organogenesis. PMID:27160901

  11. BMP-FGF signaling axis mediates Wnt-induced epidermal stratification in developing mammalian skin.

    PubMed

    Zhu, Xiao-Jing; Liu, YuDong; Dai, Zhong-Min; Zhang, Xiaoyun; Yang, XueQin; Li, Yan; Qiu, Mengsheng; Fu, Jiang; Hsu, Wei; Chen, YiPing; Zhang, Zunyi

    2014-10-01

    Epidermal stratification of the mammalian skin requires proliferative basal progenitors to generate intermediate cells that separate from the basal layer and are replaced by post-mitotic cells. Although Wnt signaling has been implicated in this developmental process, the mechanism underlying Wnt-mediated regulation of basal progenitors remains elusive. Here we show that Wnt secreted from proliferative basal cells is not required for their differentiation. However, epidermal production of Wnts is essential for the formation of the spinous layer through modulation of a BMP-FGF signaling cascade in the dermis. The spinous layer defects caused by disruption of Wnt secretion can be restored by transgenically expressed Bmp4. Non-cell autonomous BMP4 promotes activation of FGF7 and FGF10 signaling, leading to an increase in proliferative basal cell population. Our findings identify an essential BMP-FGF signaling axis in the dermis that responds to the epidermal Wnts and feedbacks to regulate basal progenitors during epidermal stratification.

  12. Pathogenesis-Related Protein 1b1 (PR1b1) Is a Major Tomato Fruit Protein Responsive to Chilling Temperature and Upregulated in High Polyamine Transgenic Genotypes.

    PubMed

    Goyal, Ravinder K; Fatima, Tahira; Topuz, Muhamet; Bernadec, Anne; Sicher, Richard; Handa, Avtar K; Mattoo, Autar K

    2016-01-01

    ethylene and methyl jasmonate signaling but may be linked to salicylic acid. We propose that polyamine-mediated sustained accumulation of PR1b1 protein in post-warmed chilled tomato fruit is a pre-emptive cold stress response and possibly a defense response mechanism related to Cold Stress-Induced Disease Resistance (SIDR) phenomenon.

  13. Pathogenesis-Related Protein 1b1 (PR1b1) Is a Major Tomato Fruit Protein Responsive to Chilling Temperature and Upregulated in High Polyamine Transgenic Genotypes

    PubMed Central

    Fatima, Tahira; Topuz, Muhamet; Bernadec, Anne; Sicher, Richard; Handa, Avtar K.; Mattoo, Autar K.

    2016-01-01

    of ethylene and methyl jasmonate signaling but may be linked to salicylic acid. We propose that polyamine-mediated sustained accumulation of PR1b1 protein in post-warmed chilled tomato fruit is a pre-emptive cold stress response and possibly a defense response mechanism related to Cold Stress-Induced Disease Resistance (SIDR) phenomenon. PMID:27446131

  14. Alterations in lipid mediated signaling and Wnt/ β -catenin signaling in DMH induced colon cancer on supplementation of fish oil.

    PubMed

    Kansal, Shevali; Vaiphei, Kim; Agnihotri, Navneet

    2014-01-01

    Ceramide mediates inhibition of cyclooxygenase-2 (COX-2) which catalyzes formation of prostaglandin further activating peroxisome proliferator-activated receptor γ (PPAR γ ) and Wnt/ β -catenin pathway; and hence plays a critical role in cancer. Therefore, in current study, ceramide, COX-2, 15-deoxy prostaglandin J2(15-deoxy PGJ2), PPAR γ , and β -catenin were estimated to evaluate the effect of fish oil on lipid mediated and Wnt/ β -catenin signaling in colon carcinoma. Male Wistar rats in Group I received purified diet while Groups II and III received modified diet supplemented with FO : CO(1 : 1) and FO : CO(2.5 : 1), respectively. These were further subdivided into controls receiving ethylenediaminetetraacetic acid and treated groups receiving dimethylhydrazine dihydrochloride (DMH)/week for 4 weeks. Animals sacrificed 48 hours after last injection constituted initiation phase and those sacrificed after 16 weeks constituted postinitiation phase. Decreased ceramide and increased PPAR γ were observed in postinitiation phase only. On receiving FO+CO(1 : 1)+DMH and FO+CO(2.5 : 1)+DMH in both phases, ceramide was augmented whereas COX-2, 15-deoxy PGJ2, and nuclear translocation of β -catenin were reduced with respect to cancerous animals. Decrease was more significant in postinitiation phase with FO+CO(2.5 : 1)+DMH. Treatment with oils increased PPAR γ in initiation phase but decreased it in postinitiation phase. Hence, fish oil altered lipid mediated signalling in a dose and time dependent manner so as to inhibit progression of colon cancer.

  15. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.).

    PubMed

    Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu

    2015-10-01

    Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  16. Charge-signal multiplication mediated by urea wires inside Y-shaped carbon nanotubes

    SciTech Connect

    Lv, Mei; Liu, Zengrong; He, Bing; Xiu, Peng E-mail: ystu@shu.edu.cn; Tu, Yusong E-mail: ystu@shu.edu.cn

    2014-07-28

    In previous studies, we reported molecular dynamics (MD) simulations showing that single-file water wires confined inside Y-shaped single-walled carbon nanotubes (Y-SWNTs) held strong and robust capability to convert and multiply charge signals [Y. S. Tu, P. Xiu, R. Z. Wan, J. Hu, R. H. Zhou, and H. P. Fang, Proc. Natl. Acad. Sci. U.S.A. 106, 18120 (2009); Y. Tu, H. Lu, Y. Zhang, T. Huynh, and R. Zhou, J. Chem. Phys. 138, 015104 (2013)]. It is fascinating to see whether the signal multiplication can be realized by other kinds of polar molecules with larger dipole moments (which make the experimental realization easier). In this article, we use MD simulations to study the urea-mediated signal conversion and multiplication with Y-SWNTs. We observe that when a Y-SWNT with an external charge of magnitude 1.0 e (the model of a signal at the single-electron level) is solvated in 1 M urea solutions, urea can induce drying of the Y-SWNT and fill its interiors in single-file, forming Y-shaped urea wires. The external charge can effectively control the dipole orientation of the urea wire inside the main channel (i.e., the signal can be readily converted), and this signal can further be multiplied into 2 (or more) output signals by modulating dipole orientations of urea wires in bifurcated branch channels of the Y-SWNT. This remarkable signal transduction capability arises from the strong dipole-induced ordering of urea wires under extreme confinement. We also discuss the advantage of urea as compared with water in the signal multiplication, as well as the robustness and biological implications of our findings. This study provides the possibility for multiplying signals by using urea molecules (or other polar organic molecules) with Y-shaped nanochannels and might also help understand the mechanism behind signal conduction in both physical and biological systems.

  17. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis

    PubMed Central

    Reis, Carlos R; Chen, Ping-Hung; Srinivasan, Saipraveen; Aguet, François; Mettlen, Marcel; Schmid, Sandra L

    2015-01-01

    Clathrin-mediated endocytosis (CME) regulates signaling from the plasma membrane. Analysis of clathrin-coated pit (CCP) dynamics led us to propose the existence of a rate-limiting, regulatory step(s) that monitor the fidelity of early stages in CCP maturation. Here we show that nascent endocytic vesicles formed in mutant cells displaying rapid, dysregulated CME are defective in early endosomal trafficking, maturation and acidification, confirming the importance of this “checkpoint.” Dysregulated CME also alters EGF receptor signaling and leads to constitutive activation of the protein kinase Akt. Dynamin-1, which was thought to be neuron specific, is activated by the Akt/GSK3β signaling cascade in non-neuronal cells to trigger rapid, dysregulated CME. Acute activation of dynamin-1 in RPE cells by inhibition of GSK3β accelerates CME, alters CCP dynamics and, unexpectedly, increases the rate of CCP initiation. CRISPR-Cas9n-mediated knockout and reconstitution studies establish that dynamin-1 is activated by Akt/GSK3β signaling in H1299 non-small lung cancer cells. These findings provide direct evidence for an isoform-specific role for dynamin in regulating CME and reveal a feed-forward pathway that could link signaling from cell surface receptors to the regulation of CME. PMID:26139537

  18. '2A-Like' Signal Sequences Mediating Translational Recoding: A Novel Form of Dual Protein Targeting.

