Science.gov

Sample records for 1d 2-region systems

  1. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates.

    PubMed

    Stoeck, T; Przybos, E; Dunthorn, M

    2014-05-01

    Ciliates are a major evolutionary lineage within the alveolates, which are distributed in nearly all habitats on our planet and are an essential component for ecosystem function, processes and stability. Accurate identification of these unicellular eukaryotes through, for example, microscopy or mating type reactions is reserved to few specialists. To satisfy the demand for a DNA barcode for ciliates, which meets the standard criteria for DNA barcodes defined by the Consortium for the Barcode of Life (CBOL), we here evaluated the D1-D2 region of the ribosomal DNA large subunit (LSU-rDNA). Primer universality for the phylum Ciliophora was tested in silico with available database sequences as well as in the laboratory with 73 ciliate species, which represented nine of 12 ciliate classes. Primers tested in this study were successful for all tested classes. To test the ability of the D1-D2 region to resolve conspecific and congeneric sequence divergence, 63 Paramecium strains were sampled from 24 mating species. The average conspecific D1-D2 variation was 0.18%, whereas congeneric sequence divergence averaged 4.83%. In pairwise genetic distance analyses, we identified a D1-D2 sequence divergence of <0.6% as an ideal threshold to discriminate Paramecium species. Using this definition, only 3.8% of all conspecific and 3.9% of all congeneric sequence comparisons had the potential of false assignments. Neighbour-joining analyses inferred monophyly for all taxa but for two Paramecium octaurelia strains. Here, we present a protocol for easy DNA amplification of single cells and voucher deposition. In conclusion, the presented data pinpoint the D1-D2 region as an excellent candidate for an official CBOL barcode for ciliated protists.

  2. DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS

    SciTech Connect

    L.R. Eisler

    1995-02-02

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.

  3. The UKC2 regional coupled prediction system

    NASA Astrophysics Data System (ADS)

    Castillo, Juan; Lewis, Huw; Graham, Jennifer; Saulter, Andrew; Arnold, Alex; Fallmann, Joachim; Martinez de la Torre, Alberto; Blyth, Eleanor; Bricheno, Lucy

    2017-04-01

    It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather through the environment, requires a more integrated approach to forecasting. This approach also delivers research benefits through providing tools with which to explore the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land. This hypothesis is being tested in a UK regional context at km-scale through the UK Environmental Prediction Project. This presentation will provide an introduction to the UKC2 UK Environmental Prediction research system. This incorporates models of the atmosphere (Met Office Unified Model), land surface (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled (via OASIS3-MCT libraries) at unprecedentedly high resolution across the UK and the wider north-west European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a unique new research tool for UK environmental science. The presentation will highlight work undertaken to review and improve the computational cost of running these systems for efficient research application. Research will be presented highlighting case study evaluation on the sensitivity of the ocean and surface waves to the representation of feedbacks to the atmosphere, and on the sensitivity of weather systems and boundary layer cloud development to the exchange of heat and momentum at the ocean surface modified through sea surface temperature and wave-induced roughness. The presentation will discuss plans for future development through UKC3 and beyond.

  4. Molecular Identification of Veterinary Yeast Isolates by Use of Sequence-Based Analysis of the D1/D2 Region of the Large Ribosomal Subunit▿

    PubMed Central

    Garner, Cherilyn D.; Starr, Jennifer K.; McDonough, Patrick L.; Altier, Craig

    2010-01-01

    Conventional methods of yeast identification are often time-consuming and difficult; however, recent studies of sequence-based identification methods have shown promise. Additionally, little is known about the diversity of yeasts identified from various animal species in veterinary diagnostic laboratories. Therefore, in this study, we examined three methods of identification by using 109 yeast samples isolated during a 1-year period from veterinary clinical samples. Comparison of the three methods—traditional substrate assimilation, fatty acid profile analysis, and sequence-based analysis of the region spanning the D1 and D2 regions (D1/D2) of the large ribosomal subunit—showed that sequence analysis provided the highest percent identification among the three. Sequence analysis identified 87% of isolates to the species level, whereas substrate assimilation and fatty acid profile analysis identified only 54% and 47%, respectively. Less-stringent criteria for identification increased the percentage of isolates identified to 98% for sequence analysis, 62% for substrate assimilation, and 55% for fatty acid profile analysis. We also found that sequence analysis of the internal transcribed spacer 2 (ITS2) region provided further identification for 36% of yeast not identified to the species level by D1/D2 sequence analysis. Additionally, we identified a large variety of yeast from animal sources, with at least 30 different species among the isolates tested, and with the majority not belonging to the common Candida spp., such as C. albicans, C. glabrata, C. tropicalis, and the C. parapsilosis group. Thus, we determined that sequence analysis of the D1/D2 region was the best method for identification of the variety of yeasts found in a veterinary population. PMID:20392917

  5. Molecular identification of veterinary yeast isolates by use of sequence-based analysis of the D1/D2 region of the large ribosomal subunit.

    PubMed

    Garner, Cherilyn D; Starr, Jennifer K; McDonough, Patrick L; Altier, Craig

    2010-06-01

    Conventional methods of yeast identification are often time-consuming and difficult; however, recent studies of sequence-based identification methods have shown promise. Additionally, little is known about the diversity of yeasts identified from various animal species in veterinary diagnostic laboratories. Therefore, in this study, we examined three methods of identification by using 109 yeast samples isolated during a 1-year period from veterinary clinical samples. Comparison of the three methods-traditional substrate assimilation, fatty acid profile analysis, and sequence-based analysis of the region spanning the D1 and D2 regions (D1/D2) of the large ribosomal subunit-showed that sequence analysis provided the highest percent identification among the three. Sequence analysis identified 87% of isolates to the species level, whereas substrate assimilation and fatty acid profile analysis identified only 54% and 47%, respectively. Less-stringent criteria for identification increased the percentage of isolates identified to 98% for sequence analysis, 62% for substrate assimilation, and 55% for fatty acid profile analysis. We also found that sequence analysis of the internal transcribed spacer 2 (ITS2) region provided further identification for 36% of yeast not identified to the species level by D1/D2 sequence analysis. Additionally, we identified a large variety of yeast from animal sources, with at least 30 different species among the isolates tested, and with the majority not belonging to the common Candida spp., such as C. albicans, C. glabrata, C. tropicalis, and the C. parapsilosis group. Thus, we determined that sequence analysis of the D1/D2 region was the best method for identification of the variety of yeasts found in a veterinary population.

  6. Entanglement and Nonlocality in Infinite 1D Systems

    NASA Astrophysics Data System (ADS)

    Wang, Zizhu; Singh, Sukhwinder; Navascués, Miguel

    2017-06-01

    We consider the problem of detecting entanglement and nonlocality in one-dimensional (1D) infinite, translation-invariant (TI) systems when just near-neighbor information is available. This issue is deeper than one might think a priori, since, as we show, there exist instances of local separable states (classical boxes) which admit only entangled (nonclassical) TI extensions. We provide a simple characterization of the set of local states of multiseparable TI spin chains and construct a family of linear witnesses which can detect entanglement in infinite TI states from the nearest-neighbor reduced density matrix. Similarly, we prove that the set of classical TI boxes forms a polytope and devise a general procedure to generate all Bell inequalities which characterize it. Using an algorithm based on matrix product states, we show how some of them can be violated by distant parties conducting identical measurements on an infinite TI quantum state. All our results can be easily adapted to detect entanglement and nonlocality in large (finite, not TI) 1D condensed matter systems.

  7. Uniform Propagation of Chaos for Kac's 1D Particle System

    NASA Astrophysics Data System (ADS)

    Cortez, Roberto

    2016-12-01

    In this paper we study Kac's 1D particle system, consisting of the velocities of N particles colliding at constant rate and randomly exchanging energies. We prove uniform (in time) propagation of chaos in Wasserstein distance with explicit polynomial rates in N, for both the squared (i.e., the energy) and non-squared particle system. These rates are of order N^{-1/3} (almost, in the non-squared case), assuming that the initial distribution of the limit nonlinear equation has finite moments of sufficiently high order (4+ɛ is enough when using the 2-Wasserstein distance). The proof relies on a convenient parametrization of the collision recently introduced by Hauray, as well as on a coupling technique developed by Cortez and Fontbona.

  8. Plasmonic Excitations of 1D Metal-Dielectric Interfaces in 2D Systems: 1D Surface Plasmon Polaritons

    NASA Astrophysics Data System (ADS)

    Mason, Daniel R.; Menabde, Sergey G.; Yu, Sunkyu; Park, Namkyoo

    2014-04-01

    Surface plasmon-polariton (SPP) excitations of metal-dielectric interfaces are a fundamental light-matter interaction which has attracted interest as a route to spatial confinement of light far beyond that offered by conventional dielectric optical devices. Conventionally, SPPs have been studied in noble-metal structures, where the SPPs are intrinsically bound to a 2D metal-dielectric interface. Meanwhile, recent advances in the growth of hybrid 2D crystals, which comprise laterally connected domains of distinct atomically thin materials, provide the first realistic platform on which a 2D metal-dielectric system with a truly 1D metal-dielectric interface can be achieved. Here we show for the first time that 1D metal-dielectric interfaces support a fundamental 1D plasmonic mode (1DSPP) which exhibits cutoff behavior that provides dramatically improved light confinement in 2D systems. The 1DSPP constitutes a new basic category of plasmon as the missing 1D member of the plasmon family: 3D bulk plasmon, 2DSPP, 1DSPP, and 0D localized SP.

  9. Differentiation of Candida glabrata, C. nivariensis and C. bracarensis based on fragment length polymorphism of ITS1 and ITS2 and restriction fragment length polymorphism of ITS and D1/D2 regions in rDNA.

    PubMed

    Mirhendi, H; Bruun, B; Schønheyder, H C; Christensen, J J; Fuursted, K; Gahrn-Hansen, B; Johansen, H K; Nielsen, L; Knudsen, J D; Arendrup, M C

    2011-11-01

    Different molecular methods for the discrimination of Candida glabrata, C. bracarensis and C. nivariensis were evaluated and the prevalence of these species among Danish blood isolates investigated. Control strains were used to determine fragment length polymorphism in the ITS1, ITS2, ITS1-5.8S-ITS2 regions and in the D1/D2 domain of 26S rDNA using primers designed for this study. A total of 133 blood isolates previously identified as C. glabrata were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and the peptide nucleic acid-fluorescent in situ hybridization (PNA-FISH) method. The size of ITS1 allowed differentiation between C. glabrata (483), C. nivariensis (361) and C. bracarensis (385), whereas the ITS2 region was of similar size in C. nivariensis (417) and C. glabrata (418). Sequence analysis of the ITS region suggested that many restriction enzymes were suitable for RFLP differentiation of the species. Enzymatic digestion of the D1/D2 domain with TatI produced unique band sizes for each of the three species. PCR-RFLP and PNA-FISH were in agreement for all of the isolates tested. None of the 133 Danish blood isolates were C. nivariensis or C. bracarensis. Fragment size polymorphism of ITS1 and RFLP of the D1/D2 domain or the ITS region are useful methods for the differentiation of the species within the C. glabrata group. C. bracarensis and C. nivariensis are rare among Danish C. glabrata blood isolates.

