Science.gov

Sample records for 1c involving 5-lipoxygenase

  1. The Protective Effect of Eupatilin against Hydrogen Peroxide-Induced Injury Involving 5-Lipoxygenase in Feline Esophageal Epithelial Cells

    PubMed Central

    Lim, Jae Chun; Park, Sun Young; Nam, Yoonjin; Nguyen, Thanh Thao

    2012-01-01

    In this study, we focused to identify whether eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone), an extract from Artemisia argyi folium, prevents H2O2-induced injury of cultured feline esophageal epithelial cells. Cell viability was measured by the conventional MTT reduction assay. Western blot analysis was performed to investigate the expression of 5-lipoxygenase by H2O2 treatment in the absence and presence of inhibitors. When cells were exposed to 600 µM H2O2 for 24 hours, cell viability was decreased to 40%. However, when cells were pretreated with 25~150 µM eupatilin for 12 hours, viability was significantly restored in a concentration-dependent manner. H2O2-treated cells were shown to express 5-lipoxygenase, whereas the cells pretreated with eupatilin exhibited reduction in the expression of 5-lipoxygenase. The H2O2-induced increase of 5-lipoxygenase expression was prevented by SB202190, SP600125, or NAC. We further demonstrated that the level of leukotriene B4 (LTB4) was also reduced by eupatilin, SB202190, SP600125, NAC, or nordihydroguaiaretic acid (a lipoxygenase inhibitor) pretreatment. H2O2 induced the activation of p38MAPK and JNK, this activation was inhibited by eupatilin. These results indicate that eupatilin may reduce H2O2-induced cytotoxicity, and 5-lipoxygenase expression and LTB4 production by controlling the p38 MAPK and JNK signaling pathways through antioxidative action in feline esophageal epithelial cells. PMID:23118554

  2. Involvement of eicosanoids in the pathogenesis of pancreatic cancer: the roles of cyclooxygenase-2 and 5-lipoxygenase.

    PubMed

    Knab, Lawrence M; Grippo, Paul J; Bentrem, David J

    2014-08-21

    The interplay between inflammation and cancer progression is a growing area of research. A combination of clinical, epidemiological, and basic science investigations indicate that there is a relationship between inflammatory changes in the pancreas and neoplastic progression. Diets high in ω-6 polyunsaturated fatty acids provide increased substrate for arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) to form eicosanoids. These eicosanoids directly contribute to pancreatic cancer cell proliferation. Both COX-2 and 5-LOX are upregulated in multiple cancer types, including pancreatic cancer. In vitro studies using pancreatic cancer cell lines have demonstrated upregulation of COX-2 and 5-LOX at both the mRNA and protein levels. When COX-2 and 5-LOX are blocked via a variety of mechanisms, cancer cell proliferation is abrogated both in vitro and in vivo. The mechanism of COX-2 has been shown to include effects on apoptosis as well as angiogenesis. 5-LOX has been implicated in apoptosis. The use of COX-2 and 5-LOX inhibitors in clinical studies in patients with pancreatic cancer has been limited. Patient enrollment has been restricted to those with advanced disease which makes evaluation of these drugs as chemopreventive agents difficult. COX-2 and 5-LOX expression have been shown to be present during the early neoplastic changes of pancreatic cancer, well before progression to invasive disease. This indicates that the ideal role for these interventions is early in the disease process as preventive agents, perhaps in patients with chronic pancreatitis or hereditary pancreatitis.

  3. 5-lipoxygenase activation is involved in the mechanisms of chronic hepatic injury in a rat model of chronic aluminum overload exposure.

    PubMed

    Mai, Shaoshan; He, Qin; Wang, Hong; Hu, Xinyue; Luo, Ying; Yang, Yang; Kuang, Shengnan; Tian, Xiaoyan; Ma, Jie; Yang, Junqing

    2016-08-15

    We previously confirmed that rats overloaded with aluminum exhibited hepatic function damage and increased susceptibility to hepatic inflammation. However, the mechanism of liver toxicity by chronic aluminum overload is poorly understood. In this study, we investigated changes in the 5-lipoxygenase (5-LO) signaling pathway and its effect on liver injury in aluminum-overloaded rats. A rat hepatic injury model of chronic aluminum injury was established via the intragastric administration of aluminum gluconate (Al(3+) 200mg/kg per day, 5days a week for 20weeks). The 5-LO inhibitor, caffeic acid (10 and 30mg/kg), was intragastrically administered 1h after aluminum administration. Hematoxylin and eosin staining was used to visualize pathological changes in rat liver tissue. A series of biochemical indicators were measured with biochemistry assay or ELISAs. Immunochemistry and RT-PCR methods were used to detect 5-LO protein and mRNA expression in the liver, respectively. Caffeic acid administration protected livers against histopathological injury, decreased plasma ALT, AST, and ALP levels, decreased TNF-α, IL-6, IL-1β and LTs levels, increased the reactive oxygen species content, and down-regulated the mRNA and protein expressions of 5-LO in aluminum overloaded rats. Our results indicate that 5-lipoxygenase activation is mechanistically involved in chronic hepatic injury in a rat model of chronic aluminum overload exposure and that the 5-LO signaling pathway, which associated with inflammation and oxidative stress, is a potential therapeutic target for chronic non-infection liver diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Homocysteine modulates 5-lipoxygenase expression level via DNA methylation.

    PubMed

    Li, Jian-Guo; Barrero, Carlos; Gupta, Sapna; Kruger, Warren D; Merali, Salim; Praticò, Domenico

    2017-04-01

    Elevated levels of homocysteinemia (Hcy), a risk factor for late-onset Alzheimer's disease (AD), have been associated with changes in cell methylation. Alzheimer's disease is characterized by an upregulation of the 5-lipoxygenase (5LO), whose promoter is regulated by methylation. However, whether Hcy activates 5LO enzymatic pathway by influencing the methylation status of its promoter remains unknown. Brains from mice with high Hcy were assessed for the 5LO pathway and neuronal cells exposed to Hcy implemented to study the mechanism(s) regulating 5LO expression levels and the effect on amyloid β formation. Diet- and genetically induced high Hcy resulted in 5LO protein and mRNA upregulation, which was associated with a significant increase of the S-adenosylhomocysteine (SAH)/S-adenosylmethionine ratio, and reduced DNA methyltrasferases and hypomethylation of 5-lipoxygenase DNA. In vitro studies confirmed these results and demonstrated that the mechanism involved in the Hcy-dependent 5LO activation and amyloid β formation is DNA hypomethylation secondary to the elevated levels of SAH. Taken together these findings represent the first demonstration that Hcy directly influences 5LO expression levels and establish a previously unknown cross talk between these two pathways, which is highly relevant for AD pathogenesis. The discovery of such a novel link not only provides new mechanistic insights in the neurobiology of Hcy, but most importantly new therapeutic opportunities for the individuals bearing this risk factor for the disease. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Augmentation of 5-lipoxygenase activity and expression during dengue serotype-2 infection

    PubMed Central

    2013-01-01

    Background Leukotriene B4, a 5-lipoxygenase product of arachidonic acid with potent chemotactic effects on neutrophils, has not been assessed in dengue patients. In this study, plasma leukotriene B4 and serum high-sensitivity C-reactive protein levels were determined in adult patients during the febrile, convalescent and defervescent stages of dengue serotype-2 (DENV-2) infection, and compared with those of age--matched healthy and non-dengue febrile subjects. In vitro studies were performed to examine the effects of live and heat-inactivated DENV-2 on the activities and expression of 5-lipoxygenase in human neutrophils. Results Plasma leukotriene B4 was elevated during the febrile stages of dengue infection compared to levels during convalescence and in study controls. Plasma leukotriene B4 also correlated with serum high-sensitivity C-reactive protein in dengue patients (febrile, r = 0.91, p < 0.001; defervescence, r = 0.87, p < 0.001; convalescence, r = 0.87, p < 0.001). Exposure of human neutrophils to DENV-2 resulted in a significant rise in leukotriene B4; the extent of increase, however, did not differ between exposure to live and heat-inactivated DENV-2. Pre-incubation of either live or heat-inactivated DENV-2 resulted in reduced leukotriene B4 release by neutrophils, indicating that contact with dengue antigens (and not replication) triggers the neutrophil response. Production of leukotriene B4 was associated with an increase in 5-lipoxygenase expression in human neutrophils; addition of MK886 (a 5-lipoxygenase activating protein inhibitor) attenuated further increase in leukotriene B4 production. Conclusion These findings provide important clinical and mechanistic data on the involvement of 5-lipoxygenase and its metabolites in dengue infection. Further studies are needed to elucidate the therapeutic implications of these findings. PMID:24168271

  6. Expression of 5-lipoxygenase and 5-lipoxygenase-activating protein in human fetal membranes throughout pregnancy and at term.

    PubMed

    Brown, N L; Slater, D M; Alvi, S A; Elder, M G; Sullivan, M H; Bennett, P R

    1999-07-01

    Lipoxygenase metabolites may be involved in human parturition. 5-lipoxygenase (5-LOX) catalyses the first steps in the synthesis of leukotrienes from arachidonic acid, and its activity is dependent on 5-LOX activating protein (FLAP). The expression of 5-LOX and FLAP were investigated in fetal membranes to determine whether there are changes with gestational age or at term with the onset of labour. No significant differences were found in the expression of 5-LOX or FLAP mRNA in the amnion at different gestational ages or at term. In the chorion-decidua, 5-LOX mRNA expression was significantly higher in the first trimester of pregnancy than in the second and third trimesters. At term, there was a significant increase in both 5-LOX mRNA and protein expression in the chorion-decidua in the time after labour, compared with the time before labour. The expression of FLAP mRNA was also significantly higher in the chorion-decidua in the first trimester of pregnancy compared with the third trimester, and at term in the time after labour compared with the time before labour. Expression of FLAP protein was not studied, as an antibody is not currently available. These results are consistent with a role for 5-LOX and FLAP in the control of parturition at term, and also suggest an involvement earlier in pregnancy.

  7. Kinetic investigation of human 5-lipoxygenase with arachidonic acid.

    PubMed

    Mittal, Monica; Kumar, Ramakrishnan B; Balagunaseelan, Navisraj; Hamberg, Mats; Jegerschöld, Caroline; Rådmark, Olof; Haeggström, Jesper Z; Rinaldo-Matthis, Agnes

    2016-08-01

    Human 5-lipoxygenase (5-LOX) is responsible for the formation of leukotriene (LT)A4, a pivotal intermediate in the biosynthesis of the leukotrienes, a family of proinflammatory lipid mediators. 5-LOX has thus gained attention as a potential drug target. However, details of the kinetic mechanism of 5-LOX are still obscure. In this Letter, we investigated the kinetic isotope effect (KIE) of 5-LOX with its physiological substrate, arachidonic acid (AA). The observed KIE is 20±4 on kcat and 17±2 on kcat/KM at 25°C indicating a non-classical reaction mechanism. The observed rates show slight temperature dependence at ambient temperatures ranging from 4 to 35°C. Also, we observed low Arrhenius prefactor ratio (AH/AD=0.21) and a small change in activation energy (Ea(D)-Ea(H)=3.6J/mol) which suggests that 5-LOX catalysis involves tunneling as a mechanism of H-transfer. The measured KIE for 5-LOX involves a change in regioselectivity in response to deuteration at position C7, resulting in H-abstraction form C10 and formation of 8-HETE. The viscosity experiments influence the (H)kcat, but not (D)kcat. However the overall kcat/KM is not affected for labeled or unlabeled AA, suggesting that either the product release or conformational rearrangement might be involved in dictating kinetics of 5-LOX at saturating conditions. Investigation of available crystal structures suggests the role of active site residues (F421, Q363 and L368) in regulating the donor-acceptor distances, thus affecting H-transfer as well as regiospecificity. In summary, our study shows that that the H-abstraction is the rate limiting step for 5-LOX and that the observed KIE of 5-LOX is masked by a change in regioselectivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Molecular cloning and amino acid sequence of human 5-lipoxygenase

    SciTech Connect

    Matsumoto, T.; Funk, C.D.; Radmark, O.; Hoeoeg, J.O.; Joernvall, H.; Samuelsson, B.

    1988-01-01

    5-Lipoxygenase (EC 1.13.11.34), a Ca/sup 2 +/- and ATP-requiring enzyme, catalyzes the first two steps in the biosynthesis of the peptidoleukotrienes and the chemotactic factor leukotriene B/sub 4/. A cDNA clone corresponding to 5-lipoxygenase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antibody. Additional clones from a human placenta lambda gt11 cDNA library were obtained by plaque hybridization with the /sup 32/P-labeled lung cDNA clone. Sequence data obtained from several overlapping clones indicate that the composite DNAs contain the complete coding region for the enzyme. From the deduced primary structure, 5-lipoxygenase encodes a 673 amino acid protein with a calculated molecular weight of 77,839. Direct analysis of the native protein and its proteolytic fragments confirmed the deduced composition, the amino-terminal amino acid sequence, and the structure of many internal segments. 5-Lipoxygenase has no apparent sequence homology with leukotriene A/sub 4/ hydrolase or Ca/sup 2 +/-binding proteins. RNA blot analysis indicated substantial amounts of an mRNA species of approx. = 2700 nucleotides in leukocytes, lung, and placenta.

  9. 5-lipoxygenase mRNA and protein isoforms.

    PubMed

    Ochs, Meike J; Suess, Beatrix; Steinhilber, Dieter

    2014-01-01

    5-Lipoxygenase (5-LO) catalyses the two initial steps in the biosynthesis of leukotrienes, a group of inflammatory lipid mediators derived from arachidonic acid. An increased level of leukotrienes is associated with chronic inflammatory diseases such as asthma or atherosclerosis. In this MiniReview, we focus on recent findings regarding alternative splice variants of 5-LO with a special emphasis on two potential protein isoforms expressed in human B-lymphocytes which might be of interest as new drug targets.

  10. Synthesis and 5-lipoxygenase inhibitory activity of new cinnamoyl and caffeoyl clusters.

    PubMed

    Doiron, Jérémie; Boudreau, Luc H; Picot, Nadia; Villebonet, Benoît; Surette, Marc E; Touaibia, Mohamed

    2009-02-15

    Novel cinnamoyl and caffeoyl clusters were synthesized by multiple Cu(I)-catalyzed [1,3]-dipolar cycloadditions and their anti-5-lipoxygenase inhibitory activity was tested. Caffeoyl cluster showed an improved 5-lipoxygenase inhibitory activity compared to caffeic acid, with caffeoyl trimer 16 and tetramer 19 showing the best 5-lipoxygenase inhibitory activity.

  11. 5-lipoxygenase and 5-lipoxygenase-activating protein gene polymorphisms, dietary linoleic acid, and risk for breast cancer.

    PubMed

    Wang, Jun; John, Esther M; Ingles, Sue Ann

    2008-10-01

    The n-6 polyunsaturated fatty acid 5-lipoxygenase pathway has been shown to play a role in the carcinogenesis of breast cancer. We conducted a population-based case-control study among Latina, African-American, and White women from the San Francisco Bay area to examine the association of the 5-lipoxygenase gene (ALOX5) and 5-lipoxygenase-activating protein gene (ALOX5AP) with breast cancer risk. Three ALOX5AP polymorphisms [poly(A) microsatellite, -4900 A>G (rs4076128), and -3472 A>G (rs4073259)] and three ALOX5 polymorphisms [Sp1-binding site (-GGGCGG-) variable number of tandem repeat polymorphism, -1279 G>T (rs6593482), and 760 G>A (rs2228065)] were genotyped in 802 cases and 888 controls. We did not find significant main effects of ALOX5 and ALOX5AP genotypes on breast cancer risk that were consistent across race or ethnicity; however, there was a significant interaction between the ALOX5AP -4900 A>G polymorphism and dietary linoleic acid intake (P=0.03). Among women consuming a diet high in linoleic acid (top quartile of intake, >17.4 g/d), carrying the AA genotype was associated with higher breast cancer risk (age- and race-adjusted odds ratio, 1.8; 95% confidence interval, 1.2-2.9) compared with carrying genotypes AG or GG. Among women consuming

  12. Stress-induced nuclear export of 5-lipoxygenase

    SciTech Connect

    Hanaka, Hiromi; Shimizu, Takao; Izumi, Takashi . E-mail: takizumi@med.gunma-u.ac.jp

    2005-12-09

    A key enzyme for leukotriene biosynthesis is 5-lipoxygenase (5-LO), which we found is exported from the nucleus when p38 MAPK is activated. CHO-K1 cells stably express green fluorescent protein-5-lipoxygenase fusion protein (GFP-5LO), which is located predominantly in the nucleus, and is exported by anisomycin, hydrogen peroxide, and sorbitol, with activation of p38 MAPK. SB203580, an inhibitor of p38 MAPK, and Leptomycin B, an inhibitor of the nuclear export, blocked the anisomycin-induced export of GFP-5LO. When HEK293 cells were transformed with plasmids for wild-type GFP-5LO, GFP-5LO-S271A or GFP-5LO-S271E mutants, most wild-type GFP-5LO and GFP-5LO-S271A localized in the nucleus, but GFP-5LO-S271E localized in the cytosol. Thus, phosphorylation at Ser-271 of 5-LO is important for its export. Endogenous 5-LO in RBL cells stimulated with anisomycin was also exported from the nucleus. These results suggest that the nuclear export of 5-LO depends on the stress-induced activation of the p38 MAPK pathway.

  13. The Pivotal Role of 5-Lipoxygenase-Derived LTB4 in Controlling Pulmonary Paracoccidioidomycosis

    PubMed Central

    Santos, Patrícia Campi; Santos, Daniel Assis; Ribeiro, Lucas Secchim; Fagundes, Caio Tavares; de Paula, Talles Prosperi; Avila, Thiago Vinícius; Baltazar, Ludmila de Matos; Madeira, Mila Moreira; Cruz, Rosana de Carvalho; Dias, Ana Carolina Fialho; Machado, Fabiana Simão; Teixeira, Mauro Martins; Cisalpino, Patrícia Silva; Souza, Danielle G.

    2013-01-01

    Leukotrienes (LTs) produced from arachidonic acid by the action of 5-lipoxygenase (5-LO) are classical mediators of inflammatory responses. However, studies published in the literature regarding these mediators are contradictory and it remains uncertain whether these lipid mediators play a role in host defense against the fungal pathogen Paracoccidioides brasiliensis. To determine the involvement of LTs in the host response to pulmonary infection, wild-type and LT-deficient mice by targeted disruption of the 5-lipoxygenase gene (knockout mice) were studied following intratracheal challenge with P. brasiliensis yeasts. The results showed that infection is uniformly fatal in 5-LO-deficient mice and the mechanisms that account for this phenotype are an exacerbated lung injury and higher fungal pulmonary burden. Genetic ablation or pharmacological inhibition of LTs resulted in lower phagocytosis and fungicidal activity of macrophages in vitro, suggesting that deficiency in fungal clearance seems to be secondary to the absence of activation in 5-LO−/− macrophages. Exogenous LTB4 restored phagocytosis and fungicidal activity of 5-LO−/− macrophages. Moreover, P. brasiliensis killing promoted by LTB4 was dependent on nitric oxide (NO) production by macrophages. Taken together, these results reveal a fundamental role for 5-LO-derived LTB4 in the protective response to P. brasiliensis infection and identify relevant mechanisms for the control of fungal infection during the early stages of the host immune response. PMID:23991239

  14. A23187-induced translocation of 5-lipoxygenase in osteosarcoma cells

    PubMed Central

    1992-01-01

    In a previous study, osteosarcoma cells expressing both 5-lipoxygenase (5-LO) and 5 lipoxygenase-activating protein (FLAP) synthesized leukotrienes upon A23187 stimulation (Dixon, R. A. F., R. E. Diehl, E. Opas, E. Rands, P. J. Vickers, J. F. Evans, J. W. Gillard, and D. K. Miller. 1990. Nature (Lond.). 343:282-284). Osteosarcoma cells expressing 5-LO but not expressing FLAP were unable to synthesize leukotrienes. Thus, it was determined that FLAP was required for the cellular synthesis of leukotrienes. To examine the role of FLAP in A23187-induced translocation of 5-LO to a membrane fraction, we have studied the A23187-stimulated translocation of 5-LO in osteosarcoma cells expressing both 5-LO and FLAP, and in osteosarcoma cells expressing 5-LO only. We demonstrate that in cells expressing both 5-LO and FLAP, 5-LO translocates to membranes in response to A23187 stimulation. This 5-LO translocation is inhibited when cells are stimulated in the presence of MK-886. In osteosarcoma cells expressing 5-LO but not expressing FLAP, 5-LO is able to associate with membranes following A23187 stimulation. In contrast to the cells containing both 5-LO and FLAP, MK-886 is unable to prevent 5-LO membrane association in cells transfected with 5-LO alone. Therefore, we have demonstrated that in this cell system, 5-LO membrane association and activation can be separated into at least two distinct steps: (1) calcium-dependent movement of 5-LO to membranes without product formation, which can occur in the absence of FLAP (membrane association), and (2) activation of 5-LO with product formation, which is FLAP dependent and inhibited by MK-886 (enzyme activation). PMID:1469057

  15. 5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation.

    PubMed

    Gerstmeier, Jana; Newcomer, Marcia E; Dennhardt, Sophie; Romp, Erik; Fischer, Jana; Werz, Oliver; Garscha, Ulrike

    2016-05-01

    Leukotrienes (LTs) are proinflammatory lipid mediators formed from arachidonic acid in a 2-step reaction catalyzed by 5-lipoxygenase (5-LOX) requiring the formation of 5-HPETE [5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid] and its subsequent transformation to LTA4 5-LOX is thought to receive arachidonic acid from the nuclear membrane-embedded 5-LOX-activating protein (FLAP). The crystal structure of 5-LOX revealed an active site concealed by F177 and Y181 (FY cork). We examined the influence of the FY cork on 5-LOX activity and membrane binding in HEK293 cells in the absence and presence of FLAP. Uncapping the 5-LOX active site by mutation of F177 and/or Y181 to alanine (5-LOX-F177A, 5-LOX-Y181A, 5-LOX-F177/Y181A) resulted in delayed and diminished 5-LOX membrane association in A23187-stimulated cells. For 5-LOX-F177A and 5-LOX-F177/Y181A, formation of 5-LOX products was dramatically reduced relative to 5-LOX-wild type (wt). Strikingly, coexpression of FLAP in A23187-activated HEK293 cells effectively restored formation of 5-H(p)ETE (5-hydroxy- and 5-peroxy-6-trans-8,11,14-cis-eicosatetraenoic acid) by these same 5-LOX mutants (≈60-70% 5-LOX-wt levels) but not of LTA4 hydrolysis products. Yet 5-LOX-Y181A generated 5-H(p)ETE at levels comparable to 5-LOX-wt but reduced LTA4 hydrolysis products. Coexpression of FLAP partially restored LTA4 hydrolysis product formation by 5-LOX-Y181A. Together, the data suggest that the concealed FY cork impacts membrane association and that FLAP may help shield an uncapped active site.-Gerstmeier, J., Newcomer, M. E., Dennhardt, S., Romp, E., Fischer, J., Werz, O., Garscha, U. 5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation. © FASEB.

  16. Involvement of glomerular SREBP-1c in diabetic nephropathy

    SciTech Connect

    Ishigaki, Naomi; Yamamoto, Takashi; Shimizu, Yoshio; Kobayashi, Kazuto; Yatoh, Shigeru; Sone, Hirohito; Takahashi, Akimitsu; Suzuki, Hiroaki; Yamagata, Kunihiro; Yamada, Nobuhiro; Shimano, Hitoshi

    2007-12-21

    The role of glomerular SREBP-1c in diabetic nephropathy was investigated. PEPCK-promoter transgenic mice overexpressing nuclear SREBP-1c exhibited enhancement of proteinuria with mesangial proliferation and matrix accumulation, mimicking diabetic nephropathy, despite the absence of hyperglycemia or hyperlipidemia. Isolated transgenic glomeruli had higher expression of TGF{beta}-1, fibronectin, and SPARC in the absence of marked lipid accumulation. Gene expression of P47phox, p67phox, and PU.1 were also activated, accompanying increased 8-OHdG in urine and kidney, demonstrating that glomerular SREBP-1c could directly cause oxidative stress through induced NADPH oxidase. Similar changes were observed in STZ-treated diabetic mice with activation of endogenous SREBP-1c. Finally, diabetic proteinuria and oxidative stress were ameliorated in SREBP-1-null mice. Adenoviral overexpression of active and dominant-negative SREBP-1c caused consistent reciprocal changes in expression of both profibrotic and oxidative stress genes in MES13 mesangial cells. These data suggest that activation of glomerular SREBP-1c could contribute to emergence and/or progression of diabetic nephropathy.

  17. Zileuton, an oral 5-lipoxygenase inhibitor, directly reduces sebum production.

    PubMed

    Zouboulis, Ch C; Saborowski, A; Boschnakow, A

    2005-01-01

    Zileuton, a 5-lipoxygenase inhibitor, reduces the number of inflammatory lesions in moderate acne and inhibits the synthesis of sebaceous lipids. To detect whether zileuton directly reduces sebum synthesis. A 40-year-old female with mild disseminated sebaceous gland hyperplasia and seborrhea was treated with zileuton 4 x 600 mg/day over 2 weeks, was followed-up for 6 weeks after discontinuation of zileuton and was re-treated with low-dose isotretinoin 10 mg/2nd day over 5 weeks. Casual skin surface lipids and sebum synthesis were determined. Under treatment with zileuton increased casual skin surface lipids were normalized and synthesis of facial sebum was decreased. Six weeks after discontinuation of treatment casual skin surface lipids were increased again and synthesis of sebum returned to baseline. Subsequent low-dose isotretinoin treatment led to similar changes of casual skin surface lipids and sebum synthesis with zileuton already after 2 weeks. Zileuton directly inhibits sebum synthesis in a transient manner with a potency similar to low-dose isotretinoin at least in our patient.

  18. Inhibition of 5-lipoxygenase alleviates graft-versus-host disease.

    PubMed

    Rezende, Barbara Maximino; Athayde, Rayssa Maciel; Gonçalves, William Antônio; Resende, Carolina Braga; Teles de Tolêdo Bernardes, Priscila; Perez, Denise Alves; Esper, Lísia; Reis, Alesandra Côrte; Rachid, Milene Alvarenga; Castor, Marina Gomes Miranda E; Cunha, Thiago Mattar; Machado, Fabiana Simão; Teixeira, Mauro Martins; Pinho, Vanessa

    2017-09-25

    Leukotriene B4 (LTB4), a proinflammatory mediator produced by the enzyme 5-lipoxygenase (5-LO), is associated with the development of many inflammatory diseases. In this study, we evaluated the participation of the 5-LO/LTB4 axis in graft-versus-host disease (GVHD) pathogenesis by transplanting 5-LO-deficient leukocytes and investigated the effect of pharmacologic 5-LO inhibition by zileuton and LTB4 inhibition by CP-105,696. Mice that received allogeneic transplant showed an increase in nuclear 5-LO expression in splenocytes, indicating enzyme activation after GVHD. Mice receiving 5-LO-deficient cell transplant or zileuton treatment had prolonged survival, reduced GVHD clinical scores, reduced intestinal and liver injury, and decreased levels of serum and hepatic LTB4 These results were associated with inhibition of leukocyte recruitment and decreased production of cytokines and chemokines. Treatment with CP-105,696 achieved similar effects. The chimerism or the beneficial graft-versus-leukemia response remained unaffected. Our data provide evidence that the 5-LO/LTB4 axis orchestrates GVHD development and suggest it could be a target for the development of novel therapeutic strategies for GVHD treatment. © 2017 Rezende et al.

  19. 5-Lipoxygenase Activity Increases Susceptibility to Experimental Paracoccidioides brasiliensis Infection

    PubMed Central

    Tristão, Fabrine Sales Massafera; Rocha, Fernanda Agostini; Moreira, Ana Paula; Cunha, Fernando Queiroz; Rossi, Marcos Antonio

    2013-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the thermodimorphic fungus Paracoccidioides brasiliensis. Leukotrienes and lipoxins are lipid mediators produced after 5-lipoxygenase (5-LO) activation that exhibit pro- and anti-inflammatory roles, respectively. Here, we have investigated the contribution of 5-LO enzymatic activity in PCM using an experimental model of P. brasiliensis infection. B6.129 wild-type (B6.129) and 5-LO-deficient (5-LO−/−) mice were intravenously inoculated with a virulent strain of P. brasiliensis (Pb18), and the survival rate of the infected mice was investigated on different days after yeast infection. 5-LO−/− mice exhibited an increased survival rate associated with a decreased number of CFU. The resistance of 5-LO−/− during PCM was associated with augmented nitric oxide (NO) production and the formation of compact granulomas. In addition, the absence of 5-LO was associated with a diminished number of CD4+ CD25+ regulatory T cells, higher levels of gamma interferon and interleukin-12, and increased T-bet (a T-box transcription factor that directs Th1 lineage commitment) mRNA levels in the lungs. Taken together, our results show for the first time that 5-LO enzymatic activity increases susceptibility to P. brasiliensis, suggesting that this pathway may be a potential target for therapeutic intervention during PCM. PMID:23381993

  20. Expression of 5-Lipoxygenase in human colorectal cancer

    PubMed Central

    Soumaoro, Labile Togba; Iida, Satoru; Uetake, Hiroyuki; Ishiguro, Megumi; Takagi, Yoko; Higuchi, Tetsuro; Yasuno, Masamichi; Enomoto, Masayuki; Sugihara, Kenichi

    2006-01-01

    AIM: To evaluate the 5-lipoxygenases (Loxs) expression level in human colorectal cancer specimens in order to determine its clinicopathologic significance in human tumorigenesis. METHODS: The relative quantity of 5-Lox mRNA in paired 91 colorectal tumor and adjacent normal mucosa samples was determined by real time quantitative PCR. Additionally, the expression of 5-Lox and cyclooxygenase (Cox)-2 proteins was also examined using immunohistochemical staining methods. RESULTS: There was a marked increase in 5-Lox mRNA levels in the tumor compared with paired normal mucosa samples (P < 0.0001). Sixty six (72.5%) tumors showed high 5-Lox mRNA levels. The positivity rate of 5-Lox and Cox-2 protein expression was 68.7% and 79.1% respectively. There was a significant association between tumoral 5-Lox mRNA level and tumor size (Rho = 0.392, P = 0.0002), depth or vessel invasion. CONCLUSION: These results suggest that 5-Lox is up-regulated in colorectal cancer and that inhibition of its expression might be valuable in the prevention and treatment of colorectal cancer. PMID:17072961

  1. Ablation of 5-lipoxygenase mitigates pancreatic lesion development

    PubMed Central

    Knab, Lawrence M.; Schultz, Michelle; Principe, Daniel R.; Mascarinas, Windel E.; Gounaris, Elias; Munshi, Hidayatullah G.; Grippo, Paul J.; Bentrem, David J.

    2016-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC), which continues to have a dismal prognosis, is associated with a pronounced fibro-inflammatory response. Inflammation in vivo can be mediated by 5-lipoxygenase (5LO), an enzyme that converts omega-6 fatty acids to eicosanoids, including leukotriene B4 (LTB4). We have previously shown that diets rich in omega-6 fatty acids (FA) increase pancreatic lesions and mast cell infiltration in EL-Kras mice. In this study, we evaluated the role of 5LO in generating higher levels of LTB4 from human cells and in mediating lesion development and mast cell infiltration in EL-Kras mice. Materials and Methods Human pancreatic ductal epithelial (HPDE) and cancer cells were treated with omega-6 FA in vitro. EL-Kras mice lacking 5LO (EL-Kras/5LO−/−) mice were generated and fed standard chow or omega-6 FA diets. Pancreatic lesion frequency and mast cell infiltration were compared to EL-Kras/5LO+/+ mice. Human PDAC tumors were evaluated for 5LO expression and mast cells. Results HPDE and cancer cells treated with omega-6 FA generated increased LTB4 levels in vitro. EL-Kras/5LO−/− developed fewer pancreatic lesions and had decreased mast cell infiltration when compared to EL-Kras/5LO+/+ mice. Human PDAC tumors with increased 5LO expression demonstrate increased mast cell infiltration. Additionally, diets rich in omega-6 FA failed to increase pancreatic lesion development and mast cell infiltration in EL-Kras/5LO−/− mice. Conclusions The expansion of mutant Kras-induced lesions via omega-6 FA is dependent on 5LO, and 5LO functions downstream of mutant Kras to mediate inflammation, suggesting that 5LO may be a potential chemo-preventive and therapeutic target in pancreatic cancer. PMID:25454978

  2. 7 CFR 1c.118 - Applications and proposals lacking definite plans for involvement of human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... involvement of human subjects. 1c.118 Section 1c.118 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.118 Applications and proposals lacking definite plans for involvement of... responsibility; research training grants in which the activities involving subjects remain to be selected;...

  3. 7 CFR 1c.118 - Applications and proposals lacking definite plans for involvement of human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... involvement of human subjects. 1c.118 Section 1c.118 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.118 Applications and proposals lacking definite plans for involvement of... responsibility; research training grants in which the activities involving subjects remain to be selected;...

  4. 7 CFR 1c.118 - Applications and proposals lacking definite plans for involvement of human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... involvement of human subjects. 1c.118 Section 1c.118 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.118 Applications and proposals lacking definite plans for involvement of... responsibility; research training grants in which the activities involving subjects remain to be selected;...

  5. 7 CFR 1c.118 - Applications and proposals lacking definite plans for involvement of human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... involvement of human subjects. 1c.118 Section 1c.118 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.118 Applications and proposals lacking definite plans for involvement of... responsibility; research training grants in which the activities involving subjects remain to be selected;...

  6. 5-Lipoxygenase is not essential in macrophage-mediated oxidation of low-density lipoprotein.

    PubMed

    Jessup, W; Darley-Usmar, V; O'Leary, V; Bedwell, S

    1991-08-15

    The concentration-dependent effects of a series of lipoxygenase inhibitors and antioxidants on the macrophage-mediated oxidative modification of low-density lipoprotein (LDL) were measured. Their influence on macrophage 5-lipoxygenase pathway activity was also studied over the same concentration range. No correlation between inhibition of 5-lipoxygenase and of macrophage-mediated oxidation of LDL was observed. The capacity of the compounds to prevent cell-mediated modification of LDL could be explained in terms of their activity as either aqueous- or lipid-peroxyl radical scavengers. Two potent 5-lipoxygenase inhibitors (MK 886 and Revlon 5901), which had no radical-scavenging properties, were unable to block LDL modification. It is concluded that 5-lipoxygenase is not essential for LDL oxidation by macrophages.

  7. 5-Lipoxygenase is not essential in macrophage-mediated oxidation of low-density lipoprotein.

    PubMed Central

    Jessup, W; Darley-Usmar, V; O'Leary, V; Bedwell, S

    1991-01-01

    The concentration-dependent effects of a series of lipoxygenase inhibitors and antioxidants on the macrophage-mediated oxidative modification of low-density lipoprotein (LDL) were measured. Their influence on macrophage 5-lipoxygenase pathway activity was also studied over the same concentration range. No correlation between inhibition of 5-lipoxygenase and of macrophage-mediated oxidation of LDL was observed. The capacity of the compounds to prevent cell-mediated modification of LDL could be explained in terms of their activity as either aqueous- or lipid-peroxyl radical scavengers. Two potent 5-lipoxygenase inhibitors (MK 886 and Revlon 5901), which had no radical-scavenging properties, were unable to block LDL modification. It is concluded that 5-lipoxygenase is not essential for LDL oxidation by macrophages. PMID:1883327

  8. 7 CFR 1c.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... human subjects. 1c.119 Section 1c.119 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.119 Research undertaken without the intention of involving human subjects. In the event research is undertaken without the intention of involving human subjects, but it is later...

  9. 7 CFR 1c.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... human subjects. 1c.119 Section 1c.119 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.119 Research undertaken without the intention of involving human subjects. In the event research is undertaken without the intention of involving human subjects, but it is later proposed...

  10. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  11. Dormant 5-lipoxygenase in inflammatory macrophages is triggered by exogenous arachidonic acid.

    PubMed

    Sorgi, Carlos A; Zarini, Simona; Martin, Sarah A; Sanchez, Raphael L; Scandiuzzi, Rodrigo F; Gijón, Miguel A; Guijas, Carlos; Flamand, Nicolas; Murphy, Robert C; Faccioli, Lucia H

    2017-09-08

    The differentiation of resident tissue macrophages from embryonic precursors and that of inflammatory macrophages from bone marrow cells leads to macrophage heterogeneity. Further plasticity is displayed through their ability to be polarized as subtypes M1 and M2 in a cell culture microenvironment. However, the detailed regulation of eicosanoid production and its involvement in macrophage biology remains unclear. Using a lipidomics approach, we demonstrated that eicosanoid production profiles between bone marrow-derived (BMDM) and peritoneal macrophages differed drastically. In polarized BMDMs, M1 and M2 phenotypes were distinguished by thromboxane B2, prostaglandin (PG) E2, and PGD2 production, in addition to lysophospholipid acyltransferase activity. Although Alox5 expression and the presence of 5-lipoxygenase (5-LO) protein in BMDMs was observed, the absence of leukotrienes production reflected an impairment in 5-LO activity, which could be triggered by addition of exogenous arachidonic acid (AA). The BMDM 5-LO regulatory mechanism was not responsive to PGE2/cAMP pathway modulation; however, treatment to reduce glutathione peroxidase activity increased 5-LO metabolite production after AA stimulation. Understanding the relationship between the eicosanoids pathway and macrophage biology may offer novel strategies for macrophage-associated disease therapy.

  12. Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity.

    PubMed

    Kutil, Zsofia; Temml, Veronika; Maghradze, David; Pribylova, Marie; Dvorakova, Marcela; Schuster, Daniela; Vanek, Tomas; Landa, Premysl

    2014-01-01

    Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63-94%, cyclooxygenase-2 (COX-2) activity in the range of 20-44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72-84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41-68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway.

  13. Impact of Wines and Wine Constituents on Cyclooxygenase-1, Cyclooxygenase-2, and 5-Lipoxygenase Catalytic Activity

    PubMed Central

    Temml, Veronika; Maghradze, David; Vanek, Tomas

    2014-01-01

    Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63–94%, cyclooxygenase-2 (COX-2) activity in the range of 20–44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72–84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41–68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway. PMID:24976682

  14. Cloning and antibody recognition analysis of the canine 5-lipoxygenase gene.

    PubMed

    Loftus, John P; Morgan, Stewart K; Wakshlag, Joseph J

    2011-08-15

    5-Lipoxygenase cDNA was prepared from canine white blood cells revealing the full-length message using an oligonucleotide capping method. The sequenced 5-Lipoxygenase open reading frame revealed a 2031 base pair message encoding a 676 amino acid protein. The amino acid sequence showed mild variation with the presumed canine sequence, as well as differences in important residues of known phosphorylation observed in other species. The sequence had between 86 and 92% homology with other species, revealing a highly conserved sequence. Confirmation of gene product identity was achieved through transient transfection of the gene in a V5-Histidine tagged pcDNA 3.1 vector into a known canine cell line. Both V5 antibody and 5-lipoxygenase antibody confirmed the gene product using Western blotting and immunoflourescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. 5-Lipoxygenase-activating protein: a potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation.

    PubMed

    Bäck, Magnus; Sultan, Ariane; Ovchinnikova, Olga; Hansson, Göran K

    2007-04-13

    Transforming growth factor-beta (TGF-beta) is a major antiinflammatory mediator in atherosclerosis. Transgenic ApoE(-/-) mice with a dominant-negative TGFbeta type II receptor (dnTGFbetaRII) on CD4(+) and CD8(+) T cells display aggravated atherosclerosis. The aim of the present study was to elucidate the mechanisms involved in this enhanced inflammatory response. Gene array analyses identified the 5-lipoxygenase-activating protein (FLAP) among the most upregulated genes in both the aorta and adipose tissue of dnTGFbetaRII transgenic ApoE(-/-) mice compared with their ApoE(-/-) littermates, a finding that was confirmed by real-time quantitative RT-PCR. Aortas from the former mice in addition produced increased amounts of the lipoxygenase product leukotriene B(4) after ex vivo stimulation. FLAP protein expression in both the aorta and adipose tissue was detected in macrophages, but not in T cells. Four weeks of treatment with the FLAP inhibitor MK-886 (10 mg/kg in 1% tylose delivered by osmotic pumps) significantly reduced atherosclerotic lesion size and T-cell content. Finally, FLAP mRNA levels were upregulated approximately 8-fold in adipose tissue derived from obese ob/ob mice. In conclusion, the results of the present study suggest a key role for mediators of the 5-lipoxygenase pathway in inflammatory reactions of atherosclerosis and metabolic disease.

  16. THE 5-LIPOXYGENASE PATHWAY IS REQUIRED FOR ACUTE LUNG INJURY FOLLOWING HEMORRHAGIC SHOCK

    PubMed Central

    Eun, John C.; Moore, Ernest E.; Mauchley, David C.; Johnson, Chris A.; Meng, Xianzhong; Banerjee, Anirban; Wohlauer, Max V.; Zarini, Simona; Gijón, Miguel A.; Murphy, Robert C.

    2012-01-01

    The cellular and biochemical mechanisms leading to acute lung injury and subsequent multiple organ failure are only partially understood. In order to study the potential role of eicosanoids, particularly leukotrienes, as possible mediators of acute lung injury, we used a murine experimental model of acute lung injury induced by hemorrhagic shock after blood removal via cardiac puncture. Neutrophil sequestration as shown by immunofluorescence, and protein leakage into the alveolar space, were measured as markers of injury. We used liquid chromatography coupled to tandem mass spectrometry to unequivocally identify several eicosanoids in the bronchoalveolar lavage fluid of experimental animals. MK886, a specific inhibitor of the 5-lipoxygenase pathway, as well as transgenic mice deficient in 5-lipoxygenase, were used to determine the role of this enzymatic pathway in this model. Leukotriene B4 and leukotriene C4 were consistently elevated in shock-treated mice compared to sham-treated mice. MK886 attenuated neutrophil infiltration and protein extravasation induced by hemorrhagic shock. 5-lipoxygenase-deficient mice showed reduced neutrophil infiltration and protein extravasation after shock treatment, indicating greatly reduced lung injury. These results support the hypothesis that 5-lipoxygenase, most likely through the generation of leukotrienes, plays an important role in the pathogenesis of acute lung injury induced by hemorrhagic shock in mice. This pathway could represent a new target for pharmacological intervention to reduce lung damage following severe primary injury. PMID:22392149

  17. Effect of the 5-lipoxygenase inhibitor ZD2138 on aspirin-induced asthma.

    PubMed Central

    Nasser, S. M.; Bell, G. S.; Foster, S.; Spruce, K. E.; MacMillan, R.; Williams, A. J.; Lee, T. H.; Arm, J. P.

    1994-01-01

    BACKGROUND--The cysteinyl leukotrienes may play a central part in the mechanisms of aspirin-sensitive asthma. Previous work has shown that individuals with aspirin-sensitive asthma have high basal urinary LTE4 levels which increase further upon aspirin ingestion, and that sulphidopeptide leukotriene receptor antagonists attenuate aspirin-induced airflow obstruction. If the cysteinyl leukotrienes cause aspirin-induced asthmatic reactions, inhibition of the 5-lipoxygenase pathway should prevent aspirin-induced bronchospasm. This hypothesis has been tested with ZD2138, a specific non-redox 5-lipoxygenase inhibitor. METHODS--Seven subjects (four men) with aspirin-sensitive asthma with baseline FEV1 values > 67% were studied. ZD2138 (350 mg) or placebo was given on two separate occasions two weeks apart in a randomised double blind fashion. A single dose of aspirin was administered four hours after dosing and FEV1 was measured for six hours. Inhibition of the 5-lipoxygenase pathway by ZD2138 was assessed by measurements of urinary LTE4 levels and ex vivo calcium ionophore stimulated LTB4 generation in whole blood, before administration of drug or placebo and at regular time intervals after dosing and aspirin administration. RESULTS--ZD2138 protected against the aspirin-induced reduction in FEV1 with a 20.3 (4.9)% fall in FEV1 following placebo compared with 4.9 (2.9)% following ZD2138. This was associated with 72% inhibition of ex vivo LTB4 generation in whole blood at 12 hours and a 74% inhibition of the rise in urinary LTE4 excretion at six hours after aspirin ingestion. CONCLUSIONS--In aspirin-sensitive asthma the 5-lipoxygenase inhibitor ZD2138 inhibits the fall in FEV1 induced by aspirin and this is associated with substantial inhibition of 5-lipoxygenase. PMID:8091318

  18. The influence of 5-lipoxygenase on cigarette smoke-induced emphysema in mice.

    PubMed

    Kennedy-Feitosa, Emanuel; Pinto, Rômulo Fonseca Santos; Pires, Karla Maria Pereira; Monteiro, Ana Paula Teixeira; Machado, Mariana Nascimento; Santos, Juliana Carvalho; Ribeiro, Marcelo Lima; Zin, Walter Araújo; Canetti, Cláudio Azevedo; Romana-Souza, Bruna; Porto, Luís Cristóvão; Valenca, Samuel Santos

    2014-01-01

    Pulmonary emphysema is characterized by the loss of lung architecture. Our hypothesis is that the inhibition of 5-lipoxygenase (5-LO) production may be an important strategy to reduce inflammation, oxidative stress, and metalloproteinases in lung tissue resulting from cigarette smoke (CS)-induced emphysema. 5-LO knockout (129S2-Alox5(tm1Fun)/J) and wild-type (WT) mice (129S2/SvPas) were exposed to CS for 60days. Mice exposed to ambient air were used as Controls. Oxidative, inflammatory, and proteolytic markers were analyzed. The alveolar diameter was decreased in CS 5-LO(-/-) mice when compared with the WT CS group. The CS exposure resulted in less pronounced pulmonary inflammation in the CS 5-LO(-/-) group. The CS 5-LO(-/-) group showed leukotriene B4 values comparable to those of the Control group. The expression of MMP-9 was decreased in the CS 5-LO(-/-) group when compared with the CS WT group. The expression of superoxide dismutase, catalase, and glutathione peroxidase were decreased in the CS 5-LO(-/-) group when compared with the Control group. The protein expression of nuclear factor (erythroid-derived 2)-like 2 was reduced in the CS 5-LO(-/-) group when compared to the CS WT group. In conclusion, we show for the first time that 5-LO deficiency protects 129S2 mice against emphysema caused by CS. We suggest that the main mechanism of pathogenesis in this model involves the imbalance between proteases and antiproteases, particularly the association between MMP-9 and TIMP-1. General significance This study demonstrates the influence of 5-LO mediated oxidative stress, inflammation, and proteolytic markers in CS exposed mice. © 2013.

  19. 5-lipoxygenase and cyclooxygenase regulate wound closure in NIH/3T3 fibroblast monolayers.

    PubMed

    Green, J Angelo; Stockton, Rebecca A; Johnson, Christopher; Jacobson, Bruce S

    2004-08-01

    Wound healing involves multiple cell signaling pathways, including those regulating cell-extracellular matrix adhesion. Previous work demonstrated that arachidonate oxidation to leukotriene B(4) (LTB(4)) by 5-lipoxygenase (5-LOX) signals fibroblast spreading on fibronectin, whereas cyclooxygenase-2 (COX-2)-catalyzed prostaglandin E(2) (PGE(2)) formation facilitates subsequent cell migration. We investigated arachidonate metabolite signaling in wound closure of perturbed NIH/3T3 fibroblast monolayers. We found that during initial stages of wound closure (0-120 min), all wound margin cells spread into the wound gap perpendicularly to the wound long axis. At regular intervals, between 120 and 300 min, some cells elongated to project across the wound and meet cells from the opposite margin, forming distinct cell bridges spanning the wound that act as foci for later wound-directed cell migration and resulting closure. 5-LOX inhibition by AA861 demonstrated a required LTB(4) signal for initial marginal cell spreading and bridge formation, both of which must precede wound-directed cell migration. 5-LOX inhibition effects were reversible by exogenous LTB(4). Conversely, COX inhibition by indomethacin reduced directed migration into the wound but enhanced early cell spreading and bridge formation. Exogenous PGE(2) reversed this effect and increased cell migration into the wound. The differential effects of arachidonic acid metabolites produced by LOX and COX were further confirmed with NIH/3T3 fibroblast cell lines constitutively over- and underexpressing the 5-LOX and COX-2 enzymes. These data suggest that two competing oxidative enzymes in arachidonate metabolism, LOX and COX, differentially regulate sequential aspects of fibroblast wound closure in vitro.

  20. 5-lipoxygenase pathway is essential for the control of granuloma extension induced by Schistosoma mansoni eggs in lung.

    PubMed

    Toffoli da Silva, Gabriel; Espíndola, Milena Sobral; Fontanari, Caroline; Rosada, Rogerio Silva; Faccioli, Lúcia Helena; Ramos, Simone Gusmão; Rodrigues, Vanderlei; Frantz, Fabiani Gai

    2016-08-01

    According to WHO, it is estimated that approximately 2 billion people are infected with intestinal helminths worldwide and the number of people who are cured of these diseases is relatively low, resulting in a large percentage of chronically infected individuals. Schistosomiasis is one of the most important parasitic diseases present in developing countries configuring it as a serious public health problem, directly related to poverty and social disadvantage. Once the parasite infection is established, Schistosoma mansoni eggs fall into the bloodstream and are trapped in the liver microcirculation where a strong granulomatous response and fibrosis formation occurs. In the experimental model, granulomas develop in the mouse lung after intravenous injection of purified eggs. Here we aim to understand how leukotrienes are involved in the granuloma formation. Leukotrienes are lipid mediators derived from arachidonic acid metabolites via 5-lipoxygenase (5LO) enzyme. They are potent proinflammatory agents and induce recruitment, cell activation, regulation of microbicidal activity of polymorphonuclear and mononuclear cells. In this study, 5LO deficient mice (5LO(-/-)) were inoculated with S. mansoni eggs for evaluation of immunopathological parameters involved in the induction of type 2 granulomas. We showed that in the absence of leukotrienes, the size of granulomas were decreased comparing to the wild type mice and the inflammatory compromised areas had a lower extension. In 5LO(-/-) mice granulomas presented extensive areas of fibrosis, detected by α-SMA expression along the lesions, indicating remodeling in attempt to reestablish the normal tissue. Also, comparing to WT mice we detected decrease of IL-4 and IL-13 and increase of TGF-β in the lung of 5LO(-/-), but these mice failed to produce protective IFN-γ and IL-12. These results evidenced 5-Lipoxygenase as an important pathway during lung injury due to Schistosoma-eggs injection.

  1. Mutations in JMJD1C are involved in Rett syndrome and intellectual disability.

    PubMed

    Sáez, Mauricio A; Fernández-Rodríguez, Juana; Moutinho, Catia; Sanchez-Mut, Jose V; Gomez, Antonio; Vidal, Enrique; Petazzi, Paolo; Szczesna, Karolina; Lopez-Serra, Paula; Lucariello, Mario; Lorden, Patricia; Delgado-Morales, Raul; de la Caridad, Olga J; Huertas, Dori; Gelpí, Josep L; Orozco, Modesto; López-Doriga, Adriana; Milà, Montserrat; Perez-Jurado, Luís A; Pineda, Mercedes; Armstrong, Judith; Lázaro, Conxi; Esteller, Manel

    2016-04-01

    Autism spectrum disorders are associated with defects in social response and communication that often occur in the context of intellectual disability. Rett syndrome is one example in which epilepsy, motor impairment, and motor disturbance may co-occur. Mutations in histone demethylases are known to occur in several of these syndromes. Herein, we aimed to identify whether mutations in the candidate histone demethylase JMJD1C (jumonji domain containing 1C) are implicated in these disorders. We performed the mutational and functional analysis of JMJD1C in 215 cases of autism spectrum disorders, intellectual disability, and Rett syndrome without a known genetic defect. We found seven JMJD1C variants that were not present in any control sample (~ 6,000) and caused an amino acid change involving a different functional group. From these, two de novo JMJD1C germline mutations were identified in a case of Rett syndrome and in a patient with intellectual disability. The functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. We confirmed that JMJD1C protein is widely expressed in brain regions and that its depletion compromises dendritic activity. Our findings indicate that mutations in JMJD1C contribute to the development of Rett syndrome and intellectual disability.Genet Med 18 1, 378-385.

  2. 5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection.

    PubMed

    Secatto, Adriana; Rodrigues, Lilian Cataldi; Serezani, Carlos Henrique; Ramos, Simone Gusmão; Dias-Baruffi, Marcelo; Faccioli, Lúcia Helena; Medeiros, Alexandra I

    2012-01-01

    5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/-) mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/-) mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.

  3. Screening of some rare endemic Italian plants for inhibitory activity on 5-lipoxygenase.

    PubMed

    Prieto, José-María; Bader, Ammar; Martini, Francesca; Ríos, José-Luis; Morelli, Ivano

    2005-12-01

    The extracts of four rare plants found on the islands of Sicily, Vulcano and Marettimo, Southern Italy, were screened for their inhibitory effect on the production of leukotriene B4 by 5-lipoxygenase in intact cells. The methanol extracts of pods of Cytisus aeolicus and aerial parts of Thymus richardii were the most active extracts, inhibiting almost completely the leukotriene B4 production at 200 and 50 microg/ml, respectively.

  4. Detection of 5-lipoxygenase activity in the liverwort Marchantia polymorpha L.

    PubMed

    Kanamoto, Hirosuke; Takemura, Miho; Ohyama, Kanji

    2009-11-01

    We detected 5-LOX (arachidonate 5-lipoxygenase) in the homogenate of Marchantia polymorpha by spectrophotometry and mass spectrometry. LC/MS/MS analysis indicated that the liverwort 5-LOX produced 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) with arachidonic acid as a substrate. The 5-LOX activity showed a Ca(2+) response, as demonstrated for human 5-LOX. These findings suggest that the liverwort utilizes an arachidonate cascade in a defense signal response.

  5. Homology modeling of 5-lipoxygenase and hints for better inhibitor design

    NASA Astrophysics Data System (ADS)

    Aparoy, P.; Reddy, R. N.; Guruprasad, Lalitha; Reddy, M. R.; Reddanna, P.

    2008-09-01

    Lipoxygenases (LOXs) are a group of enzymes involved in the oxygenation of polyunsaturated fatty acids. Among these 5-lipoxygenase (5-LOX) is the key enzyme leading to the formation of pharmacologically important leukotrienes and lipoxins, the mediators of inflammatory and allergic disorders. In view of close functional similarity to mammalian lipoxygenase, potato 5-LOX is used extensively. In this study, the homology modeling technique has been used to construct the structure of potato 5-LOX. The amino acid sequence identity between the target protein and sequence of template protein 1NO3 (soybean LOX-3) searched from NCBI protein BLAST was 63%. Based on the template structure, the protein model was constructed by using the Homology program in InsightII. The protein model was briefly refined by energy minimization steps and validated using Profile-3D, ERRAT and PROCHECK. The results showed that 99.3% of the amino acids were in allowed regions of Ramachandran plot, suggesting that the model is accurate and its stereochemical quality good. Like all LOXs, 5-LOX also has a two-domain structure, the small N-terminal β-barrel domain and a larger catalytic domain containing a single atom of non-heme iron coordinating with His525, His530, His716 and Ile864. Asn720 is present in the fifth coordination position of iron. The sixth coordination position faces the open cavity occupied here by the ligands which are docked. Our model of the enzyme is further validated by examining the interactions of earlier reported inhibitors and by energy minimization studies which were carried out using molecular mechanics calculations. Four ligands, nordihydroguaiaretic acid (NDGA) having IC50 of 1.5 μM and analogs of benzyl propargyl ethers having IC50 values of 760 μM, 45 μM, and no inhibition respectively were selected for our docking and energy minimization studies. Our results correlated well with the experimental data reported earlier, which proved the quality of the model. This

  6. Mutations in JMJD1C are involved in Rett syndrome and intellectual disability

    PubMed Central

    Sáez, Mauricio A.; Fernández-Rodríguez, Juana; Moutinho, Catia; Sanchez-Mut, Jose V.; Gomez, Antonio; Vidal, Enrique; Petazzi, Paolo; Szczesna, Karolina; Lopez-Serra, Paula; Lucariello, Mario; Lorden, Patricia; Delgado-Morales, Raul; de la Caridad, Olga J.; Huertas, Dori; Gelpí, Josep L.; Orozco, Modesto; López-Doriga, Adriana; Milà, Montserrat; Perez-Jurado, Luís A.; Pineda, Mercedes; Armstrong, Judith; Lázaro, Conxi; Esteller, Manel

    2016-01-01

    Purpose: Autism spectrum disorders are associated with defects in social response and communication that often occur in the context of intellectual disability. Rett syndrome is one example in which epilepsy, motor impairment, and motor disturbance may co-occur. Mutations in histone demethylases are known to occur in several of these syndromes. Herein, we aimed to identify whether mutations in the candidate histone demethylase JMJD1C (jumonji domain containing 1C) are implicated in these disorders. Genet Med 18 1, 378–385. Methods: We performed the mutational and functional analysis of JMJD1C in 215 cases of autism spectrum disorders, intellectual disability, and Rett syndrome without a known genetic defect. Genet Med 18 1, 378–385. Results: We found seven JMJD1C variants that were not present in any control sample (~ 6,000) and caused an amino acid change involving a different functional group. From these, two de novo JMJD1C germline mutations were identified in a case of Rett syndrome and in a patient with intellectual disability. The functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. We confirmed that JMJD1C protein is widely expressed in brain regions and that its depletion compromises dendritic activity. Genet Med 18 1, 378–385. Conclusions: Our findings indicate that mutations in JMJD1C contribute to the development of Rett syndrome and intellectual disability. Genet Med 18 1, 378–385. PMID:26181491

  7. Cross-Talk between Cancer Cells and the Tumour Microenvironment: The Role of the 5-Lipoxygenase Pathway

    PubMed Central

    Moore, Gillian Y.; Pidgeon, Graham P.

    2017-01-01

    5-lipoxygenase is an enzyme responsible for the synthesis of a range of bioactive lipids signalling molecules known collectively as eicosanoids. 5-lipoxygenase metabolites such as 5-hydroxyeicosatetraenoic acid (5-HETE) and a number of leukotrienes are mostly derived from arachidonic acid and have been shown to be lipid mediators of inflammation in different pathological states including cancer. Upregulated 5-lipoxygenase expression and metabolite production is found in a number of cancer types and has been shown to be associated with increased tumorigenesis. 5-lipoxygenase activity is present in a number of diverse cell types of the immune system and connective tissue. In this review, we discuss potential routes through which cancer cells may utilise the 5-lipoxygenase pathway to interact with the tumour microenvironment during the development and progression of a tumour. Furthermore, immune-derived 5-lipoxygenase signalling can drive both pro- and anti-tumour effects depending on the immune cell subtype and an overview of evidence for these opposing effects is presented. PMID:28125014

  8. Involvement of intracellular transport in TREK-1c current run-up in 293T cells.

    PubMed

    Andharia, Naaz; Joseph, Ancy; Hayashi, Mikio; Okada, Masayoshi; Matsuda, Hiroko

    2017-05-04

    The TREK-1 channel, the TWIK-1-related potassium (K(+)) channel, is a member of a family of 2-pore-domain K(+) (K2P) channels, through which background or leak K(+) currents occur. An interesting feature of the TREK-1 channel is the run-up of current: i.e. the current through TREK-1 channels spontaneously increases within several minutes of the formation of the whole-cell configuration. To investigate whether intracellular transport is involved in the run-up, we established 293T cell lines stably expressing the TREK-1c channel (K2P2.1) and examined the effects of inhibitors of membrane protein transport, N-methylmaleimide (NEM), brefeldin-A, and an endocytosis inhibitor, pitstop2, on the run-up. The results showing that NEM and brefeldin-A inhibited and pitstop2 facilitated the run-up suggest the involvement of intracellular protein transport. Correspondingly, in cells stably expressing the mCherry-TREK-1 fusion protein, NEM decreased and pitstop2 increased the cell surface localization of the fusion protein. Furthermore, the run-up was inhibited by the intracellular application of a peptide of the C-terminal fragment TREK335-360, corresponding to the interaction site with microtubule-associated protein 2 (Mtap2). This peptide also inhibited the co-immunoprecipitation of Mtap2 with anti-mCherry antibody. The extracellular application of an ezrin inhibitor (NSC668394) also suppressed the run-up and surface localization of the fusion protein. The co-application of these inhibitors abolished the TREK-1c current, suggesting that the additive effects of ezrin and Mtap2 enhance the surface expression of TREK-1c channels and the run-up. These findings clearly showed the involvement of intracellular transport in TREK-1c current run-up and its mechanism.

  9. Naproxen Induces Type X Collagen Expression in Human Bone-Marrow-Derived Mesenchymal Stem Cells Through the Upregulation of 5-Lipoxygenase

    PubMed Central

    Alaseem, Abdulrahman M.; Madiraju, Padma; Aldebeyan, Sultan A.; Noorwali, Hussain; Antoniou, John

    2015-01-01

    Several studies have shown that type X collagen (COL X), a marker of late-stage chondrocyte hypertrophy, is expressed in mesenchymal stem cells (MSCs) from osteoarthritis (OA) patients. We recently found that Naproxen, but not other nonsteroidal anti-inflammatory drugs (NSAIDs) (Ibuprofen, Celebrex, Diclofenac), can induce type X collagen gene (COL10A1) expression in bone-marrow-derived MSCs from healthy and OA donors. In this study we determined the effect of Naproxen on COL X protein expression and investigated the intracellular signaling pathways that mediate Naproxen-induced COL10A1 expression in normal and OA hMSCs. MSCs of OA patients were isolated from aspirates from the intramedullary canal of donors (50–80 years of age) undergoing hip replacement surgery for OA and were treated with or without Naproxen (100 μg/mL). Protein expression and phosphorylation were determined by immunoblotting using specific antibodies (COL X, p38 mitogen-activated protein kinase [p38], phosphorylated-p38, c-Jun N-terminal kinase [JNK], phosphorylated-JNK, extracellular signal-regulated kinase [ERK], and phosphorylated-ERK). Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the expression of COL10A1 and Runt-related transcription factor 2 gene (Runx2). Our results show that Naproxen significantly stimulated COL X protein expression after 72 h of exposure both in normal and OA hMSCs. The basal phosphorylation of mitogen-activated protein kinases (MAPKs) (ERK, JNK, and p38) in OA hMSCs was significantly higher than in normal. Naproxen significantly increased the MAPK phosphorylation in normal and OA hMSCs. NSAID cellular effects include cyclooxygenase, 5-lipoxygenase, and p38 MAPK signaling pathways. To investigate the involvement of these pathways in the Naproxen-induced COL10A1 expression, we incubated normal and OA hMSCs with Naproxen with and without inhibitors of ERK (U0126), JNK (BI-78D3), p38 (SB203580), and 5-lipoxygenase

  10. Naproxen induces type X collagen expression in human bone-marrow-derived mesenchymal stem cells through the upregulation of 5-lipoxygenase.

    PubMed

    Alaseem, Abdulrahman M; Madiraju, Padma; Aldebeyan, Sultan A; Noorwali, Hussain; Antoniou, John; Mwale, Fackson

    2015-01-01

    Several studies have shown that type X collagen (COL X), a marker of late-stage chondrocyte hypertrophy, is expressed in mesenchymal stem cells (MSCs) from osteoarthritis (OA) patients. We recently found that Naproxen, but not other nonsteroidal anti-inflammatory drugs (NSAIDs) (Ibuprofen, Celebrex, Diclofenac), can induce type X collagen gene (COL10A1) expression in bone-marrow-derived MSCs from healthy and OA donors. In this study we determined the effect of Naproxen on COL X protein expression and investigated the intracellular signaling pathways that mediate Naproxen-induced COL10A1 expression in normal and OA hMSCs. MSCs of OA patients were isolated from aspirates from the intramedullary canal of donors (50-80 years of age) undergoing hip replacement surgery for OA and were treated with or without Naproxen (100 μg/mL). Protein expression and phosphorylation were determined by immunoblotting using specific antibodies (COL X, p38 mitogen-activated protein kinase [p38], phosphorylated-p38, c-Jun N-terminal kinase [JNK], phosphorylated-JNK, extracellular signal-regulated kinase [ERK], and phosphorylated-ERK). Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the expression of COL10A1 and Runt-related transcription factor 2 gene (Runx2). Our results show that Naproxen significantly stimulated COL X protein expression after 72 h of exposure both in normal and OA hMSCs. The basal phosphorylation of mitogen-activated protein kinases (MAPKs) (ERK, JNK, and p38) in OA hMSCs was significantly higher than in normal. Naproxen significantly increased the MAPK phosphorylation in normal and OA hMSCs. NSAID cellular effects include cyclooxygenase, 5-lipoxygenase, and p38 MAPK signaling pathways. To investigate the involvement of these pathways in the Naproxen-induced COL10A1 expression, we incubated normal and OA hMSCs with Naproxen with and without inhibitors of ERK (U0126), JNK (BI-78D3), p38 (SB203580), and 5-lipoxygenase (MK

  11. Time-resolved in situ assembly of the leukotriene-synthetic 5-lipoxygenase/5-lipoxygenase-activating protein complex in blood leukocytes.

    PubMed

    Gerstmeier, Jana; Weinigel, Christina; Rummler, Silke; Rådmark, Olof; Werz, Oliver; Garscha, Ulrike

    2016-01-01

    5-Lipoxygenase (5-LO) catalyzes the initial steps in the biosynthesis of proinflammatory leukotrienes. Upon cell activation, 5-LO translocates to the nuclear membrane where arachidonic acid is transferred by 5-LO-activating protein (FLAP) to 5-LO for metabolism. Although previous data indicate association of 5-LO with FLAP, the in situ assembly of native 5-LO/FLAP complexes remains elusive. Here, we show time-resolved 5-LO/FLAP colocalization by immunofluorescence microscopy and in situ 5-LO/FLAP interaction by proximity ligation assay at the nuclear membrane of Ca(2+)-ionophore A23187-activated human monocytes and neutrophils in relation to 5-LO activity. Although 5-LO translocation and product formation is completed within 1.5-3 min, 5-LO/FLAP interaction is delayed and proceeds up to 30 min. Though monocytes and neutrophils contain comparable amounts of 5-LO protein, neutrophils produce 3-5 times higher levels of 5-LO products due to prolonged activity, accompanied by delayed 5-LO nuclear membrane translocation. Arachidonic acid seemingly acts as adaptor for 5-LO/FLAP assembly, whereas FLAP inhibitors (MK886, 100 nM; BAY X 1005, 3 µM) disrupt the complex. We conclude that FLAP may regulate 5-LO activity in 2 ways: first by inducing an initial flexible association for efficient 5-LO product synthesis, followed by the formation of a tight 5-LO/FLAP complex that terminates 5-LO activity. © FASEB.

  12. Disruption of the 5-lipoxygenase pathway attenuates atherogenesis consequent to COX-2 deletion in mice

    PubMed Central

    Yu, Zhou; Crichton, Irene; Tang, Soon Yew; Hui, Yiqun; Ricciotti, Emanuela; Levin, Mark D.; Lawson, John A.; Puré, Ellen; FitzGerald, Garret A.

    2012-01-01

    Suppression of cyclooxygenase 2 (COX-2)–derived prostacyclin (PGI2) is sufficient to explain most elements of the cardiovascular hazard from nonsteroidal antinflammatory drugs (NSAIDs). However, randomized trials are consistent with the emergence of cardiovascular risk during chronic dosing with NSAIDs. Although deletion of the PGI2 receptor fosters atherogenesis, the importance of COX-2 during development has constrained the use of conventional knockout (KO) mice to address this question. We developed mice in which COX-2 was deleted postnatally, bypassing cardiorenal defects exhibited by conventional KOs. When crossed into ApoE-deficient hyperlipidemic mice, COX-2 deletion accelerated atherogenesis in both genders, with lesions exhibiting leukocyte infiltration and phenotypic modulation of vascular smooth muscle cells, as reflected by loss of α-smooth muscle cell actin and up-regulation of vascular cell adhesion molecule-1. Stimulated peritoneal macrophages revealed suppression of COX-2–derived prostanoids and augmented 5-lipoxygenase product formation, consistent with COX-2 substrate rediversion. Although deletion of the 5-lipoxygenase activating protein (FLAP) did not influence atherogenesis, it attenuated the proatherogeneic impact of COX-2 deletion in hyperlipidemic mice. Chronic administration of NSAIDs may increasingly confer a cardiovascular hazard on patients at low initial risk. Promotion of atherogenesis by postnatal COX-2 deletion affords a mechanistic explanation for this observation. Coincident inhibition of FLAP may offer an approach to attenuating such a risk from NSAIDs. PMID:22493243

  13. 5-Lipoxygenase-dependent apoptosis of human lymphocytes in the International Space Station: data from the ROALD experiment.

    PubMed

    Battista, Natalia; Meloni, Maria A; Bari, Monica; Mastrangelo, Nicolina; Galleri, Grazia; Rapino, Cinzia; Dainese, Enrico; Agrò, Alessandro Finazzi; Pippia, Proto; Maccarrone, Mauro

    2012-05-01

    The functional adaptation of the immune system to the surrounding environment is also a fundamental issue in space. It has been suggested that a decreased number of lymphocytes might be a cause of immunosuppression, possibly due to the induction of apoptosis. Early activation of 5-lipoxygenase (5-LOX) might play a central role in the initiation of the apoptotic program. The goal of the role of apoptosis in lymphocyte depression (ROALD) experiment, flown on the International Space Station as part of the BIO-4 mission of the European Space Agency, was to ascertain the induction of apoptosis in human lymphocytes under authentic microgravity, and to elucidate the possible involvement of 5-LOX. Our results demonstrate that exposure of human lymphocytes to microgravity for 48 h onboard the ISS remarkably increased apoptotic hallmarks such as DNA fragmentation (∼3-fold compared to ground-based controls) and cleaved-poly (ADP-ribose) polymerase (PARP) protein expression (∼3-fold), as well as mRNA levels of apoptosis-related markers such as p53 (∼3-fold) and calpain (∼4-fold); these changes were paralleled by an early increase of 5-LOX activity (∼2-fold). Our findings provide a molecular background for the immune dysfunction observed in astronauts during space missions, and reveal potential new markers to monitor health status of ISS crew members.

  14. Effect of a 5-lipoxygenase inhibitor on nerve growth factor-induced thermal hyperalgesia in the rat.

    PubMed

    Amann, R; Schuligoi, R; Lanz, I; Peskar, B A

    1996-06-13

    Intraplantar injection of mouse beta (2.5S) nerve growth factor (NGF) caused thermal hyperalgesia and stimulated release of immunoreactive leukotriene B4 from the rat paw skin. Both effects of NGF were prevented by the 5-lipoxygenase inhibitor, (R)-2-[4-quinolin-2-yl-methoxy)phenyl]-2-cyclopentyl acetic acid (BAY X1005). BAY X1005 did not affect bradykinin-induced thermal hyperalgesia. These results suggest the participation of 5-lipoxygenase products of arachidonate in NGF-induced local thermal hyperalgesia.

  15. A fluorescence-based assay for measuring the redox potential of 5-lipoxygenase inhibitors.

    PubMed

    Lee, Sangchul; Park, Youngsam; Kim, Junghwan; Han, Sung-Jun

    2014-01-01

    The activities and side effects of 5-lipoxygenase (5-LO) inhibitors can be predicted by identifying their redox mechanisms. In this study, we developed a fluorescence-based method to measure the redox potential of 5-LO inhibitors and compared it to the conventional, absorbance-based method. After the pseudo-peroxidase reaction, the amount of remaining lipid peroxide was quantified using the H2DCFDA (2',7'-dichlorodihydrofluorescein diacetate) fluorescence dye. Our method showed large signal windows and provided comparable redox potential values. Importantly, the redox mechanisms of known inhibitors were accurately measured with the fluorescence assay, whereas the conventional, absorbance-based method showed contradictory results. Our findings suggest that our developed method is a better alternative for classifying the redox potential of 5-LO inhibitors, and the fluorescence assay can be effectively used to study the mechanisms of action that are related to redox cycling.