    PubMed

    Roulston, Claire; Luke, Garry A; de Felipe, Pablo; Ruan, Lin; Cope, Jonathan; Nicholson, John; Sukhodub, Andriy; Tilsner, Jens; Ryan, Martin D

    2016-08-01

    We report the initial characterization of an N-terminal oligopeptide '2A-like' sequence that is able to function both as a signal sequence and as a translational recoding element. Owing to this translational recoding activity, two forms of nascent polypeptide are synthesized: (i) when 2A-mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A-like N-terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A-mediated translational recoding has occurred: the 2A-like signal sequence is synthesized as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A-like signal sequence and is localized to the cytoplasm. This type of dual-functional signal sequence results, therefore, in the partitioning of the translation products between the two sub-cellular sites and represents a newly described form of dual protein targeting.

  19. SAP-MEDIATED INHIBITION OF DIACYLGLYCEROL KINASE ALPHA REGULATES TCR-INDUCED DIACYLGLYCEROL SIGNALING

    PubMed Central

    Baldanzi, Gianluca; Pighini, Andrea; Bettio, Valentina; Rainero, Elena; Traini, Sara; Chianale, Federica; Porporato, Paolo; Filigheddu, Nicoletta; Mesturini, Riccardo; Song, Shuping; Schweighoffer, Tamas; Patrussi, Laura; Baldari, Cosima Tatiana; Zhong, Xiao-Ping; van Blitterswijk, Wim J.; Sinigaglia, Fabiola; Nichols, Kim E.; Rubio, Ignacio; Parolini, Ornella; Graziani, Andrea

    2011-01-01

    Diacylglycerol kinases (DGKs) metabolize diacylglycerol (DAG) to phosphatidic acid (PA). In T lymphocytes, DGKα acts as a negative regulator of TCR signaling by decreasing diacylglycerol levels and inducing anergy. Here, we show that upon co-stimulation of the TCR with CD28 or SLAM, DGKα, but not DGKζ, exit from the nucleus and undergoes rapid negative regulation of its enzymatic activity. Inhibition of DGKα is dependent on the expression of SAP, an adaptor protein mutated in X-linked lymphoproliferative disease (XLP), which is essential for SLAM-mediated signaling and contributes to TCR/CD28-induced signaling and T cell activation. Accordingly, over-expression of SAP is sufficient to inhibit DGKα, while SAP mutants unable to bind either phospho-tyrosine residues or SH3 domain are ineffective. Moreover phospholipase C activity and calcium, but not Src-family tyrosine kinases, are also required for negative regulation of DGKα. Finally, inhibition of DGKα in SAP-deficient cells partially rescues defective TCR/CD28 signaling, including Ras and ERK-1/2 activation, PKCθ membrane recruitment, induction of NF-AT transcriptional activity and IL-2 production. Thus SAP-mediated inhibition of DGKα sustains diacylglycerol signaling, thereby regulating T cell activation and may represent a novel pharmacological strategy for XLP treatment. PMID:22048771

  20. USP33, a new player in lung cancer, mediates Slit-Robo signaling.

    PubMed

    Wen, Pushuai; Kong, Ruirui; Liu, Jianghong; Zhu, Li; Chen, Xiaoping; Li, Xiaofei; Nie, Yongzhan; Wu, Kaichun; Wu, Jane Y

    2014-09-01

    Ubiquitin specific protease 33 (USP33) is a multifunctional protein regulating diverse cellular processes. The expression and role of USP33 in lung cancer remain unexplored. In this study, we show that USP33 is down-regulated in multiple cohorts of lung cancer patients and that low expression of USP33 is associated with poor prognosis. USP33 mediates Slit-Robo signaling in lung cancer cell migration. Downregulation of USP33 reduces the protein stability of Robo1 in lung cancer cells, providing a previously unknown mechanism for USP33 function in mediating Slit activity in lung cancer cells. Taken together, USP33 is a new player in lung cancer that regulates Slit-Robo signaling. Our data suggest that USP33 may be a candidate tumor suppressor for lung cancer with potential as a prognostic marker.

  1. The plant-unique cis-element that mediates signaling from multiple endoplasmic reticulum stress sensors

    PubMed Central

    Hayashi, Shimpei; Takaiwa, Fumio

    2013-01-01

    The accumulation of unfolded proteins in the ER lumen induces intracellular signaling mediated by the ER stress sensor protein IRE1. Our recent study identified a new common cis-element of ER stress-responsive genes (such as rice BiP paralogs and WRKY45) that were regulated via an IRE1-dependent pathway. ER stress-responsive cis-elements had been expected to be conserved between plants and mammals. However, contrary to expectations, sequences of the plant cis-element, pUPRE-II, were not identical to those of its mammalian counterpart. Additionally, pUPRE-II also interacted with another ER stress sensor protein and mediated multiple signaling pathways. Here, we provide a summary of the results that suggest the complicated mechanism underlying the regulation of ER stress-responsive gene expression in plants. PMID:23518586

  2. A novel role for farnesyl pyrophosphate synthase in fibroblast growth factor-mediated signal transduction.

    PubMed Central

    Reilly, John F; Martinez, Shawndra D; Mickey, Gregory; Maher, Pamela A

    2002-01-01

    Farnesyl pyrophosphate synthase (FPPS) catalyses the formation of a key cellular intermediate in isoprenoid metabolic pathways. Here we describe a novel role for this enzyme in fibroblast growth factor (FGF)-mediated signalling. We demonstrate the binding of FPPS to FGF receptors (FGFRs) using the yeast two-hybrid assay, pull-down assays and co-immunoprecipitation. The interaction between FPPS and FGFR is regulated by the cellular metabolic state and by treatment with FGF-2. Overexpression of FPPS inhibits FGF-2-induced cell proliferation, accompanied by a failure of the FGF-2-mediated induction of cyclins D1 and E. Overexpression of FPPS in fibroblasts also promotes increased farnesylation of Ras, and temporally extends FGF-2-stimulated activation of the Ras/ERK (extracellular-signal-regulated kinase) cascade. These data suggest that, in addition to its role in isoprenoid biosynthesis, FPPS may function as a modulator of the cellular response to FGF treatment. PMID:12020352

  3. The plant-unique cis-element that mediates signaling from multiple endoplasmic reticulum stress sensors.

    PubMed

    Hayashi, Shimpei; Takaiwa, Fumio

    2013-06-01

    The accumulation of unfolded proteins in the ER lumen induces intracellular signaling mediated by the ER stress sensor protein IRE1. Our recent study identified a new common cis-element of ER stress-responsive genes (such as rice BiP paralogs and WRKY45) that were regulated via an IRE1-dependent pathway. ER stress-responsive cis-elements had been expected to be conserved between plants and mammals. However, contrary to expectations, sequences of the plant cis-element, pUPRE-II, were not identical to those of its mammalian counterpart. Additionally, pUPRE-II also interacted with another ER stress sensor protein and mediated multiple signaling pathways. Here, we provide a summary of the results that suggest the complicated mechanism underlying the regulation of ER stress-responsive gene expression in plants.

  4. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    PubMed Central

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. PMID:24186979

  5. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    NASA Astrophysics Data System (ADS)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  6. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    SciTech Connect

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  7. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation.

    PubMed

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  8. Hepatitis C virus NS5A protein modulates IRF-7-mediated interferon-α signaling.

    PubMed

    Chowdhury, Joydip Bhanja; Kim, Hangeun; Ray, Ranjit; Ray, Ratna B

    2014-01-01

    Hepatitis C virus (HCV) establishes chronic infection in a large number of infected individuals. We have previously shown that HCV infection in hepatocytes blocks poly (I-C) or interferon (IFN)-α-mediated IRF-7 nuclear translocation (Raychoudhuri and others 2010). However, the mechanism of IRF-7 regulation by HCV remained unknown. In this study, we have observed that HCV NS5A physically associates with IRF-7. A subsequent study suggested that the HCV NS5A protein blocks IRF-7-mediated IFN-α14 promoter activation. Further analyses demonstrated that site-specific mutagenesis of the 2 basic arginine residues (amino acids Arg(216) and Arg(217)) in the NS5A is critical for IRF-7-mediated IFN-α14 promoter regulation. Together, our results suggested that the HCV NS5A protein limits the IFN-α-signaling pathway in association with IRF-7, and may, in part, be responsible for the establishment of chronic infection.