  10. Multiple-state quantum Otto engine, 1D box system

    SciTech Connect

    Latifah, E.; Purwanto, A.

    2014-03-24

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  11. Multiple-state quantum Otto engine, 1D box system

    NASA Astrophysics Data System (ADS)

    Latifah, E.; Purwanto, A.

    2014-03-01

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  12. Search and tracking system architecture using 1-D scanning sensors

    NASA Astrophysics Data System (ADS)

    Nam, Sanghoon; Choi, Byungin; Joung, Shichang; Kim, Jaein

    2010-04-01

    In the maritime environment, It is necessary for ship's self protection to search ad track approaching targets. We developed high performance search and tracking system with Infrared sensors. Our system can obtain high performance with several FPGAs and COTS processing boards. Dual band IR sensor (MWIR and LWIR) also gives two types of target detection and tracing abilities. Our system designed to automatically detect and track both air and surface targets such as sea skimming missiles, small ships, and aircrafts at a long range. In this paper, we describe technologies in our search and tracking system architecture. We describe software architecture for signal processing and target detection and tracking algorithms as well.

  13. Building and destroying symmetry in 1-D elastic systems

    SciTech Connect

    Flores, J.; Monsivais, G.; Mora, P.; Morales, A.; Mendez-Sanchez, R. A.; Diaz-de-Anda, A.; Gutierrez, L.

    2010-12-23

    Locally periodic rods, which show approximate invariance with respect to translations, are constructed by joining N unit cells. The spectrum then shows a band spectrum. We then break the local periodicity by including one or more defects in the system. When the defects follow a certain definite prescription, an analog of the Wannier-Stark ladders is gotten; when the defects are random, an elastic rod showing Anderson localization is obtained. In all cases experimental values match the theoretical predictions.

  14. Partical Simulation of Bounded 1D Plasma Systems

    NASA Astrophysics Data System (ADS)

    Lawson, William S.

    1989-02-01

    The physical and numerical problems of kinetic simulation of a bounded electrostatic plasma system in one planar dimension are examined, and solutions to them are presented. These problems include particle absorption, reflection and emission at boundaries, the solution of Poisson's equation under non-periodic boundary conditions, and the treatment of an external circuit connecting the boundaries. The methods which are described here are immlemented in a code named PDW1, which is available from Professor C. K. Birdsall, Plasma Theory and Simulation Group, Cory Hall, University of California, Berkeley, CA 94720.

  15. Exploring quantum phase slips in 1D bosonic systems

    NASA Astrophysics Data System (ADS)

    Abbate, Simona Scaffidi; Gori, Lorenzo; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2017-07-01

    Quantum phase slips, i.e., the primary excitations in one-dimensional superfluids at low temperature, have been well characterized in most condensed-matter systems, with the notable exception of ultracold quantum gases. Here we present our experimental investigation of the dissipation in one-dimensional Bose superfluids flowing along a periodic potential, which show signatures of the presence of quantum phase slips. In particular, by controlling the velocity of the superfluid and the interaction between the bosons we are apparently able to drive a crossover from a regime of thermal phase slips into a regime of quantum phase slips. Achieving a good control of quantum phase slips in ultracold quantum gases requires to keep under control other phenomena such as the breaking of superfluidity at the critical velocity or the appearance of a Mott insulator in the strongly correlated regime. Here we show our current results in these directions.

  16. NATRAN2. Fluid Hammer Analysis 1D & 2D Systems

    SciTech Connect

    Shin, Y.W.; Valentin, R.A.

    1992-03-03

    NATRAN2 analyzes short-term pressure-pulse transients in a closed hydraulic system consisting of a two-dimensional axisymmetric domain connected to a one-dimensional piping network. The one-dimensional network may consist of series or parallel piping, pipe junctions, diameter discontinuities, junctions of three to six branches, closed ends, surge tanks, far ends, dummy junctions, acoustic impedance discontinuities, and rupture disks. By default, the working fluid is assumed to be liquid sodium without cavitation; but another working fluid can be specified in terms of its density, sonic speed, and viscosity. The source pressure pulse can arise from one of the following: a pressure-time function specified at some point in the two-dimensional domain, a pressure-time function or a sodium-water reaction specified at some point in the one-dimensional domain. The pressure pulse from a sodium-water reaction is assumed to be generated according to the dynamic model of Zaker and Salmon.

  17. Magnetic properties driven by local structure in quasi-1D Ising chain system cobaltate system

    NASA Astrophysics Data System (ADS)

    Kim, Bongjae; Kim, Beom Hyun; Kim, Kyoo; Choi, Hong Chul; Park, Sang-Yeon; Jeong, Y.-H.; Min, B. I.

    2012-02-01

    Using ab-initio band structure method and the microscopic model calculation, the origins of the large orbital magnetic moment and unique magnetic anisotropy in the quasi-1D magnetic cobaltate, α-CoV2O6, is investigated. Unique crystal electric field effect in α-CoV2O6 is combined with the strong spin-orbit coupling, results in intriguing magnetic properties of the system. Based on the estimated strengths of the intra- and the inter-chain exchange interaction, experimentally found 1/3 magnetization plateau in the MH curve can be attributed to spin-flop mechanism. Origin of the reduced magnetic entropy behavior is found to be the strong uniaxial magnetic anisotropy in the quasi-1D Ising chain system.

  18. Electronic-to-vibrational energy transfer efficiency in the O/1 D/-N2 and O/1 D/-CO systems

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1974-01-01

    With the aid of a molecular resonance fluorescence technique, which utilizes optical pumping from the v = 1 level of the ground state of CO by A 1 Pi-X 1 Sigma radiation, a study is made of the efficiency of E-V transfer from O(1 D) to CO. O(1 D) is generated at a known rate by O2 photodissociation at 1470 A in an intermittent mode, and the small modulation of the fluorescent signal associated with CO (v = 1) above the normal thermal background is interpreted in terms of E-V transfer efficiency. The CO (v = 1) lifetime in this system is determined mainly by resonance trapping of the IR fundamental band, and is found to be up to ten times longer than the natural radiative lifetime. For CO, (40 plus or minus 8)% of the O(1 D) energy is converted into vibrational energy. By observing the effect of N2 on the CO (v = 1) fluorescent intensity and lifetime, it is possible to obtain the E-V transfer efficiency for the system O(1 D)-N2 relative to that for O(1 D)-CO. The results indicate that the efficiency for N2 is (83 plus or minus 10)% of that for CO.

  19. Electronic-to-vibrational energy transfer efficiency in the O/1 D/-N2 and O/1 D/-CO systems

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1974-01-01

    With the aid of a molecular resonance fluorescence technique, which utilizes optical pumping from the v = 1 level of the ground state of CO by A 1 Pi-X 1 Sigma radiation, a study is made of the efficiency of E-V transfer from O(1 D) to CO. O(1 D) is generated at a known rate by O2 photodissociation at 1470 A in an intermittent mode, and the small modulation of the fluorescent signal associated with CO (v = 1) above the normal thermal background is interpreted in terms of E-V transfer efficiency. The CO (v = 1) lifetime in this system is determined mainly by resonance trapping of the IR fundamental band, and is found to be up to ten times longer than the natural radiative lifetime. For CO, (40 plus or minus 8)% of the O(1 D) energy is converted into vibrational energy. By observing the effect of N2 on the CO (v = 1) fluorescent intensity and lifetime, it is possible to obtain the E-V transfer efficiency for the system O(1 D)-N2 relative to that for O(1 D)-CO. The results indicate that the efficiency for N2 is (83 plus or minus 10)% of that for CO.

  20. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.

    PubMed

    Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu

    2014-10-01

    Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction.

  1. Neutronic analysis of the 1D and 1E banks reflux detection system

    SciTech Connect

    Blanchard, A.

    1999-12-21

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.

  2. Microstates of the D1-D5-Kaluza-Klein monopole system

    SciTech Connect

    Bena, Iosif; Kraus, Per

    2005-07-15

    We find supergravity solutions corresponding to all U(1)xU(1) invariant chiral primaries of the D1-D5-KK system. These solutions are 1/8 BPS, carry angular momentum, and are asymptotically flat in the 3+1 dimensional sense. They can be thought of as representing the ground states of the four-dimensional black hole constructed from the D1-D5-KK-P system. Demanding the absence of unphysical singularities in our solutions determines all free parameters, and gives precise agreement with the quantum numbers expected from the CFT point of view. The physical mechanism behind the smoothness of the solutions is that the D1 branes and D5 branes expand into a KK-monopole supertube in the transverse space of the original KK monopole.

  3. Momentum resolved tunneling study of interaction effects in 1D electron systems

    NASA Astrophysics Data System (ADS)

    Barak, Gilad

    The physics of electrons confined to one dimension (1D) is qualitatively different from higher dimensional cases. Electron-electron interactions in 1D have a unique influence on the system properties; leading to a collective behavior and rendering the Fermi liquid theory inapplicable. In this work we study several manifestations of the exceptional properties of 1D electron systems. Studying low energy excitations, we confirm the existence of fractionally-charged modes in the wires, as predicted by Luttinger liquid theory. Furthermore, when energetic particles are injected into the wire we find strong disparity between relaxation properties of electrons and holes. This result is explained through energy and momentum conservation considerations, but requires accounting for dispersion nonlinearity, and provides a unique experimental manifestation of interacting electrons beyond the Luttinger liquid limit. Quantum Hall effect edge states provide another manifestation of quasi-1D current carrying states. The spatial charge and spin structure of these edge states is determined by a competition between the confinement potential and the e-e interaction, which leads to nontrivial 'edge reconstruction' arrangements. Qualitatively similar effects are expected for non-chiral 1D conductors under perpendicular magnetic fields. We find that under strong perpendicular magnetic fields a spin polarized strip is created in the cross section of the wire, demonstrating a theoretically predicted but so far unobserved form of charge reconstruction. Furthermore, we find a new form of charge reconstruction, in which Coulomb interactions lead to a close alignment of Fermi points of different 1D modes. A Hartree-Fock calculation is used to explain these measurements. Our experimental approach is based on momentum-resolved tunneling between two parallel quantum wires, one of which is situated at the edge of a populated two dimensional electron gas. The system is fabricated using cleaved

  4. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems

    PubMed Central

    Smith, David C.; Spencer, Joseph H.; Sloan, Jeremy; McDonnell, Liam P.; Trewhitt, Harrison; Kashtiban, Reza J.; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  5. Potential energy surface intersections in the C(1D)H2 reactive system.

    PubMed

    Liu, Xiaojun; Bian, Wensheng; Zhao, Xian; Tao, Xutang

    2006-08-21

    Potential energy surface (PES) intersection seams of two or more electronic states from the 1 1A', 2 1A', 3 1A', 1 1A", and 2 1A" states in the C(1D)H2 reactive system are investigated using the internally contracted multireference configuration interaction method and the aug-cc-pVQZ basis set. Intersection seams with energies less than 20 kcal/mol relative to the C(1D) + H2 asymptote are searched systematically, and finally several seam lines (at the linear H-C-H, linear C-H-H, and C(2v), geometries, respectively) and a seam surface (at Cs geometries) are discovered and determined. The minimum energy crossing points on these seams are reported and the influences of the PES intersections, in particular, conical intersections, on the CH2 spectroscopy and the C(1D) + H2 reaction dynamics are discussed. In addition, geometries and energies of the 1 1A2 and 1 1B2 states of methylene biradical CH2 are reported in detail for the first time.