  16. Gene expression of 5-lipoxygenase and LTA4 hydrolase in renal tissue of nephrotic syndrome patients

    PubMed Central

    Menegatti, E; Roccatello, D; Fadden, K; Piccoli, G; De Rosa, G; Sena, L M; Rifai, A

    1999-01-01

    Leukotrienes (LT) of the 5-lipoxygenase pathway constitute a class of potent biological lipid mediators of inflammation implicated in the pathogenesis of different models of experimental glomerulonephritis. The key enzyme, 5-lipoxygenase (5-LO), catalyses oxygenation of arachidonic acid to generate the primary leukotriene LTA4. This LT, in turn, serves as a substrate for either LTA4 hydrolase, to form the potent chemoattractant LTB4, or LTC4 synthase, to produce the powerful vasoconstrictor LTC4. To investigate the potential role of LT in the pathogenesis of human glomerulonephritis with nephrotic syndrome, we examined the gene expression of 5-LO and LTA4 hydrolase in renal tissue of 21 adult patients with nephrotic syndrome and 11 controls. The patients consisted of 11 cases of membranous nephropathy (MN), seven focal and segmental glomerulosclerosis (FSGS), two non-IgA mesangial glomerulonephritis and one minimal change disease. Total RNA purified from renal tissue was reverse transcribed into cDNA and amplified with specific primers in a polymerase chain reaction (RT-PCR). Eight patients' renal tissue, four MN and four FSGS, co-expressed 5-LO and LTA4 hydrolase. In situ hybridization analysis revealed 5-LO expression and distribution limited to the interstitial cells surrounding the peritubular capillaries. Comparative clinical and immunohistological data showed that these eight patients had impaired renal function and interstitial changes that significantly correlated with 5-LO expression. These findings suggest that leukotrienes may play an important role in the pathogenesis of MN and FSGS. These results are also relevant to elucidating the pathophysiologic mechanisms which underlie progression to renal failure in these diseases. PMID:10337029

  17. Intravenous anesthetic propofol binds to 5-lipoxygenase and attenuates leukotriene B4 production.

    PubMed

    Okuno, Toshiaki; Koutsogiannaki, Sophia; Ohba, Mai; Chamberlain, Matthew; Bu, Weiming; Lin, Fu-Yan; Eckenhoff, Roderic G; Yokomizo, Takehiko; Yuki, Koichi

    2017-04-01

    Propofol is an intravenous anesthetic that produces its anesthetic effect, largely via the GABAA receptor in the CNS, and also reduces the N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced neutrophil respiratory burst. Because fMLP-stimulated neutrophils produce leukotriene (LT)B4, we examined the effect of propofol on LTB4 production in vivo and in vitro Cecal ligation and puncture surgery was performed in mice, with or without exposure to propofol. Propofol attenuated the production of 5-lipoxygenase (5-LOX)-related arachidonic acid (AA) derivatives in the peritoneal fluid. Also, in the in vitro experiments on fMLP-stimulated neutrophils and 5-LOX-transfected human embryonic kidney cells, propofol attenuated the production of 5-LOX-related AA derivatives. Based on these results, we hypothesized that propofol would directly affect 5-LOX function. Using meta-azi-propofol (AziPm), we photolabeled stable 5-LOX protein, which had been used to solve the X-ray crystallographic structure of 5-LOX, and examined the binding site(s) of propofol on 5-LOX. Two propofol binding pockets were identified near the active site of 5-LOX. Alanine scanning mutagenesis was performed for the residues of 5-LOX in the vicinity of propofol, and we evaluated the functional role of these pockets in LTB4 production. We demonstrated that these pockets were functionally important for 5-LOX activity. These two pockets can be used to explore a novel 5-LOX inhibitor in the future.-Okuno, T., Koutsogiannaki, S., Ohba, M., Chamberlain, M., Bu, W., Lin, F.-Y., Eckenhoff, R. G., Yokomizo T., Yuki, K. Intravenous anesthetic propofol binds to 5-lipoxygenase and attenuates leukotriene B4 production. © FASEB.

  18. Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone.

    PubMed

    Mansour, Mahmoud; Tornhamre, Susanne

    2004-10-01

    Black cumin seed, Nigella sativa L., and its oils have traditionally been used for the treatment of asthma and other inflammatory diseases. Thymoquinone (TQ) has been proposed to be one of the major active components of the drug. Since leukotrienes (LTs) are important mediators in asthma and inflammatory processes, the effects of TQ on leukotriene formation were studied in human blood cells. TQ provoked a significant concentration-dependent inhibition of both LTC4 and LTB4 formation from endogenous substrate in human granulocyte suspensions with IC50 values of 1.8 and 2.3 microM, respectively, at 15 min. Major inhibitory effect was on the 5-lipoxygenase activity (IC50 3 microM) as evidenced by suppressed conversion of exogenous arachidonic acid into 5-hydroxy eicosatetraenoic acid (5HETE) in sonicated polymorphonuclear cell suspensions. In addition, TQ induced a significant inhibition of LTC4 synthase activity, with an IC50 of 10 microM, as judged by suppressed transformation of exogenous LTA4 into LTC4. In contrast, the drug was without any inhibitory effect on LTA4 hydrolase activity. When exogenous LTA4 was added to intact or sonicated platelet suspensions preincubated with TQ, a similar inhibition of LTC4 synthase activity was observed as in human granulocyte suspensions. The unselective protein kinase inhibitor, staurosporine failed to prevent inhibition of LTC4 synthase activity induced by TQ. The findings demonstrate that TQ potently inhibits the formation of leukotrienes in human blood cells. The inhibitory effect was dose- and time-dependent and was exerted on both 5-lipoxygenase and LTC4 synthase activity.

  19. 7 CFR 1c.110 - Expedited review procedures for certain kinds of research involving no more than minimal risk...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... an expedited review procedure shall adopt a method for keeping all members advised of research... research involving no more than minimal risk, and for minor changes in approved research. 1c.110 Section 1c... review procedures for certain kinds of research involving no more than minimal risk, and for minor...

  20. Cylindol A, a novel biphenyl ether with 5-lipoxygenase inhibitory activity, and a related compound from Imperata Cylindrica.

    PubMed

    Matsunaga, K; Ikeda, M; Shibuya, M; Ohizumi, Y

    1994-09-01

    Cylindol A [1] and B [2], two novel substances, have been isolated from Imperata cylindrica, and their structures have been elucidated on the basis of their spectral data coupled with chemical evidence and total synthesis. Cylindol A [1] showed 5-lipoxygenase inhibitory activity.

  1. Inhibition of 5-lipoxygenase and skin inflammation by the aerial parts of Artemisia capillaris and its constituents.

    PubMed

    Kwon, Oh Song; Choi, Jae Sue; Islam, Md Nurul; Kim, Yeong Shik; Kim, Hyun Pyo

    2011-09-01

    The aerial parts of Artemisia capillaris Thunberg (Compositae) have been used in Chinese medicine as a liver protective agent, diuretic, and for amelioration of skin inflammatory conditions. This study was conducted to establish the scientific rationale for treating skin inflammation and to find active principles from A. capillaris. To accomplish these goals, the 70% ethanol extract of the aerial parts of A. capillaris (AR) was prepared and its 5-lipoxygenase (5-LOX) inhibitory action was studied since 5-LOX products are known to be involved in several allergic and skin inflammatory disorders. AR showed potent inhibitory activity against 5-LOX-catalyzed leukotriene production by ionophore-induced rat basophilic leukemia-1 cells, with an IC(50) of < 1.0 μg/mL. Nine major compounds, scopoletin, scopolin, scoparone, esculetin, quercetin, capillarisin, isorhamnetin, 3-O-robinobioside, isorhamnetin 3-O-galactoside and chlorogenic acid, were isolated from A. capillaris, and their effects were examined to identify the active principle(s). Several coumarin and flavonoid derivatives were found to be 5-LOX inhibitors. In particular, esculetin and quercetin were potent inhibitors, with IC(50) values of 6.6 and 0.7 μM, respectively. Against arachidonic acid-induced ear edema in mice, AR, and esculetin strongly inhibited edematic response. AR and esculetin also inhibited delayed-type hypersensitivity response in mice. In conclusion, AR and some of their major constituents are 5-LOX inhibitors, and these in vitro and in vivo activities may contribute to the therapeutic potential of AR in skin inflammatory disorders in traditional medicine.

  2. Regulation of leukotriene and 5oxoETE synthesis and the effect of 5-lipoxygenase inhibitors: a mathematical modeling approach

    PubMed Central

    2012-01-01

    Background 5-lipoxygenase (5-LO) is a key enzyme in the synthesis of leukotrienes and 5-Oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (oxoETE). These inflammatory signaling molecules play a role in the pathology of asthma and so 5-LO inhibition is a promising target for asthma therapy. The 5-LO redox inhibitor zileuton (Zyflo IR/CR®) is currently marketed for the treatment of asthma in adults and children, but widespread use of zileuton is limited by its efficacy/safety profile, potentially related to its redox characteristics. Thus, a quantitative, mechanistic description of its functioning may be useful for development of improved anti-inflammatory targeting this mechanism. Results A mathematical model describing the operation of 5-LO, phospholipase A2, glutathione peroxidase and 5-hydroxyeicosanoid dehydrogenase was developed. The catalytic cycles of the enzymes were reconstructed and kinetic parameters estimated on the basis of available experimental data. The final model describes each stage of cys-leukotriene biosynthesis and the reactions involved in oxoETE production. Regulation of these processes by substrates (phospholipid concentration) and intracellular redox state (concentrations of reduced glutathione, glutathione (GSH), and lipid peroxide) were taken into account. The model enabled us to reveal differences between redox and non-redox 5-LO inhibitors under conditions of oxidative stress. Despite both redox and non-redox inhibitors suppressing leukotriene A4 (LTA4) synthesis, redox inhibitors are predicted to increase oxoETE production, thus compromising efficacy. This phenomena can be explained in terms of the pseudo-peroxidase activity of 5-LO and the ability of lipid peroxides to transform 5-LO into its active form even in the presence of redox inhibitors. Conclusions The mathematical model developed described quantitatively different mechanisms of 5-LO inhibition and simulations revealed differences between the potential therapeutic outcomes for these

  3. The 5-Lipoxygenase Inhibitor Zileuton Confers Neuroprotection against Glutamate Oxidative Damage by Inhibiting Ferroptosis.

    PubMed

    Liu, Yang; Wang, Wei; Li, Yuyao; Xiao, Yunqi; Cheng, Jian; Jia, Jia

    2015-01-01

    5-Lipoxygenase (5-LOX) inhibitors have been shown to be protective in several neurodegenerative disease models; however, the underlying mechanisms remain unclear. We investigated whether 5-LOX inhibitor zileuton conferred direct neuroprotection against glutamate oxidative toxicity by inhibiting ferroptosis, a newly identified iron-dependent programmed cell death. Treatment of HT22 mouse neuronal cell line with glutamate resulted in significant cell death, which was inhibited by zileuton in a dose-dependent manner. Consistently, zileuton decreased glutamate-induced production of reactive oxygen species but did not restore glutamate-induced depletion of glutathione. Moreover, the pan-caspase inhibitor Z-Val-Ala-Asp(OMe)-fluoromethyl ketone (ZVAD-fmk) neither prevented HT22 cell death induced by glutamate nor affected zileuton protection against glutamate oxidative toxicity, suggesting that zileuton did not confer neuroprotection by inhibiting caspase-dependent apoptosis. Interestingly, glutamate-induced HT22 cell death was significantly inhibited by the ferroptosis inhibitor ferrostatin-1. Moreover, zileuton protected HT22 neuronal cells from erastin-induced ferroptosis. However, we did not observe synergic protective effects of zileuton and ferrostatin-1 on glutamate-induced cell death. These results suggested that both the 5-LOX inhibitor zileuton and the ferropotosis inhibitor ferrostatin-1 acted through the same cascade to protect against glutamate oxidative toxicity. In conclusion, our results suggested that zileuton protected neurons from glutamate-induced oxidative stress at least in part by inhibiting ferroptosis.

  4. New sterols with anti-inflammatory potentials against cyclooxygenase-2 and 5-lipoxygenase from Paphia malabarica.

    PubMed

    Joy, Minju; Chakraborty, Kajal; Raola, Vamshi Krishna

    2017-06-01

    Marine bivalves occupy a leading share in the total edible molluscs at the coastline regions of south-eastern Asia, and are found to possess significant nutritional and biological potential. Various in vitro evaluation (antioxidant and anti-inflammatory) guided purification of ethyl acetate-methanol (EtOAc-MeOH) extract of bivalve clam, Paphia malabarica characterised two new sterol derivatives as 23-gem-dimethylcholesta-5-en-3β-ol (1) and (22E)-24(1),24(2)-methyldihomocholest-5,22-dien-3β-ol (2) collected from the south-west coast of Arabian Sea. Their structures were unambiguously assigned on the basis of 1D, 2D NMR spectroscopy and mass spectrometry. The antioxidant and anti-inflammatory activities of 2 as determined by DPPH/ABTS(+) radical scavenging and anti-cyclooxygenase-2/5-lipoxygenase assays were significantly greater (IC50 < 1 mg/mL) than 1 (IC50 > 1 mg/mL). Structure-activity relationship analysis revealed that the bioactivities of these compounds were directly proportional to the electronic and lipophilic parameters. This is the first report of the occurrence and characterisation of 23-gem-dimethyl-3β-hydroxy-Δ(5)-cholestane nucleus and C-30 dihomosterol from marine organisms.

  5. Phosphodiesterase 4D and 5-Lipoxygenase Activating Protein in Ischemic Stroke

    PubMed Central

    Meschia, James F.; Brott, Thomas G.; Brown, Robert D.; Crook, Richard; Worrall, Bradford B.; Kissela, Brett; Brown, W. Mark; Rich, Stephen S.; Case, L. Douglas; Evans, E. Whitney; Hague, Stephen; Singleton, Andrew; Hardy, John

    2006-01-01

    Risk for ischemic stroke is mediated by both environmental and genetic factors. Although several environmental exposures have been implicated, relatively little is known about the genetic basis of predisposition to this disease. Recent studies in Iceland identified risk polymorphisms in two putative candidate genes for ischemic stroke: phosphodiesterase 4D (PDE4D) and 5-lipoxygenase activating protein (ALOX5AP). A collection of North American sibling pairs concordant for ischemic stroke and two cohorts of prospectively ascertained North American ischemic stroke cases and control subjects were used for evaluation of PDE4D and ALOX5AP. Although no evidence supported linkage of ischemic stroke with either of the two candidate genes, single-nucleotide polymorphisms and haplotypic associations were observed between PDE4D and ischemic stroke. There was no evidence of association between variants of ALOX5AP and ischemic stroke. These data suggest that common variants in PDE4D may contribute to the genetic risk for ischemic stroke in multiple populations. PMID:16130105

  6. Critical role of 5-lipoxygenase and heme oxygenase-1 in wound healing.

    PubMed

    Brogliato, Ariane R; Moor, Andrea N; Kesl, Shannon L; Guilherme, Rafael F; Georgii, Janaína L; Peters-Golden, Marc; Canetti, Claudio; Gould, Lisa J; Benjamim, Claudia F

    2014-05-01

    Lipid mediators derived from 5-lipoxygenase (5-LO) metabolism can activate both pro- and anti-inflammatory pathways, but their role in wound healing remains largely unexplored. In this study we show that 5-LO knockout (5-LO(-/-)) mice exhibited faster wound healing than wild-type (WT) animals, and exhibited upregulation of heme oxygenase-1 (HO-1). Furthermore, HO-1 inhibition in 5-LO(-/-) mice abolished the beneficial effect observed. Despite the fact that 5-LO(-/-) mice exhibited faster healing, in in vitro assays both migration and proliferation of human dermal fibroblasts (HDFs) were inhibited by the 5-LO pharmacologic inhibitor AA861. No changes were observed in the expression of fibronectin, transforming growth factor (I and III), and α-smooth muscle actin (α-SMA). Interestingly, AA861 treatment significantly decreased ROS formation by stimulated fibroblasts. Similar to 5-LO(-/-) mice, induction of HO-1, but not superoxide dismutase-2 (SOD-2), was also observed in response to 5-LO (AA861) or 5-LO activating protein (MK886) inhibitors. HO-1 induction was independent of nuclear factor (erythroid derived-2) like2 (Nrf-2), cyclooxygenase 2 (COX-2) products, or lipoxin action. Taken together, our results show that 5-LO disruption improves wound healing and alters fibroblast function by an antioxidant mechanism based on HO-1 induction. Overexpression of HO-1 in wounds may facilitate early wound resolution.

  7. Structural and Functional Analysis of Calcium Ion Mediated Binding of 5-Lipoxygenase to Nanodiscs

    PubMed Central

    Kumar, Ramakrishnan B.; Zhu, Lin; Idborg, Helena; Rådmark, Olof; Jakobsson, Per-Johan; Rinaldo-Matthis, Agnes; Hebert, Hans; Jegerschöld, Caroline

    2016-01-01

    An important step in the production of inflammatory mediators of the leukotriene family is the Ca2+ mediated recruitment of 5 Lipoxygenase (5LO) to nuclear membranes. To study this reaction in vitro, the natural membrane mimicking environment of nanodiscs was used. Nanodiscs with 10.5 nm inner diameter were made with the lipid POPC and membrane scaffolding protein MSP1E3D1. Monomeric and dimeric 5LO were investigated. Monomeric 5LO mixed with Ca2+ and nanodiscs are shown to form stable complexes that 1) produce the expected leukotriene products from arachidonic acid and 2) can be, for the first time, visualised by native gel electrophoresis and negative stain transmission electron microscopy and 3) show a highest ratio of two 5LO per nanodisc. We interpret this as one 5LO on each side of the disc. The dimer of 5LO is visualised by negative stain transmission electron microscopy and is shown to not bind to nanodiscs. This study shows the advantages of nanodiscs to obtain basic structural information as well as functional information of a complex between a monotopic membrane protein and the membrane. PMID:27010627

  8. Clicked Cinnamic/Caffeic Esters and Amides as Radical Scavengers and 5-Lipoxygenase Inhibitors

    PubMed Central

    Doiron, Jérémie A.; Métayer, Benoît; Richard, Ryan R.; Desjardins, Dany; Boudreau, Luc H.; Levesque, Natalie A.; Jean-François, Jacques; Poirier, Samuel J.; Surette, Marc E.; Touaibia, Mohamed

    2014-01-01

    5-Lipoxygenase (5-LO) is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a–h and amides 9a–h as well as caffeic esters 15a–h and amides 16a–h were synthesized by Cu(I)-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10–20 μM). Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes. PMID:25383225

  9. 5-lipoxygenase knockout mice exhibit a resistance to acute pancreatitis induced by cerulein

    PubMed Central

    Cuzzocrea, Salvatore; Rossi, Antonietta; Serraino, Ivana; Di Paola, Rosanna; Dugo, Laura; Genovese, Tiziana; Britti, Domenico; Sciarra, Giuseppe; De Sarro, Angelina; Caputi, Achille P; Sautebin, Lidia

    2003-01-01

    Here we compare the degree of pancreatitis caused by cerulein in mice lacking 5-lipoxygenase (5-LO) and in the corresponding wild-type mice. Intraperitoneal injection of cerulein in mice resulted in severe, acute pancreatitis characterized by oedema, neutrophil infiltration and necrosis and elevated serum levels of amylase and lipase. Infiltration of pancreatic and lung tissue with neutrophils (measured as increase in myeloperoxidase activity) was associated with enhanced lipid peroxidation (increased tissue levels of malondialdehyde). Immunohistochemical examination demonstrated a marked increase in immunoreactivity for intracellular adhesion molecule-1 (ICAM-1), P-selectin and E-selectin in the pancreas and lung of cerulein-treated mice. In contrast, the degree of (1) pancreatic inflammation and tissue injury (histological score), (2) up-regulation/expression of P-selectin, E-selectin and ICAM-1, and (3) neutrophil infiltration was markedly reduced in pancreatic and lung tissue obtained from cerulein-treated 5-LO-deficient mice. These findings support the view that 5-LO plays an important, pro-inflammatory role in the acute pancreatitis caused by cerulein in mice. PMID:12941149

  10. Clicked cinnamic/caffeic esters and amides as radical scavengers and 5-lipoxygenase inhibitors.

    PubMed

    Doiron, Jérémie A; Métayer, Benoît; Richard, Ryan R; Desjardins, Dany; Boudreau, Luc H; Levesque, Natalie A; Jean-François, Jacques; Poirier, Samuel J; Surette, Marc E; Touaibia, Mohamed

    2014-01-01

    5-Lipoxygenase (5-LO) is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a-h and amides 9a-h as well as caffeic esters 15a-h and amides 16a-h were synthesized by Cu(I)-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10-20 μM). Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes.

  11. Structure-activity relationship of caffeic acid phenethyl ester analogs as new 5-lipoxygenase inhibitors.

    PubMed

    Doiron, Jérémie A; Leblanc, Luc M; Hébert, Martin J G; Levesque, Natalie A; Paré, Aurélie F; Jean-François, Jacques; Cormier, Marc; Surette, Marc E; Touaibia, Mohamed

    2016-09-26

    Leukotrienes (LTs) are a class of lipid mediators implicated in numerous inflammatory disorders. Caffeic acid phenethyl ester (CAPE) possesses potent anti-LTs activity through the inhibition of 5-lipoxygenase (5-LO), the key enzyme in the biosynthesis of LTs. In this study, we describe the design and synthesis of CAPE analogs as radical scavengers and 5-LO inhibitors. Caffeic esters bearing propargyl and allyl linkers between the caffeoyl and aryl moieties (4a-i and 5a-i, respectively) were synthesized by Sonogashira and Heck cross-coupling reactions to probe the effects of flexibility and aryl substitution on 5-LO inhibition. Caffeoyl alcohol and ethers (6, 7a-b) as well as caffeoyl aldehyde and ketones (8a-e) were synthesized to elucidate the importance of the ester linkage for inhibitory activity. All tested compounds proved to be good radical scavengers (IC50 of 10-30 μm). After preliminary anti-LTs activity screening in HEK293 cell models, 5-LO inhibition potential of selected compounds was determined in human polymorphonuclear leukocytes (PMNL). Most screened compounds outperformed CAPE 3 in concentration-dependent assays on PMNL, with ester dimers 4i and 5i along with caffeoyl ethers 7a-b being roughly eight-, seven-, and 16-fold more potent than Zileuton, with IC50 values of 0.36, 0.43, and 0.18 μm, respectively.

  12. 5-lipoxygenase-dependent recruitment of neutrophils and macrophages by eotaxin-stimulated murine eosinophils.

    PubMed

    Luz, Ricardo Alves; Xavier-Elsas, Pedro; de Luca, Bianca; Masid-de-Brito, Daniela; Cauduro, Priscila Soares; Arcanjo, Luiz Carlos Gondar; dos Santos, Ana Carolina Cordeiro Faria; de Oliveira, Ivi Cristina Maria; Gaspar-Elsas, Maria Ignez Capella

    2014-01-01

    The roles of eosinophils in antimicrobial defense remain incompletely understood. In ovalbumin-sensitized mice, eosinophils are selectively recruited to the peritoneal cavity by antigen, eotaxin, or leukotriene(LT)B4, a 5-lipoxygenase (5-LO) metabolite. 5-LO blockade prevents responses to both antigen and eotaxin. We examined responses to eotaxin in the absence of sensitization and their dependence on 5-LO. BALB/c or PAS mice and their mutants (5-LO-deficient ALOX; eosinophil-deficient GATA-1) were injected i.p. with eotaxin, eosinophils, or both, and leukocyte accumulation was quantified up to 24 h. Significant recruitment of eosinophils by eotaxin in BALB/c, up to 24 h, was accompanied by much larger numbers of recruited neutrophils and monocytes/macrophages. These effects were abolished by eotaxin neutralization and 5-LO-activating protein inhibitor MK886. In ALOX (but not PAS) mice, eotaxin recruitment was abolished for eosinophils and halved for neutrophils. In GATA-1 mutants, eotaxin recruited neither neutrophils nor macrophages. Transfer of eosinophils cultured from bone-marrow of BALB/c donors, or from ALOX donors, into GATA-1 mutant recipients, i.p., restored eotaxin recruitment of neutrophils and showed that the critical step dependent on 5-LO is the initial recruitment of eosinophils by eotaxin, not the secondary neutrophil accumulation. Eosinophil-dependent recruitment of neutrophils in naive BALB/c mice was associated with increased binding of bacteria.

  13. 5-lipoxygenase is a key determinant of acute myocardial inflammation and mortality during Trypanosoma cruzi infection.

    PubMed

    Pavanelli, Wander R; Gutierrez, Fredy R S; Mariano, Flávia S; Prado, Cibele M; Ferreira, Beatriz Rossetti; Teixeira, Mauro Martins; Canetti, Cláudio; Rossi, Marcos A; Cunha, Fernando Q; Silva, João S

    2010-08-01

    This study provides evidence supporting the idea that although inflammatory cells migration to the cardiac tissue is necessary to control the growth of Trypanosoma cruzi, the excessive influx of such cells during acute myocarditis may be deleterious to the host. Production of lipid mediators of inflammation like leukotrienes (LTs) along with cytokines and chemokines largely influences the severity of inflammatory injury in response to tissue parasitism. T. cruzi infection in mice deficient in 5-lipoxygenase (5-LO), the enzyme responsible for the synthesis of LTs and other lipid inflammatory mediators, resulted in transiently increased parasitemia, and improved survival rate compared with WT mice. Myocardia from 5-LO(-/-) mice exhibited reduced inflammation, collagen deposition, and migration of CD4(+), CD8(+), and IFN-gamma-producer cells compared with WT littermates. Moreover, decreased amounts of TNF-alpha, IFN-gamma, and nitric oxide synthase were found in the hearts of 5-LO(-/-) mice. Interestingly, despite of early higher parasitic load, 5-LO(-/-) mice survived, and controlled T. cruzi infection. These results show that efficient parasite clearance is possible in a context of moderate inflammatory response, as occurred in 5-LO(-/-) mice, in which reduced myocarditis protects the animals during T. cruzi infection. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  14. Age-dependent relevance of endogenous 5-lipoxygenase derivatives in anxiety-like behavior in mice.

    PubMed

    Leo, Luciana M; Almeida-Corrêa, Suellen; Canetti, Claudio A; Amaral, Olavo B; Bozza, Fernando A; Pamplona, Fabricio A

    2014-01-01

    When 5-lipoxygenase (5-LO) is inhibited, roughly half of the CNS effect of the prototypic endocannabinoid anandamide (AEA) is lost. Therefore, we decided to investigate whether inhibiting this enzyme would influence physiological functions classically described as being under control of the endocannabinoid system. Although 5-LO inhibition by MK-886 reduced lipoxin A4 levels in the brain, no effect was found in the elevated plus maze (EPM), even at the highest possible doses, via i.p. (10 mg/kg,) or i.c.v. (500 pmol/2 µl) routes. Accordingly, no alterations in anxiety-like behavior in the EPM test were observed in 5-LO KO mice. Interestingly, aged mice, which show reduced circulating lipoxin A4 levels, were sensitive to MK-886, displaying an anxiogenic-like state in response to treatment. Moreover, exogenous lipoxin A4 induced an anxiolytic-like profile in the EPM test. Our findings are in line with other reports showing no difference between FLAP KO or 5-LO KO and their control strains in adult mice, but increased anxiety-like behavior in aged mice. We also show for the first time that lipoxin A4 affects mouse behavior. In conclusion, we propose an age-dependent relevancy of endogenous 5-LO derivatives in the modulation of anxiety-like behavior, in addition to a potential for exogenous lipoxin A4 in producing an anxiolytic-like state.

  15. Age-Dependent Relevance of Endogenous 5-Lipoxygenase Derivatives in Anxiety-Like Behavior in Mice

    PubMed Central

    Leo, Luciana M.; Almeida-Corrêa, Suellen; Canetti, Claudio A.; Amaral, Olavo B.; Bozza, Fernando A.; Pamplona, Fabricio A.

    2014-01-01

    When 5-lipoxygenase (5-LO) is inhibited, roughly half of the CNS effect of the prototypic endocannabinoid anandamide (AEA) is lost. Therefore, we decided to investigate whether inhibiting this enzyme would influence physiological functions classically described as being under control of the endocannabinoid system. Although 5-LO inhibition by MK-886 reduced lipoxin A4 levels in the brain, no effect was found in the elevated plus maze (EPM), even at the highest possible doses, via i.p. (10 mg/kg,) or i.c.v. (500 pmol/2 µl) routes. Accordingly, no alterations in anxiety-like behavior in the EPM test were observed in 5-LO KO mice. Interestingly, aged mice, which show reduced circulating lipoxin A4 levels, were sensitive to MK-886, displaying an anxiogenic-like state in response to treatment. Moreover, exogenous lipoxin A4 induced an anxiolytic-like profile in the EPM test. Our findings are in line with other reports showing no difference between FLAP KO or 5-LO KO and their control strains in adult mice, but increased anxiety-like behavior in aged mice. We also show for the first time that lipoxin A4 affects mouse behavior. In conclusion, we propose an age-dependent relevancy of endogenous 5-LO derivatives in the modulation of anxiety-like behavior, in addition to a potential for exogenous lipoxin A4 in producing an anxiolytic-like state. PMID:24416334

  16. Loss of 5-lipoxygenase activity protects mice against paracetamol-induced liver toxicity.

    PubMed

    Pu, Shiyun; Ren, Lin; Liu, Qinhui; Kuang, Jiangying; Shen, Jing; Cheng, Shihai; Zhang, Yuwei; Jiang, Wei; Zhang, Zhiyong; Jiang, Changtao; He, Jinhan

    2016-01-01

    Paracetamol (acetaminophen) is the most widely used over-the-counter analgesic and overdosing with paracetamol is the leading cause of hospital admission for acute liver failure. 5-Lipoxygenase (5-LO) catalyses arachidonic acid to form LTs, which lead to inflammation and oxidative stress. In this study, we examined whether deletion or pharmacological inhibition of 5-LO could protect mice against paracetamol-induced hepatic toxicity. Both genetic deletion and pharmacological inhibition of 5-LO in C57BL/6J mice were used to study the role of this enzyme in paracetamol induced liver toxicity. Serum and tissue biochemistry, H&E staining, and real-time PCR were used to assess liver toxicity. Deletion or pharmacological inhibition of 5-LO in mice markedly ameliorated paracetamol-induced hepatic injury, as shown by decreased serum alanine transaminase and aspartate aminotransferase levels and hepatic centrilobular necrosis. The hepatoprotective effect of 5-LO inhibition was associated with induction of the antitoxic phase II conjugating enzyme, sulfotransferase2a1, suppression of the pro-toxic phase I CYP3A11 and reduction of the hepatic transporter MRP3. In 5-LO(-/-) mice, levels of GSH were increased, and oxidative stress decreased. In addition, PPAR α, a nuclear receptor that confers resistance to paracetamol toxicity, was activated in 5-LO(-/-) mice. The activity of 5-LO may play a critical role in paracetamol-induced hepatic toxicity by regulating paracetamol metabolism and oxidative stress. © 2015 The British Pharmacological Society.

  17. 5-Lipoxygenase as a putative link between cardiovascular and psychiatric disorders.

    PubMed

    Manev, Radmila; Manev, Hari

    2004-01-01

    There is evidence of an association between depression and anxiety and cardio- cerebro-vascular conditions, but the mechanisms of this association are unknown. Here we review a possible role for the 5-lipoxygenase (5-LOX) pathway. 5-LOX is an enzyme that, in association with 5-LOX-activating protein (FLAP), leads to the synthesis of leukotrienes from omega-6 arachidonic acid. Production of active leukotrienes can be reduced by dietary omega-3 fatty acids, which also are beneficial in cardiac and psychiatric (e.g., depression) pathologies. Human 5-LOX and FLAP gene polymorphisms are a risk factor in atherosclerosis and cardio-cerebro-vascular pathologies; an overactive 5-LOX pathway is found in these diseases. Studies with 5-LOX-deficient transgenic mice suggest that 5-LOX activity may contribute to anxiety- and depression-like behaviors. Future research should characterize the role of the 5-LOX pathway in comorbid cardio-cerebro-vascular and psychiatric disorders and in the therapeutic actions of dietary omega-3 fatty acids.

  18. Benefits of Neuropsychiatric Phenomics: Example of the 5-Lipoxygenase-Leptin-Alzheimer Connection

    PubMed Central

    Manev, Hari; Manev, Radmila

    2010-01-01

    Phenomics is a systematic study of phenotypes on a genomewide scale that is expected to unravel, as of yet, unsuspected functional roles of the genome. It remains to be determined how to optimally approach and analyze the available phenomics databases to spearhead innovation in neuropsychiatry. By serendipitously connecting two unrelated phenotypes of increased blood levels of the adipokine leptin, a molecule that regulates appetite, in 5-lipoxygenase- (5-LOX) deficient mice and patients with a lower risk for Alzheimer's disease (AD), we postulated a leptin-mediated basis for beneficial effects of ALOX5 (a gene encoding 5-LOX) gene-deficiency in AD. We suggest that it might be possible to avoid relying on serendipity and develop data-mining tools capable of extracting from phenomics databases indications for such novel hypotheses. Hence, we provide an example of using a free-access Arrowsmith two-node search interface to identify ALOX5 as unsuspected putative mechanisms for the previously described clinical association between increased plasma levels of leptin and a lower risk of incident dementia and AD. PMID:20672007

  19. The acute phase of Trypanosoma cruzi infection is attenuated in 5-lipoxygenase-deficient mice.

    PubMed

    Canavaci, Adriana M C; Sorgi, Carlos A; Martins, Vicente P; Morais, Fabiana R; de Sousa, Érika V G; Trindade, Bruno C; Cunha, Fernando Q; Rossi, Marcos A; Aronoff, David M; Faccioli, Lúcia H; Nomizo, Auro

    2014-01-01

    In the present work we examine the contribution of 5-lipoxygenase- (5-LO-) derived lipid mediators to immune responses during the acute phase of Trypanosoma cruzi infection in 5-LO gene knockout (5-LO(-/-)) mice and wild-type (WT) mice. Compared with WT mice, the 5-LO(-/-) mice developed less parasitemia/tissue parasitism, less inflammatory cell infiltrates, and a lower mortality. This resistance of 5-LO(-/-) mice correlated with several differences in the immune response to infection, including reduced PGE2 synthesis; sustained capacity of splenocytes to produce high levels of interleukin (IL)-12 early in the infection; enhanced splenocyte production of IL-1β, IL-6, and IFN-γ; rapid T-cell polarization to secrete high quantities of IFN-γ and low quantities of IL-10; and greater numbers of CD8(+)CD44(high)CD62L(low) memory effector T cells at the end of the acute phase of infection. The high mortality in WT mice was associated with increased production of LTB4/LTC4, T cell bias to produce IFN-γ, high levels of serum nitrite, and marked protein extravasation into the peritoneal cavity, although survival was improved by treatment with a cys-LT receptor 1 antagonist. These data also provide evidence that 5-LO-derived mediators negatively affect host survival during the acute phase of T. cruzi infection.

  20. The Acute Phase of Trypanosoma cruzi Infection Is Attenuated in 5-Lipoxygenase-Deficient Mice

    PubMed Central

    Canavaci, Adriana M. C.; Sorgi, Carlos A.; Martins, Vicente P.; Morais, Fabiana R.; de Sousa, Érika V. G.; Trindade, Bruno C.; Cunha, Fernando Q.; Rossi, Marcos A.; Aronoff, David M.; Faccioli, Lúcia H.

    2014-01-01

    In the present work we examine the contribution of 5-lipoxygenase- (5-LO-) derived lipid mediators to immune responses during the acute phase of Trypanosoma cruzi infection in 5-LO gene knockout (5-LO−/−) mice and wild-type (WT) mice. Compared with WT mice, the 5-LO−/− mice developed less parasitemia/tissue parasitism, less inflammatory cell infiltrates, and a lower mortality. This resistance of 5-LO−/− mice correlated with several differences in the immune response to infection, including reduced PGE2 synthesis; sustained capacity of splenocytes to produce high levels of interleukin (IL)-12 early in the infection; enhanced splenocyte production of IL-1β, IL-6, and IFN-γ; rapid T-cell polarization to secrete high quantities of IFN-γ and low quantities of IL-10; and greater numbers of CD8+CD44highCD62Llow memory effector T cells at the end of the acute phase of infection. The high mortality in WT mice was associated with increased production of LTB4/LTC4, T cell bias to produce IFN-γ, high levels of serum nitrite, and marked protein extravasation into the peritoneal cavity, although survival was improved by treatment with a cys-LT receptor 1 antagonist. These data also provide evidence that 5-LO-derived mediators negatively affect host survival during the acute phase of T. cruzi infection. PMID:25165415

  1. Primary cilium suppression by SREBP1c involves distortion of vesicular trafficking by PLA2G3

    PubMed Central

    Gijs, Hannah Laura; Willemarck, Nicolas; Vanderhoydonc, Frank; Khan, Niamat Ali; Dehairs, Jonas; Derua, Rita; Waelkens, Etienne; Taketomi, Yoshitaka; Murakami, Makoto; Agostinis, Patrizia; Annaert, Wim; Swinnen, Johannes V.

    2015-01-01

    Distortion of primary cilium formation is increasingly recognized as a key event in many human pathologies. One of the underlying mechanisms involves aberrant activation of the lipogenic transcription factor sterol regulatory element–binding protein 1c (SREBP1c), as observed in cancer cells. To gain more insight into the molecular pathways by which SREBP1c suppresses primary ciliogenesis, we searched for overlap between known ciliogenesis regulators and targets of SREBP1. One of the candidate genes that was consistently up-regulated in cellular models of SREBP1c-induced cilium repression was phospholipase A2 group III (PLA2G3), a phospholipase that hydrolyzes the sn-2 position of glycerophospholipids. Use of RNA interference and a chemical inhibitor of PLA2G3 rescued SREBP1c-induced cilium repression. Cilium repression by SREBP1c and PLA2G3 involved alterations in endosomal recycling and vesicular transport toward the cilium, as revealed by aberrant transferrin and Rab11 localization, and was largely mediated by an increase in lysophosphatidylcholine and lysophosphatidylethanolamine levels. Together these findings indicate that aberrant activation of SREBP1c suppresses primary ciliogenesis by PLA2G3-mediated distortion of vesicular trafficking and suggest that PLA2G3 is a novel potential target to normalize ciliogenesis in SREBP1c-overexpressing cells, including cancer cells. PMID:25904332

  2. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages

    PubMed Central

    Rossi, A; Pergola, C; Koeberle, A; Hoffmann, M; Dehm, F; Bramanti, P; Cuzzocrea, S; Werz, O; Sautebin, L

    2010-01-01

    BACKGROUND AND PURPOSE Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed. PMID:20880396

  3. Antioxidant, 5-lipoxygenase inhibitory and cytotoxic activities of compounds isolated from the Ferula lutea flowers.

    PubMed

    Znati, Mansour; Ben Jannet, Hichem; Cazaux, Sylvie; Souchard, Jean Pierre; Harzallah Skhiri, Féthia; Bouajila, Jalloul

    2014-10-22

    A phytochemical investigation of the Ferula lutea (Poir.) Maire flowers has led to the isolation of a new compound, (E)-5-ethylidenefuran-2(5H)-one-5-O-β-d-glucopyranoside (1), designated ferunide, 4-hydroxy-3-methylbut-2-enoic acid (2), reported for the first time as a natural product, together with nine known compounds, verbenone-5-O-β-d-glucopyranoside (3), 5-O-caffeoylquinic acid (4), methyl caffeate (5), methyl 3,5-O-dicaffeoylquinate (6), 3,5-O-dicaffeoylquinic acid (7), isorhamnetin-3-O-α-l-rhamnopyranosyl(1→6)-β-d-glucopyranoside, narcissin (8), (-)-marmesin (9), isoimperatorin (10) and 2,3,6-trimethylbenzaldehyde (11). Compounds 3-10 were identified for the first time in Ferula genus. Their structures were elucidated by spectroscopic methods, including 1D and 2D NMR experiments, mass spectroscopy and X-ray diffraction analysis (compound 2), as well as by comparison with literature data. The antioxidant, anti-inflammatory and cytotoxic activities of isolated compounds were evaluated. Results showed that compound 7 exhibited the highest antioxidant activity with IC50 values of 18 ± 0.5 µmol/L and 19.7 ± 0.7 µmol/L by DPPH radical and ABTS radical cation, respectively. The compound 6 exhibited the highest anti-inflammatory activity with an IC50 value of 5.3 ± 0.1 µmol/L against 5-lipoxygenase. In addition, compound 5 was found to be the most cytotoxic, with IC50 values of 22.5 ± 2.4 µmol/L, 17.8 ± 1.1 µmol/L and 25 ± 1.1 µmol/L against the HCT-116, IGROV-1 and OVCAR-3 cell lines, respectively.

  4. Inhibition of 5-lipoxygenase selectively triggers disruption of c-Myc signaling in prostate cancer cells.

    PubMed

    Sarveswaran, Sivalokanathan; Chakraborty, Debrup; Chitale, Dhananjay; Sears, Rosalie; Ghosh, Jagadananda

    2015-02-20

    Myc is up-regulated in almost all cancer types and is the subject of intense investigation because of its pleiotropic effects controlling a broad spectrum of cell functions. However, despite its recognition as a stand-alone molecular target, development of suitable strategies to block its function is hindered because of its nonenzymatic nature. We reported earlier that arachidonate 5-lipoxygenase (5-Lox) plays an important role in the survival and growth of prostate cancer cells, although details of the underlying mechanisms have yet to be characterized. By whole genome gene expression array, we observed that inhibition of 5-Lox severely down-regulates the expression of c-Myc oncogene in prostate cancer cells. Moreover, inhibition of 5-Lox dramatically decreases the protein level, nuclear accumulation, DNA binding, and transcriptional activities of c-Myc. Both the 5-Lox inhibition-induced down-regulation of c-Myc and induction of apoptosis are mitigated when the cells are treated with 5-oxoeicosatetraenoic acid, a metabolite of 5-Lox, confirming a role of 5-Lox in these processes. c-Myc is a transforming oncogene widely expressed in prostate cancer cells and maintains their transformed phenotype. Interestingly, MK591, a specific 5-Lox inhibitor, strongly affects the viability of Myc-overactivated prostate cancer cells and completely blocks their invasive and soft agar colony-forming abilities, but it spares nontransformed cells where expression of 5-Lox is undetectable. These findings indicate that the oncogenic function of c-Myc in prostate cancer cells is regulated by 5-Lox activity, revealing a novel mechanism of 5-Lox action and suggesting that the oncogenic function of c-Myc can be suppressed by suitable inhibitors of 5-Lox. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Mesenteric lymph diversion abrogates 5-lipoxygenase activation in the kidney following trauma and hemorrhagic shock

    PubMed Central

    Stringham, John R.; Moore, Ernest E.; Gamboni, Fabia; Harr, Jeffrey N.; Fragoso, Miguel; Chin, Theresa L.; Carr, Caitlin E.; Silliman, Christopher C.; Banerjee, Anirban

    2014-01-01

    BACKGROUND Early acute kidney injury (AKI) following trauma is associated with multiorgan failure and mortality. Leukotrienes have been implicated both in AKI and in acute lung injury. Activated 5-lipoxygenase (5-LO) colocalizes with 5-LO–activating protein (FLAP) in the first step of leukotriene production following trauma and hemorrhagic shock (T/HS). Diversion of postshock mesenteric lymph, which is rich in the 5-LO substrate of arachidonate, attenuates lung injury and decreases 5-LO/FLAP associations in the lung after T/HS. We hypothesized that mesenteric lymph diversion (MLD) will also attenuate postshock 5-LO–mediated AKI. METHODS Rats underwent T/HS (laparotomy, hemorrhagic shock to a mean arterial pressure of 30 mm Hg for 45 minutes, and resuscitation), and MLD was accomplished via cannulation of the mesenteric duct. Extent of kidney injury was determined via histology score and verified by urinary neutrophil gelatinase-associated lipocalin assay. Kidney sections were immunostained for 5-LO and FLAP, and colocalization was determined by fluorescence resonance energy transfer signal intensity. The end leukotriene products of 5-LO were determined in urine. RESULTS AKI was evident in the T/HS group by derangement in kidney tubule architecture and confirmed by neutrophil gelatinase-associated lipocalin assay, whereas MLD during T/HS preserved renal tubule morphology at a sham level. MLD during T/HS decreased the associations between 5-LO and FLAP demonstrated by fluorescence resonance energy transfer microscopy and decreased leukotriene production in urine. CONCLUSION 5-LO and FLAP colocalize in the interstitium of the renal medulla following T/HS. MLD attenuates this phenomenon, which coincides with pathologic changes seen in tubules during kidney injury and biochemical evidence of AKI. These data suggest that gut-derived leukotriene substrate predisposes the kidney and the lung to subsequent injury. PMID:24747451

  6. Pivotal Role of the 5-Lipoxygenase Pathway in Lung Injury after Experimental Sepsis

    PubMed Central

    Monteiro, Ana Paula T.; Soledade, Erico; Pinheiro, Carla S.; Dellatorre-Teixeira, Ludmilla; Oliveira, Gisele P.; Oliveira, Mariana G.; Peters-Golden, Marc; Rocco, Patricia R. M.; Benjamim, Claudia F.

    2014-01-01

    Postsepsis lung injury is a common clinical problem associated with significant morbidity and mortality. Leukotrienes (LTs) are important lipid mediators of infection and inflammation derived from the 5-lipoxygenase (5-LO) metabolism of arachidonate with the potential to contribute to lung damage after sepsis. To test the hypothesis that LTs are mediators of lung injury after sepsis, we assessed lung structure, inflammatory mediators, and mechanical changes after cecal ligation and puncture surgery in wild-type (WT) and 5-LO knockout (5-LO−/−) mice and in WT mice treated with a pharmacologic LT synthesis inhibitor (MK886) and LT receptor antagonists (CP105,696 and montelukast). Sixteen hours after surgery, WT animals exhibited severe lung injury (by histological analysis), substantial mechanical impairment (i.e., an increase in static lung elastance), an increase in neutrophil infiltration, and high levels of LTB4, cysteinyl-LTs (cys-LTs), prostaglandin E2, IL-1β, IL-6, IL-10, IL-17, KC (CXCL1), and monocyte chemotactic protein–1 (CCL2) in lung tissue and plasma. 5-LO−/− mice and WT mice treated with a pharmacologic 5-LO inhibitor were significantly protected from lung inflammation and injury. Selective antagonists for BLT1 or cys-LT1, the high-affinity receptors for LTB4 and cys-LTs, respectively, were insufficient to provide protection when used alone. These results point to an important role for 5-LO products in sepsis-induced lung injury and suggest that the use of 5-LO inhibitors may be of therapeutic benefit clinically. PMID:23947598

  7. Pivotal role of the 5-lipoxygenase pathway in lung injury after experimental sepsis.

    PubMed

    Monteiro, Ana Paula T; Soledade, Erico; Pinheiro, Carla S; Dellatorre-Teixeira, Ludmilla; Oliveira, Gisele P; Oliveira, Mariana G; Peters-Golden, Marc; Rocco, Patricia R M; Benjamim, Claudia F; Canetti, Claudio

    2014-01-01

    Postsepsis lung injury is a common clinical problem associated with significant morbidity and mortality. Leukotrienes (LTs) are important lipid mediators of infection and inflammation derived from the 5-lipoxygenase (5-LO) metabolism of arachidonate with the potential to contribute to lung damage after sepsis. To test the hypothesis that LTs are mediators of lung injury after sepsis, we assessed lung structure, inflammatory mediators, and mechanical changes after cecal ligation and puncture surgery in wild-type (WT) and 5-LO knockout (5-LO(-/-)) mice and in WT mice treated with a pharmacologic LT synthesis inhibitor (MK886) and LT receptor antagonists (CP105,696 and montelukast). Sixteen hours after surgery, WT animals exhibited severe lung injury (by histological analysis), substantial mechanical impairment (i.e., an increase in static lung elastance), an increase in neutrophil infiltration, and high levels of LTB4, cysteinyl-LTs (cys-LTs), prostaglandin E2, IL-1β, IL-6, IL-10, IL-17, KC (CXCL1), and monocyte chemotactic protein-1 (CCL2) in lung tissue and plasma. 5-LO(-/-) mice and WT mice treated with a pharmacologic 5-LO inhibitor were significantly protected from lung inflammation and injury. Selective antagonists for BLT1 or cys-LT1, the high-affinity receptors for LTB4 and cys-LTs, respectively, were insufficient to provide protection when used alone. These results point to an important role for 5-LO products in sepsis-induced lung injury and suggest that the use of 5-LO inhibitors may be of therapeutic benefit clinically.

  8. Melatonin suppresses activation of hepatic stellate cells through RORα-mediated inhibition of 5-lipoxygenase.

    PubMed

    Shajari, Shiva; Laliena, Almudena; Heegsma, Janette; Tuñón, María Jesús; Moshage, Han; Faber, Klaas Nico

    2015-10-01

    Liver fibrosis is scar tissue resulting from an uncontrolled wound-healing process in response to chronic liver injury. Liver damage generates an inflammatory reaction that activates hepatic stellate cells (HSC) that transdifferentiate from quiescent cells that control retinol metabolism to proliferative and migratory myofibroblasts that produce excessive amounts of extracellular matrix proteins, in particular collagen 1a1 (COL1A1). Although liver fibrosis is reversible, no effective drug therapy is available to prevent or reverse HSC activation. Melatonin has potent hepatoprotective properties in a variety of acute and chronic liver injury models and suppresses liver fibrosis. However, it remains unclear whether melatonin acts indirectly or directly on HSC to prevent liver fibrosis. Here, we studied the effect of melatonin on culture-activated rat HSC. Melatonin dose-dependently suppressed the expression of HSC activation markers Col1a1 and alpha-smooth muscle actin (αSMA, Acta2), as well as HSC proliferation and loss of lipid droplets. The nuclear melatonin sensor retinoic acid receptor-related orphan receptor-alpha (RORα/Nr1f1) was expressed in quiescent and activated HSC, while the membranous melatonin receptors (Mtrn1a and Mtrn1b) were not. The synthetic RORα agonist SR1078 more potently suppressed Col1a1 and αSma expression, HSC proliferation, and lipid droplet loss, while the RORα antagonist SR1001 blocked the antifibrotic features of melatonin. Melatonin and SR1078 inhibited the expression of Alox5, encoding 5-lipoxygenase (5-LO). The pharmacological 5-LO inhibitor AA861 reduced Acta2 and Col1a1 expression in activated HSC. We conclude that melatonin directly suppresses HSC activation via RORα-mediated inhibition of Alox5 expression, which provides novel drug targets to treat liver fibrosis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Inhibitor of 5-lipoxygenase, zileuton, suppresses prostate cancer metastasis by upregulating E-cadherin and paxillin.

    PubMed

    Meng, Zhe; Cao, Rui; Yang, Zhonghua; Liu, Tao; Wang, Yongzhi; Wang, Xinghuan

    2013-12-01

    To investigate the expression of 5-lipoxygenase (5-LOX) in metastatic prostate cancer and whether zileuton, the inhibitor of 5-LOX, plays a role in the metastasis of prostate cancer. An enzyme-linked immunosorbent assay was used to measure 5-hydroxyeicosatetraenoic acid (5-HETE) in patient and TRAMP mice blood samples. Kaplan-Meier analysis and the log-rank test were used to analyze the survival of the mice. Immunofluorescence and immunohistochemistry were used to assay the expression of 5-LOX in the samples. After treatment with 10 μM zileuton, cell motility and the invasion of PC-3 cells were assayed using immunofluorescence, Western blotting, and transwell. TRAMP mice were treated with zileuton (600 mg/kg and 1200 mg/kg) at 24 weeks of age. Ten weeks later, the mice were killed, and the tumors (size and number) were measured. The levels of 5-HETE were significantly greater in the TRAMP mice with metastasis than in the tumors in situ. However, no such difference was found in the human samples. The lifespan of the mice was shorter at high levels of 5-HETE (>2.4 ng/mL). The expression of 5-LOX in the metastasis sample was notably greater than that in the tumors in situ. After treatment with zileuton, the expression of paxillin and E-cadherin in PC-3 and LNCaP cells was upregulated. In the transwell experiments, the motility of PC-3 was suppressed after treatment with zileuton. The mice treated with a high level of zileuton (1200 mg/kg) also had fewer tumors; however, the size did not show a significant difference. The inhibitor of 5-LOX, zileuton, can suppress prostate cancer metastasis by repaired expression of E-cadherin and paxillin. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  10. Identification and Characterization of a New Protein Isoform of Human 5-Lipoxygenase

    PubMed Central

    Häfner, Ann-Kathrin; Beilstein, Kim; Graab, Philipp; Ball, Ann-Katrin; Saul, Meike J.; Hofmann, Bettina; Steinhilber, Dieter

    2016-01-01

    Leukotrienes (LTs) are inflammatory mediators that play a pivotal role in many diseases like asthma bronchiale, atherosclerosis and in various types of cancer. The key enzyme for generation of LTs is the 5-lipoxygenase (5-LO). Here, we present a novel putative protein isoform of human 5-LO that lacks exon 4, termed 5-LOΔ4, identified in cells of lymphoid origin, namely the Burkitt lymphoma cell lines Raji and BL41 as well as primary B and T cells. Deletion of exon 4 does not shift the reading frame and therefore the mRNA is not subjected to non-mediated mRNA decay (NMD). By eliminating exon 4, the amino acids Trp144 until Ala184 are omitted in the corresponding protein. Transfection of HEK293T cells with a 5-LOΔ4 expression plasmid led to expression of the corresponding protein which suggests that the 5-LOΔ4 isoform is a stable protein in eukaryotic cells. We were also able to obtain soluble protein after expression in E. coli and purification. The isoform itself lacks canonical enzymatic activity as it misses the non-heme iron but it still retains ATP-binding affinity. Differential scanning fluorimetric analysis shows two transitions, corresponding to the two domains of 5-LO. Whilst the catalytic domain of 5-LO WT is destabilized by calcium, addition of calcium has no influence on the catalytic domain of 5-LOΔ4. Furthermore, we investigated the influence of 5-LOΔ4 on the activity of 5-LO WT and proved that it stimulates 5-LO product formation at low protein concentrations. Therefore regulation of 5-LO by its isoform 5-LOΔ4 might represent a novel mechanism of controlling the biosynthesis of lipid mediators. PMID:27855198

  11. Regulation of rotenone-induced microglial activation by 5-lipoxygenase and cysteinyl leukotriene receptor 1.

    PubMed

    Zhang, Xiao-Yan; Chen, Lu; Yang, Yi; Xu, Dong-Min; Zhang, Si-Ran; Li, Chen-Tan; Zheng, Wei; Yu, Shu-Ying; Wei, Er-Qing; Zhang, Li-Hui

    2014-07-14

    The 5-lipoxygenase (5-LOX) products cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory mediators. CysLTs mediate their biological actions through activating CysLT receptors (CysLT(1)R and CysLT(2)R). We have recently reported that 5-LOX and CysLT(1)R mediated PC12 cell injury induced by high concentrations of rotenone (0.3-10 μM), which was reduced by the selective 5-LOX inhibitor zileuton and CysLT(1)R antagonist montelukast. The purpose of this study was to examine the regulatory roles of the 5-LOX/CysLT(1)R pathway in microglial activation induced by low concentration rotenone. After mouse microglial BV2 cells were stimulated with rotenone (0.3-3 nM), phagocytosis and release of pro-inflammatory cytokine were assayed as indicators of microglial activation. We found that rotenone (1 and 3 nM) increased BV2 microglial phagocytosis and the release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Zileuton and montelukast prevented rotenone (3 nM)-induced phagocytosis and cytokine release. Furthermore, rotenone significantly up-regulated 5-LOX expression, induced 5-LOX translocation to the nuclear envelope, and increased the production of CysLTs. These responses were inhibited by zileuton. Rotenone also increased CysLT(1)R expression and induced nuclear translocation of CysLT(1)R. In primary rat microglia, rotenone (10 nM) increased release of IL-1β and TNF-α, whereas zileuton (0.1 μΜ) and montelukast (0.01 μΜ) significantly inhibited this response. These results indicated that 5-LOX and CysLT(1)R might be key regulators of microglial activation induced by low concentration of rotenone. Interference of 5-LOX/CysLT(1)R pathway may be an effective therapeutic strategy for microglial inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. 7 CFR 1c.118 - Applications and proposals lacking definite plans for involvement of human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... human subjects. Certain types of applications for grants, cooperative agreements, or contracts are... activities such as institutional type grants when selection of specific projects is the institution's responsibility; research training grants in which the activities involving subjects remain to be selected; and...

  13. Core Genome Responses Involved in Acclimation to High Temperature1[C][W][OA

    PubMed Central

    Larkindale, Jane; Vierling, Elizabeth

    2008-01-01

    Plants can acclimate rapidly to environmental conditions, including high temperatures. To identify molecular events important for acquired thermotolerance, we compared viability and transcript profiles of Arabidopsis thaliana treated to severe heat stress (45°C) without acclimation or following two different acclimation treatments. Notably, a gradual increase to 45°C (22°C to 45°C over 6 h) led to higher survival and to more and higher-fold transcript changes than a step-wise acclimation (90 min at 38°C plus 120 min at 22°C before 45°C). There were significant differences in the total spectrum of transcript changes in the two treatments, but core components of heat acclimation were apparent in the overlap between treatments, emphasizing the importance of performing transcriptome analysis in the context of physiological response. In addition to documenting increases in transcripts of specific genes involved in processes predicted to be required for thermotolerance (i.e. protection of proteins and of translation, limiting oxidative stress), we also found decreases in transcripts (i.e. for programmed cell death, basic metabolism, and biotic stress responses), which are likely equally important for acclimation. Similar protective effects may also be achieved differently, such as prevention of proline accumulation, which is toxic at elevated temperatures and which was reduced by both acclimation treatments but was associated with transcript changes predicted to either reduce proline synthesis or increase degradation in the two acclimation treatments. Finally, phenotypic analysis of T-DNA insertion mutants of genes identified in this analysis defined eight new genes involved in heat acclimation, including cytosolic ascorbate peroxidase and the transcription factors HsfA7a (heat shock transcription factor A7a) and NF-X1. PMID:18055584

  14. Chronic adventitial inflammation, vasa vasorum expansion, and 5-lipoxygenase up-regulation in irradiated arteries from cancer survivors.

    PubMed

    Halle, Martin; Christersdottir, Tinna; Bäck, Magnus

    2016-11-01

    Radiation-induced cardiovascular disease is an emerging problem in a steadily increasing population of survivors of cancer. However, the underlying biology is poorly described, and the late onset, which occurs several years after exposure, precludes adequate investigations in animal and cell culture models. We investigated the role of the 5-lipoxygenase (5-LO)/leukotriene pathway in radiation-induced vascular changes. Use of paired samples of irradiated arteries and nonirradiated internal control arteries from the same patient that were harvested during surgery for cancer reconstruction ≤10 yr after radiotherapy provides a unique human model of chronic radiation-induced vascular changes. Immunohistochemical stainings and perioperative inspection revealed an adventitial inflammatory response, with vasa vasorum expansion and chronic infiltration of CD68(+) macrophages. These macrophages stained positive for the leukotriene-forming enzyme 5-LO. Messenger RNA levels of 5-LO and leukotriene B4 receptor 1 were increased in irradiated arterial segments compared with control vessels. These results point to targeting the 5-LO/leukotriene pathway as a therapeutic adjunct to prevent late adverse vascular effects of radiotherapy.-Halle, M., Christersdottir, T., Bäck, M. Chronic adventitial inflammation, vasa vasorum expansion, and 5-lipoxygenase up-regulation in irradiated arteries from cancer survivors. © The Author(s).

  15. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability.

    PubMed

    Laughton, M J; Evans, P J; Moroney, M A; Hoult, J R; Halliwell, B

    1991-10-09

    We investigated the ability of various plant flavonoids (a) to inhibit 5-lipoxygenase and cyclooxygenase activities in rat peritoneal leukocytes, (b) to inhibit lipid peroxidation in rat liver microsomes, and (c) to stimulate DNA degradation caused by the antibiotic bleomycin in the presence of ferric ions. These compounds were compared with a range of synthetic phenolic substances including carnosol, vanillin, vitamin E and its analogue trolox c. The flavonoids were potent inhibitors of non-enzymatic peroxidation in membranes but this was not significantly correlated with their ability to inhibit either pathway of eicosanoid synthesis, suggesting that their mode of inhibition of 5-lipoxygenase/cyclooxygenase is not simply due to interception of peroxyl radicals generated at the active site of the enzymes. Many of the flavonoids and other compounds (including carnosol, vitamin E and trolox c) stimulated Fe3+/bleomycin-dependent DNA degradation. Those flavonoids which stimulated DNA degradation at low concentrations but which inhibited it at higher concentrations ("biphasic" effect, possibly caused by changing relative contributions of ability to reduce ferric-bleomycin or to chelate iron ions from the bleomycin) were selective inhibitors of 5-lipoxygenase compared to cyclo-oxygenase. In contrast, those flavonoids that did not stimulate DNA degradation at all proved to be cyclo-oxygenase selective inhibitors. Compounds that increased Fe3+/bleomycin-dependent DNA damage up to a maintained plateau were non-selective inhibitors of both 5-lipoxygenase and cyclo-oxygenase. Thus, a combination of iron-chelating and iron ion-reducing properties appears to be required for selective 5-lipoxygenase inhibition by phenolic compounds. Carnosol, vitamin E and trolox c were also found to be 5-lipoxygenase inhibitors of varying potency, and all were less active as cyclo-oxygenase inhibitors.

  16. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors.

    PubMed

    De Lucia, Daniela; Lucio, Oscar Méndez; Musio, Biagia; Bender, Andreas; Listing, Monika; Dennhardt, Sophie; Koeberle, Andreas; Garscha, Ulrike; Rizzo, Roberta; Manfredini, Stefano; Werz, Oliver; Ley, Steven V

    2015-08-28

    In this work the synthesis, structure-activity relationship (SAR) and biological evaluation of a novel series of triazole-containing 5-lipoxygenase (5-LO) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent 5-LO inhibition with IC50 of 0.2 and 3.2 μm in cell-based and cell-free assays, respectively. Optimization of binding and functional potencies resulted in the identification of compound 13d, which showed an enhanced activity compared to the parent bioactive compound caffeic acid 5 and the clinically approved zileuton 3. Compounds 15 and 16 were identified as lead compounds in inhibiting 5-LO products formation in neutrophils. Their interference with other targets on the arachidonic acid pathway was also assessed. Cytotoxicity tests were performed to exclude a relationship between cytotoxicity and the increased activity observed after structure optimization.

  17. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase.

    PubMed

    Hong, Jungil; Bose, Mousumi; Ju, Jihyeung; Ryu, Jae-Ha; Chen, Xiaoxin; Sang, Shengmin; Lee, Mao-Jung; Yang, Chung S

    2004-09-01

    Aberrant arachidonic acid metabolism is involved in the inflammatory and carcinogenic processes. In this study, we investigated the effects of curcumin, a naturally occurring chemopreventive agent, and related beta-diketone derivatives on the release of arachidonic acid and its metabolites in the murine macrophage RAW264.7 cells and in HT-29 human colon cancer cells. We also examined their effects on the catalytic activities and protein levels of related enzymes: cytosolic phospholipase A(2) (cPLA(2)), cyclooxygenases (COX) as well as 5-lipoxygenase (5-LOX). At 10 micro M, dibenzoylmethane (DBM), trimethoxydibenzoylmethane (TDM), tetrahydrocurcumin (THC) and curcumin effectively inhibited the release of arachidonic acid and its metabolites in lipopolysaccharide (LPS)-stimulated RAW cells and A23187-stimulated HT-29 cells. Inhibition of phosphorylation of cPLA(2), the activation process of this enzyme, rather than direct inhibition of cPLA(2) activity appears to be involved in the effect of curcumin. All the curcuminoids (10 micro M) potently inhibited the formation of prostaglandin E(2) (PGE(2)) in LPS-stimulated RAW cells. Curcumin (20 micro M) significantly inhibited LPS-induced COX-2 expression; this effect, rather than the catalytic inhibition of COX, may contribute to the decreased PGE(2) formation. Without LPS-stimulation, however, curcumin increased the COX-2 level in the macrophage cells. Studies with isolated ovine COX-1 and COX-2 enzymes showed that the curcuminoids had significantly higher inhibitory effects on the peroxidase activity of COX-1 than that of COX-2. Curcumin and THC potently inhibited the activity of human recombinant 5-LOX, showing estimated IC(50) values of 0.7 and 3 micro M, respectively. The results suggest that curcumin affects arachidonic acid metabolism by blocking the phosphorylation of cPLA(2), decreasing the expression of COX-2 and inhibiting the catalytic activities of 5-LOX. These activities may contribute to the anti

  18. A Novel Inhibitor of 5-Lipoxygenase (5-LOX) Prevents Oxidative Stress–Induced Cell Death of Retinal Pigment Epithelium (RPE) Cells

    PubMed Central

    Subramanian, Preeti; Mendez, Emily F.; Becerra, S. Patricia

    2016-01-01

    Purpose 5-Lipoxygenase (5-LOX) oxygenates arachidonic acid to form 5-hydroperoxyeicosatetraenoic acid, which is further converted into biologically detrimental leukotrienes, such as leukotriene B4 (LTB4). The RPE and retina express the PNPLA2 gene for pigment epithelium–derived factor receptor (PEDF-R), a lipase involved in cell survival. The purpose here was to investigate the role of PEDF-R on the 5-LOX pathway in oxidative stress of RPE. Methods Lipoxygenase activity assays were performed with soybean and potato lipoxygenase. Binding was evaluated by peptide-affinity chromatography and pull-down assays with PEDF-R–derived synthetic peptides or recombinant protein. Oxidative stress was induced in human ARPE-19 and primary pig RPE cells with indicated concentrations of H2O2/TNF-α. Reverse transcription–PCR of ALOX5 and PNPLA2 genes was performed. Cell viability and death rates were determined using respective biomarkers. Leukotriene B4 levels were measured by ELISA. Results Among five peptides spanning between positions Leu159 and Met325 of human PEDF-R polypeptide, only two overlapping peptides, E5b and P1, bound and inhibited lipoxygenase activity. Human recombinant 5-LOX bound specifically to peptide P1 and to His6/Xpress-tagged PEDF-R via ionic interactions. The two inhibitor peptides E5b and P1 promoted cell viability and decreased cell death of RPE cells undergoing oxidative stress. Oxidative stress decreased the levels of PNPLA2 transcripts with no effect on ALOX5 expression. Exogenous additions of P1 peptide or overexpression of the PNPLA2 gene decreased both LTB4 levels and death of RPE cells undergoing oxidative stress. Conclusions A novel peptide region of PEDF-R inhibits 5-LOX, which intersects with RPE cell death pathways induced by oxidative stress. PMID:27635633

  19. Differences in the modulation of reactive species, lipid bodies, cyclooxygenase-2, 5-lipoxygenase and PPAR-γ in cerebral malaria-susceptible and resistant mice.

    PubMed

    Borges, Tatiana K S; Alves, Érica A R; Vasconcelos, Henda A R; Carneiro, Fabiana P; Nicola, André M; Magalhães, Kelly G; Muniz-Junqueira, Maria Imaculada

    2017-04-01

    Proinflammatory responses are associated with the severity of cerebral malaria. NO, H2O2, eicosanoid and PPAR-γ are involved in proinflammatory responses, but regulation of these factors is unclear in malaria. This work aimed to compare the expression of eicosanoid-forming-enzymes in cerebral malaria-susceptible CBA and C57BL/6 and -resistant BALB/c mice. Mice were infected with Plasmodium berghei ANKA, and the survival rates and parasitemia curves were assessed. On the sixth day post-infection, cyclooxygenase-2 and 5-lipoxygenase in brain sections were assessed by immunohistochemistry, and, NO, H2O2, lipid bodies, and PPAR-γ expression were assessed in peritoneal macrophages. The C57BL/6 had more severe disease with a lower survival time, higher parasitemia and lower production of plasmodicidal NO and H2O2 molecules than BALB/c. Enhanced COX-2 and 5-LOX expression were observed in brain tissue cells and vessels from C57BL/6 mice, and these mice expressed higher constitutive PPAR-γ levels. There was no translocation of PPAR-γ from cytoplasm to nucleus in macrophages from these mice. CBA mice had enhanced COX-2 expression in brain tissue cells and vessels and also lacked PPAR-γ cytoplasm-to-nucleus translocation. The resistant BALB/c mice presented higher survival time, lower parasitemia and higher NO and H2O2 production on the sixth day post-infection. These mice did not express either COX-2 or 5-LOX in brain tissue cells and vessels. Our data showed that besides the high parasite burden and lack of microbicidal molecules, an imbalance with high COX-2 and 5-LOX eicosanoid expression and a lack of regulatory PPAR-γ cytoplasm-to-nucleus translocation in macrophages were observed in mice that develop cerebral malaria.

  20. Structural optimization and biological evaluation of 1,5-disubstituted pyrazole-3-carboxamines as potent inhibitors of human 5-lipoxygenase

    PubMed Central

    Zhou, Yu; Liu, Jun; Zheng, Mingyue; Zheng, Shuli; Jiang, Chunyi; Zhou, Xiaomei; Zhang, Dong; Zhao, Jihui; Ye, Deju; Zheng, Mingfang; Jiang, Hualiang; Liu, Dongxiang; Cheng, Jian; Liu, Hong

    2016-01-01

    Human 5-lipoxygenase (5-LOX) is a well-validated drug target and its inhibitors are potential drugs for treating leukotriene-related disorders. Our previous work on structural optimization of the hit compound 2 from our in-house collection identified two lead compounds, 3a and 3b, exhibiting a potent inhibitory profile against 5-LOX with IC50 values less than 1 µmol/L in cell-based assays. Here, we further optimized these compounds to prepare a class of novel pyrazole derivatives by opening the fused-ring system. Several new compounds exhibited more potent inhibitory activity than the lead compounds against 5-LOX. In particular, compound 4e not only suppressed lipopolysaccharide-induced inflammation in brain inflammatory cells and protected neurons from oxidative toxicity, but also significantly decreased infarct damage in a mouse model of cerebral ischemia. Molecular docking analysis further confirmed the consistency of our theoretical results and experimental data. In conclusion, the excellent in vitro and in vivo inhibitory activities of these compounds against 5-LOX suggested that these novel chemical structures have a promising therapeutic potential to treat leukotriene-related disorders. PMID:26904397

  1. Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663

    SciTech Connect

    Gilbert, Nathaniel C.; Rui, Zhe; Neau, David B.; Waight, Maria T.; Bartlett, Sue G.; Boeglin, William E.; Brash, Alan R.; Newcomer, Marcia E.

    2012-08-31

    The enzyme 5-lipoxygenase (5-LOX) initiates biosynthesis of the proinflammatory leukotriene lipid mediators and, together with 15-LOX, is also required for synthesis of the anti-inflammatory lipoxins. The catalytic activity of 5-LOX is regulated through multiple mechanisms, including Ca{sup 2+}-targeted membrane binding and phosphorylation at specific serine residues. To investigate the consequences of phosphorylation at S663, we mutated the residue to the phosphorylation mimic Asp, providing a homogenous preparation suitable for catalytic and structural studies. The S663D enzyme exhibits robust 15-LOX activity, as determined by spectrophotometric and HPLC analyses, with only traces of 5-LOX activity remaining; synthesis of the anti-inflammatory lipoxin A4 from arachidonic acid is also detected. The crystal structure of the S663D mutant in the absence and presence of arachidonic acid (in the context of the previously reported Stable-5-LOX) reveals substantial remodeling of helices that define the active site so that the once fully encapsulated catalytic machinery is solvent accessible. Our results suggest that phosphorylation of 5-LOX at S663 could not only down-regulate leukotriene synthesis but also stimulate lipoxin production in inflammatory cells that do not express 15-LOX, thus redirecting lipid mediator biosynthesis to the production of proresolving mediators of inflammation.

  2. Short-Term Regulation of FcγR-Mediated Phagocytosis by TLRs in Macrophages: Participation of 5-Lipoxygenase Products.

    PubMed

    Pinheiro, Carla da S; Monteiro, Ana Paula T; Dutra, Fabiano F; Bozza, Marcelo T; Peters-Golden, Marc; Benjamim, Claudia F; Canetti, Claudio

    2017-01-01

    TLRs recognize a broad spectrum of microorganism molecules, triggering a variety of cellular responses. Among them, phagocytosis is a critical process for host defense. Leukotrienes (LTs), lipid mediators produced from 5-lipoxygenase (5-LO) enzyme, increase FcγR-mediated phagocytosis. Here, we evaluated the participation of TLR2, TLR3, TLR4, and TLR9 in FcγR-mediated phagocytosis and whether this process is modulated by LTs. Rat alveolar macrophages (AMs), murine bone marrow-derived macrophages (BMDMs), and peritoneal macrophages (PMs) treated with TLR2, TLR3, and TLR4 agonists, but not TLR9, enhanced IgG-opsonized sheep red blood cell (IgG-sRBC) phagocytosis. Pretreatment of AMs or BMDMs with drugs that block LT synthesis impaired the phagocytosis promoted by TLR ligands, and TLR potentiation was also abrogated in PMs and BMDMs from 5-LO(-/-) mice. LTB4 production induced by IgG engagement was amplified by TLR ligands, while cys-LTs were amplified by activation of TLR2 and TLR4, but not by TLR3. We also noted higher ERK1/2 phosphorylation in IgG-RBC-challenged cells when preincubated with TLR agonists. Furthermore, ERK1/2 inhibition by PD98059 reduced the phagocytic activity evoked by TLR agonists. Together, these data indicate that TLR2, TLR3, and TLR4 ligands, but not TLR9, amplify IgG-mediated phagocytosis by a mechanism which requires LT production and ERK-1/2 pathway activation.

  3. Discovery of a Novel Dual Fungal CYP51/Human 5-Lipoxygenase Inhibitor: Implications for Anti-Fungal Therapy

    PubMed Central

    Hoobler, Eric K.; Rai, Ganesha; Warrilow, Andrew G. S.; Perry, Steven C.; Smyrniotis, Christopher J.; Jadhav, Ajit; Simeonov, Anton; Parker, Josie E.; Kelly, Diane E.; Maloney, David J.; Kelly, S. L.; Holman, Theodore R.