  9. Enzyme- and affinity biomolecule-mediated polymerization systems for biological signal amplification and cell screening.

    PubMed

    Malinowska, Klara H; Nash, Michael A

    2016-06-01

    Enzyme-mediated polymerization and polymerization-based signal amplification have emerged as two closely related techniques that are broadly applicable in the nanobio sciences. We review recent progress on polymerization systems mediated by biological molecules (e.g., affinity molecules and enzymes), and highlight newly developed formats and configurations of these systems to perform such tasks as non-instrumented biodetection, synthesis of core-shell nanomaterials, isolation of rare cells, and high-throughput screening. We discuss useful features of biologically mediated polymerization systems, such as multiple mechanisms of amplification (e.g., enzymatic, radical chain propagation), and the ability to localize structures at interfaces and at cell surfaces with microscopic spatial confinement. We close with a perspective on desirable improvements that need to be addressed to adapt these molecular systems to future applications.

  10. Fusion tyrosine kinase mediated signalling pathways in the transformation of haematopoietic cells.

    PubMed

    Turner, S D; Alexander, D R

    2006-04-01

    The fusion tyrosine kinases (FTKs) are generated by chromosomal translocations creating bipartite proteins in which the kinase is hyperactivated by an adjoining oligomerization domain. Autophosphorylation of the FTK generates a 'signalosome', an ensemble of signalling proteins that transduce signals to downstream pathways. At the earliest stages of oncogenesis, FTKs can mimic mitogenic cytokine signalling pathways involving the GAB-2 adaptor protein and signal transducers and activators of transcription (STAT) factors, generating replicative stress and thereby promoting a mutator phenotype. In parallel, FTKs couple to survival pathways that upregulate prosurvival proteins such as Bcl-xL, so preventing DNA-damage-induced apoptosis. Following transformation, FTKs induce resistance to genotoxic attack by upregulating DNA repair mechanisms such as STAT5-dependent RAD51 transcription. The phenomenon of 'oncogene addiction' reflects the continued requirement of an active FTK 'signalosome' to mediate survival and mitogenic signals involving the PI 3-kinase and mitogen-activated protein stress-activated protein kinase pathways, and the nuclear factor-kappa B, activator protein 1 and STAT transcription factors. The available data so far suggest that FTKs, with some possible exceptions, induce and maintain the transformed state using similar panoplies of signals, a finding with important therapeutic implications. The FTK signalling field has matured to an exciting phase in which rapid advances are facilitating rational drug design.

  11. GPCR-like signaling mediated by smoothened contributes to acquired chemoresistance through activating Gli

    PubMed Central

    2014-01-01

    Background Smoothened (Smo), which possesses a structural similarity with classic G-protein coupled receptors (GPCR), is the most important molecular target in Hedgehog (Hh) signaling system for developing anticancer drugs; however, whether Smo may transmit GPCR-like signaling to activate the canonical transcriptional factor Gli of Hh signaling system and consequently to be involved in the Gli-dependent biological events remains controversial. Results In this study, using the acquired chemoresistant cancer cell lines and their respective parental cells, we found that Smo may activate Gli through Gαi, Gβγ-JNK signaling axis, thereby promoting the Gli-dependent acquired chemoresistance. These observations were further complementarily strengthened by data obtained from chemosensitive cancer cells with artificially elevated Hh pathway activity. Conclusions Hence, our data demonstrate that GPCR-like signaling mediated by Smo contributes to the acquired chemoresistance through activating the canonical Hh transcriptional factor Gli; therefore improving our knowledge of the nature of the signal transduction of Smo and the molecular mechanisms responsible for the acquired chemoresistance maintained by Hh pathway. Moreover, our data that JNK after activated by Smo-Gβγ signaling axis may stimulate the Gli activity and consequently promotes acquired chemoresistance expose a promising and potential target for developing anti-cancer drugs aimed at Hh pathway and for combating the acquired resistance raised by using of anti-cancer drugs targeting Smo. PMID:24393163

  12. CD160 signaling mediates PI3K-dependent survival and growth signals in chronic lymphocytic leukemia

    PubMed Central

    Liu, Feng-Ting; Giustiniani, Jerome; Farren, Timothy; Jia, Li; Bensussan, Armand; Gribben, John G.

    2010-01-01

    B-cell chronic lymphocytic leukemia (CLL) expresses CD160, a glycosylphosphatidylinositol-linked receptor found on normal natural killer (NK) and T cells, but not B cells. CD160 is a multifunctional molecule in normal lymphocytes, but its role in CLL biology is unknown. In vitro, CLL cells undergo rapid spontaneous apoptosis, which CD160 activation protected against—mean cell viability increased from 67% to 79% (P < .001). This was associated with up-regulation of Bcl-2, Bcl-xL, and Mcl-1, but not Bax. As expected from these changes in Bcl-2/Bax and Bcl-xL/Bax ratios, CD160 triggering reduced mitochondrial membrane potential collapse and cytochrome c release. CD160 stimulation also induced DNA synthesis, cell cycle progression, and proliferation. B-cell antigen receptor (BCR)–induced CLL proliferation was generally greater than with CD160, but marked variation was seen. Both BCR and CD160 signaling led to CLL secretion of interleukin-6 (IL-6) and IL-8, although CD160 induced greater increases of IL-6 (51-fold) and IL-8 (15-fold). Survival and activation signals mediated by CD160 showed dose-dependent suppression by phosphoinositide-3 kinase (PI3K) inhibitors. Thus, in vitro, CLL cells can use the CD160 pathway for survival and activation, mimicking CD160 signaling in normal NK and CD8+ T cells. Establishing the pathophysiologic relevance of these findings may reveal new therapeutic targets. PMID:20164468

  13. Modulation of 4HNE-mediated signaling by proline-rich peptides from ovine colostrum.

    PubMed

    Boldogh, Istvan; Liebenthal, Daniel; Hughes, T Kley; Juelich, Terry L; Georgiades, Jerzy A; Kruzel, Marian L; Stanton, G John

    2003-04-01

    In previous studies we showed that colostrinin (CLN), a complex of proline-rich polypeptides derived from ovine colostrum, induces mitogenic stimulation, as well as a variety of cytokines in human peripheral blood leukocytes, and possesses antioxidant activity in pheochromocytoma (PC12) cells. In this study we investigated the effects of CLN on 4-hydroxynonenal (4HNE)-mediated adduct formation, generation of reactive oxygen species (ROS), glutathione (GSH) metabolism, and the modification of signal transduction cascade that leads to activation of c-Jun N-terminal kinase (JNK) in PC12 cells. Here we demonstrate that CLN (1) reduced the abundance of 4HNE-protein adducts, as shown by fluorescent microscopy and Western blot analysis; (2) reduced intracellular levels of ROS, as shown by a decrease in 2',7'-dichlorodihydro-fluorescein-mediated fluorescence; (3) inhibited 4HNE-mediated GSH depletion, as determined fluorimetrically; and (4) inhibited 4HNE-induced activation of JNKs. Together, these findings suggest that CLN appears to down-regulate 4HNE-mediated lipid peroxidation and its product-induced signaling that otherwise may lead to pathological changes at the cellular and organ level. These findings also suggest further that CLN could be useful in the treatment of diseases such as Alzheimer's, as well as those in which ROS are implicated in pathogenesis.

  14. Sustained Inhibition of Proliferative Response After Transient FGF Stimulation Is Mediated by Interleukin 1 Signaling.