  6. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System

    PubMed Central

    2011-01-01

    Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models

  7. Development and tests of x-ray multifoil optical system for 1D imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pína, Ladislav; Hudec, René; Inneman, Adolf J.; Baca, Tomas; Blazek, M.; Platkevic, M.; Sieger, Ladislav; Doubravova, Daniela; McEntaffer, Randall L.; Schultz, Ted B.; Dániel, Vladimír.

    2016-09-01

    The proposed wide-field optical system has not been used yet. Described novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is necessary in cases where the intensity of impinging X-ray radiation is below the sensitivity of the detector without optic. Generally this is the case of very low light phenomena, or e.g. monitoring astrophysical objects in space. Namely, such optical system could find applications in laboratory spectroscopy systems or in a rocket space experiment. Designed wide-field optical system combined with Timepix X-ray detector is described together with experimental results obtained during laboratory tests.

  8. Modelling hydrology of a single bioretention system with HYDRUS-1D.

    PubMed

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

  9. Modelling Hydrology of a Single Bioretention System with HYDRUS-1D

    PubMed Central

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems. PMID:25133240

  10. Nonconstant Positive Steady States and Pattern Formation of 1D Prey-Taxis Systems

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Song, Yang; Shao, Lingjie

    2016-08-01

    Prey-taxis is the process that predators move preferentially toward patches with highest density of prey. It is well known to have an important role in biological control and the maintenance of biodiversity. To model the coexistence and spatial distributions of predator and prey species, this paper concerns nonconstant positive steady states of a wide class of prey-taxis systems with general functional responses over 1D domain. Linearized stability of the positive equilibrium is analyzed to show that prey-taxis destabilizes prey-predator homogeneity when prey repulsion (e.g., due to volume-filling effect in predator species or group defense in prey species) is present, and prey-taxis stabilizes the homogeneity otherwise. Then, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis. Moreover, we provide detailed and thorough calculations to determine properties such as pitchfork and turning direction of the local branches. Our stability results also provide a stable wave mode selection mechanism for thee reaction-advection-diffusion systems including prey-taxis models considered in this paper. Finally, we provide numerical studies of prey-taxis systems with Holling-Tanner kinetics to illustrate and support our theoretical findings. Our numerical simulations demonstrate that the 2× 2 prey-taxis system is able to model the formation and evolution of various striking patterns, such as spikes, periodic oscillations, and coarsening even when the domain is one-dimensional. These dynamics can model the coexistence and spatial distributions of interacting prey and predator species. We also give some insights on how system parameters influence pattern formation in these models.

  11. Nonconstant Positive Steady States and Pattern Formation of 1D Prey-Taxis Systems

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Song, Yang; Shao, Lingjie

    2017-02-01

    Prey-taxis is the process that predators move preferentially toward patches with highest density of prey. It is well known to have an important role in biological control and the maintenance of biodiversity. To model the coexistence and spatial distributions of predator and prey species, this paper concerns nonconstant positive steady states of a wide class of prey-taxis systems with general functional responses over 1D domain. Linearized stability of the positive equilibrium is analyzed to show that prey-taxis destabilizes prey-predator homogeneity when prey repulsion (e.g., due to volume-filling effect in predator species or group defense in prey species) is present, and prey-taxis stabilizes the homogeneity otherwise. Then, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis. Moreover, we provide detailed and thorough calculations to determine properties such as pitchfork and turning direction of the local branches. Our stability results also provide a stable wave mode selection mechanism for thee reaction-advection-diffusion systems including prey-taxis models considered in this paper. Finally, we provide numerical studies of prey-taxis systems with Holling-Tanner kinetics to illustrate and support our theoretical findings. Our numerical simulations demonstrate that the 2× 2 prey-taxis system is able to model the formation and evolution of various striking patterns, such as spikes, periodic oscillations, and coarsening even when the domain is one-dimensional. These dynamics can model the coexistence and spatial distributions of interacting prey and predator species. We also give some insights on how system parameters influence pattern formation in these models.

  12. Continuous Symmetry Breaking in 1D Long-Range Interacting Quantum Systems

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Gong, Zhe-Xuan; Gorshkov, Alexey V.

    2017-07-01

    Continuous symmetry breaking (CSB) in low-dimensional systems, forbidden by the Mermin-Wagner theorem for short-range interactions, may take place in the presence of slowly decaying long-range interactions. Nevertheless, there is no stringent bound on how slowly interactions should decay to give rise to CSB in 1D quantum systems at zero temperature. Here, we study a long-range interacting spin chain with U (1 ) symmetry and power-law interactions V (r )˜1 /rα. Using a number of analytical and numerical techniques, we find CSB for α smaller than a critical exponent αc(≤3 ) that depends on the microscopic parameters of the model. Furthermore, the transition from the gapless X Y phase to the gapless CSB phase is mediated by the breaking of conformal and Lorentz symmetries due to long-range interactions, and is described by a universality class akin to, but distinct from, the Berezinskii-Kosterlitz-Thouless transition. Signatures of the CSB phase should be accessible in existing trapped-ion experiments.

  13. Rational macromodeling of 1D blood flow in the human cardiovascular system.

    PubMed

    Ferranti, Francesco; Tamburrelli, Vincenzopio; Antonini, Giulio

    2015-03-01

    In this paper, we present a novel rational macromodeling approach for the description of 1D blood flow in the human cardiovascular system, which is suitable for time-domain simulations. Using the analogy of the blood flow propagation problem with transmission lines and considering the hypothesis of linearized Navier-Stokes equations, a frequency-domain rational macromodel for each arterial segment has been built. The poles and the residues of each arterial segment macromodel have been calculated by means of the Vector Fitting technique. Finally, the rational macromodel of the whole cardiovascular system is obtained by properly combining the macromodels of the single arterial segments using an interconnect matrix. The rational form of the proposed cardiovascular model leads to a state-space or electrical circuit model suitable for time-domain analysis. The stability and passivity properties of the global cardiovascular model are discussed to guarantee stable time-domain simulations. The proposed macromodeling approach has been validated by pertinent numerical results. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. A tiny gas-sensor system based on 1D photonic crystal

    NASA Astrophysics Data System (ADS)

    Bouzidi, A.; Bria, D.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2015-12-01

    We present a gas monitoring system for detecting the gas concentration in ambient air. This sensor is based on a 1D photonic crystal formed by alternating layers of magnesium fluoride (MgF2) and silicon (Si) with an empty layer in the middle. The lamellar cavity (defect layer) will be filled with polluted air that has a refractive index close to that of pure air, varying between n 0  =  1.00 to n 0  =  1.01. The transmission spectrum of this sensor is calculated by the Green function approach. The numerical results show that the transmission peak, which appears in the gap, is caused by the infiltration of impure air into the empty middle layer. This transmission peak can be used for detection purposes in real-time environmental monitoring. The peak frequency is sensitive to the air-gas mixture, and a variation in the refractive index as small as Δn  =  10-5 can be detected. A sensitivity, Δλ/Δn, of 700 nm per refractive index unit (RIU) is achieved with this sensor.

  15. AM1/d-CB1: A Semiempirical Model for QM/MM Simulations of Chemical Glycobiology Systems

    PubMed Central

    Govender, Krishna; Gao, Jiali; Naidoo, Kevin J.

    2015-01-01

    A semiempirical method based on the AM1/d Hamiltonian is introduced to model chemical glycobiological systems. We included in the parameter training set glycans and the chemical environment often found about them in glycoenzymes. Starting with RM1 and AM1/d-PhoT models we optimized H, C, N, O, and P atomic parameters targeting the best performing molecular properties that contribute to enzyme catalyzed glycan reaction mechanisms. The training set comprising glycans, amino acids, phosphates and small organic model systems was used to derive parameters that reproduce experimental data or high-level density functional results for carbohydrate, phosphate and amino acid heats of formation, amino acid proton affinities, amino acid and monosaccharide dipole moments, amino acid ionization potentials, water-phosphate interaction energies, and carbohydrate ring pucker relaxation times. The result is the AM1/d-Chemical Biology 1 or AM1/d-CB1 model that is considerably more accurate than existing NDDO methods modeling carbohydrates and the amino acids often present in the catalytic domains of glycoenzymes as well as the binding sites of lectins. Moreover, AM1/d-CB1 computed proton affinities, dipole moments, ionization potentials and heats of formation for transition state puckered carbohydrate ring conformations, observed along glycoenzyme catalyzed reaction paths, are close to values computed using DFT M06-2X. AM1/d-CB1 provides a platform from which to accurately model reactions important in chemical glycobiology. PMID:26120288

  16. Nanorobotic System iTRo for Controllable 1D Micro/nano Material Twisting Test.

    PubMed

    Lu, Haojian; Shang, Wanfeng; Wei, Xueyong; Yang, Zhan; Fukuda, Toshio; Shen, Yajing

    2017-06-08

    In-situ micro/nano characterization is an indispensable methodology for material research. However, the precise in-situ SEM twisting of 1D material with large range is still challenge for current techniques, mainly due to the testing device's large size and the misalignment between specimen and the rotation axis. Herein, we propose an in-situ twist test robot (iTRo) to address the above challenges and realize the precise in-situ SEM twisting test for the first time. Firstly, we developed the iTRo and designed a series of control strategies, including assembly error initialization, triple-image alignment (TIA) method for rotation axis alignment, deformation-based contact detection (DCD) method for sample assembly, and switch control for robots cooperation. After that, we chose three typical 1D material, i.e., magnetic microwire Fe74B13Si11C2, glass fiber, and human hair, for twisting test and characterized their properties. The results showed that our approach is able to align the sample to the twisting axis accurately, and it can provide large twisting range, heavy load and high controllability. This work fills the blank of current in-situ mechanical characterization methodologies, which is expected to give significant impact in the fundamental nanomaterial research and practical micro/nano characterization.

  17. Simulation of unsteady state performance of a secondary air system by the 1D-3D-Structure coupled method

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Li, Peng; Li, Yulong

    2016-02-01

    This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.

  18. Quantum propagation and confinement in 1D systems using the transfer-matrix method

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Carles, Robert; Pérez, José-Philippe

    2014-05-01

    The aim of this article is to provide some Matlab scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field. Scripts and other examples (hydrogen-like ions and transmission by a smooth variation of potential energy) are available freely at http://www-loa.univ-lille1.fr/˜pujol in three languages: English, French and Spanish.

  19. Regional emissions data base and evaluation system (REDES): Volume 2, Regional emissions evaluation data base (REED)

    SciTech Connect

    Boyd, G.A.; Campbell, A.P.; Davis, M.J.; Veselka, T.D.