    2013-01-01

    We report the discovery of a novel dual inhibitor targeting fungal sterol 14α-demethylase (CYP51 or Erg11) and human 5-lipoxygenase (5-LOX) with improved potency against 5-LOX due to its reduction of the iron center by its phenylenediamine core. A series of potent 5-LOX inhibitors containing a phenylenediamine core, were synthesized that exhibit nanomolar potency and >30-fold selectivity against the LOX paralogs, platelet-type 12-human lipoxygenase, reticulocyte 15-human lipoxygenase type-1, and epithelial 15-human lipoxygenase type-2, and >100-fold selectivity against ovine cyclooxygenase-1 and human cyclooxygnease-2. The phenylenediamine core was then translated into the structure of ketoconazole, a highly effective anti-fungal medication for seborrheic dermatitis, to generate a novel compound, ketaminazole. Ketaminazole was found to be a potent dual inhibitor against human 5-LOX (IC50 = 700 nM) and CYP51 (IC50 = 43 nM) in vitro. It was tested in whole blood and found to down-regulate LTB4 synthesis, displaying 45% inhibition at 10 µM. In addition, ketaminazole selectively inhibited yeast CYP51 relative to human CYP51 by 17-fold, which is greater selectivity than that of ketoconazole and could confer a therapeutic advantage. This novel dual anti-fungal/anti-inflammatory inhibitor could potentially have therapeutic uses against fungal infections that have an anti-inflammatory component. PMID:23826084

  4. The 5-lipoxygenase inhibitor RF-22c potently suppresses leukotriene biosynthesis in cellulo and blocks bronchoconstriction and inflammation in vivo.

    PubMed

    Schaible, Anja M; Filosa, Rosanna; Krauth, Verena; Temml, Veronika; Pace, Simona; Garscha, Ulrike; Liening, Stefanie; Weinigel, Christina; Rummler, Silke; Schieferdecker, Sebastian; Nett, Markus; Peduto, Antonella; Collarile, Selene; Scuotto, Maria; Roviezzo, Fioretina; Spaziano, Giuseppe; de Rosa, Mario; Stuppner, Hermann; Schuster, Daniela; D'Agostino, Bruno; Werz, Oliver

    2016-07-15

    5-Lipoxygenase (5-LO) catalyzes the first two steps in leukotriene (LT) biosynthesis. Because LTs play pivotal roles in allergy and inflammation, 5-LO represents a valuable target for anti-inflammatory drugs. Here, we investigated the molecular mechanism, the pharmacological profile, and the in vivo effectiveness of the novel 1,2-benzoquinone-featured 5-LO inhibitor RF-22c. Compound RF-22c potently inhibited 5-LO product synthesis in neutrophils and monocytes (IC50⩾22nM) and in cell-free assays (IC50⩾140nM) without affecting 12/15-LOs, cyclooxygenase (COX)-1/2, or arachidonic acid release, in a specific and reversible manner, supported by molecular docking data. Antioxidant or iron-chelating properties were not evident for RF-22c and 5-LO-regulatory cofactors like Ca(2+) mobilization, ERK-1/2 activation, and 5-LO nuclear membrane translocation and interaction with 5-LO-activating protein (FLAP) were unaffected. RF-22c (0.1mg/kg; i.p.) impaired (I) bronchoconstriction in ovalbumin-sensitized mice challenged with acetylcholine, (II) exudate formation in carrageenan-induced paw edema, and (III) zymosan-induced leukocyte infiltration in air pouches. Taken together, RF-22c is a highly selective and potent 5-LO inhibitor in intact human leukocytes with pronounced effectiveness in different models of inflammation that warrants further preclinical analysis of this agent as anti-inflammatory drug. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Altered gravity modulates 5-lipoxygenase in human erythroleukemia K562 cells.

    PubMed

    Maccarrone, M; Putti, S; Finazzi Agro, A

    1998-07-01

    Mammalian lipoxygenases catalyse the first committed step in the so-called "arachidonate cascade", leading to the production of potent bioactive molecules, such as leukotrienes, lipoxins and hepoxilins. Leukotrienes interact with G protein-couple receptors involved in neuronal plasticity and T lymphocyte activation, lipoxins activate leukocytes, hepoxilines control the insulin release and stimulate the phospholipase C. Lipoxygenase (linoleate:oxygen oxidoreductase; E.C. 1.13.11.34; 5-LOX) are responsible for lymphocyte maturation and programmed death (apoptosis) of neuronal cells. Therefore, 5-LOX might be Space relevant, because among the most striking effects of Space enviroment are indeed those on T lymphocyte activation, neuronal cell growth and suspectedly apoptosis. In this study, the possible effects of the force of gravity on the activity and expression of 5-LOX have been investigated by subjecting human erythroleukemia K562 cells to simulated hypogravity or hypergravity.

  6. Role of 5-lipoxygenase pathway in the regulation of RAW 264.7 macrophage proliferation.

    PubMed

    Nieves, Diana; Moreno, Juan José

    2006-10-16

    Arachidonic acid (AA) metabolites control cell proliferation, among other physiologic functions. RAW 264.7 macrophages can metabolise AA through the cyclooxygenase and lipoxygenase (LOX) pathways. We aimed to study the role of AA-metabolites derived from 5-LOX in the control of RAW 264.7 macrophage growth. Our results show that zileuton, a specific 5-LOX inhibitor, and nordihydroguaiaretic acid (NDGA), a non-specific LOX inhibitor, inhibit cell proliferation and [(3)H]-thymidine incorporation in a concentration-dependent fashion. Growth inhibition induced by NDGA can be explained by an apoptotic process, while zileuton does not seem to induce apoptosis. Moreover, these treatments delay the cell cycle, as analysed by flow cytometry. On the other hand, the leukotriene (LT) B(4) receptor antagonist U-75302, the LTD(4) receptor antagonists LY-171883 and MK-571, and the cysteinyl-LT receptor antagonist REV-5901 also inhibit cell proliferation and [(3)H]-thymidine incorporation in a concentration-dependent manner, and delay the RAW 264.7 cell cycle. However, these antagonists did not induce annexin V staining, caspase activation or DNA fragmentation. Furthermore, we demonstrated that exogenous addition of LTB(4) or LTD(4) revert the cell growth inhibition induced by zileuton or the leukotriene receptor antagonists mentioned above. Finally, we observed that LTB(4) and LTD(4), in the absence of growth factors, have pro-proliferative effects on macrophages, and we obtained preliminary evidences that this effect could be through mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. In conclusion, our results show that the interaction between LTB(4) and LTD(4) with its respective receptor is involved in the control of RAW 264.7 macrophage growth.

  7. Ethanol Promotes Chemically Induced Oral Cancer in Mice through Activation of the 5-Lipoxygenase Pathway of Arachidonic Acid Metabolism

    PubMed Central

    Guo, Yizhu; Wang, Xin; Zhang, Xinyan; Sun, Zheng; Chen, Xiaoxin

    2011-01-01

    Alcohol drinking is a known risk factor for oral cancer in humans. However, previous animal studies on the promoting effect of ethanol on oral carcinogenesis were inconclusive. It is necessary to develop an animal model with which the molecular mechanism of ethanol-related oral carcinogenesis may be elucidated in order to develop effective prevention strategies. In this study, mice were first treated with 4-nitroquinoline-1-oxide (4NQO, 100μg/ml in drinking water) for 8 weeks, and then given water or ethanol (8%) as the sole drink for another 16 weeks. During the experiment, 8% ethanol was well tolerated by mice. The incidence of squamous cell carcinoma (SCC) increased from 20% (8/41) to 43% (17/40; p<0.05). Expression of 5-lipoxygenase (5-Lox) and cyclooxygenase 2 (Cox-2) was increased in dysplasia and SCC of 4NQO-treated tongues, and further enhanced by ethanol. Using this mouse model, we further demonstrated that fewer cancers were induced in Alox5−/− mice, as were cell proliferation, inflammation, and angiogenesis in the tongue, as compared with Alox5+/+ mice. Interestingly, Cox-2 expression was induced by ethanol in knockout mice, while 5-Lox and leukotriene A4 hydrolase (LTA4H) expression and leukotriene B4 (LTB4) biosynthesis were dramatically reduced. Moreover, ethanol enhanced expression and nuclear localization of 5-Lox and stimulated LTB4 biosynthesis in human tongue SCC cells (SCC-15 and SCC-4) in vitro. In conclusion, this study clearly demonstrated that ethanol promoted 4NQO-induced oral carcinogenesis, at least in part, through further activation of the 5-Lox pathway of arachidonic acid metabolism. PMID:21881027

  8. Deletion of 5-Lipoxygenase in the Tumor Microenvironment Promotes Lung Cancer Progression and Metastasis through Regulating T Cell Recruitment

    PubMed Central

    Poczobutt, Joanna M.; Nguyen, Teresa T.; Hanson, Dwight; Li, Howard; Sippel, Trisha R.; Weiser-Evans, Mary C. M.; Gijon, Miguel; Murphy, Robert C.

    2016-01-01

    Eicosanoids, including PGs, produced by cyclooxygenases (COX), and leukotrienes, produced by 5-lipoxygenase (5-LO) have been implicated in cancer progression. These molecules are produced by both cancer cells and the tumor microenvironment (TME). We previously reported that both COX and 5-LO metabolites increase during progression in an orthotopic immunocompetent model of lung cancer. Although PGs in the TME have been well studied, less is known regarding 5-LO products produced by the TME. We examined the role of 5-LO in the TME using a model in which Lewis lung carcinoma cells are directly implanted into the lungs of syngeneic WT mice or mice globally deficient in 5-LO (5-LO-KO). Unexpectedly, primary tumor volume and liver metastases were increased in 5-LO-KO mice. This was associated with an ablation of leukotriene (LT) production, consistent with production mainly mediated by the microenvironment. Increased tumor progression was partially reproduced in global LTC4 synthase KO or mice transplanted with LTA4 hydrolase-deficient bone marrow. Tumor-bearing lungs of 5-LO-KO had decreased numbers of CD4 and CD8 T cells compared with WT controls, as well as fewer dendritic cells. This was associated with lower levels of CCL20 and CXL9, which have been implicated in dendritic and T cell recruitment. Depletion of CD8 cells increased tumor growth and eliminated the differences between WT and 5-LO mice. These data reveal an antitumorigenic role for 5-LO products in the microenvironment during lung cancer progression through regulation of T cells and suggest that caution should be used in targeting this pathway in lung cancer. PMID:26663781

  9. Suppression of oxidative stress and 5-lipoxygenase activation by edaravone improves depressive-like behavior after concussion.

    PubMed

    Higashi, Youichirou; Hoshijima, Michihiro; Yawata, Toshio; Nobumoto, Atsuya; Tsuda, Masayuki; Shimizu, Takahiro; Saito, Motoaki; Ueba, Tetuya

    2014-10-15

    Brain concussions are a serious public concern and are associated with neuropsychiatric disorders, such as depression. Patients with concussion who suffer from depression often experience distress. Nevertheless, few pre-clinical studies have examined concussion-induced depression, and there is little information regarding its pharmacological management. Edaravone, a free radical scavenger, can exert neuroprotective effects in several animal models of neurological disorders. However, the effectiveness of edaravone in animal models of concussion-induced depression remains unclear. In this study, we examined whether edaravone could prevent concussion-induced depression. Mice were subjected to a weight-drop injury and intravenously administered edaravone (3.0 mg/kg) or vehicle immediately after impact. Serial magnetic resonance imaging showed no abnormalities of the cerebrum on diffusion T1- and T2-weighted images. We found that edaravone suppressed concussion-induced depressive-like behavior in the forced swim test, which was accompanied by inhibition of increased hippocampal and cortical oxidative stress (OS) and suppression of 5-lipoxygenase (5-LOX) translocation to the nuclear envelope in hippocampal astrocytes. Hippocampal OS in concussed mice was also prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, and administration of BWB70C, a 5-LOX inhibitor, immediately and 24 h after injury prevented depressive-like behaviors in concussed mice. Further, antidepressant effects of edaravone were observed in mice receiving 1.0 or 3.0 mg/kg of edaravone immediately after impact, but not at a lower dose of 0.1 mg/kg. This antidepressant effect persisted up to 1 h after impact, whereas edaravone treatment at 3 h after impact had no effect on concussion-induced depressive-like behavior. These results suggest that edaravone protects against concussion-induced depression, and this protection is mediated by suppression of OS and 5

  10. Short-Term Regulation of FcγR-Mediated Phagocytosis by TLRs in Macrophages: Participation of 5-Lipoxygenase Products

    PubMed Central

    Pinheiro, Carla da S.; Monteiro, Ana Paula T.; Dutra, Fabiano F.; Bozza, Marcelo T.; Peters-Golden, Marc; Benjamim, Claudia F.

    2017-01-01

    TLRs recognize a broad spectrum of microorganism molecules, triggering a variety of cellular responses. Among them, phagocytosis is a critical process for host defense. Leukotrienes (LTs), lipid mediators produced from 5-lipoxygenase (5-LO) enzyme, increase FcγR-mediated phagocytosis. Here, we evaluated the participation of TLR2, TLR3, TLR4, and TLR9 in FcγR-mediated phagocytosis and whether this process is modulated by LTs. Rat alveolar macrophages (AMs), murine bone marrow-derived macrophages (BMDMs), and peritoneal macrophages (PMs) treated with TLR2, TLR3, and TLR4 agonists, but not TLR9, enhanced IgG-opsonized sheep red blood cell (IgG-sRBC) phagocytosis. Pretreatment of AMs or BMDMs with drugs that block LT synthesis impaired the phagocytosis promoted by TLR ligands, and TLR potentiation was also abrogated in PMs and BMDMs from 5-LO−/− mice. LTB4 production induced by IgG engagement was amplified by TLR ligands, while cys-LTs were amplified by activation of TLR2 and TLR4, but not by TLR3. We also noted higher ERK1/2 phosphorylation in IgG-RBC-challenged cells when preincubated with TLR agonists. Furthermore, ERK1/2 inhibition by PD98059 reduced the phagocytic activity evoked by TLR agonists. Together, these data indicate that TLR2, TLR3, and TLR4 ligands, but not TLR9, amplify IgG-mediated phagocytosis by a mechanism which requires LT production and ERK-1/2 pathway activation. PMID:28894350

  11. Suppression of Oxidative Stress and 5-Lipoxygenase Activation by Edaravone Improves Depressive-Like Behavior after Concussion

    PubMed Central

    Hoshijima, Michihiro; Yawata, Toshio; Nobumoto, Atsuya; Tsuda, Masayuki; Shimizu, Takahiro; Saito, Motoaki; Ueba, Tetuya

    2014-01-01

    Abstract Brain concussions are a serious public concern and are associated with neuropsychiatric disorders, such as depression. Patients with concussion who suffer from depression often experience distress. Nevertheless, few pre-clinical studies have examined concussion-induced depression, and there is little information regarding its pharmacological management. Edaravone, a free radical scavenger, can exert neuroprotective effects in several animal models of neurological disorders. However, the effectiveness of edaravone in animal models of concussion-induced depression remains unclear. In this study, we examined whether edaravone could prevent concussion-induced depression. Mice were subjected to a weight-drop injury and intravenously administered edaravone (3.0 mg/kg) or vehicle immediately after impact. Serial magnetic resonance imaging showed no abnormalities of the cerebrum on diffusion T1- and T2-weighted images. We found that edaravone suppressed concussion-induced depressive-like behavior in the forced swim test, which was accompanied by inhibition of increased hippocampal and cortical oxidative stress (OS) and suppression of 5-lipoxygenase (5-LOX) translocation to the nuclear envelope in hippocampal astrocytes. Hippocampal OS in concussed mice was also prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, and administration of BWB70C, a 5-LOX inhibitor, immediately and 24 h after injury prevented depressive-like behaviors in concussed mice. Further, antidepressant effects of edaravone were observed in mice receiving 1.0 or 3.0 mg/kg of edaravone immediately after impact, but not at a lower dose of 0.1 mg/kg. This antidepressant effect persisted up to 1 h after impact, whereas edaravone treatment at 3 h after impact had no effect on concussion-induced depressive-like behavior. These results suggest that edaravone protects against concussion-induced depression, and this protection is mediated by suppression of

  12. Grape seed and red wine polyphenol extracts inhibit cellular cholesterol uptake, cell proliferation, and 5-lipoxygenase activity.

    PubMed

    Leifert, Wayne R; Abeywardena, Mahinda Y

    2008-12-01

    Accumulating evidence suggests that grape seed and wine polyphenol extracts possess a diverse array of actions and may be beneficial in the prevention of inflammatory-mediated disease such as cardiovascular disease and cancer. This study aimed to determine whether the reported pleiotropic effects of several polyphenolic extracts from grape seed products or red wine would also include inhibition of cholesterol uptake and cell proliferation, and inhibit a known specific target of the inflammatory process, that is, 5-lipoxygenase (5-LOX). Incubation of HT29, Caco2, HepG2, or HuTu80 cells in a medium containing [(3)H]cholesterol in the presence of a grape seed extract (GSE) or red wine polyphenolic compounds (RWPCs) inhibited [(3)H]cholesterol uptake by up to 66% (which appeared maximal). The estimated IC(50) values were 60 and 83 microg/mL for RWPC and GSE, respectively. Similar cholesterol uptake inhibitory effects were observed using the fluorescent cholesterol analogue NBD cholesterol. The inhibition of cholesterol uptake was independent of the sample's (GSE and RWPC) potent antioxidative capacity. Red wine polyphenolic compound and GSE dose dependently inhibited HT29 colon adenocarcinoma cell proliferation, which was accompanied by an increase in apoptosis. In addition, RWPC and GSE inhibited 5-LOX activity with the IC(50) values being 35 and 13 microg/mL, respectively. Two of 3 other GSEs tested also significantly inhibited 5-LOX activity. Inhibition of cholesterol uptake and proinflammatory 5-LOX activity may be beneficial in preventing the development of chronic degenerative diseases such as cardiovascular disease and cancer.

  13. Inhibition of AHR transcription by NF1C is affected by a single-nucleotide polymorphism, and is involved in suppression of human uterine endometrial cancer.

    PubMed

    Li, D; Takao, T; Tsunematsu, R; Morokuma, S; Fukushima, K; Kobayashi, H; Saito, T; Furue, M; Wake, N; Asanoma, K

    2013-10-10

    Involvement of the aryl hydrocarbon receptor (AHR) in carcinogenesis has been suggested in many studies. Upregulation of AHR has been reported in some cancer species, and an association between single-nucleotide polymorphisms (SNPs) of AHR and cancer risk or cancer development has also been reported. This evidence suggests the involvement of some specific SNPs in AHR transcriptional regulation in the process of carcinogenesis or cancer development, but there have been no studies to elucidate the mechanism involved. In this study, we identified the transcription factor Nuclear Factor 1-C (NF1C) as a candidate to regulate AHR transcription in a polymorphism-dependent manner. SNP rs10249788 was included in a consensus binding site for NF1C. Our results suggested that NF1C preferred the C allele to the T allele at rs10249788 for binding. Forced expression of NF1C suppressed the activity of the AHR promoter with C at rs10249788 stronger than that with T. Moreover, expression analysis of human uterine endometrial cancer (HEC) specimens showed greater upregulation of AHR and downregulation of NF1C than those of normal endometrium specimens. Sequence analysis showed HEC patients at advanced stages tended to possess T/T alleles more frequently than healthy women. We also demonstrated that NF1C suppressed proliferation, motility and invasion of HEC cells. This function was at least partially mediated by AHR. This study is the first to report that a polymorphism on the AHR regulatory region affected transcriptional regulation of the AHR gene in vitro. Because NF1C is a tumor suppressor, our new insights into AHR deregulation and its polymorphisms could reveal novel mechanisms of genetic susceptibility to cancer.

  14. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages

    PubMed Central

    Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, BP; Di Stefano, V; Minutoli, L

    2009-01-01

    Background and purpose: The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. Experimental approach: LPS-stimulated (1 µg·mL−1) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32–128 µg·mL−1) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein κB-α (IκB-α) levels were evaluated by Western blot analysis. Nuclear factor κB (NF-κB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-α (TNF-α) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. Key results: LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 µg·mL−1) significantly inhibited COX-2 (LPS = 18 ± 2.1; flavocoxid = 3.8 ± 0.9 integrated intensity), 5-LOX (LPS = 20 ± 3.8; flavocoxid = 3.1 ± 0.8 integrated intensity) and iNOS expression (LPS = 15 ± 1.1; flavocoxid = 4.1 ± 0.4 integrated intensity), but did not modify COX-1 expression. PGE2 and LTB4 levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IκB-α protein (LPS = 1.9 ± 0.2; flavocoxid = 7.2 ± 1.6 integrated intensity), blunted increased NF-κB binding activity (LPS = 9.2 ± 2; flavocoxid = 2.4 ± 0.7 integrated intensity) and the

  15. Rational design of lipid molecular structure: a case study involving the C19:1c10 monoacylglycerol.

    PubMed Central

    Misquitta, Y; Caffrey, M

    2001-01-01

    The phase properties of lipids have far-reaching consequences in membrane biology. Their influence ranges from domain formation in intact biomembranes to membrane protein reconstitution and crystallization. To exploit phase behavior in the spirit of rational design, it is imperative that the rules relating lipid molecular structure and liquid crystal or mesophase behavior be established. Phase behavior is quantitatively and concisely represented in the form of temperature-composition phase diagrams. A somewhat limited number of phase diagrams exists for the monoacylglycerols. The objective of the current study was to determine the quality of phase behavior prediction for a specific monoacylglycerol based on an analysis of the existing phase diagrams for related chain homologs. To this end, a phase diagram for the monononadecenoin (19:1c10)/water system was predicted in the temperature range from -15 degrees C to 120 degrees C and from 0% to 80% (w/w) water. The prediction was tested by constructing the corresponding phase diagram using low- and wide-angle x-ray diffraction, differential scanning calorimetry, and polarized light microscopy. The results show that the predicted and experimental phase diagrams agree remarkably well. They also highlight the need for additional phase studies of the type described to enlarge the data bank of phase diagrams and to strengthen the foundations of the rational design approach. PMID:11463646

  16. Discovery of the first dual inhibitor of the 5-lipoxygenase-activating protein and soluble epoxide hydrolase using pharmacophore-based virtual screening

    PubMed Central

    Temml, Veronika; Garscha, Ulrike; Romp, Erik; Schubert, Gregor; Gerstmeier, Jana; Kutil, Zsofia; Matuszczak, Barbara; Waltenberger, Birgit; Stuppner, Hermann; Werz, Oliver; Schuster, Daniela

    2017-01-01

    Leukotrienes (LTs) are pro-inflammatory lipid mediators derived from arachidonic acid (AA) with roles in inflammatory and allergic diseases. The biosynthesis of LTs is initiated by transfer of AA via the 5-lipoxygenase-activating protein (FLAP) to 5-lipoxygenase (5-LO). FLAP inhibition abolishes LT formation exerting anti-inflammatory effects. The soluble epoxide hydrolase (sEH) converts AA-derived anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatetraenoic acids (di-HETEs). Its inhibition consequently also counteracts inflammation. Targeting both LT biosynthesis and the conversion of EETs with a dual inhibitor of FLAP and sEH may represent a novel, powerful anti-inflammatory strategy. We present a pharmacophore-based virtual screening campaign that led to 20 hit compounds of which 4 targeted FLAP and 4 were sEH inhibitors. Among them, the first dual inhibitor for sEH and FLAP was identified, N-[4-(benzothiazol-2-ylmethoxy)-2-methylphenyl]-N’-(3,4-dichlorophenyl)urea with IC50 values of 200 nM in a cell-based FLAP test system and 20 nM for sEH activity in a cell-free assay. PMID:28218273

  17. Discovery of the first dual inhibitor of the 5-lipoxygenase-activating protein and soluble epoxide hydrolase using pharmacophore-based virtual screening

    NASA Astrophysics Data System (ADS)

    Temml, Veronika; Garscha, Ulrike; Romp, Erik; Schubert, Gregor; Gerstmeier, Jana; Kutil, Zsofia; Matuszczak, Barbara; Waltenberger, Birgit; Stuppner, Hermann; Werz, Oliver; Schuster, Daniela

    2017-02-01

    Leukotrienes (LTs) are pro-inflammatory lipid mediators derived from arachidonic acid (AA) with roles in inflammatory and allergic diseases. The biosynthesis of LTs is initiated by transfer of AA via the 5-lipoxygenase-activating protein (FLAP) to 5-lipoxygenase (5-LO). FLAP inhibition abolishes LT formation exerting anti-inflammatory effects. The soluble epoxide hydrolase (sEH) converts AA-derived anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatetraenoic acids (di-HETEs). Its inhibition consequently also counteracts inflammation. Targeting both LT biosynthesis and the conversion of EETs with a dual inhibitor of FLAP and sEH may represent a novel, powerful anti-inflammatory strategy. We present a pharmacophore-based virtual screening campaign that led to 20 hit compounds of which 4 targeted FLAP and 4 were sEH inhibitors. Among them, the first dual inhibitor for sEH and FLAP was identified, N-[4-(benzothiazol-2-ylmethoxy)-2-methylphenyl]-N’-(3,4-dichlorophenyl)urea with IC50 values of 200 nM in a cell-based FLAP test system and 20 nM for sEH activity in a cell-free assay.

  18. Involvement of the Pepper Antimicrobial Protein CaAMP1 Gene in Broad Spectrum Disease Resistance1[C][OA

    PubMed Central

    Lee, Sung Chul; Hwang, In Sun; Choi, Hyong Woo; Hwang, Byung Kook

    2008-01-01

    Pathogen-inducible antimicrobial defense-related proteins have emerged as key antibiotic peptides and enzymes involved in disease resistance in plants. A novel antimicrobial protein gene, CaAMP1 (for Capsicum annuum ANTIMICROBIAL PROTEIN1), was isolated from pepper (C. annuum) leaves infected with Xanthomonas campestris pv vesicatoria. Expression of the CaAMP1 gene was strongly induced in pepper leaves not only during pathogen infection but also after exposure to abiotic elicitors. The purified recombinant CaAMP1 protein possessed broad-spectrum antimicrobial activity against phytopathogenic bacteria and fungi. CaAMP1:smGFP fusion protein was localized mainly in the external and intercellular regions of onion (Allium cepa) epidermal cells. The virus-induced gene silencing technique and gain-of-function transgenic plants were used to determine the CaAMP1 gene function in plant defense. Silencing of CaAMP1 led to enhanced susceptibility to X. campestris pv vesicatoria and Colletotrichum coccodes infection, accompanied by reduced PATHOGENESIS-RELATED (PR) gene expression. In contrast, overexpression of CaAMP1 in Arabidopsis (Arabidopsis thaliana) conferred broad-spectrum resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora parasitica, and the fungal necrotrophic pathogens Fusarium oxysporum f. sp. matthiolae and Alternaria brassicicola. CaAMP1 overexpression induced the salicylic acid pathway-dependent genes PR1 and PR5 but not the jasmonic acid-dependent defense gene PDF1.2 during P. syringae pv tomato infection. Together, these results suggest that the antimicrobial CaAMP1 protein is involved in broad-spectrum resistance to bacterial and fungal pathogen infection. PMID:18676663

  19. SNF1-Related Protein Kinases Type 2 Are Involved in Plant Responses to Cadmium Stress1[C][W

    PubMed Central

    Kulik, Anna; Anielska-Mazur, Anna; Bucholc, Maria; Koen, Emmanuel; Szymańska, Katarzyna; Żmieńko, Agnieszka; Krzywińska, Ewa; Wawer, Izabela; McLoughlin, Fionn; Ruszkowski, Dariusz; Figlerowicz, Marek; Testerink, Christa; Skłodowska, Aleksandra; Wendehenne, David; Dobrowolska, Grażyna

    2012-01-01

    Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related protein kinase2) are transiently activated during cadmium exposure and are involved in the regulation of plant response to this stress. Analysis of tobacco (Nicotiana tabacum) Osmotic Stress-Activated Protein Kinase activity in tobacco Bright Yellow 2 cells indicates that reactive oxygen species (ROS) and nitric oxide, produced mainly via an l-arginine-dependent process, contribute to the kinase activation in response to cadmium. SnRK2.4 is the closest homolog of tobacco Osmotic Stress-Activated Protein Kinase in Arabidopsis (Arabidopsis thaliana). Comparative analysis of seedling growth of snrk2.4 knockout mutants versus wild-type Arabidopsis suggests that SnRK2.4 is involved in the inhibition of root growth triggered by cadmium; the mutants were more tolerant to the stress. Measurements of the level of three major species of phytochelatins (PCs) in roots of plants exposed to Cd2+ showed a similar (PC2, PC4) or lower (PC3) concentration in snrk2.4 mutants in comparison to wild-type plants. These results indicate that the enhanced tolerance of the mutants does not result from a difference in the PCs level. Additionally, we have analyzed ROS accumulation in roots subjected to Cd2+ treatment. Our data show significantly lower Cd2+-induced ROS accumulation in the mutants’ roots. Concluding, the obtained results indicate that SnRK2s play a role in the regulation of plant tolerance to cadmium, most probably by controlling ROS accumulation triggered by cadmium ions. PMID:22885934

  20. Duplicate Maize Wrinkled1 Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis1[C][W

    PubMed Central

    Pouvreau, Benjamin; Baud, Sébastien; Vernoud, Vanessa; Morin, Valérie; Py, Cyrille; Gendrot, Ghislaine; Pichon, Jean-Philippe; Rouster, Jacques; Paul, Wyatt; Rogowsky, Peter M.

    2011-01-01

    WRINKLED1 (WRI1), a key regulator of seed oil biosynthesis in Arabidopsis (Arabidopsis thaliana), was duplicated during the genome amplification of the cereal ancestor genome 90 million years ago. Both maize (Zea mays) coorthologs ZmWri1a and ZmWri1b show a strong transcriptional induction during the early filling stage of the embryo and complement the reduced fatty acid content of Arabidopsis wri1-4 seeds, suggesting conservation of molecular function. Overexpression of ZmWri1a not only increases the fatty acid content of the mature maize grain but also the content of certain amino acids, of several compounds involved in amino acid biosynthesis, and of two intermediates of the tricarboxylic acid cycle. Transcriptomic experiments identified 18 putative target genes of this transcription factor, 12 of which contain in their upstream regions an AW box, the cis-element bound by AtWRI1. In addition to functions related to late glycolysis and fatty acid biosynthesis in plastids, the target genes also have functions related to coenzyme A biosynthesis in mitochondria and the production of glycerol backbones for triacylglycerol biosynthesis in the cytoplasm. Interestingly, the higher seed oil content in ZmWri1a overexpression lines is not accompanied by a reduction in starch, thus opening possibilities for the use of the transgenic maize lines in breeding programs. PMID:21474435

  1. Increased Abundance of Proteins Involved in Phytosiderophore Production in Boron-Tolerant Barley1[C][W

    PubMed Central

    Patterson, John; Ford, Kris; Cassin, Andrew; Natera, Siria; Bacic, Antony

    2007-01-01

    Boron (B) phytotoxicity affects cereal-growing regions worldwide. Although B-tolerant barley (Hordeum vulgare) germplasm is available, molecules responsible for this tolerance mechanism have not been defined. We describe and use a new comparative proteomic technique, iTRAQ peptide tagging (iTRAQ), to compare the abundances of proteins from B-tolerant and -intolerant barley plants from a ‘Clipper’ × ‘Sahara’ doubled-haploid population selected on the basis of a presence or absence of two B-tolerance quantitative trait loci. iTRAQ was used to identify three enzymes involved in siderophore production (Iron Deficiency Sensitive2 [IDS2], IDS3, and a methylthio-ribose kinase) as being elevated in abundance in the B-tolerant plants. Following from this result, we report a potential link between iron, B, and the siderophore hydroxymugineic acid. We believe that this study highlights the potency of the iTRAQ approach to better understand mechanisms of abiotic stress tolerance in cereals, particularly when applied in conjunction with bulked segregant analysis. PMID:17478636

  2. Multiple Rice MicroRNAs Are Involved in Immunity against the Blast Fungus Magnaporthe oryzae1[C][W][OPEN

    PubMed Central

    Li, Yan; Lu, Yuan-Gen; Shi, Yi; Wu, Liang; Xu, Yong-Ju; Huang, Fu; Guo, Xiao-Yi; Zhang, Yong; Fan, Jing; Zhao, Ji-Qun; Zhang, Hong-Yu; Xu, Pei-Zhou; Zhou, Jian-Min; Wu, Xian-Jun; Wang, Ping-Rong; Wang, Wen-Ming

    2014-01-01

    MicroRNAs (miRNAs) are indispensable regulators for development and defense in eukaryotes. However, the miRNA species have not been explored for rice (Oryza sativa) immunity against the blast fungus Magnaporthe oryzae, the most devastating fungal pathogen in rice production worldwide. Here, by deep sequencing small RNA libraries from susceptible and resistant lines in normal conditions and upon M. oryzae infection, we identified a group of known rice miRNAs that were differentially expressed upon M. oryzae infection. They were further classified into three classes based on their expression patterns in the susceptible japonica line Lijiangxin Tuan Hegu and in the resistant line International Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake that contains a single resistance gene locus, Pyricularia-Kanto 51-m (Pikm), within the Lijiangxin Tuan Hegu background. RNA-blot assay of nine of them confirmed sequencing results. Real-time reverse transcription-polymerase chain reaction assay showed that the expression of some target genes was negatively correlated with the expression of miRNAs. Moreover, transgenic rice plants overexpressing miR160a and miR398b displayed enhanced resistance to M. oryzae, as demonstrated by decreased fungal growth, increased hydrogen peroxide accumulation at the infection site, and up-regulated expression of defense-related genes. Taken together, our data indicate that miRNAs are involved in rice immunity against M. oryzae and that overexpression of miR160a or miR398b can enhance rice resistance to the disease. PMID:24335508

  3. Reactive Oxygen Species Are Involved in Gibberellin/Abscisic Acid Signaling in Barley Aleurone Cells1[C][W][OA

    PubMed Central

    Ishibashi, Yushi; Tawaratsumida, Tomoya; Kondo, Koji; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Zheng, Shao-Hui; Yuasa, Takashi; Iwaya-Inoue, Mari

    2012-01-01

    Reactive oxygen species (ROS) act as signal molecules for a variety of processes in plants. However, many questions about the roles of ROS in plants remain to be clarified. Here, we report the role of ROS in gibberellin (GA) and abscisic acid (ABA) signaling in barley (Hordeum vulgare) aleurone cells. The production of hydrogen peroxide (H2O2), a type of ROS, was induced by GA in aleurone cells but suppressed by ABA. Furthermore, exogenous H2O2 appeared to promote the induction of α-amylases by GA. In contrast, antioxidants suppressed the induction of α-amylases. Therefore, H2O2 seems to function in GA and ABA signaling, and in regulation of α-amylase production, in aleurone cells. To identify the target of H2O2 in GA and ABA signaling, we analyzed the interrelationships between H2O2 and DELLA proteins Slender1 (SLN1), GA-regulated Myb transcription factor (GAmyb), and ABA-responsive protein kinase (PKABA) and their roles in GA and ABA signaling in aleurone cells. In the presence of GA, exogenous H2O2 had little effect on the degradation of SLN1, the primary transcriptional repressor mediating GA signaling, but it promoted the production of the mRNA encoding GAMyb, which acts downstream of SLN1 and involves induction of α-amylase mRNA. Additionally, H2O2 suppressed the production of PKABA mRNA, which is induced by ABA:PKABA represses the production of GAMyb mRNA. From these observations, we concluded that H2O2 released the repression of GAMyb mRNA by PKABA and consequently promoted the production of α-amylase mRNA, thus suggesting that the H2O2 generated by GA in aleurone cells is a signal molecule that antagonizes ABA signaling. PMID:22291200

  4. Cytokinin Receptors Are Involved in Alkamide Regulation of Root and Shoot Development in Arabidopsis1[C][OA

    PubMed Central

    López-Bucio, José; Millán-Godínez, Mayra; Méndez-Bravo, Alfonso; Morquecho-Contreras, Alina; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Pérez-Torres, Anahí; Higuchi, Masayuki; Kakimoto, Tatsuo; Herrera-Estrella, Luis

    2007-01-01

    Alkamides and N-acilethanolamides are a class of lipid compounds related to animal endocannabinoids of wide distribution in plants. We investigated the structural features required for alkamides to regulate plant development by comparing the root responses of Arabidopsis (Arabidopsis thaliana) seedlings to a range of natural and synthetic compounds. The length of the acyl chain and the amide moiety were found to play a crucial role in their biological activity. From the different compounds tested, N-isobutyl decanamide, a small saturated alkamide, was found to be the most active in regulating primary root growth and lateral root formation. Proliferative-promoting activity of alkamide treatment was evidenced by formation of callus-like structures in primary roots, ectopic blades along petioles of rosette leaves, and disorganized tumorous tissue originating from the leaf lamina. Ectopic organ formation by N-isobutyl decanamide treatment was related to altered expression of the cell division marker CycB1:uidA and an enhanced expression of the cytokinin-inducible marker ARR5:uidA both in roots and in shoots. The involvement of cytokinins in mediating the observed activity of alkamides was tested using Arabidopsis mutants lacking one, two, or three of the putative cytokinin receptors CRE1, AHK2, and AHK3. The triple cytokinin receptor mutant was insensitive to N-isobutyl decanamide treatment, showing absence of callus-like structures in roots, the lack of lateral root proliferation, and absence of ectopic outgrowths in leaves under elevated levels of this alkamide. Taken together our results suggest that alkamides and N-acylethanolamides may belong to a class of endogenous signaling compounds that interact with a cytokinin-signaling pathway to control meristematic activity and differentiation processes during plant development. PMID:17965178

  5. From Molecular Docking to 3D-Quantitative Structure-Activity Relationships (3D-QSAR): Insights into the Binding Mode of 5-Lipoxygenase Inhibitors.

    PubMed

    Eren, Gokcen; Macchiarulo, Antonio; Banoglu, Erden

    2012-02-01

    Pharmacological intervention with 5-Lipoxygenase (5-LO) is a promising strategy for treatment of inflammatory and allergic ailments, including asthma. With the aim of developing predictive models of 5-LO affinity and gaining insights into the molecular basis of ligand-target interaction, we herein describe QSAR studies of 59 diverse nonredox-competitive 5-LO inhibitors based on the use of molecular shape descriptors and docking experiments. These studies have successfully yielded a predictive model able to explain much of the variance in the activity of the training set compounds while predicting satisfactorily the 5-LO inhibitory activity of an external test set of compounds. The inspection of the selected variables in the QSAR equation unveils the importance of specific interactions which are observed from docking experiments. Collectively, these results may be used to design novel potent and selective nonredox 5-LO inhibitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Manassantin A isolated from Saururus chinensis inhibits 5-lipoxygenase-dependent leukotriene C4 generation by blocking mitogen-activated protein kinase activation in mast cells.

    PubMed

    Kim, Su Jeong; Lu, Yue; Kwon, Okyun; Hwangbo, Kyoung; Seo, Chang-Seob; Lee, Seung Ho; Kim, Cheorl-Ho; Chang, Young-Chae; Son, Jong Keun; Chang, Hyeun Wook

    2011-01-01

    In this study, manassantin A (Man A), an herbal medicine isolated from Saururus chinensis (S. chinensis), markedly inhibited 5-lipoxygenase (5-LO)-dependent leukotriene C(4) (LTC(4)) generation in bone marrow-derived mast cells (BMMCs) in a concentration-dependent manner. To investigate the molecular mechanisms underlying the inhibition of LTC(4) generation by Man A, we assessed the effects of Man A on phosphorylation of cytosolic phospholipase A(2) (cPLA(2)) and mitogen-activated protein kinases (MAPKs). Inhibition of LTC(4) generation by Man A was accompanied by a decrease in cPLA(2) phosphorylation, which occurred via the MAPKs including extracellular signal-regulated protein kinase-1/2 (ERK1/2) as well as p38 and c-Jun N-terminal kinase (JNK) pathways. Taken together, the present study suggests the Man A represents a potential therapeutic approach for the treatment of airway allergic-inflammatory diseases.

  7. Attenuation of cysteamine-induced duodenal ulcer with Cochinchina momordica seed extract through inhibiting cytoplasmic phospholipase A2/5-lipoxygenase and activating γ-glutamylcysteine synthetase.

    PubMed

    Choi, Ki-Seok; Kim, Eun-Hee; Hong, Hua; Ock, Chan Young; Lee, Jeong Sang; Kim, Joo-Hyun; Hahm, Ki-Baik

    2012-04-01

    Cysteamine is a reducing aminothiol used for inducing duodenal ulcer through mechanisms of oxidative stress related to thiol-derived H(2)O(2) reaction. Cochinchina momordica saponins have been suggested to be protective against various gastric diseases based on their cytoprotective and anti-inflammatory mechanisms. This study was aimed to document the preventive effects of Cochinchina momordica seed extract against cysteamine-induced duodenal ulcer as well as the elucidation of its pharmacological mechanisms. Cochinchina momordica seed extract (50, 100, 200 mg/kg) was administrated intragastrically before cysteamine administration, after which the incidence of the duodenal ulcer, ulcer size, serum gastrin level, and the ratio of reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG) as well as biochemical and molecular measurements of cytoplasmic phospholipase A(2) (cPLA(2)), cyclooxygenase-2 (COX-2), 5-lipoxygenase and the expression of proinflammatory genes including IL-1β, IL-6, COX-2 were measured in rat model. Additional experiments of electron spin resonance measurement and the changes of glutathione were performed. Cochinchina momordica seed extract effectively prevented cysteamine-induced duodenal ulcer in a dose-dependent manner as reflected with significant decreases in either duodenal ulcerogenesis or perforation accompanied with significantly decreased in serum gastrin in addition to inflammatory mediators including cPLA(2), COX-2, and 5-lipoxygenase. Cochinchina momordica seed extract induced the expression of γ-glutamylcysteine synthetase (γ-GCS)-related glutathione synthesis as well as significantly reduced the expression of cPLA(2). Cochinchina momordica seed extract preserved reduced glutathione through increased expressions of γ-GCS. Cochinchina momordica seed extracts exerted significantly protective effect against cysteamine-induced duodenal ulcer by either cPLA2 inhibition or glutathione preservation. © 2012 Journal of

  8. Synthesis and biological evaluation of 1-(benzenesulfonamido)-2-[5-(N-hydroxypyridin-2(1H)-one)]acetylene regioisomers: a novel class of 5-lipoxygenase inhibitors.

    PubMed

    Chowdhury, Morshed Alam; Chen, Hua; Abdellatif, Khaled R A; Dong, Ying; Petruk, Kenneth C; Knaus, Edward E

    2008-07-15

    A hitherto unknown class of linear acetylene regioisomers were designed such that a SO(2)NH(2) group was located at the ortho-, meta-, or para-position of the acetylene C-1 phenyl ring, and a N-hydroxypyridin-2(1H)-one moiety was attached via its C-5 position to the C-2 position on an acetylene template (scaffold). All three regioisomers inhibited 5-lipoxygenase (5-LOX), where the relative potency order was 2-SO(2)NH(2) (IC(50)=10 microM) >3-SO(2)NH(2) (IC(50)=15 microM) >4-SO(2)NH(2) (IC(50)=68 microM) relative to the reference drug nordihydroguaiaretic acid (NDGA; IC(50)=35 microM). The 2-SO(2)NH(2) regioisomer (ED(50)=86.0mg/kg po) exhibited excellent oral anti-inflammatory (AI) activity that was more potent than aspirin (ED(50)=128.9 mg/kg) and marginally less potent than ibuprofen (ED(50)=67.4 mg/kg). The N-hydroxypyridin-2(1H)one moiety provides a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of chelating 5-LOX iron for exploitation in the design of 5-LOX inhibitory AI drugs.

  9. A Novel 5-Lipoxygenase-Activating Protein Inhibitor, AM679, Reduces Inflammation in the Respiratory Syncytial Virus-Infected Mouse Eye▿

    PubMed Central

    Musiyenko, Alla; Correa, Lucia; Stock, Nicholas; Hutchinson, John H.; Lorrain, Daniel S.; Bain, Gretchen; Evans, Jilly F.; Barik, Sailen

    2009-01-01

    Respiratory syncytial virus (RSV) is an important cause of viral respiratory disease in children, and RSV bronchiolitis has been associated with the development of asthma in childhood. RSV spreads from the eye and nose to the human respiratory tract. Correlative studies of humans and direct infection studies of BALB/c mice have established the eye as a significant pathway of entry of RSV to the lung. At the same time, RSV infection of the eye produces symptoms resembling allergic conjunctivitis. Cysteinyl leukotrienes (CysLTs) are known promoters of allergy and inflammation, and the first step in their biogenesis from arachidonic acid is catalyzed by 5-lipoxygenase (5-LO) in concert with the 5-LO-activating protein (FLAP). We have recently developed a novel compound, AM679, which is a topically applied and potent inhibitor of FLAP. Here we show with the BALB/c mouse eye RSV infection model that AM679 markedly reduced the RSV-driven ocular pathology as well as the synthesis of CysLTs in the eye. In addition, AM679 decreased the production of the Th2 cell cytokine interleukin-4 but did not increase the viral load in the eye or the lung. These results suggest that FLAP inhibitors may be therapeutic for RSV-driven eye disease and possibly other inflammatory eye indications. PMID:19759251

  10. Aspirin analogues as dual cyclooxygenase-2/5-lipoxygenase inhibitors: synthesis, nitric oxide release, molecular modeling, and biological evaluation as anti-inflammatory agents.

    PubMed

    Kaur, Jatinder; Bhardwaj, Atul; Huang, Zhangjian; Knaus, Edward E

    2012-01-02

    Analogues of aspirin were synthesized through an efficient one-step reaction in which the carboxyl group was replaced by an ethyl ester, and/or the acetoxy group was replaced by an N-substituted sulfonamide (SO(2)NHOR(2):R(2) =H, Me, CH(2)Ph) pharmacophore. These analogues were designed for evaluation as dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors. In vitro COX-1/COX-2 isozyme inhibition studies identified compounds 11 (CO(2) H, SO(2)NHOH), 12 (CO(2)H, SO(2)NHOCH(2)Ph), and 16 (CO(2)Et, SO(2)NHOH) as highly potent and selective COX-2 inhibitors (IC(50) range: 0.07-0.7 μM), which exhibited appreciable in vivo anti-inflammatory activity (ED(50) range: 23.1-31.4 mg kg(-1)). Moreover, compounds 11 (IC(50) =0.2 μM) and 16 (IC(50) =0.3 μM), with a sulfohydroxamic acid (SO(2)NHOH) moiety showed potent 5-LOX inhibitory activity. Furthermore, the SO(2)NHOH moiety present in compounds 11 and 16 was found to be a good nitric oxide (NO) donor upon incubation in phosphate buffer at pH 7.4. Molecular docking studies in the active binding site of COX-2 and 5-LOX provided complementary theoretical support for the experimental biological structure-activity data acquired. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pinusolide isolated from Biota orientalis inhibits 5-lipoxygenase dependent leukotriene C4 generation by blocking c-Jun N-terminal kinase pathway in mast cells.

    PubMed

    Jin, Ye; Yang, Hyun Ok; Son, Jong Keun; Chang, Hyeun Wook

    2012-01-01

    Pinusolide, an herbal medicine isolated from Biota orientalis L. (B. orientalis), inhibited 5-lipoxygenase (5-LO)-dependent leukotriene C4 (LTC4) generation in immunoglobulin E (IgE)/Ag-induced bone marrow-derived mast cells (BMMCs) in a concentration-dependent manner. To clarify the action mechanism of pinusolide on the inhibition of LTC4 generation, we examined the effect of pinusolide on phosphorylation of cytosolic phospholipase A2 (cPLA2), as well as translocation phospho-cPLA2 and 5-LO to nucleus. Inhibition of LTC4 generation by pinusolide was accompanied by a decrease in cPLA2 phosphorylation which occurred via a decrease in intracellular Ca2+ influx and blocking the c-Jun N-terminal kinase (JNK) pathways. However, pinusolide had no effect on extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinas phosphorylation. Taken together, the present results suggest that potent inhibition of 5-LO dependent LTC4 generation by pinusolide requires both suppression of calcium influx and JNK phosphorylation.

  12. TC1 (C8orf4) is involved in ERK1/2 pathway-regulated G(1)- to S-phase transition.

    PubMed

    Wang, Yi-Dong; Bian, Guo-Hui; Lv, Xiao-Yan; Zheng, Rong; Sun, Huan; Zhang, Zheng; Chen, Ye; Li, Qin-Wei; Xiao, Yan; Yang, Qiu-Tan; Ai, Jian-Zhong; Wei, Yu-Quan; Zhou, Qin

    2008-10-31

    Although previous studies have implicated a role for TC1 (C8orf4) in cancer cell proliferation, the molecular mechanism of its action is still largely unclear. In this study, we showed, for the first time, that the mRNA levels of TC1 were upregulated by mitogens (FBS/thrombin) and at least partially, through the ERK1/2 signaling pathway. Interestingly, the over-expression of TC1 promoted the G(1)- to S-phase transition of the cell cycle, which was delayed by the deficiency of ERK1/2 signaling in fibroblast cells. Furthermore, the luciferase reporter assay indicated that the over-expression of TC1 significantly increased Cyclin D1 promoter-driven luciferase activity. Taken together, our findings revealed that TC1 was involved in the mitogen-activated ERK1/2 signaling pathway and positively regulated G(1)- to S-phase transition of the cell cycle. Our results may provide a novel mechanism of the role of TC1 in the regulation of cell proliferation.

  13. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway

    PubMed Central

    Fredman, Gabrielle; Ozcan, Lale; Spolitu, Stefano; Hellmann, Jason; Spite, Matthew; Backs, Johannes; Tabas, Ira

    2014-01-01

    Imbalances between proinflammatory and proresolving mediators can lead to chronic inflammatory diseases. The balance of arachidonic acid-derived mediators in leukocytes is thought to be achieved through intracellular localization of 5-lipoxygenase (5-LOX): nuclear 5-LOX favors the biosynthesis of proinflammatory leukotriene B4 (LTB4), whereas, in theory, cytoplasmic 5-LOX could favor the biosynthesis of proresolving lipoxin A4 (LXA4). This balance is shifted in favor of LXA4 by resolvin D1 (RvD1), a specialized proresolving mediator derived from docosahexaenoic acid, but the mechanism is not known. Here we report a new pathway through which RvD1 promotes nuclear exclusion of 5-LOX and thereby suppresses LTB4 and enhances LXA4 in macrophages. RvD1, by activating its receptor formyl peptide receptor2/lipoxin A4 receptor, suppresses cytosolic calcium and decreases activation of the calcium-sensitive kinase calcium-calmodulin-dependent protein kinase II (CaMKII). CaMKII inhibition suppresses activation P38 and mitogen-activated protein kinase-activated protein kinase 2 kinases, which reduces Ser271 phosphorylation of 5-LOX and shifts 5-LOX from the nucleus to the cytoplasm. As such, RvD1’s ability to decrease nuclear 5-LOX and the LTB4:LXA4 ratio in vitro and in vivo was mimicked by macrophages lacking CaMKII or expressing S271A-5-LOX. These findings provide mechanistic insight into how a specialized proresolving mediator from the docosahexaenoic acid pathway shifts the balance toward resolution in the arachidonic acid pathway. Knowledge of this mechanism may provide new strategies for promoting inflammation resolution in chronic inflammatory diseases. PMID:25246560

  14. Prediction of comparative inhibition efficiency for a novel natural ligand, galangin against human brain acetylcholinesterase, butyrylcholinesterase and 5-lipoxygenase: a neuroinformatics study.

    PubMed

    Shaikh, Sibhghatulla; Ahmad, Syed S; Ansari, Mohammad A; Shakil, Shazi; Rizvi, Syed M D; Shakil, Shahnawaz; Tabrez, Shams; Akhtar, Salman; Kamal, Mohammad A

    2014-04-01

    The present study elucidates molecular interactions of human acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and 5-lipoxygenase (5-LPO) with a novel natural ligand Galangin (GAL); and also with the well-known ligands Bisnorcymserine (BNC) and Cymserine for comparison. Docking between these ligands and enzymes were performed using 'Autodock4.2'. It was found that hydrophobic interactions play an important role in the correct positioning of BNC within the 'catalytic site' of AChE, BuChE and 5-LPO to permit docking while hydrogen bonds are significant in case of cymserine for the same. However, only polar interactions are significant in the correct positioning of GAL within the 'catalytic site' of AChE, BuChE and 5-LPO to permit docking. Such information may aid in the design of versatile AChE, BuChE and 5 LPO-inhibitors, and is expected to aid in safe clinical use of above ligands. Scope still remains in the determination of the three-dimensional structure of AChE-GAL, BuChE-GAL and 5-LPO-GAL complex by X-ray crystallography to certify the described data. Moreover, the present study confirms that GAL is a more efficient inhibitor of human brain AChE compared to BNC and cymserine, while in case of 5-LPO and human brain BuChE, BNC is a more efficient inhibitor compared to GAL and cymserine with reference to ΔG and Ki values.

  15. Potent inhibition of human 5-lipoxygenase and microsomal prostaglandin E₂ synthase-1 by the anti-carcinogenic and anti-inflammatory agent embelin.

    PubMed

    Schaible, Anja M; Traber, Heidi; Temml, Veronika; Noha, Stefan M; Filosa, Rosanna; Peduto, Antonella; Weinigel, Christina; Barz, Dagmar; Schuster, Daniela; Werz, Oliver

    2013-08-15

    Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) possesses anti-inflammatory and anti-carcinogenic properties in vivo, and these features have been related to interference with multiple targets including XIAPs, NFκB, STAT-3, Akt and mTOR. However, interference with these proteins requires relatively high concentrations of embelin (IC₅₀>4 μM) and cannot fully explain its bioactivity observed in several functional studies. Here we reveal human 5-lipoxygenase (5-LO) and microsomal prostaglandin E₂ synthase (mPGES)-1 as direct molecular targets of embelin. Thus, embelin potently suppressed the biosynthesis of eicosanoids by selective inhibition of 5-LO and mPGES-1 with IC₅₀=0.06 and 0.2 μM, respectively. In intact human polymorphonuclear leukocytes and monocytes, embelin consistently blocked the biosynthesis of various 5-LO products regardless of the stimulus (fMLP or A23187) with IC₅₀=0.8-2 μM. Neither the related human 12- and 15-LO nor the cyclooxygenases-1 and -2 or cytosolic phospholipase A₂ were significantly affected by 10 μM embelin. Inhibition of 5-LO and mPGES-1 by embelin was (I) essentially reversible after wash-out, (II) not impaired at higher substrate concentrations, (III) unaffected by inclusion of Triton X-100, and (IV) did not correlate to its proposed antioxidant properties. Docking simulations suggest concrete binding poses in the active sites of both 5-LO and mPGES-1. Because 5-LO- and mPGES-1-derived eicosanoids play roles in inflammation and cancer, the interference of embelin with these enzymes may contribute to its biological effects and suggests embelin as novel chemotype for development of dual 5-LO/mPGES-1 inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. 4-Hydroxynonenal enhances MMP-9 production in murine macrophages via 5-lipoxygenase-mediated activation of ERK and p38 MAPK

    SciTech Connect

    Lee, Seung J.; Kim, Chae E.; Yun, Mi R.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Shin, Hwa K.; Bae, Sun S.; Kim, Chi D.

    2010-01-15

    Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B{sub 4} (LTB{sub 4}) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT{sub 1} (cysLT{sub 1}) receptor antagonist, REV-5901 as well as a BLT{sub 1} receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB{sub 4} and cysLT (LTC{sub 4} and LTD{sub 4}) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB{sub 4} and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.

  17. 5-Lipoxygenase and cysteinyl leukotriene receptor 1 regulate epidermal growth factor-induced cell migration through Tiam1 upregulation and Rac1 activation.

    PubMed

    Magi, Shigeyuki; Takemoto, Yasushi; Kobayashi, Hiroki; Kasamatsu, Masato; Akita, Takahiro; Tanaka, Ayako; Takano, Kei; Tashiro, Etsu; Igarashi, Yasuhiro; Imoto, Masaya

    2014-03-01

    Cell migration is an essential step for tumor metastasis. The small GTPase Rac1 plays an important role in cell migration. Previously, we reported that epidermal growth factor (EGF) induced two waves of Rac1 activation; namely, at 5 min and 12 h after stimulation. A second wave of EGF-induced Rac1 activation was required for EGF-induced cell migration, however, the spatiotemporal regulation of the second wave of EGF-induced Rac1 activation remains largely unclear. In this study, we found that 5-lipoxygenase (5-LOX) is activated in the process of EGF-induced cell migration, and that leukotriene C4 (LTC4 ) produced by 5-LOX mediated the second wave of Rac1 activation, as well as cell migration. Furthermore, these effects caused by LTC4 were found to be blocked in the presence of the antagonist of cysteinyl leukotriene receptor 1 (CysLT1). This blockage indicates that LTC4 -mediated CysLT1 signaling regulates the second EGF-induced wave of Rac1 activation. We also found that 5-LOX inhibitors, CysLT1 antagonists and the knockdown of CysLT1 inhibited EGF-induced T cell lymphoma invasion and metastasis-inducing protein 1 (Tiam1) expression. Tiam1 expression is required for the second wave of EGF-induced Rac1 activation in A431 cells. Therefore, our results indicate that the 5-LOX/LTC4 /CysLT1 signaling pathway regulates EGF-induced cell migration by increasing Tiam1 expression, leading to a second wave of Rac1 activation. Thus, CysLT1 may serve as a new molecular target for antimetastatic therapy. In addition, the CysLT1 antagonist, montelukast, which is used clinically for allergy treatment, might have great potential as a novel type of antimetastatic agent. © 2013 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  18. Levels of prostaglandin E metabolite and leukotriene E(4) are increased in the urine of smokers: evidence that celecoxib shunts arachidonic acid into the 5-lipoxygenase pathway.

    PubMed

    Duffield-Lillico, Anna J; Boyle, Jay O; Zhou, Xi Kathy; Ghosh, Aradhana; Butala, Geera S; Subbaramaiah, Kotha; Newman, Robert A; Morrow, Jason D; Milne, Ginger L; Dannenberg, Andrew J

    2009-04-01

    Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) play a role in inflammation and carcinogenesis. Biomarkers that reflect tobacco smoke-induced tissue injury are needed. In this study, levels of urinary prostaglandin E metabolite (PGE-M) and leukotriene E(4) (LTE(4)), biomarkers of the COX and 5-LO pathways, were compared in never smokers, former smokers, and current smokers. The effects of celecoxib, a selective COX-2 inhibitor, on levels of PGE-M and LTE(4) were determined. Baseline levels of PGE-M and LTE(4) were positively associated with smoking status; levels of PGE-M and LTE(4) were higher in current versus never smokers. Treatment with 200 mg celecoxib twice daily for 6 +/- 1 days led to a reduction in urinary PGE-M levels in all groups but exhibited the greatest effect among subjects with high baseline PGE-M levels. Thus, high baseline PGE-M levels in smokers reflected increased COX-2 activity. In individuals with high baseline PGE-M levels, treatment with celecoxib led to a significant increase in levels of urinary LTE(4), an effect that was not found in individuals with low baseline PGE-M levels. In conclusion, increased levels of urinary PGE-M and LTE(4) were found in human smokers, a result that may reflect subclinical lung inflammation. In individuals with high baseline levels of PGE-M (elevated COX-2 activity), celecoxib administration shunted arachidonic acid into the proinflammatory 5-LO pathway. Because 5-LO activity and LTE(4) have been suggested to play a role in cardiovascular disease, these results may help to explain the link between use of COX-2 inhibitors and cardiovascular complications.

  19. The effects of a 5-lipoxygenase inhibitor on acute mountain sickness and urinary leukotriene e4 after ascent to high altitude.

    PubMed

    Grissom, Colin K; Richer, Lori D; Elstad, Mark R

    2005-02-01

    Elevated urine and blood leukotriene levels have been reported after ascent to high altitude in association with acute mountain sickness (AMS) and high-altitude pulmonary edema. Zileuton is an inhibitor of the enzyme 5-lipoxygenase that catalyzes conversion of arachidonic acid to leukotrienes. Study objectives and design: The objectives of this randomized, double-blind, placebo-controlled clinical trial were to determine whether zileuton (600 mg po qid) is effective prophylaxis for AMS, and to measure the effect of ascent to high altitude and zileuton on urinary leukotriene E(4) levels. The study group consisted of volunteers from among climbers on the West Buttress of Mt. McKinley (Denali), Alaska. After baseline urine samples at sea level, subjects flew by airplane to 2,300 m, and then ascended to the 4,200-m camp in 5 to 10 days. Using an enzyme immunoassay, urinary leukotriene E(4) was found to decrease after ascent to high altitude in both the zileuton and placebo groups. Urinary leukotriene E(4) in the zileuton group (n = 9) decreased from 67 +/- 35 pg/mg creatinine at sea level to 33 +/- 22 pg/mg creatinine at high altitude (p = 0.003) [mean +/- SD]. Urinary leukotriene E(4) in the placebo group (n = 9) decreased from 97 +/- 82 pg/mg creatinine at sea level to 44 +/- 21 pg/mg creatinine at high altitude (p = 0.045). One subject in the zileuton group and three subjects in the placebo group met Lake Louise criteria for AMS after arriving at 4,200 m (p = 0.257). Elevated leukotrienes are not associated with ascent to high altitude. In subjects with AMS, urinary leukotrienes were not elevated, suggesting that leukotrienes may not be a component of the pathophysiology of AMS. The low incidence of AMS and the small sample size in this study prevented determination of whether zileuton is effective prophylaxis for AMS.

  20. Hyperoxia increases protein mass of 5-lipoxygenase and its activating protein, flap, and leukotriene B(4) output in newborn rat lungs.

    PubMed

    Hosford, Gayle E; Koyanagi, Kim S; Leung, Wynne I; Olson, David M

    2002-12-01

    In this study, the authors examined in newborn rat lung tissues the release of leukotriene B(4) (LTB(4)) from tissue explants in vitro, the protein expression of the LT-synthesizing enzyme, 5-lipoxygenase (5-LO), and its activating protein (FLAP), and the effects of in vivo hyperoxic exposure (>95% O(2)) on these parameters. Basal LTB(4) output increased from 0.98 ng/mgDNA/30 min at day 1 to 3.3 ng/mgDNA/30 min at day 28 (P <.05). Exposure of rat pups to >95% O(2) from days 1 to 7 and 60% O(2) from days 7 to 28 stimulated a 1.6-fold (P <.05) increase in LTB(4) output, compared to normoxic pups (to 1.6 ng/mgDNA/30 min) by day 1 and on day 7. The calcium ionophore, A23187, caused an increase in LTB(4) output from both exposure groups, but LTB(4) output was consistently greater (P <.05) from hyperoxia-exposed pups. Western immunoblotting of lung tissue showed that 5-LO and FLAP protein mass increased (P <.05) from days 4 to 14. Hyperoxia exposure increased the mass of both proteins (P <.05). Immunohistochemistry localized 5-LO and FLAP mainly to alveolar macrophages on day 14, but some staining was evident in parenchymal tissue. These data show that hyperoxia increases LTB(4) output, as well as protein levels of 5-LO and FLAP, in newborn rat lungs during early postnatal life. Elevated LTB(4) may contribute to the etiology of newborn lung disease.

  1. Effects of novel 5-lipoxygenase inhibitors on the incidence of pulmonary adenomas in the A/J murine model when administered via nose-only inhalation.

    PubMed

    Myrdal, P B; Karlage, K; Kuehl, P J; Angersbach, B S; Merrill, B A; Wightman, P D

    2007-05-01

    The objective of this study was to determine the effects of 5-lipoxygenase (5-LO) inhibitors on the incidence of benzo(a)pyrene-induced pulmonary adenomas in female A/J mice. Two novel compounds, S-29606 and S-30621, and the Food and Drug Administration-approved Zileuton were investigated. S-29606 and S-30621 were selected from a group of similar active structures on the basis of local versus systemic 5-LO inhibitory activity. Preliminary studies found them to lack oral bioavailability, in direct contrast to Zileuton. Treatment was initiated 1 week following exposure to the carcinogen benzo(a)pyrene. Both S-29606 and S-30621 were dosed via nose-only inhalation 5 days a week, for 16 weeks, whereas Zileuton was administered orally. Dose levels for S-29606 and S-30621 were determined to be 220 and 430 microg/kg for the low- and high-dose groups, respectively, whereas the dose of Zileuton was 245 mg/kg. Both test compounds exhibited a significant reduction of pulmonary adenomas, compared with a positive control for high and low doses, P < 0.05. Additionally, a dose response for both S-29606 and S-30621 was observed when compared with placebo. Despite a dose 575 times greater than that of the novel test compounds, orally administered Zileuton did not produce a reduction in adenoma occurrence. The findings of this study offer compelling preliminary data for the use of S-29606 and S-30621 in further investigations of the treatment of pulmonary adenomas and support the use of inhalation drug delivery as an alternate to oral delivery for these compounds.

  2. Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1,4-benzoquinone that inhibits 5-lipoxygenase.

    PubMed

    Schaible, A M; Filosa, R; Temml, V; Krauth, V; Matteis, M; Peduto, A; Bruno, F; Luderer, S; Roviezzo, F; Di Mola, A; de Rosa, M; D'Agostino, B; Weinigel, C; Barz, D; Koeberle, A; Pergola, C; Schuster, D; Werz, O

    2014-05-01

    1,4-Benzoquinones are well-known inhibitors of 5-lipoxygenase (5-LOX, the key enzyme in leukotriene biosynthesis), but the molecular mechanisms of 5-LOX inhibition are not completely understood. Here we investigated the molecular mode of action and the pharmacological profile of the novel 1,4-benzoquinone derivative 3-((decahydronaphthalen-6-yl)methyl)-2,5-dihydroxycyclohexa-2,5-diene-1,4-dione (RF-Id) in vitro and its effectiveness in vivo. Mechanistic investigations in cell-free assays using 5-LOX and other enzymes associated with eicosanoid biosynthesis were conducted, along with cell-based studies in human leukocytes and whole blood. Molecular docking of RF-Id into the 5-LOX structure was performed to illustrate molecular interference with 5-LOX. The effectiveness of RF-Id in vivo was also evaluated in two murine models of inflammation. RF-Id consistently suppressed 5-LOX product synthesis in human leukocytes and human whole blood. RF-Id also blocked COX-2 activity but did not significantly inhibit COX-1, microsomal PGE2 synthase-1, cytosolic PLA2 or 12- and 15-LOX. Although RF-Id lacked radical scavenging activity, reducing conditions facilitated its inhibitory effect on 5-LOX whereas cell stress impaired its efficacy. The reduced hydroquinone form of RF-Id (RED-RF-Id) was a more potent inhibitor of 5-LOX as it had more bidirectional hydrogen bonds within the 5-LOX substrate binding site. Finally, RF-Id had marked anti-inflammatory effects in mice in vivo. RF-Id represents a novel anti-inflammatory 1,4-benzoquinone that potently suppresses LT biosynthesis by direct inhibition of 5-LOX with effectiveness in vivo. Mechanistically, RF-Id inhibits 5-LOX in a non-redox manner by forming discrete molecular interactions within the active site of 5-LOX. © 2014 The British Pharmacological Society.

  3. Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1,4-benzoquinone that inhibits 5-lipoxygenase

    PubMed Central

    Schaible, A M; Filosa, R; Temml, V; Krauth, V; Matteis, M; Peduto, A; Bruno, F; Luderer, S; Roviezzo, F; Di Mola, A; Rosa, M; D'Agostino, B; Weinigel, C; Barz, D; Koeberle, A; Pergola, C; Schuster, D; Werz, O

    2014-01-01

    Background and Purpose 1,4-Benzoquinones are well-known inhibitors of 5-lipoxygenase (5-LOX, the key enzyme in leukotriene biosynthesis), but the molecular mechanisms of 5-LOX inhibition are not completely understood. Here we investigated the molecular mode of action and the pharmacological profile of the novel 1,4-benzoquinone derivative 3-((decahydronaphthalen-6-yl)methyl)-2,5-dihydroxycyclohexa-2,5-diene-1,4-dione (RF-Id) in vitro and its effectiveness in vivo. Experimental Approach Mechanistic investigations in cell-free assays using 5-LOX and other enzymes associated with eicosanoid biosynthesis were conducted, along with cell-based studies in human leukocytes and whole blood. Molecular docking of RF-Id into the 5-LOX structure was performed to illustrate molecular interference with 5-LOX. The effectiveness of RF-Id in vivo was also evaluated in two murine models of inflammation. Key Results RF-Id consistently suppressed 5-LOX product synthesis in human leukocytes and human whole blood. RF-Id also blocked COX-2 activity but did not significantly inhibit COX-1, microsomal PGE2 synthase-1, cytosolic PLA2 or 12- and 15-LOX. Although RF-Id lacked radical scavenging activity, reducing conditions facilitated its inhibitory effect on 5-LOX whereas cell stress impaired its efficacy. The reduced hydroquinone form of RF-Id (RED-RF-Id) was a more potent inhibitor of 5-LOX as it had more bidirectional hydrogen bonds within the 5-LOX substrate binding site. Finally, RF-Id had marked anti-inflammatory effects in mice in vivo. Conclusions and Implications RF-Id represents a novel anti-inflammatory 1,4-benzoquinone that potently suppresses LT biosynthesis by direct inhibition of 5-LOX with effectiveness in vivo. Mechanistically, RF-Id inhibits 5-LOX in a non-redox manner by forming discrete molecular interactions within the active site of 5-LOX. PMID:24467325

  4. Licofelone (ML-3000), a dual inhibitor of 5-lipoxygenase and cyclooxygenase, reduces the level of cartilage chondrocyte death in vivo in experimental dog osteoarthritis: inhibition of pro-apoptotic factors.

    PubMed

    Boileau, Christelle; Martel-Pelletier, Johanne; Jouzeau, Jean-Yves; Netter, Patrick; Moldovan, Florina; Laufer, Stefan; Tries, Susanne; Pelletier, Jean-Pierre

    2002-07-01

    To evaluate in vivo therapeutic efficacy of licofelone, a novel competitive dual inhibitor of 5-lipoxygenase (5-LOX) and cyclooxygenase (COX) in chondrocyte death in the canine ligament transection model of osteoarthritis (OA), and to explore its effect on factors involved in the apoptotic phenomenon, i.e., caspase-3, COX-2, and inducible nitric oxide synthase (iNOS). Cartilage specimens were obtained from 3 experimental groups of dogs: Group 1, dogs subjected to sectioning of the anterior cruciate ligament of the right knee and given placebo treatment; Groups 2 and 3, operated dogs that received oral treatment with licofelone (2.5 or 5.0 mg/kg/day, respectively) for 8 weeks starting immediately after surgery. All dogs were killed 8 weeks postsurgery. The cartilage level of chondrocyte death was detected by TUNEL reaction. Cartilage distribution of caspase-3, COX-2, and iNOS was documented by immunohistochemistry using specific antibodies, and other levels were quantified by morphometric analysis. In cartilage specimens from placebo treated dogs a large number of chondrocytes in the superficial layers stained positive for TUNEL reaction. Treatment with therapeutic concentrations of licofelone (2.5 and 5.0 mg/kg/day) markedly reduced the level of chondrocyte apoptosis to the same extent in both therapeutic groups (p < 0.0001, p < 0.002, respectively). In these groups, the levels of caspase-3, COX-2, and iNOS in cartilage from both condyles and plateaus were also significantly decreased (p < 0.0001, p < 0.0001, p < 0.0002, respectively) compared to the control (placebo) group. Licofelone is an effective treatment in vivo, capable of reducing the level of OA chondrocyte death. This effect is likely mediated by a decrease in the level of caspase-3 activity, which may be related to the reduced production of 2 major factors involved in chondrocyte apoptosis, NO and prostaglandin E2. These findings may explain some of the mechanisms by which licofelone reduces the

  5. A1C test

    MedlinePlus

    HbA1C test; Glycated hemoglobin test; Glycohemoglobin test; Hemoglobin A1C; Diabetes - A1C; Diabetic - A1C ... gov/pubmed/26696680 . Chernecky CC, Berger BJ. Glycosylated hemoglobin (GHb, glycohemoglobin, glycated hemoglobin, HbA1a, HbA1b, HbA1c - blood. ...

  6. Magi-1c

    PubMed Central

    Strochlic, Laure; Cartaud, Annie; Labas, Valérie; Hoch, Werner; Rossier, Jean; Cartaud, Jean

    2001-01-01

    The muscle-specific receptor tyrosine kinase (MuSK) forms part of a receptor complex, activated by nerve-derived agrin, that orchestrates the differentiation of the neuromuscular junction (NMJ). The molecular events linking MuSK activation with postsynaptic differentiation are not fully understood. In an attempt to identify partners and/or effectors of MuSK, cross-linking and immunopurification experiments were performed in purified postsynaptic membranes from the Torpedo electrocyte, a model system for the NMJ. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis was conducted on both cross-link products, and on the major peptide coimmunopurified with MuSK; this analysis identified a polypeptide corresponding to the COOH-terminal fragment of membrane-associated guanylate kinase (MAGUK) with inverted domain organization (MAGI)-1c. A bona fide MAGI-1c (150 kD) was detected by Western blotting in the postsynaptic membrane of Torpedo electrocytes, and in a high molecular mass cross-link product of MuSK. Immunofluorescence experiments showed that MAGI-1c is localized specifically at the adult rat NMJ, but is absent from agrin-induced acetylcholine receptor clusters in myotubes in vitro. In the central nervous system, MAGUKs play a primary role as scaffolding proteins that organize cytoskeletal signaling complexes at excitatory synapses. Our data suggest that a protein from the MAGUK family is involved in the MuSK signaling pathway at the vertebrate NMJ. PMID:11381096

  7. A1C Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Hemoglobin A1c Share this page: Was this page helpful? Also known as: A1c; HbA1c; Glycohemoglobin; Glycated Hemoglobin; Glycosylated Hemoglobin Formal name: Hemoglobin A1c Related tests: ...