    PubMed

    Poole, Ashleigh; Kacer, Doreen; Cooper, Emily; Tarantini, Francesca; Prudovsky, Igor

    2016-03-01

    Transient FGF stimulation of various cell types results in FGF memory--a sustained blockage of efficient proliferative response to FGF and other growth factors. FGF memory establishment requires HDAC activity, indicating its epigenetic character. FGF treatment stimulates proinflammatory NFκB signaling, which is also critical for FGF memory formation. The search for FGF-induced mediators of FGF memory revealed that FGF stimulates HDAC-dependent expression of the inflammatory cytokine IL1α. Similarly to FGF, transient cell treatment with recombinant IL1α inhibits the proliferative response to further FGF and EGF stimulation, but does not prevent FGF receptor-mediated signaling. Interestingly, like cells pretreated with FGF1, cells pretreated with IL1α exhibit enhanced restructuring of actin cytoskeleton and increased migration in response to FGF stimulation. IRAP, a specific inhibitor of IL 1 receptor, and a neutralizing anti-IL1α antibody prevent the formation of FGF memory and rescue an efficient proliferative response to FGF restimulation. A similar effect results following treatment with the anti-inflammatory agents aspirin and dexamethasone. Thus, FGF memory is mediated by proinflammatory IL1 signaling. It may play a role in the limitation of proliferative response to tissue damage and prevention of wound-induced hyperplasia.

  15. Sesn1 is a novel gene for left-right asymmetry and mediating nodal signaling.

    PubMed

    Peeters, Hilde; Voz, Marianne L; Verschueren, Kristin; De Cat, Bart; Pendeville, Hélène; Thienpont, Bernard; Schellens, Ann; Belmont, John W; David, Guido; Van De Ven, Wim J M; Fryns, Jean-Pierre; Gewillig, Marc; Huylebroeck, Danny; Peers, Bernard; Devriendt, Koen

    2006-11-15

    Remarkable progress has been made in understanding the molecular mechanisms underlying left-right asymmetry in vertebrate animal models but little is known on left-right axis formation in humans. Previously, we identified SESN1 (also known as PA26) as a candidate gene for heterotaxia by positional cloning of the breakpoint regions of a de novo translocation in a heterotaxia patient. In this study, we show by means of a zebrafish sesn1-knockdown model that Sesn1 is required for normal embryonic left-right determination. In this model, developmental defects and expression data of genes implicated in vertebrate left-right asymmetry indicate a role for Sesn1 in mediating Nodal signaling. In the lateral plate mesoderm, Nodal signaling plays a central role in left-right axis formation in vertebrates and is mediated by FoxH1 transcriptional induction. In line with this, we show that Sesn1 physically interacts with FoxH1 or a FoxH1-containing complex. Mutation analysis in a panel of 234 patients with isolated heterotaxia did not reveal mutations, indicating that these are only exceptional causes of human heterotaxia. In this study, we identify SESN1 as an indispensable gene for vertebrate left-right asymmetry and a new player in mediating Nodal signaling.

  16. Potentiation of μ–opioid receptor–mediated signaling by ketamine

    PubMed Central

    Gupta, Achla; Devi, Lakshmi A.; Gomes, Ivone

    2013-01-01

    Ketamine, a clinically relevant drug, has been shown to enhance opioid-induced analgesia and prevent hyperalgesia. However, the molecular mechanisms involved are not clearly understood. As previous studies found that activation of opioid receptors leads to the phosphorylation of mitogen-activated protein kinases, we investigated whether ketamine could modulate μ-opioid receptor (μOR)-mediated ERK1/2 phosphorylation. We find that acute treatment with ketamine enhances (~2- to 3-fold) the levels of opioid-induced ERK1/2 phosphorylation in recombinant as well as cells endogenously expressing μOR. Interestingly, we find that in the absence of ketamine ERK1/2 signaling is desensitized 10 min after opioid exposure whereas in its presence significant levels (~3-fold over basal) are detected. In addition, ketamine increases the rate of resensitization of opioid-mediated ERK1/2 signaling (15 min in its presence vs. 30 min in its absence). These results suggest that ketamine increases the effectiveness of opiate-induced signaling by affecting multiple mechanisms. In addition, these effects are observed in heterologous cells expressing μOR suggesting a non-NMDA receptor-mediated action of ketamine. Together this could, in part, account for the observed effects of ketamine on the enhancement of the analgesic effects of opiates as well as in the duration of opiate-induced analgesia. PMID:21692801

  17. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Deng, Ning

    2016-04-01

    Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis.

  18. Oviductal estrogen receptor α signaling prevents protease-mediated embryo death

    PubMed Central

    Winuthayanon, Wipawee; Bernhardt, Miranda L; Padilla-Banks, Elizabeth; Myers, Page H; Edin, Matthew L; Lih, Fred B; Hewitt, Sylvia C; Korach, Kenneth S; Williams, Carmen J

    2015-01-01

    Development of uterine endometrial receptivity for implantation is orchestrated by cyclic steroid hormone-mediated signals. It is unknown if these signals are necessary for oviduct function in supporting fertilization and preimplantation development. Here we show that conditional knockout (cKO) mice lacking estrogen receptor α (ERα) in oviduct and uterine epithelial cells have impaired fertilization due to a dramatic reduction in sperm migration. In addition, all successfully fertilized eggs die before the 2-cell stage due to persistence of secreted innate immune mediators including proteases. Elevated protease activity in cKO oviducts causes premature degradation of the zona pellucida and embryo lysis, and wild-type embryos transferred into cKO oviducts fail to develop normally unless rescued by concomitant transfer of protease inhibitors. Thus, suppression of oviductal protease activity mediated by estrogen-epithelial ERα signaling is required for fertilization and preimplantation embryo development. These findings have implications for human infertility and post-coital contraception. DOI: http://dx.doi.org/10.7554/eLife.10453.001 PMID:26623518

  19. Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish.

    PubMed

    Fan, Xiang; Hagos, Engda G; Xu, Bo; Sias, Christina; Kawakami, Koichi; Burdine, Rebecca D; Dougan, Scott T

    2007-10-15

    In many vertebrates, extra-embryonic tissues are important signaling centers that induce and pattern the germ layers. In teleosts, the mechanism by which the extra-embryonic yolk syncytial layer (YSL) patterns the embryo is not understood. Although the Nodal-related protein Squint is expressed in the YSL, its role in this tissue is not known. We generated a series of stable transgenic lines with GFP under the control of squint genomic sequences. In all species, nodal-related genes induce their own expression through a positive feedback loop. We show that two tissue specific enhancers in the zebrafish squint gene mediate the response to Nodal signals. Expression in the blastomeres depends upon a conserved Nodal response element (NRE) in the squint first intron, while expression in the extra-embryonic enveloping layer (EVL) is mediated by an element upstream of the transcription start site. Targeted depletion experiments demonstrate that the zebrafish Nodal-related proteins Squint and Cyclops are required in the YSL for endoderm and head mesoderm formation. Thus, Nodal signals mediate interactions between embryonic and extra-embryonic tissues in zebrafish that maintain nodal-related gene expression in the margin. Our results demonstrate a high degree of functional conservation between the extra-embryonic tissues of mouse and zebrafish.

  20. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism.

    PubMed

    Mata-Pérez, Capilla; Sánchez-Calvo, Beatriz; Padilla, María N; Begara-Morales, Juan C; Valderrama, Raquel; Corpas, Francisco J; Barroso, Juan B

    2017-04-01

    Recent studies in animal systems have shown that NO can interact with fatty acids to generate nitro-fatty acids (NO2-FAs). They are the product of the reaction between reactive nitrogen species and unsaturated fatty acids, and are considered novel mediators of cell signaling based mainly on a proven anti-inflammatory response. Although these signaling mediators have been described widely in animal systems, NO2-FAs have scarcely been studied in plants. Preliminary data have revealed the endogenous presence of free and protein-adducted NO2-FAs in extra-virgin olive oil (EVOO), which appear to be contributing to the cardiovascular benefits associated with the Mediterranean diet. Importantly, new findings have displayed the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in the model plant Arabidopsis thaliana and the modulation of NO2-Ln levels throughout this plant's development. Furthermore, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant-defense response against different abiotic-stress conditions, mainly by inducing the chaperone network and supporting a conserved mechanism of action in both animal and plant defense processes. Thus, NO2-Ln levels significantly rose under several abiotic-stress conditions, highlighting the strong signaling role of these molecules in the plant-protection mechanism. Finally, the potential of NO2-Ln as a NO donor has recently been described both in vitro and in vivo. Jointly, this ability gives NO2-Ln the potential to act as a signaling molecule by the direct release of NO, due to its capacity to induce different changes mediated by NO or NO-related molecules such as nitration and S-nitrosylation, or by the electrophilic capacity of these molecules through a nitroalkylation mechanism. Here, we describe the current state of the art regarding the advances performed in the field of NO2-FAs in plants and their implication in plant

  1. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes.