    1988-08-01

    A three-volume report has been prepared to document these REDES data bases and computer model. This volume documents the data base for forecasting emissions. This disaggregated forecast data base of energy use and emissions for electric utility and industrial boilers for 1985 through 2010 is called REED (Regional Emissions Evaluation Data Base). The other volumes describe the methodology of the evaluation system and user-driven menu system (Vol. 1) and document the data base that characterizes 21 generic technologies (Vol. 3). All three volumes provide the user with a complete description of REDES, which is designed to forecast the change in emissions that could result from using a particular clean coal technology. The US Department of Energy's Innovative Clean Coal Technology (ICCT) program has solicited proposals from the private sector to demonstrate innovative technologies that allow the clean use of coal as an energy source. The US Department of Energy and the ICCT Source Evaluation Board requested that Argonne National Laboratory develop two data bases and a personal-computer-based model to aid in evaluating the potential for these proposed technologies to reduce environmental residuals. Version 1.0 of the Regional Emissions Data Base and Evaluation System (REDES) is available to the public through the National Energy Software Center. 41 refs., 16 tabs.

  20. Evaluation of nucleic acid sequencing of the D1/D2 region of the large subunit of the 28S rDNA and the internal transcribed spacer region using SmartGene IDNS [corrected] software for identification of filamentous fungi in a clinical laboratory.

    PubMed

    Kwiatkowski, Nicole P; Babiker, Wisal M; Merz, William G; Carroll, Karen C; Zhang, Sean X

    2012-07-01

    Filamentous fungal infections have recently increased because of the increasing numbers of immunocompromised hosts. In this study, we evaluated DNA sequencing of the D1/D2 region of the large subunit of the 28S ribosomal RNA gene and the internal transcribed spacer (ITS) region using SmartGene (SG; SmartGene Inc., Raleigh, NC) for the identification of a broad range of commonly encountered filamentous fungi. The SG proofreaders were used to upload, align, and edit fragments, and the resultant sequences were interpreted using the quality-controlled SG database. The results were compared with reference identifications using conventional phenotypic methods or ITS DNA sequences obtained from GenBank if phenotypic identifications were inconclusive. A total of 146 clinical isolates were included in this study, representing 49 different genera. The overall agreements of the D1/D2 and the ITS sequencing methods to reference identification were 97.2% (95% CI, 93.1% to 98.9%) and 97.7% (95% CI, 92.8% to 99.4%), respectively. Of the 146 isolates, 18 (12.3%) did not amplify using the ITS universal primers after repeated attempts and, therefore, could not be sequenced using this target. Correct identification was achieved for 100% (95% CI, 97.4% to 100%) of the isolates when applying both the D1/D2 and ITS targets. In summary, DNA sequencing using SG software provides a rapid, accurate, and reliable tool for the identification of filamentous fungi in a clinical laboratory. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  1. National Geothermal Data System Hub Deployment Timeline (Appendix E-1-d)

    SciTech Connect

    Caudill, Christy

    2015-12-20

    Excel spreadsheet describing activity, spending, and development for the four data hubs (Arizona Geoloical Survey, Kentucky Geological Survey, Illinois Geological Survey, and Nevada Bureau of Mines and Geology) serving data for the National Geothermal Data System under the State Contributions to the National Geothermal Data System Project.

  2. Extensional Elastica in large deformation as $Gamma $ Γ -limit of a discrete 1D mechanical system

    NASA Astrophysics Data System (ADS)

    Alibert, Jean-Jacques; Della Corte, Alessandro; Giorgio, Ivan; Battista, Antonio

    2017-04-01

    The present paper deals with the rigorous homogenization of a discrete system consisting of extensible rods linked by rotational springs. Specifically, a Γ -convergence result is proven for a sequence of discrete measure functionals En, describing the energy of the discrete system, toward the continuous energy functional for the extensible Euler beam model ( Elastica) in large deformation regime. A relative compactness result for the sequence En is also proven. Moreover, numerical results are shown on the deformed shape and on the total energy of the system when the number of elements of the discrete system increases. The numerical convergence of the energy to a definite value is shown in two cases. The results provide rigorous justification of a very commonly used algorithm for the discretization of the extensible Euler beam, namely Hencky-type beam model.

  3. Longitudinal and Transverse Single File Diffusion in Quasi-1D Systems

    NASA Astrophysics Data System (ADS)

    Coste, Christophe; Delfau, Jean-Baptiste; Saint Jean, Michel

    2014-07-01

    We review our recent results on Single File Diffusion (SFD) of a chain of particles that cannot cross each other, in a thermal bath, with long ranged interactions, and arbitrary damping. We exhibit new behaviors specifically associated to small systems and to small damping. The fluctuation dynamics is explained by the decomposition of the particles' motion in the normal modes of the chain. For longitudinal fluctuations, we emphasize the relevance of the soft mode linked to the translational invariance of the system to the long time SFD behavior. We show that close to the zigzag threshold, the transverse fluctuations also exhibit the SFD behavior, characterized by a mean square displacement that increases as the square root of time. This cannot be explained by the single file ordering, and the SFD behavior results from the strong correlation of the transverse displacements of neighbouring particles near the bifurcation. Extending our analytical modelization, we demonstrate the existence of this subdiffusive regime near the zigzag transition, in the thermodynamic limit. The zigzag transition is a supercritical pitchfork bifurcation, and we show that the transverse SFD behavior is closely linked to the vanishing of the frequency of the zigzag transverse mode at the bifurcation threshold. Special Issue Comments: This article presents mathematical results on the dynamics in files with longitudinal movements. This article is connected to the Special Issue articles about advanced statistical properties in single file dynamics,28 expanding files,63 and files with force and advanced formulations.29

  4. Modeling Bioenhanced DNAPL Dissolution in 1-D and 2-D Flow systems

    NASA Astrophysics Data System (ADS)

    Wesseldyke, E. S.; Becker, J. G.; Seagren, E. A.; Mayer, A. S.

    2011-12-01

    Chlorinated ethenes, such as tetrachloroethene (PCE), released into the environment can form dense non-aqueous phase liquids (DNAPLs), which can act as persistent sources of contamination to groundwater. Due to their low aqueous solubility, these DNAPL contaminant sources can persist for up to hundreds of years under natural conditions. Several methods have been investigated to enhance the rate of dissolution of DNAPLs, including bioenhanced dissolution, which consists of stimulating the growth of a microbial population that biodegrades the contaminant, thereby reducing its concentration at the DNAPL-water interface, and creating a greater driving force for contaminant dissolution. This phenomenon has been studied at length in batch reactors and column studies. The hypothesis of this research is that, in modeling DNAPL dissolution bioenhancement via dehalorespiration, it is important to include the effects of microbial competition, as well as spatial effects. A two-dimensional coupled flow-transport model was developed using the finite-volume method (FVM), which includes a DNAPL pool source, and the effects of multiple microbial species. The model has been confirmed to maintain mass balance and has been validated by comparison to an analytical solution for pool dissolution. The model will be used to simulate a pseudo one-dimensional system and a two-dimensional system under multiple microbial competition scenarios and varying hydrodynamic conditions. The results of these simulations will be compared to determine differences in estimations of dissolution bioenhancement, and analyzed for spatial effects that are captured by a two-dimensional model, but not by a pseudo one-dimensional FVM model. Preliminary two-dimensional simulations have shown the effects of large biomass growth near the NAPL source, which could lead to bioclogging and change the flow field. Further simulations are underway and the results will be presented.

  5. New way to produce dense double-antikaonic dibaryon system, &#x1D43E;̄&#x1D43E;̄NN, through Λ(1405)-doorway sticking in p + p collisions

    PubMed Central

    YAMAZAKI, Toshimitsu; AKAISHI, Yoshinori; HASSANVAND, Maryam

    2011-01-01

    A recent successful observation of a dense and deeply bound &#x1D43E;̄ nuclear system, K−pp, in the p + p → K+ + K−pp reaction in a DISTO experiment indicates that the double-&#x1D43E;̄ dibaryon, K−K−pp, which was predicted to be a dense nuclear system, can also be formed in p + p collisions. We find theoretically that the K−-K− repulsion plays no significant role in reducing the density and binding energy of K−K−pp and that, when two Λ(1405) resonances are produced simultaneously in a short-range p + p collision, they act as doorways to copious formation of K−K−pp, if and only if K−K−pp is a dense object, as predicted. PMID:21670568

  6. Heart rate informed artificial pancreas system enhances glycemic control during exercise in adolescents with T1D.

    PubMed

    DeBoer, Mark D; Cherñavvsky, Daniel R; Topchyan, Katarina; Kovatchev, Boris P; Francis, Gary L; Breton, Marc D

    2016-10-13

    To evaluate the safety and performance of using a heart rate (HR) monitor to inform an artificial pancreas (AP) system during exercise among adolescents with type 1 diabetes (T1D). In a randomized, cross-over trial, adolescents with T1D age 13 - 18 years were enrolled to receive on separate days either the unmodified UVa AP (stdAP) or an AP system connected to a portable HR monitor (AP-HR) that triggered an exercise algorithm for blood glucose (BG) control. During admissions participants underwent a structured exercise regimen. Hypoglycemic events and CGM tracings were compared between the two admissions, during exercise and for the full 24-hour period. Eighteen participants completed the trial. While number of hypoglycemic events during exercise and rest was not different between visits (0.39 AP-HR vs 0.50 stdAP), time below 70 mg dL (-1) was lower on AP-HR compared to stdAP, 0.5±2.1% vs 7.4±12.5% (P = 0.028). Time with BG within 70-180 mg dL (-1) was higher for the AP-HR admission vs stdAP during the exercise portion and overall (96% vs 87%, and 77% vs 74%), but these did not reach statistical significance (P = 0.075 and P = 0.366). Heart rate signals can safely and efficaciously be integrated in a wireless AP system to inform of physical activity. While exercise contributes to hypoglycemia among adolescents, even when using an AP system, informing the system of exercise via a HR monitor improved time <70 mg dL (-1) . Nonetheless, it did not significantly reduce the total number of hypoglycemic events, which were low in both groups. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Read-out optical schemes for holographic memory system based on multiplexed computer generated 1D Fourier holograms

    NASA Astrophysics Data System (ADS)

    Donchenko, Sergey S.; Odinokov, Sergey B.; Bobrinev, Vladimir I.; Betin, Alexandr Y.; Zlokazov, Evgenie Y.

    2015-05-01

    Computer holographic synthesis allows to significantly simplify the recording scheme of microholograms in holographic memory system as the classic high precision holographic setup based on two-beam interference is removed by simple scale reduction projection scheme. Application of computer generated 1D-Fourier holograms provides the possibility of selective reconstruction of the multiplexed holograms with different orientation of data lines by corresponding rotation of anamorphic objective (cylindrical lens), used in the read-out systems. Two configurations of read-out optical scheme were investigated by our team: full-page scheme and line-by-line scheme. In the present article we report the specificities of these schemes and consider their advantages and disadvantages. The results of experimental modeling of both read-out configurations are also presented.