  8. A polymorphic microsatellite repeat within the ECE-1c promoter is involved in transcriptional start site determination, human evolution, and Alzheimer's disease.

    PubMed

    Li, Yaosi; Seidel, Kerstin; Marschall, Peter; Klein, Michael; Hope, Antonia; Schacherl, Jens; Schmitz, Jennifer; Menk, Mario; Schefe, Jan H; Reinemund, Jana; Hugel, Rebecca; Walden, Peter; Schlosser, Andreas; Volkmer, Rudolf; Schimkus, Julia; Kölsch, Heike; Maier, Wolfgang; Kornhuber, Johannes; Frölich, Lutz; Klare, Sabrina; Kirsch, Sebastian; Schmerbach, Kristin; Scheele, Sylvia; Grittner, Ulrike; Zollmann, Frank; Goldin-Lang, Petra; Peters, Oliver; Kintscher, Ulrich; Unger, Thomas; Funke-Kaiser, Heiko

    2012-11-21

    Genetic factors strongly contribute to the pathogenesis of sporadic Alzheimer's disease (AD). Nevertheless, genome-wide association studies only yielded single nucleotide polymorphism loci of moderate importance. In contrast, microsatellite repeats are functionally less characterized structures within our genomes. Previous work has shown that endothelin-converting enzyme-1 (ECE-1) is able to reduce amyloid β content. Here we demonstrate that a CpG-CA repeat within the human ECE-1c promoter is highly polymorphic, harbors transcriptional start sites, is able to recruit the transcription factors poly(ADP-ribose) polymerase-1 and splicing factor proline and glutamine-rich, and is functional regarding haplotype-specific promoter activity. Furthermore, genotyping of 403 AD patients and 444 controls for CpG-CA repeat length indicated shifted allelic frequency distributions. Sequencing of 245 haplotype clones demonstrated that the overall CpG-CA repeat composition of AD patients and controls is distinct. Finally, we show that human and chimpanzee [CpG](m)-[CA](n) ECE-1c promoter repeats are genetically and functionally distinct. Our data indicate that a short genomic repeat structure constitutes a novel core promoter element, coincides with human evolution, and contributes to the pathogenesis of AD.

  9. Ethanol Extract of Peanut Sprout Lowers Blood Triglyceride Levels, Possibly Through a Pathway Involving SREBP-1c in Rats Fed a High-Fat Diet.

    PubMed

    Ha, Ae Wha; Kang, Nam E; Kim, Woo Kyoung

    2015-08-01

    The hypothesis of this study was that peanut sprout extracts (PSE) could reduce fat accumulation through activating the transcription of SREBP-1c genes. Sprague-Dawley (SD) were randomly assigned into two groups and fed the following diet for 4 weeks; 10 normal fat (NF, 7 g of fat/100 g diet) and 30 high fat (HF, 20 g of fat/100 g diet). After 4 weeks, the HF group was divided into three groups; HF, HF with 15 mg of PSE/kg diet (HF+low PSE, 0.025% resveratrol), and HF with 30 mg of PSE/kg diet (HF+high PSE, 0.05% resveratrol) and fed for an additional 5 weeks. The HF+high PSE group had significantly lower weight gain than the HF group. Plasma triglyceride (TG) level and the hepatic total lipid level were significantly lower in the HF+high PSE group compared to the HF group. Fecal excretions of total lipids, cholesterol, and TG in the HF+high PSE group tended to be higher than in the HF group, but these differences were not significant. The mRNA expressions of fatty acid synthase, glucose-6-phosphate dehydrogenase, and sterol regulatory element binding protein-c (SREBP-1c) were significantly lower in the HF+high PSE group than in the HF group. The mRNA expressions of hydroxy-3-methylglutaryl coenzyme A reductase and acyl-CoA cholesterol acyltransferase were significantly lower in the HF+high PSE groups compared to the HF group. The mRNA expression of cholesterol 7α-hydroxylase1 was significantly higher than the HF group in both the HF+low PSE and HF+high PSE groups, with much greater increase observed in the HF+high PSE group. In conclusion, consumption of PSE was effective for improving blood lipid levels, possibly by suppressing the expression of SREBP-1c, in rats fed a high-fat diet.

  10. Multi-System Involvement in a Severe Variant of Fibrodysplasia Ossificans Progressiva (ACVR1 c.772G>A; R258G): A Report of Two Patients

    PubMed Central

    Kaplan, Frederick S.; Kobori, Joyce A.; Orellana, Carmen; Calvo, Inmaculada; Rosello, Monica; Martinez, Francisco; Lopez, Berta; Xu, Meiqi; Pignolo, Robert J.; Shore, Eileen M.; Groppe, Jay C.

    2015-01-01

    Severe variants of fibrodysplasia ossificans progressiva (FOP) affect <2% of all FOP patients worldwide but provide an unprecedented opportunity to probe the phenotype-genotype relationships that propel the pathology of this disabling disease. We evaluated two unrelated children who had severe reduction deficits of the hands and feet with absence of nails, progressive heterotopic ossification, hypoplasia of the brain stem, motor and cognitive developmental delays, facial dysmorphology, small malformed teeth, and abnormal hair development. One child had sensorineural hearing loss, microcytic anemia and a tethered spinal cord and the other had a patent ductus arteriosus and gonadal dysgenesis with sex reversal (karyotype 46, XY female). Both children had an identical mutation in ACVR1 c.772A>G; p.Arg258Gly (R258G), not previously described in FOP. Although many, if not most, FOP mutations directly perturb the structure of the GS regulatory subdomain and presumably the adjacent αC helix, substitution with glycine at R258 may directly alter the position of the helix in the kinase domain, eliminating a key aspect of the autoinhibitory mechanism intrinsic to the wild type ACVR1 kinase. The high fidelity phenotype-genotype relationship in these unrelated children with the most severe FOP phenotype reported to date suggests that the shared features are due to the dysregulated activity of the mutant kinase during development and postnatally, and provides vital insight into the structural biology and function of ACVR1 as well as the design of small molecule inhibitors. PMID:26097044

  11. Multi-system involvement in a severe variant of fibrodysplasia ossificans progressiva (ACVR1 c.772G>A; R258G): A report of two patients.

    PubMed

    Kaplan, Frederick S; Kobori, Joyce A; Orellana, Carmen; Calvo, Inmaculada; Rosello, Monica; Martinez, Francisco; Lopez, Berta; Xu, Meiqi; Pignolo, Robert J; Shore, Eileen M; Groppe, Jay C

    2015-10-01

    Severe variants of fibrodysplasia ossificans progressiva (FOP) affect <2% of all FOP patients worldwide, but provide an unprecedented opportunity to probe the phenotype-genotype relationships that propel the pathology of this disabling disease. We evaluated two unrelated children who had severe reduction deficits of the hands and feet with absence of nails, progressive heterotopic ossification, hypoplasia of the brain stem, motor and cognitive developmental delays, facial dysmorphology, small malformed teeth, and abnormal hair development. One child had sensorineural hearing loss, microcytic anemia, and a tethered spinal cord and the other had a patent ductus arteriosus and gonadal dysgenesis with sex reversal (karyotype 46, XY female). Both children had an identical mutation in ACVR1 c.772A>G; p.Arg258Gly (R258G), not previously described in FOP. Although many, if not most, FOP mutations directly perturb the structure of the GS regulatory subdomain and presumably the adjacent αC helix, substitution with glycine at R258 may directly alter the position of the helix in the kinase domain, eliminating a key aspect of the autoinhibitory mechanism intrinsic to the wild-type ACVR1 kinase. The high fidelity phenotype-genotype relationship in these unrelated children with the most severe FOP phenotype reported to date suggests that the shared features are due to the dysregulated activity of the mutant kinase during development and postnatally, and provides vital insight into the structural biology and function of ACVR1 as well as the design of small molecule inhibitors.

  12. A Regulatory Cascade Involving Class II ETHYLENE RESPONSE FACTOR Transcriptional Repressors Operates in the Progression of Leaf Senescence1[C][W][OA

    PubMed Central

    Koyama, Tomotsugu; Nii, Haruka; Mitsuda, Nobutaka; Ohta, Masaru; Kitajima, Sakihito; Ohme-Takagi, Masaru; Sato, Fumihiko

    2013-01-01

    Leaf senescence is the final process of leaf development that involves the mobilization of nutrients from old leaves to newly growing tissues. Despite the identification of several transcription factors involved in the regulation of this process, the mechanisms underlying the progression of leaf senescence are largely unknown. Herein, we describe the proteasome-mediated regulation of class II ETHYLENE RESPONSE FACTOR (ERF) transcriptional repressors and involvement of these factors in the progression of leaf senescence in Arabidopsis (Arabidopsis thaliana). Based on previous results showing that the tobacco (Nicotiana tabacum) ERF3 (NtERF3) specifically interacts with a ubiquitin-conjugating enzyme, we examined the stability of NtERF3 in vitro and confirmed its rapid degradation by plant protein extracts. Furthermore, NtERF3 accumulated in plants treated with a proteasome inhibitor. The Arabidopsis class II ERFs AtERF4 and AtERF8 were also regulated by the proteasome and increased with plant aging. Transgenic Arabidopsis plants with enhanced expression of NtERF3, AtERF4, or AtERF8 showed precocious leaf senescence. Our gene expression and chromatin immunoprecipitation analyses suggest that AtERF4 and AtERF8 targeted the EPITHIOSPECIFIER PROTEIN/EPITHIOSPECIFYING SENESCENCE REGULATOR gene and regulated the expression of many genes involved in the progression of leaf senescence. By contrast, an aterf4 aterf8 double mutant exhibited delayed leaf senescence. Our results provide insight into the important role of class II ERFs in the progression of leaf senescence. PMID:23629833

  13. SIZ1 Regulation of Phosphate Starvation-Induced Root Architecture Remodeling Involves the Control of Auxin Accumulation1[C][W][OA

    PubMed Central

    Miura, Kenji; Lee, Jiyoung; Gong, Qingqiu; Ma, Shisong; Jin, Jing Bo; Yoo, Chan Yul; Miura, Tomoko; Sato, Aiko; Bohnert, Hans J.; Hasegawa, Paul M.

    2011-01-01

    Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning. PMID:21156857

  14. Abscisic Acid-Induced Resistance against the Brown Spot Pathogen Cochliobolus miyabeanus in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling1[C][W][OA

    PubMed Central

    De Vleesschauwer, David; Yang, Yinong; Vera Cruz, Casiana; Höfte, Monica

    2010-01-01

    The plant hormone abscisic acid (ABA) is involved in an array of plant processes, including the regulation of gene expression during adaptive responses to various environmental cues. Apart from its well-established role in abiotic stress adaptation, emerging evidence indicates that ABA is also prominently involved in the regulation and integration of pathogen defense responses. Here, we demonstrate that exogenously administered ABA enhances basal resistance of rice (Oryza sativa) against the brown spot-causing ascomycete Cochliobolus miyabeanus. Microscopic analysis of early infection events in control and ABA-treated plants revealed that this ABA-inducible resistance (ABA-IR) is based on restriction of fungal progression in the mesophyll. We also show that ABA-IR does not rely on boosted expression of salicylic acid-, jasmonic acid -, or callose-dependent resistance mechanisms but, instead, requires a functional Gα-protein. In addition, several lines of evidence are presented suggesting that ABA steers its positive effect on brown spot resistance through antagonistic cross talk with the ethylene (ET) response pathway. Exogenous ethephon application enhances susceptibility, whereas genetic disruption of ET signaling renders plants less vulnerable to C. miyabeanus attack, thereby inducing a level of resistance similar to that observed on ABA-treated wild-type plants. Moreover, ABA treatment alleviates C. miyabeanus-induced activation of the ET reporter gene EBP89, while derepression of pathogen-triggered EBP89 transcription via RNA interference-mediated knockdown of OsMPK5, an ABA-primed mitogen-activated protein kinase gene, compromises ABA-IR. Collectively, these data favor a model whereby exogenous ABA enhances resistance against C. miyabeanus at least in part by suppressing pathogen-induced ET action in an OsMPK5-dependent manner. PMID:20130100

  15. SlARF4, an Auxin Response Factor Involved in the Control of Sugar Metabolism during Tomato Fruit Development1[C][W

    PubMed Central

    Sagar, Maha; Chervin, Christian; Mila, Isabelle; Hao, Yanwei; Roustan, Jean-Paul; Benichou, Mohamed; Gibon, Yves; Biais, Benoît; Maury, Pierre; Latché, Alain; Pech, Jean-Claude; Bouzayen, Mondher; Zouine, Mohamed

    2013-01-01

    Successful completion of fruit developmental programs depends on the interplay between multiple phytohormones. However, besides ethylene, the impact of other hormones on fruit quality traits remains elusive. A previous study has shown that down-regulation of SlARF4, a member of the tomato (Solanum lycopersicum) auxin response factor (ARF) gene family, results in a dark-green fruit phenotype with increased chloroplasts (Jones et al., 2002). This study further examines the role of this auxin transcriptional regulator during tomato fruit development at the level of transcripts, enzyme activities, and metabolites. It is noteworthy that the dark-green phenotype of antisense SlARF4-suppressed lines is restricted to fruit, suggesting that SlARF4 controls chlorophyll accumulation specifically in this organ. The SlARF4 underexpressing lines accumulate more starch at early stages of fruit development and display enhanced chlorophyll content and photochemical efficiency, which is consistent with the idea that fruit photosynthetic activity accounts for the elevated starch levels. SlARF4 expression is high in pericarp tissues of immature fruit and then undergoes a dramatic decline at the onset of ripening concomitant with the increase in sugar content. The higher starch content in developing fruits of SlARF4 down-regulated lines correlates with the up-regulation of genes and enzyme activities involved in starch biosynthesis, suggesting their negative regulation by SlARF4. Altogether, the data uncover the involvement of ARFs in the control of sugar content, an essential feature of fruit quality, and provide insight into the link between auxin signaling, chloroplastic activity, and sugar metabolism in developing fruit. PMID:23341361

  16. Distinct Cell-Specific Expression of Homospermidine Synthase Involved in Pyrrolizidine Alkaloid Biosynthesis in Three Species of the Boraginales1[C][W][OA

    PubMed Central

    Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich

    2012-01-01

    Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant’s chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature. PMID:22566491

  17. Functional Phosphoproteomic Analysis Reveals That a Serine-62-Phosphorylated Isoform of Ethylene Response Factor110 Is Involved in Arabidopsis Bolting1[C][W][OA

    PubMed Central

    Zhu, Lin; Liu, Dandan; Li, Yaojun; Li, Ning

    2013-01-01

    Ethylene is a major plant hormone that plays an important role in regulating bolting, although the underlying molecular mechanism is not well understood. In this study, we report the novel finding that the serine-62 (Ser-62) phosphorylation of Ethylene Response Factor110 (ERF110) is involved in the regulation of bolting time. The gene expression and posttranslational modification (phosphorylation) of ERF110 were analyzed among ethylene-response mutants and ERF110 RNA-interfering knockout lines of Arabidopsis (Arabidopsis thaliana). Physiological and biochemical studies revealed that the Ser-62 phosphorylation of ERF110 was closely related to bolting time, that is, the ethylene-enhanced gene expression of ERF110 and the decreased Ser-62 phosphorylation of the ERF110 protein in Arabidopsis. The expression of a flowering homeotic APETALA1 gene was up-regulated by the Ser-62-phosphorylated isoform of the ERF110 transcription factor, which was necessary but not sufficient for normal bolting. The gene expression and phosphorylation of ERF110 were regulated by ethylene via both Ethylene-Insensitive2-dependent and -independent pathways, which constitute a dual-and-opposing mechanism of action for ethylene in the regulation of Arabidopsis bolting. PMID:23188807

  18. A1C

    MedlinePlus

    A1C is a blood test for type 2 diabetes and prediabetes. It measures your average blood glucose, or blood sugar, level over the past 3 ... A1C alone or in combination with other diabetes tests to make a diagnosis. They also use the ...

  19. CELLULOSE SYNTHASE-LIKE A2, a Glucomannan Synthase, Is Involved in Maintaining Adherent Mucilage Structure in Arabidopsis Seed1[C][W

    PubMed Central

    Yu, Li; Shi, Dachuan; Li, Junling; Kong, Yingzhen; Yu, Yanchong; Chai, Guohua; Hu, Ruibo; Wang, Juan; Hahn, Michael G.; Zhou, Gongke

    2014-01-01

    Mannans are hemicellulosic polysaccharides that are considered to have both structural and storage functions in the plant cell wall. However, it is not yet known how mannans function in Arabidopsis (Arabidopsis thaliana) seed mucilage. In this study, CELLULOSE SYNTHASE-LIKE A2 (CSLA2; At5g22740) expression was observed in several seed tissues, including the epidermal cells of developing seed coats. Disruption of CSLA2 resulted in thinner adherent mucilage halos, although the total amount of the adherent mucilage did not change compared with the wild type. This suggested that the adherent mucilage in the mutant was more compact compared with that of the wild type. In accordance with the role of CSLA2 in glucomannan synthesis, csla2-1 mucilage contained 30% less mannosyl and glucosyl content than did the wild type. No appreciable changes in the composition, structure, or macromolecular properties were observed for nonmannan polysaccharides in mutant mucilage. Biochemical analysis revealed that cellulose crystallinity was substantially reduced in csla2-1 mucilage; this was supported by the removal of most mucilage cellulose through treatment of csla2-1 seeds with endo-β-glucanase. Mutation in CSLA2 also resulted in altered spatial distribution of cellulose and an absence of birefringent cellulose microfibrils within the adherent mucilage. As with the observed changes in crystalline cellulose, the spatial distribution of pectin was also modified in csla2-1 mucilage. Taken together, our results demonstrate that glucomannans synthesized by CSLA2 are involved in modulating the structure of adherent mucilage, potentially through altering cellulose organization and crystallization. PMID:24569843

  20. PARAQUAT RESISTANT1, a Golgi-Localized Putative Transporter Protein, Is Involved in Intracellular Transport of Paraquat1[C][W

    PubMed Central

    Li, Jianyong; Mu, Jinye; Bai, Jiaoteng; Fu, Fuyou; Zou, Tingting; An, Fengying; Zhang, Jian; Jing, Hongwei; Wang, Qing; Li, Zhen; Yang, Shuhua; Zuo, Jianru

    2013-01-01

    Paraquat is one of the most widely used herbicides worldwide. In green plants, paraquat targets the chloroplast by transferring electrons from photosystem I to molecular oxygen to generate toxic reactive oxygen species, which efficiently induce membrane damage and cell death. A number of paraquat-resistant biotypes of weeds and Arabidopsis (Arabidopsis thaliana) mutants have been identified. The herbicide resistance in Arabidopsis is partly attributed to a reduced uptake of paraquat through plasma membrane-localized transporters. However, the biochemical mechanism of paraquat resistance remains poorly understood. Here, we report the identification and characterization of an Arabidopsis paraquat resistant1 (par1) mutant that shows strong resistance to the herbicide without detectable developmental abnormalities. PAR1 encodes a putative l-type amino acid transporter protein localized to the Golgi apparatus. Compared with the wild-type plants, the par1 mutant plants show similar efficiency of paraquat uptake, suggesting that PAR1 is not directly responsible for the intercellular uptake of paraquat. However, the par1 mutation caused a reduction in the accumulation of paraquat in the chloroplast, suggesting that PAR1 is involved in the intracellular transport of paraquat into the chloroplast. We identified a PAR1-like gene, OsPAR1, in rice (Oryza sativa). Whereas the overexpression of OsPAR1 resulted in hypersensitivity to paraquat, the knockdown of its expression using RNA interference conferred paraquat resistance on the transgenic rice plants. These findings reveal a unique mechanism by which paraquat is actively transported into the chloroplast and also provide a practical approach for genetic manipulations of paraquat resistance in crops. PMID:23471133

  1. Characterization of a Glucosyltransferase Enzyme Involved in the Formation of Kaempferol and Quercetin Sophorosides in Crocus sativus1[C][W

    PubMed Central

    Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes

    2012-01-01

    UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside and quercetin-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme. PMID:22649274

  2. RhNAC2 and RhEXPA4 Are Involved in the Regulation of Dehydration Tolerance during the Expansion of Rose Petals1[C][W][OA

    PubMed Central

    Dai, Fanwei; Zhang, Changqing; Jiang, Xinqiang; Kang, Mei; Yin, Xia; Lü, Peitao; Zhang, Xiao; Zheng, Yi; Gao, Junping

    2012-01-01

    Dehydration inhibits petal expansion resulting in abnormal flower opening and results in quality loss during the marketing of cut flowers. We constructed a suppression subtractive hybridization library from rose (Rosa hybrida) flowers containing 3,513 unique expressed sequence tags and analyzed their expression profiles during cycles of dehydration. We found that 54 genes were up-regulated by the first dehydration, restored or even down-regulated by rehydration, and once again up-regulated by the second dehydration. Among them, we identified a putative NAC family transcription factor (RhNAC2). With transactivation activity of its carboxyl-terminal domain in yeast (Saccharomyces cerevisiae) cell and Arabidopsis (Arabidopsis thaliana) protoplast, RhNAC2 belongs to the NAC transcription factor clade related to plant development in Arabidopsis. A putative expansin gene named RhEXPA4 was also dramatically up-regulated by dehydration. Silencing RhNAC2 or RhEXPA4 in rose petals by virus-induced gene silencing significantly decreased the recovery of intact petals and petal discs during rehydration. Overexpression of RhNAC2 or RhEXPA4 in Arabidopsis conferred strong drought tolerance in the transgenic plants. RhEXPA4 expression was repressed in RhNAC2-silenced rose petals, and the amino-terminal binding domain of RhNAC2 bound to the RhEXPA4 promoter. Twenty cell wall-related genes, including seven expansin family members, were up-regulated in Arabidopsis plants overexpressing RhNAC2. These data indicate that RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals and that RhEXPA4 expression may be regulated by RhNAC2. PMID:23093360

  3. 7 CFR 1c.114 - Cooperative research.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Cooperative research. 1c.114 Section 1c.114 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.114 Cooperative research. Cooperative research projects are those projects covered by this policy which involve more than one...

  4. 7 CFR 1c.114 - Cooperative research.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Cooperative research. 1c.114 Section 1c.114 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.114 Cooperative research. Cooperative research projects are those projects covered by this policy which involve more than one...

  5. 7 CFR 1c.114 - Cooperative research.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Cooperative research. 1c.114 Section 1c.114 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.114 Cooperative research. Cooperative research projects are those projects covered by this policy which involve more than one...

  6. 7 CFR 1c.114 - Cooperative research.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Cooperative research. 1c.114 Section 1c.114 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.114 Cooperative research. Cooperative research projects are those projects covered by this policy which involve more than one...

  7. 7 CFR 1c.114 - Cooperative research.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Cooperative research. 1c.114 Section 1c.114 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.114 Cooperative research. Cooperative research projects are those projects covered by this policy which involve more than one...

  8. Western blot expression of 5-lipoxygenase in the brain from striped dolphins (stenella coeruleoalba) and bottlenose dolphins (tursiops truncatus) with or without encephalitis/meningo-encephalitis of infectious nature.

    PubMed

    Di Guardo, G; Falconi, A; Di Francesco, A; Mazzariol, S; Centelleghe, C; Casalone, C; Pautasso, A; Cocumelli, C; Eleni, C; Petrella, A; Di Francesco, C E; Sabatucci, A; Leonardi, L; Serroni, A; Marsili, L; Storelli, M M; Giacominelli-Stuffler, R

    2015-01-01

    Dolphin Morbillivirus (DMV), Toxoplasma gondii and Brucella ceti are pathogens of major concern for wild cetaceans. Although a more or less severe encephalitis/meningo-encephalitis may occur in striped dolphins (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus) infected by the aforementioned agents, almost no information is available on the neuropathogenesis of brain lesions, including the neuronal and non-neuronal cells targeted during infection, along with the mechanisms underlying neurodegeneration. We analyzed 5-lipoxygenase (5-LOX) expression in the brain of 11 striped dolphins and 5 bottlenose dolphins, affected or not by encephalitic lesions of various degrees associated with DMV, T. gondii and B. ceti. All the 8 striped dolphins with encephalitis showed a more consistent 5-LOX expression than that observed in the 3 striped dolphins showing no morphologic evidence of brain lesions, with the most prominent band intensity being detected in a B. ceti-infected animal. Similar results were not obtained in T. gondii-infected vs T. gondii-uninfected bottlenose dolphins. Overall, the higher 5-LOX expression found in the brain of the 8 striped dolphins with infectious neuroinflammation is of interest, given that 5-LOX is a putative marker for neurodegeneration in human patients and in experimental animal models. Therefore, further investigation on this challenging issue is also needed in stranded cetaceans affected by central neuropathies.

  9. Roles of 5-Lipoxygenase and Cysteinyl-Leukotriene Type 1 Receptors in the Hematological Response to Allergen Challenge and Its Prevention by Diethylcarbamazine in a Murine Model of Asthma

    PubMed Central

    Masid-de-Brito, Daniela; Queto, Túlio; Gaspar-Elsas, Maria Ignez C.

    2014-01-01

    Diethylcarbamazine (DEC), which blocks leukotriene production, abolishes the challenge-induced increase in eosinopoiesis in bone-marrow from ovalbumin- (OVA-) sensitized mice, suggesting that 5-lipoxygenase (5-LO) products contribute to the hematological responses in experimental asthma models. We explored the relationship between 5-LO, central and peripheral eosinophilia, and effectiveness of DEC, using PAS or BALB/c mice and 5-LO-deficient mutants. We quantified eosinophil numbers in freshly harvested or cultured bone-marrow, peritoneal lavage fluid, and spleen, with or without administration of leukotriene generation inhibitors (DEC and MK886) and cisteinyl-leukotriene type I receptor antagonist (montelukast). The increase in eosinophil numbers in bone-marrow, observed in sensitized/challenged wild-type mice, was abolished by MK886 and DEC pretreatment. In ALOX mutants, by contrast, there was no increase in bone-marrow eosinophil counts, nor in eosinophil production in culture, in response to sensitization/challenge. In sensitized/challenged ALOX mice, challenge-induced migration of eosinophils to the peritoneal cavity was significantly reduced relative to the wild-type PAS controls. DEC was ineffective in ALOX mice, as expected from a mechanism of action dependent on 5-LO. In BALB/c mice, challenge significantly increased spleen eosinophil numbers and DEC treatment prevented this increase. Overall, 5-LO appears as indispensable to the systemic hematological response to allergen challenge, as well as to the effectiveness of DEC. PMID:25477712

  10. 5-Lipoxygenase and cyclooxygenase inhibitory dammarane triterpenoid 1 from Borassus flabellifer seed coat inhibits tumor necrosis factor-α secretion in LPSInduced THP-1 human monocytes and induces apoptosis in MIA PaCa-2 pancreatic cancer cells.

    PubMed

    Yarla, Nagendra Sastry; Azad, Rajaram; Basha, Mahaboob; Rajack, Abdul; Kaladhar, D S V G K; Allam, Bharat Kumar; Pragada, Rajeswara Rao; Singh, Krishna Nand; K, Sunanda Kumari; Pallu, Reddanna; Parimi, Umadevi; Bishayee, Anupam; Duddukuri, Govinda Rao

    2015-01-01

    Phospholipase A2 (PLA2), Cyclooxygenase (COX) and 5-Lipoxygenase (5-LOX) are arachidonic acid metabolizing enzymes and their inhibitors have been developed as therapeutic molecules for cancer and inflammation related disorders. In the present study, PLA2, COX 1&2 and 5-LOX inhibitory studies of Borassus flabellifer seed coat extract were carried out and substantial 5-LOX inhibitory activity was found. Dammarane triterpenoid 1 (Dammara-20,23-diene-3,25-diol) was isolated according to 5-LOX activity guided isolation, and screened for COX (1 & 2) inhibitory activities. Dammarane triterpenoid 1 inhibited carrageenan-induced rat paw edema and TNF-α secretion levels in lipopolysaccharide (LPS)-induced THP-1 human monocytes. Anticancer activity studies demonstrated the antiproliferative effect of dammarane triterpenoid 1 on various cancer cell lines including MIA PaCa-2 pancreatic, DU145 prostate, HL-60 leukemia and Caco-2 colon cancers. Dammarane triterpenoid 1 showed good antiproliferative activity on MIA PaCa-2 pancreatic cancer cell line with IC50 of 12.36±0.33 µM, among other tested cell lines. Apoptosis inducing activity of dammarane triterpenoid 1 was confirmed based on increased sub-G0 phase cell population in cell cycle analysis, loss of mitochondrian membrane potential, elevated levels of cytochrome c, nuclear morphological changes and DNA fragmentation in MIA PaCa-2 pancreatic cancer cells. Therefore, dammarane triterpenoid skeleton may raise the hope of developing novel anti-inflammatory and anticancer drugs in the future.

  11. Design and synthesis of ten biphenyl-neolignan derivatives and their in vitro inhibitory potency against cyclooxygenase-1/2 activity and 5-lipoxygenase-mediated LTB4-formation.

    PubMed

    Schühly, Wolfgang; Hüfner, Antje; Pferschy-Wenzig, Eva M; Prettner, Elke; Adams, Michael; Bodensieck, Antje; Kunert, Olaf; Oluwemimo, Asije; Haslinger, Ernst; Bauer, Rudolf

    2009-07-01

    A set of ten derivatives of methylhonokiol, an anti-inflammatory active biphenyl-type neolignan from Magnolia grandiflora, has been evaluated for their in vitro cyclooxygenase-1/2 (COX-1/2) inhibitory activity using assays with purified prostaglandin H synthase (PGHS)-1 and PGHS-2 enzymes as well as for their 5-lipoxygenase (5-LOX) mediated LTB(4) formation inhibitory activity using an assay with activated human polymorphonuclear leukocytes. The derivatization reactions included methylation, acetylation, hydrogenation, epoxydation and isomerization. Five of the derivatives are new to science. The most active compound against COX-1 and COX-2 was methylhonokiol with IC(50) values of 0.1 microM, whereas the most active compound against LTB(4) formation was (E)-3'-propenyl-5-(2-propenyl)-biphenyl-2,4'-diol with an IC(50) value of 1.0 microM. Structure-activity relationship studies showed that the polarity of the derivatives plays a crucial role in their activity towards COX-1/2 enzyme and 5-LOX mediated LTB(4) formation.

  12. Roles of 5-lipoxygenase and cysteinyl-leukotriene type 1 receptors in the hematological response to allergen challenge and its prevention by diethylcarbamazine in a murine model of asthma.

    PubMed

    Masid-de-Brito, Daniela; Queto, Túlio; Gaspar-Elsas, Maria Ignez C; Xavier-Elsas, Pedro

    2014-01-01

    Diethylcarbamazine (DEC), which blocks leukotriene production, abolishes the challenge-induced increase in eosinopoiesis in bone-marrow from ovalbumin- (OVA-) sensitized mice, suggesting that 5-lipoxygenase (5-LO) products contribute to the hematological responses in experimental asthma models. We explored the relationship between 5-LO, central and peripheral eosinophilia, and effectiveness of DEC, using PAS or BALB/c mice and 5-LO-deficient mutants. We quantified eosinophil numbers in freshly harvested or cultured bone-marrow, peritoneal lavage fluid, and spleen, with or without administration of leukotriene generation inhibitors (DEC and MK886) and cisteinyl-leukotriene type I receptor antagonist (montelukast). The increase in eosinophil numbers in bone-marrow, observed in sensitized/challenged wild-type mice, was abolished by MK886 and DEC pretreatment. In ALOX mutants, by contrast, there was no increase in bone-marrow eosinophil counts, nor in eosinophil production in culture, in response to sensitization/challenge. In sensitized/challenged ALOX mice, challenge-induced migration of eosinophils to the peritoneal cavity was significantly reduced relative to the wild-type PAS controls. DEC was ineffective in ALOX mice, as expected from a mechanism of action dependent on 5-LO. In BALB/c mice, challenge significantly increased spleen eosinophil numbers and DEC treatment prevented this increase. Overall, 5-LO appears as indispensable to the systemic hematological response to allergen challenge, as well as to the effectiveness of DEC.

  13. Cannabinoid receptor type 1 activation by arachidonylcyclopropylamide in rat aortic rings causes vasorelaxation involving calcium-activated potassium channel subunit alpha-1 and calcium channel, voltage-dependent, L type, alpha 1C subunit.

    PubMed

    Sánchez-Pastor, E; Andrade, F; Sánchez-Pastor, J M; Elizalde, A; Huerta, M; Virgen-Ortiz, A; Trujillo, X; Rodríguez-Hernández, A

    2014-04-15

    Cannabinoids are key regulators of vascular tone, some of the mechanisms involved include the activation of cannabinoid receptor types 1 and 2 (CB); the transient receptor potential cation channel, subfamily V, member 1 (TRPV1); and non-(CB(1))/non-CB2 receptors. Here, we used the potent, selective CB(1) agonist arachidonylcyclopropylamide (ACPA) to elucidate the mechanism underlying vascular tone regulation. Immunohistochemistry and confocal microscopy revealed that CB(1) was expressed in smooth muscle and endothelial cells in rat aorta. We performed isometric tension recordings in aortic rings that had been pre-contracted with phenylephrine. In these conditions, ACPA caused vasorelaxation in an endothelium-independent manner. To confirm that the effect of ACPA was mediated by CB(1) receptor, we repeated the experiment after blocking these receptors with a selective antagonist, AM281. In these conditions, ACPA did not cause vasorelaxation. We explored the role of K(+) channels in the effect of ACPA by applying high-K(+) solution to induce contraction in aortic rings. In these conditions, the ACPA-induced vasorelaxation was about half that observed with phenylephrine-induced contraction. Thus, K(+) channels were involved in the ACPA effect. Furthermore, the vasorelaxation effect was similarly reduced when we specifically blocked calcium-activated potassium channel subunit alpha-1 (KCa1.1) (MaxiK; BKCa) prior to adding ACPA. Finally, ACPA-induced vasorelaxation was also diminished when we specifically blocked the calcium channel, voltage-dependent, L type, alpha 1C subunit (Ca(v)1.2). These results showed that ACPA activation of CB(1) in smooth muscle caused vasorelaxation of aortic rings through a mechanism involving the activation of K(Ca)1.1 and the inhibition of Ca(v)1.2.

  14. Investigation for the amorphous state of ER-34122, a dual 5-lipoxygenase/cyclooxygenase inhibitor with poor aqueous solubility, in HPMC solid dispersion prepared by the solvent evaporation method.

    PubMed

    Kushida, Ikuo; Gotoda, Masaharu

    2013-10-01

    ER-34122, a poorly water-soluble dual 5-lipoxygenase/cyclooxygenase inhibitor, exists as a crystalline form. According to an Oak Ridge thermal ellipsoid plot drawing, carbonyl oxygen O (5) makes an intermolecular hydrogen bond with the hydrogen bonded to N (3) in the crystal structure. The FTIR and the solid-state ¹³C NMR spectra suggest that the network is spread out in the amorphous state and the hydrogen bonding gets weaker than that in the crystalline phase, because the carbonyl signals significantly shift in both spectra. When amorphous ER-34122 was heated, crystallization occurred at around 140°C. Similar crystallization happened in the solid dispersion; however, the degree of crystallization was much lower than that observed in the pure amorphous material. Also, the DSC thermogram of the solid dispersion did not show any exothermic peaks implying crystallization. The heat of fusion (ΔHf) determined in the pure amorphous material was nearly equal to that for the crystalline form, whereas the ΔHf value obtained in the solid dispersion was less than a third of them. These data prove that crystallization of the amorphous form is dramatically restrained in the solid dispersion system. The carbonyl wavenumber shifts in the FTIR spectra indicate that the average hydrogen bond in the solid dispersion is lower than that in the pure amorphous material. Therefore, HPMC will suppress formation of the intermolecular network observed in ER-34122 crystal and preserve the amorphous state, which is thermodynamically less stable, in the solid dispersed system.

  15. In vitro metabolism of 2-[6-(4-chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl] acetic acid (licofelone, ML3000), an inhibitor of cyclooxygenase-1 and -2 and 5-lipoxygenase.

    PubMed

    Albrecht, Wolfgang; Unger, Anke; Nussler, Andreas K; Laufer, Stefan

    2008-05-01

    2-[6-(4-Chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl] acetic acid (licofelone) is a dual inhibitor of both cyclooxygenase isoforms and 5-lipoxygenase and under development for treatment of osteoarthritis. In conventional in vitro assays using liver microsomes and NADPH as cosubstrate, a high metabolic stability of licofelone was observed. In the presence of UDP-glucuronic acid, licofelone is rapidly converted into the corresponding acyl glucuronide, M1. These results are in conflict with data from clinical studies. After administration of licofelone to humans, M1 plasma concentrations were negligibly low, whereas the exposure of the hydroxy-metabolite M2 achieved values of approximately 20% compared with that of the parent drug. Metabolism studies with human hepatocytes and dual-activity assays with microsomes, which allowed the simultaneous monitoring of hydroxylation and glucuronidation reactions, were performed, and the metabolic pathway of licofelone was elucidated. After glucuronidation, predominantly catalyzed by UDP glucuronosyltransferase (UGT) isoforms UGT2B7, UGT1A9, and UGT1A3, M1 is converted into the hydroxy-glucuronide M3 in a CYP2C8-dependent reaction. The enzyme specificities were investigated using recombinant human cytochrome P450 and UGT isoforms as test systems. In vitro drug-interaction studies using the 6alpha-hydroxylation of paclitaxel as control reaction confirmed that neither licofelone nor M1 is a relevant inhibitor of CYP2C8. The formation of M3 was also observed with liver microsomes from cynomolgus monkeys, but in incubations with mouse and rat liver microsomes, M1 remained unchanged. The clinical relevance of these findings is discussed.

  16. 2-(4-(Biphenyl-4-ylamino)-6-chloropyrimidin-2-ylthio)octanoic acid (HZ52) – a novel type of 5-lipoxygenase inhibitor with favourable molecular pharmacology and efficacy in vivo

    PubMed Central

    Greiner, C; Hörnig, C; Rossi, A; Pergola, C; Zettl, H; Schubert-Zsilavecz, M; Steinhilber, D; Sautebin, L; Werz, O

    2011-01-01

    BACKGROUND AND PURPOSE 5-Lipoxygenase (5-LO) is the key enzyme in the biosynthesis of pro-inflammatory leukotrienes (LTs) representing a potential target for pharmacological intervention with inflammation and allergic disorders. Although many LT synthesis inhibitors are effective in simple in vitro test systems, they frequently fail in vivo due to lack of efficacy. Here, we attempted to assess the pharmacological potential of the previously identified 5-LO inhibitor 2-(4-(biphenyl-4-ylamino)-6-chloropyrimidin-2-ylthio)octanoic acid (HZ52). EXPERIMENTAL APPROACH We evaluated the efficacy of HZ52 in vivo using carrageenan-induced pleurisy in rats and platelet-activating factor (PAF)-induced lethal shock in mice. We also characterized 5-LO inhibition by HZ52 at the cellular and molecular level in comparison with other types of 5-LO inhibitor, that is, BWA4C, ZM230487 and hyperforin. KEY RESULTS HZ52, 1.5 mg·kg−1 i.p., prevented carrageenan-induced pleurisy accompanied by reduced LTB4 levels and protected mice (10 mg·kg−1, i.p.) against PAF-induced shock. Detailed analysis in cell-based and cell-free assays revealed that inhibition of 5-LO by HZ52 (i) does not depend on radical scavenging properties and is reversible; (ii) is not impaired by an increased peroxide tone or by elevated substrate concentrations; and (iii) is little affected by the cell stimulus or by phospholipids, glycerides, membranes or Ca2+. CONCLUSIONS AND IMPLICATIONS HZ52 is a promising new type of 5-LO inhibitor with efficacy in vivo and with a favourable pharmacological profile. It possesses a unique 5-LO inhibitory mechanism different from classical 5-LO inhibitors and seemingly lacks the typical disadvantages of former classes of LT synthesis blockers. PMID:21506958

  17. Characterization of the non-heme iron center of human 5-lipoxygenase by electron paramagnetic resonance, fluorescence, and ultraviolet-visible spectroscopy: redox cycling between ferrous and ferric states.

    PubMed

    Chasteen, N D; Grady, J K; Skorey, K I; Neden, K J; Riendeau, D; Percival, M D

    1993-09-21

    Purified human 5-lipoxygenase, a non-heme iron containing enzyme, has been characterized by electron paramagnetic resonance, (EPR), ultraviolet (UV)-visible and fluorescence spectroscopy. As isolated, the enzyme is largely in the ferrous state and shows a weak X-band EPR signal extending from 0 to 700 G at 15 K, tentatively ascribed to integer spin Fe(II). Titration of the protein with 13-HPOD (13-hydroperoxyoctadecadienoic acid) generates a strong multicomponent EPR signal in the g' approximately 6 region, a yellow color associated with an increased absorption between 310 and 450 nm (epsilon 330nm = 2400 M-1 cm-1), and a 17% decrease in the intrinsic protein fluorescence. The multiple component nature of the g' approximately 6 signal indicates that the metal center in its oxidized state exists in more than one but related forms. The g' approximately 6 EPR signal and the yellow color reach a maximum when approximately 1 mol of 13-HPOD is added/mol of iron; the resultant EPR spectrum accounts quantitatively for all of the iron in the protein with a signal at g' = 4.3 representing less than 3% of the total iron in the majority of samples. Addition of a hydroxyurea reducing agent abolished the g' approximately 6 signal and yellow color of the protein and also reversed the decrease in fluorescence caused by the oxidant 13-HPOD. The results indicate that the g' approximately 6 EPR signal, the yellow color, and the decreased fluorescence are associated with the formation of the Fe(III) form of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Molecular cloning and functional characterization of arachidonate 5-lipoxygenase (Alox5), and its expression in response to the ratio of linolenic acid to linoleic acid in diets of large yellow croaker (Larmichthys crocea).

    PubMed

    Wang, Tianjiao; Zuo, Rantao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2016-11-01

    This study was conducted to clone and functionally characterize a full-length cDNA encoding arachidonate 5-lipoxygenase (Alox5) from large yellow croaker (Larmichthys crocea) and investigate its gene expression in response to graded dietary ratio of linolenic acid (ALA) to linoleic acid (LNA) (0.03, 0.06, 0.45, 0.90 and 1.51). An isolated 2372bp cDNA clone of Alox5 contained an open reading frame spanning 2025bp encoding a protein with the ability to modify arachidonate acid (AA) to 5-hydroxyeicosatetraenoic (5-HETE). In the liver, the Alox5 mRNA expression levels significantly increased to the maximum when the dietary ALA/LNA increased from 0.03 to 0.06, and then significantly decreased with dietary ALA/LNA increased to 1.51 (P<0.05). In the kidney, the expression levels of Alox5 of fish fed diets with low dietary ALA/LNA (0.03-0.06) were significantly higher than those of fish fed diets with high dietary ALA/LNA (0.45-1.51) (P<0.05). The dual-luciferase reporter assays showed that the nuclear factor kappa B (NF-κB) could act on cognate cis-acting elements in the promoter of Alox5 and increased the transcription of Alox5. Results of the present study suggested that the expression of Alox5 is higher in croakers fed high concentrations of LNA compared to those fed high concentrations of ALA, which might be regulated by NF-κB and contribute to the inflammation process by catalyzing the dioxygenation of AA.

  19. 5-Lipoxygenase-mediated endogenous DNA damage.

    PubMed

    Jian, Wenying; Lee, Seon Hwa; Williams, Michelle V; Blair, Ian A

    2009-06-19

    Lipoxygenases (LOs) convert polyunsaturated fatty acids into lipid hydroperoxides. Homolytic decomposition of lipid hydroperoxides gives rise to endogenous genotoxins such as 4-oxo-2(E)-nonenal, which cause the formation of mutagenic DNA adducts. Chiral lipidomics analysis was employed to show that a 5-LO-derived lipid hydroperoxide was responsible for endogenous DNA-adduct formation. The study employed human lymphoblastoid CESS cells, which expressed both 5-LO and the required 5-LO-activating protein (FLAP). The major lipid peroxidation product was 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid, which was analyzed as its reduction product, 5(S)-hydroxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid (5(S)-HETE)). Concentrations of 5(S)-HETE increased from 0.07 +/- 0.01 to 45.50 +/- 4.05 pmol/10(7) cells upon stimulation of the CESS cells with calcium ionophore A23187. There was a concomitant increase in the 4-oxo-2(E)-nonenal-derived DNA-adduct, heptanone-etheno-2'-deoxyguanosine (HepsilondGuo) from 2.41 +/- 0.35 to 6.31 +/- 0.73 adducts/10(7) normal bases. Biosynthesis of prostaglandins, 11(R)-hydroxy-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid, and 15(R,S)-hydroxy-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid revealed that there was cyclooxygenase (COX) activity in the CESS cells. Western blot analysis revealed that COX-1 was expressed by the cells, but there was no COX-2 or 15-LO-1. FLAP inhibitor reduced HepsilondGuo-adducts and 5(S)-HETE to basal levels. In contrast, aspirin, which had no effect on 5(S)-HETE, blocked the formation of prostaglandins, 15-HETE, and 11-HETE but did not inhibit HepsilondGuo-adduct formation. These data showed that 5-LO was the enzyme responsible for the generation of the HepsilondGuo DNA-adduct in CESS cells.

  20. Interactions between 5-Lipoxygenase Polymorphisms and Adipose Tissue Contents of Arachidonic and Eicosapentaenoic Acids Do Not Affect Risk of Myocardial Infarction in Middle-Aged Men and Women in a Danish Case-Cohort Study.

    PubMed

    Gammelmark, Anders; Lundbye-Christensen, Søren; Tjønneland, Anne; Schmidt, Erik B; Overvad, Kim; Nielsen, Michael S

    2017-07-01

    Background: The 5-lipoxygenase pathway has been linked to atherothrombotic disease, and a functional tandem repeat polymorphism in the arachidonate lipoxygenase-5 (ALOX-5) gene has been associated with the risk of myocardial infarction (MI). Interestingly, 2 studies have reported an interaction between dietary intakes of the ALOX-5 substrates, arachidonic acid (AA) and eicosapentaenoic acid (EPA), and genotype.Objective: We investigated whether the interactions between the ALOX-5 tandem repeat polymorphism (rs59439148) and adipose tissue AA and EPA were associated with incident MI.Methods: In the Danish Diet, Cancer and Health study, we conducted a case-cohort study including 3089 participants with incident MI identified from national registries and a randomly selected subcohort of 3000 participants. Participants were men and women with a median age of 56 y at baseline and no previous history of cancer. Adipose tissue and blood samples were collected at baseline along with comprehensive questionnaires on lifestyle and demographic data. The ALOX-5 tandem repeat polymorphism was genotyped by multititer plate sequencing. Associations were analyzed by using Cox proportional hazards models.Results: We observed a higher risk of MI for homozygous carriers of the variant alleles in the fifth quintile of AA content than for the reference group with the lowest quintile of AA and carrying the wild-type allele (HR: 3.02; 95% CI: 1.41, 6.44). In contrast, homozygotes for the variant alleles tended to have a higher risk of MI when comparing the lowest quintile of EPA content with the reference group with the highest quintile of EPA and carrying the wild-type allele (HR: 2.15; 95% CI: 0.91, 5.09; P = 0.08). Although our results suggested interactions between the polymorphism and adipose tissue AA and EPA, a quantitative evaluation of interaction by calculating the relative excess risk due to interactions was not significant.Conclusions: Adipose tissue EPA and AA and the ALOX-5

  1. 7 CFR 1c.116 - General requirements for informed consent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... may involve a human being as a subject in research covered by this policy unless the investigator has... 7 Agriculture 1 2012-01-01 2012-01-01 false General requirements for informed consent. 1c.116 Section 1c.116 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.116...

  2. 7 CFR 1c.116 - General requirements for informed consent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... may involve a human being as a subject in research covered by this policy unless the investigator has... 7 Agriculture 1 2013-01-01 2013-01-01 false General requirements for informed consent. 1c.116 Section 1c.116 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.116...

  3. 7 CFR 1c.116 - General requirements for informed consent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... may involve a human being as a subject in research covered by this policy unless the investigator has... 7 Agriculture 1 2011-01-01 2011-01-01 false General requirements for informed consent. 1c.116 Section 1c.116 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.116...

  4. 7 CFR 1c.116 - General requirements for informed consent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... may involve a human being as a subject in research covered by this policy unless the investigator has... 7 Agriculture 1 2014-01-01 2014-01-01 false General requirements for informed consent. 1c.116 Section 1c.116 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.116...

  5. Paresev 1-C Inflatable Wing

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Aboard a truck and ready for a test flight is the Paresev 1-C on the ramp at the NASA Flight Research Center, Edwards, California. The half-scale version of the inflatable Gemini parawing was pre-flighted by being carried across the Rosamond dry lakebed on the back of a truck before a tow behind an International Harvester Carry- All. The inflatable center spar ran fore and aft and measured 191 inches, two other inflatable spars formed the leading edges. The three compartments were filled with nitrogen under pressure to make them rigid. The Paresev 1-C was very unstable in flight with this configuration.

  6. Involvement of alpha-PAK-interacting exchange factor in the PAK1-c-Jun NH(2)-terminal kinase 1 activation and apoptosis induced by benzo[a]pyrene.

    PubMed

    Yoshii, S; Tanaka, M; Otsuki, Y; Fujiyama, T; Kataoka, H; Arai, H; Hanai, H; Sugimura, H

    2001-10-01

    Benzo[a]pyrene [B(a)P], a potent procarcinogen found in combustion products such as diesel exhaust and cigarette smoke, has been recently shown to activate the c-Jun NH(2)-terminal kinase 1 (JNK1) and induce caspase-3-mediated apoptosis in Hepa1c1c7 cells. However, the molecules of the signaling pathway that control the mitogen-activated protein kinase cascades induced by B(a)P and the interaction between those and apoptosis by B(a)P have not been well defined. We report here that B(a)P promoted Cdc42/Rac1, p21-activated kinase 1 (PAK1), and JNK1 activities in 293T and HeLa cells. Moreover, alpha-PAK-interacting exchange factor (alpha PIX) mRNA and its protein expression were upregulated by B(a)P. While overexpression of an active mutant of alpha PIX (DeltaCH) facilitated B(a)P-induced activation of Cdc42/Rac1, PAK1, and JNK1, overexpression of mutated alphaPIX (L383R, L384S), which lacks guanine nucleotide exchange factor activity, SH3 domain-deleted alphaPIX (Delta SH3), which lacks the ability to bind PAK, kinase-negative PAK1 (K299R), and kinase-negative SEK1 (K220A, K224L) inhibited B(a)P-triggered JNK1 activation. Interestingly, overexpression of alphaPIX (Delta CH) and a catalytically active mutant PAK1 (T423E) accelerated B(a)P-induced apoptosis in HeLa cells, whereas alphaPIX (Delta SH3), PAK1 (K299R), and SEK 1 (K220A, K224L) inhibited B(a)P-initiated apoptosis. Finally, a preferential caspase inhibitor, Z-Asp-CH2-DCB, strongly blocked the alphaPIX (Delta CH)-enhanced apoptosis in cells treated with B(a)P but did not block PAK1/JNK1 activation. Taken together, these results indicate that alphaPIX plays a crucial role in B(a)P-induced apoptosis through activation of the JNK1 pathway kinases.

  7. Overexpression of the Epidermis-Specific Homeodomain-Leucine Zipper IV Transcription Factor OUTER CELL LAYER1 in Maize Identifies Target Genes Involved in Lipid Metabolism and Cuticle Biosynthesis1[C][W

    PubMed Central

    Javelle, Marie; Vernoud, Vanessa; Depège-Fargeix, Nathalie; Arnould, Christine; Oursel, Delphine; Domergue, Frédéric; Sarda, Xavier; Rogowsky, Peter M.

    2010-01-01

    Transcription factors of the homeodomain-leucine zipper IV (HD-ZIP IV) family play crucial roles in epidermis-related processes. To gain further insight into the molecular function of OUTER CELL LAYER1 (OCL1), 14 target genes up- or down-regulated in transgenic maize (Zea mays) plants overexpressing OCL1 were identified. The 14 genes all showed partial coexpression with OCL1 in maize organs, and several of them shared preferential expression in the epidermis with OCL1. They encoded proteins involved in lipid metabolism, defense, envelope-related functions, or cuticle biosynthesis and include ZmWBC11a (for white brown complex 11a), an ortholog of AtWBC11 involved in the transport of wax and cutin molecules. In support of the annotations, OCL1-overexpressing plants showed quantitative and qualitative changes of cuticular wax compounds in comparison with wild-type plants. An increase in C24 to C28 alcohols was correlated with the transcriptional up-regulation of ZmFAR1, coding for a fatty acyl-coenzyme A reductase. Transcriptional activation of ZmWBC11a by OCL1 was likely direct, since transactivation in transiently transformed maize kernels was abolished by a deletion of the activation domain in OCL1 or mutations in the L1 box, a cis-element bound by HD-ZIP IV transcription factors. Our data demonstrate that, in addition to AP2/EREBP and MYB-type transcription factors, members of the HD-ZIP IV family contribute to the transcriptional regulation of genes involved in cuticle biosynthesis. PMID:20605912

  8. Seedling Lethal1, a Pentatricopeptide Repeat Protein Lacking an E/E+ or DYW Domain in Arabidopsis, Is Involved in Plastid Gene Expression and Early Chloroplast Development1[C][W

    PubMed Central

    Pyo, Young Jae; Kwon, Kwang-Chul; Kim, Anna; Cho, Myeon Haeng

    2013-01-01

    Chloroplasts are the site of photosynthesis and the biosynthesis of essential metabolites, including amino acids, fatty acids, and secondary metabolites. It is known that many seedling-lethal mutants are impaired in chloroplast function or development, indicating the development of functional chloroplast is essential for plant growth and development. Here, we isolated a novel transfer DNA insertion mutant, dubbed sel1 (for seedling lethal1), that exhibited a pigment-defective and seedling-lethal phenotype with a disrupted pentatricopeptide repeat (PPR) gene. Sequence analysis revealed that SEL1 is a member of the PLS subgroup, which is lacking known E/E+ or DYW domains at the C terminus, in the PLS subfamily of the PPR protein family containing a putative N-terminal transit peptide and 14 putative PPR or PPR-like motifs. Confocal microscopic analysis showed that the SEL1-green fluorescent protein fusion protein is localized in chloroplasts. Transmission electron microscopic analysis revealed that the sel1 mutant is impaired in the etioplast, as well as in chloroplast development. In sel1 mutants, plastid-encoded proteins involved in photosynthesis were rarely detected due to the lack of the corresponding transcripts. Furthermore, transcript profiles of plastid genes revealed that, in sel1 mutants, the transcript levels of plastid-encoded RNA polymerase-dependent genes were greatly reduced, but those of nuclear-encoded RNA polymerase-dependent genes were increased or not changed. Additionally, the RNA editing of two editing sites of the acetyl-CoA carboxylase beta subunit gene transcripts in the sel1 mutant was compromised, though it is not directly connected with the sel1 mutant phenotype. Our results demonstrate that SEL1 is involved in the regulation of plastid gene expression required for normal chloroplast development. PMID:24144791

  9. Synthesis, SAR, and series evolution of novel oxadiazole-containing 5-lipoxygenase activating protein inhibitors: discovery of 2-[4-(3-{(r)-1-[4-(2-amino-pyrimidin-5-yl)-phenyl]-1-cyclopropyl-ethyl}-[1,2,4]oxadiazol-5-yl)-pyrazol-1-yl]-N,N-dimethyl-acetamide (BI 665915).

    PubMed

    Takahashi, Hidenori; Riether, Doris; Bartolozzi, Alessandra; Bosanac, Todd; Berger, Valentina; Binetti, Ralph; Broadwater, John; Chen, Zhidong; Crux, Rebecca; De Lombaert, Stéphane; Dave, Rajvee; Dines, Jonathon A; Fadra-Khan, Tazmeen; Flegg, Adam; Garrigou, Michael; Hao, Ming-Hong; Huber, John; Hutzler, J Matthew; Kerr, Steven; Kotey, Adrian; Liu, Weimin; Lo, Ho Yin; Loke, Pui Leng; Mahaney, Paige E; Morwick, Tina M; Napier, Spencer; Olague, Alan; Pack, Edward; Padyana, Anil K; Thomson, David S; Tye, Heather; Wu, Lifen; Zindell, Renee M; Abeywardane, Asitha; Simpson, Thomas

    2015-02-26

    The synthesis, structure-activity relationship (SAR), and evolution of a novel series of oxadiazole-containing 5-lipoxygenase-activating protein (FLAP) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent FLAP binding potency (IC50 < 10 nM) and potent inhibition of LTB4 synthesis in human whole blood (IC50 < 100 nM). Optimization of binding and functional potencies, as well as physicochemical properties resulted in the identification of compound 69 (BI 665915) that demonstrated an excellent cross-species drug metabolism and pharmacokinetics (DMPK) profile and was predicted to have low human clearance. In addition, 69 was predicted to have a low risk for potential drug-drug interactions due to its cytochrome P450 3A4 profile. In a murine ex vivo whole blood study, 69 demonstrated a linear dose-exposure relationship and a dose-dependent inhibition of LTB4 production.

  10. A1C Test and Diabetes

    MedlinePlus

    ... Diagnosis The A1C Test & Diabetes The A1C Test & Diabetes What is the A1C test? The A1C test ... A1C test be used to diagnose type 2 diabetes and prediabetes? Yes. In 2009, an international expert ...

  11. Blood Test: Hemoglobin A1C

    MedlinePlus

    ... TV, Video Games, and the Internet Blood Test: Hemoglobin A1c KidsHealth > For Parents > Blood Test: Hemoglobin A1c Print A A A What's in this ... de sangre: hemoglobina A1c What It Is A hemoglobin A1c (HbA1c) test is used to monitor long- ...

  12. Blood Test: Hemoglobin A1C

    MedlinePlus

    ... Your 1- to 2-Year-Old Blood Test: Hemoglobin A1c KidsHealth > For Parents > Blood Test: Hemoglobin A1c A A A What's in this article? ... de sangre: hemoglobina A1c What It Is A hemoglobin A1c (HbA1c) test is used to monitor long- ...

  13. Cross Talk among Calcium, Hydrogen Peroxide, and Nitric Oxide and Activation of Gene Expression Involving Calmodulins and Calcium-Dependent Protein Kinases in Ulva compressa Exposed to Copper Excess1[C][W][OA

    PubMed Central

    González, Alberto; Cabrera, M. de los Ángeles; Henríquez, M. Josefa; Contreras, Rodrigo A.; Morales, Bernardo; Moenne, Alejandra

    2012-01-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H2O2) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H2O2, ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H2O2 increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H2O2 accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H2O2. In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H2O2, and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein kinases. PMID:22234999

  14. Involvement of calcium in macrophage leukotriene release during experimental cirrhosis.

    PubMed

    Alric, L; Pinelli, E; Carrera, G; Vinel, J P; Beraud, M; Duffaut, M; Pascal, J P; Pipy, B

    1996-03-01

    The aim of the present study was to assess the mechanism of 5-lipoxygenase metabolites (LT) secretion by peritoneal macrophages in rats wih CC14 induced cirrhosis. After stimulation with calcium ionophore A23187 or opsonized zymosan, [3H] arachidonic acid labeled macrophages from cirrhotic rats presented a significantly greater secretion of LT than macrophages from healthy controls. In addition, the phorbol ester TPA (protein kinase C activator) increased LT production only in macrophages from cirrhotic animals and not in controls. Although Ca2+ is thought to be involved in 5 lipoxygenase activation, the role of Ca2+ in LT production was studied. The use of a Ca2+-free medium as well as the addition of TMB-8 (an inhibitor of intra-cellular Ca2+ movements and of plasma membrane Ca2+ fluxes) resulted in a fall in LT production greater for macrophages from cirrhotic animals than for controls. The measurement of cytosolic Ca2+ concentration by cytofluorimetry showed that Fluo-3 loaded macrophages from cirrhotic rats had a greater cytosolic CA2+ concentration than macrophages from control animals both in basal conditions and after A23187 stimulation. Study of 45Ca2+ uptake suggest, that extra-cellular Ca2+ is implicated in the elevated cytosolic Ca2+ observed in macrophages from cirrhotic animals as compared to healthy controls. The greater Ca2+ concentration observed in macrophages from cirrhotic rats was not related to a difference in phospholipase C activation because inositol phosphate production did not differ between macrophages from healthy and cirrhotic animals. Taken together these results suggest that as compared to healthy animals, the greater LT production during cirrhosis could be dependent upon a difference in 5-lipoxygenase activation related to a rise in cytosolic Ca2+ concentration independently of inositol phosphates generation.

  15. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    PubMed Central

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  16. 9 CFR 73.1c - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Definitions. 73.1c Section 73.1c Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.1c...

  17. 9 CFR 73.1c - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Definitions. 73.1c Section 73.1c Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.1c...

  18. 9 CFR 73.1c - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Definitions. 73.1c Section 73.1c Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.1c...

  19. 9 CFR 73.1c - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Definitions. 73.1c Section 73.1c Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.1c...

  20. 9 CFR 73.1c - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Definitions. 73.1c Section 73.1c Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.1c...

  1. 7 CFR 1c.107 - IRB membership.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false IRB membership. 1c.107 Section 1c.107 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.107 IRB membership. (a) Each IRB shall have at least five members, with varying backgrounds to promote complete and adequate review...

  2. 7 CFR 1c.107 - IRB membership.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false IRB membership. 1c.107 Section 1c.107 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.107 IRB membership. (a) Each IRB shall have at least five members, with varying backgrounds to promote complete and adequate review...

  3. 5-Lipoxygenase-activating protein (FLAP) inhibitors. Part 4: development of 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic acid (AM803), a potent, oral, once daily FLAP inhibitor.

    PubMed

    Stock, Nicholas S; Bain, Gretchen; Zunic, Jasmine; Li, Yiwei; Ziff, Jeannie; Roppe, Jeffrey; Santini, Angelina; Darlington, Janice; Prodanovich, Pat; King, Christopher D; Baccei, Christopher; Lee, Catherine; Rong, Haojing; Chapman, Charles; Broadhead, Alex; Lorrain, Dan; Correa, Lucia; Hutchinson, John H; Evans, Jilly F; Prasit, Peppi

    2011-12-08

    The potent 5-lipoxygenase-activating protein (FLAP) inhibitor 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic acid 11cc is described (AM803, now GSK2190915). Building upon AM103 (1) (Hutchinson et al. J. Med Chem.2009, 52, 5803-5815; Stock et al. Bioorg. Med. Chem. Lett. 2010, 20, 213-217; Stock et al. Bioorg. Med. Chem. Lett.2010, 20, 4598-4601), SAR studies centering around the pyridine moiety led to the discovery of compounds that exhibit significantly increased potency in a human whole blood assay measuring LTB(4) inhibition with longer drug preincubation times (15 min vs 5 h). Further studies identified 11cc with a potency of 2.9 nM in FLAP binding, an IC(50) of 76 nM for inhibition of LTB(4) in human blood (5 h incubation) and excellent preclinical toxicology and pharmacokinetics in rat and dog. 11cc also demonstrated an extended pharmacodynamic effect in a rodent bronchoalveolar lavage (BAL) model. This compound has successfully completed phase 1 clinical studies in healthy volunteers and is currently undergoing phase 2 trials in asthmatic patients.

  4. Possible Fengyun-1C debris fall

    NASA Astrophysics Data System (ADS)

    Golebiewska, J.; Nowak, M.; Muszyński, A.; Wnuk, E.

    2017-05-01

    A fall of small objects took place on 27th April 2012 in Wargowo village near Oborniki, about 25 km NW from Poznań (Poland). There was only one eye-witness of the fall, who found two separate pieces (ca. 2.7 cm and ca. 2 cm), with several small additional fragments. After microscopic observations and chemical analysis a meteoritic origin of these objects was excluded. They are identified as space debris, therefore man-made. The most probable source of the observed fall was space debris 35127 Fengyun 1C DEB, created during destruction of the Chinese weather satellite Fengyun-1C (FY-1C).

  5. Minimum variance and variance of outgoing quality limit MDS-1(c1, c2) plans

    NASA Astrophysics Data System (ADS)

    Raju, C.; Vidya, R.

    2016-06-01

    In this article, the outgoing quality (OQ) and total inspection (TI) of multiple deferred state sampling plans MDS-1(c1,c2) are studied. It is assumed that the inspection is rejection rectification. Procedures for designing MDS-1(c1,c2) sampling plans with minimum variance of OQ and TI are developed. A procedure for obtaining a plan for a designated upper limit for the variance of the OQ (VOQL) is outlined.

  6. Description of the L1C signal

    USGS Publications Warehouse

    Betz, J.W.; Blanco, M.A.; Cahn, C.R.; Dafesh, P.A.; Hegarty, C.J.; Hudnut, K.W.; Kasemsri, V.; Keegan, R.; Kovach, K.; Lenahan, L.S.; Ma, H.H.; Rushanan, J.J.; Sklar, D.; Stansell, T.A.; Wang, C.C.; Yi, S.K.

    2006-01-01

    Detailed design of the modernized LI civil signal (L1C) signal has been completed, and the resulting draft Interface Specification IS-GPS-800 was released in Spring 2006. The novel characteristics of the optimized L1C signal design provide advanced capabilities while offering to receiver designers considerable flexibility in how to use these capabilities. L1C provides a number of advanced features, including: 75% of power in a pilot component for enhanced signal tracking, advanced Weilbased spreading codes, an overlay code on the pilot that provides data message synchronization, support for improved reading of clock and ephemeris by combining message symbols across messages, advanced forward error control coding, and data symbol interleaving to combat fading. The resulting design offers receiver designers the opportunity to obtain unmatched performance in many ways. This paper describes the design of L1C. A summary of LIC's background and history is provided. The signal description then proceeds with the overall signal structure consisting of a pilot component and a carrier component. The new L1C spreading code family is described, along with the logic used for generating these spreading codes. Overlay codes on the pilot channel are also described, as is the logic used for generating the overlay codes. Spreading modulation characteristics are summarized. The data message structure is also presented, showing the format for providing time, ephemeris, and system data to users, along with features that enable receivers to perform code combining. Encoding of rapidly changing time bits is described, as are the Low Density Parity Check codes used for forward error control of slowly changing time bits, clock, ephemeris, and system data. The structure of the interleaver is also presented. A summary of L 1C's unique features and their benefits is provided, along with a discussion of the plan for L1C implementation.

  7. L1C signal design options

    USGS Publications Warehouse

    Betz, J.W.; Cahn, C.R.; Dafesh, P.A.; Hegarty, C.J.; Hudnut, K.W.; Jones, A.J.; Keegan, R.; Kovach, K.; Lenahan, L.S.; Ma, H.H.; Rushanan, J.J.; Stansell, T.A.; Wang, C.C.; Yi, S.K.

    2006-01-01

    Design activities for a new civil signal centered at 1575.42 MHz, called L1C, began in 2003, and the Phase 1 effort was completed in 2004. The L1C signal design has evolved and matured during a Phase 2 design activity that began in 2005. Phase 2 has built on the initial design activity, guided by responses to international user surveys conducted during Phase 1. A common core of signal characteristics has been developed to provide advances in robustness and performance. The Phase 2 activity produced five design options, all drawing upon the core signal characteristics, while representing different blends of characteristics and capabilities. A second round of international user surveys was completed to solicit advice concerning these design options. This paper provides an update of the L1C design process, and describes the current L1C design options. Initial performance estimates are presented for each design option, displaying trades between signal tracking robustness, the speed and robustness of clock and ephemeris data, and the rate and robustness of other data message contents. Planned remaining activities are summarized, leading to optimization of the L1C design.

  8. 7 CFR 1c.102 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.102 Definitions. (a) Department or..., Wage and Hour requirements administered by the Department of Labor). (f) Human subject means a living... manipulations of the subject or the subject's environment that are performed for research purposes. Interaction...

  9. 7 CFR 1c.102 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.102 Definitions. (a) Department or..., Wage and Hour requirements administered by the Department of Labor). (f) Human subject means a living... manipulations of the subject or the subject's environment that are performed for research purposes. Interaction...

  10. 7 CFR 1c.107 - IRB membership.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.107 IRB membership. (a) Each IRB... the experience and expertise of its members, and the diversity of the members, including consideration... promote respect for its advice and counsel in safeguarding the rights and welfare of human subjects. In...

  11. SREBP-1c regulates glucose-stimulated hepatic clusterin expression

    SciTech Connect

    Kim, Gukhan; Kim, Geun Hyang; Oh, Gyun-Sik; Yoon, Jin; Kim, Hae Won; Kim, Min-Seon; Kim, Seung-Whan

    2011-05-20

    Highlights: {yields} This is the first report to show nutrient-regulated clusterin expression. {yields} Clusterin expression in hepatocytes was increased by high glucose concentration. {yields} SREBP-1c is directly involved in the transcriptional activation of clusterin by glucose. {yields} This glucose-stimulated activation process is mediated through tandem E-box motifs. -- Abstract: Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.

  12. The roles of AKR1C1 and AKR1C2 in ethyl-3,4-dihydroxybenzoate induced esophageal squamous cell carcinoma cell death

    PubMed Central

    Zhou, Dianrong; Lou, Xiaomin; Xu, Yang; Liu, Siqi; Zhao, Xiaohang

    2016-01-01

    The aldo-keto reductase (AKR) superfamily of enzymes is critical for the detoxification of drugs and toxins in the human body; these enzymes are involved not only in the development of drug resistance in cancer cells but also in the metabolism of polycyclic aromatic hydrocarbons. Here, we demonstrated that AKR1C1/C2 increased the metabolism of ethyl-3,4-dihydroxybenzoate (EDHB) in esophageal squamous cell carcinoma (ESCC) cells. Previous studies have shown that EDHB can effectively induce esophageal cancer cell autophagy and apoptosis, and the AKR1C family represents one set of highly expressed genes after EDHB treatment. To explore the cytotoxic effects of EDHB, esophageal cancer cells with higher (KYSE180) or lower (KYSE510) AKR1C expression levels were evaluated in this study. The proliferation of KYSE180 cells was inhibited more effectively than that of KYSE510 cells by EDHB treatment. Furthermore, the effective subunits of the AKR superfamily, AKR1C1/C2, were quantitatively identified using multiple reaction monitoring (MRM) assays. The sensitivity of esophageal cancer cells to EDHB was significantly attenuated by the siRNA knockdown of AKR1C1/C2. Moreover, the expression of autophagy inducers (Beclin, LC3II and BNIP3) and NDRG1 was significantly elevated in KYSE180 cells, but not in KYSE510 cells, after EDHB treatment. When autophagy was inhibited by 3-methyladenine, KYSE180 cells exhibited an increased sensitivity to EDHB, which may be a metabolic substrate of AKR1C1/C2. These results indicated that ESCC patients with high AKR1C1/C2 expression may be more sensitive to EDHB, and AKR1C1/C2 may facilitate EDHB-induced autophagy and apoptosis, thus providing potential guidance for the chemoprevention of ESCC. PMID:26934124

  13. Point-of-Care Hemoglobin A1c Testing: An Evidence-Based Analysis.

    PubMed

    2014-01-01

    The increasing prevalence of diabetes in Ontario means that there will be growing demand for hemoglobin A1c (HbA1c) testing to monitor glycemic control for the management of this chronic disease. Testing HbA1c where patients receive their diabetes care may improve system efficiency if the results from point-of-care HbA1c testing are comparable to those from laboratory HbA1c measurements. To review the correlation between point-of-care HbA1c testing and laboratory HbA1c measurement in patients with diabetes in clinical settings. The literature search included studies published between January 2003 and June 2013. Search terms included glycohemoglobin, hemoglobin A1c, point of care, and diabetes. Studies were included if participants had diabetes; if they compared point-of-care HbA1c devices (licensed by Health Canada and available in Canada) with laboratory HbA1c measurement (reference method); if they performed point-of-care HbA1c testing using capillary blood samples (finger pricks) and laboratory HbA1c measurement using venous blood samples within 7 days; and if they reported a correlation coefficient between point-of-care HbA1c and laboratory HbA1c results. Three point-of-care HbA1c devices were reviewed in this analysis: Bayer's A1cNow+, Bio-Rad's In2it, and Siemens' DCA Vantage. Five observational studies met the inclusion criteria. The pooled results showed a positive correlation between point-of-care HbA1c testing and laboratory HbA1c measurement (correlation coefficient, 0.967; 95% confidence interval, 0.960-0.973). Outcomes were limited to the correlation coefficient, as this was a commonly reported measure of analytical performance in the literature. Results should be interpreted with caution due to risk of bias related to selection of participants, reference standards, and the multiple steps involved in POC HbA1c testing. Moderate quality evidence showed a positive correlation between point-of-care HbA1c testing and laboratory HbA1c measurement. Five

  14. Increased hemoglobin A1c threshold for prediabetes remarkably improving the agreement between A1c and oral glucose tolerance test criteria in obese population.