    PubMed

    Gao, Dan; Madi, Mohamed; Ding, Cherlyn; Fok, Matthew; Steele, Thomas; Ford, Christopher; Hunter, Leif; Bing, Chen

    2014-08-01

    Adipose tissue expansion during obesity is associated with increased macrophage infiltration. Macrophage-derived factors significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. Identification of the major factors that mediate detrimental effects of macrophages on adipocytes may offer potential therapeutic targets. IL-1β, a proinflammatory cytokine, is suggested to be involved in the development of insulin resistance. This study investigated the role of IL-1β in macrophage-adipocyte cross-talk, which affects insulin signaling in human adipocytes. Using macrophage-conditioned (MC) medium and human primary adipocytes, we examined the effect of IL-1β antagonism on the insulin signaling pathway. Gene expression profile and protein abundance of insulin signaling molecules were determined, as was the production of proinflammatory cytokine/chemokines. We also examined whether IL-1β mediates MC medium-induced alteration in adipocyte lipid storage. MC medium and IL-1β significantly reduced gene expression and protein abundance of insulin signaling molecules, including insulin receptor substrate-1, phosphoinositide 3-kinase p85α, and glucose transporter 4 and phosphorylation of Akt. In contrast, the expression and release of the proinflammatory markers, including IL-6, IL-8, monocyte chemotactic protein-1, and chemokine (C-C motif) ligand 5 by adipocytes were markedly increased. These changes were significantly reduced by blocking IL-1β activity, its receptor binding, or its production by macrophages. MC medium-inhibited expression of the adipogenic factors and -stimulated lipolysis was also blunted with IL-1β neutralization. We conclude that IL-1β mediates, at least in part, the effect of macrophages on insulin signaling and proinflammatory response in human adipocytes. Blocking IL-1β could be beneficial for preventing obesity-associated insulin resistance and inflammation in human adipose tissue. Copyright

  2. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes

    PubMed Central

    Gao, Dan; Madi, Mohamed; Ding, Cherlyn; Fok, Matthew; Steele, Thomas; Ford, Christopher; Hunter, Leif

    2014-01-01

    Adipose tissue expansion during obesity is associated with increased macrophage infiltration. Macrophage-derived factors significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. Identification of the major factors that mediate detrimental effects of macrophages on adipocytes may offer potential therapeutic targets. IL-1β, a proinflammatory cytokine, is suggested to be involved in the development of insulin resistance. This study investigated the role of IL-1β in macrophage-adipocyte cross-talk, which affects insulin signaling in human adipocytes. Using macrophage-conditioned (MC) medium and human primary adipocytes, we examined the effect of IL-1β antagonism on the insulin signaling pathway. Gene expression profile and protein abundance of insulin signaling molecules were determined, as was the production of proinflammatory cytokine/chemokines. We also examined whether IL-1β mediates MC medium-induced alteration in adipocyte lipid storage. MC medium and IL-1β significantly reduced gene expression and protein abundance of insulin signaling molecules, including insulin receptor substrate-1, phosphoinositide 3-kinase p85α, and glucose transporter 4 and phosphorylation of Akt. In contrast, the expression and release of the proinflammatory markers, including IL-6, IL-8, monocyte chemotactic protein-1, and chemokine (C-C motif) ligand 5 by adipocytes were markedly increased. These changes were significantly reduced by blocking IL-1β activity, its receptor binding, or its production by macrophages. MC medium-inhibited expression of the adipogenic factors and -stimulated lipolysis was also blunted with IL-1β neutralization. We conclude that IL-1β mediates, at least in part, the effect of macrophages on insulin signaling and proinflammatory response in human adipocytes. Blocking IL-1β could be beneficial for preventing obesity-associated insulin resistance and inflammation in human adipose tissue. PMID:24918199

  3. IL1{beta}-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    SciTech Connect

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-11-15

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1{beta} in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts with or without stimulation of IL-1{beta}, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1{beta}. Further analysis indicated that the major COX-2 product, prostaglandin E{sub 2}, directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1{beta}. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1{beta} in the fibroblasts.

  4. Site of action of the general anesthetic propofol in muscarinic M1 receptor-mediated signal transduction.

    PubMed

    Murasaki, Osamu; Kaibara, Muneshige; Nagase, Yoshihisa; Mitarai, Sayaka; Doi, Yoshiyuki; Sumikawa, Koji; Taniyama, Kohtaro

    2003-12-01

    Although a potential target site of general anesthetics is primarily the GABA A receptor, a chloride ion channel, a previous study suggested that the intravenous general anesthetic propofol attenuates the M1 muscarinic acetylcholine receptor (M1 receptor)-mediated signal transduction. In the present study, we examined the target site of propofol in M1 receptor-mediated signal transduction. Two-electrode voltage-clamp method was used in Xenopus oocytes expressing both M1 receptors and associated G protein alpha subunits (Gqalpha). Propofol inhibited M1 receptor-mediated signal transduction in a dose-dependent manner (IC50 = 50 nM). Injection of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) into oocytes overexpressing Gqalpha was used to investigate direct effects of propofol on G protein coupled with the M1 receptor. Propofol did not affect activation of Gqalpha-mediated signal transduction with the intracellular injection of GTPgammaS. We also studied effects of propofol on l-[N-methyl-3H]scopolamine methyl chloride ([3H]NMS) binding and M1 receptor-mediated signal transduction in mammalian cells expressing M1 receptor. Propofol inhibited the M1 receptor-mediated signal transduction but did not inhibit binding of [3H]NMS. Effects of propofol on Gs- and Gi/o-coupled signal transduction were investigated, using oocytes expressing the beta2 adrenoceptor (beta2 receptor)/cystic fibrosis transmembrane conductance regulator or oocytes expressing the M2 muscarinic acetylcholine receptor (M2 receptor)/Kir3.1 (a member of G protein-gated inwardly rectifying K(+) channels). Neither beta2 receptor-mediated nor M2 receptor-mediated signal transduction was inhibited by a relatively high concentration of propofol (50 microM). These results indicate that propofol inhibits M1 receptor-mediated signal transduction by selectively disrupting interaction between the receptor and associated G protein.

  5. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  6. High Efficiency CRISPR/Cas9-mediated Gene Editing in Primary Human T-cells Using Mutant Adenoviral E4orf6/E1b55k "Helper" Proteins.

    PubMed

    Gwiazda, Kamila S; Grier, Alexandra E; Sahni, Jaya; Burleigh, Stephen M; Martin, Unja; Yang, Julia G; Popp, Nicholas A; Krutein, Michelle C; Khan, Iram F; Jacoby, Kyle; Jensen, Michael C; Rawlings, David J; Scharenberg, Andrew M

    2016-09-29

    Many future therapeutic applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 and related RNA-guided nucleases are likely to require their use to promote gene targeting, thus necessitating development of methods that provide for delivery of three components-Cas9, guide RNAs and recombination templates-to primary cells rendered proficient for homology-directed repair. Here, we demonstrate an electroporation/transduction codelivery method that utilizes mRNA to express both Cas9 and mutant adenoviral E4orf6 and E1b55k helper proteins in association with adeno-associated virus (AAV) vectors expressing guide RNAs and recombination templates. By transiently enhancing target cell permissiveness to AAV transduction and gene editing efficiency, this novel approach promotes efficient gene disruption and/or gene targeting at multiple loci in primary human T-cells, illustrating its broad potential for application in translational gene editing.