  8. Design and initial 1D radiography tests of the FANTOM mobile fast-neutron radiography and tomography system

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Valldor-Blücher, J.; Andersson Sundén, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    The FANTOM system is a tabletop sized fast-neutron radiography and tomography system newly developed at the Applied Nuclear Physics Division of Uppsala University. The main purpose of the system is to provide time-averaged steam-and-water distribution measurement capability inside the metallic structures of two-phase test loops for light water reactor thermal-hydraulic studies using a portable fusion neutron generator. The FANTOM system provides a set of 1D neutron transmission data, which may be inserted into tomographic reconstruction algorithms to achieve a 2D mapping of the steam-and-water distribution. In this paper, the selected design of FANTOM is described and motivated. The detector concept is based on plastic scintillator elements, separated for spatial resolution. Analysis of pulse heights on an event-to-event basis is used for energy discrimination. Although the concept allows for close stacking of a large number of detector elements, this demonstrator is equipped with only three elements in the detector and one additional element for monitoring the yield from the neutron generator. The first measured projections on test objects of known configurations are presented. These were collected using a Sodern Genie 16 neutron generator with an isotropic yield of about 1E8 neutrons per second, and allowed for characterization of the instrument's capabilities. At an energy threshold of 10 MeV, the detector offered a count rate of about 500 cps per detector element. The performance in terms of spatial resolution was validated by fitting a Gaussian Line Spread Function to the experimental data, a procedure that revealed a spatial unsharpness in good agreement with the predicted FWHM of 0.5 mm.

  9. A pulsed THz imaging system with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras.

    PubMed

    Wiegand, Christian; Herrmann, Michael; Bachtler, Sebastian; Klier, Jens; Molter, Daniel; Jonuscheit, Joachim; Beigang, René

    2010-03-15

    We present a pulsed THz Imaging System with a line focus intended to speed up measurements. A balanced 1-D detection scheme working with two industrial line-scan cameras is used. The instrument is implemented without the need for an amplified laser system, increasing the industrial applicability. The instrumental characteristics are determined.

  10. On the value of including x-component data in 1D modeling of electromagnetic data from helicopterborne time domain systems in horizontally layered environments

    NASA Astrophysics Data System (ADS)

    Kirkegaard, Casper; Foged, Nikolaj; Auken, Esben; Christiansen, Anders Vest; Sørensen, Kurt

    2012-09-01

    Helicopter borne time domain EM systems historically measure only the Z-component of the secondary field, whereas fixed wing systems often measure all field components. For the latter systems the X-component is often used to map discrete conductors, whereas it finds little use in the mapping of layered settings. Measuring the horizontal X-component with an offset loop helicopter system probes the earth with a complementary sensitivity function that is very different from that of the Z-component, and could potentially be used for improving resolution of layered structures in one dimensional modeling. This area is largely unexplored in terms of quantitative results in the literature, since measuring and inverting X-component data from a helicopter system is not straightforward: The signal strength is low, the noise level is high, the signal is very sensitive to the instrument pitch and the sensitivity function also has a complex lateral behavior. The basis of our study is a state of the art inversion scheme, using a local 1D forward model description, in combination with experiences gathered from extending the SkyTEM system to measure the X component. By means of a 1D sensitivity analysis we motivate that in principle resolution of layered structures can be improved by including an X-component signal in a 1D inversion, given the prerequisite that a low-pass filter of suitably low cut-off frequency can be employed. In presenting our practical experiences with modifying the SkyTEM system we discuss why this prerequisite unfortunately can be very difficult to fulfill in practice. Having discussed instrumental limitations we show what can be obtained in practice using actual field data. Here, we demonstrate how the issue of high sensitivity towards instrument pitch can be overcome by including the pitch angle as an inversion parameter and how joint inversion of the Z- and X-components produces virtually the same model result as for the Z-component alone. We conclude that

  11. Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints

    SciTech Connect

    Abushakra, Bass

    2002-05-30

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.

  12. Controlling a class of chaotic quantum system under disturbances and noisy measurements: Application to 1D Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Aguilar-López, Ricardo; López-Pérez, Pablo A.; Lara-Cisneros, Gerardo; Femat, Ricardo

    2016-09-01

    In this paper, a robust nonlinear feedback control scheme with adaptive gain is proposed to control the chaotic behavior in a Bose-Einstein condensate (BEC). The control goal concerns the track or regulation purposes. The BEC system is represented as stochastic ordinary differential equations with measured output perturbed by Gaussian noise, which represents the nature of the quantum systems. The convergence of the BEC control law is analyzed under the frame of the Lyapunov stability theory. Numerical experiments show an adequate performance of the proposed methodology under the required conditions. The results are applicable when the shape of the condensate is sufficiently simple.

  13. Single parameter scaling for 1d systems with scale-free long-range correlated disordered potentials

    NASA Astrophysics Data System (ADS)

    Sandler, Nancy; Petersen, Greg

    2013-03-01

    Disordered optical lattices have renewed the interest in localization physics under power-law long-range correlated disorder potentials. For these systems, insight can be gained by combining numerical data and analytic expressions based on scaling laws. Thus, the absence of a transition in short-range correlated disordered systems can been proved by verifying the validity of the single parameter scaling (SPS) hypothesis for the distribution function of the dimensionless conductance. In this talk we discuss this hypothesis for a system with scale-free long-range correlated disorder potentials of the form ~ 1 /rα as a function of the correlation exponent α. We present results for the 1st (the β-function) and 2nd (variance) cumulants of the distribution function, and show a violation of SPS at an energy scale ESPS, that scales with an α-renormalized disorder strength. Calculations for the localization length reveals the existence of a crossover scale Ecross between two regions as correlations increase. An increased number of more extended-like states appear near the band-center while states near the band edges experience reduced localization lengths. We confirm previously predicted scaling behavior near the band edge and center. Supported by NSF-MWN/CIAM and NSF-PIRE.

  14. Symmetry Violations in Partially Oxidized One-Dimensional (1D) Transition Metal Polymers. Metal-Ligand-Metal (M-L-M) Bridged Systems

    NASA Astrophysics Data System (ADS)

    Böhm, Michael C.

    1984-09-01

    The band structure of the metal-ligand-metal (M-L-M) bridged quasi one-dimensional (1D) cyclopentadienylmanganese polymer, MnCp 1, has been studied in the unoxidized state and in a partly oxidized modification with one electron removed from each second MnCp fragment. The tight-binding approach is based on a semiempirical self-consistent-field (SCF) Hartree-Fock (HF) crystal orbital (CO) model of the INDO-type (intermediate neglect of differential overlap) combined with a statistical averaging procedure which has its origin in the grand canonical ensemble. The latter approximation allows for an efficient investigation of violations of the translation symmetries in the oxidized 1D material. The oxidation process in 1 is both ligand- and metal-centered (Mn 3d-2 states). The mean-field minimum corresponds to a charge density wave (CDW) solution with inequivalent Mn sites within the employed repeat-units. The symmetry adapted solution with electronically identical 3d centers is a maximum in the variational space. The coupling of this electronic instability to geometrical deformations is also analyzed. The ligand amplitudes encountered in the hole-state wave function prevent extremely large charge separations between the 3d centers which are found in ID systems without bridging moieties (e.g. Ni(CN)2-5 chain). The symmetry reduction in oxidized 1 is compared with violations of spatial symmetries in finite transition metal derivatives and simple solids. The stabilization of the valence bond-type (VB) solution is physically rationalized (i.e. left-right correlations between the 3d centers). The computational results derived for 1 are generalized to oxidized transition metal chains with band occupancies that are simple fractions of the number of stacking units and to 1D systems that deviate from this relation. The entropy-influence for temperatures T ≠ 0 is shortly discussed (stabilization of domain or cluster structures).

  15. Enhanced permanganate in situ chemical oxidation through MnO 2 particle stabilization: Evaluation in 1-D transport systems

    NASA Astrophysics Data System (ADS)

    Crimi, Michelle; Quickel, Mark; Ko, Saebom

    2009-02-01

    In situ chemical oxidation using permanganate is an increasingly employed approach to organic contaminant remediation at hazardous waste sites. Manganese dioxide (MnO 2) particles form as a by-product of the reaction of permanganate with contaminants and naturally-reduced subsurface materials. These particles are of interest because they have the potential to deposit in the subsurface and impact the flow regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport, and contact between the oxidant and contaminants of concern. Sodium hexametaphosphate (HMP) has previously been identified as a promising aid to stabilize MnO 2 in solution when included in the oxidizing solution, increasing the potential to inhibit particle deposition and impact subsurface flow. The goal of the experimental studies described herein was to investigate the ability of HMP to prevent particle deposition in transport studies using four different types of porous media. Permanganate was delivered to a contaminant source zone (trichloroethylene) located within four different media types with variations in sand, clay, organic carbon, and iron oxides (as goethite) content. Deposition of MnO 2 within the columns was quantified with distance from the source zone. Experiments were repeated in replicate columns with the inclusion of HMP directly with the oxidant delivery solution, and MnO 2 deposition was again quantified. While total MnO 2 deposition within the 60 cm columns did not change significantly with the addition of HMP, deposition within the contaminant source zone decreased by 25-85%, depending on the specific media type. The greatest differences in deposition were observed in the goethite-containing and clay-containing columns. Columns containing these two media types experienced completely plugged flow in the oxidant-only delivery systems

  16. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  17. Coastal fog prediction with a coupled model (1D+3D) system using the data from a 300 m met tower as input

    NASA Astrophysics Data System (ADS)

    Kim, W.; Yum, S. S.

    2015-12-01

    Visibility degradation due to fog can be very hazardous both to ground transportation and aviation traffic. However, prediction of fog using numerical models is difficult because fog formation is usually determined by local meteorological conditions that are hard to be measured and modeled with sufficient resolution. For this reason, there have been several attempts to build a coupled system of a fine resolution 1D model and a 3D mesoscale model with a usual grid resolution. In this study we uses the coupled system of the 1D PAFOG model and the 3D WRF model to simulate fogs formed at a southern coastal region of Korea, where the National Center for Intensive Observation of Severe Weather (NCIO) is located. Unique to NCIO is that it has a 300 m meteorological tower on which some basic meteorological variables (temperature, dew point temperature and winds) are measured at eleven different altitudes. In addition comprehensive cloud physics measurements are made with various remote sensing instruments such as cloud radar, wind profiler, microwave radiometer, micro rain radar. Several fog cases are identified during 2015 and will be simulated by the coupled system. The comprehensive set of measurement data from NCIO will be utilized as input to the model system and for evaluating the results. Particularly the data for initial and boundary conditions, which are tightly connected to the coupled model predictability, are extracted from the tower measurement. Furthermore, various sensitivity experiments will be done to enhance our understanding of the coastal fog formation mechanism. Detailed results will be discussed at the conference.

  18. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data.

    PubMed

    Leandro, J; Djordjević, S; Chen, A S; Savić, D A; Stanić, M

    2011-01-01

    Recently increased flood events have been prompting researchers to improve existing coupled flood-models such as one-dimensional (1D)/1D and 1D/two-dimensional (2D) models. While 1D/1D models simulate sewer and surface networks using a one-dimensional approach, 1D/2D models represent the surface network by a two-dimensional surface grid. However their application raises two issues to urban flood modellers: (1) stormwater systems planning/emergency or risk analysis demands for fast models, and the 1D/2D computational time is prohibitive, (2) and the recognized lack of field data (e.g. Hunter et al. (2008)) causes difficulties for the calibration/validation of 1D/1D models. In this paper we propose to overcome these issues by calibrating a 1D/1D model with the results of a 1D/2D model. The flood-inundation results show that: (1) 1D/2D results can be used to calibrate faster 1D/1D models, (2) the 1D/1D model is able to map the 1D/2D flood maximum extent well, and the flooding limits satisfactorily in each time-step, (3) the 1D/1D model major differences are the instantaneous flow propagation and overestimation of the flood-depths within surface-ponds, (4) the agreement in the volume surcharged by both models is a necessary condition for the 1D surface-network validation and (5) the agreement of the manholes discharge shapes measures the fitness of the calibrated 1D surface-network.