    PubMed

    Li, Jie; Ma, Hao; Na, Lixin; Jiang, Shuo; Lv, Lin; Li, Gang; Zhang, Wei; Na, Guanqiong; Li, Ying; Sun, Changhao

    2015-05-01

    It is unclear why the prevalence of diabetes and prediabetes, especially prediabetes, between diagnosed by oral glucose tolerance test (OGTT) and hemoglobin A1c (HbA1c) criteria, is substantially discordant. We aimed to evaluate the effects of obesity on the agreement between HbA1c and OGTT for diagnosing diabetes and prediabetes and identify the optimal HbA1c cutoff values in different body mass index (BMI) classifications. In a population-based, cross-sectional study in Harbin, China, 4325 individuals aged 20-74 years without a prior diagnosed diabetes were involved in this study. measure The performance and optimal cutoff points of HbA1c were assessed by receiver-operating characteristic curve. The contribution of BMI to HbA1c was analyzed by structural equational model. The agreement between HbA1c criteria and OGTT decreased with BMI gain (κ = 0.359, 0.312, and 0.275 in a normal weight, overweight, and obese population, respectively). The structural equational model results showed that BMI was significantly associated with HbA1c in normal glucose tolerance and prediabetes subjects but not in diabetes subjects. At a specificity of 80% for prediabetes and 97.5% for diabetes, the optimal HbA1c cutoff points for prediabetes and diabetes were 5.6% and 6.4% in normal-weight, 5.7% and 6.5% in overweight, and 6.0% and 6.5% in an obese population. When the new HbA1c cutoff values were used, the agreement in obese subjects increased almost to the level in normal-weight subjects. The poor agreement between HbA1c and OGTT criteria in an obese population can be significantly improved through increasing the HbA1c threshold for prediabetes.

  15. Grumman OV-1C in hangar

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Grumman OV-1C in the hangar used at the time by the Army at Edwards Air Force Base. This OV-1C Mohawk, serial #67-15932, was used in a joint NASA/US Army Aviation Engineering Flight Activity (USAAEFA) program to study a stall-speed warning system in the early 1980s. NASA designed and built an automated stall-speed warning system which presented both airspeed and stall speed to the pilot. Visual indication of impending stall would be displayed to the pilot as a cursor or pointer located on a conventional airspeed indicator. In addition, an aural warning at predetermined stall margins was presented to the pilot through a voice synthesizer. The Mohawk was developed by Grumman Aircraft as a photo observation and electronic reconnaissance aircraft for the US Marines and the US Army. The OV-1 entered production in October 1959 and served the US Army in Europe, Korea, the Viet Nam War, Central and South America, Alaska, and during Desert Shield/Desert Storm in the Middle East. The Mohawk was retired from service in September 1996. 133 OV-1Cs were built, the 'C' designating the model which used an IR (infrared) imaging system to provide reconnaissance.

  16. Grumman OV-1C in flight

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Grumman OV-1C in flight. This OV-1C Mohawk, serial #67-15932, was used in a joint NASA/US Army Aviation Engineering Flight Activity (USAAEFA) program to study a stall-speed warning system in the early 1980s. NASA designed and built an automated stall-speed warning system which presented both airspeed and stall speed to the pilot. Visual indication of impending stall would be displayed to the pilot as a cursor or pointer located on a conventional airspeed indicator. In addition, an aural warning at predetermined stall margins was presented to the pilot through a voice synthesizer. The Mohawk was developed by Grumman Aircraft as a photo observation and reconnaissance aircraft for the US Marines and the US Army. The OV-1 entered production in October 1959 and served the US Army in Europe, Korea, the Viet Nam War, Central and South America, Alaska, and during Desert Shield/Desert Storm in the Middle East. The Mohawk was retired from service in September 1996. 133 OV-1Cs were built, the 'C' designating the model which used an IR (infrared) imaging system to provide reconnaissance.

  17. Hyperspectral IASI L1C Data Compression

    PubMed Central

    García-Sobrino, Joaquín; Serra-Sagristà, Joan; Bartrina-Rapesta, Joan

    2017-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI), implemented on the MetOp satellite series, represents a significant step forward in atmospheric forecast and weather understanding. The instrument provides infrared soundings of unprecedented accuracy and spectral resolution to derive humidity and atmospheric temperature profiles, as well as some of the chemical components playing a key role in climate monitoring. IASI collects rich spectral information, which results in large amounts of data (about 16 Gigabytes per day). Efficient compression techniques are requested for both transmission and storage of such huge data. This study reviews the performance of several state of the art coding standards and techniques for IASI L1C data compression. Discussion embraces lossless, near-lossless and lossy compression. Several spectral transforms, essential to achieve improved coding performance due to the high spectral redundancy inherent to IASI products, are also discussed. Illustrative results are reported for a set of 96 IASI L1C orbits acquired over a full year (4 orbits per month for each IASI-A and IASI-B from July 2013 to June 2014) . Further, this survey provides organized data and facts to assist future research and the atmospheric scientific community. PMID:28621705

  18. Antiferromagnetic resonance in Rb1C60

    NASA Astrophysics Data System (ADS)

    Bennati, M.; Griffin, R. G.; Knorr, S.; Grupp, A.; Mehring, M.

    1998-08-01

    High-frequency (94 and 140 GHz) ESR was used to investigate the magnetic properties of the low-dimensional conductor Rb1C60. Below 35 K new features of the electron spin resonance are distinguished from the CESR signal of the conducting phase. The analysis of the resonance linewidth and line shift allows a clear identification of a frequency-dependent antiferromagnetic resonance line (AFMR) below 25 K. The characteristic temperature TN for the ordering transition is 25 K. Between 25 K

  19. Docosahexaenoic acid inhibits proteolytic processing of sterol regulatory element-binding protein-1c (SREBP-1c) via activation of AMP-activated kinase.

    PubMed

    Deng, Xiong; Dong, Qingming; Bridges, Dave; Raghow, Rajendra; Park, Edwards A; Elam, Marshall B

    2015-12-01

    In hyperinsulinemic states including obesity and T2DM, overproduction of fatty acid and triglyceride contributes to steatosis of the liver, hyperlipidemia and hepatic insulin resistance. This effect is mediated in part by the transcriptional regulator sterol responsive element binding protein-1c (SREBP-1c), which stimulates the expression of genes involved in hepatic fatty acid and triglyceride synthesis. SREBP-1c is up regulated by insulin both via increased transcription of nascent full-length SREBP-1c and by enhanced proteolytic processing of the endoplasmic reticulum (ER)-bound precursor to yield the transcriptionally active n-terminal form, nSREBP-1c. Polyunsaturated fatty acids of marine origin (n-3 PUFA) prevent induction of SREBP-1c by insulin thereby reducing plasma and hepatic triglycerides. Despite widespread use of n-3 PUFA supplements to reduce triglycerides in clinical practice, the exact mechanisms underlying their hypotriglyceridemic effect remain elusive. Here we demonstrate that the n-3 PUFA docosahexaenoic acid (DHA; 22:5 n-3) reduces nSREBP-1c by inhibiting regulated intramembrane proteolysis (RIP) of the nascent SREBP-1c. We further show that this effect of DHA is mediated both via activation of AMP-activated protein kinase (AMPK) and by inhibition of mechanistic target of rapamycin complex 1 (mTORC1). The inhibitory effect of AMPK on SREBP-1c processing is linked to phosphorylation of serine 365 of SREBP-1c in the rat. We have defined a novel regulatory mechanism by which n-3 PUFA inhibit induction of SREBP-1c by insulin. These findings identify AMPK as an important negative regulator of hepatic lipid synthesis and as a potential therapeutic target for hyperlipidemia in obesity and T2DM.

  20. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress

    PubMed Central

    Zaugg, Kathrin; Yao, Yi; Reilly, Patrick T.; Kannan, Karuppiah; Kiarash, Reza; Mason, Jacqueline; Huang, Ping; Sawyer, Suzanne K.; Fuerth, Benjamin; Faubert, Brandon; Kalliomäki, Tuula; Elia, Andrew; Luo, Xunyi; Nadeem, Vincent; Bungard, David; Yalavarthi, Sireesha; Growney, Joseph D.; Wakeham, Andrew; Moolani, Yasmin; Silvester, Jennifer; Ten, Annick You; Bakker, Walbert; Tsuchihara, Katsuya; Berger, Shelley L.; Hill, Richard P.; Jones, Russell G.; Tsao, Ming; Robinson, Murray O.; Thompson, Craig B.; Pan, Guohua; Mak, Tak W.

    2011-01-01

    Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors. PMID:21576264

  1. PPARα regulates tumor cell proliferation and senescence via a novel target gene carnitine palmitoyltransferase 1C.

    PubMed

    Chen, Yixin; Wang, Yongtao; Huang, Yaoyao; Zeng, Hang; Hu, Bingfang; Guan, Lihuan; Zhang, Huizhen; Yu, Ai-Ming; Johnson, Caroline H; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2017-03-03

    Carnitine palmitoyltransferase 1C (CPT1C), an enzyme located in the outer mitochondria membrane, has a crucial role in fatty acid transport and oxidation. It is also involved in cell proliferation and is a potential driver for cancer cell senescence. However, its upstream regulatory mechanism is unknown. Peroxisome proliferator activated receptor α (PPARα) is a ligand-activated transcription factor that regulates lipid metabolism and tumor progression. The current study aimed to elucidate whether and how PPARα regulates CPT1C and then affects cancer cell proliferation and senescence. Here, for the first time we report that PPARα directly activated CPT1C transcription and CPT1C was a novel target gene of PPARα, as revealed by dual-luciferase reporter and ChIP assays. Moreover, regulation of CPT1C by PPARα was p53-independent. We further confirmed that depletion of PPARα resulted in low CPT1C expression and then inhibited proliferation and induced senescence of MDA-MB-231 and PANC-1 tumor cell lines in a CPT1C dependent manner, while forced PPARα overexpression promoted cell proliferation and reversed cellular senescence. Taken together, these results indicate that CPT1C is a novel PPARα target gene that regulates cancer cell proliferation and senescence. The PPARα-CPT1C axis may be a new target for the intervention of cancer cellular proliferation and senescence.

  2. 7 CFR 1c.102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... prospective subject to the subject's participation in the procedure(s) involved in the research. (d) Research means a systematic investigation, including research development, testing and evaluation, designed to... research for purposes of this policy, whether or not they are conducted or supported under a program...

  3. 7 CFR 1c.102 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... prospective subject to the subject's participation in the procedure(s) involved in the research. (d) Research means a systematic investigation, including research development, testing and evaluation, designed to... research for purposes of this policy, whether or not they are conducted or supported under a program...

  4. AMPAR interacting protein CPT1C enhances surface expression of GluA1-containing receptors

    PubMed Central

    Gratacòs-Batlle, Esther; Yefimenko, Natalia; Cascos-García, Helena; Soto, David

    2015-01-01

    AMPARs mediate the vast majority of fast excitatory synaptic transmission in the brain and their biophysical and trafficking properties depend on their subunit composition and on several posttranscriptional and posttranslational modifications. Additionally, in the brain AMPARs associate with auxiliary subunits, which modify the properties of the receptors. Despite the abundance of AMPAR partners, recent proteomic studies have revealed even more interacting proteins that could potentially be involved in AMPAR regulation. Amongst these, carnitine palmitoyltransferase 1C (CPT1C) has been demonstrated to form an integral part of native AMPAR complexes in brain tissue extracts. Thus, we aimed to investigate whether CPT1C might be able to modulate AMPAR function. Firstly, we confirmed that CPT1C is an interacting protein of AMPARs in heterologous expression systems. Secondly, CPT1C enhanced whole-cell currents of GluA1 homomeric and GluA1/GluA2 heteromeric receptors. However, CPT1C does not alter the biophysical properties of AMPARs and co-localization experiments revealed that AMPARs and CPT1C are not associated at the plasma membrane despite a strong level of co-localization at the intracellular level. We established that increased surface GluA1 receptor number was responsible for the enhanced AMPAR mediated currents in the presence of CPT1C. Additionally, we revealed that the palmitoylable residue C585 of GluA1 is important in the enhancement of AMPAR trafficking to the cell surface by CPT1C. Nevertheless, despite its potential as a depalmitoylating enzyme, CPT1C does not affect the palmitoylation state of GluA1. To sum up, this work suggests that CPT1C plays a role as a novel regulator of AMPAR surface expression in neurons. Fine modulation of AMPAR membrane trafficking is fundamental in normal synaptic activity and in plasticity processes and CPT1C is therefore a putative candidate to regulate neuronal AMPAR physiology. PMID:25698923

  5. Retinaldehyde is a substrate for human aldo-keto reductases of the 1C subfamily.

    PubMed

    Ruiz, F Xavier; Porté, Sergio; Gallego, Oriol; Moro, Armando; Ardèvol, Albert; Del Río-Espínola, Alberto; Rovira, Carme; Farrés, Jaume; Parés, Xavier

    2011-12-15

    Human AKR (aldo-keto reductase) 1C proteins (AKR1C1-AKR1C4) exhibit relevant activity with steroids, regulating hormone signalling at the pre-receptor level. In the present study, investigate the activity of the four human AKR1C enzymes with retinol and retinaldehyde. All of the enzymes except AKR1C2 showed retinaldehyde reductase activity with low Km values (~1 μM). The kcat values were also low (0.18-0.6 min-1), except for AKR1C3 reduction of 9-cis-retinaldehyde whose kcat was remarkably higher (13 min-1). Structural modelling of the AKR1C complexes with 9-cis-retinaldehyde indicated a distinct conformation of Trp227, caused by changes in residue 226 that may contribute to the activity differences observed. This was partially supported by the kinetics of the AKR1C3 R226P mutant. Retinol/retinaldehyde conversion, combined with the use of the inhibitor flufenamic acid, indicated a relevant role for endogenous AKR1Cs in retinaldehyde reduction in MCF-7 breast cancer cells. Overexpression of AKR1C proteins depleted RA (retinoic acid) transactivation in HeLa cells treated with retinol. Thus AKR1Cs may decrease RA levels in vivo. Finally, by using lithocholic acid as an AKR1C3 inhibitor and UVI2024 as an RA receptor antagonist, we provide evidence that the pro-proliferative action of AKR1C3 in HL-60 cells involves the RA signalling pathway and that this is in part due to the retinaldehyde reductase activity of AKR1C3.

  6. FoxO1 inhibits sterol regulatory element-binding protein-1c (SREBP-1c) gene expression via transcription factors Sp1 and SREBP-1c.

    PubMed

    Deng, Xiong; Zhang, Wenwei; O-Sullivan, InSug; Williams, J Bradley; Dong, Qingming; Park, Edwards A; Raghow, Rajendra; Unterman, Terry G; Elam, Marshall B

    2012-06-08

    Induction of lipogenesis in response to insulin is critically dependent on the transcription factor, sterol regulatory element-binding protein-1c (SREBP-1c). FoxO1, a forkhead box class-O transcription factor, is an important mediator of insulin action, but its role in the regulation of lipid metabolism has not been clearly defined. We examined the effects of FoxO1 on srebp1 gene expression in vivo and in vitro. In vivo studies showed that constitutively active (CA) FoxO1 (CA-FoxO1) reduced basal expression of SREBP-1c mRNA in liver by ∼60% and blunted induction of SREBP-1c in response to feeding. In liver-specific FoxO knock-out mice, SREBP-1c expression was increased ∼2-fold. Similarly, in primary hepatocytes, CA-FoxO1 suppressed SREBP1-c expression and inhibited basal and insulin-induced SREBP-1c promoter activity. SREBP-1c gene expression is induced by the liver X receptor (LXR), but CA-FoxO1 did not block the activation of SREBP-1c by the LXR agonist TO9. Insulin stimulates SREBP-1c transcription through Sp1 and via "feed forward" regulation by newly synthesized SREBP-1c. CA-FoxO1 inhibited SREBP-1c by reducing the transactivational capacity of both Sp1 and SREBP-1c. In addition, chromatin immunoprecipitation assays indicate that FoxO1 can associate with the proximal promoter region of the srebp1 gene and disrupt the assembly of key components of the transcriptional complex of the SREBP-1c promoter. We conclude that FoxO1 inhibits SREBP-1c transcription via combined actions on multiple transcription factors and that this effect is exerted at least in part through reduced transcriptional activity of Sp1 and SREBP-1c and disrupted assembly of the transcriptional initiation complex on the SREBP-1c promoter.

  7. Hemoglobin variants detected by hemoglobin A1c (HbA1c) analysis and the effects on HbA1c measurements.

    PubMed

    Nasir, Nadzimah Mohd; Thevarajah, M; Yean, Chew Yee

    2010-04-01

    Hemoglobin (Hb) A1c is a tool widely used to monitor long-term glycemic control in diabetic patients. The objective of our study is to compare the HbA1c values measured on high performance liquid chromatography (HPLC) and immunoassay in patients who were detected to have hemoglobin variant after HbA1c analysis. We compared the HbA1c values measured using the Arkray Adams A1c HA-8160 (HPLC method) and Roche Cobas Integra (immunoturbidimetric method) from diabetic patients who were diagnosed with hemoglobin variants. Forty-three diabetic patients were diagnosed with hemoglobin variants: 13 elevated Hb F, 12 Hb E trait, seven Hb S trait, seven Hb D trait, two Hb E / beta-Thalassemia, one Hb C trait, and one homozygous Hb S. Knowledge of hemoglobin variants affecting HbA1c measurements is essential, in order to avoid mismanagement of diabetic patients.

  8. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation

    PubMed Central

    Gao, Xian-Shu; Li, Yi; Yu, Hongliang; Xiong, Wei; Yu, Hao; Wang, Wen; Li, Yingbo; Teng, Yingqi; Zhou, Demin

    2016-01-01

    Aldo-keto reductase 1C3(AKR1C3) is an enzyme involved in prostaglandins metabolism. Studies suggest that AKR1C3 has a pivotal role in the radioresistance of esophageal cancer and non-small-cell lung cancer, yet the role of AKR1C3 in prostate cancer cells radiation resistance has not yet been clarified. In our study, we established a stable overexpressing AKR1C3 cell line (AKR1C3-over) derived from the prostate cell line DU145 and its control cell line (Control). We conducted colony formation assay to determine the role of AKR1C3 in radioresistance and we used its chemical inhibitor to detect whether it can restored the sensitivity of the acquired tumor cells. Flow cytometry assay was carried out to detect IR-induced ROS accumulation. Elisa was adopted to dedect the concentration of PGF2α in the suspension of the cells after 6GY radiation. Western blotting was used to dedect the MAPK and PPAR γ. The results demonstrated that overexpression of AKR1C3 in prostate cancer can result in radioresistance and suppression of AKR1C3 via its chemical inhibitor indocin restored the sensitivity of the acquired tumor cells. According to the flow cytometry assay, ROS was decreased by 80% in DU145-over cells. Also overexpression of AKR1C3 could result in the accumulation of prostaglandin F2α (PGF2α), which can not only promote prostate cancer cell 's proliferation but also could enhance prostate cancer cells resistance to radiation and activated the MAPK pathway and inhibited the expression of PPARγ. In conclusion, we found that overexpression of AKR1C3 significantly enhanced human prostate cancer cells resistance to radiation through activation of MAPK pathway. PMID:27385003

  9. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT

    PubMed Central

    Visuttijai, Kittichate; Pettersson, Jennifer; Mehrbani Azar, Yashar; van den Bout, Iman; Örndal, Charlotte; Marcickiewicz, Janusz; Nilsson, Staffan; Hörnquist, Michael; Olsson, Björn; Ejeskär, Katarina

    2016-01-01

    Myosin-1C (MYO1C) is a tumor suppressor candidate located in a region of recurrent losses distal to TP53. Myo1c can tightly and specifically bind to PIP2, the substrate of Phosphoinositide 3-kinase (PI3K), and to Rictor, suggesting a role for MYO1C in the PI3K pathway. This study was designed to examine MYO1C expression status in a panel of well-stratified endometrial carcinomas as well as to assess the biological significance of MYO1C as a tumor suppressor in vitro. We found a significant correlation between the tumor stage and lowered expression of MYO1C in endometrial carcinoma samples. In cell transfection experiments, we found a negative correlation between MYO1C expression and cell proliferation, and MYO1C silencing resulted in diminished cell migration and adhesion. Cells expressing excess of MYO1C had low basal level of phosphorylated protein kinase B (PKB, a.k.a. AKT) and cells with knocked down MYO1C expression showed a quicker phosphorylated AKT (pAKT) response in reaction to serum stimulation. Taken together the present study gives further evidence for tumor suppressor activity of MYO1C and suggests MYO1C mediates its tumor suppressor function through inhibition of PI3K pathway and its involvement in loss of contact inhibition. PMID:27716847

  10. SREBP-1c expression in Schwann cells is affected by diabetes and nutritional status.

    PubMed

    de Preux, Anne-Sophie; Goosen, Katinka; Zhang, Weixian; Sima, Anders A F; Shimano, Hitoshi; Ouwens, D Margriet; Diamant, Michaela; Hillebrands, Jan-Luuk; Rozing, Jan; Lemke, Greg; Beckmann, Jacques S; Smit, August B; Verheijen, Mark H G; Chrast, Roman

    2007-08-01

    Our previous work demonstrated that the sterol response element binding proteins (SREBP)-1 and SREBP-2, which are the key regulators of storage lipid and cholesterol metabolism respectively, are highly expressed in Schwann cells of adult peripheral nerves. In order to evaluate the role of Schwann cell SREBPs in myelination and functioning of peripheral nerves we have determined their expression during development, after fasting and refeeding, and in a rodent model of diabetes. Our results show that SREBP-1c and SREBP-2, unlike SREBP-1a, are the major forms of SREBPs present in peripheral nerves. The expression profile of SREBP-2 follows the expression of genes involved in cholesterol biosynthesis, while SREBP-1c is co-expressed with genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurial compartment of peripheral nerves depends on nutritional status and is disturbed in type 1 diabetes. In line with this, insulin elevates the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type 1 diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of diabetic peripheral neuropathy.

  11. AKR1C3 as a target in castrate resistant prostate cancer.

    PubMed

    Adeniji, Adegoke O; Chen, Mo; Penning, Trevor M

    2013-09-01

    Aberrant androgen receptor (AR) activation is the major driver of castrate resistant prostate cancer (CRPC). CRPC is ultimately fatal and more therapeutic agents are needed to treat this disease. Compounds that target the androgen axis by inhibiting androgen biosynthesis and or AR signaling are potential candidates for use in CRPC treatment and are currently being pursued aggressively. Aldo-keto reductase 1C3 (AKR1C3) plays a pivotal role in androgen biosynthesis within the prostate. It catalyzes the 17-ketoreduction of weak androgen precursors to give testosterone and 5α-dihydrotestosterone. AKR1C3 expression and activity has been implicated in the development of CRPC, making it a rational target. Selective inhibition of AKR1C3 will be important, however, due to the presence of closely related isoforms, AKR1C1 and AKR1C2 that are also involved in androgen inactivation. We examine the evidence that supports the vital role of AKR1C3 in CRPC and recent developments in the discovery of potent and selective AKR1C3 inhibitors. This article is part of a Special Issue entitled 'CSR 2013'.

  12. 7 CFR 1c.108 - IRB functions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false IRB functions and operations. 1c.108 Section 1c.108... operations. In order to fulfill the requirements of this policy each IRB shall: (a) Follow written procedures...) Except when an expedited review procedure is used (see § 1c.110), review proposed research at...

  13. Aldo-keto reductases AKR1C1, AKR1C2 and AKR1C3 may enhance progesterone metabolism in ovarian endometriosis.

    PubMed

    Hevir, N; Vouk, K; Sinkovec, J; Ribič-Pucelj, M; Rižner, T Lanišnik

    2011-05-30

    Endometriosis is a very common disease that is characterized by increased formation of estradiol and disturbed progesterone action. This latter is usually explained by a lack of progesterone receptor B (PR-B) expression, while the role of pre-receptor metabolism of progesterone is not yet fully understood. In normal endometrium, progesterone is metabolized by reductive 20α-hydroxysteroid dehydrogenases (20α-HSDs), 3α/β-HSDs and 5α/β-reductases. The aldo-keto reductases 1C1 and 1C3 (AKR1C1 and AKR1C3) are the major reductive 20α-HSDs, while the oxidative reaction is catalyzed by 17β-HSD type 2 (HSD17B2). Also, 3α-HSD and 3β-HSD activities have been associated with the AKR1C isozymes. Additionally, 5α-reductase types 1 and 2 (SRD5A1, SRD5A2) and 5β-reductase (AKR1D1) are responsible for the formation of 5α- and 5β-reduced pregnanes. In this study, we examined the expression of PR-AB and the progesterone metabolizing enzymes in 31 specimens of ovarian endometriosis and 28 specimens of normal endometrium. Real-time PCR analysis revealed significantly decreased mRNA levels of PR-AB, HSD17B2 and SRD5A2, significantly increased mRNA levels of AKR1C1, AKR1C2, AKR1C3 and SRD5A1, and negligible mRNA levels of AKR1D1. Immunohistochemistry staining of endometriotic tissue compared to control endometrium showed significantly lower PR-B levels in epithelial cells and no significant differences in stromal cells, there were no significant differences in the expression of AKR1C3 and significantly higher AKR1C2 levels were seen only in stromal cells. Our expression analysis data at the mRNA level and partially at the cellular level thus suggest enhanced metabolism of progesterone by SRD5A1 and the 20α-HSD and 3α/β-HSD activities of AKR1C1, AKR1C2 and AKR1C3.

  14. Novel Regulation of the Synthesis of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Subunit GluA1 by Carnitine Palmitoyltransferase 1C (CPT1C) in the Hippocampus*

    PubMed Central

    Fadó, Rut; Soto, David; Miñano-Molina, Alfredo J.; Pozo, Macarena; Carrasco, Patricia; Yefimenko, Natalia; Rodríguez-Álvarez, José; Casals, Núria

    2015-01-01

    The regulation of AMPA-type receptor (AMPAR) abundance in the postsynaptic membrane is an important mechanism involved in learning and memory formation. Recent data suggest that one of the constituents of the AMPAR complex is carnitine palmitoyltransferase 1C (CPT1C), a brain-specific isoform located in the endoplasmic reticulum of neurons. Previous results had demonstrated that CPT1C deficiency disrupted spine maturation in hippocampal neurons and impaired spatial learning, but the role of CPT1C in AMPAR physiology had remained mostly unknown. In the present study, we show that CPT1C binds GluA1 and GluA2 and that the three proteins have the same expression profile during neuronal maturation. Moreover, in hippocampal neurons of CPT1C KO mice, AMPAR-mediated miniature excitatory postsynaptic currents and synaptic levels of AMPAR subunits GluA1 and GluA2 are significantly reduced. We show that AMPAR expression is dependent on CPT1C levels because total protein levels of GluA1 and GluA2 are decreased in CPT1C KO neurons and are increased in CPT1C-overexpressing neurons, whereas other synaptic proteins remain unaltered. Notably, mRNA levels of AMPARs remained unchanged in those cultures, indicating that CPT1C is post-transcriptionally involved. We demonstrate that CPT1C is directly involved in the de novo synthesis of GluA1 and not in protein degradation. Moreover, in CPT1C KO cultured neurons, GluA1 synthesis after chemical long term depression was clearly diminished, and brain-derived neurotrophic factor treatment was unable to phosphorylate the mammalian target of rapamycin (mTOR) and stimulate GluA1 protein synthesis. These data newly identify CPT1C as a regulator of AMPAR translation efficiency and therefore also synaptic function in the hippocampus. PMID:26338711

  15. Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c.

    PubMed

    Bose, Avirup; Guilherme, Adilson; Robida, Stacey I; Nicoloro, Sarah M C; Zhou, Qiong L; Jiang, Zhen Y; Pomerleau, Darcy P; Czech, Michael P

    Insulin stimulates glucose uptake in muscle and adipocytes by signalling the translocation of GLUT4 glucose transporters from intracellular membranes to the cell surface. The translocation of GLUT4 may involve signalling pathways that are both independent of and dependent on phosphatidylinositol-3-OH kinase (PI(3)K). This translocation also requires the actin cytoskeleton, and the rapid movement of GLUT4 along linear tracks may be mediated by molecular motors. Here we report that the unconventional myosin Myo1c is present in GLUT4-containing vesicles purified from 3T3-L1 adipocytes. Myo1c, which contains a motor domain, three IQ motifs and a carboxy-terminal cargo domain, is highly expressed in primary and cultured adipocytes. Insulin enhances the localization of Myo1c with GLUT4 in cortical tubulovesicular structures associated with actin filaments, and this colocalization is insensitive to wortmannin. Insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane is augmented by the expression of wild-type Myo1c and inhibited by a dominant-negative cargo domain of Myo1c. A decrease in the expression of endogenous Myo1c mediated by small interfering RNAs inhibits insulin-stimulated uptake of 2-deoxyglucose. Thus, myosin Myo1c functions in a PI(3)K-independent insulin signalling pathway that controls the movement of intracellular GLUT4-containing vesicles to the plasma membrane.

  16. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles.

    PubMed

    Boguslavsky, Shlomit; Chiu, Tim; Foley, Kevin P; Osorio-Fuentealba, Cesar; Antonescu, Costin N; Bayer, K Ulrich; Bilan, Philip J; Klip, Amira

    2012-10-01

    GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding-deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells.

  17. Hemoglobin A1c in predicting progression to diabetes.

    PubMed

    Nakagami, Tomoko; Tajima, Naoko; Oizumi, Toshihide; Karasawa, Shigeru; Wada, Kiriko; Kameda, Wataru; Susa, Shinji; Kato, Takeo; Daimon, Makoto

    2010-01-01

    The predictive value of hemoglobin A1c (HbA1c) in comparison to fasting plasma glucose (FPG) is evaluated for 5-year incident diabetes (DM), as HbA1c may be more practical than FPG in the screening for DM in the future. Of 1189 non-DM subjects aged 35-89 years old from the Funagata Study, 57 subjects (4.8%) had developed DM on the WHO criteria at 5-year follow-up. The odds ratio (95% confidence interval: CI) for a one standard deviation increase in FPG/HbA1c was 3.40 (2.44-4.74)/3.49 (2.42-5.02). The area under the receiver operating characteristic curve for FPG/HbA1c was 0.786 (95% CI: 0.719-0.853)/0.785 (0.714-0.855). The HbA1c corresponding to FPG 5.56 mmol/l was HbA1c 5.3%. There was no statistical difference in sensitivity between FPG 5.56 mmol/l and HbA1c 5.3% (61.4% vs. 56.1%), while specificity was higher in HbA1c 5.3% than FPG 5.56 mmol/l (87.8% vs. 82.5%, p-value<0.001). The fraction of incident case from those with baseline IGT was similar between the groups, however the fraction of people above the cut-off was significantly lower in HbA1c 5.3% than FPG 5.56 mmol/l (14.3% vs. 19.6%, p-value<0.001). HbA1c is similar to FPG to evaluate DM risk, and HbA1c could be practical and efficient to select subjects for intervention.

  18. Does A1c consistently reflect mean plasma glucose?

    PubMed

    Shrom, David; Sarwat, Samiha; Ilag, Liza; Bloomgarden, Zachary T

    2010-06-01

    A1c, a surrogate measure of glycemic control, is known to have a strong linear correlation with mean plasma glucose (MPG) when analyzed in populations of patients. However, clinically significant intersubject variability in this relationship exists, which suggests that A1c measurements may not reflect actual glycemic control in some patients. In the present study we explored the extent to which A1c accurately represents glycemic control, as measured by MPG, for individual patients. Data were pooled from randomized clinical trials in which A1c and self-monitored plasma glucose (SMPG) profiles were collected by patients with Type 2 diabetes treated with insulin analog regimens. MPG levels were calculated from SMPG profiles. Distributions of MPG were analyzed for patients within similar ranges of A1c (<6.5%, 6.5%-<7.5%, 7.5%-<8.5%, 8.5%-<9.5%, and ≥9.5%) and distributions of A1c were analyzed in patients within similar ranges of MPG (<6.1, 6.1-<7.8, 7.8-<9.4, 9.4-<11.1, and ≥11.1 mmol/L). Substantial proportions of patients had clinically significant differences between A1c and MPG. For example, among 260 patients with A1c between 6.5% and 7.5%, 10% had MPG levels <6.4 mmol/L, whereas 10% had MPG >9.5 mmol/L. Among the 224 patients with MPG levels ≥6.1 mmol/L and <7.8 mmol/L, 10% had A1c <6% and 10% had A1c >8.1%. In the absence of SMPG, A1c may inadequately represent glycemic control for many diabetic patients. © 2010 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Blackwell Publishing Asia Pty Ltd.

  19. 7 CFR 1c.109 - IRB review of research.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... research. (Approved by the Office of Management and Budget under Control Number 0990-0260.) ... 7 Agriculture 1 2010-01-01 2010-01-01 false IRB review of research. 1c.109 Section 1c.109... research. (a) An IRB shall review and have authority to approve, require modifications in (to...

  20. 7 CFR 1c.109 - IRB review of research.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false IRB review of research. 1c.109 Section 1c.109... research. (a) An IRB shall review and have authority to approve, require modifications in (to secure approval), or disapprove all research activities covered by this policy. (b) An IRB shall require...

  1. 7 CFR 1c.109 - IRB review of research.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false IRB review of research. 1c.109 Section 1c.109... research. (a) An IRB shall review and have authority to approve, require modifications in (to secure approval), or disapprove all research activities covered by this policy. (b) An IRB shall require...

  2. 7 CFR 1c.111 - Criteria for IRB approval of research.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... particularly cognizant of the special problems of research involving vulnerable populations, such as children... 7 Agriculture 1 2013-01-01 2013-01-01 false Criteria for IRB approval of research. 1c.111 Section... Criteria for IRB approval of research. (a) In order to approve research covered by this policy the IRB...

  3. Modulating AtDREB1C Expression Improves Drought Tolerance in Salvia miltiorrhiza

    PubMed Central

    Wei, Tao; Deng, Kejun; Zhang, Qingxia; Gao, Yonghong; Liu, Yu; Yang, Meiling; Zhang, Lipeng; Zheng, Xuelian; Wang, Chunguo; Liu, Zhiwei; Chen, Chengbin; Zhang, Yong

    2017-01-01

    Dehydration responsive element binding proteins are transcription factors of the plant-specific AP2 family, many of which contribute to abiotic stress responses in several plant species. We investigated the possibility of increasing drought tolerance in the traditional Chinese medicinal herb, Salvia miltiorrhiza, through modulating the transcriptional regulation of AtDREB1C in transgenic plants under the control of a constitutive (35S) or drought-inducible (RD29A) promoter. AtDREB1C transgenic S. miltiorrhiza plants showed increased survival under severe drought conditions compared to the non-transgenic wild-type (WT) control. However, transgenic plants with constitutive overexpression of AtDREB1C showed considerable dwarfing relative to WT. Physiological tests suggested that the higher chlorophyll content, photosynthetic capacity, and superoxide dismutase, peroxidase, and catalase activity in the transgenic plants enhanced plant drought stress resistance compared to WT. Transcriptome analysis of S. miltiorrhiza following drought stress identified a number of differentially expressed genes (DEGs) between the AtDREB1C transgenic lines and WT. These DEGs are involved in photosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis, ribosome, starch and sucrose metabolism, and other metabolic pathways. The modified pathways involved in plant hormone signaling are thought to be one of the main causes of the increased drought tolerance of AtDREB1C transgenic S. miltiorrhiza plants. PMID:28174590

  4. Modulating AtDREB1C Expression Improves Drought Tolerance in Salvia miltiorrhiza.

    PubMed

    Wei, Tao; Deng, Kejun; Zhang, Qingxia; Gao, Yonghong; Liu, Yu; Yang, Meiling; Zhang, Lipeng; Zheng, Xuelian; Wang, Chunguo; Liu, Zhiwei; Chen, Chengbin; Zhang, Yong

    2017-01-01

    Dehydration responsive element binding proteins are transcription factors of the plant-specific AP2 family, many of which contribute to abiotic stress responses in several plant species. We investigated the possibility of increasing drought tolerance in the traditional Chinese medicinal herb, Salvia miltiorrhiza, through modulating the transcriptional regulation of AtDREB1C in transgenic plants under the control of a constitutive (35S) or drought-inducible (RD29A) promoter. AtDREB1C transgenic S. miltiorrhiza plants showed increased survival under severe drought conditions compared to the non-transgenic wild-type (WT) control. However, transgenic plants with constitutive overexpression of AtDREB1C showed considerable dwarfing relative to WT. Physiological tests suggested that the higher chlorophyll content, photosynthetic capacity, and superoxide dismutase, peroxidase, and catalase activity in the transgenic plants enhanced plant drought stress resistance compared to WT. Transcriptome analysis of S. miltiorrhiza following drought stress identified a number of differentially expressed genes (DEGs) between the AtDREB1C transgenic lines and WT. These DEGs are involved in photosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis, ribosome, starch and sucrose metabolism, and other metabolic pathways. The modified pathways involved in plant hormone signaling are thought to be one of the main causes of the increased drought tolerance of AtDREB1C transgenic S. miltiorrhiza plants.

  5. Hemoglobin A1c and Self-Monitored Average Glucose

    PubMed Central

    Kovatchev, Boris P.; Breton, Marc D.

    2015-01-01

    Background: Previously we have introduced the eA1c—a new approach to real-time tracking of average glycemia and estimation of HbA1c from infrequent self-monitoring (SMBG) data, which was developed and tested in type 2 diabetes. We now test eA1c in type 1 diabetes and assess its relationship to the hemoglobin glycation index (HGI)—an established predictor of complications and treatment effect. Methods: Reanalysis of previously published 12-month data from 120 patients with type 1 diabetes, age 39.15 (14.35) years, 51/69 males/females, baseline HbA1c = 7.99% (1.48), duration of diabetes 20.28 (12.92) years, number SMBG/day = 4.69 (1.84). Surrogate fasting BG and 7-point daily profiles were derived from these unstructured SMBG data and the previously reported eA1c method was applied without any changes. Following the literature, we calculated HGI = HbA1c – (0.009 × Fasting BG + 6.8). Results: The correlation of eA1c with reference HbA1c was r = .75, and its deviation from reference was MARD = 7.98%; 95% of all eA1c values fell within ±20% from reference. The HGI was well approximated by a linear combination of the eA1c calibration factors: HGI = 0.007552*θ1 + 0.007645*θ2 – 3.154 (P < .0001); 73% of low versus moderate-high HGIs were correctly classified by the same factors as well. Conclusions: The eA1c procedure developed in type 2 diabetes to track in real-time changes in average glycemia and present the results in HbA1c-equivalent units has shown similar performance in type 1 diabetes. The eA1c calibration factors are highly predictive of the HGI, thereby explaining partially the biological variation causing discrepancies between HbA1c and its linear estimates from SMBG data. PMID:26553023

  6. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion.

    PubMed

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-04-15

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry.

  7. Epigenetic Characterization of CDKN1C in Placenta Samples from Non-syndromic Intrauterine Growth Restriction

    PubMed Central

    López-Abad, Miriam; Iglesias-Platas, Isabel; Monk, David

    2016-01-01

    The cyclin-dependent kinase (CDK)-inhibitor 1C (CDKN1C) gene is expressed from the maternal allele and is located within the centromeric imprinted domain at chromosome 11p15. It is a negative regulator of proliferation, with loss-of-function mutations associated with the overgrowth disorder Beckwith–Wiedemann syndrome. Recently, gain-of-function mutations within the PCNA domain have been described in two disorders characterized by growth failure, namely IMAGe (intra-uterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital abnormalities) syndrome and Silver–Russell syndrome (SRS). Over-expression of CDKN1C by maternally inherited microduplications also results in SRS, suggesting that in addition to activating mutations this gene may regulate growth by changes in dosage. To determine if CDKN1C is involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. We observe higher levels of expression of CDKN1C in IUGR placentas compared to those of controls. All placenta biopsies heterozygous for the PAPA repeat sequence in exon 2 showed appropriate monoallelic expression and no mutations in the PCNA domain were observed. The expression profile was independent of both genetic or methylation variation in the minimal CDKN1C promoter interval and of methylation of the cis-acting maternally methylated region associated with the neighboring KCNQ1OT1 non-coding RNA. Chromatin immunoprecipitation revealed binding sites for CTCF within the unmethylated CDKN1C gene body CpG island and putative enhancer regions, associated with the canonical enhancer histone signature, H3K4me1 and H3K27ac, located ∼58 and 360 kb away. Using 3C-PCR we identify constitutive higher-order chromatin loops that occur between one of these putative enhancer regions and CDKN1C in human placenta tissues, which we propose facilitates expression. PMID:27200075

  8. Structural Analysis of the Myo1c and Neph1 Complex Provides Insight into the Intracellular Movement of Neph1

    PubMed Central

    Arif, Ehtesham; Sharma, Pankaj; Solanki, Ashish; Mallik, Leena; Rathore, Yogendra S.; Twal, Waleed O.; Nath, Samir K.; Gandhi, Darpan; Holzman, Lawrence B.; Ostap, E. Michael

    2016-01-01

    The Myo1c motor functions as a cargo transporter supporting various cellular events, including vesicular trafficking, cell migration, and stereociliary movements of hair cells. Although its partial crystal structures were recently described, the structural details of its interaction with cargo proteins remain unknown. This study presents the first structural demonstration of a cargo protein, Neph1, attached to Myo1c, providing novel insights into the role of Myo1c in intracellular movements of this critical slit diaphragm protein. Using small angle X-ray scattering studies, models of predominant solution conformation of unliganded full-length Myo1c and Myo1c bound to Neph1 were constructed. The resulting structures show an extended S-shaped Myo1c with Neph1 attached to its C-terminal tail. Importantly, binding of Neph1 did not induce a significant shape change in Myo1c, indicating this as a spontaneous process or event. Analysis of interaction surfaces led to the identification of a critical residue in Neph1 involved in binding to Myo1c. Indeed, a point mutant from this site abolished interaction between Neph1 and Myo1c when tested in the in vitro and in live-cell binding assays. Live-cell imaging, including fluorescence recovery after photobleaching, provided further support for the role of Myo1c in intracellular vesicular movement of Neph1 and its turnover at the membrane. PMID:27044863

  9. Antarctic Moss Multiprotein Bridging Factor 1c Overexpression in Arabidopsis Resulted in Enhanced Tolerance to Salt Stress

    PubMed Central

    Alavilli, Hemasundar; Lee, Hyoungseok; Park, Mira; Lee, Byeong-ha

    2017-01-01

    Polytrichastrum alpinum is one of the moss species that survives extreme conditions in the Antarctic. In order to explore the functional benefits of moss genetic resources, P. alpinum multiprotein-bridging factor 1c gene (PaMBF1c) was isolated and characterized. The deduced amino acid sequence of PaMBF1c comprises of a multiprotein-bridging factor (MBF1) domain and a helix-turn-helix (HTH) domain. PaMBF1c expression was induced by different abiotic stresses in P. alpinum, implying its roles in stress responses. We overexpressed PaMBF1c in Arabidopsis and analyzed the resulting phenotypes in comparison with wild type and/or Arabidopsis MBF1c (AtMBF1c) overexpressors. Overexpression of PaMBF1c in Arabidopsis resulted in enhanced tolerance to salt and osmotic stress, as well as to cold and heat stress. More specifically, enhanced salt tolerance was observed in PaMBF1c overexpressors in comparison to wild type but not clearly observable in AtMBF1c overexpressing lines. Thus, these results implicate the evolution of PaMBF1c under salt-enriched Antarctic soil. RNA-Seq profiling of NaCl-treated plants revealed that 10 salt-stress inducible genes were already up-regulated in PaMBF1c overexpressing plants even before NaCl treatment. Gene ontology enrichment analysis with salt up-regulated genes in each line uncovered that the terms lipid metabolic process, ion transport, and cellular amino acid biosynthetic process were significantly enriched in PaMBF1c overexpressors. Additionally, gene enrichment analysis with salt down-regulated genes in each line revealed that the enriched categories in wild type were not significantly overrepresented in PaMBF1c overexpressing lines. The up-regulation of several genes only in PaMBF1c overexpressing lines suggest that enhanced salt tolerance in PaMBF1c-OE might involve reactive oxygen species detoxification, maintenance of ATP homeostasis, and facilitation of Ca2+ signaling. Interestingly, many salt down-regulated ribosome- and

  10. Temporal trends of hemoglobin A1c testing.

    PubMed

    Pivovarov, Rimma; Albers, David J; Hripcsak, George; Sepulveda, Jorge L; Elhadad, Noémie

    2014-01-01

    The study of utilization patterns can quantify potential overuse of laboratory tests and find new ways to reduce healthcare costs. We demonstrate the use of distributional analytics for comparing electronic health record (EHR) laboratory test orders across time to diagnose and quantify overutilization. We looked at hemoglobin A1c (HbA1c) testing across 119,000 patients and 15 years of hospital records. We examined the patterns of HbA1c ordering before and after the publication of the 2002 American Diabetes Association guidelines for HbA1c testing. We conducted analyses to answer three questions. What are the patterns of HbA1c ordering? Do HbA1c orders follow the guidelines with respect to frequency of measurement? If not, how and why do they depart from the guidelines? The raw number of HbA1c orderings has steadily increased over time, with a specific increase in low-measurement orderings (<6.5%). There is a change in ordering pattern following the 2002 guideline (p<0.001). However, by comparing ordering distributions, we found that the changes do not reflect the guidelines and rather exhibit a new practice of rapid-repeat testing. The rapid-retesting phenomenon does not follow the 2009 guidelines for diabetes diagnosis either, illustrated by a stratified HbA1c value analysis. Results suggest HbA1c test overutilization, and contributing factors include lack of care coordination, unexpected values prompting retesting, and point-of-care tests followed by confirmatory laboratory tests. We present a method of comparing ordering distributions in an EHR across time as a useful diagnostic approach for identifying and assessing the trend of inappropriate use over time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Ranolazine and Its Effects on Hemoglobin A1C.

    PubMed

    Greiner, Lindsey; Hurren, Kathryn; Brenner, Michael

    2016-05-01

    To review the antihyperglycemic effect of ranolazine in type 2 diabetes mellitus (T2DM). An EMBASE search was conducted between January 1966 through December 2015 using the search termsranolazine, diabetes, andhemoglobin A1C(A1C). Additional references were identified from a review of literature citations. A search of clinicaltrials.gov was conducted to identify unpublished studies assessing ranolazine in diabetes. All English-language observational and randomized controlled trials assessing the effects of ranolazine on A1C were evaluated. Four published and 3 unpublished trials were identified. In all except 1 study, ranolazine 750 to 1000 mg twice daily was associated with a statistically significant decrease in A1C compared with placebo (placebo-corrected change in A1C: -0.28 to -0.7). In the trial in which a significant difference was not observed, patients assigned to ranolazine received a lower maintenance metformin dose compared with patients not assigned to ranolazine. A greater percentage of patients randomized to ranolazine achieved an A1C<7% compared with the placebo group (41.2%-59% vs 25.7%-49%). Ranolazine was not associated with an increase in the incidence of hypoglycemia and was well tolerated overall. The mechanism for lowering of A1C has not been determined. Ranolazine therapy may decrease A1C among patients with T2DM without an increase in hypoglycemia. For patients with T2DM and chronic stable angina, ranolazine may be of use given its utility in cardiovascular disease and benefit in A1C lowering. © The Author(s) 2016.

  12. The correlation of hemoglobin A1c to blood glucose.

    PubMed

    Sikaris, Ken

    2009-05-01

    The understanding that hemoglobin A1c (HbA1c) represents the average blood glucose level of patients over the previous 120 days underlies the current management of diabetes. Even in making such a statement, we speak of "average blood glucose" as though "blood glucose" were itself a simple idea. When we consider all the blood glucose forms-arterial versus venous versus capillary, whole blood versus serum versus fluoride-preserved plasma, fasting versus nonfasting-we can start to see that this is not a simple issue. Nevertheless, it seems as though HbA1c correlates to any single glucose measurement. Having more than one measurement and taking those measurements in the preceding month improves the correlation further. In particular, by having glucose measurements that reflect both the relatively lower overnight glucose levels and measurements that reflect the postprandial peaks improves not only our ability to manage diabetes patients, but also our understanding of how HbA1c levels are determined. Modern continuous glucose monitoring (CGM) devices may take thousands of glucose results over a week. Several studies have shown that CGM glucose averages account for the vast proportion of the variation of HbA1c. The ability to relate HbA1c to average glucose may become a popular method for reporting HbA1c, eliminating current concerns regarding differences in HbA1c standardization. Hemoglobin A1c expressed as an average glucose may be more understandable to patients and improve not only their understanding, but also their ability to improve their diabetes management. 2009 Diabetes Technology Society.

  13. The Correlation of Hemoglobin A1c to Blood Glucose

    PubMed Central

    Sikaris, Ken

    2009-01-01

    The understanding that hemoglobin A1c (HbA1c) represents the average blood glucose level of patients over the previous 120 days underlies the current management of diabetes. Even in making such a statement, we speak of “average blood glucose” as though “blood glucose” were itself a simple idea. When we consider all the blood glucose forms—arterial versus venous versus capillary, whole blood versus serum versus fluoride-preserved plasma, fasting versus nonfasting—we can start to see that this is not a simple issue. Nevertheless, it seems as though HbA1c correlates to any single glucose measurement. Having more than one measurement and taking those measurements in the preceding month improves the correlation further. In particular, by having glucose measurements that reflect both the relatively lower overnight glucose levels and measurements that reflect the postprandial peaks improves not only our ability to manage diabetes patients, but also our understanding of how HbA1c levels are determined. Modern continuous glucose monitoring (CGM) devices may take thousands of glucose results over a week. Several studies have shown that CGM glucose averages account for the vast proportion of the variation of HbA1c. The ability to relate HbA1c to average glucose may become a popular method for reporting HbA1c, eliminating current concerns regarding differences in HbA1c standardization. Hemoglobin A1c expressed as an average glucose may be more understandable to patients and improve not only their understanding, but also their ability to improve their diabetes management. PMID:20144279

  14. Poplar Wood Rays Are Involved in Seasonal Remodeling of Tree Physiology1[C][W

    PubMed Central

    Larisch, Christina; Dittrich, Marcus; Wildhagen, Henning; Lautner, Silke; Fromm, Jörg; Polle, Andrea; Hedrich, Rainer; Rennenberg, Heinz; Müller, Tobias; Ache, Peter

    2012-01-01

    Understanding seasonality and longevity is a major challenge in tree biology. In woody species, growth phases and dormancy follow one another consecutively. In the oldest living individuals, the annual cycle may run for more than 1,000 years. So far, however, not much is known about the processes triggering reactivation from dormancy. In this study, we focused on wood rays, which are known to play an important role in tree development. The transition phase from dormancy to flowering in early spring was compared with the phase of active growth in summer. Rays from wood samples of poplar (Populus × canescens) were enriched by laser microdissection, and transcripts were monitored by poplar whole-genome microarrays. The resulting seasonally varying complex expression and metabolite patterns were subjected to pathway analyses. In February, the metabolic pathways related to flower induction were high, indicating that reactivation from dormancy was already taking place at this time of the year. In July, the pathways related to active growth, like lignin biosynthesis, nitrogen assimilation, and defense, were enriched. Based on “marker” genes identified in our pathway analyses, we were able to validate periodical changes in wood samples by quantitative polymerase chain reaction. These studies, and the resulting ray database, provide new insights into the steps underlying the seasonality of poplar trees. PMID:22992511

  15. Prevalence of normoglycemic, prediabetic and diabetic A1c levels

    PubMed Central

    Aponte, Judith

    2013-01-01

    AIM: To investigate normoglycemic, prediabetic and diabetic A1c levels in those with prediabetes; and prediabetic and diabetic A1c levels in those with non-prediabetes. METHODS: The National Health and Nutritional Examination Survey (NHANES) 2007-2008 and NHANES 2009-2010 were utilized to examine and compare trends and differences among five different ethnic groups (Mexican Americans, Other Hispanics, Non-Hispanic Whites, Non-Hispanic Blacks, Other/Multi-racials) with normoglycemic, prediabetic and diabetic A1c levels with self-reported prediabetes and prediabetic and diabetic A1c levels in those with self-reported non-prediabetes. Sample participants of the five ethnic groups were limited to those 20 years of age and older, who had completed the diabetes questionnaire and had A1c measured. Descriptive statistics were computed for all variables. χ2 were performed on all five ethnic groups to examine significant differences of normoglycemic, prediabetic and diabetic A1c levels in those with self-reported prediabetes, and prediabetic and diabetic A1c levels in those with self-reported non-prediabetes. RESULTS: This study demonstrates that of the five different ethnic groups from NHANES 2007-2008 to NHANES 2009-2010, Non-Hispanic Whites (6.5% increase) and Non-Hispanic Blacks (0.2% increase) were the only two groups with an increase in the number of self-reported prediabetes. Although the overall percentage of Mexican Americans who self-reported prediabetes had remained the same (5%) from NHANES 2007-2008 to NHANES 2009-2010, χ2 analysis showed significant differences when examining the different ranges of A1c levels (normoglycemic, prediabetic and diabetic). Among Mexican Americans who self-reported prediabetes, normoglycemic (P = 0.0001) and diabetic (P = 0.0001) A1c levels from NHANES 2007-2008 to NHANES 2009-2010. For Non-Hispanic Whites who self-reported prediabetes, prediabetic (P = 0.0222); and diabetic (P ≤ 0.0001) A1c levels from NHANES 2007-2008 to

  16. Hemoglobin A1c predicts healing rate in diabetic wounds.

    PubMed

    Christman, Andrea L; Selvin, Elizabeth; Margolis, David J; Lazarus, Gerald S; Garza, Luis A

    2011-10-01

    Lower-extremity wounds are a major complication of diabetes. Hemoglobin A1c (HbA1c) reflects glycemia over 2-3 months and is the standard measure used to monitor glycemia in diabetic patients, but results from studies have not shown a consistent association of HbA1c with wound healing. We hypothesized that elevated HbA1c would be most associated with poor wound healing. To test this hypothesis, we conducted a retrospective cohort study of 183 diabetic individuals treated at the Johns Hopkins Wound Center. Our primary outcome was wound-area healing rate (cm(2) per day). Calibrated tracings of digital images were used to measure wound area. We estimated coefficients for healing rate using a multiple linear regression model controlling for clustering of wounds within individuals and other common clinic variables. The study population was 45% female and 41% African American, with a mean age of 61 years. Mean HbA1c was 8.0%, and there were 2.3 wounds per individual (310 wounds total). Of all measures assessed, only HbA1c was significantly associated with wound-area healing rate. In particular, for each 1.0% point increase in HbA1c, the daily wound-area healing rate decreased by 0.028 cm(2) per day (95% confidence interval: 0.003, 0.0054, P = 0.027). Our results suggest that glycemia, as assessed by HbA1c, may be an important biomarker in predicting wound-healing rate in diabetic patients.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://www.nature.com/jid/journalclub.

  17. Insufficient Sensitivity of Hemoglobin A1C (A1C) Determination in Diagnosis or Screening of Early Diabetic States

    PubMed Central

    Fajans, Stefan S.; Herman, William H.; Oral, Elif A.

    2010-01-01

    An International Expert Committee made recommendations for using the hemoglobin A1C (A1C) assay as the preferred method for diagnosis of diabetes in nonpregnant individuals. A concentration of ≥ 6.5% was considered as diagnostic. It is the aim of this study to compare the sensitivity of A1C with that of plasma glucose concentrations in subjects with early diabetes or IGT. We chose two groups of subjects who had A1C of ≤ 6.4%. The first group of 89 subjects had family histories of diabetes (MODY or T2DM) and had OGTT and A1C determinations. They included 36 subjects with diabetes or IGT and 53 with normal OGTT. The second group of 58 subjects was screened for diabetes in our Diabetes Clinic by FPG or 2HPG or OGTT and A1C and similar comparisons were made. Subjects with diabetes or IGT, including those with fasting hyperglycemia, had A1C ranging from 5.0 – 6.4%, mean 5.8%. The subjects with normal OGTT had A1C of 4.2 – 6.3%, mean 5.4% or 5.5% for the two groups. A1C may be in the normal range in subjects with diabetes or IGT, including those with fasting hyperglycemia. Approximately one third of subjects with early diabetes and IGT have A1C <5.7%, the cut-point that ADA recommends as indicating the onset of risk of developing diabetes in the future. The results of our study are similar to those obtained by a large Dutch epidemiological study. If our aim is to recognize early diabetic states to apply effective prophylactic procedures to prevent or delay progression to more severe diabetes, A1C is not sufficiently sensitive or reliable for diagnosis of diabetes or IGT. A combination of A1C and plasma glucose determinations, where necessary, are recommended for diagnosis or screening of diabetes or IGT. PMID:20723948

  18. Carnitine palmitoyltransferase 1C: From cognition to cancer.

    PubMed

    Casals, Núria; Zammit, Victor; Herrero, Laura; Fadó, Rut; Rodríguez-Rodríguez, Rosalía; Serra, Dolors

    2016-01-01

    Carnitine palmitoyltransferase 1 (CPT1) C was the last member of the CPT1 family of genes to be discovered. CPT1A and CPT1B were identified as the gate-keeper enzymes for the entry of long-chain fatty acids (as carnitine esters) into mitochondria and their further oxidation, and they show differences in their kinetics and tissue expression. Although CPT1C exhibits high sequence similarity to CPT1A and CPT1B, it is specifically expressed in neurons (a cell-type that does not use fatty acids as fuel to any major extent), it is localized in the endoplasmic reticulum of cells, and it has minimal CPT1 catalytic activity with l-carnitine and acyl-CoA esters. The lack of an easily measurable biological activity has hampered attempts to elucidate the cellular and physiological role of CPT1C but has not diminished the interest of the biomedical research community in this CPT1 isoform. The observations that CPT1C binds malonyl-CoA and long-chain acyl-CoA suggest that it is a sensor of lipid metabolism in neurons, where it appears to impact ceramide and triacylglycerol (TAG) metabolism. CPT1C global knock-out mice show a wide range of brain disorders, including impaired cognition and spatial learning, motor deficits, and a deregulation in food intake and energy homeostasis. The first disease-causing CPT1C mutation was recently described in humans, with Cpt1c being identified as the gene causing hereditary spastic paraplegia. The putative role of CPT1C in the regulation of complex-lipid metabolism is supported by the observation that it is highly expressed in certain virulent tumor cells, conferring them resistance to glucose- and oxygen-deprivation. Therefore, CPT1C may be a promising target in the treatment of cancer. Here we review the molecular, biochemical, and structural properties of CPT1C and discuss its potential roles in brain function, and cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Metabolism of 4-hydroxynonenal by the rat hepatoma cell line MH1C1.

    PubMed

    Ferro, M; Marinari, U M; Poli, G; Dianzani, M U; Fauler, G; Zollner, H; Esterbauer, H

    1988-10-01

    The metabolism of the toxic lipid peroxidation product 4-hydroxynonenal was investigated in the well-differentiated rat heptoma cell line MH1C1. When exposed to 0.1 mM 4-hydroxynonenal (HNE), MH1C1 cells consumed it in a time-dependent manner. There was a linear relationship between the amount of aldehyde consumed and cell number in the range 0.5 - 4 X 10(6) cells ml-1. This process was unaffected by pyrazole, suggesting that alcohol dehydrogenase is not involved. The whole homogenate of MH1C1 cells consumed added HNE at a rate similar to that in intact cells. Fractionation of the homogenate showed that the highest HNE-metabolizing activity is in the cytosol. The dialysed cytosol had almost no capacity to metabolize HNE, but this was restored by supplementation with NAD, NADH, NADP and NADPH. The metabolism of HNE in MH1C1 cells is thus different from that in hepatocytes, which were shown to utilize cytosolic alcohol dehydrogenase for this process. Both reductive and oxidative pathways could be implicated in the metabolic activity of MH1C1 cells towards HNE as well as binding by glutathione.

  20. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways.

    PubMed

    Gong, Lingli; Tang, Yuewen; An, Ran; Lin, Muya; Chen, Lijian; Du, Jian

    2017-10-05

    The reticulon family has been found to induce apoptosis, inhibit axon regeneration and regulate protein trafficking. However, little is known about the mechanisms of how reticulon proteins are involved in neuronal death-promoting processes during ischemia. Here, we report that the expression of Reticulon Protein 1-C (RTN1-C) was associated with the progression of cerebral ischemia/reperfusion (I/R) injury. Using a combination of rat middle cerebral artery occlusion (MCAO) stroke and oxygen-glucose deprivation followed by reoxygenation (OGD/R) models, we determined that the expression of RTN1-C was significantly increased during cerebral ischemic/reperfusion. RTN1-C overexpression induced apoptosis and increased the cell vulnerability to ischemic injury, whereas RTN1-C knockdown reversed ischemia-induced apoptosis and attenuated the vulnerability of OGD/R-treated neural cells. Mechanistically, we demonstrated that RTN1-C mediated OGD/R-induced apoptosis through ER stress and mitochondria-associated pathways. RTN1-C interacted with Bcl-xL and increased its localization in the ER, thus reducing the anti-apoptotic activity of Bcl-xL. Most importantly, knockdown of Rtn1-c expression in vivo attenuated apoptosis in MCAO rats and reduced the extent of I/R-induced brain injury, as assessed by infarct volume and neurological score. Collectively, these data support for the first time that RTN1-C may represent a novel candidate for therapies against cerebral ischemia/reperfusion injury.

  1. Screening Baccharin Analogs as Selective Inhibitors Against Type 5 17β-Hydroxysteroid Dehydrogenase (AKR1C3)

    PubMed Central

    Zang, Tianzhu; Verma, Kshitij; Chen, Mo; Jin, Yi; Trippier, Paul C.; Penning, Trevor M.

    2015-01-01

    Aldo-keto reductase 1C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase, is a downstream steroidogenic enzyme and converts androgen precursors to the potent androgen receptor ligands: testosterone and 5α-dihydrotestosterone. Studies have shown that AKR1C3 is involved in the development of castration resistant prostate cancer (CRPC) and that it is a rational drug target for the treatment of CRPC. Baccharin, a component of Brazilian propolis, has been observed to exhibit a high inhibitory potency and selectivity for AKR1C3 over other AKR1C isoforms and is a promising lead compound for developing more potent and selective inhibitors. Here, we report the screening of fifteen baccharin analogs as selective inhibitors against AKR1C3 versus AKR1C2 (type 3 3α-hydroxysteroid dehydrogenase). Among these analogs, the inhibitory activity and selectivity of thirteen compounds were evaluated for the first time. The substitution of the 4-dihydrocinnamoyloxy group of baccharin by an acetate group displayed nanomolar inhibitory potency (IC50: 440 nM) and a 102-fold selectivity over AKR1C2. By contrast, when the cinnamic acid group of baccharin was esterified, there was a dramatic decrease in potency and selectivity for AKR1C3 in comparison to baccharin. Low or sub- micromolar inhibition was observed when the 3-prenyl group of baccharin was removed, and the selectivity over AKR1C2 was low. Although unsubstituted baccharin was still the most potent (IC50: 100 nM) and selective inhibitor for AKR1C3, these data provide structure-activity relationships required for the optimization of new baccharin analogs. They suggest that the carboxylate group on cinnamic acid, the prenyl group, and either retention of 4′-dihydrocinnamoyloxy group or acetate substituent on cinnamic acid are important to maintain the high potency and selectivity for AKR1C3. PMID:25555457

  2. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    SciTech Connect

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-02-22

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity.

  3. Ruthenium complexes as inhibitors of the aldo-keto reductases AKR1C1-1C3.

    PubMed

    Traven, Katja; Sinreih, Maša; Stojan, Jure; Seršen, Sara; Kljun, Jakob; Bezenšek, Jure; Stanovnik, Branko; Turel, Iztok; Rižner, Tea Lanišnik

    2015-06-05

    The human aldo-keto reductases (AKRs) from the 1C subfamily are important targets for the development of new drugs. In this study, we have investigated the possible interactions between the recombinant AKR1C enzymes AKR1C1-AKR1C3 and ruthenium(II) complexes; in particular, we were interested in the potential inhibitory actions. Five novel ruthenium complexes (1a, 1b, 2a, 2b, 2c), two precursor ruthenium compounds (P1, P2), and three ligands (a, b, c) were prepared and included in this study. Two different types of novel ruthenium(II) complexes were synthesized. First, bearing the sulphur macrocycle [9]aneS3, S-bonded dimethylsulphoxide (dmso-S), and an N,N-donor ligand, with the general formula of [Ru([9]aneS3)(dmso)(N,N-ligand)](PF6)2 (1a, 1b), and second, with the general formula of [(η(6)-p-cymene)RuCl(N,N-ligand)]Cl (2a, 2b, 2c). All of these synthesized compounds were characterized by high-resolution NMR spectroscopy, X-ray crystallography (compounds a, b, c, 1a, 1b) and other standard physicochemical methods. To evaluate the potential inhibitory actions of these compounds on the AKR1C enzymes, we followed enzymatically catalyzed oxidation of the substrate 1-acenaphthenol by NAD(+) in the absence and presence of various micromolar concentrations of the individual compounds. Among 10 compounds, one ruthenium complex (2b) and two precursor ruthenium compounds (P1, P2) inhibited all three AKR1C enzymes, and one ruthenium complex (2a) inhibited only AKR1C3. Ligands a, b and c revealed no inhibition of the AKR1C enzymes. All four of the active compounds showed multiple binding with the AKR1C enzymes that was characterized by an initial instantaneous inhibition followed by a slow quasi-irreversible step. To the best of our knowledge, this is the first study that has examined interactions between these AKR1C enzymes and ruthenium(II) complexes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Identification of Shigella flexneri Subserotype 1c in Rural Egypt

    PubMed Central

    El-Gendy, Atef; El-Ghorab, Nemat; Lane, Edward M.; Elyazeed, Remon Abu; Carlin, Nils I. A.; Mitry, Mary M.; Kay, Bradford A.; Savarino, Stephen J.; Peruski, Leonard F.

    1999-01-01

    In a population-based study of diarrhea in rural, northern Egypt, 60 Shigella flexneri strains were identified, of which 10 could not be definitively serotyped. Serological analysis with commercial reagents suggested that they were serotype 1, but the strains failed to react with subserotype 1a- or 1b-specific antibodies. All 10 strains reacted with MASF 1c, a monoclonal antibody specific for a provisional S. flexneri subserotype, 1c, first identified in Bangladesh and not previously detected outside of that region. Our results show that S. flexneri subserotype 1c is not unique to Bangladesh and that the inability to detect it may reflect both the limited use of suitable screening methods and the rarity of this subserotype. PMID:9986881

  5. Human sulfotransferase SULT1C1: cDNA cloning, tissue-specific expression, and chromosomal localization

    SciTech Connect

    Her, Chengtao; Weinshilboum, R.M.; Kaur, G.P.

    1997-05-01

    We have isolated and sequenced a cDNA that encodes an apparent human orthologue of a rat sulfotransferase (ST) cDNA that has been referred to as {open_quotes}ST1C1{close_quotes} - although it was recently recommended that sulfotransferase proteins and cDNAs be abbreviated {open_quotes}SULT.{close_quotes} The new human cDNA was cloned from a fetal liver-spleen cDNA library and had an 888-bp open reading frame. The amino acid sequence of the protein encoded by the cDNA was 62% identical with that encoded by the rat ST1C1 cDNA and included signature sequences that are conserved in all cytosolic SULT enzymes. Dot blot analysis of mRNA from 50 human tissues indicated that the cDNA was expressed in adult human stomach, kidney, and thyroid, as well as fetal kidney and liver. Northern blot analyses demonstrated that the major SULT1C1 mRNA in those same tissues was 1.4 kb in length. We next determined the partial human SULT1C1 gene sequence for a portion of the 5{prime}-terminus of one intron. That sequence was used to design SULT1C1 gene-specific primers that were used to perform the PCR with DNA from human/rodent somatic cell hybrids to demonstrate that the gene was located on chromosome 2. PCR amplifications performed with human chromosome 2/rodent hybrid cell DNA as template sublocalized SULT1C1 to a region between bands 2q11.1 and 2q11.2. 14 refs., 2 figs.

  6. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity.

    PubMed

    Yan, Fang; Wang, Qi; Lu, Ming; Chen, Wenbin; Song, Yongfeng; Jing, Fei; Guan, Youfei; Wang, Laicheng; Lin, Yanliang; Bo, Tao; Zhang, Jie; Wang, Tingting; Xin, Wei; Yu, Chunxiao; Guan, Qingbo; Zhou, Xinli; Gao, Ling; Xu, Chao; Zhao, Jiajun

    2014-12-01

    Hallmarks of non-alcoholic fatty liver disease (NAFLD) are increased triglyceride accumulation within hepatocytes. The prevalence of NAFLD increases steadily with increasing thyrotropin (TSH) levels. However, the underlying mechanisms are largely unknown. Here, we focused on exploring the effect and mechanism of TSH on the hepatic triglyceride content. As the function of TSH is mediated through the TSH receptor (TSHR), Tshr(-/-) mice (supplemented with thyroxine) were used. Liver steatosis and triglyceride content were analysed in Tshr(-/-) and Tshr(+/+) mice fed a high-fat or normal chow diet, as well as in Srebp-1c(-/-) and Tshr(-/-)Srebp-1c(-/-) mice. The expression levels of proteins and genes involved in liver triglyceride metabolism was measured. Compared with control littermates, the high-fat diet induced a relatively low degree of liver steatosis in Tshr(-/-) mice. Even under chow diet, hepatic triglyceride content was decreased in Tshr(-/-) mice. TSH caused concentration- and time-dependent effects on intracellular triglyceride contents in hepatocytes in vitro. The activity of SREBP-1c, a key regulator involved in triglyceride metabolism and in the pathogenesis of NAFLD, was significantly lower in Tshr(-/-) mice. In Tshr(-/-)Srebp-1c(-/-) mice, the liver triglyceride content showed no significant difference compared with Tshr(+/+)Srebp-1c(-/-) mice. When mice were injected with forskolin (cAMP activator), H89 (inhibitor of PKA) or AICAR (AMPK activator), or HeG2 cells received MK886 (PPARα inhibitor), triglyceride contents presented in a manner dependent on SREBP-1c activity. The mechanism, underlying TSH-induced liver triglyceride accumulation, involved that TSH, through its receptor TSHR, triggered hepatic SREBP-1c activity via the cAMP/PKA/PPARα pathway associated with decreased AMPK, which further increased the expression of genes associated with lipogenesis. TSH increased the hepatic triglyceride content, indicating an essential role for TSH in the

  7. Protective effect of Porphyra yezoensis glycoprotein on D-galactosamine‑induced cytotoxicity in Hepa 1c1c7 cells.

    PubMed

    Choi, Jeong-Wook; Kim, Young-Min; Park, Su-Jin; Kim, In-Hye; Nam, Taek-Jeong

    2015-05-01

    The present study aimed to examine the signaling pathways and enzyme activity associated with the protective effect of Porphyra yezoensis glycoprotein (PYGP) on D‑galactosamine (D‑GaIN)‑induced cytotoxicity in Hepa 1c1c7 cells. D‑GaIN is commonly used to induce hepatic injury models in vivo as well as in vitro. PYGP was extracted from Porphyra yezoensis, a red algae distributed along the coasts of Republic of Korea, China and Japan. In the present study, Hepa 1c1c7 cells were pre‑treated with PYGP (20 and 40 µg/ml) for 24 h and then the media was replaced with D‑GaIN (20 mM) and PYGP (20 and 40 µg/ml). The results demonstrated that D‑GaIN induced Hepa 1c1c7 cell death and pretreatment with PYGP was found to attenuate D‑GaIN toxicity. In addition, D‑GaIN decreased the antioxidant activity and increased lipid peroxidation processes; however, pre‑treatment with PYGP reduced the generation of lipid peroxidation products, such as thiobarbituric acid reactive substances, as well as increased the activity of antioxidant enzymes, including superoxide dismutase, catalase and glutathione‑s‑transferase (GST). PYGP was shown to suppress the overexpression of extracellular signal‑regulated kinase, c‑jun N‑terminal kinase and p38 mitogen‑activated protein kinase (MAPK) phosphorylation induced by D‑GaIN. Furthermore, PYGP increased the protein expression of nuclear factor erythroid 2‑related factor 2 (Nrf2), quinine oxidoreductase 1, GST and heme oxygenase 1 protein expression. These results suggested that PYGP had cytoprotective effects against D‑GaIN‑induced cell damage, which may be associated with MAPKs and the Nrf2 signaling pathway.

  8. Overexpression of a LAM domain containing RNA-binding protein LARP1c induces precocious leaf senescence in Arabidopsis.