  7. Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila

    PubMed Central

    Struhl, Gary; Greenwald, Iva

    2001-01-01

    The cleavage model for signal transduction by receptors of the LIN-12/Notch family posits that ligand binding leads to cleavage within the transmembrane domain, so that the intracellular domain is released to translocate to the nucleus and activate target gene expression. The familial Alzheimer's disease-associated protein Presenilin is required for LIN-12/Notch signaling, and several lines of evidence suggest that Presenilin mediates the transmembrane cleavage event that releases the LIN-12/Notch intracellular domain. However, doubt was cast on this possibility by a report that Presenilin is not required for the transducing activity of NECN, a constitutively active transmembrane form of Notch, in Drosophila. Here, we have reassessed this finding and show instead that Presenilin is required for activity of NECN for all cell fate decisions examined. Our results indicate that transmembrane cleavage and signal transduction are strictly correlated, supporting the cleavage model for signal transduction by LIN-12/Notch and a role for Presenilin in mediating the ligand-induced transmembrane cleavage. PMID:11134525

  8. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior.

    PubMed

    González-Maeso, Javier; Weisstaub, Noelia V; Zhou, Mingming; Chan, Pokman; Ivic, Lidija; Ang, Rosalind; Lira, Alena; Bradley-Moore, Maria; Ge, Yongchao; Zhou, Qiang; Sealfon, Stuart C; Gingrich, Jay A

    2007-02-01

    Hallucinogens, including mescaline, psilocybin, and lysergic acid diethylamide (LSD), profoundly affect perception, cognition, and mood. All known drugs of this class are 5-HT(2A) receptor (2AR) agonists, yet closely related 2AR agonists such as lisuride lack comparable psychoactive properties. Why only certain 2AR agonists are hallucinogens and which neural circuits mediate their effects are poorly understood. By genetically expressing 2AR only in cortex, we show that 2AR-regulated pathways on cortical neurons are sufficient to mediate the signaling pattern and behavioral response to hallucinogens. Hallucinogenic and nonhallucinogenic 2AR agonists both regulate signaling in the same 2AR-expressing cortical neurons. However, the signaling and behavioral responses to the hallucinogens are distinct. While lisuride and LSD both act at 2AR expressed by cortex neurons to regulate phospholipase C, LSD responses also involve pertussis toxin-sensitive heterotrimeric G(i/o) proteins and Src. These studies identify the long-elusive neural and signaling mechanisms responsible for the unique effects of hallucinogens.

  9. Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis

    PubMed Central

    Cahill, Thomas J.; Thomsen, Alex R. B.; Tarrasch, Jeffrey T.; Plouffe, Bianca; Nguyen, Anthony H.; Yang, Fan; Huang, Li-Yin; Kahsai, Alem W.; Bassoni, Daniel L.; Gavino, Bryant J.; Lamerdin, Jane E.; Triest, Sarah; Shukla, Arun K.; Berger, Benjamin; Little, John; Antar, Albert; Blanc, Adi; Qu, Chang-Xiu; Chen, Xin; Kawakami, Kouki; Inoue, Asuka; Aoki, Junken; Steyaert, Jan; Sun, Jin-Peng; Bouvier, Michel; Skiniotis, Georgios; Lefkowitz, Robert J.

    2017-01-01

    β-Arrestins (βarrs) interact with G protein-coupled receptors (GPCRs) to desensitize G protein signaling, to initiate signaling on their own, and to mediate receptor endocytosis. Prior structural studies have revealed two unique conformations of GPCR–βarr complexes: the “tail” conformation, with βarr primarily coupled to the phosphorylated GPCR C-terminal tail, and the “core” conformation, where, in addition to the phosphorylated C-terminal tail, βarr is further engaged with the receptor transmembrane core. However, the relationship of these distinct conformations to the various functions of βarrs is unknown. Here, we created a mutant form of βarr lacking the “finger-loop” region, which is unable to form the core conformation but retains the ability to form the tail conformation. We find that the tail conformation preserves the ability to mediate receptor internalization and βarr signaling but not desensitization of G protein signaling. Thus, the two GPCR–βarr conformations can carry out distinct functions. PMID:28223524

  10. Role of TLR2- and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death.

    PubMed

    Sánchez, Dulfary; Rojas, Mauricio; Hernández, Israel; Radzioch, Danuta; García, Luis F; Barrera, Luis F

    2010-01-01

    Infection of macrophages with Mycobacterium tuberculosis (Mtb) induces cell death by apoptosis or necrosis. TLRs 2 and 4 recognition of mycobacterial ligands has been independently associated to apoptosis induction. To try to understand the particular contribution of these receptors to apoptotic or necrotic signaling upon infection with live Mtb H37Rv, we used macrophage lines derived from wild-type or TLR2-, TLR4-, and MyD88-deficient mouse strains. Mtb-infection triggered apoptosis depending on a TLR2/TLR4/MyD88/p38/ERK/PI-3K/NF-kB pathway; however, necrosis was favored in absence of TLR4 signaling independently of p38, ERK1/2, PI-3K or NF-kappaB activity. In conclusion, our results indicate that cooperation between TLR2- and TLR4-dependent mediated signals play a critical role in macrophage apoptosis induced by Mtb and the TLR4-mediated signaling has important role in the maintenance of the balance between apoptotic vs. necrotic cell death induced by macrophage infection with Mtb.

  11. The roles of PDZ-containing proteins in PLC-beta-mediated signaling.

    PubMed

    Suh, P G; Hwang, J I; Ryu, S H; Donowitz, M; Kim, J H

    2001-10-19

    Mammalian phospholipase C-beta isozymes are activated by a heterotrimeric GTP-binding protein linked to various cell surface receptors. Recent reports suggest that PDZ domain proteins play a significant role of PDZ-containing proteins in the regulation of mammalian PLC-beta isozymes. PDZ-containing proteins mediate the clustering of receptors and signaling molecules and thereby regulate agonist-induced signal transduction in polarized cells such as neuronal and epithelial cells. NORPA, a Drosophila PLC-beta, is known to be a component of a signaling complex that includes TRP and rhodopsin through interaction with INAD, a PDZ-containing protein. Mammalian PLC-beta1 and -beta2 isoforms interact with a PDZ-containing protein NHERF which is coupled to Trp4, a Ca(2+) channel. In addition, PLC-beta3 specifically interacts with E3KARP, another protein closely related to NHERF, through its C-terminal PDZ-binding motif. E3KARP up-regulates the PLC-beta3 activation coupled to muscarinic receptor. In this review, the role of signaling complexes mediated by PDZ-containing proteins in the regulation of PLC-beta isoforms will be discussed.

  12. Early Embryonic Vascular Patterning by Matrix-Mediated Paracrine Signalling: A Mathematical Model Study

    PubMed Central

    Köhn-Luque, Alvaro; de Back, Walter; Starruß, Jörn; Mattiotti, Andrea; Deutsch, Andreas; Pérez-Pomares, José María; Herrero, Miguel A.

    2011-01-01

    During embryonic vasculogenesis, endothelial precursor cells of mesodermal origin known as angioblasts assemble into a characteristic network pattern. Although a considerable amount of markers and signals involved in this process have been identified, the mechanisms underlying the coalescence of angioblasts into this reticular pattern remain unclear. Various recent studies hypothesize that autocrine regulation of the chemoattractant vascular endothelial growth factor (VEGF) is responsible for the formation of vascular networks in vitro. However, the autocrine regulation hypothesis does not fit well with reported data on in vivo early vascular development. In this study, we propose a mathematical model based on the alternative assumption that endodermal VEGF signalling activity, having a paracrine effect on adjacent angioblasts, is mediated by its binding to the extracellular matrix (ECM). Detailed morphometric analysis of simulated networks and images obtained from in vivo quail embryos reveals the model mimics the vascular patterns with high accuracy. These results show that paracrine signalling can result in the formation of fine-grained cellular networks when mediated by angioblast-produced ECM. This lends additional support to the theory that patterning during early vascular development in the vertebrate embryo is regulated by paracrine signalling. PMID:21949696

  13. Signal Integration by Lipid-Mediated Spatial Cross Talk between Ras Nanoclusters

    PubMed Central

    Zhou, Yong; Liang, Hong; Rodkey, Travis; Ariotti, Nicholas; Parton, Robert G.