  19. 1D and 2D diffusion pore imaging on a preclinical MR system using adaptive rephasing: Feasibility and pulse sequence comparison

    NASA Astrophysics Data System (ADS)

    Bertleff, Marco; Domsch, Sebastian; Laun, Frederik B.; Kuder, Tristan A.; Schad, Lothar R.

    2017-05-01

    Diffusion pore imaging (DPI) has recently been proposed as a means to acquire images of the average pore shape in an image voxel or region of interest. The highly asymmetric gradient scheme of its sequence makes it substantially demanding in terms of the hardware of the NMR system. The aim of this work is to show the feasibility of DPI on a preclinical 9.4 T animal scanner. Using water-filled capillaries with an inner radius of 10 μm, four different variants of the DPI sequence were compared in 1D and 2D measurements. The pulse sequences applied cover the basic implementation using one long and one temporally narrow gradient pulse, a CPMG-like variant with multiple refocusing RF pulses as well as two variants splitting up the long gradient and distributing it on either side of the refocusing pulse. Substantial differences between the methods were found in terms of signal-to-noise ratio, contrast, blurring, deviations from the expected results and sensitivity to gradient imperfections. Each of the tested sequences was found to produce characteristic gradient mismatches dependent on the absolute value, direction and sign of the applied q-value. Read gradients were applied to compensate these mismatches translating them into time shifts, which enabled 1D DPI yielding capillary radius estimations within the tolerances specified by the manufacturer. For a successful DPI application in 2D, a novel gradient amplitude adaption scheme was implemented to correct for the occurring time shifts. Using this adaption, higher conformity to the expected pore shape, reduced blurring and enhanced contrast were achieved. Images of the phantom's pore shape could be acquired with a nominal resolution of 2.2 μm.

  20. Development of a Numerical Method for Patient-Specific Cerebral Circulation Using 1D-0D Simulation of the Entire Cardiovascular System with SPECT Data.

    PubMed

    Zhang, Hao; Fujiwara, Naoya; Kobayashi, Masaharu; Yamada, Shigeki; Liang, Fuyou; Takagi, Shu; Oshima, Marie

    2016-08-01

    The detailed flow information in the circle of Willis (CoW) can facilitate a better understanding of disease progression, and provide useful references for disease treatment. We have been developing a one-dimensional-zero-dimensional (1D-0D) simulation method for the entire cardiovascular system to obtain hemodynamics information in the CoW. This paper presents a new method for applying 1D-0D simulation to an individual patient using patient-specific data. The key issue is how to adjust the deviation of physiological parameters, such as peripheral resistance, from literature data when patient-specific geometry is used. In order to overcome this problem, we utilized flow information from single photon emission computed tomography (SPECT) data. A numerical method was developed to optimize physiological parameters by adjusting peripheral cerebral resistance to minimize the difference between the resulting flow rate and the SPECT data in the efferent arteries of the CoW. The method was applied to three cases using different sets of patient-specific data in order to investigate the hemodynamics of the CoW. The resulting flow rates in the afferent arteries were compared to those of the phase-contrast magnetic resonance angiography (PC-MRA) data. Utilization of the SPECT data combined with the PC-MRA data showed a good agreement in flow rates in the afferent arteries of the CoW with those of PC-MRA data for all three cases. The results also demonstrated that application of SPECT data alone could provide the information on the ratios of flow distributions among arteries in the CoW.

  1. Evaluation of the ocean technology system's MK 1-S wireless surface unit, MK 1 DCI two diver air radio, MK 1-D-A wireless diver unit, MK 1-D-H hardwire diver unit and MK 1-D/S unit

    NASA Astrophysics Data System (ADS)

    Reyle, B. E.

    1985-05-01

    The OTS was evaluated for intelligibility, reliability and human engineering. The test subjects possessed various levels of experience with wireless or hardwire communication and SCUBA. The conditions under which the equipment was tested varied. Surface air temperatures ranged from 37 to 85 F; water temperatures from 65 to 80 F; and water depths from 8 feet of seawater (FSW) to greater than 60 FSW. The tests were conducted inside a circular 30 foot deep ascent tower, in shallow open bay water, and finally in an open ocean environment. The equipment was evaluated in areas of both high and low noise levels on the surface as well as in water. The OTS produced an overall intelligibility of 89.24% during manned open water testing using the Modified Rhyme Test (MRT) as the evaluation criteria, with a minimum effective range of 330 yards at 12 FSW and at least 875 yards, although it appears that the range of the MK 1-D-A is somewhat greater. Human engineering aspects of the OTS were found to be more than satisfactory, with no material failures encountered during testing. It is interesting to note that whenever the equipment required minor adjustments, these could be effected by the diver in the water (on the surface) and in most cases in less than 5 minutes. The amount of maintenance required on the OTS was minimal.

  2. 1D Thermal-Hydraulic-Chemical (THC) Reactive transport modeling for deep geothermal systems: A case study of Groß Schönebeck reservoir, Germany

    NASA Astrophysics Data System (ADS)

    Driba, D. L.; De Lucia, M.; Peiffer, S.

    2014-12-01

    Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in

  3. Helical Floquet Channels in 1D Lattices

    NASA Astrophysics Data System (ADS)

    Budich, Jan Carl; Hu, Ying; Zoller, Peter

    2017-03-01

    We show how dispersionless channels exhibiting perfect spin-momentum locking can arise in a 1D lattice model. While such spectra are forbidden by fermion doubling in static 1D systems, here we demonstrate their appearance in the stroboscopic dynamics of a periodically driven system. Remarkably, this phenomenon does not rely on any adiabatic assumptions, in contrast to the well known Thouless pump and related models of adiabatic spin pumps. The proposed setup is shown to be experimentally feasible with state-of-the-art techniques used to control ultracold alkaline earth atoms in optical lattices.

  4. Hermite WENO limiting for multi-moment finite-volume methods using the ADER-DT time discretization for 1-D systems of conservation laws

    DOE PAGES

    Norman, Matthew R.

    2014-11-24

    New Hermite Weighted Essentially Non-Oscillatory (HWENO) interpolants are developed and investigated within the Multi-Moment Finite-Volume (MMFV) formulation using the ADER-DT time discretization. Whereas traditional WENO methods interpolate pointwise, function-based WENO methods explicitly form a non-oscillatory, high-order polynomial over the cell in question. This study chooses a function-based approach and details how fast convergence to optimal weights for smooth flow is ensured. Methods of sixth-, eighth-, and tenth-order accuracy are developed. We compare these against traditional single-moment WENO methods of fifth-, seventh-, ninth-, and eleventh-order accuracy to compare against more familiar methods from literature. The new HWENO methods improve upon existingmore » HWENO methods (1) by giving a better resolution of unreinforced contact discontinuities and (2) by only needing a single HWENO polynomial to update both the cell mean value and cell mean derivative. Test cases to validate and assess these methods include 1-D linear transport, the 1-D inviscid Burger's equation, and the 1-D inviscid Euler equations. Smooth and non-smooth flows are used for evaluation. These HWENO methods performed better than comparable literature-standard WENO methods for all regimes of discontinuity and smoothness in all tests herein. They exhibit improved optimal accuracy due to the use of derivatives, and they collapse to solutions similar to typical WENO methods when limiting is required. The study concludes that the new HWENO methods are robust and effective when used in the ADER-DT MMFV framework. Finally, these results are intended to demonstrate capability rather than exhaust all possible implementations.« less

  5. Hermite WENO limiting for multi-moment finite-volume methods using the ADER-DT time discretization for 1-D systems of conservation laws

    SciTech Connect

    Norman, Matthew R.

    2014-11-24

    New Hermite Weighted Essentially Non-Oscillatory (HWENO) interpolants are developed and investigated within the Multi-Moment Finite-Volume (MMFV) formulation using the ADER-DT time discretization. Whereas traditional WENO methods interpolate pointwise, function-based WENO methods explicitly form a non-oscillatory, high-order polynomial over the cell in question. This study chooses a function-based approach and details how fast convergence to optimal weights for smooth flow is ensured. Methods of sixth-, eighth-, and tenth-order accuracy are developed. We compare these against traditional single-moment WENO methods of fifth-, seventh-, ninth-, and eleventh-order accuracy to compare against more familiar methods from literature. The new HWENO methods improve upon existing HWENO methods (1) by giving a better resolution of unreinforced contact discontinuities and (2) by only needing a single HWENO polynomial to update both the cell mean value and cell mean derivative. Test cases to validate and assess these methods include 1-D linear transport, the 1-D inviscid Burger's equation, and the 1-D inviscid Euler equations. Smooth and non-smooth flows are used for evaluation. These HWENO methods performed better than comparable literature-standard WENO methods for all regimes of discontinuity and smoothness in all tests herein. They exhibit improved optimal accuracy due to the use of derivatives, and they collapse to solutions similar to typical WENO methods when limiting is required. The study concludes that the new HWENO methods are robust and effective when used in the ADER-DT MMFV framework. Finally, these results are intended to demonstrate capability rather than exhaust all possible implementations.

  6. Hermite WENO limiting for multi-moment finite-volume methods using the ADER-DT time discretization for 1-D systems of conservation laws

    NASA Astrophysics Data System (ADS)

    Norman, Matthew R.

    2015-02-01

    New Hermite Weighted Essentially Non-Oscillatory (HWENO) interpolants are developed and investigated within the Multi-Moment Finite-Volume (MMFV) formulation using the ADER-DT time discretization. Whereas traditional WENO methods interpolate pointwise, function-based WENO methods explicitly form a non-oscillatory, high-order polynomial over the cell in question. This study chooses a function-based approach and details how fast convergence to optimal weights for smooth flow is ensured. Methods of sixth-, eighth-, and tenth-order accuracy are developed. These are compared against traditional single-moment WENO methods of fifth-, seventh-, ninth-, and eleventh-order accuracy to compare against more familiar methods from literature. The new HWENO methods improve upon existing HWENO methods (1) by giving a better resolution of unreinforced contact discontinuities and (2) by only needing a single HWENO polynomial to update both the cell mean value and cell mean derivative. Test cases to validate and assess these methods include 1-D linear transport, the 1-D inviscid Burger's equation, and the 1-D inviscid Euler equations. Smooth and non-smooth flows are used for evaluation. These HWENO methods performed better than comparable literature-standard WENO methods for all regimes of discontinuity and smoothness in all tests herein. They exhibit improved optimal accuracy due to the use of derivatives, and they collapse to solutions similar to typical WENO methods when limiting is required. The study concludes that the new HWENO methods are robust and effective when used in the ADER-DT MMFV framework. These results are intended to demonstrate capability rather than exhaust all possible implementations.