    PubMed

    Zhang, Bangyue; Jia, Jianheng; Yang, Min; Yan, Chunxia; Han, Yuzhen

    2012-10-01

    Leaf senescence is the final stage of leaf life history, and it can be regulated by multiple internal and external cues. La-related proteins (LARPs), which contain a well-conserved La motif (LAM) domain and normally a canonical RNA recognition motif (RRM) or noncanonical RRM-like motif, are widely present in eukaryotes. Six LARP genes (LARP1a-1c and LARP6a-6c) are present in Arabidopsis, but their biological functions have not been studied previously. In this study, we investigated the biological roles of LARP1c from the LARP1 family. Constitutive or inducible overexpression of LARP1c caused premature leaf senescence. Expression levels of several senescence-associated genes and defense-related genes were elevated upon overexpression of LARP1c. The LARP1c null mutant 1c-1 impaired ABA-, SA-, and MeJA-induced leaf senescence in detached leaves. Gene expression profiles of LARP1c showed age-dependent expression in rosette leaves. Taken together, our results suggest LARP1c is involved in regulation of leaf senescence.

  9. Overexpression of a LAM Domain Containing RNA-Binding Protein LARP1c Induces Precocious Leaf Senescence in Arabidopsis

    PubMed Central

    Zhang, Bangyue; Jia, Jianheng; Yang, Min; Yan, Chunxia; Han, Yuzhen

    2012-01-01

    Leaf senescence is the final stage of leaf life history, and it can be regulated by multiple internal and external cues. La-related proteins (LARPs), which contain a well-conserved La motif (LAM) domain and normally a canonical RNA recognition motif (RRM) or noncanonical RRM-like motif, are widely present in eukaryotes. Six LARP genes (LARP1a-1c and LARP6a-6c) are present in Arabidopsis, but their biological functions have not been studied previously. In this study, we investigated the biological roles of LARP1c from the LARP1 family. Constitutive or inducible overexpression of LARP1c caused premature leaf senescence. Expression levels of several senescence-associated genes and defense-related genes were elevated upon overexpression of LARP1c. The LARP1c null mutant 1c-1 impaired ABA-, SA-, and MeJA-induced leaf senescence in detached leaves. Gene expression profiles of LARP1c showed age-dependent expression in rosette leaves. Taken together, our results suggest LARP1c is involved in regulation of leaf senescence. PMID:22965746

  10. Ring finger protein20 regulates hepatic lipid metabolism through protein kinase A-dependent sterol regulatory element binding protein1c degradation

    PubMed Central

    Lee, Jae Ho; Lee, Gha Young; Jang, Hagoon; Choe, Sung Sik; Koo, Seung-Hoi; Kim, Jae Bum

    2014-01-01

    Sterol regulatory element binding protein1c (SREBP1c) is a key transcription factor for de novo lipogenesis during the postprandial state. During nutritional deprivation, hepatic SREBP1c is rapidly suppressed by fasting signals to prevent lipogenic pathways. However, the molecular mechanisms that control SREBP1c turnover in response to fasting status are not thoroughly understood. To elucidate which factors are involved in the inactivation of SREBP1c, we attempted to identify SREBP1c-interacting proteins by mass spectrometry analysis. Since we observed that ring finger protein20 (RNF20) ubiquitin ligase was identified as one of SREBP1c-interacting proteins, we hypothesized that fasting signaling would promote SREBP1c degradation in an RNF20-dependent manner. In this work, we demonstrate that RNF20 physically interacts with SREBP1c, leading to degradation of SREBP1c via ubiquitination. In accordance with these findings, RNF20 represses the transcriptional activity of SREBP1c and turns off the expression of lipogenic genes that are targets of SREBP1c. In contrast, knockdown of RNF20 stimulates the expression of SREBP1c and lipogenic genes and induces lipogenic activity in primary hepatocytes. Furthermore, activation of protein kinase A (PKA) with glucagon or forskolin enhances the expression of RNF20 and potentiates the ubiquitination of SREBP1c via RNF20. In wild-type and db/db mice, adenoviral overexpression of RNF20 markedly suppresses FASN promoter activity and reduces the level of hepatic triglycerides, accompanied by a decrease in the hepatic lipogenic program. Here, we reveal that RNF20-induced SREBP1c ubiquitination down-regulates hepatic lipogenic activity upon PKA activation. Conclusion: RNF20 acts as a negative regulator of hepatic fatty acid metabolism through degradation of SREBP1c upon PKA activation. Knowledge regarding this process enhances our understanding of how SREBP1c is able to turn off hepatic lipid metabolism during nutritional deprivation

  11. Cacna1c (Cav1.2) Modulates Electroencephalographic Rhythm and Rapid Eye Movement Sleep Recovery

    PubMed Central

    Kumar, Deependra; Dedic, Nina; Flachskamm, Cornelia; Voulé, Stephanie; Deussing, Jan M.; Kimura, Mayumi

    2015-01-01

    Study Objectives: The CACNA1C gene encodes the alpha 1C1C) subunit of the Cav1.2 voltage-dependent L-type calcium channel (LTCC). Some of the other voltage-dependent calcium channels, e.g., P-/Q-type, Cav2.1; N-type, Cav2.2; E-/R-type, Cav2.3; and T-type, Cav3.3 have been implicated in sleep modulation. However, the contribution of LTCCs to sleep remains largely unknown. Based on recent genome-wide association studies, CACNA1C emerged as one of potential candidate genes associated with both sleep and psychiatric disorders. Indeed, most patients with mental illnesses have sleep problems and vice versa. Design: To investigate an impact of Cav1.2 on sleep-wake behavior and electroencephalogram (EEG) activity, polysomnography was performed in heterozygous Cacna1c (HET) knockout mice and their wild-type (WT) littermates under baseline and challenging conditions (acute sleep deprivation and restraint stress). Measurements and Results: HET mice displayed significantly lower EEG spectral power than WT mice across high frequency ranges (beta to gamma) during wake and rapid eye movement (REM) sleep. Although HET mice spent slightly more time asleep in the dark period, daily amounts of sleep did not differ between the two genotypes. However, recovery sleep after exposure to both types of challenging stress conditions differed markedly; HET mice exhibited reduced REM sleep recovery responses compared to WT mice. Conclusions: These results suggest the involvement of Cacna1c (Cav1.2) in fast electroencephalogram oscillations and REM sleep regulatory processes. Lower spectral gamma activity, slightly increased sleep demands, and altered REM sleep responses found in heterozygous Cacna1c knockout mice may rather resemble a sleep phenotype observed in schizophrenia patients. Citation: Kumar D, Dedic N, FLachskamm C, Voulé S, Deussing JM, Kimura M. Cacna1c (Cav1.2) modulates electroencephalographic rhythm and rapid eye movement sleep recovery. SLEEP 2015;38(9):1371–1380. PMID

  12. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells.

    PubMed

    Schwarz, Harald; Schmittner, Maria; Duschl, Albert; Horejs-Hoeck, Jutta

    2014-01-01

    Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002-2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14.

  13. Preparation of 1-C-glycosyl aldehydes by reductive hydrolysis.

    PubMed

    Sipos, Szabolcs; Jablonkai, István

    2011-09-06

    Reductive hydrolysis of various protected glycosyl cyanides was carried out using DIBAL-H to form aldimine alane intermediates which were then hydrolyzed under mildly acidic condition to provide the corresponding aldehyde derivatives. While 1-C-formyl glycal and 2-deoxy glycosyl derivatives were stable during isolation and storage 1-C-glycosyl formaldehydes in the gluco, galacto and manno series were sensitive and decomposition occurred by 2-alkyloxy elimination. A one-pot method using N,N'-diphenylethylenediamine to trap these aldehydes in stable form was developed. Reductive hydrolysis of glycosyl cyanides offers valuable aldehyde building blocks in a convenient way which can be applied in the synthesis of complex C-glycosides. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Cloning, expression, and preliminary structural characterization of RTN-1C

    SciTech Connect

    Fazi, Barbara; Melino, Sonia; Sano, Federica Di; Cicero, Daniel O.; Piacentini, Mauro . E-mail: mauro.piacentini@uniroma2.it; Paci, Maurizio

    2006-04-14

    Reticulons (RTNs) are endoplasmic reticulum-associated proteins widely distributed in plants, yeast, and animals. They are characterized by unique N-terminal parts and a common 200 amino acid C-terminal domain containing two long hydrophobic sequences. Despite their implication in many cellular processes, their molecular structure and function are still largely unknown. In this study, the reticulon family member RTN-1C has been expressed and purified in Escherichia coli and its molecular structure has been analysed by fluorescence and CD spectroscopy in different detergents in order to obtain a good solubility and a relative stability. The isotopically enriched protein has been also produced to perform structural studies by NMR spectroscopy. The preliminary results obtained showed that RTN-1C protein possesses helical transmembrane segments when a membrane-like environment is produced by detergents. Moreover, fluorescence experiments indicated the exposure of tryptophan side chains as predicted by structure prediction programs. We also produced the isotopically labelled protein and the procedure adopted allowed us to plan future NMR studies to investigate the biochemical behaviour of reticulon-1C and of its peptides spanning out from the membrane.

  15. DIFFERENTIAL REGULATION OF POLYSOME mRNA LEVELS IN MOUSE HEPA-1C1C7 CELLS EXPOSED TO DIOXIN

    PubMed Central

    Thornley, Jessica A.; Trask, Heidi W.; Ridley, Christian J. A.; Korc, Murray; Gui, Jiang; Ringelberg, Carol S.; Wang, Sinny; Tomlinson, Craig R.

    2011-01-01

    The environmental agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) causes a multitude of human illnesses. In order to more fully understand the underlying biology of TCDD toxicity, we tested the hypothesis that new candidate genes could be identified using polysome RNA from TCDD-treated mouse Hepa-1c1c7 cells. We found that (i) differentially expressed whole cell and cytoplasm RNA levels are both poor predictors of polysome RNA levels; (ii) for a majority of RNAs, differential RNA levels are regulated independently in the nucleus, cytoplasm, and polysomes; (iii) for the remaining polysome RNAs, levels are regulated via several different mechanisms, including a “tagging” of mRNAs in the nucleus for immediate polysome entry; and (iv) most importantly, a gene list derived from differentially expressed polysome RNA generated new genes and cell pathways potentially related to TCDD biology. PMID:21570461

  16. Expression of SREBP-1c Requires SREBP-2-mediated Generation of a Sterol Ligand for LXR in Livers of Mice

    PubMed Central

    Rong, Shunxing; Cortés, Víctor A; Rashid, Shirya; Anderson, Norma N; McDonald, Jeffrey G; Liang, Guosheng; Moon, Young-Ah; Hammer, Robert E; Horton, Jay D

    2017-01-01

    The synthesis of cholesterol and fatty acids (FA) in the liver is independently regulated by SREBP-2 and SREBP-1c, respectively. Here, we genetically deleted Srebf-2 from hepatocytes and confirmed that SREBP-2 regulates all genes involved in cholesterol biosynthesis, the LDL receptor, and PCSK9; a secreted protein that degrades LDL receptors in the liver. Surprisingly, we found that elimination of Srebf-2 in hepatocytes of mice also markedly reduced SREBP-1c and the expression of all genes involved in FA and triglyceride synthesis that are normally regulated by SREBP-1c. The nuclear receptor LXR is necessary for Srebf-1c transcription. The deletion of Srebf-2 and subsequent lower sterol synthesis in hepatocytes eliminated the production of an endogenous sterol ligand required for LXR activity and SREBP-1c expression. These studies demonstrate that cholesterol and FA synthesis in hepatocytes are coupled and that flux through the cholesterol biosynthetic pathway is required for the maximal SREBP-1c expression and high rates of FA synthesis. DOI: http://dx.doi.org/10.7554/eLife.25015.001 PMID:28244871

  17. Investigation and Analysis of Hemoglobin A1c Measurement Systems' Performance for 135 Laboratories in China.

    PubMed

    Zhao, Hai-Jian; Zhang, Tian-Jiao; Zeng, Jie; Hu, Cui-Hua; Ma, Rong; Zhang, Chuan-Bao

    2017-05-05

    Hemoglobin A1c (HbA1c) measurement is of great value for the diagnosis and monitoring of diabetes. Many manufacturers have developed various experiments to determine the HbA1c concentration. However, the longitudinal use of these tests requires strict quality management. This study aimed to analyze the quality of HbA1c measurement systems in China using six sigma techniques to help improve their performances. A total of 135 laboratories were involved in this investigation in 2015. Bias values and coefficients of variation were collected from an HbA1c trueness verification external quality assessment program and an internal quality control program organized by the National Center of Clinical Laboratories in China. The sigma (σ) values and the quality goal index (QGI) were used to evaluate the performances of different groups, which were divided according to principles and instruments. The majority of participants (88, 65.2%) were scored as "improvement needed (σ < 3)", suggesting that the laboratories needed to improve their measurement performance. Only 8.2% (11/135) of the laboratories were scored as "world class (σ ≥ 6)". Among all the 88 laboratories whose σ values were below 3, 52 (59.1%) and 23 (26.1%) laboratories needed to improve measurement precision (QGI <8.0) and trueness (QGI >1.2), respectively; the remaining laboratories (13, 14.8%) needed to improve both measurement precision and trueness. In addition, 16.1% (5/31) and 15.0% (3/20) of the laboratories in "TOSOH" and "ARKRAY" groups, respectively, were scored as "world class", whereas none of the laboratories in "BIO-RAD" group were scored as "world class". This study indicated that, although participating laboratories were laboratories with better performance in China, the performances were still unsatisfactory. Actions should be taken to improve HbA1c measurement performance before we can include HbA1c assays in diabetes diagnosis in China.

  18. Investigation and Analysis of Hemoglobin A1c Measurement Systems’ Performance for 135 Laboratories in China

    PubMed Central

    Zhao, Hai-Jian; Zhang, Tian-Jiao; Zeng, Jie; Hu, Cui-Hua; Ma, Rong; Zhang, Chuan-Bao

    2017-01-01

    Background: Hemoglobin A1c (HbA1c) measurement is of great value for the diagnosis and monitoring of diabetes. Many manufacturers have developed various experiments to determine the HbA1c concentration. However, the longitudinal use of these tests requires strict quality management. This study aimed to analyze the quality of HbA1c measurement systems in China using six sigma techniques to help improve their performances. Methods: A total of 135 laboratories were involved in this investigation in 2015. Bias values and coefficients of variation were collected from an HbA1c trueness verification external quality assessment program and an internal quality control program organized by the National Center of Clinical Laboratories in China. The sigma (σ) values and the quality goal index (QGI) were used to evaluate the performances of different groups, which were divided according to principles and instruments. Results: The majority of participants (88, 65.2%) were scored as “improvement needed (σ < 3)”, suggesting that the laboratories needed to improve their measurement performance. Only 8.2% (11/135) of the laboratories were scored as “world class (σ ≥ 6)”. Among all the 88 laboratories whose σ values were below 3, 52 (59.1%) and 23 (26.1%) laboratories needed to improve measurement precision (QGI <8.0) and trueness (QGI >1.2), respectively; the remaining laboratories (13, 14.8%) needed to improve both measurement precision and trueness. In addition, 16.1% (5/31) and 15.0% (3/20) of the laboratories in “TOSOH” and “ARKRAY” groups, respectively, were scored as “world class”, whereas none of the laboratories in “BIO-RAD” group were scored as “world class”. Conclusions: This study indicated that, although participating laboratories were laboratories with better performance in China, the performances were still unsatisfactory. Actions should be taken to improve HbA1c measurement performance before we can include HbA1c assays in diabetes

  19. Discovery of a novel activator of 5-lipoxygenase from an anacardic acid derived compound collection

    PubMed Central

    Wisastra, Rosalina; Kok, Petra A.M; Eleftheriadis, Nikolaos; Baumgartner, Matthew P.; Camacho, Carlos J.; Haisma, Hidde J.; Dekker, Frank J.

    2013-01-01

    Lipoxygenases (LOXs) and cyclooxygenases (COXs) metabolize poly-unsaturated fatty acids into inflammatory signaling molecules. Modulation of the activity of these enzymes may provide new approaches for therapy of inflammatory diseases. In this study, we screened novel anacardic acid derivatives as modulators of human 5-LOX and COX-2 activity. Interestingly, a novel salicylate derivative 23a was identified as a surprisingly potent activator of human 5-LOX. This compound showed both non-competitive activation towards the human 5-LOX activator adenosine triphosphate (ATP) and non-essential mixed type activation against the substrate linoleic acid, while having no effect on the conversion of the substrate arachidonic acid. The kinetic analysis demonstrated a non-essential activation of the linoleic acid conversion with a KA of 8.65 μM, αKA of 0.38 μM and a β value of 1.76. It is also of interest that a comparable derivative 23d showed a mixed type inhibition for linoleic acid conversion. These observations indicate the presence of an allosteric binding site in human 5-LOX distinct from the ATP binding site. The activatory and inhibitory behavior of 23a and 23d on the conversion of linoleic compared to arachidonic acid are rationalized by docking studies, which suggest that the activator 23a stabilizes linoleic acid, whereas the larger inhibitor 23d blocks the enzyme active site. PMID:24231650

  20. Lipoxin A4, a 5-lipoxygenase pathway metabolite, modulates immune response during acute respiratory tularemia.

    PubMed

    Singh, Anju; Rahman, Tabassum; Bartiss, Rose; Arabshahi, Alireza; Prasain, Jeevan; Barnes, Stephen; Musteata, Florin Marcel; Sellati, Timothy J

    2017-02-01

    Respiratory infection with Francisella tularensis (Ft) is characterized by a muted, acute host response, followed by sepsis-like syndrome that results in death. Infection with Ft establishes a principally anti-inflammatory environment that subverts host-cell death programs to facilitate pathogen replication. Although the role of cytokines has been explored extensively, the role of eicosanoids in tularemia pathogenesis is not fully understood. Given that lipoxin A4 (LXA4) has anti-inflammatory properties, we investigated whether this lipid mediator affects host responses manifested early during infection. The addition of exogenous LXA4 inhibits PGE2 release by Ft-infected murine monocytes in vitro and diminishes apoptotic cell death. Tularemia pathogenesis was characterized in 5‑lipoxygenase-deficient (Alox5(-/-)) mice that are incapable of generating LXA4 Increased release of proinflammatory cytokines and chemokines, as well as increased apoptosis, was observed in Alox5(-/-) mice as compared with their wild-type counterparts. Alox5(-/-) mice also exhibited elevated recruitment of neutrophils during the early phase of infection and increased resistance to lethal challenge. Conversely, administration of exogenous LXA4 to Alox5(-/-) mice made them more susceptible to infection thus mimicking wild-type animals. Taken together, our results suggest that 5-LO activity is a critical regulator of immunopathology observed during the acute phase of respiratory tularemia, regulating bacterial burden and neutrophil recruitment and production of proinflammatory modulators and increasing morbidity and mortality. These studies identify a detrimental role for the 5-LO-derived lipid mediator LXA4 in Ft-induced immunopathology. Targeting this pathway may have therapeutic benefit as an adjunct to treatment with antibiotics and conventional antimicrobial peptides, which often have limited efficacy against intracellular bacteria. © Society for Leukocyte Biology.

  1. Catechol-O-methyltransferase association with hemoglobin A1c

    PubMed Central

    Hall, Kathryn T.; Jablonski, Kathleen A.; Chen, Ling; Harden, Maegan; Tolkin, Benjamin R.; Kaptchuk, Ted J.; Bray, George A.; Ridker, Paul M.; Florez, Jose C.; Chasman, Daniel I.

    2016-01-01

    Aims Catecholamines have metabolic effects on blood pressure, insulin sensitivity and blood glucose. Genetic variation in catechol-O-methyltransferase (COMT), an enzyme that degrades catecholamines, is associated with cardiometabolic risk factors and incident cardiovascular disease (CVD). Here we examined COMT effects on glycemic function and type 2 diabetes. Methods We tested whether COMT polymorphisms were associated with baseline HbA1c in the Women’s Genome Health Study (WGHS), and Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), and with susceptibility to type 2 diabetes in WGHS, DIAbetes Genetics Replication And Meta-analysis consortium (DIAGRAM), and the Diabetes Prevention Program (DPP). Given evidence that COMT modifies some drug responses, we examined association with type 2 diabetes and randomized metformin and aspirin treatment. Results COMT rs4680 high-activity G-allele was associated with lower HbA1c in WGHS (β = −0.032% [0.012], p = 0.008) and borderline significant in MAGIC (β = −0.006% [0.003], p = 0.07). Combined COMT per val allele effects on type 2 diabetes were significant (OR = 0.98 [0.96–0.998], p = 0.03) in fixed-effects analyses across WGHS, DIAGRAM, and DPP. Similar results were obtained for 2 other COMT SNPs rs4818 and rs4633. In the DPP, the rs4680 val allele was borderline associated with lower diabetes incidence among participants randomized to metformin (HR = 0.81 [0.65–1.00], p = 0.05). Conclusions COMT rs4680 high-activity G-allele was associated with lower HbA1c and modest protection from type 2 diabetes. The directionality of COMT associations was concordant with those previously observed for cardiometabolic risk factors and CVD. PMID:27282867

  2. Association of HbA1c and cardiovascular and renal disease in an adult Mediterranean population

    PubMed Central

    2013-01-01

    Background Increasing evidence suggests a mechanistic link between the glycemic environment and renal and cardiovascular events, even below the threshold for diabetes. We aimed to assess the association between HbA1c and chronic kidney disease (CKD) and cardiovascular disease (CVD). Methods A cross-sectional study involving a random representative sample of 2270 adults from southern Spain (Malaga) was undertaken. We measured HbA1c, serum creatinine and albuminuria in fasting blood and urine samples. Results Individuals without diabetes in the upper HbA1c tertile had an unfavorable cardiovascular and renal profile and shared certain clinical characteristics with the patients with diabetes. Overall, a higher HbA1c concentration was strongly associated with CKD or CVD after adjustment for traditional risk factors. The patients with known diabetes had a 2-fold higher odds of CKD or CVD. However, when both parameters were introduced in the same model, the HbA1c concentration was only significantly associated with clinical endpoints (OR: 1.4, 95% CI, 1.1-1.6, P = 0.002). An increase in HbA1c of one percentage point was associated with a 30% to 40% increase in the rate of CKD or CVD. This relationship was apparent in persons with and without known diabetes. ROC curves illustrated that a HbA1c of 37 mmol/mol (5.5%) was the optimal value in terms of sensitivity and specificity for predicting endpoints in this population. Conclusion HbA1c levels were associated with a higher prevalence of CKD and CVD cross-sectionally, regardless of diabetes status. These data support the value of HbA1c as a marker of cardiovascular and renal disease in the general population. PMID:23865389

  3. Self-knowledge of HbA1c in people with Type 2 Diabetes Mellitus and its association with glycaemic control.

    PubMed

    Trivedi, Hina; Gray, Laura J; Seidu, Samuel; Davies, Melanie J; Charpentier, Guillaume; Lindblad, Ulf; Kellner, Christiane; Nolan, John; Pazderska, Agnieszka; Rutten, Guy; Trento, Marina; Khunti, Kamlesh

    2017-10-01

    The aim of this study was to evaluate the prevalence of accurate self-knowledge of a patient's own HbA1c level (HbA1cSK), as a component of structural education (University Hospital's of Leicester (UHL), 2013) and its association with glycaemic control. Data from the GUIDANCE study, a cross-sectional study involving 7597 participants from eight European countries was used. HbA1cSK was evaluated and compared with laboratory measured HbA1c levels (HbA1cLAB), which represented the measure of glycaemic control. Accuracy of the self-reported HbA1c was evaluated by using agreement statistical methods. The prevalence of HbA1cSK was 49.4%. Within this group, 78.3% of the participants had accurately reported HbA1cSK. There was good level of agreement between HbA1cSK and HbA1cLAB (intra-class correlation statistic=0.84, p<0.0001). Participants with accurately reported HbA1cSK were found to have a statistically significantly lower HbA1cLAB compared to participants with inaccurately reported HbA1cSK (7.0% versus 7.3%, p<0.001). Nearly half of the patients had self-knowledge of their own HbA1c level. Moreover, the participants with accurately reported HbA1cSK were found to have associated better glycaemic control. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  4. FHL1C induces apoptosis in Notch1-dependent T-ALL cells through an interaction with RBP-J.

    PubMed

    Fu, Wei; Wang, Kai; Zhao, Jun-Long; Yu, Heng-Chao; Li, San-Zhong; Lin, Yan; Liang, Liang; Huang, Si-Yong; Liang, Ying-Min; Han, Hua; Qin, Hong-Yan

    2014-06-22

    -ALL treatment. We also explored the molecular mechanism of FHL1C overexpression-induced apoptosis, which suppressed downstream target genes such as Hes1 and c-Myc and key signaling pathways such as PI3K/AKT and NF-κB of Notch signaling involved in T-ALL progression. Our study has revealed that FHL1C overexpression induces Jurkat cell apoptosis. This finding may provide new insights in designing new Notch inhibitors based on FHL1C to treat T-ALL.

  5. Level-1C Product from AIRS: Principal Component Filtering

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Jiang, Yibo; Aumann, Hartmut H.; Elliott, Denis A.; Hannon, Scott

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS), launched on the EOS Aqua spacecraft on May 4, 2002, is a grating spectrometer with 2378 channels in the range 3.7 to 15.4 microns. In a grating spectrometer each individual radiance measurement is largely independent of all others. Most measurements are extremely accurate and have very low noise levels. However, some channels exhibit high noise levels or other anomalous behavior, complicating applications needing radiances throughout a band, such as cross-calibration with other instruments and regression retrieval algorithms. The AIRS Level-1C product is similar to Level-1B but with instrument artifacts removed. This paper focuses on the "cleaning" portion of Level-1C, which identifies bad radiance values within spectra and produces substitute radiances using redundant information from other channels. The substitution is done in two passes, first with a simple combination of values from neighboring channels, then with principal components. After results of the substitution are shown, differences between principal component reconstructed values and observed radiances are used to investigate detailed noise characteristics and spatial misalignment in other channels.

  6. CD1c+ blood dendritic cells have Langerhans cell potential.

    PubMed

    Milne, Paul; Bigley, Venetia; Gunawan, Merry; Haniffa, Muzlifah; Collin, Matthew

    2015-01-15

    Langerhans cells (LCs) are self-renewing in the steady state but repopulated by myeloid precursors after injury. Human monocytes give rise to langerin-positive cells in vitro, suggesting a potential precursor role. However, differentiation experiments with human lineage-negative cells and CD34(+) progenitors suggest that there is an alternative monocyte-independent pathway of LC differentiation. Recent data in mice also show long-term repopulation of the LC compartment with alternative myeloid precursors. Here we show that, although monocytes are able to express langerin, when cultured with soluble ligands granulocyte macrophage colony-stimulating factor (GM-CSF), transforming growth factor β (TGFβ), and bone morphogenetic protein 7 (BMP7), CD1c(+) dendritic cells (DCs) become much more LC-like with high langerin, Birbeck granules, EpCAM, and E-cadherin expression under the same conditions. These data highlight a new potential precursor function of CD1c(+) DCs and demonstrate an alternative pathway of LC differentiation that may have relevance in vivo.

  7. Level-1C Product from AIRS: Principal Component Filtering

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Jiang, Yibo; Aumann, Hartmut H.; Elliott, Denis A.; Hannon, Scott

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS), launched on the EOS Aqua spacecraft on May 4, 2002, is a grating spectrometer with 2378 channels in the range 3.7 to 15.4 microns. In a grating spectrometer each individual radiance measurement is largely independent of all others. Most measurements are extremely accurate and have very low noise levels. However, some channels exhibit high noise levels or other anomalous behavior, complicating applications needing radiances throughout a band, such as cross-calibration with other instruments and regression retrieval algorithms. The AIRS Level-1C product is similar to Level-1B but with instrument artifacts removed. This paper focuses on the "cleaning" portion of Level-1C, which identifies bad radiance values within spectra and produces substitute radiances using redundant information from other channels. The substitution is done in two passes, first with a simple combination of values from neighboring channels, then with principal components. After results of the substitution are shown, differences between principal component reconstructed values and observed radiances are used to investigate detailed noise characteristics and spatial misalignment in other channels.

  8. Melanomas and Dysplastic Nevi Differ in Epidermal CD1c+ Dendritic Cell Count

    PubMed Central

    Dyduch, Grzegorz; Tyrak, Katarzyna Ewa; Glajcar, Anna; Szpor, Joanna

    2017-01-01

    Background. Dendritic cells could be involved in immune surveillance of highly immunogenic tumors such as melanoma. Their role in the progression melanocytic nevi to melanoma is however a matter of controversy. Methods. The number of dendritic cells within epidermis, in peritumoral zone, and within the lesion was counted on slides immunohistochemically stained for CD1a, CD1c, DC-LAMP, and DC-SIGN in 21 of dysplastic nevi, 27 in situ melanomas, and 21 invasive melanomas. Results. We found a significant difference in the density of intraepidermal CD1c+ cells between the examined lesions; the mean CD1c cell count was 7.00/mm2 for invasive melanomas, 2.94 for in situ melanomas, and 13.35 for dysplastic nevi. The differences between dysplastic nevi and melanoma in situ as well as between dysplastic nevi and invasive melanoma were significant. There was no correlation in number of positively stained cells between epidermis and dermis. We did not observe any intraepidermal DC-LAMP+ cells neither in melanoma in situ nor in invasive melanoma as well as any intraepidermal DC-SIGN+ cells in dysplastic nevi. Conclusion. It was shown that the number of dendritic cells differs between dysplastic nevi, in situ melanomas, and invasive melanomas. This could eventually suggest their participation in the development of melanoma. PMID:28331853

  9. Aldo-keto reductase (AKR) 1C3: role in prostate disease and the development of specific inhibitors.

    PubMed

    Penning, Trevor M; Steckelbroeck, Stephan; Bauman, David R; Miller, Meredith W; Jin, Yi; Peehl, Donna M; Fung, Kar-Ming; Lin, Hseuh-Kung

    2006-03-27

    Human aldo-keto reductases (AKR) of the 1A, 1B, 1C and 1D subfamilies are involved in the pre-receptor regulation of nuclear (steroid hormone and orphan) receptors by regulating the local concentrations of their lipophilic ligands. AKR1C3 is one of the most interesting isoforms. It was cloned from human prostate and the recombinant protein was found to function as a 3-, 17- and 20-ketosteroid reductase with a preference for the conversion of Delta4-androstene-3,17-dione to testosterone implicating this enzyme in the local production of active androgens within the prostate. Using a validated isoform specific real-time RT-PCR procedure the AKR1C3 transcript was shown to be more abundant in primary cultures of epithelial cells than stromal cells, and its expression in stromal cells increased with benign and malignant disease. Using a validated isoform specific monoclonal Ab, AKR1C3 protein expression was also detected in prostate epithelial cells by immunoblot analysis. Immunohistochemical staining of prostate tissue showed that AKR1C3 was expressed in adenocarcinoma and surprisingly high expression was observed in the endothelial cells. These cells are a rich source of prostaglandin G/H synthase 2 (COX-2) and vasoactive prostaglandins (PG) and thus the ability of recombinant AKR1C enzymes to act as PGF synthases was compared. AKR1C3 had the highest catalytic efficiency (kcat/Km) for the 11-ketoreduction of PGD2 to yield 9alpha,11beta-PGF2 raising the prospect that AKR1C3 may govern ligand access to peroxisome proliferator activated receptor (PPARgamma). Activation of PPARgamma is often a pro-apoptotic signal and/or leads to terminal differentiation, while 9alpha,11beta-PGF2 is a pro-proliferative signal. AKR1C3 is potently inhibited by non-steroidal anti-inflammatory drugs suggesting that the cancer chemopreventive properties of these agents may be mediated either by inhibition of AKR1C3 or COX. To discriminate between these effects we developed potent AKR1C

  10. Step 1: C3 Flight Demo Data Analysis Plan

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Data Analysis Plan (DAP) describes the data analysis that the C3 Work Package (WP) will perform in support of the Access 5 Step 1 C3 flight demonstration objectives as well as the processes that will be used by the Flight IPT to gather and distribute the data collected to satisfy those objectives. In addition to C3 requirements, this document will encompass some Human Systems Interface (HSI) requirements in performing the C3 flight demonstrations. The C3 DAP will be used as the primary interface requirements document between the C3 Work Package and Flight Test organizations (Flight IPT and Non-Access 5 Flight Programs). In addition to providing data requirements for Access 5 flight test (piggyback technology demonstration flights, dedicated C3 technology demonstration flights, and Airspace Operations Demonstration flights), the C3 DAP will be used to request flight data from Non- Access 5 flight programs for C3 related data products

  11. Synthesis of a C1-C11 fragment of Zincophorin using planar chiral, neutral π-allyl iron complexes.

    PubMed

    Cooksey, John P

    2013-08-21

    A key step in the synthesis of a C1-C11 fragment of the ionophore antibiotic Zincophorin involves the addition of an α-alkoxyalkylcopper(I) reagent to a planar chiral, neutral π-allyl iron complex. The key allylic alkylation reaction is highly regio- and stereoselective with addition taking place at the γ-position anti to the metal centre.

  12. BRAIN-SPECIFIC CARNITINE PALMITOYLTRANSFERASE-1C: ROLE IN CNS FATTY ACID METABOLISM, FOOD INTAKE AND BODY WEIGHT

    PubMed Central

    Wolfgang, Michael J.; Cha, Seung Hun; Millington, David S.; Cline, Gary; Shulman, Gerald I; Suwa, Akira; Asaumi, Makoto; Kurama, Takeshi; Shimokawa, Teruhiko; Lane, M. Daniel

    2014-01-01

    While the brain does not utilize fatty acids as a primary energy source, recent evidence shows that intermediates of fatty acid metabolism serve as hypothalamic sensors of energy status. Increased hypothalamic malonyl-CoA, an intermediate in fatty acid synthesis, is indicative of energy surplus and leads to the suppression of food intake and increased energy expenditure. Malonyl-CoA functions as an inhibitor of CPT1, a mitochondrial outer membrane enzyme that initiates translocation of fatty acids into mitochondria for oxidation. The mammalian brain expresses a unique homologous CPT1, CPT1c, that binds malonyl-CoA tightly but does not support fatty acid oxidation in vivo, in hypothalamic explants or in heterologous cell culture systems. CPT1c KO mice under fasted or refed conditions do not exhibit an altered CNS transcriptome of genes known to be involved in fatty acid metabolism. CPT1c KO mice exhibit normal levels of metabolites and of hypothalamic malonyl-CoA and fatty acyl-CoA levels either in the fasted or refed states. However, CPT1c KO mice exhibit decreased food intake and lower body weight than WT littermates. In contrast, CPT1c KO mice gain excessive body weight and body fat when fed a high-fat diet while maintaining lower or equivalent food intake. Heterozygous mice display an intermediate phenotype. These findings provide further evidence that CPT1c plays a role in maintaining energy homeostasis, but not through altered fatty acid oxidation. PMID:18248603

  13. Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    PubMed Central

    Bultmann-Mellin, Insa; Conradi, Anne; Maul, Alexandra C.; Dinger, Katharina; Wempe, Frank; Wohl, Alexander P.; Imhof, Thomas; Wunderlich, F. Thomas; Bunck, Alexander C.; Nakamura, Tomoyuki; Koli, Katri; Bloch, Wilhelm; Ghanem, Alexander; Heinz, Andrea; von Melchner, Harald; Sengle, Gerhard; Sterner-Kock, Anja

    2015-01-01

    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S−/−), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S−/− and Ltbp4-null (Ltbp4−/−) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C. PMID:25713297

  14. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding

    PubMed Central

    Jang, Hagoon; Lee, Gha Young; Selby, Christopher P.; Lee, Gung; Jeon, Yong Geun; Lee, Jae Ho; Cheng, Kenneth King Yip; Titchenell, Paul; Birnbaum, Morris J.; Xu, Aimin; Sancar, Aziz; Kim, Jae Bum

    2016-01-01

    SREBP1c is a key lipogenic transcription factor activated by insulin in the postprandial state. Although SREBP1c appears to be involved in suppression of hepatic gluconeogenesis, the molecular mechanism is not thoroughly understood. Here we show that CRY1 is activated by insulin-induced SREBP1c and decreases hepatic gluconeogenesis through FOXO1 degradation, at least, at specific circadian time points. SREBP1c−/− and CRY1−/− mice show higher blood glucose than wild-type (WT) mice in pyruvate tolerance tests, accompanied with enhanced expression of PEPCK and G6Pase genes. CRY1 promotes degradation of nuclear FOXO1 by promoting its binding to the ubiquitin E3 ligase MDM2. Although SREBP1c fails to upregulate CRY1 expression in db/db mice, overexpression of CRY1 attenuates hyperglycaemia through reduction of hepatic FOXO1 protein and gluconeogenic gene expression. These data suggest that insulin-activated SREBP1c downregulates gluconeogenesis through CRY1-mediated FOXO1 degradation and that dysregulation of hepatic SREBP1c-CRY1 signalling may contribute to hyperglycaemia in diabetic animals. PMID:27412556

  15. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana.

    PubMed

    Castro, Pedro Humberto; Couto, Daniel; Freitas, Sara; Verde, Nuno; Macho, Alberto P; Huguet, Stéphanie; Botella, Miguel Angel; Ruiz-Albert, Javier; Tavares, Rui Manuel; Bejarano, Eduardo Rodríguez; Azevedo, Herlânder

    2016-09-01

    Sumoylation is an essential post-translational regulator of plant development and the response to environmental stimuli. SUMO conjugation occurs via an E1-E2-E3 cascade, and can be removed by SUMO proteases (ULPs). ULPs are numerous and likely to function as sources of specificity within the pathway, yet most ULPs remain functionally unresolved. In this report we used loss-of-function reverse genetics and transcriptomics to functionally characterize Arabidopsis thaliana ULP1c and ULP1d SUMO proteases. GUS reporter assays implicated ULP1c/d in various developmental stages, and subsequent defects in growth and germination were uncovered using loss-of-function mutants. Microarray analysis evidenced not only a deregulation of genes involved in development, but also in genes controlled by various drought-associated transcriptional regulators. We demonstrated that ulp1c ulp1d displayed diminished in vitro root growth under low water potential and higher stomatal aperture, yet leaf transpirational water loss and whole drought tolerance were not significantly altered. Generation of a triple siz1 ulp1c ulp1d mutant suggests that ULP1c/d and the SUMO E3 ligase SIZ1 may display separate functions in development yet operate epistatically in response to water deficit. We provide experimental evidence that Arabidopsis ULP1c and ULP1d proteases act redundantly as positive regulators of growth, and operate mainly as isopeptidases downstream of SIZ1 in the control of water deficit responses.

  16. Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability.

    PubMed

    Niechi, Ignacio; Silva, Eduardo; Cabello, Pablo; Huerta, Hernan; Carrasco, Valentina; Villar, Paulina; Cataldo, Luis Rodrigo; Marcelain, Katherine; Armisen, Ricardo; Varas-Godoy, Manuel; Fernandez, Cristina; Tapia, Julio C

    2015-12-15

    Endothelin-converting enzyme-1c (ECE-1c) is a membrane metalloprotease involved in endothelin-1 synthesis, which has been shown in vitro to have a role in breast, ovary and prostate cancer cell invasion. N-terminal end of ECE-1c displays three putative phosphorylation sites for the protein kinase CK2. We studied whether CK2 phosphorylates N-terminal end of ECE-1c as well as whether this has a role in migration and invasion of colon cancer cells. CK2 phosphorylated the N-terminal end of ECE-1c and this was precluded upon inhibition of CK2. Inhibition also led to diminished protein levels of both endogen ECE-1 or GFP-fused N-terminal end of ECE-1c in 293T embryonic and DLD-1 colon cancer cells, which highlighted the importance of this motif on UPS-dependent ECE-1c degradation. Full-length ECE-1c mutants designed either to mimic or abrogate CK2-phosphorylation displayed increased or decreased migration/invasion of colon cancer cells, respectively. Moreover, ECE-1c overexpression or its silencing with a siRNA led to increased or diminished cell migration/invasion, respectively. Altogether, these data show that CK2-increased ECE-1c protein stability is related to augmented migration and invasion of colon cancer cells, shedding light on a novel mechanism by which CK2 may promote malignant progression of this disease.

  17. Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability

    PubMed Central

    Niechi, Ignacio; Silva, Eduardo; Cabello, Pablo; Huerta, Hernan; Carrasco, Valentina; Villar, Paulina; Cataldo, Luis Rodrigo; Marcelain, Katherine; Armisen, Ricardo; Varas-Godoy, Manuel; Fernandez, Cristina; Tapia, Julio C.

    2015-01-01

    Endothelin-converting enzyme-1c (ECE-1c) is a membrane metalloprotease involved in endothelin-1 synthesis, which has been shown in vitro to have a role in breast, ovary and prostate cancer cell invasion. N-terminal end of ECE-1c displays three putative phosphorylation sites for the protein kinase CK2. We studied whether CK2 phosphorylates N-terminal end of ECE-1c as well as whether this has a role in migration and invasion of colon cancer cells. CK2 phosphorylated the N-terminal end of ECE-1c and this was precluded upon inhibition of CK2. Inhibition also led to diminished protein levels of both endogen ECE-1 or GFP-fused N-terminal end of ECE-1c in 293T embryonic and DLD-1 colon cancer cells, which highlighted the importance of this motif on UPS-dependent ECE-1c degradation. Full-length ECE-1c mutants designed either to mimic or abrogate CK2-phosphorylation displayed increased or decreased migration/invasion of colon cancer cells, respectively. Moreover, ECE-1c overexpression or its silencing with a siRNA led to increased or diminished cell migration/invasion, respectively. Altogether, these data show that CK2-increased ECE-1c protein stability is related to augmented migration and invasion of colon cancer cells, shedding light on a novel mechanism by which CK2 may promote malignant progression of this disease. PMID:26543229

  18. 3-Nitrobenzanthrone and 3-aminobenzanthrone induce DNA damage and cell signalling in Hepa1c1c7 cells.

    PubMed

    Landvik, N E; Arlt, V M; Nagy, E; Solhaug, A; Tekpli, X; Schmeiser, H H; Refsnes, M; Phillips, D H; Lagadic-Gossmann, D; Holme, J A

    2010-02-03

    3-Nitrobenzanthrone (3-NBA) is a mutagenic and carcinogenic environmental pollutant found in diesel exhaust and urban air pollution. In the present work we have characterised the effects of 3-NBA and its metabolite 3-aminobenzanthrone (3-ABA) on cell death and cytokine release in mouse hepatoma Hepa1c1c7 cells. These effects were related to induced DNA damage and changes in cell signalling pathways. 3-NBA resulted in cell death and caused most DNA damage as judged by the amount of DNA adducts ((32)P-postlabelling assay), single strand (ss)DNA breaks and oxidative DNA lesions (comet assay) detected. An increased phosphorylation of H2AX, chk1, chk2 and partly ATM was observed using flow cytometry and/or Western blotting. Both compounds increased phosphorylation of p53 and MAPKs (ERK, p38 and JNK). However, only 3-NBA caused an accumulation of p53 in the nucleus and a translocation of Bax to the mitochondria. The p53 inhibitor pifithrin-alpha inhibited 3-NBA-induced apoptosis, indicating that cell death was a result of the triggering of DNA signalling pathways. The highest phosphorylation of Akt and degradation of IkappaB-alpha (suggesting activation of NF-kappaB) were also seen after treatment with 3-NBA. In contrast 3-ABA increased IL-6 release, but caused little or no toxicity. Cytokine release was inhibited by PD98059 and curcumin, suggesting that ERK and NF-kappaB play a role in this process. In conclusion, 3-NBA seems to have a higher potency to induce DNA damage compatible with its cytotoxic effects, while 3-ABA seems to have a greater effect on the immune system. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Selective Inhibitors of Aldo-Keto Reductases AKR1C1 and AKR1C3 Discovered by Virtual Screening of a Fragment Library

    PubMed Central

    Brožič, Petra; Turk, Samo; Adeniji, Adegoke O.; Konc, Janez; Janežič, Dušanka; Penning, Trevor M.; Rižner, Tea Lanišnik; Gobec, Stanislav

    2012-01-01

    Human aldo-keto reductases 1C1-1C4 (AKR1C1-AKR1C4) function in vivo as 3-keto-, 17-keto- and 20- ketosteroid reductases, and regulate the activity of androgens, estrogens and progesterone and the occupancy and transactivation of their corresponding receptors. Aberrant expression and action of AKR1C enzymes can lead to different pathophysiological conditions. AKR1C enzymes thus represent important targets for development of new drugs. We performed a virtual high-throughput screen of a fragment library that was followed by biochemical evaluation on AKR1C1-AKR1C4 enzymes. Twenty-four structurally diverse compounds were discovered with low μM Ki values for AKR1C1, AKR1C3, or both. Two structural series included the salicylates and the N-phenylanthranilic acids and additionally a series of inhibitors with completely novel scaffolds was discovered. Two of the best selective AKR1C3 inhibitors had Ki values of 0.1 μM and 2.7 μM, exceeding expected activity for fragments. The compounds identified represent an excellent starting point for further hit-to-lead development. PMID:22881866

  20. SMOS L1C and L2 Validation in Australia

    NASA Technical Reports Server (NTRS)

    Rudiger, Christoph; Walker, Jeffrey P.; Kerr, Yann H.; Mialon, Arnaud; Merlin, Olivier; Kim, Edward J.

    2012-01-01

    Extensive airborne field campaigns (Australian Airborne Cal/val Experiments for SMOS - AACES) were undertaken during the 2010 summer and winter seasons of the southern hemisphere. The purpose of those campaigns was the validation of the Level 1c (brightness temperature) and Level 2 (soil moisture) products of the ESA-led Soil Moisture and Ocean Salinity (SMOS) mission. As SMOS is the first satellite to globally map L-band (1.4GHz) emissions from the Earth?s surface, and the first 2-dimensional interferometric microwave radiometer used for Earth observation, large scale and long-term validation campaigns have been conducted world-wide, of which AACES is the most extensive. AACES combined large scale medium-resolution airborne L-band and spectral observations, along with high-resolution in-situ measurements of soil moisture across a 50,000km2 area of the Murrumbidgee River catchment, located in south-eastern Australia. This paper presents a qualitative assessment of the SMOS brightness temperature and soil moisture products.

  1. Black hole collapse in the 1 /c expansion

    NASA Astrophysics Data System (ADS)

    Anous, Tarek; Hartman, Thomas; Rovai, Antonin; Sonner, Julian

    2016-07-01

    We present a first-principles CFT calculation corresponding to the spherical collapse of a shell of matter in three dimensional quantum gravity. In field theory terms, we describe the equilibration process, from early times to thermalization, of a CFT following a sudden injection of energy at time t = 0. By formulating a continuum version of Zamolodchikov's monodromy method to calculate conformal blocks at large central charge c, we give a framework to compute a general class of probe observables in the collapse state, incorporating the full backreaction of matter fields on the dual geometry. This is illustrated by calculating a scalar field two-point function at time-like separation and the time-dependent entanglement entropy of an interval, both showing thermalization at late times. The results are in perfect agreement with previous gravity calculations in the AdS3-Vaidya geometry. Information loss appears in the CFT as an explicit violation of unitarity in the 1 /c expansion, restored by nonperturbative corrections.

  2. Associations of NQO1 C609T and NQO1 C465T polymorphisms with acute leukemia risk: a PRISMA-compliant meta-analysis

    PubMed Central

    He, Hairong; Zhai, Xiaoyu; Liu, Xiaomin; Zheng, Jie; Zhai, Yajing; Gao, Fan; Chen, Yonghua; Lu, Jun

    2017-01-01

    Objective The NAD(P)H:quinone oxidoreductase (NQO1) C609T and C465T polymorphisms have been widely thought to be associated with the risk of acute leukemia (AL) in recent years, but the correlations are still unclear. A meta-analysis is generally acknowledged as one of the best methods for secondary research, and so it was applied in this study with the aim of elucidating how the NQO1 C609T and C465T polymorphisms are related to the risk of AL. Methods Relevant studies were searched in the PubMed, EMBASE, CNKI, and Wanfang databases, and the obtained data were analyzed using Stata (version 12.1). The allele-contrast model was applied, and odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate relationship strengths. Meta-regression was used to identify sources of heterogeneity, and subgroup analyses were conducted. Publication bias was analyzed using funnel plots, with the trim-and-fill method used to analyze the effect of publication bias on pooled results. In addition, sensitivity analysis, the fail-safe number method, and cumulative analysis by publication year were performed to measure the stability of the obtained results. Results This meta-analysis included 28 relevant studies involving 5,953 patients and 8,667 controls. Overall, the C609T polymorphism was associated with the risk of acute lymphoblastic leukemia (ALL; OR =1.18, 95% CI =1.00–1.39, P=0.05). Meanwhile, race was found to be a potential source of heterogeneity for the relationship between the C609T polymorphism and acute myeloid leukemia (AML) risk, and the subgroup analysis identified the C609T polymorphism as a risk factor for AML in Asians (OR =1.34, 95% CI =1.03–1.74, P=0.03). The number of studies about C465T polymorphism was too small to pool the data. Conclusion There are increased risks of ALL in all subjects and of AML in Asians for carriers of the NQO1 C609T polymorphism. Further studies are needed to verify the associations of the C465T polymorphism with the

  3. Associations of NQO1 C609T and NQO1 C465T polymorphisms with acute leukemia risk: a PRISMA-compliant meta-analysis.

    PubMed

    He, Hairong; Zhai, Xiaoyu; Liu, Xiaomin; Zheng, Jie; Zhai, Yajing; Gao, Fan; Chen, Yonghua; Lu, Jun

    2017-01-01

    The NAD(P)H:quinone oxidoreductase (NQO1) C609T and C465T polymorphisms have been widely thought to be associated with the risk of acute leukemia (AL) in recent years, but the correlations are still unclear. A meta-analysis is generally acknowledged as one of the best methods for secondary research, and so it was applied in this study with the aim of elucidating how the NQO1 C609T and C465T polymorphisms are related to the risk of AL. Relevant studies were searched in the PubMed, EMBASE, CNKI, and Wanfang databases, and the obtained data were analyzed using Stata (version 12.1). The allele-contrast model was applied, and odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate relationship strengths. Meta-regression was used to identify sources of heterogeneity, and subgroup analyses were conducted. Publication bias was analyzed using funnel plots, with the trim-and-fill method used to analyze the effect of publication bias on pooled results. In addition, sensitivity analysis, the fail-safe number method, and cumulative analysis by publication year were performed to measure the stability of the obtained results. This meta-analysis included 28 relevant studies involving 5,953 patients and 8,667 controls. Overall, the C609T polymorphism was associated with the risk of acute lymphoblastic leukemia (ALL; OR =1.18, 95% CI =1.00-1.39, P=0.05). Meanwhile, race was found to be a potential source of heterogeneity for the relationship between the C609T polymorphism and acute myeloid leukemia (AML) risk, and the subgroup analysis identified the C609T polymorphism as a risk factor for AML in Asians (OR =1.34, 95% CI =1.03-1.74, P=0.03). The number of studies about C465T polymorphism was too small to pool the data. There are increased risks of ALL in all subjects and of AML in Asians for carriers of the NQO1 C609T polymorphism. Further studies are needed to verify the associations of the C465T polymorphism with the risk of AL.

  4. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells

    SciTech Connect

    Asare, Nana Landvik, Nina E.; Lagadic-Gossmann, Dominique; Rissel, Mary; Tekpli, Xavier; Ask, Kjetil; Lag, Marit; Holme, Jorn A.

    2008-07-15

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed that the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent.

  5. Evidence for the mechanism of action of the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated decrease of nuclear estrogen receptor levels in wild-type and mutant mouse Hepa 1c1c7 cells.

    PubMed

    Zacharewski, T; Harris, M; Safe, S

    1991-06-15

    Treatment of wild-type Hepa 1c1c7 cells with 1 nM [3H]-17 beta-estradiol resulted in the rapid accumulation of the nuclear estrogen receptor complex whose levels were maximized within 1 hr. Cotreatment of the cells with 10 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and [3H]-17 beta-estradiol did not affect the nuclear estrogen receptor levels 1 hr after addition of the radioligand; however, pretreatment of the cells for 1, 6, 24 or 42 hr with 10 nM TCDD prior to the addition of the radiolabeled hormone caused a greater than 50% decrease in nuclear estrogen receptor levels (determined by velocity sedimentation analysis) 1 hr after the addition of [3H]-17 beta-estradiol. In parallel experiments in which 10 nM TCDD was added 6 hr prior to the radiolabeled hormone, TCDD caused a 63 and 74% decrease in immunodetectable cytosolic and nuclear estrogen receptor protein levels, respectively, in the wild-type Hepa 1c1c7 cells. The nuclear estrogen receptor was also detected in two Hepa 1c1c7 mutant (class 1 and class 2) cell lines which have been characterized previously as TCDD non-responsive due to either decreased aryl hydrocarbon (Ah) receptor levels or a defect in the accumulation of transcriptionally active nuclear Ah receptor complexes, respectively. Treatment of these mutant cell lines with TCDD and [3H]-17 beta-estradiol (as described above) caused only a minimum (class 1) or non-detectable (class 2) decrease in nuclear estrogen receptor binding activity or immunodetectable protein levels. These results, coupled with the structure-dependent differences in the activities of TCDD (a strong Ah receptor agonist) and 2,8-dichlordibenzo-p-dioxin (a weak Ah receptor agonist) in this assay system, support a role for the Ah receptor in the TCDD-mediated decrease of the nuclear estrogen receptor in mouse Hepa 1c1c7 cells. In addition, actinomycin D and cycloheximide both inhibited the TCDD-mediated decrease of nuclear estrogen receptor levels in the Hepa 1c1c7 wild

  6. Cardiac phenotype induced by a dysfunctional α1C transgene

    PubMed Central

    Lao, Qi Zong; Ravindran, Arippa; Herbert, Ron; Canuto, Holly C

    2011-01-01

    Based on stable integration of recombinant DNA into a host genome, transgenic technology has become an important genetic engineering methodology. An organism whose genetic characteristics have been altered by the insertion of foreign DNA is supposed to exhibit a new phenotype associated with the function of the transgene. However, successful insertion may not be sufficient to achieve specific modification of function. In this study we describe a strain of transgenic mouse, G7-882, generated by incorporation into the mouse genome of human Cav1.2 α1C cDNA deprived of 3′-UTR to exclude transcription. We found that, in response to chronic infusion of isoproterenol, G7-882 develops dilated cardiomyopathy, a misleading “transgenic artifact” compatible with the expected function of the incorporated “correct” transgene. Specifically, using magnetic resonance imaging (MRI), we found that chronic β-adrenergic stimulation of G7-882 mice caused left ventricular hypertrophy and aggravated development of dilated cardiomyopathy, although no significant changes in the kinetics, density and voltage dependence of the calcium current were observed in G7-882 cardiomyocytes as compared to cells from wild type mice. This result illustrates the possibility that even when a functional transgene is expressed, an observed change in phenotype may be due to the artifact of “incidental incorporation” leading to misleading conclusions. To exclude this possibility and thus provide a robust tool for exploring biological function, the new transgenic phenotype must be replicated in several independently generated transgenic strains. PMID:21224729

  7. On the 1/c expansion of f(R) gravity

    SciTech Connect

    Naef, Joachim; Jetzer, Philippe

    2010-05-15

    We derive for applications to isolated systems--on the scale of the Solar System--the first relativistic terms in the 1/c expansion of the space time metric g{sub {mu}{nu}}for metric f(R) gravity theories, where f is assumed to be analytic at R=0. For our purpose it suffices to take into account up to quadratic terms in the expansion of f(R), thus we can approximate f(R)=R+aR{sup 2} with a positive dimensional parameter a. In the nonrelativistic limit, we get an additional Yukawa correction with coupling strength G/3 and Compton wave length {radical}(6a) to the Newtonian potential, which is a known result in the literature. As an application, we derive to the same order the correction to the geodetic precession of a gyroscope in a gravitational field and the precession of binary pulsars. The result of the Gravity Probe B experiment yields the limit a < or approx. 5x10{sup 11} m{sup 2}, whereas for the pulsar B in the PSR J0737-3039 system we get a bound which is about 10{sup 4} times larger. On the other hand the Eoet-Wash experiment provides the best laboratory bound a < or approx. 10{sup -10} m{sup 2}. Although the former bounds from geodesic precession are much larger than the laboratory ones, they are still meaningful in the case some type of chameleon effect is present and thus the effective values could be different at different length scales.

  8. Impact of glutathione-HbA1c on HbA1c measurement in diabetes diagnosis via array isoelectric focusing, liquid chromatography, mass spectrometry and ELISA.

    PubMed

    Li, Si; Guo, Chen-Gang; Chen, Lu; Yin, Xiao-Yang; Wu, Yi-Xin; Fan, Liu-Yin; Fan, Hui-Zhi; Cao, Cheng-Xi

    2013-10-15

    Hemoglobin A1c (HbA1c) has been proven to be a key biomarker for diabetes screening, and glutathiolation of HbA1c (viz., GSS-HbA1c) has been identified. However, the impact of GSS-HbA1c on the measurement of HbA1c for diabetes screening has not been quantitatively assessed yet. To address the issue, the micropreparative capillary isoelectric focusing (cIEF) developed in our previous work was used for the high resolution separation and purification of hemoglobin (Hb) species. The main fractions of HbA0, HbA3 and HbA1c extracted from the developed cIEF were identified by validated Mono S method. The proposed GSS-HbA1c fractions in the cIEF were pooled and identified by electrospray ionization mass spectrometry (ESI-MS). The HbA1c enzyme-linked immunosorbent assay (ELISA) kit was employed for further quantitative analysis of GSS-HbA1c. A total of 34 blood samples with HbA1c levels from 4.2% to 13.4% were assessed via the above comprehensive strategy of IEF-HPLC-MS-ELISA. It was demonstrated that the HbA1c levels detected by cation exchange LC were considerably influenced by the glutathiolation of Hb and the range of detected GSS-HbA1c values was between 0.23% and 0.74%. The results and developed cIEF methods have considerable significances for investigation of diabetes and clinical diagnosis.

  9. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice

    PubMed Central

    Xiong, Lizhong

    2013-01-01

    Abiotic stresses such as drought cause a reduction of plant growth and loss of crop yield. Stomatal aperture controls CO2 uptake and water loss to the atmosphere, thus playing important roles in both the yield gain and drought tolerance of crops. Here, a rice homologue of SRO (similar to RCD one), termed OsSRO1c, was identified as a direct target gene of SNAC1 (stress-responsive NAC 1) involved in the regulation of stomatal aperture and oxidative response. SNAC1 could bind to the promoter of OsSRO1c and activate the expression of OsSRO1c. OsSRO1c was induced in guard cells by drought stress. The loss-of-function mutant of OsSRO1c showed increased stomatal aperture and sensitivity to drought, and faster water loss compared with the wild-type plant, whereas OsSRO1c overexpression led to decreased stomatal aperture and reduced water loss. Interestingly, OsSRO1c-overexpressing rice showed increased sensitivity to oxidative stress. Expression of DST, a reported zinc finger gene negatively regulating H2O2-induced stomatal closure, and the activity of H2O2-scavenging related enzymes were significantly suppressed, and H2O2 in guard cells was accumulated in the overexpression lines. OsSRO1c interacted with various stress-related regulatory and functional proteins, and some of the OsSRO1c-interacting proteins are predicted to be involved in the control of stomatal aperture and oxidative stress tolerance. The results suggest that OsSRO1c has dual roles in drought and oxidative stress tolerance of rice by promoting stomatal closure and H2O2 accumulation through a novel pathway involving regulators SNAC1 and DST. PMID:23202132

  10. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways

    PubMed Central

    Yecies, Jessica L.; Zhang, Hui H.; Menon, Suchithra; Liu, Sihao; Yecies, Derek; Lipovsky, Alex I.; Gorgun, Cem; Kwiatkowski, David J.; Hotamisligil, Gökhan S.; Lee, Chih-Hao; Manning, Brendan D.

    2011-01-01

    Through unknown mechanisms, insulin activates the sterol regulatory element-binding protein (SREBP1c) transcription factor to promote hepatic lipogenesis. We find that this induction is dependent on the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). To further define the role of mTORC1 in the regulation of SREBP1c in the liver, we generated mice with liver-specific deletion of TSC1 (LTsc1KO), which results in insulin-independent activation of mTORC1. Surprisingly, the LTsc1KO mice are protected from age- and diet-induced hepatic steatosis and display hepatocyte-intrinsic defects in SREBP1c activation and de novo lipogenesis. These phenotypes result from attenuation of Akt signaling driven by mTORC1-dependent insulin resistance. Therefore, mTORC1 activation is not sufficient to stimulate hepatic SREBP1c in the absence of Akt signaling, revealing the existence of an additional downstream pathway also required for this induction. We provide evidence that this mTORC1-independent pathway involves Akt-mediated suppression of Insig2a, a liver-specific transcript encoding the SREBP1c inhibitor INSIG2. PMID:21723501

  11. A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis.

    PubMed

    Schepens, Bert; Tinton, Sandrine A; Bruynooghe, Yanik; Parthoens, Eef; Haegman, Mira; Beyaert, Rudi; Cornelis, Sigrid

    2007-01-10

    The upstream of N-Ras (Unr) protein is involved in translational regulation of specific genes. For example, the Unr protein contributes to translation mediated by several viral and cellular internal ribosome entry sites (IRESs), including the PITSLRE IRES, which is activated at mitosis. Previously, we have shown that translation of the Unr mRNA itself can be initiated through an IRES. Here, we show that UNR mRNA translation and UNR IRES activity are significantly increased during mitosis. Functional analysis identified hnRNP C1/C2 proteins as UNR IRES stimulatory factors, whereas both polypyrimidine tract-binding protein (PTB) and Unr were found to function as inhibitors of UNR IRES-mediated translation. The increased UNR IRES activity during mitosis results from enhanced binding of the stimulatory hnRNP C1/C2 proteins and concomitant dissociation of PTB and Unr from the UNR IRES RNA. Our data suggest the existence of an IRES-dependent cascade in mitosis comprising hnRNP C1/C2 proteins that stimulate Unr expression, and Unr, in turn, contributes to PITSLRE IRES activity. The observation that RNA interference-mediated knockdown of hnRNP C1/C2 and Unr, respectively, abrogates and retards mitosis points out that regulation of IRES-mediated translation by hnRNP C1/C2 and Unr might be important in mitosis.

  12. RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis

    PubMed Central

    Wu, Zhe; Zhu, Danling; Lin, Xiaoya; Miao, Jin; Gu, Lianfeng; Deng, Xian; Zhu, Danmeng; Cao, Xiaofeng; Tsuge, Tomohiko; Dean, Caroline; Aoyama, Takashi

    2016-01-01

    Nuclear-localized RNA binding proteins are involved in various aspects of RNA metabolism, which in turn modulates gene expression. However, the functions of nuclear-localized RNA binding proteins in plants are poorly understood. Here, we report the functions of two proteins containing RNA recognition motifs, RZ-1B and RZ-1C, in Arabidopsis thaliana. RZ-1B and RZ-1C were localized to nuclear speckles and interacted with a spectrum of serine/arginine-rich (SR) proteins through their C termini. RZ-1C preferentially bound to purine-rich RNA sequences in vitro through its N-terminal RNA recognition motif. Disrupting the RNA binding activity of RZ-1C with SR proteins through overexpression of the C terminus of RZ-1C conferred defective phenotypes similar to those observed in rz-1b rz-1c double mutants, including delayed seed germination, reduced stature, and serrated leaves. Loss of function of RZ-1B and RZ-1C was accompanied by defective splicing of many genes and global perturbation of gene expression. In addition, we found that RZ-1C directly targeted FLOWERING LOCUS C (FLC), promoting efficient splicing of FLC introns and likely also repressing FLC transcription. Our findings highlight the critical role of RZ-1B/1C in regulating RNA splicing, gene expression, and many key aspects of plant development via interaction with proteins including SR proteins. PMID:26721863

  13. RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis.

    PubMed

    Wu, Zhe; Zhu, Danling; Lin, Xiaoya; Miao, Jin; Gu, Lianfeng; Deng, Xian; Yang, Qian; Sun, Kangtai; Zhu, Danmeng; Cao, Xiaofeng; Tsuge, Tomohiko; Dean, Caroline; Aoyama, Takashi; Gu, Hongya; Qu, Li-Jia

    2016-01-01

    Nuclear-localized RNA binding proteins are involved in various aspects of RNA metabolism, which in turn modulates gene expression. However, the functions of nuclear-localized RNA binding proteins in plants are poorly understood. Here, we report the functions of two proteins containing RNA recognition motifs, RZ-1B and RZ-1C, in Arabidopsis thaliana. RZ-1B and RZ-1C were localized to nuclear speckles and interacted with a spectrum of serine/arginine-rich (SR) proteins through their C termini. RZ-1C preferentially bound to purine-rich RNA sequences in vitro through its N-terminal RNA recognition motif. Disrupting the RNA binding activity of RZ-1C with SR proteins through overexpression of the C terminus of RZ-1C conferred defective phenotypes similar to those observed in rz-1b rz-1c double mutants, including delayed seed germination, reduced stature, and serrated leaves. Loss of function of RZ-1B and RZ-1C was accompanied by defective splicing of many genes and global perturbation of gene expression. In addition, we found that RZ-1C directly targeted FLOWERING LOCUS C (FLC), promoting efficient splicing of FLC introns and likely also repressing FLC transcription. Our findings highlight the critical role of RZ-1B/1C in regulating RNA splicing, gene expression, and many key aspects of plant development via interaction with proteins including SR proteins. © 2016 American Society of Plant Biologists. All rights reserved.

  14. Deciphering Multiplicity of HIV-1C Infection: Transmission of Closely Related Multiple Viral Lineages

    PubMed Central

    Novitsky, Vlad; Moyo, Sikhulile; Wang, Rui; Gaseitsiwe, Simani; Essex, M.

    2016-01-01

    Background A single viral variant is transmitted in the majority of HIV infections. However, about 20% of heterosexually transmitted HIV infections are caused by multiple viral variants. Detection of transmitted HIV variants is not trivial, as it involves analysis of multiple viral sequences representing intra-host HIV-1 quasispecies. Methodology We distinguish two types of multiple virus transmission in HIV infection: (1) HIV transmission from the same source, and (2) transmission from different sources. Viral sequences representing intra-host quasispecies in a longitudinally sampled cohort of 42 individuals with primary HIV-1C infection in Botswana were generated by single-genome amplification and sequencing and spanned the V1C5 region of HIV-1C env gp120. The Maximum Likelihood phylogeny and distribution of pairwise raw distances were assessed at each sampling time point (n = 217; 42 patients; median 5 (IQR: 4–6) time points per patient, range 2–12 time points per patient). Results Transmission of multiple viral variants from the same source (likely from the partner with established HIV infection) was found in 9 out of 42 individuals (21%; 95 CI 10–37%). HIV super-infection was identified in 2 patients (5%; 95% CI 1–17%) with an estimated rate of 3.9 per 100 person-years. Transmission of multiple viruses combined with HIV super-infection at a later time point was observed in one individual. Conclusions Multiple HIV lineages transmitted from the same source produce a monophyletic clade in the inferred phylogenetic tree. Such a clade has transiently distinct sub-clusters in the early stage of HIV infection, and follows a predictable evolutionary pathway. Over time, the gap between initially distinct viral lineages fills in and initially distinct sub-clusters converge. Identification of cases with transmission of multiple viral lineages from the same source needs to be taken into account in cross-sectional estimation of HIV recency in epidemiological and

  15. Increasing CACNA1C expression in placenta containing high Cd level: an implication of Cd toxicity.

    PubMed

    Phuapittayalert, Laorrat; Saenganantakarn, Phisid; Supanpaiboon, Wisa; Cheunchoojit, Supaporn; Hipkaeo, Wiphawi; Sakulsak, Natthiya

    2016-12-01

    Cadmium (Cd) has known to produce many adverse effects on organs including placenta. Many essential transporters are involved in Cd transport pathways such as DMT-1, ZIP as well as L-VDCC. Fourteen pregnant women participated and were divided into two groups: high and low Cd-exposed (H-Cd, L-Cd) groups on the basis of their residential areas, Cd concentrations in the blood (B-Cd), urine (U-Cd), and placenta (P-Cd). The results showed that the B-Cd and U-Cd were significantly increased in H-Cd group (p < 0.05). Interestingly, the P-Cd in H-Cd group was elevated (p < 0.05) and positively related to their B-Cd and U-Cd values (p < 0.05). However, the mean cord blood Cd (C-Cd) concentration in H-Cd group was not significantly increased about 2.5-fold when comparing to L-Cd group. To determine the Cd accumulation in placental tissues, metallothionein-1A (MT-1A) and metallothionein-2A (MT-2A) expressions were used as biomarkers. The results revealed that mean MT-1A and MT-2A mRNAs and MT-1/2 proteins were up-regulated in H-Cd group (p < 0.05). In addition, the Ca channel alpha 1C (CACNA1C) mRNA and protein expressions were noticeably elevated in H-Cd group (p < 0.05). From these findings, we suggested that CACNA1C might be implicated in Cd transport in human placenta.

  16. Association of CACNA1C and SYNE1 in offspring of patients with psychiatric disorders.

    PubMed

    Gassó, Patricia; Sánchez-Gistau, Vanessa; Mas, Sergi; Sugranyes, Gisela; Rodríguez, Natalia; Boloc, Daniel; de la Serna, Elena; Romero, Soledad; Moreno, Dolores; Moreno, Carmen; Díaz-Caneja, Covadonga M; Lafuente, Amalia; Castro-Fornieles, Josefina

    2016-11-30

    Schizophrenia (SZ) and bipolar disorder (BD) are severe mental diseases associated with cognitive impairment, mood disturbance, and psychosis. Both disorders are highly heritable and share a common genetic background. The present study assesses, for the first time, differences in genotype frequencies of polymorphisms located in genes involved in neurodevelopment and synaptic plasticity between genetic high-risk individuals (offspring of patients with SZ or BD; N=100: 31 and 69, respectively) and control subjects (offspring of community controls; N=96). Individuals from both groups had similar ages, around 12 years. A higher percentage of men were included in the genetic high-risk group (58%) compared with the control group (40.6%). A total of 244 validated SNPs located in 35 candidate gene regions were analyzed in 196 participants. Multivariate methods based on logistic regression analysis were performed to assess differences in genotype frequencies. Bonferroni correction was applied for the multiple comparisons performed. Two polymorphisms, CACNA1C rs10848683 and SYNE1 rs214950, showed significant differences. The frequency of heterozygotes for CACNA1C rs10848683 in genetic high-risk individuals was double that in controls (OR=3.15; P=0.00016). For SYNE1 rs214950, higher frequencies of heterozygotes (OR=1.97) and homozygotes for the minor allele (OR=17.89; P=0.00020) were found in the genetic high-risk group than in the control group. In conclusion, polymorphisms in CACNA1C and SYNE1 could confer a greater risk of developing SZ and BD in individuals who are already at high risk because of their family history. This could help identify subjects with a very high genetic risk, in whom early detection and early intervention could lead to better prognosis.

  17. Ring finger protein20 regulates hepatic lipid metabolism through protein kinase A-dependent sterol regulatory element binding protein1c degradation.

    PubMed

    Lee, Jae Ho; Lee, Gha Young; Jang, Hagoon; Choe, Sung Sik; Koo, Seung-Hoi; Kim, Jae Bum

    2014-09-01

    Sterol regulatory element binding protein1c (SREBP1c) is a key transcription factor for de novo lipogenesis during the postprandial state. During nutritional deprivation, hepatic SREBP1c is rapidly suppressed by fasting signals to prevent lipogenic pathways. However, the molecular mechanisms that control SREBP1c turnover in response to fasting status are not thoroughly understood. To elucidate which factors are involved in the inactivation of SREBP1c, we attempted to identify SREBP1c-interacting proteins by mass spectrometry analysis. Since we observed that ring finger protein20 (RNF20) ubiquitin ligase was identified as one of SREBP1c-interacting proteins, we hypothesized that fasting signaling would promote SREBP1c degradation in an RNF20-dependent manner. In this work, we demonstrate that RNF20 physically interacts with SREBP1c, leading to degradation of SREBP1c via ubiquitination. In accordance with these findings, RNF20 represses the transcriptional activity of SREBP1c and turns off the expression of lipogenic genes that are targets of SREBP1c. In contrast, knockdown of RNF20 stimulates the expression of SREBP1c and lipogenic genes and induces lipogenic activity in primary hepatocytes. Furthermore, activation of protein kinase A (PKA) with glucagon or forskolin enhances the expression of RNF20 and potentiates the ubiquitination of SREBP1c via RNF20. In wild-type and db/db mice, adenoviral overexpression of RNF20 markedly suppresses FASN promoter activity and reduces the level of hepatic triglycerides, accompanied by a decrease in the hepatic lipogenic program. Here, we reveal that RNF20-induced SREBP1c ubiquitination down-regulates hepatic lipogenic activity upon PKA activation. RNF20 acts as a negative regulator of hepatic fatty acid metabolism through degradation of SREBP1c upon PKA activation. Knowledge regarding this process enhances our understanding of how SREBP1c is able to turn off hepatic lipid metabolism during nutritional deprivation. Copyright

  18. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    SciTech Connect

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan; Babiuk, Lorne A.; Liu, Qiang

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  19. Effect of an antisense oligodeoxynucleotide to endothelin-converting enzyme-1c (ECE-1c) on ECE-1c mRNA, ECE-1 protein and endothelin-1 synthesis in bovine pulmonary artery smooth muscle cells.