    2014-01-01

    Lipid-anchored Ras GTPases form transient, spatially segregated nanoclusters on the plasma membrane that are essential for high-fidelity signal transmission. The lipid composition of Ras nanoclusters, however, has not previously been investigated. High-resolution spatial mapping shows that different Ras nanoclusters have distinct lipid compositions, indicating that Ras proteins engage in isoform-selective lipid sorting and accounting for different signal outputs from different Ras isoforms. Phosphatidylserine is a common constituent of all Ras nanoclusters but is only an obligate structural component of K-Ras nanoclusters. Segregation of K-Ras and H-Ras into spatially and compositionally distinct lipid assemblies is exquisitely sensitive to plasma membrane phosphatidylserine levels. Phosphatidylserine spatial organization is also modified by Ras nanocluster formation. In consequence, Ras nanoclusters engage in remote lipid-mediated communication, whereby activated H-Ras disrupts the assembly and operation of spatially segregated K-Ras nanoclusters. Computational modeling and experimentation reveal that complex effects of caveolin and cortical actin on Ras nanoclustering are similarly mediated through regulation of phosphatidylserine spatiotemporal dynamics. We conclude that phosphatidylserine maintains the lateral segregation of diverse lipid-based assemblies on the plasma membrane and that lateral connectivity between spatially remote lipid assemblies offers important previously unexplored opportunities for signal integration and signal processing. PMID:24366544

  14. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.

    PubMed

    Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas

    2011-03-09

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.

  15. Two PTP receptors mediate CSPG inhibition by convergent and divergent signaling pathways in neurons

    PubMed Central

    Ohtake, Yosuke; Wong, Daniella; Abdul-Muneer, P. M.; Selzer, Michael E.; Li, Shuxin

    2016-01-01

    Receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member LAR act as transmembrane receptors that mediate growth inhibition of chondroitin sulfate proteoglycans (CSPGs). Inhibition of either receptor increases axon growth into and beyond scar tissues after CNS injury. However, it is unclear why neurons express two similar CSPG receptors, nor whether they use the same or different intracellular pathways. We have now studied the signaling pathways of these two receptors using N2A cells and primary neurons derived from knockout mice. We demonstrate that both receptors share certain signaling pathways (RhoA, Akt and Erk), but also use distinct signals to mediate CSPG actions. Activation of PTPσ by CSPGs selectively inactivated CRMP2, APC, S6 kinase and CREB. By contrast LAR activation inactivated PKCζ, cofilin and LKB1. For the first time, we propose a model of the signaling pathways downstream of these two CSPG receptors. We also demonstrate that deleting both receptors exhibits additive enhancement of axon growth in adult neuronal cultures in vitro. Our findings elucidate the novel downstream pathways of CSPGs and suggest potential synergy of blocking their two PTP receptors. PMID:27849007

  16. {beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation.

    PubMed

    Ahn, Seungkirl; Kim, Jihee; Hara, Makoto R; Ren, Xiu-Rong; Lefkowitz, Robert J

    2009-03-27

    beta-Arrestins, originally discovered as terminators of G protein-coupled receptor signaling, have more recently been appreciated to also function as signal transducers in their own right, although the consequences for cellular physiology have not been well understood. Here we demonstrate that beta-arrestin-2 mediates anti-apoptotic cytoprotective signaling stimulated by a typical 7-transmembrane receptor the angiotensin ATII 1A receptor, expressed endogenously in rat vascular smooth muscle cells or by transfection in HEK-293 cells. Receptor stimulation leads to concerted activation of two pathways, ERK/p90RSK and PI3K/AKT, which converge to phosphorylate and inactivate the pro-apoptotic protein BAD. Anti-apoptotic effects as well as pathway activities can be stimulated by an angiotensin analog (SII), which has been previously shown to activate beta-arrestin but not G protein-dependent signaling, and are abrogated by beta-arrestin-2 small interfering RNA. These findings establish a key role for beta-arrestin-2 in mediating cellular cytoprotective functions by a 7-transmembrane receptor and define the biochemical pathways involved.

  17. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators.

    PubMed

    Liu, Yangfan P; Tsai, I-Chun; Morleo, Manuela; Oh, Edwin C; Leitch, Carmen C; Massa, Filomena; Lee, Byung-Hoon; Parker, David S; Finley, Daniel; Zaghloul, Norann A; Franco, Brunella; Katsanis, Nicholas

    2014-05-01

    Cilia are critical mediators of paracrine signaling; however, it is unknown whether proteins that contribute to ciliopathies converge on multiple paracrine pathways through a common mechanism. Here, we show that loss of cilopathy-associated proteins Bardet-Biedl syndrome 4 (BBS4) or oral-facial-digital syndrome 1 (OFD1) results in the accumulation of signaling mediators normally targeted for proteasomal degradation. In WT cells, several BBS proteins and OFD1 interacted with proteasomal subunits, and loss of either BBS4 or OFD1 led to depletion of multiple subunits from the centrosomal proteasome. Furthermore, overexpression of proteasomal regulatory components or treatment with proteasomal activators sulforaphane (SFN) and mevalonolactone (MVA) ameliorated signaling defects in cells lacking BBS1, BBS4, and OFD1, in morphant zebrafish embryos, and in induced neurons from Ofd1-deficient mice. Finally, we tested the hypothesis that other proteasome-dependent pathways not known to be associated with ciliopathies are defective in the absence of ciliopathy proteins. We found that loss of BBS1, BBS4, or OFD1 led to decreased NF-κB activity and concomitant IκBβ accumulation and that these defects were ameliorated with SFN treatment. Taken together, our data indicate that basal body proteasomal regulation governs paracrine signaling pathways and suggest that augmenting proteasomal function might benefit ciliopathy patients.

  18. Syndecan-4 negatively regulates antiviral signalling by mediating RIG-I deubiquitination via CYLD

    PubMed Central

    Lin, Wei; Zhang, Jing; Lin, Haiyan; Li, Zexing; Sun, Xiaofeng; Xin, Di; Yang, Meng; Sun, Liwei; Li, Lin; Wang, Hongmei; Chen, Dahua; Sun, Qinmiao

    2016-01-01

    Retinoic acid-inducible gene I (RIG-I) plays important roles in pathogen recognition and antiviral signalling transduction. Here we show that syndecan-4 (SDC4) is a RIG-I-interacting partner identified in a yeast two-hybrid screen. We find that SDC4 negatively regulates the RIG-I-mediated antiviral signalling in a feedback-loop control manner. The genetic evidence obtained by using knockout mice further emphasizes this biological role of SDC4 in antiviral signalling. Mechanistically, we show that SDC4 interacts with both RIG-I and deubiquitinase CYLD via its carboxyl-terminal intracellular region. SDC4 likely promotes redistribution of RIG-I and CYLD in a perinuclear pattern post viral infection, and thus enhances the RIG-I–CYLD interaction and potentiates the K63-linked deubiquitination of RIG-I. Collectively, our findings uncover a mechanism by which SDC4 antagonizes the activation of RIG-I in a CYLD-mediated deubiquitination-dependent process, thereby balancing antiviral signalling to avoid deleterious effects on host cells. PMID:27279133

  19. Erk1/2 Mediates Leptin Receptor Signaling in the Ventral Tegmental Area

    PubMed Central

    Trinko, Richard; Gan, Geliang; Gao, Xiao-Bing; Sears, Robert M.; Guarnieri, Douglas J.; DiLeone, Ralph J.