  7. Measurement of persistence in 1D diffusion

    NASA Technical Reports Server (NTRS)

    Wong, G. P.; Mair, R. W.; Walsworth, R. L.; Cory, D. G.

    2001-01-01

    Using a novel NMR scheme we observed persistence in 1D gas diffusion. Analytical approximations and numerical simulations have indicated that for an initially random array of spins undergoing diffusion, the probability p(t) that the average spin magnetization in a given region has not changed sign (i.e., "persists") up to time t follows a power law t(-straight theta), where straight theta depends on the dimensionality of the system. Using laser-polarized 129Xe gas, we prepared an initial "quasirandom" 1D array of spin magnetization and then monitored the ensemble's evolution due to diffusion using real-time NMR imaging. Our measurements are consistent with analytical and numerical predictions of straight theta approximately 0.12.

  8. Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice.

    PubMed

    Yang, Hongna; Yang, Hui; Xie, Zhaohong; Wei, Lifei; Bi, Jianzhong

    2013-01-01

    Alzheimer's disease (AD) is one of most prevalent dementias, which is characterized by the deposition of extracellular amyloid-beta protein (Aβ) and the formation of neurofibrillary tangles within neurons. Although stereotaxic transplantation of mesenchymal stem cells (MSCs) into the hippocampus of AD animal model as immunomodulatory cells has been suggested as a potential therapeutic approach to prevent the progress of AD, it is invasive and difficult for clinical perform. Systemic and central nervous system inflammation play an important role in pathogenesis of AD. T regulatory cells (Tregs) play a crucial role in maintaining systemic immune homeostasis, indicating that transplantation of Tregs could prevent the progress of the inflammation. In this study, we aimed to evaluate whether systemic transplantation of purified autologous Tregs from spleens of AβPPswe/PS1dE9 double-transgenic mice after MSCs from human umbilical cords (UC-MSCs) education in vitro for 3 days could improve the neuropathology and cognition deficits in AβPPswe/PS1dE9 double-transgenic mice. We observed that systemic transplantation of autologous Tregs significantly ameliorate the impaired cognition and reduced the Aβ plaque deposition and the levels of soluble Aβ, accompanied with significantly decreased levels of activated microglia and systemic inflammatory factors. In conclusion, systemic transplantation of autologous Tregs may be an effective and safe intervention to prevent the progress of AD.

  9. Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases

    NASA Astrophysics Data System (ADS)

    Mino, Lorenzo; Agostini, Giovanni; Borfecchia, Elisa; Gianolio, Diego; Piovano, Andrea; Gallo, Erik; Lamberti, Carlo

    2013-10-01

    Over the last three decades low-dimensional systems have attracted increasing interest both from the fundamental and technological points of view due to their unique physical and chemical properties. X-ray absorption spectroscopy (XAS) is a powerful tool for the characterization of such kinds of systems, owing to its chemical selectivity and high sensitivity in interatomic distance determination. Moreover, XAS does not require long-range ordering, that is usually absent in low-dimensional systems. Finally, this technique can simultaneously provide information on electronic and local structural properties of the nanomaterials, significantly contributing to clarify the relation between their atomic structure and their peculiar physical properties. This review provides a general introduction to XAS, discussing the basic theory of the technique, the most used detection modes, the related experimental setups and some complementary relevant characterization techniques (diffraction anomalous fine structure, extended energy-loss fine structure, pair distribution function, x-ray emission spectroscopy, high-energy resolution fluorescence detected XAS and x-ray Raman scattering). Subsequently, a selection of significant applications of XAS to two-, one- and zero-dimensional systems will be presented. The selected low-dimensional systems include IV and III-V semiconductor films, quantum wells, quantum wires and quantum dots; carbon-based nanomaterials (epitaxial graphene and carbon nanotubes); metal oxide films, nanowires, nanorods and nanocrystals; metal nanoparticles. Finally, the future perspectives for the application of XAS to nanostructures are discussed.

  10. Localized states in 1D Frenkel exciton systems: a comparison between infinite-range and nearest-neighbor transfer for normal and inverted bands.

    PubMed

    Avgin, I; Huber, D L

    2009-10-29

    We investigate localized states in one-dimensional Frenkel exciton systems that are created by a shift in the optical transition frequency of a single chromophore. In this paper, we focus on localized states lying below the exciton band that can act as exciton traps. A comparison is made between systems with infinite-range (r(-n), n = 2, 3, ...) transfer and those with nearest-neighbor (n = infinity) transfer. A distinction is also made between normal bands (minimum exciton energy at k = 0) and inverted bands (minimum energy at k = pi). The position of the localized state relative to the bottom of the band is calculated as a function of the shift in the single-chromophore transition frequency. The nature of the localized state is displayed in calculations of the participation ratio and the effective oscillator strength. Similarities and differences in localized states between normal and inverted band systems and between infinite-range and nearest-neighbor transfer are analyzed.

  11. Validating a 1-D SVAT model in a range of USA and Australian ecosystems: evidence towards its use as a tool to study Earth's system interactions

    NASA Astrophysics Data System (ADS)

    Petropoulos, G. P.; North, M. R.; Ireland, G.; Srivastava, P. K.; Rendall, D. V.

    2015-03-01

    This paper describes the validation of the SimSphere SVAT model conducted at different ecosystem types in the USA and Australia. Specific focus was given to examining the models' ability in predicting Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3 m (Tair 1.3 m) and Air Temperature at 50 m (Tair 50 m). Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from 8 sites belonging to the AmeriFlux (USA) and OzFlux (Australia) monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. The application of the model confirmed its high capability in representing the multifarious and complex interactions of the Earth system. Comparisons showed a good agreement between modelled and measured fluxes, especially for the days with smoothed daily flux trends. A good to excellent agreement between the model predictions and the in situ measurements was reported, particularly so for the LE, H, T1.3 m and T 50 m parameters (RMSD = 39.47, 55.06 W m-2, 3.23, 3.77 °C respectively). A systematic underestimation of Rg and Rnet (RMSD = 67.83, 58.69 W m-2, MBE = 67.83, 58.69 W m-2 respectively) was also found. Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. Very high values of the Nash-Sutcliffe efficiency index were also reported for all parameters ranging from 0.720 to 0.998, suggesting a very good model representation of the observations. To our knowledge, this study presents the first comprehensive validation of SimSphere, particularly so in USA and Australian ecosystem types. Findings are important and timely, given the rapidly expanding use of this model worldwide both as an educational and research

  12. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  13. Non-cooperative Brownian donkeys: A solvable 1D model

    NASA Astrophysics Data System (ADS)

    Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.

    2003-12-01

    A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.

  14. 50 CFR 2.2 - Regional offices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 1 2014-10-01 2014-10-01 false Regional offices. 2.2 Section 2.2 Wildlife... AGENCY ORGANIZATION AND LOCATIONS § 2.2 Regional offices. The U.S. Fish and Wildlife Service has eight... Complex, 911 NE. 11th Avenue, Portland, Oregon 97232. (b) Southwest Regional Office (Region 2—comprising...

  15. The T1D Exchange clinic registry.

    PubMed

    Beck, Roy W; Tamborlane, William V; Bergenstal, Richard M; Miller, Kellee M; DuBose, Stephanie N; Hall, Callyn A

    2012-12-01

    The T1D Exchange includes a clinic-based registry, a patient-centric web site called Glu, and a biobank. The aim of the study was to describe the T1D Exchange clinic registry and provide an overview of participant characteristics. Data obtained through participant completion of a questionnaire and chart extraction include diabetes history, management, and monitoring; general health; lifestyle; family history; socioeconomic factors; medications; acute and chronic diabetic complications; other medical conditions; and laboratory results. Data were collected from 67 endocrinology centers throughout the United States. We studied 25,833 adults and children with presumed autoimmune type 1 diabetes (T1D). Participants ranged in age from less than 1 to 93 yr, 50% were female, 82% were Caucasian, 50% used an insulin pump, 6% used continuous glucose monitoring, and 16% had a first-degree family member with T1D. Glycosylated hemoglobin at enrollment averaged 8.3% and was highest in 13 to 25 yr olds. The prevalence of renal disease was ≤4% until T1D was present for at least 10 yr, and retinopathy treatment was ≤2% until T1D was present for at least 20 yr. A severe hypoglycemic event (seizure or coma) in the prior 12 months was reported by 7% of participants and diabetic ketoacidosis in the prior 12 months by 8%. The T1D Exchange clinic registry provides a database of important information on individuals with T1D in the United States. The rich dataset of the registry provides an opportunity to address numerous issues of relevance to clinicians and patients, including assessments of associations between patient characteristics and diabetes management factors with outcomes.

  16. EMODEL_1D v. 1.0

    SciTech Connect

    Aldridge, David F.

    2016-07-06

    Program EMODEL_1D is an electromagnetic earth model construction utility designed to generate a three-dimensional (3D) uniformly-gridded representation of one-dimensional (1D) layered earth model. Each layer is characterized by the isotropic EM properties electric permittivity ?, magnetic permeability ?, and current conductivity ?. Moreover, individual layers of the model may possess a linear increase/decrease of any or all of these properties with depth.

  17. Polar discontinuities and 1D interfaces in monolayered materials

    NASA Astrophysics Data System (ADS)

    Martinez-Gordillo, Rafael; Pruneda, Miguel

    2015-12-01

    Interfaces are the birthplace of a multitude of fascinating discoveries in fundamental science, and have enabled modern electronic devices, from transistors, to lasers, capacitors or solar cells. These interfaces between bulk materials are always bi-dimensional (2D) 'surfaces'. However the advent of graphene and other 2D crystals opened up a world of possibilities, as in this case the interfaces become one-dimensional (1D) lines. Although the properties of 1D nanoribbons have been extensively discussed in the last few years, 1D interfaces within infinite 2D systems had remained mostly unexplored until very recently. These include grain boundaries in polycrystalline samples, or interfaces in hybrid 2D sheets composed by segregated domains of different materials (as for example graphene/BN hybrids, or chemically different transition metal dichalcogenides). As for their 2D counterparts, some of these 1D interfaces exhibit polar characteristics, and can give rise to fascinating new physical properties. Here, recent experimental discoveries and theoretical predictions on the polar discontinuities that arise at these 1D interfaces will be reviewed, and the perspectives of this new research topic, discussed.

  18. Heat Capacity of 1D Molecular Chains

    NASA Astrophysics Data System (ADS)

    Bagatskii, M. I.; Barabashko, M. S.; Sumarokov, V. V.; Jeżowski, A.; Stachowiak, P.

    2017-04-01

    The heat capacity of 1D chains of nitrogen and methane molecules (adsorbed in the outer grooves of bundles of closed-cap single-walled carbon nanotubes) has been studied in the temperature ranges 2-40 and 2-60 K, respectively. The temperature dependence of the heat capacity of 1D chains of nitrogen molecules below 3 K is close to a linear. It was found that the rotational heat capacity of methane molecules is a significant part of the total heat capacity of the chains throughout the whole investigated temperature range, whereas in the case of nitrogen, the librations are significant only above 15 K. The dependence of the heat capacity for methane below 10 K indicates the presence of a Schottky anomaly caused by the tunneling between the lowest energy levels of the CH4 molecule rotational spectra. Characteristic features observed in the temperature dependence of the heat capacity of 1D methane crystals are also discussed.