    PubMed

    Barker, S; Khan, N Q; Wood, E G; Corder, R

    2001-02-01

    Endothelin-1 (ET-1) is secreted from endothelial and vascular smooth muscle cells (VSMC) after intracellular hydrolysis of big ET-1 by endothelin converting enzyme (ECE). The metallopeptidase called ECE-1 is widely thought to be the physiological ECE, but unequivocal evidence of this role has yet to be provided. Endothelial cells express four isoforms of ECE-1 (ECE-1a, ECE-1b, ECE-1c, and ECE-1d), but the identity of ECE-1 isoforms expressed in VSMC is less clear. Here, we describe the characterization of ECE-1 isoforms in bovine pulmonary artery smooth muscle cells (BPASMC) and the effect on ET-1 synthesis of an antisense oligodeoxynucleotide (ODN) to ECE-1c. Reverse transcriptase-polymerase chain reaction (RT-PCR) evaluation of total RNA from BPASMC showed that ECE-1a and ECE-1d were not expressed. Sequencing of cloned ECE-1 cDNA products and semiquantitative RT-PCR demonstrated that ECE-1b and ECE-1c were expressed in BPASMC, with ECE-1c being the predominant isoform. Basal release of ET-1 from BPASMC was low. Treatment for 24 h with tumor necrosis factor-alpha (TNFalpha) stimulated ET-1 production by up to 10-fold with parallel increases in levels of preproET-1 mRNA. Levels of ECE-1c mRNA were also raised after TNFalpha, whereas amounts of ECE-1b mRNA were decreased significantly. Treatment of BPASMC with a phosphorothioate antisense ODN to ECE-1c caused a marked reduction in ECE-1c mRNA levels and ECE-1 protein levels. However, basal and TNFalpha-stimulated ET-1 release were largely unaffected by the ECE-1c antisense ODN despite the inhibition of ECE-1c synthesis. Hence, an endopeptidase distinct from ECE-1 is mainly responsible big ET-1 processing in BPASMC.

  20. Subcellular localization and regulation of type-1C and type-5 phosphodiesterases

    SciTech Connect

    Dolci, Susanna; Belmonte, Alessia; Santone, Rocco; Giorgi, Mauro; Pellegrini, Manuela; Carosa, Eleonora; Piccione, Emilio; Lenzi, Andrea; Jannini, Emmanuele A. . E-mail: jannini@univaq.it

    2006-03-17

    We investigated the subcellular localization of PDE5 in in vitro human myometrial cells. We demonstrated for First time that PDE5 is localized in discrete cytoplasmic foci and vesicular compartments corresponding to centrosomes. We also found that PDE5 intracellular localization is not cell- or species-specific, as it is conserved in different animal and human cells. PDE5 protein levels are strongly regulated by the mitotic activity of the smooth muscle cells (SMCs), as they were increased in quiescent, contractile myometrial cultures, and conditions in which proliferation was inhibited. In contrast, PDE1C levels decreased in all conditions that inhibited proliferation. This mirrored the enzymatic activity of both PDE5 and PDE1C. Increasing cGMP intracellular levels by dbcGMP or sildenafil treatments did not block proliferation, while dbcAMP inhibited myometrial cell proliferation. Together, these results suggest that PDE5 regulation of cGMP intracellular levels is not involved in the control of SMC cycle progression, but may represent one of the markers of the contractile phenotype.

  1. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    SciTech Connect

    Kubota, Akira; Stegeman, John J.; Woodin, Bruce R.; Iwanaga, Toshihiko; Harano, Ryo; Peterson, Richard E.; Hiraga, Takeo; Teraoka, Hiroki

    2011-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown of each

  2. A study assessing the association of glycated hemoglobin A1C (HbA1C) associated variants with HbA1C, chronic kidney disease and diabetic retinopathy in populations of Asian ancestry.

    PubMed

    Chen, Peng; Ong, Rick Twee-Hee; Tay, Wan-Ting; Sim, Xueling; Ali, Mohammad; Xu, Haiyan; Suo, Chen; Liu, Jianjun; Chia, Kee-Seng; Vithana, Eranga; Young, Terri L; Aung, Tin; Lim, Wei-Yen; Khor, Chiea-Chuen; Cheng, Ching-Yu; Wong, Tien-Yin; Teo, Yik-Ying; Tai, E-Shyong

    2013-01-01

    Glycated hemoglobin A1C (HbA1C) level is used as a diagnostic marker for diabetes mellitus and a predictor of diabetes associated complications. Genome-wide association studies have identified genetic variants associated with HbA1C level. Most of these studies have been conducted in populations of European ancestry. Here we report the findings from a meta-analysis of genome-wide association studies of HbA1C levels in 6,682 non-diabetic subjects of Chinese, Malay and South Asian ancestries. We also sought to examine the associations between HbA1C associated SNPs and microvascular complications associated with diabetes mellitus, namely chronic kidney disease and retinopathy. A cluster of 6 SNPs on chromosome 17 showed an association with HbA1C which achieved genome-wide significance in the Malays but not in Chinese and Asian Indians. No other variants achieved genome-wide significance in the individual studies or in the meta-analysis. When we investigated the reproducibility of the findings that emerged from the European studies, six loci out of fifteen were found to be associated with HbA1C with effect sizes similar to those reported in the populations of European ancestry and P-value ≤ 0.05. No convincing associations with chronic kidney disease and retinopathy were identified in this study.

  3. A Study Assessing the Association of Glycated Hemoglobin A1C (HbA1C) Associated Variants with HbA1C, Chronic Kidney Disease and Diabetic Retinopathy in Populations of Asian Ancestry

    PubMed Central

    Chen, Peng; Ong, Rick Twee-Hee; Tay, Wan-Ting; Sim, Xueling; Ali, Mohammad; Xu, Haiyan; Suo, Chen; Liu, Jianjun; Chia, Kee-Seng; Vithana, Eranga; Young, Terri L.; Aung, Tin; Lim, Wei-Yen; Khor, Chiea-Chuen; Cheng, Ching-Yu; Wong, Tien-Yin; Teo, Yik-Ying; Tai, E-Shyong

    2013-01-01

    Glycated hemoglobin A1C (HbA1C) level is used as a diagnostic marker for diabetes mellitus and a predictor of diabetes associated complications. Genome-wide association studies have identified genetic variants associated with HbA1C level. Most of these studies have been conducted in populations of European ancestry. Here we report the findings from a meta-analysis of genome-wide association studies of HbA1C levels in 6,682 non-diabetic subjects of Chinese, Malay and South Asian ancestries. We also sought to examine the associations between HbA1C associated SNPs and microvascular complications associated with diabetes mellitus, namely chronic kidney disease and retinopathy. A cluster of 6 SNPs on chromosome 17 showed an association with HbA1C which achieved genome-wide significance in the Malays but not in Chinese and Asian Indians. No other variants achieved genome-wide significance in the individual studies or in the meta-analysis. When we investigated the reproducibility of the findings that emerged from the European studies, six loci out of fifteen were found to be associated with HbA1C with effect sizes similar to those reported in the populations of European ancestry and P-value ≤ 0.05. No convincing associations with chronic kidney disease and retinopathy were identified in this study. PMID:24244560

  4. The Long and Winding Road to Optimal HbA1c Measurement

    PubMed Central

    Little, Randie R.; Rohlfing, Curt

    2016-01-01

    The importance of hemoglobin A1c (HbA1c) as an indicator of mean glycemia and risks for complications in patients with diabetes mellitus was established by the results of long-term clinical trials, most notably the Diabetes Control and Complications Trial (DCCT) and United Kingdom Prospective Diabetes Study (UKPDS), published in 1993 and 1998 respectively. However, clinical application of recommended HbA1c targets that were based on these studies was difficult due to lack of comparability of HbA1c results among assay methods and laboratories. Thus, the National Glycohemoglobin Standardization Program (NGSP) was initiated in 1996 with the goal of standardizing HbA1c results to those of the DCCT/UKPDS. HbA1c standardization efforts have been highly successful; however, a number of issues have emerged on the “long and winding road” to better HbA1c, including the development of a higher-order HbA1c reference method by the International Federation of Clinical Chemistry (IFCC), recommendations to use HbA1c to diagnose as well as monitor diabetes, and point-of-care (POC) HbA1c testing. Here, we review the past, present and future of HbA1c standardization and describe the current status of HbA1c testing, including limitations that healthcare providers need to be aware of when interpreting HbA1c results. PMID:23318564

  5. Brain-specific carnitine palmitoyl-transferase-1c: role in CNS fatty acid metabolism, food intake, and body weight.

    PubMed

    Wolfgang, Michael J; Cha, Seung Hun; Millington, David S; Cline, Gary; Shulman, Gerald I; Suwa, Akira; Asaumi, Makoto; Kurama, Takeshi; Shimokawa, Teruhiko; Lane, M Daniel

    2008-05-01

    While the brain does not utilize fatty acids as a primary energy source, recent evidence shows that intermediates of fatty acid metabolism serve as hypothalamic sensors of energy status. Increased hypothalamic malonyl-CoA, an intermediate in fatty acid synthesis, is indicative of energy surplus and leads to the suppression of food intake and increased energy expenditure. Malonyl-CoA functions as an inhibitor of carnitine palmitoyl-transferase 1 (CPT1), a mitochondrial outer membrane enzyme that initiates translocation of fatty acids into mitochondria for oxidation. The mammalian brain expresses a unique homologous CPT1, CPT1c, that binds malonyl-CoA tightly but does not support fatty acid oxidation in vivo, in hypothalamic explants or in heterologous cell culture systems. CPT1c knockout (KO) mice under fasted or refed conditions do not exhibit an altered CNS transcriptome of genes known to be involved in fatty acid metabolism. CPT1c KO mice exhibit normal levels of metabolites and of hypothalamic malonyl-CoA and fatty acyl-CoA levels either in the fasted or refed states. However, CPT1c KO mice exhibit decreased food intake and lower body weight than wild-type littermates. In contrast, CPT1c KO mice gain excessive body weight and body fat when fed a high-fat diet while maintaining lower or equivalent food intake. Heterozygous mice display an intermediate phenotype. These findings provide further evidence that CPT1c plays a role in maintaining energy homeostasis, but not through altered fatty acid oxidation.

  6. On Involvement.

    ERIC Educational Resources Information Center

    Greene, Michael B.

    Involvement Ratings In Settings (IRIS), a multi-dimensional non-verbal scale of involvement adaptable to a time-sampling method of data collection, was constructed with the aid of the videotapes of second-grade Follow Through classrooms made by CCEP. Scales were defined through observations of involved and alienated behavior, and the IRIS was…

  7. On Involvement.

    ERIC Educational Resources Information Center

    Greene, Michael B.

    Involvement Ratings In Settings (IRIS), a multi-dimensional non-verbal scale of involvement adaptable to a time-sampling method of data collection, was constructed with the aid of the videotapes of second-grade Follow Through classrooms made by CCEP. Scales were defined through observations of involved and alienated behavior, and the IRIS was…

  8. SREBP-1c overexpression induces triglycerides accumulation through increasing lipid synthesis and decreasing lipid oxidation and VLDL assembly in bovine hepatocytes.

    PubMed

    Li, Xinwei; Li, Yu; Yang, Wentao; Xiao, Chong; Fu, Shixin; Deng, Qinghua; Ding, Hongyan; Wang, Zhe; Liu, Guowen; Li, Xiaobing

    2014-09-01

    The natural incidence of fatty liver in ruminants is significantly higher than in monogastric animals. Fatty liver is associated with sterol regulatory element-binding protein 1c (SREBP-1c). The aim of this study was to investigate the regulatory network effects of SREBP-1c on the lipid metabolic genes involved in fatty acid uptake, activation, oxidation, synthesis, and very low-density lipoprotein (VLDL) assembly in bovine hepatocytes. In vitro, bovine hepatocytes were transfected with an adenovirus-mediated SREBP-1c overexpression vector. SREBP-1c overexpression significantly up-regulated the expression and activity of the fatty acid uptake, activation, and synthesis enzymes: liver fatty acid binding protein, fatty acid translocase, acyl-CoA synthetase long-chain 1, acetyl-CoA carboxylase 1, and fatty acid synthase, increasing triglyceride (TG) synthesis and accumulation. SREBP-1c overexpression down-regulated the expression and activity of the lipid oxidation enzymes: carnitine palmitoyltransferase 1 and carnitine palmitoyltransferase 2. Furthermore, the apolipoprotein B100 expression and microsomal triglyceride transfer protein activity were significantly decreased. SREBP-1c overexpression reduced lipid oxidation and VLDL synthesis, thereby decreasing TG disposal and export. Therefore, large amounts of TG accumulated in the bovine hepatocytes. Taken together, these results indicate that SREBP-1c overexpression increases lipid synthesis and decreases lipid oxidation and VLDL export, thereby inducing TG accumulation in bovine hepatocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Knowledge of A1c Predicts Diabetes Self-Management and A1c Level among Chinese Patients with Type 2 Diabetes.

    PubMed

    Yang, Shengnan; Kong, Weimin; Hsue, Cunyi; Fish, Anne F; Chen, Yufeng; Guo, Xiaohui; Lou, Qingqing; Anderson, Robert

    2016-01-01

    This study was to identify current A1c understanding status among Chinese patients with type 2 diabetes, assess if knowledge of A1c affects their diabetes self-management and their glycemic control and recognize the factors influencing knowledge of A1c among patients with type 2 diabetes. A multi-center, cross-sectional survey was conducted between April and July 2010 in 50 medical centers in the Mainland China. Participants were recruited from inpatients and outpatients who were admitted to or visited those medical centers. The survey included core questions about their demographic characteristics, diabetes self-management behavior, and A1c knowledge. Overall, of 5957 patients, the percentage of patients with good understanding was 25.3%. In the multivariable logistic regression model, the variables related to the knowledge of A1c status are presented. We discovered that patients with longer diabetes duration (OR = 1.05; 95%CI = 1.04-1.06) and having received diabetes education (OR = 1.80; 95%CI = 1.49-2.17) were overrepresented in the good understanding of A1c group. In addition, compared to no education level, higher education level was statistically associated with good understanding of A1c (P<0.001). The percentage of patients with good understanding varied from region to region (P<0.001), with Eastern being highest (OR = 1.54; 95%CI = 1.32-1.80), followed by Central (OR = 1.25; 95%CI = 1.02-1.53), when referring to Western. Only a minority of patients with type 2 diabetes in China understood their A1c value. The patients who had a good understanding of their A1c demonstrated significantly better diabetes self-management behavior and had lower A1c levels than those who did not.

  10. 18 CFR 1c.2 - Prohibition of electric energy market manipulation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Prohibition of electric energy market manipulation. 1c.2 Section 1c.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES PROHIBITION OF ENERGY MARKET MANIPULATION § 1c.2...

  11. Cholesteryl esters stabilize human CD1c conformations for recognition by self-reactive T cells

    PubMed Central

    Mansour, Salah; Tocheva, Anna S.; Cave-Ayland, Chris; Machelett, Moritz M.; Sander, Barbara; Lissin, Nikolai M.; Molloy, Peter E.; Baird, Mark S.; Stübs, Gunthard; Schröder, Nicolas W. J.; Schumann, Ralf R.; Rademann, Jörg; Postle, Anthony D.; Jakobsen, Bent K.; Marshall, Ben G.; Gosain, Rajendra; Elkington, Paul T.; Elliott, Tim; Skylaris, Chris-Kriton; Essex, Jonathan W.; Tews, Ivo; Gadola, Stephan D.

    2016-01-01

    Cluster of differentiation 1c (CD1c)-dependent self-reactive T cells are abundant in human blood, but self-antigens presented by CD1c to the T-cell receptors of these cells are poorly understood. Here we present a crystal structure of CD1c determined at 2.4 Å revealing an extended ligand binding potential of the antigen groove and a substantially different conformation compared with known CD1c structures. Computational simulations exploring different occupancy states of the groove reenacted these different CD1c conformations and suggested cholesteryl esters (CE) and acylated steryl glycosides (ASG) as new ligand classes for CD1c. Confirming this, we show that binding of CE and ASG to CD1c enables the binding of human CD1c self-reactive T-cell receptors. Hence, human CD1c adopts different conformations dependent on ligand occupancy of its groove, with CE and ASG stabilizing CD1c conformations that provide a footprint for binding of CD1c self-reactive T-cell receptors. PMID:26884207

  12. 18 CFR 1c.2 - Prohibition of electric energy market manipulation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... energy market manipulation. 1c.2 Section 1c.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES PROHIBITION OF ENERGY MARKET MANIPULATION § 1c.2 Prohibition of electric energy market manipulation. (a) It shall be unlawful for any entity, directly...

  13. 18 CFR 1c.2 - Prohibition of electric energy market manipulation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... energy market manipulation. 1c.2 Section 1c.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES PROHIBITION OF ENERGY MARKET MANIPULATION § 1c.2 Prohibition of electric energy market manipulation. (a) It shall be unlawful for any entity, directly...

  14. [Evaluation of D10 hemoglobin testing system for hemoglobin A1C assay].

    PubMed

    Marzullo, C; Minery, M

    2008-01-01

    Bio-Rad D10 hemoglobin testing system with rack loader for hemoglobinA1C assay was evaluated. Analytical qualities were satisfactory. Imprecision was good (within-run cv was 0,5% for 4,5% of HBA(1C), 0,63% for 7,4% of HBA1C, 0,46% for 11,1% of HBA1C, between-run cv was 1,16% for 4,7% of HBA1C, 1,01% for 7,6% of HBA1C, 1,04% for 11,2% of HBA1C). Results were very well correlated with those obtained on Bio-Rad Variant II (r = 0,998). Bland and Altman graph showed good agreement between the two methods for HbA1C under 15%. The measuring range was up to 18,3% of HBA1C. There was no specimen related carry over. Triglycerides under 5,5 mmol/L and bilirubin under 734 mumol/L did not interfere. Carbamylation of HBA1C did not interfere for urea concentration under 14 mmol/L. Practicability was very good. Detection of common hemoglobin variants (HbS, C, D, E, O) is available. Fast and easy switching between short and long program allows to perform HBA1C determination for patients with hemoglobin variants. So, D10 is an interesting and easy to use small HPLC automate witch offers accurate HBA1C quantification certified by NGSP.

  15. 50 CFR Table 1c to Part 679 - Product Tyoe Codes

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Product Tyoe Codes 1c Table 1c to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 1c...

  16. To Your Health: NLM update transcript - Beyond A1C for diabetes treatment

    MedlinePlus

    ... the 'resources' section of MedlinePlus.gov's A1C health topic page . The National Diabetes Education Program provides additional information ... the 'resources' section of MedlinePlus.gov's A1C health topic page. MedlinePlus.gov's A1C health topic page additionally provides ...

  17. 18 CFR 1c.2 - Prohibition of electric energy market manipulation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... energy market manipulation. 1c.2 Section 1c.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES PROHIBITION OF ENERGY MARKET MANIPULATION § 1c.2 Prohibition of electric energy market manipulation. (a) It shall be unlawful for any entity, directly or...

  18. Haemoglobin J-Baltimore can be detected by HbA1c electropherogram but with underestimated HbA1c value.

    PubMed

    Brunel, Valéry; Lahary, Agnčs; Chagraoui, Abdeslam; Thuillez, Christian

    2016-01-01

    Glycated haemoglobin (HbA(1c)) is considered the gold standard for assessing diabetes compensation and treatment. In addition, fortuitous detection of haemoglobin variants during HbA1c measurement is not rare. Recently, two publications reported different conclusions on accuracy of HbA(1c) value using capillary electrophoresis method in presence of haemoglobin J-Baltimore (HbJ).
Here we describe the fortuitous detection of unknown HbJ using capillary electrophoresis for measurement of HbA(1c). A patient followed for gestational diabetes in our laboratory presented unknown haemoglobin on Capillarys 2 Flex Piercing analyser which was identified as HbJ. HbJ is not associated with haematological abnormalities. High Performance Liquid Chromatography methods are known to possibly underestimate HbA(1c) value in the presence of this variant. This variant and its glycated form are clearly distinguished on electropherogram but HbJ was responsible for underestimating the true area of HbA(1c).
 Capillary electrophoresis is a good method for detecting HbJ but does not seem suitable for evaluation of HbA(1C) value in patients in presence of HbJ variant.

  19. Haemoglobin J-Baltimore can be detected by HbA1c electropherogram but with underestimated HbA1c value

    PubMed Central

    Brunel, Valéry; Lahary, Agnčs; Chagraoui, Abdeslam; Thuillez, Christian

    2016-01-01

    Glycated haemoglobin (HbA1c) is considered the gold standard for assessing diabetes compensation and treatment. In addition, fortuitous detection of haemoglobin variants during HbA1c measurement is not rare. Recently, two publications reported different conclusions on accuracy of HbA1c value using capillary electrophoresis method in presence of haemoglobin J-Baltimore (HbJ).
Here we describe the fortuitous detection of unknown HbJ using capillary electrophoresis for measurement of HbA1c. A patient followed for gestational diabetes in our laboratory presented unknown haemoglobin on Capillarys 2 Flex Piercing analyser which was identified as HbJ. HbJ is not associated with haematological abnormalities. High Performance Liquid Chromatography methods are known to possibly underestimate HbA1c value in the presence of this variant. This variant and its glycated form are clearly distinguished on electropherogram but HbJ was responsible for underestimating the true area of HbA1c.
Capillary electrophoresis is a good method for detecting HbJ but does not seem suitable for evaluation of HbA1C value in patients in presence of HbJ variant. PMID:27346969

  20. The Caveolin-3 P104L mutation of LGMD-1C leads to disordered glucose metabolism in muscle cells.

    PubMed

    Deng, Yu Feng; Huang, Yi Yuan; Lu, Wen Sheng; Huang, Yuan Heng; Xian, Jing; Wei, Hong Qiao; Huang, Qin

    2017-04-29

    Caveolin-3 (CAV3) is a muscle specific protein that plays an important role in maintaining muscle health and glucose homeostasis in vivo. A novel autosomal dominant form of LGMD-1C in humans is due to a P104L mutation within the coding sequence of the human CAV3 gene. The mechanism by which the LGMD-1C mutation leads to muscle weakness remains unknown. Our objective was to determine whether muscle weakness was related to the imbalance of glucose metabolism. We found that when the P104L mutation was transiently transfected into C2C12 cells, there was decreased glucose uptake and glycogen synthesis after insulin stimulation. Immunoblotting analysis showed that the P104L mutation resulted in decreased expression of CAV3, CAV1 and pAkt. Confocal immunomicroscopy indicated that the P104L mutation reduced CAV3 and GLUT4 in the cell membrane, which accumulated mainly near the nucleus. This work is the first report of an association between muscle weakness due to LGMD-1C and energy metabolism. The P104L mutation led to a decrease in C2C12 muscle glucose uptake and glycogen synthesis and may be involved in the pathogenesis of LGMD-1C. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Phenotypic variation of erythrocyte linker histone H1.c in a pheasant (Phasianus colchicus L.) population.

    PubMed

    Kowalski, Andrzej; Pa Yga, Jan; Górnicka-Michalska, Ewa; Bernacki, Zenon; Adamski, Marek

    2010-07-01

    Our goal was to characterize a phenotypic variation of the pheasant erythrocyte linker histone subtype H1.c. By using two-dimensional polyacrylamide gel electrophoresis three histone H1.c phenotypes were identified. The differently migrating allelic variants H1.c1 and H1.c2 formed either two homozygous phenotypes, c1 and c2, or a single heterozygous phenotype, c1c2. In the pheasant population screened, birds with phenotype c2 were the most common (frequency 0.761) while individuals with phenotype c1 were rare (frequency 0.043).

  2. Use of fructosyl peptide oxidase for HbA1c assay.

    PubMed

    Yonehara, Satoshi; Inamura, Norio; Fukuda, Miho; Sugiyama, Koji

    2015-03-01

    ARKRAY, Inc developed the world's first automatic glycohemoglobin analyzer based on HPLC (1981). After that, ARKRAY developed enzymatic HbA1c assay "CinQ HbA1c" with the spread and diversification of HbA1c measurement (2007). CinQ HbA1c is the kit of Clinical Chemistry Analyzer, which uses fructosyl peptide oxidase (FPOX) for a measurement reaction. This report mainly indicates the developmental background, measurement principle, and future of the enzymatic method HbA1c reagent.

  3. Role of integrin-linked kinase in regulating the protein stability of the MUC1-C oncoprotein in pancreatic cancer cells

    PubMed Central

    Huang, H-L; Wu, H-Y; Chu, P-C; Lai, I-L; Huang, P-H; Kulp, S K; Pan, S-L; Teng, C-M; Chen, C-S

    2017-01-01

    MUC1-C overexpression has been associated with the progression of pancreatic tumors by promoting the aggressive and metastatic phenotypes. As MUC1 is a STAT3 target gene, STAT3 plays a major role in regulating MUC1-C expression. In this study, we report an alternative mechanism by which integrin-linked kinase (ILK) post-transcriptionally modulates the expression of MUC1-C by maintaining its protein stability in pancreatic cancer cells. We found that ILK acts in concert with STAT3 to facilitate IL-6-mediated upregulation of MUC1-C; ILK depletion was equally effective as STAT3 depletion in abolishing IL-6-induced MUC1-C overexpression without disturbing the phosphorylation or cellular distribution of STAT3. Conversely, ectopic expression of constitutively active ILK increased MUC1-C expression, though this increase was not noted with kinase-dead ILK. This finding suggests the requirement of the kinase activity of ILK in regulating MUC1-C stability, which was confirmed by using the ILK kinase inhibitor T315. Furthermore, our data suggest the involvement of protein kinase C (PKC)δ in mediating the suppressive effect of ILK inhibition on MUC1-C repression. For example, co-immunoprecipitation analysis indicated that ILK depletion-mediated MUC1-C phosphorylation was accompanied by increased phosphorylation of PKCδ at the activation loop Thr-507 and increased binding of PKCδ to MUC1-C. Conversely, ILK overexpression resulted in decreased PKCδ phosphorylation. From a mechanistic perspective, the present finding, together with our recent report that ILK controls the expression of oncogenic KRAS through a regulatory loop, underscores the pivotal role of ILK in promoting pancreatic cancer progression. PMID:28692035

  4. Family Involvement.

    ERIC Educational Resources Information Center

    Liontos, Lynn Balster

    1992-01-01

    Family involvement in schools will work only when perceived as an enlarged concept focusing on all children, including those from at-risk families. Each publication reviewed here is specifically concerned with family involvement strategies concerned with all children or targeted at primarily high risk students. Susan McAllister Swap looks at three…

  5. Application of polymethacrylate resin as stationary phase in liquid chromatography with UV detection for C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with UV detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was carried out. Using dilute sulfuric acid as the eluent, the TSKgel G3000PWXL, resin acted as an advanced stationary phase for these C1-C7 carboxylic acids. Excellent simultaneous separation and symmetrical peaks for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min with 0.25 mM sulfuric acid containing 1 mM 2-methylheptanoic acid at pH 3.3 as the eluent. Using dilute sodium hydroxide as the eluent, the TSKgel G3000PWXL resin also behaved as an advanced stationary phase for these C1-C7 amines. Excellent simultaneous separation and good peaks for these C1-C7 amines were achieved on the TSKgel G3000PWXL column in 60 min with 10 mM sodium hydroxide containing 0.5 mM 1-methylheptylamine at pH 11.9 as the eluent.

  6. A Comparison of HbA1c and Fasting Blood Sugar Tests in General Population

    PubMed Central

    Ghazanfari, Zahra; Haghdoost, Ali Akbar; Alizadeh, Sakineh Mohammad; Atapour, Jamileh; Zolala, Farzaneh

    2010-01-01

    Objectives: Early diagnosis of diabetes is crucially important in reduction of the complications. Although HbA1c is an accurate marker for the prediction of complications, less information is available about its accuracy in diagnosis of diabetes. In this study, the association between HbA1c and FBS was assessed through a cross-sectional population-based study. Methods: A random sample of population in Kerman city was selected. The total number was 604 people. Their HbA1c and fasting blood sugar (FBS) were tested. The association between HbA1c and FBS and also their sensitivity, specificity and predictive values in detection of abnormal values of each other were determined. Results: The association of HbA1c with FBS was relatively strong particularly in diabetic subjects. Generally, FBS was a more accurate predictor for HbA1c compared with HbA1c as a predictor of FBS. Although the optimum cutoff point of HbA1c was >6.15%, its precision was comparable with the conventional cutoff point of >6%. Conclusions: In conclusion, FBS sounds more reliable to separate diabetic from non-diabetic subjects than HbA1c. In case of being interested in using HbA1c in screening, the conventional cutoff points of 6% is an acceptable threshold for discrimination of diabetics from non-diabetics. PMID:21566790

  7. Fibulin1C peptide induces cell attachment and extracellular matrix deposition in lung fibroblasts

    PubMed Central

    Ge, Qi; Chen, Ling; Jaffar, Jade; Argraves, William Scott; Twal, Waleed O.; Hansbro, Phil; Black, Judith L.; Burgess, Janette K.; Oliver, Brian

    2015-01-01

    Fibulin-1 is an extracellular matrix (ECM) protein, levels of which are elevated in serum and lung tissue from patients with idiopathic pulmonary fibrosis compared to healthy volunteers. Inhibition of fibulin-1C, one of four fibulin-1 isoforms, reduced proliferation and wound healing in human airway smooth muscle (ASM) cells. This study identified the bioactive region/s of fibulin-1C which promotes fibrosis. Seven fibulin-1C peptides were synthesized and used to pre-coat tissue culture plates before lung derived ASM cells and fibroblasts from patients with pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD) or neither disease (Control) were plated. Peptide effects on in vitro measures of fibrosis: cell attachment, proliferation and viability, and ECM deposition, were examined. Among these peptides, peptide 1C1 (FBLN1C1) enhanced ASM cell and fibroblast attachment. FBLN1C1 increased mitochondrial activity and proliferation in fibroblasts. In addition, FBLN1C1 stimulated fibulin1 deposition in PF and COPD fibroblasts, and augmented fibronectin and perlecan deposition in all three groups. Peptides FBLN1C2 to FBLN1C7 had no activity. The active fibulin-1C peptide identified in this study describes a useful tool for future studies. Ongoing investigation of the role of fibulin-1 may reveal the mechanisms underlying the pathphysiology of chronic lung diseases. PMID:25834989

  8. Ceramide Levels Regulated by Carnitine Palmitoyltransferase 1C Control Dendritic Spine Maturation and Cognition*

    PubMed Central

    Carrasco, Patricia; Sahún, Ignasi; McDonald, Jerome; Ramírez, Sara; Jacas, Jordi; Gratacós, Esther; Sierra, Adriana Y.; Serra, Dolors; Herrero, Laura; Acker-Palmer, Amparo; Hegardt, Fausto G.; Dierssen, Mara; Casals, Núria

    2012-01-01

    The brain-specific isoform carnitine palmitoyltransferase 1C (CPT1C) has been implicated in the hypothalamic regulation of food intake and energy homeostasis. Nevertheless, its molecular function is not completely understood, and its role in other brain areas is unknown. We demonstrate that CPT1C is expressed in pyramidal neurons of the hippocampus and is located in the endoplasmic reticulum throughout the neuron, even inside dendritic spines. We used molecular, cellular, and behavioral approaches to determine CPT1C function. First, we analyzed the implication of CPT1C in ceramide metabolism. CPT1C overexpression in primary hippocampal cultured neurons increased ceramide levels, whereas in CPT1C-deficient neurons, ceramide levels were diminished. Correspondingly, CPT1C knock-out (KO) mice showed reduced ceramide levels in the hippocampus. At the cellular level, CPT1C deficiency altered dendritic spine morphology by increasing immature filopodia and reducing mature mushroom and stubby spines. Total protrusion density and spine head area in mature spines were unaffected. Treatment of cultured neurons with exogenous ceramide reverted the KO phenotype, as did ectopic overexpression of CPT1C, indicating that CPT1C regulation of spine maturation is mediated by ceramide. To study the repercussions of the KO phenotype on cognition, we performed the hippocampus-dependent Morris water maze test on mice. Results show that CPT1C deficiency strongly impairs spatial learning. All of these results demonstrate that CPT1C regulates the levels of ceramide in the endoplasmic reticulum of hippocampal neurons, and this is a relevant mechanism for the correct maturation of dendritic spines and for proper spatial learning. PMID:22539351

  9. Silencing of atp6v1c1 prevents breast cancer growth and bone metastasis.

    PubMed

    Feng, Shengmei; Zhu, Guochun; McConnell, Matthew; Deng, Lianfu; Zhao, Qiang; Wu, Mengrui; Zhou, Qi; Wang, Jinshen; Qi, Jin; Li, Yi-Ping; Chen, Wei

    2013-01-01

    Previous studies have shown that Atp6v1c1, a regulator of the assembly of the V0 and V1 domains of the V-ATPase complex, is up-regulated in metastatic oral tumors. Despite these studies, the function of Atp6v1c1 in tumor growth and metastasis is still unknown. Atp6v1c1's expression in metastatic oral squamous cell carcinoma indicates that Atp6v1c1 has an important function in cancer growth and metastasis. We hypothesized that elevated expression of Atp6v1c1 is essential to cancer growth and metastasis and that Atp6v1c1 promotes cancer growth and metastasis through activation of V-ATPase activity. To test this hypothesis, a Lentivirus-mediated RNAi knockdown approach was used to study the function of Atp6v1c1 in mouse 4T1 mammary tumor cell proliferation and migration in vitro and cancer growth and metastasis in vivo. Our data revealed that silencing of Atp6v1c1 in 4T1 cancer cells inhibited lysosomal acidification and severely impaired 4T1 cell growth, migration, and invasion through Matrigel in vitro. We also show that Atp6v1c1 knockdown with Lenti-c1s3, a lentivirus targeting Atp6v1c1 for shRNA mediated knockdown, can significantly inhibit 4T1 xenograft tumor growth, metastasis, and osteolytic lesions in vivo. Our study demonstrates that Atp6v1c1 may promote breast cancer growth and bone metastasis through regulation of lysosomal V-ATPase activity, indicating that Atp6v1c1 may be a viable target for breast cancer therapy and silencing of Atp6v1c1 may be an innovative therapeutic approach for the treatment and prevention of breast cancer growth and metastasis.

  10. Glycated Hemoglobin (HbA1c): Clinical Applications of a Mathematical Concept

    PubMed Central

    Leow, Melvin Khee Shing

    2016-01-01

    Background and purpose: Glycated hemoglobin (HbA1c) reflects the cumulative glucose exposure of erythrocytes over a preceding time frame proportional to erythrocyte survival. HbA1c is thus an areal function of the glucose-time curve, an educationally useful concept to aid teaching and clinical judgment. Methods: An ordinary differential equation is formulated as a parsimonious model of HbA1c. The integrated form yields HbA1c as an area-under-the-curve (AUC) of a glucose-time profile. The rate constant of the HbA1c model is then derived using the validated regression equation in the ADAG study that links mean blood glucose and HbA1c with a very high degree of goodness-of-fit. Results: This model has didactic utility to enable patients, biomedical students and clinicians to appreciate how HbA1c may be conceptually inferred from discrete blood glucose values using continuous glucose monitoring system (CGMS) or self-monitored blood glucose (SMBG) glucometer readings as shown in the examples. It can be appreciated how hypoglycemia can occur with rapid HbA1c decline despite poor glycemic control. Conclusions: Being independent of laboratory assay pitfalls, computed ‘virtual’ HbA1c serves as an invaluable internal consistency cross-check against laboratory-measured HbA1c discordant with SMBG readings suggestive of inaccurate/fraudulent glucometer records or hematologic disorders including thalassemia and hemoglobinopathy. This model could be implemented within portable glucometers, CGMS devices and even smartphone apps for deriving tentative ‘virtual’ HbA1c from serial glucose readings as an adjunct to measured HbA1c. Such predicted ‘virtual’ HbA1c readily accessible via glucometers may serve as feedback to modify behavior and empower diabetic patients to achieve better glycemic control. PMID:27708483

  11. Activation of sterol regulatory element-binding protein 1c and fatty acid synthase transcription by hepatitis C virus non-structural protein 2.

    PubMed

    Oem, Jae-Ku; Jackel-Cram, Candice; Li, Yi-Ping; Zhou, Yan; Zhong, Jin; Shimano, Hitoshi; Babiuk, Lorne A; Liu, Qiang

    2008-05-01

    Transcriptional factor sterol regulatory element-binding protein 1c (SREBP-1c) activates the transcription of lipogenic genes, including fatty acid synthase (FAS). Hepatitis C virus (HCV) infection is often associated with lipid accumulation within the liver, known as steatosis in the clinic. The molecular mechanisms of HCV-associated steatosis are not well characterized. Here, we showed that HCV non-structural protein 2 (NS2) activated SREBP-1c transcription in human hepatic Huh-7 cells as measured by using a human SREBP-1c promoter-luciferase reporter plasmid. We further showed that sterol regulatory element (SRE) and liver X receptor element (LXRE) in the SREBP-1c promoter were involved in SREBP-1c activation by HCV NS2. Furthermore, expression of HCV NS2 resulted in the upregulation of FAS transcription. We also showed that FAS upregulation by HCV NS2 was SREBP-1-dependent since deleting the SRE sequence in a FAS promoter and expressing a dominant-negative SREBP-1 abrogated FAS promoter upregulation by HCV NS2. Taken together, our results suggest that HCV NS2 can upregulate the transcription of SREBP-1c and FAS, and thus is probably a contributing factor for HCV-associated steatosis.

  12. Role of Altered Venous Blood Lactate and HbA1c in Women with Gestational Diabetes Mellitus

    PubMed Central

    Santhosh, N U; Krishnamurthy, N; Chethan, Chethana; Shilpashree, M K

    2016-01-01

    Introduction Being a mirror image of metabolic syndrome, Gestational Diabetes Mellitus (GDM) is associated with significant maternal and fetal morbidity. Increased blood lactate concentration and alterations of substrate utilization are partly involved in development of insulin resistance in GDM. Fetuses born to such mothers have shown low umbilical vein oxygen saturation and low oxygen content and increased lactate concentrations. These changes may certainly reflect enhanced fetal metabolism as a result of hyperglycaemia and hyperinsulinemia and therefore, these fetuses deserve intense surveillance at term and during delivery. Ideally, HbA1c should be maintained below 5% during their first trimesters and below 6% during third trimester. We planned to investigate GDM women for their HbA1c levels too. Aim To know if there is any alteration in blood lactate and/or HbA1c levels and to know if there is any correlation between these two parameters in GDM pregnancies, in comparison with the previous studies which measured lactate in cord blood and placental vessels of GDM women. Materials and Methods It was a hospital based prospective study on 40 women with gestational diabetes and 40 age-matched normal pregnant women. We analysed the biochemical and metabolic mileau in these women by estimating venous blood lactate and HbA1c levels. We paid special attention to follow them up regarding maternal complications if any and perinatal outcomes. The independent samples t-test and Pearson’s correlation test were applied. Results GDM mothers showed significantly higher lactate and HbA1c levels than normal pregnant women, both with p<0.001. Blood pressure and fetal birth weight were also significantly higher in GDM group than Normal Pregnant (NP) group, both with p-values of <0.001. Further, this increased lactate levels showed significant positive correlation with HbA1c, blood pressure and fetal birth weight. Conclusion Maternal blood lactate and HbA1c levels have a

  13. XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair.

    PubMed

    Gabel, Scott A; DeRose, Eugene F; London, Robert E

    2013-12-01

    The function of X-ray cross complementing group 1 protein (XRCC1), a scaffold that binds to DNA repair enzymes involved in single-strand break and base excision repair, requires that it be recruited to sites of damaged DNA. However, structural insights into this recruitment are currently limited. Sequence analysis of the first unstructured linker domain of XRCC1 identifies a segment consistent with a possible REV1 interacting region (X1RIR) motif. The X1RIR motif is present in translesion polymerases that can be recruited to the pol /REV1 DNA repair complex via a specific interaction with the REV1 C-terminal domain. NMR and fluorescence titration studies were performed on XRCC1-derived peptides containing this putative RIR motif in order to evaluate the binding affinity for the REV1 C-terminal domain. These studies demonstrate an interaction of the XRCC1-derived peptide with the human REV1 C-terminal domain characterized by dissociation constants in the low micromolar range. Ligand competition studies comparing the XRCC1 RIR peptide with previously studied RIR peptides were found to be inconsistent with the NMR based Kd values. These discrepancies were resolved using a fluorescence assay for which the RIR–REV1 system is particularly well suited. The structure of a REV1-XRCC1 peptide complex was determined by using NOE restraints to dock the unlabeled XRCC1 peptide with a labeled REV1 C-terminal domain. The structure is generally homologous with previously determined complexes with the pol κ and pol η RIR peptides, although the helical segment in XRCC1 is shorter than was observed in these cases. These studies suggest the possible involvement of XRCC1 and its associated repair factors in post replication repair.

  14. XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair

    PubMed Central

    Gabel, Scott A.; DeRose, Eugene F.; London, Robert E.

    2014-01-01

    The function of X-ray cross complementing group 1 protein (XRCC1), a scaffold that binds to DNA repair enzymes involved in single-strand break and base excision repair, requires that it be recruited to sites of damaged DNA. However, structural insights into this recruitment are currently limited. Sequence analysis of the first unstructured linker domain of XRCC1 identifies a segment consistent with a possible REV1 interacting region (RIR) motif. The RIR motif is present in translesion polymerases that can be recruited to the pol ζ/REV1 DNA repair complex via a specific interaction with the REV1 C-terminal domain. NMR and fluorescence titration studies were performed on XRCC1-derived peptides containing this putative RIR motif in order to evaluate the binding affinity for the REV1 C-terminal domain. These studies demonstrate an interaction of the XRCC1-derived peptide with the human REV1 C-terminal domain characterized by dissociation constants in the low micromolar range. Ligand competition studies comparing the X1 RIR peptide with previously studied RIR peptides were found to be inconsistent with the NMR based Kd values. These discrepancies were resolved using a fluorescence assay for which the RIR – REV1 system is particularly well suited. The structure of a REV1-XRCC1 peptide complex was determined by using NOE restraints to dock the unlabeled XRCC1 peptide with a labeled REV1 C-terminal domain. The structure is generally homologous with previously determined complexes with the pol κ and pol η RIR peptides, although the helical segment in XRCC1 is shorter than was observed in these cases. These studies suggest the possible involvement of XRCC1 and its associated repair factors in post replication repair. PMID:24409475

  15. Mepivacaine-induced contraction involves phosphorylation of extracellular signal-regulated kinase through activation of the lipoxygenase pathway in isolated rat aortic smooth muscle.

    PubMed

    Lee, Hyo Min; Ok, Seong-Ho; Sung, Hui-Jin; Eun, So Young; Kim, Hye Jung; Lee, Soo Hee; Kang, Sebin; Shin, Il-Woo; Lee, Heon Keun; Chung, Young-Kyun; Choi, Mun-Jeoung; Bae, Sung Il; Sohn, Ju-Tae

    2013-04-01

    Mepivacaine is an aminoamide local anesthetic with an intermediate duration that intrinsically produces vasoconstriction both in vivo and in vitro. This study investigated the arachidonic acid metabolic pathways involved in mepivacaine-induced contraction, and elucidated the associated cellular mechanism with a particular focus on extracellular signal-regulated kinase (ERK) in endothelium-denuded rat aorta. Isolated rat thoracic aortic rings were suspended for isometric tension recording. Cumulative mepivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: quinacrine dihydrochloride, nordihydroguaiaretic acid, phenidone, AA-861, indomethacin, NS-398, SC-560, fluconazole, PD 98059, and verapamil. Mepivacaine-induced ERK phosphorylation, 5-lipoxygenase (5-LOX) expression, and cyclooxygenase (COX)-2 expression in rat aortic smooth muscle cells were detected by Western blot analysis in the presence or absence of inhibitors. Mepivacaine produced tonic contraction in isolated endothelium-denuded rat aorta. Quinacrine dihydrochloride, nordihydroguaiaretic acid, phenidone, AA-861, NS-398, PD 98059, and verapamil attenuated mepivacaine-induced contraction in a concentration-dependent manner. However, fluconazole had no effect on mepivacaine-induced contraction. PD 98059, quinacrine dihydrochloride, nordihydroguaiaretic acid, AA-861, phenidone, and indomethacin attenuated mepivacaine-induced ERK phosphorylation. Mepivacaine upregulated 5-LOX and COX-2 expression. These results suggest that mepivacaine-induced contraction involves ERK activation, which is primarily mediated by the 5-LOX pathway and in part by the COX-2 pathway.

  16. Harmonin in the murine retina and the retinal phenotypes of Ush1c-mutant mice and human USH1C.

    PubMed

    Williams, David S; Aleman, Tomas S; Lillo, Concepción; Lopes, Vanda S; Hughes, Louise C; Stone, Edwin M; Jacobson, Samuel G

    2009-08-01

    To investigate the expression of harmonin in the mouse retina, test for ultrastructural and physiological mutant phenotypes in the retina of an Ush1c mutant mouse, and define in detail the retinal phenotype in human USH1C. Antibodies were generated against harmonin. Harmonin isoform distribution was examined by Western blot analysis and immunocytochemistry. Retinas of deaf circler (dfcr) mice, which possess mutant Ush1c, were analyzed by microscopy and electroretinography (ERG). Two siblings with homozygous 238_239insC (R80fs) USH1C mutations were studied with ERG, perimetry, and optical coherence tomography (OCT). Harmonin isoforms a and c, but not b are expressed in the retina. Harmonin is concentrated in the photoreceptor synapse where the majority is postsynaptic. Dfcr mice do not undergo retinal degeneration and have normal synaptic ultrastructure and ERGs. USH1C patients had abnormal rod and cone ERGs. Rod- and cone-mediated sensitivities and retinal laminar architecture were normal across 50 degrees -60 degrees of visual field. A transition zone to severely abnormal function and structure was present at greater eccentricities. The largest harmonin isoforms are not expressed in the retina. A major retinal concentration of harmonin is in the photoreceptor synapses, both pre- and post-synaptically. The dfcr mouse retina is unaffected by its mutant Ush1c. Patients with USH1C retained regions of normal central retina surrounded by degeneration. Perhaps the human disease is simply more aggressive than that in the mouse. Alternatively, the dfcr mouse may be a model for nonsyndromic deafness, due to the nonpathologic effect of its mutation on the retinal isoforms.

  17. Comparison of Clinical Outcomes of Posterior C1-C2 Temporary Fixation Without Fusion and C1-C2 Fusion for Fresh Odontoid Fractures.

    PubMed

    Guo, Qunfeng; Deng, Yuan; Wang, Jian; Wang, Liang; Lu, Xuhua; Guo, Xiang; Ni, Bin

    2016-01-01

    Posterior C1-C2 temporary-fixation technique can spare the range of motion (ROM) of the atlantoaxial joint after odontoid fracture healing. However, few studies analyze the difference in clinical outcome between this technique and posterior C1-C2 fusion technique for new odontoid fracture. To verify whether the clinical outcome of the posterior C1-C2 temporary-fixation technique is superior to that of the posterior C1-C2 fusion technique in the treatment of a new odontoid fracture. Twenty-one of 22 patients who underwent posterior C1-C2 temporary fixation of an odontoid fracture achieved fracture healing and regained motion of the atlantoaxial joint. The functional outcomes of these 21 patients were compared with that of a control group, which consisted of 21 randomly enrolled cases with posterior C1-C2 fixation and fusion. The differences between the 2 groups in the visual analog scale score for neck pain, neck stiffness, Neck Disability Index, 36-Item Short Form Health Survey, and time to fracture healing were analyzed. Significantly better outcomes were observed in the temporary-fixation group for visual analog scale score for neck pain, Neck Disability Index, and neck stiffness. The outcomes in the temporary-fixation group was superior to those in the fusion group in all dimensions of the 36-Item Short Form Health Survey. There were no significant differences in fracture healing rate and time to fracture healing between the 2 techniques. Functional outcomes were significantly better after posterior C1-C2 temporary fixation than after fusion. Temporary fixation can be used as a salvage treatment for an odontoid fracture with an intact transverse ligament in cases of failure of, or contraindication to, anterior screw fixation.

  18. Harmonin in the Murine Retina and the Retinal Phenotypes of Ush1c-Mutant Mice and Human USH1C

    PubMed Central

    Williams, David S.; Aleman, Tomas S.; Lillo, Concepción; Lopes, Vanda S.; Hughes, Louise C.; Stone, Edwin M.; Jacobson, Samuel G.

    2010-01-01

    Purpose To investigate the expression of harmonin in the mouse retina, test for ultrastructural and physiological mutant phenotypes in the retina of an Ush1c mutant mouse, and define in detail the retinal phenotype in human USH1C. Methods Antibodies were generated against harmonin. Harmonin isoform distribution was examined by Western blot analysis and immunocytochemistry. Retinas of deaf circler (dfcr) mice, which possess mutant Ush1c, were analyzed by microscopy and electroretinography (ERG). Two siblings with homozygous 238_239insC (R80fs) USH1C mutations were studied with ERG, perimetry, and optical coherence tomography (OCT). Results Harmonin isoforms a and c, but not b are expressed in the retina. Harmonin is concentrated in the photoreceptor synapse where the majority is postsynaptic. Dfcr mice do not undergo retinal degeneration and have normal synaptic ultrastructure and ERGs. USH1C patients had abnormal rod and cone ERGs. Rod- and cone-mediated sensitivities and retinal laminar architecture were normal across 50°–60° of visual field. A transition zone to severely abnormal function and structure was present at greater eccentricities. Conclusions The largest harmonin isoforms are not expressed in the retina. A major retinal concentration of harmonin is in the photoreceptor synapses, both pre- and post-synaptically. The dfcr mouse retina is unaffected by its mutant Ush1c. Patients with USH1C retained regions of normal central retina surrounded by degeneration. Perhaps the human disease is simply more aggressive than that in the mouse. Alternatively, the dfcr mouse may be a model for nonsyndromic deafness, due to the nonpathologic effect of its mutation on the retinal isoforms. PMID:19324851

  19. Knockdown of AKR1C3 exposes a potential epigenetic susceptibility in prostate cancer cells

    PubMed Central

    Doig, Craig L.; Battaglia, Sebastiano; Khanim, Farhat L.; Bunce, Christopher M.; Campbell, Moray J.

    2017-01-01

    Background The aldo-keto reductase 1C3 (AKR1C3) has been heavily implicated in the propagation of prostate malignancy. AKR1C3 protein is elevated within prostate cancer tissue, it contributes to the formation of androgens and downstream stimulation of the androgen receptor (AR). Elevated expression of AKR1C3 is also reported in acute myeloid leukemia but the target nuclear receptors have been identified as members of the peroxisome-proliferator activated receptor (PPARs) subfamily. Thus, AKR1C3 cancer biology is likely to be tissue dependent and hormonally linked to the availability of ligands for both the steroidogenic and non-steroidogenic nuclear receptors. Methods In the current study we investigated the potential for AKR1C3 to regulate the availability of prostaglandin-derived ligands for PPARg mainly, prostaglandin J2 (PGJ2). Using prostate cancer cell lines with stably reduced AKR1C3 levels we examined the impact of AKR1C3 upon proliferation mediated by PPAR ligands. Results These studies revealed knockdown of AKR1C3 had no effect upon the sensitivity of androgen receptor independent prostate cancer cells towards PPAR ligands. However, the reduction of levels of AKR1C3 was accompanied by a significantly reduced mRNA expression of a range of HDACs, transcriptional co-regulators, and increased sensitivity towards SAHA, a clinically approved histone deacetylase inhibitor. Conclusions These results suggest a hitherto unidentified link between AKR1C3 levels and the epigenetic status in prostate cancer cells. This raises an interesting possibility of a novel rational to target AKR1C3, the utilization of AKRIC3 selective inhibitors in combination with HDAC inhibition as part of novel epigenetic therapies in androgen deprivation therapy recurrent prostate cancer. PMID:26429394

  20. Effect of Iron Deficiency Anemia on Hemoglobin A1c Levels

    PubMed Central

    Sinha, Nitin; Mishra, T.K.; Singh, Tejinder

    2012-01-01

    Background Iron deficiency anemia is the most common form of anemia in India. Hemoglobin A1c (HbA1c) is used in diabetic patients as an index of glycemic control reflecting glucose levels of the previous 3 months. Like blood sugar levels, HbA1c levels are also affected by the presence of variant hemoglobins, hemolytic anemias, nutritional anemias, uremia, pregnancy, and acute blood loss. However, reports on the effects of iron deficiency anemia on HbA1c levels are inconsistent. We conducted a study to analyze the effects of iron deficiency anemia on HbA1c levels and to assess whether treatment of iron deficiency anemia affects HbA1c levels. Methods Fifty patients confirmed to have iron deficiency anemia were enrolled in this study. HbA1c and absolute HbA1c levels were measured both at baseline and at 2 months after treatment, and these values were compared with those in the control population. Results The mean baseline HbA1c level in anemic patients (4.6%) was significantly lower than that in the control group (5.5%, p<0.05). A significant increase was observed in the patients' absolute HbA1c levels at 2 months after treatment (0.29 g/dL vs. 0.73 g/dL, p<0.01). There was a significant difference between the baseline values of patients and controls (0.29 g/dL vs. 0.74 g/dL, p<0.01). Conclusions In contrast to the observations of previous studies, ours showed that HbA1c levels and absolute HbA1c levels increased with treatment of iron deficiency anemia. This could be attributable to nutritional deficiency and/or certain unknown variables. Further studies are warranted. PMID:22259774

  1. Evaluation of Hemoglobin A1c Criteria to Assess Preoperative Diabetes Risk in Cardiac Surgery Patients

    PubMed Central

    Saberi, Sima; Zrull, Christina A.; Patil, Preethi V.; Jha, Leena; Kling-Colson, Susan C.; Gandia, Kenia G.; DuBois, Elizabeth C.; Plunkett, Cynthia D.; Bodnar, Tim W.; Pop-Busui, Rodica

    2011-01-01

    Abstract Objective Hemoglobin A1c (A1C) has recently been recommended for diagnosing diabetes mellitus and diabetes risk (prediabetes). Its performance compared with fasting plasma glucose (FPG) and 2-h post-glucose load (2HPG) is not well delineated. We compared the performance of A1C with that of FPG and 2HPG in preoperative cardiac surgery patients. Methods Data from 92 patients without a history of diabetes were analyzed. Patients were classified with diabetes or prediabetes using established cutoffs for FPG, 2HPG, and A1C. Sensitivity and specificity of the new A1C criteria were evaluated. Results All patients diagnosed with diabetes by A1C also had impaired fasting glucose, impaired glucose tolerance, or diabetes by other criteria. Using FPG as the reference, sensitivity and specificity of A1C for diagnosing diabetes were 50% and 96%, and using 2HPG as the reference they were 25% and 95%. Sensitivity and specificity for identifying prediabetes with FPG as the reference were 51% and 51%, respectively, and with 2HPG were 53% and 51%, respectively. One-third each of patients with prediabetes was identified using FPG, A1C, or both. When testing A1C and FPG concurrently, the sensitivity of diagnosing dysglycemia increased to 93% stipulating one or both tests are abnormal; specificity increased to 100% if both tests were required to be abnormal. Conclusions In patients before cardiac surgery, A1C criteria identified the largest number of patients with diabetes and prediabetes. For diagnosing prediabetes, A1C and FPG were discordant and characterized different groups of patients, therefore altering the distribution of diabetes risk. Simultaneous measurement of FGP and A1C may be a more sensitive and specific tool for identifying high-risk individuals with diabetes and prediabetes. PMID:21854260

  2. Knockdown of AKR1C3 exposes a potential epigenetic susceptibility in prostate cancer cells.

    PubMed

    Doig, Craig L; Battaglia, Sebastiano; Khanim, Farhat L; Bunce, Christopher M; Campbell, Moray J

    2016-01-01

    The aldo-keto reductase 1C3 (AKR1C3) has been heavily implicated in the propagation of prostate malignancy. AKR1C3 protein is elevated within prostate cancer tissue, it contributes to the formation of androgens and downstream stimulation of the androgen receptor (AR). Elevated expression of AKR1C3 is also reported in acute myeloid leukemia but the target nuclear receptors have been identified as members of the peroxisome-proliferator activated receptor (PPARs) subfamily. Thus, AKR1C3 cancer biology is likely to be tissue dependent and hormonally linked to the availability of ligands for both the steroidogenic and non-steroidogenic nuclear receptors. In the current study we investigated the potential for AKR1C3 to regulate the availability of prostaglandin-derived ligands for PPARg mainly, prostaglandin J2 (PGJ2). Using prostate cancer cell lines with stably reduced AKR1C3 levels we examined the impact of AKR1C3 upon proliferation mediated by PPAR ligands. These studies revealed knockdown of AKR1C3 had no effect upon the sensitivity of androgen receptor independent prostate cancer cells towards PPAR ligands. However, the reduction of levels of AKR1C3 was accompanied by a significantly reduced mRNA expression of a range of HDACs, transcriptional co-regulators, and increased sensitivity towards SAHA, a clinically approved histone deacetylase inhibitor. These results suggest a hitherto unidentified link between AKR1C3 levels and the epigenetic status in prostate cancer cells. This raises an interesting possibility of a novel rational to target AKR1C3, the utilization of AKRIC3 selective inhibitors in combination with HDAC inhibition as part of novel epigenetic therapies in androgen deprivation therapy recurrent prostate cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Utility of hemoglobin A(1c) for diagnosing prediabetes and diabetes in obese children and adolescents.

    PubMed

    Nowicka, Paulina; Santoro, Nicola; Liu, Haibei; Lartaud, Derek; Shaw, Melissa M; Goldberg, Rachel; Guandalini, Cindy; Savoye, Mary; Rose, Paulina; Caprio, Sonia

    2011-06-01

    Hemoglobin A(1c) (A1C) has emerged as a recommended diagnostic tool for identifying diabetes and subjects at risk for the disease. This recommendation is based on data in adults showing the relationship between A1C with future development of diabetes and microvascular complications. However, studies in the pediatric population are lacking. We studied a multiethnic cohort of 1,156 obese children and adolescents without a diagnosis of diabetes (male, 40%/female, 60%). All subjects underwent an oral glucose tolerance test (OGTT) and A1C measurement. These tests were repeated after a follow-up time of ∼2 years in 218 subjects. At baseline, subjects were stratified according to A1C categories: 77% with normal glucose tolerance (A1C <5.7%), 21% at risk for diabetes (A1C 5.7-6.4%), and 1% with diabetes (A1C >6.5%). In the at risk for diabetes category, 47% were classified with prediabetes or diabetes, and in the diabetes category, 62% were classified with type 2 diabetes by the OGTT. The area under the curve receiver operating characteristic for A1C was 0.81 (95% CI 0.70-0.92). The threshold for identifying type 2 diabetes was 5.8%, with 78% specificity and 68% sensitivity. In the subgroup with repeated measures, a multivariate analysis showed that the strongest predictors of 2-h glucose at follow-up were baseline A1C and 2-h glucose, independently of age, ethnicity, sex, fasting glucose, and follow-up time. The American Diabetes Association suggested that an A1C of 6.5% underestimates the prevalence of prediabetes and diabetes in obese children and adolescents. Given the low sensitivity and specificity, the use of A1C by itself represents a poor diagnostic tool for prediabetes and type 2 diabetes in obese children and adolescents.

  4. Utility of Hemoglobin A1c for Diagnosing Prediabetes and Diabetes in Obese Children and Adolescents

    PubMed Central

    Nowicka, Paulina; Santoro, Nicola; Liu, Haibei; Lartaud, Derek; Shaw, Melissa M.; Goldberg, Rachel; Guandalini, Cindy; Savoye, Mary; Rose, Paulina; Caprio, Sonia

    2011-01-01

    OBJECTIVE Hemoglobin A1c (A1C) has emerged as a recommended diagnostic tool for identifying diabetes and subjects at risk for the disease. This recommendation is based on data in adults showing the relationship between A1C with future development of diabetes and microvascular complications. However, studies in the pediatric population are lacking. RESEARCH DESIGN AND METHODS We studied a multiethnic cohort of 1,156 obese children and adolescents without a diagnosis of diabetes (male, 40%/female, 60%). All subjects underwent an oral glucose tolerance test (OGTT) and A1C measurement. These tests were repeated after a follow-up time of ∼2 years in 218 subjects. RESULTS At baseline, subjects were stratified according to A1C categories: 77% with normal glucose tolerance (A1C <5.7%), 21% at risk for diabetes (A1C 5.7–6.4%), and 1% with diabetes (A1C >6.5%). In the at risk for diabetes category, 47% were classified with prediabetes or diabetes, and in the diabetes category, 62% were classified with type 2 diabetes by the OGTT. The area under the curve receiver operating characteristic for A1C was 0.81 (95% CI 0.70–0.92). The threshold for identifying type 2 diabetes was 5.8%, with 78% specificity and 68% sensitivity. In the subgroup with repeated measures, a multivariate analysis showed that the strongest predictors of 2-h glucose at follow-up were baseline A1C and 2-h glucose, independently of age, ethnicity, sex, fasting glucose, and follow-up time. CONCLUSIONS The American Diabetes Association suggested that an A1C of 6.5% underestimates the prevalence of prediabetes and diabetes in obese children and adolescents. Given the low sensitivity and specificity, the use of A1C by itself represents a poor diagnostic tool for prediabetes and type 2 diabetes in obese children and adolescents. PMID:21515842

  5. Relationship of hemoglobin A1c to mortality in nonsmoking insurance applicants.

    PubMed

    Stout, Robert L; Fulks, Michael; Dolan, Vera F; Magee, Mark E; Suarez, Luis

    2007-01-01

    Determine the relationship between hemoglobin A1c value and 5-year, all-cause mortality in nonsmoking life insurance applicants. By use of the Social Security Master Death Index, mortality was examined in 286,443 non-smoking insurance applicants aged 40 and up for whom blood samples for hemoglobin A1c were submitted to the Clinical Reference Laboratory. Results were stratified by hemoglobin A1c value, gender and age bands 40 to 59, 60 to 69 and 70 and up. Increased mortality is apparent at hemoglobin A1c values of 6% and above, is linear, and on a percentage basis decreases with age. Hemoglobin A1c values less than 5% also are associated with increased mortality. Absolute mortality rates for females with elevated hemoglobin A1c are generally lower than rates for males, although mortality relative to the gender-specific reference group with hemoglobin A1c of 5% to 5.9% is generally the same for both. The importance of even small elevations of hemoglobin A1c above 5.9% is apparent. For screening, it is the degree of blood sugar elevation as measured by hemoglobin A1c rather than any diagnostic label that is critical in risk assessment.

  6. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis.

    PubMed

    Wolfgang, Michael J; Kurama, Takeshi; Dai, Yun; Suwa, Akira; Asaumi, Makoto; Matsumoto, Shun-Ichiro; Cha, Seung Hun; Shimokawa, Teruhiko; Lane, M Daniel

    2006-05-09

    Fatty acid synthesis in the central nervous system is implicated in the control of food intake and energy expenditure. An intermediate in this pathway, malonyl-CoA, mediates these effects. Malonyl-CoA is an established inhibitor of carnitine palmitoyltransferase-1 (CPT1), an outer mitochondrial membrane enzyme that controls entry of fatty acids into mitochondria and, thereby, fatty acid oxidation. CPT1c, a brain-specific enzyme with high sequence similarity to CPT1a (liver) and CPT1b (muscle) was recently discovered. All three CPTs bind malonyl-CoA, and CPT1a and CPT1b catalyze acyl transfer from various fatty acyl-CoAs to carnitine, whereas CPT1c does not. These findings suggest that CPT1c has a unique function or activation mechanism. We produced a targeted mouse knockout (KO) of CPT1c to investigate its role in energy homeostasis. CPT1c KO mice have lower body weight and food intake, which is consistent with a role as an energy-sensing malonyl-CoA target. Paradoxically, CPT1c KO mice fed a high-fat diet are more susceptible to obesity, suggesting that CPT1c is protective against the effects of fat feeding. CPT1c KO mice also exhibit decreased rates of fatty acid oxidation, which may contribute to their increased susceptibility to diet-induced obesity. These findings indicate that CPT1c is necessary for the regulation of energy homeostasis.

  7. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis

    PubMed Central

    Wolfgang, Michael J.; Kurama, Takeshi; Dai, Yun; Suwa, Akira; Asaumi, Makoto; Matsumoto, Shun-ichiro; Cha, Seung Hun; Shimokawa, Teruhiko; Lane, M. Daniel

    2006-01-01

    Fatty acid synthesis in the central nervous system is implicated in the control of food intake and energy expenditure. An intermediate in this pathway, malonyl-CoA, mediates these effects. Malonyl-CoA is an established inhibitor of carnitine palmitoyltransferase-1 (CPT1), an outer mitochondrial membrane enzyme that controls entry of fatty acids into mitochondria and, thereby, fatty acid oxidation. CPT1c, a brain-specific enzyme with high sequence similarity to CPT1a (liver) and CPT1b (muscle) was recently discovered. All three CPTs bind malonyl-CoA, and CPT1a and CPT1b catalyze acyl transfer from various fatty acyl-CoAs to carnitine, whereas CPT1c does not. These findings suggest that CPT1c has a unique function or activation mechanism. We produced a targeted mouse knockout (KO) of CPT1c to investigate its role in energy homeostasis. CPT1c KO mice have lower body weight and food intake, which is consistent with a role as an energy-sensing malonyl-CoA target. Paradoxically, CPT1c KO mice fed a high-fat diet are more susceptible to obesity, suggesting that CPT1c is protective against the effects of fat feeding. CPT1c KO mice also exhibit decreased rates of fatty acid oxidation, which may contribute to their increased susceptibility to diet-induced obesity. These findings indicate that CPT1c is necessary for the regulation of energy homeostasis. PMID:16651524

  8. Is There a Role for HbA1c in Pregnancy?

    PubMed

    Hughes, Ruth C E; Rowan, Janet; Florkowski, Chris M

    2016-01-01

    Outside pregnancy, HbA1c analysis is used for monitoring, screening for and diagnosing diabetes and prediabetes. During pregnancy, the role for HbA1c analysis is not yet established. Physiological changes lower HbA1c levels, and pregnancy-specific reference ranges may need to be recognised. Other factors that influence HbA1c are also important to consider, particularly since emerging data suggest that, in early pregnancy, HbA1c elevations close to the reference range may both identify women with underlying hyperglycaemia and be associated with adverse pregnancy outcomes. In later pregnancy, HbA1c analysis is less useful than an oral glucose tolerance test (OGTT) at detecting gestational diabetes. Postpartum, HbA1c analysis detects fewer women with abnormal glucose tolerance than an OGTT, but the ease of testing may improve follow-up rates and combining HbA1c analysis with fasting plasma glucose or waist circumference may improve detection rates. This article discusses the relevance of HbA1c testing at different stages of pregnancy.

  9. Methods, units and quality requirements for the analysis of haemoglobin A1c in diabetes mellitus.

    PubMed

    Penttilä, Ilkka; Penttilä, Karri; Holm, Päivi; Laitinen, Harri; Ranta, Päivi; Törrönen, Jukka; Rauramaa, Rainer

    2016-06-26

    The formation of glycohemoglobin, especially the hemoglobin A1c (HbA1c) fraction, occurs when glucose becomes coupled with the amino acid valine in the β-chain of Hb; this reaction is dependent on the plasma concentration of glucose. Since the early 1970s it has been known that diabetics display higher values OF HbA1C because they have elevated blood glucose concentrations. Thus HbA1c has acquired a very important role in the treatment and diagnosis of diabetes mellitus. After the introduction of the first quantitative measurement OF HbA1C, numerous methods for glycohemoglobin have been introduced with different assay principles: From a simple mini-column technique to the very accurate automated high-pressure chromatography and lastly to many automated immunochemical or enzymatic assays. In early days, the results of the quality control reports for HbA1c varied extensively between laboratories, therefore in United States and Canada working groups (WG) of the Diabetes Controls and Complications Trial (DCCT) were set up to standardize the HbA1c assays against the DCCT/National Glycohemoglobin Standardization Program reference method based on liquid chromatography. In the 1990s, the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) appointed a new WG to plan a reference preparation and method for the HBA1c measurement. When the reference procedures were established, in 2004 IFCC recommended that all manufacturers for equipment used in HbA1c assays should calibrate their methods to their proposals. This led to an improvement in the coefficient of variation (CV%) associated with the assay. In this review, we describe the glycation of Hb, methods, standardization of the HbA1c assays, analytical problems, problems with the units in which HbA1c values are expressed, reference values, quality control aspects, target requirements for HbA1c, and the relationship of the plasma glucose values to HbA1c concentrations. We also note that the acceptance

  10. DYX1C1 is required for axonemal dynein assembly and ciliary motility

    PubMed Central

    Tarkar, Aarti; Loges, Niki T.; Slagle, Christopher E.; Francis, Richard; Dougherty, Gerard W.; Tamayo, Joel V.; Shook, Brett; Cantino, Marie; Schwartz, Daniel; Jahnke, Charlotte; Olbrich, Heike; Werner, Claudius; Raidt, Johanna; Pennekamp, Petra; Abouhamed, Marouan; Hjeij, Rim; Köhler, Gabriele; Griese, Matthias; Li, You; Lemke, Kristi; Klena, Nikolas; Liu, Xiaoqin; Gabriel, George; Tobita, Kimimasa; Jaspers, Martine; Morgan, Lucy C.; Shapiro, Adam J.; Letteboer, Stef J.F.; Mans, Dorus A.; Carson, Johnny L.; Leigh, Margaret W.; Wolf, Whitney E.; Chen, Serafine; Lucas, Jane S.; Onoufriadis, Alexandros; Plagnol, Vincent; Schmidts, Miriam; Boldt, Karsten; Roepman, Ronald; Zariwala, Maimoona; Lo, Cecilia W.; Mitchison, Hannah M.; Knowles, Michael R.; Burdine, Rebecca D.; LoTurco, Joseph J.; Omran, Heymut

    2014-01-01

    SUMMARY Dyx1c1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deletion of Dyx1c1 exons 2–4 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder characterized by chronic airway disease, laterality defects, and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1c.T2A start codon mutation recovered from an ENU mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also created laterality and ciliary motility defects. In humans, recessive loss-of-function DYX1C1 mutations were identified in twelve PCD individuals. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans revealed disruptions of outer and inner dynein arms (ODA/IDA). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA/IDA assembly factor DNAAF2/KTU. Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4). PMID:23872636

  11. The new vertebrate CYP1C family: cloning of new subfamily members and phylogenetic analysis.

    PubMed

    Godard, Celine A J; Goldstone, Jared V; Said, Maya R; Dickerson, Richard L; Woodin, Bruce R; Stegeman, John J

    2005-06-17

    Two novel CYP1 genes from teleost fish constituting a new subfamily have been cloned. These paralogous sequences are designated CYP1C1 and CYP1C2. Both genes were initially obtained from untreated scup Stenotomus chrysops tissues by RT-PCR and RACE. Scup CYP1C1 and CYP1C2 code for 524 and 525 amino acids, respectively, and share 80-81% identity at the nucleotide and amino acid levels. Orthologues of CYP1C1 and CYP1C2 were identified in genome databases for other fish species, and both CYP1B1 and CYP1C1 were cloned from zebrafish (Danio rerio). Phylogenetic analysis shows that CYP1Cs and CYP1Bs constitute a sister clade to the CYP1As. Analysis of sequence domains likely to have functional significance suggests that the two CYP1Cs in scup may have catalytic functions and/or substrate specificity that differ from each other and from those of mammalian CYP1Bs or CYP1As. RT-PCR results indicate that CYP1C1 and CYP1C2 are variously expressed in several scup organs.

  12. A deoxyribozyme, Sero1C, uses light and serotonin to repair diverse pyrimidine dimers in DNA.

    PubMed

    Thorne, Rebecca E; Chinnapen, Daniel J-F; Sekhon, Gurpreet S; Sen, Dipankar

    2009-04-24

    An in vitro selection search for DNAs capable of catalyzing photochemistry yielded two distinctive deoxyribozymes (DNAzymes) with photolyase activity: UV1C, which repaired thymine dimers within DNA using a UV light of >300 nm wavelength and no extraneous cofactor, and Sero1C, which required the tryptophan metabolite serotonin as cofactor in addition to the UV light. Catalysis by Sero1C conformed to Michaelis-Menten kinetics, and analysis of the action spectrum of Sero1C confirmed that serotonin did indeed serve as a catalytic cofactor rather than as a structural cofactor. Sero1C and UV1C showed strikingly distinct wavelength optima for their respective photoreactivation catalyses. Although the rate enhancements characteristic of the two DNAzymes were similar, the cofactor-requiring Sero1C repaired a substantially broader range of substrates compared to UV1C, including thymine, uracil, and a range of chimeric deoxypyrimidine and ribopyrimidine dimers. Similarities and differences in the properties of these two photolyase DNAzymes suggest, first, that the harnessing of less damaging UV light for the repair of photolesions may have been a primordial catalytic activity of nucleic acids, and, second, the broader substrate range of Sero1C may highlight an evolutionary advantage to coopting amino-acid-like cofactors by functionality-poor nucleic acid enzymes.