    2011-01-01

    Leptin acts on the ventral tegmental area (VTA) to modulate neuronal function and feeding behavior in rats and mice. To identify the intracellular effectors of the leptin receptor (Lepr), downstream signal transduction events were assessed for regulation by direct leptin infusion. Phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and phosphorylated extracellular signal-regulated kinase-1 and -2 (pERK1/2) were increased in the VTA while phospho-AKT (pAKT) was unaffected. Pretreatment of brain slices with the mitogen-activated protein kinase kinase -1 and -2 (MEK1/2) inhibitor U0126 blocked the leptin-mediated decrease in firing frequency of VTA dopamine neurons. The anorexigenic effects of VTA-administered leptin were also blocked by pretreatment with U0126, which effectively blocked phosphorylation of ERK1/2 but not STAT3. These data demonstrate that pERK1/2 may have a critical role in mediating both the electrophysiogical and behavioral effects of leptin receptor signaling in the VTA. PMID:22076135

  20. Protein Tyrosine Phosphatase PRL2 Mediates Notch and Kit Signals in Early T Cell Progenitors.

    PubMed

    Kobayashi, Michihiro; Nabinger, Sarah C; Bai, Yunpeng; Yoshimoto, Momoko; Gao, Rui; Chen, Sisi; Yao, Chonghua; Dong, Yuanshu; Zhang, Lujuan; Rodriguez, Sonia; Yashiro-Ohtani, Yumi; Pear, Warren S; Carlesso, Nadia; Yoder, Mervin C; Kapur, Reuben; Kaplan, Mark H; Daniel Lacorazza, Hugo; Zhang, Zhong-Yin; Liu, Yan

    2017-04-01

    The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow hematopoietic stem and progenitor cells (HSPCs) that continuously feed thymic progenitors remain largely unknown. While Notch signal is indispensable for T cell specification and differentiation, the downstream effectors are not well understood. PRL2, a protein tyrosine phosphatase that regulates hematopoietic stem cell proliferation and self-renewal, is highly expressed in murine thymocyte progenitors. Here we demonstrate that protein tyrosine phosphatase PRL2 and receptor tyrosine kinase c-Kit are critical downstream targets and effectors of the canonical Notch/RBPJ pathway in early T cell progenitors. While PRL2 deficiency resulted in moderate defects of thymopoiesis in the steady state, de novo generation of T cells from Prl2 null hematopoietic stem cells was significantly reduced following transplantation. Prl2 null HSPCs also showed impaired T cell differentiation in vitro. We found that Notch/RBPJ signaling upregulated PRL2 as well as c-Kit expression in T cell progenitors. Further, PRL2 sustains Notch-mediated c-Kit expression and enhances stem cell factor/c-Kit signaling in T cell progenitors, promoting effective DN1-DN2 transition. Thus, we have identified a critical role for PRL2 phosphatase in mediating Notch and c-Kit signals in early T cell progenitors. Stem Cells 2017;35:1053-1064.

  1. Roles of octopaminergic and dopaminergic neurons in mediating reward and punishment signals in insect visual learning.

    PubMed

    Unoki, Sae; Matsumoto, Yukihisa; Mizunami, Makoto

    2006-10-01

    Insects, like vertebrates, have considerable ability to associate visual, olfactory or other sensory signals with reward or punishment. Previous studies in crickets, honey bees and fruit-flies have suggested that octopamine (OA, invertebrate counterpart of noradrenaline) and dopamine (DA) mediate various kinds of reward and punishment signals in olfactory learning. However, whether the roles of OA and DA in mediating positive and negative reinforcing signals can be generalized to learning of sensory signals other than odors remained unknown. Here we first established a visual learning paradigm in which to associate a visual pattern with water reward or saline punishment for crickets and found that memory after aversive conditioning decayed much faster than that after appetitive conditioning. Then, we pharmacologically studied the roles of OA and DA in appetitive and aversive forms of visual learning. Crickets injected with epinastine or mianserin, OA receptor antagonists, into the hemolymph exhibited a complete impairment of appetitive learning to associate a visual pattern with water reward, but aversive learning with saline punishment was unaffected. By contrast, fluphenazine, chlorpromazine or spiperone, DA receptor antagonists, completely impaired aversive learning without affecting appetitive learning. The results demonstrate that OA and DA participate in reward and punishment conditioning in visual learning. This finding, together with results of previous studies on the roles of OA and DA in olfactory learning, suggests ubiquitous roles of the octopaminergic reward system and dopaminergic punishment system in insect learning.

  2. Unfolded protein response, treatment and CMT1B

    PubMed Central

    Bai, Yunhong; Patzko, Agnes; Shy, Michael E.

    2013-01-01

    CMT1B is the second most frequent autosomal dominant inherited neuropathy and is caused by assorted mutations of the myelin protein zero (MPZ) gene. MPZ mutations cause neuropathy gain of function mechanisms that are largely independent MPZs normal role of mediating myelin compaction. Whether there are only a few or multiple pathogenic mechanisms that cause CMT1B is unknown. Arg98Cys and Ser63Del MPZ are two CMT1B causing mutations that have been shown to cause neuropathy in mice at least in part by activating the unfolded protein response (UPR). We have recently treated Arg98Cys mice with derivatives of curcumin that improved the neuropathy and reduced UPR activation.1 Future studies will address whether manipulating the UPR will be a common or rare strategy for treating CMT1B or other forms of inherited neuropathies. PMID:25002989

  3. Human autoreactive T cells recognize CD1b and phospholipids

    PubMed Central

    Van Rhijn, Ildiko; van Berlo, Twan; Hilmenyuk, Tamara; Cheng, Tan-Yun; Wolf, Benjamin J.; Tatituri, Raju V. V.; Uldrich, Adam P.; Napolitani, Giorgio; Cerundolo, Vincenzo; Altman, John D.; Willemsen, Peter; Huang, Shouxiong; Rossjohn, Jamie; Besra, Gurdyal S.; Brenner, Michael B.; Godfrey, Dale I.; Moody, D. Branch

    2016-01-01

    In contrast with the common detection of T cells that recognize MHC, CD1a, CD1c, or CD1d proteins, CD1b autoreactive T cells have been difficult to isolate in humans. Here we report the development of polyvalent complexes of CD1b proteins and carbohydrate backbones (dextramers) and their use in identifying CD1b autoreactive T cells from human donors. Activation is mediated by αβ T-cell receptors (TCRs) binding to CD1b-phospholipid complexes, which is sufficient to activate autoreactive responses to CD1b-expressing cells. Using mass spectrometry and T-cell responses to scan through the major classes of phospholipids, we identified phosphatidylglycerol (PG) as the immunodominant lipid antigen. T cells did not discriminate the chemical differences that distinguish mammalian PG from bacterial PG. Whereas most models of T-cell recognition emphasize TCR discrimination of differing self and foreign structures, CD1b autoreactive T cells recognize lipids with dual self and foreign origin. PG is rare in the cellular membranes that carry CD1b proteins. However, bacteria and mitochondria are rich in PG, so these data point to a more general mechanism of immune detection of infection- or stress-associated lipids. PMID:26621732

  4. Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye.

    PubMed

    Tare, Meghana; Sarkar, Ankita; Bedi, Shimpi; Kango-Singh, Madhuri; Singh, Amit

    2016-12-29

    In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell

  5. Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye

    PubMed Central

    Tare, Meghana; Sarkar, Ankita; Bedi, Shimpi; Kango-Singh, Madhuri; Singh, Amit

    2016-01-01

    In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell

  6. Impact of Signal Peptides on Furin-2A Mediated Monoclonal Antibody Secretion in CHO Cells.

    PubMed

    Lin, Jian'er; Neo, Shu Hui; Ho, Steven C L; Yeo, Jessna H M; Wang, Tianhua; Zhang, Wei; Bi, Xuezhi; Chao, Sheng-Hao; Yang, Yuansheng

    2017-09-01

    Studies had shown the benefits of using furin-2A peptides for high monoclonal antibody (mAb) expression in mammalian cells. How signal peptides affect furin-2A mediated mAb secretion has yet to be investigated. The impact of signal peptides on mAb secretion in furin-2A based tricistronic vectors in CHO cells is evaluated. In each tricistronic vector, heavy chain (HC) is arranged as the first cistron and followed by a furin recognition sequence, a 2A peptide, light chain (LC), an internal ribosome entry site (IRES), and dihydrofolate reductase (DHFR). Signal peptides for HC and LC are either removed or changed in different vectors. The vectors with signal peptides on both HC and LC genes gIve the highest mAb secretion levels. Changing to signal peptides with different strengths on either HC or LC do not change the mAb secretion level. IgG is still secreted when the signal peptide on the LC gene is removed but at a lower level compared to the vectors containing signal peptides on both HC and LC genes. Removing the HC signal peptide results in almost no IgG secretion regardless of whether the downstream LC carries any signal peptide. Removing the furin cleavage site does not affect mAb secretion levels while removing the 2A sequence results in low mAb secretion. The results present here will be beneficial for designing furin-2A based vectors for expressing mAb in mammalian cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cellular Signaling Pathways and Posttranslational Modifications Mediated by Nematode Effector Proteins1

    PubMed Central

    Hewezi, Tarek

    2015