  13. [Progress on X-linked mental retardation related gene JARID1C].

    PubMed

    Lei, Xu; Gao, Xiao-Cai; Zhang, Fu-Chang

    2010-03-01

    JARID1C is one of the genes related to X-linked mental retardation. Its express product influences transcription and expression of the related genes in brain nervous system, and may be associated with human cognitive ability. Study on the functions of JARID1C not only helps to understand its molecular role in mental retardation and human cognitive ability, but also provides references for clinical diagnosis and prevention of mental retardation. This article reviews the progresses on JARID1C in location, isolation, physiological functions, and cognitive functions of its encoding product. The future re-search work of JARID1C is also discussed.

  14. Methods, units and quality requirements for the analysis of haemoglobin A1c in diabetes mellitus

    PubMed Central

    Penttilä, Ilkka; Penttilä, Karri; Holm, Päivi; Laitinen, Harri; Ranta, Päivi; Törrönen, Jukka; Rauramaa, Rainer

    2016-01-01

    The formation of glycohemoglobin, especially the hemoglobin A1c (HbA1c) fraction, occurs when glucose becomes coupled with the amino acid valine in the β-chain of Hb; this reaction is dependent on the plasma concentration of glucose. Since the early 1970s it has been known that diabetics display higher values OF HbA1C because they have elevated blood glucose concentrations. Thus HbA1c has acquired a very important role in the treatment and diagnosis of diabetes mellitus. After the introduction of the first quantitative measurement OF HbA1C, numerous methods for glycohemoglobin have been introduced with different assay principles: From a simple mini-column technique to the very accurate automated high-pressure chromatography and lastly to many automated immunochemical or enzymatic assays. In early days, the results of the quality control reports for HbA1c varied extensively between laboratories, therefore in United States and Canada working groups (WG) of the Diabetes Controls and Complications Trial (DCCT) were set up to standardize the HbA1c assays against the DCCT/National Glycohemoglobin Standardization Program reference method based on liquid chromatography. In the 1990s, the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) appointed a new WG to plan a reference preparation and method for the HBA1c measurement. When the reference procedures were established, in 2004 IFCC recommended that all manufacturers for equipment used in HbA1c assays should calibrate their methods to their proposals. This led to an improvement in the coefficient of variation (CV%) associated with the assay. In this review, we describe the glycation of Hb, methods, standardization of the HbA1c assays, analytical problems, problems with the units in which HbA1c values are expressed, reference values, quality control aspects, target requirements for HbA1c, and the relationship of the plasma glucose values to HbA1c concentrations. We also note that the acceptance

  15. The Rab6-regulated KIF1C kinesin motor domain contributes to Golgi organization

    PubMed Central

    Lee, Peter L; Ohlson, Maikke B; Pfeffer, Suzanne R

    2015-01-01

    Most kinesins transport cargoes bound to their C-termini and use N-terminal motor domains to move along microtubules. We report here a novel function for KIF1C: it transports Rab6A-vesicles and can influence Golgi complex organization. These activities correlate with KIF1C's capacity to bind the Golgi protein Rab6A directly, both via its motor domain and C-terminus. Rab6A binding to the motor domain inhibits microtubule interaction in vitro and in cells, decreasing the amount of motile KIF1C. KIF1C depletion slows protein delivery to the cell surface, interferes with vesicle motility, and triggers Golgi fragmentation. KIF1C can protect Golgi membranes from fragmentation in cells lacking an intact microtubule network. Rescue of fragmentation requires sequences that enable KIF1C to bind Rab6A at both ends, but not KIF1C motor function. Rab6A binding to KIF1C's motor domain represents an entirely new mode of regulation for a kinesin motor, and likely has important consequences for KIF1C's cellular functions. DOI: http://dx.doi.org/10.7554/eLife.06029.001 PMID:25821985

  16. Syntaxin 1C, a soluble form of syntaxin, attenuates membrane recycling by destabilizing microtubules.

    PubMed

    Nakayama, Takahiro; Kamiguchi, Hiroyuki; Akagawa, Kimio

    2012-02-15

    Syntaxin 1C (STX1C), produced by alternative splicing of the stx1A gene, is a soluble syntaxin lacking a SNARE domain and a transmembrane domain. It is unclear how soluble syntaxin can control intracellular membrane trafficking. We found that STX1C affected microtubule (MT) dynamics through its tubulin-binding domain (TBD) and regulated recycling of intracellular vesicles carrying glucose transporter-1 (GLUT1). We demonstrated that the amino acid sequence VRSK of the TBD was important for the interaction between STX1C and tubulin and that wild-type STX1C (STX1C-WT), but not the TBD mutant, reduced the V(max) of glucose transport and GLUT1 translocation to the plasma membrane in FRSK cells. Moreover, by time-lapse analysis, we revealed that STX1C-WT suppressed MT stability and vesicle-transport motility in cells expressing GFP-α-tubulin, whereas TBD mutants had no effect. We also identified that GLUT1 was recycled in the 45 minutes after endocytosis and that GLUT1 vesicles moved along with MTs. Finally, we showed, by a recycling assay and FCM analysis, that STX1C-WT delayed the recycling phase of GLUT1 to PM, without affecting the endocytotic process of GLUT1. These data indicate that STX1C delays the GLUT1 recycling phase by suppressing MT stability and vesicle-transport motility through its TBD, providing the first insight into how soluble syntaxin controls membrane trafficking.

  17. Diagnosis of diabetes mellitus using HbA1c in Asians: relationship between HbA1c and retinopathy in a multiethnic Asian population.

    PubMed

    Sabanayagam, Charumathi; Khoo, Eric Y H; Lye, Weng Kit; Ikram, M Kamran; Lamoureux, Ecosse L; Cheng, Ching Yu; Tan, Maudrene L S; Salim, Agus; Lee, Jeannette; Lim, Su-Chi; Tavintharan, Subramaniam; Thai, Ah-Chuan; Heng, Derrick; Ma, Stefan; Tai, E Shyong; Wong, Tien Y

    2015-02-01

    Hemoglobin A1c (HbA1c) ≥ 6.5% (47.5 mmol/mol) has recently been included as a criterion for the diagnosis of diabetes mellitus. It is unclear whether this criterion is appropriate in Asians. To examine the relationship between HbA1c and diabetes-specific moderate retinopathy in Asian ethnic groups. Four independent population-based cross-sectional studies (2004-2011) in Singapore representing the three major Asian ethnic groups (n = 13 170 adults aged ≥ 25 y: Chinese, 5834; Malays, 3596; and Indians, 3740). Moderate retinopathy was assessed from digital retinal photographs and defined as a level >43 using the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Sensitivity, specificity, positive and negative predictive values, and the area under the receiver operating characteristic curve for detecting moderate retinopathy were compared across ethnic groups at different HbA1c cut-points. HbA1c levels were higher in Indians and Malays compared to Chinese (P < .001). The prevalence of moderate retinopathy below HbA1c <6.5% was <1% in all ethnic groups. At HbA1c ≥ 6.5%, the sensitivity for detecting moderate retinopathy was lower in Chinese subjects compared to Indians and Malays (75.8 vs 86.0 and 85.3%), but specificity (89.7 vs 71.9 and 76.3%) was higher; however, positive predictive value and negative predictive value were similar among Chinese, Indians, and Malays (10.5, 12.3, 12.4%; and 99.6, 99.1, 99.2%, respectively). The AUCs were similar across all three ethnic groups (0.861, 0.851, and 0.853). Our study supports the use of HbA1c for diagnosing diabetes in Asians. Despite some interethnic variation in the relationship of HbA1c and retinopathy, a cut-point of 6.5% performs reasonably well in the three major Asian ethnic groups.

  18. Concerted effects of heterogeneous nuclear ribonucleoprotein C1/C2 to control vitamin D-directed gene transcription and RNA splicing in human bone cells

    PubMed Central

    Zhou, Rui; Park, Juw Won; Chun, Rene F.; Lisse, Thomas S.; Garcia, Alejandro J.; Zavala, Kathryn; Sea, Jessica L.; Lu, Zhi-xiang; Xu, Jianzhong; Adams, John S.; Xing, Yi; Hewison, Martin

    2017-01-01

    Traditionally recognized as an RNA splicing regulator, heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNPC1/C2) can also bind to double-stranded DNA and function in trans as a vitamin D response element (VDRE)-binding protein. As such, hnRNPC1/C2 may couple transcription induced by the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D) with subsequent RNA splicing. In MG63 osteoblastic cells, increased expression of the 1,25(OH)2D target gene CYP24A1 involved immunoprecipitation of hnRNPC1/C2 with CYP24A1 chromatin and RNA. Knockdown of hnRNPC1/C2 suppressed expression of CYP24A1, but also increased expression of an exon 10-skipped CYP24A1 splice variant; in a minigene model the latter was attenuated by a functional VDRE in the CYP24A1 promoter. In genome-wide analyses, knockdown of hnRNPC1/C2 resulted in 3500 differentially expressed genes and 2232 differentially spliced genes, with significant commonality between groups. 1,25(OH)2D induced 324 differentially expressed genes, with 187 also observed following hnRNPC1/C2 knockdown, and a further 168 unique to hnRNPC1/C2 knockdown. However, 1,25(OH)2D induced only 10 differentially spliced genes, with no overlap with differentially expressed genes. These data indicate that hnRNPC1/C2 binds to both DNA and RNA and influences both gene expression and RNA splicing, but these actions do not appear to be linked through 1,25(OH)2D-mediated induction of transcription. PMID:27672039

  19. Concerted effects of heterogeneous nuclear ribonucleoprotein C1/C2 to control vitamin D-directed gene transcription and RNA splicing in human bone cells.

    PubMed

    Zhou, Rui; Park, Juw Won; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Zavala, Kathryn; Sea, Jessica L; Lu, Zhi-Xiang; Xu, Jianzhong; Adams, John S; Xing, Yi; Hewison, Martin

    2017-01-25

    Traditionally recognized as an RNA splicing regulator, heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNPC1/C2) can also bind to double-stranded DNA and function in trans as a vitamin D response element (VDRE)-binding protein. As such, hnRNPC1/C2 may couple transcription induced by the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D) with subsequent RNA splicing. In MG63 osteoblastic cells, increased expression of the 1,25(OH)2D target gene CYP24A1 involved immunoprecipitation of hnRNPC1/C2 with CYP24A1 chromatin and RNA. Knockdown of hnRNPC1/C2 suppressed expression of CYP24A1, but also increased expression of an exon 10-skipped CYP24A1 splice variant; in a minigene model the latter was attenuated by a functional VDRE in the CYP24A1 promoter. In genome-wide analyses, knockdown of hnRNPC1/C2 resulted in 3500 differentially expressed genes and 2232 differentially spliced genes, with significant commonality between groups. 1,25(OH)2D induced 324 differentially expressed genes, with 187 also observed following hnRNPC1/C2 knockdown, and a further 168 unique to hnRNPC1/C2 knockdown. However, 1,25(OH)2D induced only 10 differentially spliced genes, with no overlap with differentially expressed genes. These data indicate that hnRNPC1/C2 binds to both DNA and RNA and influences both gene expression and RNA splicing, but these actions do not appear to be linked through 1,25(OH)2D-mediated induction of transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Four and a Half LIM Protein 1C (FHL1C): A Binding Partner for Voltage-Gated Potassium Channel Kv1.5

    PubMed Central

    Poparic, Ivana; Schreibmayer, Wolfgang; Schoser, Benedikt; Desoye, Gernot; Gorischek, Astrid; Miedl, Heidi; Hochmeister, Sonja; Binder, Josepha; Quasthoff, Stefan; Wagner, Klaus; Windpassinger, Christian; Malle, Ernst

    2011-01-01

    Four-and-a-half LIM domain protein 1 isoform A (FHL1A) is predominantly expressed in skeletal and cardiac muscle. Mutations in the FHL1 gene are causative for several types of hereditary myopathies including X-linked myopathy with postural muscle atrophy (XMPMA). We here studied myoblasts from XMPMA patients. We found that functional FHL1A protein is completely absent in patient myoblasts. In parallel, expression of FHL1C is either unaffected or increased. Furthermore, a decreased proliferation rate of XMPMA myoblasts compared to controls was observed but an increased number of XMPMA myoblasts was found in the G0/G1 phase. Furthermore, low expression of Kv1.5, a voltage-gated potassium channel known to alter myoblast proliferation during the G1 phase and to control repolarization of action potential, was detected. In order to substantiate a possible relation between Kv1.5 and FHL1C, a pull-down assay was performed. A physical and direct interaction of both proteins was observed in vitro. In addition, confocal microscopy revealed substantial colocalization of FHL1C and Kv1.5 within atrial cells, supporting a possible interaction between both proteins in vivo. Two-electrode voltage clamp experiments demonstrated that coexpression of Kv1.5 with FHL1C in Xenopus laevis oocytes markedly reduced K+ currents when compared to oocytes expressing Kv1.5 only. We here present the first evidence on a biological relevance of FHL1C. PMID:22053194

  1. Development of Potent and Selective Inhibitors of Aldo-Keto Reductase 1C3 (type 5 17β-Hydroxysteroid Dehydrogenase) Based on N-Phenyl-Aminobenzoates and Their Structure Activity Relationships

    PubMed Central

    Adeniji, Adegoke O.; Twenter, Barry M.; Byrns, Michael C.; Jin, Yi; Chen, Mo; Winkler, Jeffrey D.; Penning, Trevor M.

    2012-01-01

    Aldo-keto reductase 1C3 (AKR1C3; type 5 17β-hydroxysteroid dehydrogenase) is overexpressed in castrate resistant prostate cancer (CRPC) and is implicated in the intratumoral biosynthesis of testosterone and 5α-dihydrotestosterone. Selective AKR1C3 inhibitors are required since compounds should not inhibit the highly related AKR1C1 and AKR1C2 isoforms which are involved in the inactivation of 5α-dihydrotestosterone. NSAIDs, N-phenylanthranilates in particular are potent but non-selective AKR1C3 inhibitors. Using flufenamic acid, 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid as lead compound, five classes of structural analogs were synthesized and evaluated for AKR1C3 inhibitory potency and selectivity. Structure activity relationship (SAR) studies revealed that a meta-carboxylic acid group relative to the amine conferred pronounced AKR1C3 selectivity without loss of potency, while electron withdrawing groups on the phenylamino B-ring were optimal for AKR1C3 inhibition. Lead compounds did not inhibit COX-1 or COX-2 but blocked the AKR1C3 mediated production of testosterone in LNCaP-AKR1C3 cells. These compounds offer promising leads towards new therapeutics for CRPC. PMID:22263837

  2. Aldo–Keto Reductase AKR1C1–AKR1C4: Functions, Regulation, and Intervention for Anti-cancer Therapy

    PubMed Central

    Zeng, Chen-Ming; Chang, Lin-Lin; Ying, Mei-Dan; Cao, Ji; He, Qiao-Jun; Zhu, Hong; Yang, Bo

    2017-01-01

    Aldo–keto reductases comprise of AKR1C1–AKR1C4, four enzymes that catalyze NADPH dependent reductions and have been implicated in biosynthesis, intermediary metabolism, and detoxification. Recent studies have provided evidences of strong correlation between the expression levels of these family members and the malignant transformation as well as the resistance to cancer therapy. Mechanistically, most studies focus on the catalytic-dependent function of AKR1C isoforms, like their impeccable roles in prostate cancer, breast cancer, and drug resistance due to the broad substrates specificity. However, accumulating clues showed that catalytic-independent functions also played critical roles in regulating biological events. This review summarizes the catalytic-dependent and -independent roles of AKR1Cs, as well as the small molecule inhibitors targeting these family members. PMID:28352233

  3. Use of hemoglobin A1c as an early predictor of gestational diabetes mellitus.

    PubMed

    Fong, Alex; Serra, Allison E; Gabby, Lauryn; Wing, Deborah A; Berkowitz, Kathleen M

    2014-12-01

    The purpose of this study was to assess an early hemoglobin A1c (HgbA1c) value from 5.7-6.4% as an early predictor of progression to gestational diabetes (GDM). A retrospective cohort study was performed on all women who delivered at a single institution over 2 years who had an early screening HgbA1c test performed at ≤20 weeks of gestation. Women with known preexisting diabetes mellitus or HgbA1c values ≥6.5% were excluded. The primary outcome was GDM development. Secondary outcomes included delivery route, maternal weight gain, birthweight, and neonatal morbidities. Women with an HgbA1c value of 5.7-6.4% were compared with those with an HgbA1c level of <5.7%. Nearly one-third of those patients in the HgbA1c 5.7-6.4% group (27.3%) experience the development of GDM compared with only 8.7% in the HgbA1c <5.7% group (odds ratio, 3.9; 95% confidence level, 2.0-7.7). This 3-fold increase remained significant (adjusted odds ratio, 2.4) after adjustment for age, prepregnancy body mass index, gestational age at HgbA1c collection, gestational age at screening, ethnicity, and method of screening. There were no significant differences in the need for medical treatment, weight gain, delivery route, birthweight, macrosomia, or neonatal morbidities. More than 10% of patients in our cohort had an early screening HgbA1c value of 5.7-6.4%. Women in this group have a significantly higher risk of progression to GDM compared with women with normal HgbA1c values and should be considered for closer GDM surveillance and possible intervention. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Evaluation of hemoglobin A1c levels in endometrial cancer patients: a retrospective study in Turkey.

    PubMed

    Karaman, Erbil; Karaman, Yasemin; Numanoglu, Ceyhun; Ark, Hasan Cemal

    2015-01-01

    Hemoglobin A1c(HgA1c) is a marker of poor gylcemic control and elevation HgA1c is associated with increased risk of many cancers. We aimed to determine the HgA1c levels in endometrial cancer cases and any relationship with stage and grade of disease. A retrospective data review was performed between June 2011 and October 2012 at a tertiary referral center in Turkey. The study included 35 surgically staged endometrial cancer patients and 40 healthy controls. Preoperative HgA1c levels drawn within 3 months before surgery were compared. Also the relationships between HgA1c levels and stage, grade and hystologic type of cancer cases were evaluated. The mean HgA1c levels were statistically significantly higher at 6.19 ± 1.44 in endometrial cancer cases than the 5.61 ± 0.58 in controls (p=0.027). With endometrial cancer cases, the mean HgA1c level was found to be 6.62 ± 1.40 for stage I and 6.88 ± 1.15 for stages II-IV (p=0.07). The figures were 6.74 ± 1.65 for endometrioid and 6.63 ± 1.41 for non-endometrioid type tumors (p=0.56). Mean HgA1c levels of 6.72 ± 1.14 for grade 1 and 6.62 ± 1.42 for grade 2-3 were observed (p=0.57). HgA1c levels in endometrial cancer patients were statistically higher than healthy controls. However, HgA1c did not show any significant correlation with stage, grade and histologic type in endometrial cancer cases.

  5. Dopaminergic and behavioural changes in a loss-of-imprinting model of Cdkn1c.

    PubMed

    McNamara, G I; Davis, B A; Browne, M; Humby, T; Dalley, J W; Xia, J; John, R M; Isles, A R

    2017-08-31

    The imprinted gene Cdkn1c is expressed exclusively from the maternally inherited allele as a consequences of epigenetic regulation. Cdkn1c exemplifies many of the functional characteristics of imprinted genes, playing a role in foetal growth and placental development. However, Cdkn1c also plays an important role in the brain, being key to the appropriate proliferation and differentiation of midbrain dopaminergic neurons. Using a transgenic model (Cdkn1c(BACx1) ) with a twofold elevation in Cdkn1c expression that mimics loss-of-imprinting, we show that increased expression of Cdkn1c in the brain gives rise to neurobiological and behavioural changes indicative of a functionally altered dopaminergic system. Cdkn1c(BACX1) mice displayed altered expression of dopamine system-related genes, increased tyrosine hydroxylase (Th) staining and increased tissue content of dopamine in the striatum. In addition, Cdkn1c(BACx1) animals were hypersensitive to amphetamine as showed by c-fos expression in the nucleus accumbens. Cdkn1c(BACX1) mice had significant changes in behaviours that are dependent on the mesolimbic dopaminergic system. Specifically, increased motivation for palatable food stuffs, as indexed on a progressive ratio task. In addition, Cdkn1c(BACX1) mice displayed enhanced social dominance. These data show, for the first time, the consequence of elevated Cdkn1c expression on dopamine-related behaviours highlighting the importance of correct dosage of this imprinted gene in the brain. This work has significant relevance for deepening our understanding of the epigenetic factors that can shape neurobiology and behaviour. © 2017 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  6. MUC1-C ONCOPROTEIN INDUCES TAMOXIFEN RESISTANCE IN HUMAN BREAST CANCER CELLS

    PubMed Central

    Kharbanda, Akriti; Rajabi, Hasan; Jin, Caining; Raina, Deepak; Kufe, Donald

    2013-01-01

    Resistance of estrogen receptor positive (ER+) breast cancer cells to tamoxifen has been linked in part to activation of (i) certain receptor tyrosine kinases, such as HER2, and (ii) the PI3K→AKT pathway. Mucin 1 (MUC1) is aberrantly overexpressed in about 90% of human breast cancers and the oncogenic MUC1-C subunit associates with ERα. The present studies using HER2 overexpressing BT-474 breast cancer cells, which are constitutively resistant to tamoxifen, demonstrate that silencing MUC1-C is associated with (i) downregulation of p-HER2 levels, and (ii) sensitivity to tamoxifen-induced growth inhibition and loss of clonogenic survival. The results also demonstate that overexpression of MUC1-C in tamoxifen-sensitive MCF-7 breast cancer cells results in upregulation of p-AKT and tamoxifen resistance. We show that MUC1-C forms complexes with ERα on the estrogen-responsive promoter of the Rab31 gene and that MUC1-C blocks tamoxifen-induced decreases in ERα occupancy. MUC1-C also attenuated tamoxifen-induced decreases in (i) recruitment of the coactivator CREB binding protein, (ii) Rab31 promoter activation, and (ii) Rab31 mRNA and protein levels. The importance of MUC1-C is further supported by the demonstration that targeting MUC1-C with the cell-penetrating peptide inhibitor, GO-203, sensitizes tamoxifen-resistant cells to tamoxifen treatment. Moreover, we show that targeting MUC1-C in combination with tamoxifen is highly synergistic in the treatment of tamoxifen-resistant breast cancer cells. These findings indicate that MUC1-C contributes to tamoxifen resistance and provide support for the investigation of MUC1-C inhibitors in the setting of tamoxifen refractory disease. PMID:23538857

  7. Molecular mechanisms underlying the interaction of protein phosphatase-1c with ASPP proteins.

    PubMed

    Skene-Arnold, Tamara D; Luu, Hue Anh; Uhrig, R Glen; De Wever, Veerle; Nimick, Mhairi; Maynes, Jason; Fong, Andrea; James, Michael N G; Trinkle-Mulcahy, Laura; Moorhead, Greg B; Holmes, Charles F B

    2013-02-01

    The serine/threonine PP-1c (protein phosphatase-1 catalytic subunit) is regulated by association with multiple regulatory subunits. Human ASPPs (apoptosis-stimulating proteins of p53) comprise three family members: ASPP1, ASPP2 and iASPP (inhibitory ASPP), which is uniquely overexpressed in many cancers. While ASPP2 and iASPP are known to bind PP-1c, we now identify novel and distinct molecular interactions that allow all three ASPPs to bind differentially to PP-1c isoforms and p53. iASPP lacks a PP-1c-binding RVXF motif; however, we show it interacts with PP-1c via a RARL sequence with a Kd value of 26 nM. Molecular modelling and mutagenesis of PP-1c-ASPP protein complexes identified two additional modes of interaction. First, two positively charged residues, Lys260 and Arg261 on PP-1c, interact with all ASPP family members. Secondly, the C-terminus of the PP-1c α, β and γ isoforms contain a type-2 SH3 (Src homology 3) poly-proline motif (PxxPxR), which binds directly to the SH3 domains of ASPP1, ASPP2 and iASPP. In PP-1cγ this comprises residues 309-314 (PVTPPR). When the Px(T)PxR motif is deleted or mutated via insertion of a phosphorylation site mimic (T311D), PP-1c fails to bind to all three ASPP proteins. Overall, we provide the first direct evidence for PP-1c binding via its C-terminus to an SH3 protein domain.

  8. Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells.

    PubMed

    Roubalová, Lenka; Biedermann, David; Papoušková, Barbora; Vacek, Jan; Kuzma, Marek; Křen, Vladimír; Ulrichová, Jitka; Dinkova-Kostova, Albena T; Vrba, Jiří

    2016-12-25

    The natural flavonoid quercetin is known to activate the transcription factor Nrf2, which regulates the expression of cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). In this study, a novel semisynthetic flavonoid 7-O-galloylquercetin (or quercetin-7-gallate, 3) was prepared by direct galloylation of quercetin, and its effect on the Nrf2 pathway was examined. A luciferase reporter assay showed that 7-O-galloylquercetin, like quercetin, significantly activated transcription via the antioxidant response element in a stably transfected human AREc32 reporter cell line. In addition, 7-O-galloylquercetin caused the accumulation of Nrf2 and induced the expression of HO-1 at both the mRNA and protein levels in murine macrophage RAW264.7 cells. The induction of HO-1 by 7-O-galloylquercetin was significantly suppressed by N-acetyl-l-cysteine and SB203580, indicating the involvement of reactive oxygen species and p38 mitogen-activated protein kinase activity, respectively. HPLC/MS analyses also showed that 7-O-galloylquercetin was not degalloylated to quercetin, but it was conjugated with glucuronic acid and/or methylated in RAW264.7 cells. Furthermore, 7-O-galloylquercetin was found to increase the protein levels of Nrf2 and HO-1, and also the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. Taken together, we conclude that 7-O-galloylquercetin increases Nrf2 activity and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells.

  9. [Indicators of glycemic control --hemoglobin A1c (HbA1c), glycated albumin (GA), and 1,5-anhydroglucitol (1,5-AG)].

    PubMed

    Sato, Asako

    2014-01-01

    The clinical goal of diabetes management is a good quality of life that is not different from that of a healthy subjects. To fulfill the goal, prevention of complications is needed under good glycemic control. Although blood glucose measurement is essential for glycemic control, there are diurnal variations in blood glucose levels. An indicator of long-term glycemic control is necessary. HbA1c is the gold standard measurement for the assessment of glycemic control, and worldwide large scale clinical studies of diabetes complications have greatly valued HbA1c as an indicator of glycemic control. In addition, recently, HbA1c was recommended for use in the diagnosis of diabetes in Japan and in the United States. Although HbA1c is used widely and internationally, international standardization of the HbA1c value has not been achieved. In Japan, from April 2014, it has been decided to adopt the National Glycohemoglobin Standardization Program (NGSP) value, which is used by many countries globally, as the first step toward internationalization. Recently, cardiovascular disease in diabetic patients has been increasing in Japan. Relationships between postprandial hyperglycemia and cardiovascular disease have been noted. Therefore, the correction of postprandial hyperglycemia is one of the important goals of glycemic control to prevent cardiovascular disease. HbA1c or glycated albumin (GA) results from the glycation of hemoglobin or serum albumin and represents 2-month or 2-week glycemia, respectively. In addition, the glycation speed of GA is ten times faster than HbA1c, so GA is likely to reflect the variation in blood glucose and postprandial hyperglycemia in combination with HbA1c and its value. 1,5-anhydroglucitol (AG) is a marker of glycemia-induced glycosuria, since reabsorption of filtered 1,5-AG in the proximal tubule is competitively inhibited by glucose. It is an indicator to identify rapid changes in hyperglycemia. Understanding the characteristics of the

  10. Alcohol consumption, alcohol dehydrogenase 1C (ADH1C) genotype, and risk of colorectal cancer in the Netherlands Cohort Study on diet and cancer.

    PubMed

    Bongaerts, Brenda W C; de Goeij, Anton F P M; Wouters, Kim A D; van Engeland, Manon; Gottschalk, Ralph W H; Van Schooten, Frederik J; Goldbohm, R Alexandra; van den Brandt, Piet A; Weijenberg, Matty P

    2011-05-01

    Within the Netherlands Cohort Study (1986), we examined associations between alcohol consumption, the alcohol dehydrogenase 1C (ADH1C) genotype, and risk of colorectal cancer (CRC). After a follow-up period of 7.3 years, 594 CRC cases with information on genotype and baseline alcohol intake were available for analyses. Adjusted incidence rate ratios (RRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. In subjects who reported to have consumed equal amounts of total alcohol both 5 years before baseline and at baseline, drinkers of ≥30g of alcohol per day with the ADH1C*2/*2 genotype were associated-although not statistically significant-with an increased risk of CRC relative to abstainers with the ADH1C*1/*1 genotype (RR: 1.91, 95% CI: 0.68, 5.34). The risk estimate in this exposure group increased slightly when compared with light drinkers of ≥0.5-<5g/day with the ADH1C*1/*1 genotype (RR: 2.32, 95% CI: 0.80, 6.72). The interaction term however, was not statistically significant (P>.05). In subjects who reported to have consumed equal amounts of total alcohol both 5 years before baseline and at baseline, drinkers of ≥30g of alcohol per day were associated-although not statistically significant-with an increased risk of CRC relative to abstainers (RR: 1.38, 95% CI: 0.80, 2.38). This risk estimate for high-level drinkers became stronger when compared with light drinkers (RR: 1.74, 95% CI: 1.01, 2.99). As main effect of genotype, we observed that the ADH1C*2/*2 genotype was associated with a 42% increase in risk of CRC when compared with the ADH1C*1/*1 genotype. In conclusion, both genotype and alcohol consumption were associated with an increased risk of CRC. Owing to limited statistical power, we found no apparent evidence for the ADH1C genotype as effect modifier of the relationship between alcohol intake and CRC. Nevertheless, the interaction deserves further investigation in larger genetic epidemiologic studies

  11. Implementation of the HbA1c IFCC unit --from the laboratory to the consumer: The New Zealand experience.

    PubMed

    Florkowski, Christopher; Crooke, Michael; Reed, Maxine

    2014-05-15

    In 2007, an international consensus statement recommended that HbA1c results should be reported world-wide in IFCC units (mmol/mol) and also the more familiar derived percentage units using a master equation. In New Zealand, the HbA1c IFCC units have been successfully implemented and used exclusively since 3rd October 2011 (following a 2 year period of reporting both units) for both patient monitoring and the diagnosis of diabetes, with a diagnostic cut-off of ≥50 mmol/mol. The consultation process in New Zealand dates back to 2003, well before the international recommendations were made. It reflects the close cooperation between the clinical and laboratory communities in New Zealand, particularly through the agency of the New Zealand Society for the Study of Diabetes (NZSSD), a key organisation in New Zealand open to all those involved in the care of people with diabetes and the national advisory body on scientific and clinical diabetes care and standards. There was a phased process of consultation designed to increase familiarity and comfort with the new units and the final step was coupled with the adoption of HbA1c as a diagnostic test with some evidence-based pragmatism around using the rounded cut-off. Genuine clinical engagement is vital in such a process.

  12. Apolipoprotein A1/C3/A5 haplotypes and serum lipid levels

    USDA-ARS?s Scientific Manuscript database

    The association of single nucleotide polymorphisms (SNPs) in the apolipoprotein (Apo) A1/C3/A4/A5 gene cluster and serum lipid profiles is inconsistent. The present study was undertaken to detect the association between the ApoA1/C3/A5 gene polymorphisms and their haplotypes with serum lipid levels ...

  13. Improved phylogenetic resolution for Y-chromosome Haplogroup O2a1c-002611.

    PubMed

    Yao, Xiaotian; Tang, Senwei; Bian, Beilei; Wu, Xiaoli; Chen, Gang; Wang, Chuan-Chao

    2017-04-25

    Y-chromosome Haplogroup O2a1c-002611 is one of the dominant lineages of East Asians and Southeast Asians. However, its internal phylogeny remains insufficiently investigated. In this study, we genotyped 89 new highly informative single nucleotide polymorphisms (SNPs) in 305 individuals with Haplogroup O2a1c-002611 identified from 2139 Han Chinese males. Two major branches were identified, O2a1c1-F18 and O2a1c2-L133.2 and the first was further divided into two main subclades, O2a1c1a-F11 and O2a1c1b-F449, accounting for 11.13% and 2.20% of Han Chinese, respectively. In Haplogroup O2a1c1a-F11, we also determined seven sublineages with quite different frequency distributions in Han Chinese ranging from 0.187% to 3.553%, implying they might have different demographic history. The reconstructed haplogroup tree for all the major clades within Haplogroup O2a1c-002611 permits better resolution of male lineages in population studies of East Asia and Southeast Asia. The dataset generated in the present study are also valuable for forensic identification and paternity tests in China.

  14. 50 CFR Table 1c to Part 679 - Product Type Codes

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Product Type Codes 1c Table 1c to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679...

  15. 50 CFR Table 1c to Part 679 - Product Type Codes

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Product Type Codes 1c Table 1c to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679...

  16. 50 CFR Table 1c to Part 679 - Product Type Codes

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Product Type Codes 1c Table 1c to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679...

  17. 50 CFR Table 1c to Part 679 - Product Type Codes

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Product Type Codes 1c Table 1c to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679...

  18. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota.

    PubMed

    Lehtovirta, Laura E; Prosser, James I; Nicol, Graeme W

    2009-12-01

    Archaeal communities in many acidic forest soil systems are dominated by a distinct crenarchaeal lineage Group 1.1c. In addition, they are found consistently in other acidic soils including grassland pasture, moorland and alpine soils. To determine whether soil pH is a major factor in determining their presence and abundance, Group 1.1c community size and composition were investigated across a pH gradient from 4.5 to 7.5 that has been maintained for > 40 years. The abundances of Group 1.1c Crenarchaeota, total Crenarchaeota and total bacteria were assessed by quantitative PCR (qPCR) targeting 16S rRNA genes and the diversity of Group 1.1c crenarchaeal community was investigated by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. The abundance of Group 1.1c Crenarchaeota declined as the pH increased, whereas total Crenarchaeota and Bacteria showed no clear trend. Community diversity of Group 1.1c Crenarchaeota was also influenced with different DGGE bands dominating at different pH. Group 1.1c Crenarchaeota were also quantified in 13 other soils representing a range of habitats, soil types and pH. These results exhibited the same trend as that shown across the pH gradient with Group 1.1c Crenarchaeota representing a greater proportion of total Crenarchaeota in the most acidic soils.

  19. The relationship of regional hemoglobin A1c testing and amputation rate among patients with diabetes.

    PubMed

    Newhall, Karina A; Bekelis, Kimon; Suckow, Bjoern D; Gottlieb, Daniel J; Farber, Adrienne E; Goodney, Philip P; Skinner, Jonathan S

    2017-04-01

    Objective The risk of leg amputation among patients with diabetes has declined over the past decade, while use of preventative measures-such as hemoglobin A1c monitoring-has increased. However, the relationship between hemoglobin A1c testing and amputation risk remains unclear. Methods We examined annual rates of hemoglobin A1c testing and major leg amputation among Medicare patients with diabetes from 2003 to 2012 across 306 hospital referral regions. We created linear regression models to study associations between hemoglobin A1c testing and lower extremity amputation. Results From 2003 to 2012, the proportion of patients who received hemoglobin A1c testing increased 10% (74% to 84%), while their rate of lower extremity amputation decreased 50% (430 to 232/100,000 beneficiaries). Regional hemoglobin A1c testing weakly correlated with crude amputation rate in both years (2003 R = -0.20, 2012 R = -0.21), and further weakened with adjustment for age, sex, and disability status (2003 R = -0.11, 2012 R = -0.17). In a multivariable model of 2012 amputation rates, hemoglobin A1c testing was not a significant predictor. Conclusion Lower extremity amputation among patients with diabetes nearly halved over the past decade but only weakly correlated with hemoglobin A1c testing throughout the study period. Better metrics are needed to understand the relationship between preventative care and amputation.

  20. Diabetes mellitus, hemoglobin A1C, and the incidence of total joint arthroplasty infection.

    PubMed

    Iorio, Richard; Williams, Kelly M; Marcantonio, Andrew J; Specht, Lawrence M; Tilzey, John F; Healy, William L

    2012-05-01

    Patients with diabetes have a higher incidence of infection after total joint arthroplasty (TJA) than patients without diabetes. Hemoglobin A1c (HbA1c) levels are a marker for blood glucose control in diabetic patients. A total of 3468 patients underwent 4241 primary or revision total hip arthroplasty or total knee arthroplasty at one institution. Hemoglobin A1c levels were examined to evaluate if there was a correlation between the control of HbA1c and infection after TJA. There were a total of 46 infections (28 deep and 18 superficial [9 cellulitis and 9 operative abscesses]). Twelve (3.43%) occurred in diabetic patients (n = 350; 8.3%) and 34 (0.87%) in nondiabetic patients (n = 3891; 91.7%) (P < .001). There were 9 deep (2.6%) infections in diabetic patients and 19 (0.49%) in nondiabetic patients. In noninfected, diabetic patients, HbA1c level ranged from 4.7% to 15.1% (mean, 6.92%). In infected diabetic patients, HbA1c level ranged from 5.1% to 11.7% (mean, 7.2%) (P < .445). The average HbA1c level in patients with diabetes was 6.93%. Diabetic patients have a significantly higher risk for infection after TJA. Hemoglobin A1c levels are not reliable for predicting the risk of infection after TJA.

  1. Insulin induction of SREBP-1c in rodent liver requires LXRα-C/EBPβ complex

    PubMed Central

    Tian, Jing; Goldstein, Joseph L.; Brown, Michael S.

    2016-01-01

    Insulin increases lipid synthesis in liver by activating transcription of the gene encoding sterol regulatory element-binding protein-1c (SREBP-1c). SREBP-1c activates the transcription of all genes necessary for fatty acid synthesis. Insulin induction of SREBP-1c requires LXRα, a nuclear receptor. Transcription of SREBP-1c also requires transcription factor C/EBPβ, but a connection between LXRα and C/EBPβ has not been made. Here we show that LXRα and C/EBPβ form a complex that can be immunoprecipitated from rat liver nuclei. Chromatin immunoprecipitation assays showed that the LXRα-C/EBPβ complex binds to the SREBP-1c promoter in a region that contains two binding sites for LXRα and is known to be required for insulin induction. Knockdown of C/EBPβ in fresh rat hepatocytes or mouse livers in vivo reduces the ability of insulin to increase SREBP-1c mRNA. The LXRα-C/EBPβ complex is bound to the SREBP-1c promoter in the absence or presence of insulin, indicating that insulin acts not by increasing the formation of this complex, but rather by activating it. PMID:27382175

  2. 18 CFR 1c.2 - Prohibition of electric energy market manipulation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Prohibition of electric energy market manipulation. 1c.2 Section 1c.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES PROHIBITION OF ENERGY MARKET MANIPULATION §...

  3. Hb A1c Separation by High Performance Liquid Chromatography in Hemoglobinopathies

    PubMed Central

    Chandrashekar, Vani

    2016-01-01

    Hb A1c measurement is subject to interference by hemoglobin traits and this is dependent on the method used for determination. In this paper we studied the difference between Hb A1c measured by HPLC in hemoglobin traits and normal chromatograms. We also studied the correlation of Hb A1c with age. Hemoglobin analysis was carried out by high performance liquid chromatography. Spearman's rank correlation was used to study correlation between A1c levels and age. Mann-Whitney U test was used to study the difference in Hb A1c between patients with normal hemoglobin and hemoglobin traits. A total of 431 patients were studied. There was positive correlation with age in patients with normal chromatograms only. No correlation was seen in Hb E trait or beta thalassemia trait. No significant difference in Hb A1c of patients with normal chromatograms and patients with hemoglobin traits was seen. There is no interference by abnormal hemoglobin in the detection of A1c by high performance liquid chromatography. This method cannot be used for detection of A1c in compound heterozygous and homozygous disorders. PMID:26989559

  4. Inhibition of AKR1C3 Activation Overcomes Resistance to Abiraterone in Advanced Prostate Cancer.

    PubMed

    Liu, Chengfei; Armstrong, Cameron M; Lou, Wei; Lombard, Alan; Evans, Christopher P; Gao, Allen C

    2017-01-01

    Abiraterone suppresses intracrine androgen synthesis via inhibition of CYP17A1. However, clinical evidence suggests that androgen synthesis is not fully inhibited by abiraterone and the sustained androgen production may lead to disease relapse. In the present study, we identified AKR1C3, an important enzyme in the steroidogenesis pathway, as a critical mechanism driving resistance to abiraterone through increasing intracrine androgen synthesis and enhancing androgen signaling. We found that overexpression of AKR1C3 confers resistance to abiraterone while downregulation of AKR1C3 resensitizes resistant cells to abiraterone treatment. In abiraterone-resistant prostate cancer cells, AKR1C3 is overexpressed and the levels of intracrine androgens are elevated. In addition, AKR1C3 activation increases intracrine androgen synthesis and enhances androgen receptor (AR) signaling via activating AR transcriptional activity. Treatment of abiraterone-resistant cells with indomethacin, an AKR1C3 inhibitor, overcomes resistance and enhances abiraterone therapy both in vitro and in vivo by reducing the levels of intracrine androgens and diminishing AR transcriptional activity. These results demonstrate that AKR1C3 activation is a critical mechanism of resistance to abiraterone through increasing intracrine androgen synthesis and enhancing androgen signaling. Furthermore, this study provides a preclinical proof-of-principle for clinical trials investigating the combination of targeting AKR1C3 using indomethacin with abiraterone for advanced prostate cancer. Mol Cancer Ther; 16(1); 35-44. ©2016 AACR.

  5. Cutoff Point of HbA1c for Diagnosis of Diabetes Mellitus in Chinese Individuals

    PubMed Central

    Liu, Ming-Chuan; Li, Xin-Yu; Liu, Xu-Han; Feng, Qiu-Xia; Lu, Lu; Zhu, Zhu; Liu, Ying-Shu; Zhao, Wei; Gao, Zheng-Nan

    2016-01-01

    Background The purpose of the present study was to find the optimal threshold of glycated hemoglobin (HbA1c) for diagnosis of diabetes mellitus in Chinese individuals. Methods A total of 8 391 subjects (including 2 133 men and 6 258 women) aged 40–90 years with gradable retinal photographs were recruited. The relationship between HbA1c and diabetic retinopathy (DR) was examined. Receiver operating characteristic (ROC) curves were used to find the optimal threshold of HbA1c in screening DR and diagnosing diabetes. Results HbA1c values in patients with DR were significantly higher than in those with no DR. The ROC curve for HbA1c had an area under the curve of 0.881 (95%CI 0.857–0.905; P = 0.000). HbA1c at a cutoff of 6.5% had a high sensitivity (80.6%) and specificity (86.9%) for detecting DR. Conclusions HbA1c can be used to diagnose diabetes in a Chinese population, and the optimal HbA1c cutoff point for diagnosis is 6.5%. PMID:27861599

  6. An enzymatic method for the determination of hemoglobinA(1C).

    PubMed

    Hirokawa, Kozo; Shimoji, Kazuhiko; Kajiyama, Naoki

    2005-07-01

    Fructosyl peptide oxidase is a flavoenzyme that catalyzes the oxidative deglycation of N-(1-deoxyfructosyl)-Val-His, a model compound of hemoglobin (Hb)A(1C). To develop an enzymatic method for the measurement of HbA(1C), we screened for a proper protease using N-(1-deoxyfructosyl)-hexapeptide as a substrate. Several proteases, including Neutral protease from Bacillus polymyxa, were found to release N-(1-deoxyfructosyl)-Val-His efficiently, however no protease was found to release N-(1-deoxyfructosyl)-Val. Neutral protease also digested HbA(1C) to release N-(1-deoxyfructosyl)-Val-His, and then the fructosyl peptide was detected using fructosyl peptide oxidase. The linear relationship was observed between the concentration of HbA(1C) and the absorbancy of fructosyl peptide oxidase reaction, hence this new method is a practical means for measuring HbA(1C.).

  7. Quality of HbA1c Measurement in Trinidad and Tobago

    PubMed Central

    Rastogi, Maynika V.; Ladenson, Paul; Goldstein, David E.; Little, Randie R.

    2015-01-01

    Background: Monitoring of HbA1c is the standard of care to assess diabetes control. In Trinidad & Tobago (T&T) there are no existing data on the quality of HbA1c measurement. Our study examined the precision and accuracy of HbA1c testing in T&T. Methods: Sets of 10 samples containing blinded duplicates were shipped to laboratories in T&T. This exercise was repeated 6 months later. Precision and accuracy were estimated for each laboratory/method. Results: T&T methods included immunoassay, capillary electrophoresis, and boronate affinity binding. Most, but not all, laboratories demonstrated acceptable precision and accuracy. Conclusions: Continuous oversight of HbA1c testing (eg, through proficiency testing) in T&T is recommended. These results highlight the lack of oversight of HbA1c testing in some developing countries. PMID:26553021

  8. A focused telephonic nursing intervention delivers improved adherence to A1c testing.

    PubMed

    Orr, Patty M; McGinnis, Matthew A; Hudson, Laurel R; Coberley, Sadie S; Crawford, Albert; Clarke, Janice L; Goldfarb, Neil I

    2006-10-01

    Compliance with hemoglobin A1c (A1c) testing is suboptimal despite the clear national recommendations and guidelines established for care of patients with diabetes. Recent studies have demonstrated a relationship between participation in a diabetes disease management (DM) program and improved adherence to A1c testing. A focused intervention study was initiated to investigate the ability of a DM program to drive improvement in A1c testing. A cohort of 36,327 members experienced a statistically significant increase (29%) in A1c testing while participating in the 6-month focused intervention. This finding demonstrated that a focused DM intervention is able to deliver improvement in a clinical process metric critical for managing patients with diabetes, thereby reducing their risk of disease exacerbation.

  9. HbA(1c)--an analyte of increasing importance.

    PubMed

    Higgins, Trefor

    2012-09-01

    Since the incorporation in 1976 of HbA(1c) into a monitoring program of individuals with diabetes, this test has become the gold standard for assessment of glycemic control. Analytical methods have steadily improved in the past two decades, largely through the efforts of the National Glycohemoglobin Standardization program (NGSP). The new definition of HbA(1c) and the introduction of an analytically pure calibrator have increased the possibility for greater improvements in analytical performance. Controversies exist in the reporting of HbA(1c). The use of HbA(1c) has expanded beyond the use solely as a measure of glycemic control into a test for screening and diagnosing diabetes. With improvements in analytical performance, the effects of demographic factors such as age and ethnicity and clinical factors such as iron deficiency have been observed. In this review, the history, formation, analytical methods and parameters that affect HbA(1c) analysis are discussed.

  10. The wheat mutant DELLA-encoding gene (Rht-B1c) affects plant photosynthetic responses to cadmium stress.

    PubMed

    Dobrikova, Anelia G; Yotsova, Ekaterina K; Börner, Andreas; Landjeva, Svetlana P; Apostolova, Emilia L

    2017-05-01

    Тhe sensitivity to cadmium (Cd) stress of two near-isogenic wheat lines with differences at the Rht-B1 locus, Rht-B1a (tall wild type, encoding DELLA proteins) and Rht-B1c (dwarf mutant, encoding modified DELLA proteins), was investigated. The effects of 100 μM CdCl2 on plant growth, pigment content and functional activity of the photosynthetic apparatus of wheat seedlings grown on a nutrient solution were evaluated through a combination of PAM chlorophyll fluorescence, oxygen evolution, oxidation-reduction kinetics of P700 and 77 K fluorescence. The results showed that the wheat mutant (Rht-B1c) was more tolerant to Cd stress compared to the wild type (Rht-B1a), as evidenced by the lower reductions in plant growth and pigment content, lower inhibition of photosystem I (PSI) and photosystem II (PSII) photochemistry and of the oxygen evolution measured with Clark-type and Joliot-type electrodes. Furthermore, the enhanced Cd tolerance was accompanied by increased Cd accumulation within mutant plant tissues. The molecular mechanisms through which the Rht-B1c mutation improves plant tolerance to Cd stress involve structural alterations in the mutant photosynthetic membranes leading to better protection of the Mn cluster of oxygen-evolving complex and increased capacity for PSI cyclic electron transport, protecting photochemical activity of the photosynthetic apparatus under stress. This study suggests a role for the Rht-B1c-encoded DELLA proteins in protective mechanisms and tolerance of the photosynthetic apparatus in wheat plants exposed to heavy metals stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes.

    PubMed

    Amemiya-Kudo, Michiyo; Shimano, Hitoshi; Hasty, Alyssa H; Yahagi, Naoya; Yoshikawa, Tomohiro; Matsuzaka, Takashi; Okazaki, Hiroaki; Tamura, Yoshiaki; Iizuka, Yoko; Ohashi, Ken; Osuga, Jun-ichi; Harada, Kenji; Gotoda, Takanari; Sato, Ryuichiro; Kimura, Satoshi; Ishibashi, Shun; Yamada, Nobuhiro

    2002-08-01

    Recent studies on the in vivo roles of the sterol regulatory element binding protein (SREBP) family indicate that SREBP-2 is more specific to cholesterogenic gene expression whereas SREBP-1 targets lipogenic genes. To define the molecular mechanism involved in this differential regulation, luciferase-reporter gene assays were performed in HepG2 cells to compare the transactivities of nuclear SREBP-1a, -1c, and -2 on a battery of SREBP-target promoters containing sterol regulatory element (SRE), SRE-like, or E-box sequences. The results show first that cholesterogenic genes containing classic SREs in their promoters are strongly and efficiently activated by both SREBP-1a and SREBP-2, but not by SREBP-1c. Second, an E-box containing reporter gene is much less efficiently activated by SREBP-1a and -1c, and SREBP-2 was inactive in spite of its ability to bind to the E-box. Third, promoters of lipogenic enzymes containing variations of SRE (SRE-like sequences) are strongly activated by SREBP-1a, and only modestly and equally by both SREBP-1c and -2. Finally, substitution of the unique tyrosine residue within the basic helix-loop-helix (bHLH) portion of nuclear SREBPs with arginine, the conserved residue found in all other bHLH proteins, abolishes the transactivity of all SREBPs for SRE, and conversely results in markedly increased activity of SREBP-1 but not activity of SREBP-2 for E-boxes. These data demonstrate the different specificity and affinity of nuclear SREBP-1 and -2 for different target DNAs, explaining a part of the mechanism behind the differential in vivo regulation of cholesterogenic and lipogenic enzymes by SREBP-1 and -2, respectively.

  12. Linkage and association of haplotypes at the APOA1/C3/A4/A5 genecluster to familial combined hyperlipidemia

    SciTech Connect

    Eichenbaum-Voline, Sophie; Olivier, Michael; Jones, Emma L.; Naoumova, Rossitza P.; Jones, Bethan; Gau, Brian; Seed, Mary; Betteridge,D. John; Galton, David J.; Rubin, Edward M.; Scott, James; Shoulders,Carol C.; Pennacchio, Len A.

    2002-09-15

    Combined hyperlipidemia (CHL) is a common disorder of lipidmetabolism that leads to an increased risk of cardiovascular disease. Thelipid profile of CHL is characterised by high levels of atherogeniclipoproteins and low levels of high-density-lipoprotein-cholesterol.Apolipoprotein (APO) A5 is a newly discovered gene involved in lipidmetabolism located within 30kbp of the APOA1/C3/A4 gene cluster. Previousstudies have indicated that sequence variants in this cluster areassociated with increased plasma lipid levels. To establish whethervariation at the APOA5 gene contributes to the transmission of CHL, weperformed linkage and linkage disequilibrium (LD) tests on a large cohortof families (n=128) with familial CHL (FCHL). The linkage data producedevidence for linkage of the APOA1/C3/A4/A5 genomic interval to FCHL (NPL= 1.7, P = 0.042). The LD studies substantiated these data. Twoindependent rare alleles, APOA5c.56G and APOC3c.386G of this gene clusterwere over-transmitted in FCHL (P = 0.004 and 0.007, respectively), andthis was associated with a reduced transmission of the most commonAPOA1/C3/A4/A5 haplotype (frequency 0.4425) to affected subjects (P =0.013). The APOA5c.56G allele was associated with increased plasmatriglyceride levels in FCHL probands, whereas the second, andindependent, APOC3c.386G allele was associated with increased plasmatriglyceride levels in FCHL pedigree founders. Thus, this allele (or anallele in LD) may mark a quantitative trait associated with FCHL, as wellas representing a disease susceptibility locus for the condition. Thisstudy establishes that sequence variation in the APOA1/C3/A4/A5 genecluster contributes to the transmission of FCHL in a substantialproportion of affected families, and that these sequence variants mayalso contribute to the lipid abnormalities of the metabolic syndrome,which is present in up to 40 percent of persons with cardiovasculardisease.

  13. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency

    PubMed Central

    Volk, Timo; Pannicke, Ulrich; Reisli, Ismail; Bulashevska, Alla; Ritter, Julia; Björkman, Andrea; Schäffer, Alejandro A.; Fliegauf, Manfred; Sayar, Esra H.; Salzer, Ulrich; Fisch, Paul; Pfeifer, Dietmar; Di Virgilio, Michela; Cao, Hongzhi; Yang, Fang; Zimmermann, Karin; Keles, Sevgi; Caliskaner, Zafer; Güner, S¸ükrü; Schindler, Detlev; Hammarström, Lennart; Rizzi, Marta; Hummel, Michael; Pan-Hammarström, Qiang; Schwarz, Klaus; Grimbacher, Bodo

    2015-01-01

    Null mutations in genes involved in V(D)J recombination cause a block in B- and T-cell development, clinically presenting as severe combined immunodeficiency (SCID). Hypomorphic mutations in the non-homologous end-joining gene DCLRE1C (encoding ARTEMIS) have been described to cause atypical SCID, Omenn syndrome, Hyper IgM syndrome and inflammatory bowel disease—all with severely impaired T-cell immunity. By whole-exome sequencing, we investigated the molecular defect in a consanguineous family with three children clinically diagnosed with antibody deficiency. We identified perfectly segregating homozygous variants in DCLRE1C in three index patients with recurrent respiratory tract infections, very low B-cell numbers and serum IgA levels. In patients, decreased colony survival after irradiation, impaired proliferative response and reduced counts of naïve T cells were observed in addition to a restricted T-cell receptor repertoire, increased palindromic nucleotides in the complementarity determining regions 3 and long stretches of microhomology at switch junctions. Defective V(D)J recombination was complemented by wild-type ARTEMIS protein in vitro. Subsequently, homozygous or compound heterozygous DCLRE1C mutations were identified in nine patients from the same geographic region. We demonstrate that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency. This novel association broadens the clinical spectrum associated with ARTEMIS mutations. Clinicians should consider the possibility that an immunodeficiency with a clinically mild initial presentation could be a combined immunodeficiency, so as to provide appropriate care for affected patients. PMID:26476407

  14. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency.

    PubMed

    Volk, Timo; Pannicke, Ulrich; Reisli, Ismail; Bulashevska, Alla; Ritter, Julia; Björkman, Andrea; Schäffer, Alejandro A; Fliegauf, Manfred; Sayar, Esra H; Salzer, Ulrich; Fisch, Paul; Pfeifer, Dietmar; Di Virgilio, Michela; Cao, Hongzhi; Yang, Fang; Zimmermann, Karin; Keles, Sevgi; Caliskaner, Zafer; Güner, S Ükrü; Schindler, Detlev; Hammarström, Lennart; Rizzi, Marta; Hummel, Michael; Pan-Hammarström, Qiang; Schwarz, Klaus; Grimbacher, Bodo

    2015-12-20

    Null mutations in genes involved in V(D)J recombination cause a block in B- and T-cell development, clinically presenting as severe combined immunodeficiency (SCID). Hypomorphic mutations in the non-homologous end-joining gene DCLRE1C (encoding ARTEMIS) have been described to cause atypical SCID, Omenn syndrome, Hyper IgM syndrome and inflammatory bowel disease-all with severely impaired T-cell immunity. By whole-exome sequencing, we investigated the molecular defect in a consanguineous family with three children clinically diagnosed with antibody deficiency. We identified perfectly segregating homozygous variants in DCLRE1C in three index patients with recurrent respiratory tract infections, very low B-cell numbers and serum IgA levels. In patients, decreased colony survival after irradiation, impaired proliferative response and reduced counts of naïve T cells were observed in addition to a restricted T-cell receptor repertoire, increased palindromic nucleotides in the complementarity determining regions 3 and long stretches of microhomology at switch junctions. Defective V(D)J recombination was complemented by wild-type ARTEMIS protein in vitro. Subsequently, homozygous or compound heterozygous DCLRE1C mutations were identified in nine patients from the same geographic region. We demonstrate that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency. This novel association broadens the clinical spectrum associated with ARTEMIS mutations. Clinicians should consider the possibility that an immunodeficiency with a clinically mild initial presentation could be a combined immunodeficiency, so as to provide appropriate care for affected patients. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Development of an electrochemical immunosensor for the detection of HbA1c in serum.

    PubMed

    Liu, Guozhen; Khor, Sook Mei; Iyengar, Sridhar G; Gooding, J Justin

    2012-02-21

    An electrochemical immuno-biosensor for detecting glycosylated haemoglobin (HbA1c) is reported based on glassy carbon (GC) electrodes with a mixed layer of an oligo(phenylethynylene) molecular wire (MW) and an oligo(ethylene glycol) (OEG). The mixed layer is formed from in situ-generated aryl diazonium cations. To the distal end of the MW, a redox probe 1,1'-di(aminomethyl)ferrocene (FDMA) was attached followed by the covalent attachment of an epitope N-glycosylated pentapeptide (GPP), an analogon to HbA1c, to which an anti-HbA1c monocolonal antibody IgG can selectively bind. HbA1c was detected by a competitive inhibition assay based on the competition for binding to anti-HbA1c IgG antibodies between the analyte in solution, HbA1c, and the surface bound epitope GPP. Exposure of the GPP modified sensing interface to the mixture of anti-HbA1c IgG antibody and HbA1c results in the attenuation of ferrocene electrochemistry due to free antibody binding to the interface. Higher concentrations of analyte led to higher Faradaic currents as less anti-HbA1c IgG is available to bind to the electrode surface. It was observed that there is a good linear relationship between the relative Faradaic current of FDMA and the concentration of HbA1c from 4.5% to 15.1% of total haemoglobin in serum without the need for washing or rinsing steps.

  16. Development of filter paper hemoglobin A1c assay applicable to newborn screening.

    PubMed

    Pollock, Allison J; Allen, David B; Wiebe, Donald; Eickhoff, Jens; MacDonald, Michael; Baker, Mei

    2016-06-01

    Gestational diabetes influences risk for future metabolic disease including type 2 diabetes. Hemoglobin A1c (HbA1c) measurement assesses hemoglobin A glycosylation, and could theoretically be used as a test to estimate gestational glucose exposure. HbA1c assay on dried blood spots (DBS) is needed before potential application to statewide newborn screening (NBS) population studies. The study aimed to establish a reliable method to measure HbA1c on NBS DBS specimens. De-identified blood was used to generate trials to evaluate stability of HbA1c in DBS, optimal elution time, and stability of eluted blood. Analysis of DBS stability HbA1c measurements from 3 to 6days after collection overestimated HbA1c values by a bias factor between 0.83 and 0.87. Sixty minutes of elution time produced maximal reproducibility and minimal bias of results. Within assay standard deviation: 0.058; average bias: -0.02%. Stability of eluted blood did not vary significantly between days 0-2 after DBS elution. Measurement of HbA1c levels on DBS from human blood is feasible. Results suggest new method using DBS to measure HbA1c level with the following characteristics: optimal time for sample analysis 3-6days after collection, elution time of 60min and eluted blood analysis within 2days of elution. Measurement of neonatal HbA1c could provide insight regarding the infant's in utero exposure to glucose. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Depletion of Jmjd1c impairs adipogenesis in murine 3T3-L1 cells.

    PubMed

    Buerger, Florian; Müller, Silvana; Ney, Nadja; Weiner, Juliane; Heiker, John T; Kallendrusch, Sonja; Kovacs, Peter; Schleinitz, Dorit; Thiery, Joachim; Stadler, Sonja C; Burkhardt, Ralph

    2017-07-01

    Differentiation of adipocytes is a highly regulated process modulated by multiple transcriptional co-activators and co-repressors. JMJD1C belongs to the family of jumonji C (jmjC) domain-containing histone demethylases and was originally described as a ligand-dependent co-activator of thyroid hormone and androgen receptors. Here, we explored the potential role of Jmjd1c in white adipocyte differentiation. To investigate the relevance of Jmjd1c in adipogenesis, murine 3T3-L1 preadipocyte cells with transient knock-down of Jmjd1c (3T3_Jmjd1c) were generated. Depletion of Jmjd1c led to the formation of smaller lipid droplets, reduced accumulation of triglycerides and maintenance of a more fibroblast-like morphology after adipocyte differentiation. Concomitantly, insulin stimulated uptake of glucose and fatty acids was significantly reduced in 3T3_Jmjd1c adipocytes. In line with these observations we detected lower expression of key genes associated with lipid droplet formation (Plin1, Plin4, Cidea) and uptake of glucose and fatty acids (Glut4, Fatp1, Fatp4, Aqp7) respectively. Finally, we demonstrate that depletion of Jmjd1c interferes with mitotic clonal expansion (MCE), increases levels of H3K9me2 (dimethylation of lysine 9 of histone H3) at promotor regions of adipogenic transcription factors (C/EBPs and PPARγ) and leads to reduced induction of these key regulators. In conclusion, we have identified Jmjd1c as a modulator of adipogenesis. Our data suggest that Jmjd1c may participate in MCE and the activation of the adipogenic transcription program during the induction phase of adipocyte differentiation in 3T3-L1 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer.

    PubMed

    Soejima, Hidenobu; Nakagawachi, Tetsuji; Zhao, Wei; Higashimoto, Ken; Urano, Takeshi; Matsukura, Shiroh; Kitajima, Yoshihiko; Takeuchi, Makoto; Nakayama, Masahiro; Oshimura, Mitsuo; Miyazaki, Kohji; Joh, Keiichiro; Mukai, Tsunehiro

    2004-05-27

    The putative tumor suppressor CDKN1C is an imprinted gene at 11p15.5, a well-known imprinted region often deleted in tumors. The absence of somatic mutations and the frequent diminished expression in tumors would suggest that CDKN1C expression is regulated epigenetically. It has been, however, controversial whether the diminution is caused by imprinting disruption of the CDKN1C/LIT1 domain or by promoter hypermethylation of CDKN1C itself. To clarify this, we investigated the CpG methylation index of the CDKN1C promoter and the differentially methylated region of the LIT1 CpG island (differentially methylated region (DMR)-LIT1), an imprinting control region of the domain, and CDKN1C expression in esophageal cancer cell lines. CDKN1C expression was diminished in 10 of 17 lines and statistically correlated with the loss of methylation at DMR-LIT1 in all but three. However, there was no statistical correlation between CDKN1C promoter MI and CDKN1C expression. Furthermore, loss of CpG methylation was associated with loss of histone H3 lysine 9 (H3K9) methylation at DMR-LIT1. Histone modifications at CDKN1C promoter were not correlated with CDKN1C expression. The data suggested that the diminished CDKN1C expression is associated with the loss of methylation of CpG and H3K9 at DMR-LIT1, not by its own promoter CpG methylation, and is involved in esophageal cancer, implying that DMR-LIT1 epigenetically regulates CDKN1C expression not through histone modifications at CDKN1C promoter, but through that of DMR-LIT1.

  19. Separation and conductimetric detection of C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines on unfunctionized polymethacrylate resin columns.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with conductimetric detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was attempted with C8 aliphatic monocarboxylic acids (2-propylvaleric acid, 2-ethylhexanoic acid, 2-methylheptanoic acid and octanoic acid) and C8 aliphatic monoamines (1,5-dimethylhexylamine, 2-ethylhexylamine, 1-methylheptylamine and octylamine) as eluents, respectively. Using 1 mM 2-methylheptanoic acid at pH 4.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min. Using 2 mM octylamine at pH 11.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 amines were also achieved on the TSKgel G3000PWXL column in 60 min.

  20. Calculation of the phase diagrams of ferrimagnetic alloys A cB 1- c and application to transition metal-rare-earth Fe cGd 1- c and Fe cTb 1- c materials

    NASA Astrophysics Data System (ADS)

    Fresneau, M.; Virlouvet, A.; Khater, A.

    1999-07-01

    A theoretical model is presented for the calculation of the magnetic properties of generalised spin ferrimagnetic random substitutional alloys A cB 1- c with antiferromagnetic coupling between the A and B spin species. In particular, we study in an effective field method the phase diagrams of these systems as a function of the alloy concentration c, for given magnetic exchange constants. The model is applied with no adjustable parameters to the transition metal-rare-earth Fe cGd 1- c and Fe cTb 1- c alloys, using the appropriate spins for the Fe, Gd and Tb ions. We report a coherent and an overall qualitative agreement between theory and experiment in the complete range of concentrations 1⩾ c⩾0, for the first time to our knowledge, and determine consequently for these materials a set of ionic exchange constants that are invariant with respect to the alloy concentration. To our knowledge this is the first time that approximate but seemingly reliable exchange constants for the two alloys have been derived.

  1. The relationship between the incidence of adhesive capsulitis and hemoglobin A1c.

    PubMed

    Chan, Justin H; Ho, Bryant S; Alvi, Hasham M; Saltzman, Matthew D; Marra, Guido

    2017-10-01

    Previous studies have shown no correlation between adhesive capsulitis and hemoglobin A1c (HbA1c). However, HbA1c is only a measure of short-term blood sugar control. We created a previously nonvalidated variable, cumulative HbA1c, that uses HbA1c values over time to estimate the total disease burden a single individual experiences over a period. In this study, we aimed to evaluate whether a correlation exists between cumulative HbA1c levels in diabetic patients and the prevalence of frozen shoulder. We hypothesized that poor long-term glucose control would be correlated with increased incidence of adhesive capsulitis. A retrospective analysis at a single institution was performed. Data from all patients from a single institution with any HbA1c values were collected. A total of 24,417 patients met the inclusion criteria. A variable was created establishing the cumulative magnitude of abnormal HbA1c values over time, termed "cumulative HbA1c." Logistic regression analysis was performed to determine whether long-term glucose control was predictive of the development of adhesive capsulitis. Cumulative HbA1c was positively associated with adhesive capsulitis (7.6 × 10(-5)) (ie, odds ratio of 1.000076). The effect size of cumulative HbA1c on adhesive capsulitis was significant; for each unit of time that the HbA1c level was greater than 7, there was a 2.77% increase in the risk of adhesive capsulitis. Cumulative HbA1c was associated with an increased incidence of adhesive capsulitis. This finding suggests that the effects of diabetes that predispose patients to the development of adhesive capsulitis are dose dependent. Patients with worse blood sugar control over a longer period are at an increased risk of the development of adhesive capsulitis. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Interpreting Hemoglobin A1C in Combination With Conventional Risk Factors for Prediction of Cardiovascular Risk

    PubMed Central

    Jarmul, Jamie A.; Pignone, Michael; Pletcher, Mark J.

    2015-01-01

    Background Hemoglobin A1C (HbA1C) is associated with increased risk of cardiovascular events, but its use for prediction of cardiovascular disease (CVD) events in combination with conventional risk factors has not been well defined. Methods and Results To understand the effect of HbA1C on CVD risk in the context of other CVD risk factors, we analyzed HbA1C and other CVD risk factor measurements in 2000 individuals aged 40-79 years old without pre-existing diabetes or cardiovascular disease from the 2011-2012 NHANES survey. The resulting regression model was used to predict the HbA1C distribution based on individual patient characteristics. We then calculated post-test 10-year atherosclerotic cardiovascular disease (ASCVD) risk incorporating the actual versus predicted HbA1C, according to established methods, for a set of example scenarios. Age, gender, race/ethnicity and traditional cardiovascular risk factors were significant predictors of HbA1C in our model, with the expected HbA1C distribution being significantly higher in non-Hispanic black, non-Hispanic Asian and Hispanic individuals than non-Hispanic white/other individuals. Incorporating the expected HbA1C distribution into pretest ASCVD risk has a modest effect on post-test ASCVD risk. In the patient examples we assessed, having an HbA1C < 5.7% reduced post-test risk by 0.4%-2.0% points, whereas having an HbA1C ≥ 6.5% increased post-test risk by 1.0%-2.5% points, depending on the scenario. The post-test risk increase from having an HbA1C ≥ 6.5 % tends to approximate the risk increase from being five years older in age. Conclusions HbA1C has modest effects on predicted ASCVD risk when considered in the context of conventional risk factors. PMID:26349840

  3. Hemoglobin A1c Levels and Mortality in the Diabetic Hemodialysis Population

    PubMed Central

    Ramirez, Sylvia Paz B.; McCullough, Keith P.; Thumma, Jyothi R.; Nelson, Robert G.; Morgenstern, Hal; Gillespie, Brenda W.; Inaba, Masaaki; Jacobson, Stefan H.; Vanholder, Raymond; Pisoni, Ronald L.; Port, Fritz K.; Robinson, Bruce M.

    2012-01-01

    OBJECTIVE Lowering hemoglobin A1c to <7% reduces the risk of microvascular complications of diabetes, but the importance of maintaining this target in diabetes patients with kidney failure is unclear. We evaluated the relationship between A1c levels and mortality in an international prospective cohort study of hemodialysis patients. RESEARCH DESIGN AND METHODS Included were 9,201 hemodialysis patients from 12 countries (Dialysis Outcomes and Practice Patterns Study 3 and 4, 2006–2010) with type 1 or type 2 diabetes and at least one A1c measurement during the first 8 months after study entry. Associations between A1c and mortality were assessed with Cox regression, adjusting for potential confounders. RESULTS The association between A1c and mortality was U-shaped. Compared with an A1c of 7–7.9%, the hazard ratios (95% CI) for A1c levels were 1.35 (1.09–1.67) for <5%, 1.18 (1.01–1.37) for 5–5.9%, 1.21 (1.05–1.41) for 6–6.9%, 1.16 (0.94–1.43) for 8–8.9%, and 1.38 (1.11–1.71) for ≥9.0%, after adjustment for age, sex, race, BMI, serum albumin, years of dialysis, serum creatinine, 12 comorbid conditions, insulin use, hemoglobin, LDL cholesterol, country, and study phase. Diabetes medications were prescribed for 35% of patients with A1c <6% and not prescribed for 29% of those with A1c ≥9%. CONCLUSIONS A1c levels strongly predicted mortality in hemodialysis patients with type 1 or type 2 diabetes. Mortality increased as A1c moved further from 7–7.9%; thus, target A1c in hemodialysis patients may encompass values higher than those recommended by current guidelines. Modifying glucose-lowering medicines for dialysis patients to target A1c levels within this range may be a modifiable practice to improve outcomes. PMID:22912431

  4. Molecular mechanism of serine/threonine protein phosphatase 1 (PP1cα-PP1r7) in spermatogenesis of Toxocara canis.

    PubMed

    Ma, Guang Xu; Zhou, Rong Qiong; Song, Zhen Hui; Zhu, Hong Hong; Zhou, Zuo Yong; Zeng, Yuan Qin

    2015-09-01

    Toxocariasis is one of the most important, but neglected, zoonoses, which is mainly caused by Toxocara canis. To better understand the role of serine/threonine protein phosphatase 1 (PP1) in reproductive processes of male adult T. canis, differential expression analysis was used to reveal the profiles of PP1 catalytic subunit α (PP1cα) gene Tc-stp-1 and PP1 regulatory subunit 7 (PP1r7) gene TcM-1309. Indirect fluorescence immunocytochemistry was carried out to determine the subcellular distribution of PP1cα. Double-stranded RNA interference (RNAi) assays were employed to illustrate the function and mechanism of PP1cα in male adult reproduction. Real-time quantitative PCR (qPCR) showed transcriptional consistency of Tc-stp-1 and TcM-1309 in sperm-producing germline tissues and localization research showed cytoplasmic distribution of PP1cα in sf9 cells, which indicated relevant involvements of PP1cα and PP1r7 in spermatogenesis. Moreover, spatiotemporal transcriptional differences of Tc-stp-1 were determined by gene knockdown analysis, which revealed abnormal morphologies and blocked meiotic divisions of spermatocytes by phenotypic aberration scanning, thereby highlighting the crucial involvement of PP1cα in spermatogenesis. These results revealed a PP1cα-PP1r7 mechanism by which PP1 regulates kinetochore-microtubule interactions in spermatogenesis and provided important clues to identify novel drug or vaccine targets for toxocariasis control.

  5. A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors.

    PubMed

    You, Jun; Zong, Wei; Du, Hao; Hu, Honghong; Xiong, Lizhong

    2014-04-01

    SIMILAR TO RCD ONE (SRO) is a plant-specific gene family involved in development and abiotic stress responses. SRO proteins are characterized by containing poly (ADP-ribose) polymerase catalytic (PARP) and C-terminal RCD1-SRO-TAF4 domains, and can be classified into two groups and five subgroups on the basis of their PARP domain. Expression analysis of rice SRO genes in response to various abiotic stresses showed that OsSRO1c, a rice SRO gene which functions downstream of the stress-responsive transcription factor SNAC1, is the major stress-responsive gene in the rice SRO family. The ossro1c-1 mutant showed resistance not only to chloroplastic oxidative stress, but