  19. Upstream Design and 1D-CAE

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroyuki

    Recently, engineering design environment of Japan is changing variously. Manufacturing companies are being challenged to design and bring out products that meet the diverse demands of customers and are competitive against those produced by rising countries(1). In order to keep and strengthen the competitiveness of Japanese companies, it is necessary to create new added values as well as conventional ones. It is well known that design at the early stages has a great influence on the final design solution. Therefore, design support tools for the upstream design is necessary for creating new added values. We have established a research society for 1D-CAE (1 Dimensional Computer Aided Engineering)(2), which is a general term for idea, methodology and tools applicable for the upstream design support, and discuss the concept and definition of 1D-CAE. This paper reports our discussion about 1D-CAE.

  20. 1D hyperspectral images of a light emitting diodes array

    NASA Astrophysics Data System (ADS)

    Urzica (Iordache), I.; Damian, V.; Logofatu, P. C.; Apostol, D.; Vasile, T.; Udrea, C.

    2015-02-01

    The paper present our first steps to realize a hyperspectral imaging system. Preliminary experiments in the domain have as purpose to test the capability of a monochromator with a 2D linear CCD camera, to create hyperspectral images. Using a Sciencetech 9055 model monochromator with a Hamamatsu CCD, we have analyzed an array of three LEDs of various colors, obtaining 1D hyperspectral images.

  1. Phosphorylation of a Herpes Simplex Virus 1 dUTPase by a Viral Protein Kinase, Us3, Dictates Viral Pathogenicity in the Central Nervous System but Not at the Periphery

    PubMed Central

    Kato, Akihisa; Shindo, Keiko; Maruzuru, Yuhei

    2014-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) encodes Us3 protein kinase, which is critical for viral pathogenicity in both mouse peripheral sites (e.g., eyes and vaginas) and in the central nervous systems (CNS) of mice after intracranial and peripheral inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. We recently reported that Us3 phosphorylated HSV-1 dUTPase (vdUTPase) at serine 187 (Ser-187) in infected cells, and this phosphorylation promoted viral replication by regulating optimal enzymatic activity of vdUTPase. In the present study, we show that the replacement of vdUTPase Ser-187 by alanine (S187A) significantly reduced viral replication and virulence in the CNS of mice following intracranial inoculation and that the phosphomimetic substitution at vdUTPase Ser-187 in part restored the wild-type viral replication and virulence. Interestingly, the S187A mutation in vdUTPase had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. Similarly, the enzyme-dead mutation in vdUTPase significantly reduced viral replication and virulence in the CNS of mice after intracranial inoculation, whereas the mutation had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. These observations suggested that vdUTPase was one of the Us3 substrates responsible for Us3 pathogenicity in the CNS and that the CNS-specific virulence of HSV-1 involved strict regulation of vdUTPase activity by Us3 phosphorylation. IMPORTANCE Herpes simplex virus 1 (HSV-1) encodes a viral protein kinase Us3 which is critical for pathogenicity both in peripheral sites and in the central nervous systems (CNS) of mice following peripheral and intracranial inoculations, respectively. Whereas some Us3

  2. Glass-based 1-D dielectric microcavities

    NASA Astrophysics Data System (ADS)

    Chiasera, Alessandro; Scotognella, Francesco; Valligatla, Sreeramulu; Varas, Stefano; Jasieniak, Jacek; Criante, Luigino; Lukowiak, Anna; Ristic, Davor; Gonçalves, Rogeria Rocha; Taccheo, Stefano; Ivanda, Mile; Righini, Giancarlo C.; Ramponi, Roberta; Martucci, Alessandro; Ferrari, Maurizio

    2016-11-01

    We have developed a reliable RF sputtering techniques allowing to fabricate glass-based one dimensional microcavities, with high quality factor. This property is strongly related to the modification of the density of states due to the confinement of the gain medium in a photonic band gap structure. In this short review we present some of the more recent results obtained by our team exploiting these 1D microcavities. In particular we present: (1) Er3+ luminescence enhancement of the 4I13/2 → 4I15/2 transition; (2) broad band filters based on disordered 1-D photonic structures; (3) threshold defect-mode lasing action in a hybrid structure.

  3. YORP torques with 1D thermal model

    NASA Astrophysics Data System (ADS)

    Breiter, S.; Bartczak, P.; Czekaj, M.

    2010-11-01

    A numerical model of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect for objects defined in terms of a triangular mesh is described. The algorithm requires that each surface triangle can be handled independently, which implies the use of a 1D thermal model. Insolation of each triangle is determined by an optimized ray-triangle intersection search. Surface temperature is modelled with a spectral approach; imposing a quasi-periodic solution we replace heat conduction equation by the Helmholtz equation. Non-linear boundary conditions are handled by an iterative, fast Fourier transform based solver. The results resolve the question of the YORP effect in rotation rate independence on conductivity within the non-linear 1D thermal model regardless of the accuracy issues and homogeneity assumptions. A seasonal YORP effect in attitude is revealed for objects moving on elliptic orbits when a non-linear thermal model is used.

  4. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  5. Energy harvesting and storage in 1D devices

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Zhang, Ye; Zhang, Jing; Sun, Xuemei; Peng, Huisheng

    2017-06-01

    Power systems and electronic devices that are bulky and rigid are not practical for use in wearable applications that require flexibility and breathability. To address this, a range of 1D energy harvesting and storage devices have been fabricated that show promise for such applications compared with their 2D and 3D counterparts. These 1D devices are based on fibres that are flexible and can accommodate deformation, for example, by twisting and stretching. The fibres can be woven into textiles and fabrics that breathe freely or can be integrated into different materials that fit the curved surface of the human body. In this Review, the development of fibre-based energy harvesting and storage devices is presented, focusing on dye-sensitized solar cells, lithium-ion batteries, supercapacitors and their integrated devices. An emphasis is placed on the interface between the active materials and the electrodes or electrolyte in the 1D devices. The differing properties of these interfaces compared with those in 2D and 3D devices are derived from the curved surface and long charge transport path in 1D electrodes.

  6. The alpha(1D)-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction.

    PubMed

    Tanoue, Akito; Nasa, Yoshihisa; Koshimizu, Takaaki; Shinoura, Hitomi; Oshikawa, Sayuri; Kawai, Takayuki; Sunada, Sachie; Takeo, Satoshi; Tsujimoto, Gozoh

    2002-03-01

    To investigate the physiological role of the alpha(1D)-adrenergic receptor (alpha(1D)-AR) subtype, we created mice lacking the alpha(1D)-AR (alpha(1D)(-/-)) by gene targeting and characterized their cardiovascular function. In alpha(1D)-/- mice, the RT-PCR did not detect any transcript of the alpha(1D)-AR in any tissue examined, and there was no apparent upregulation of other alpha(1)-AR subtypes. Radioligand binding studies showed that alpha(1)-AR binding capacity in the aorta was lost, while that in the heart was unaltered in alpha(1D)-/- mice. Non-anesthetized alpha(1D)-/- mice maintained significantly lower basal systolic and mean arterial blood pressure conditions, relative to wild-type mice, and they showed no significant change in heart rate or in cardiac function, as assessed by echocardiogram. Besides hypotension, the pressor responses to phenylephrine and norepinephrine were decreased by 30-40% in alpha(1D)-/- mice. Furthermore, the contractile response of the aorta and the pressor response of isolated perfused mesenteric arterial beds to alpha(1)-AR stimulation were markedly reduced in alpha(1D)-/- mice. We conclude that the alpha(1D)-AR participates directly in sympathetic regulation of systemic blood pressure by vasoconstriction.

  7. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  8. 1-D Numerical Analysis of ABCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Holden, Richard

    1999-01-01

    ABCC engine combines air breathing and rocket engine into a single engine to increase the specific impulse over an entire flight trajectory. Except for the heat source, the basic operation of the ABCC is similar to the basic operation of the RBCC engine. The ABCC is intended to have a higher specific impulse than the RBCC for single stage Earth to orbit vehicle. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in ABCC propulsion system. The objective of the present research was to develop a transient 1-D numerical model using conservation of mass, linear momentum, and energy equations that could be used to predict flow behavior throughout a generic ABCC engine following a flight path. At specific points during the development of the 1-D numerical model a myriad of tests were performed to prove the program produced consistent, realistic numbers that follow compressible flow theory for various inlet conditions.

  9. 1-D Numerical Analysis of ABCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Holden, Richard

    1999-01-01

    ABCC engine combines air breathing and rocket engine into a single engine to increase the specific impulse over an entire flight trajectory. Except for the heat source, the basic operation of the ABCC is similar to the basic operation of the RBCC engine. The ABCC is intended to have a higher specific impulse than the RBCC for single stage Earth to orbit vehicle. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in ABCC propulsion system. The objective of the present research was to develop a transient 1-D numerical model using conservation of mass, linear momentum, and energy equations that could be used to predict flow behavior throughout a generic ABCC engine following a flight path. At specific points during the development of the 1-D numerical model a myriad of tests were performed to prove the program produced consistent, realistic numbers that follow compressible flow theory for various inlet conditions.

  10. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification

    PubMed Central

    Sonnenberg, Rainer; Nolte, Arne W; Tautz, Diethard

    2007-01-01

    Background Identification of species via DNA sequences is the basis for DNA taxonomy and DNA barcoding. Currently there is a strong focus on using a mitochondrial marker for this purpose, in particular a fragment from the cytochrome oxidase I gene (COI). While there is ample evidence that this marker is indeed suitable across a broad taxonomic range to delineate species, it has also become clear that a complementation by a nuclear marker system could be advantageous. Ribosomal RNA genes could be suitable for this purpose, because of their global occurrence and the possibility to design universal primers. However, it has so far been assumed that these genes are too highly conserved to allow resolution at, or even beyond the species level. On the other hand, it is known that ribosomal gene regions harbour also highly divergent parts. We explore here the information content of two adjacent divergence regions of the large subunit ribosomal gene, the D1-D2 region. Results Universal primers were designed to amplify the D1-D2 region from all metazoa. We show that amplification products in the size between 800–1300 bp can be obtained across a broad range of animal taxa, provided some optimizations of the PCR procedure are implemented. Although the ribosomal genes occur in multiple copies in the genomes, we find generally very little intra-individual polymorphism (<< 0.1% on average) indicating that concerted evolution is very effective in most cases. Studies in two fish taxa (genus Cottus and genus Aphyosemion) show that the D1-D2 LSU sequence can resolve even very closely related species with the same fidelity as COI sequences. In one case we can even show that a mitochondrial transfer must have occurred, since the nuclear sequence confirms the taxonomic assignment, while the mitochondrial sequence would have led to the wrong classification. We have further explored whether hybrids between species can be detected with the nuclear sequence and we show for a test case of

  11. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  12. The stability of 1-D soliton in transverse direction

    NASA Astrophysics Data System (ADS)

    Verma, Deepa; Bera, Ratan Kumar; Das, Amita; Kaw, Predhiman

    2016-12-01

    The complete characterization of the exact 1-D solitary wave solutions (both stationary and propagating) for light plasma coupled system have been studied extensively in the parameter space of light frequency and the group speed [Poornakala et al., Phys. Plasmas 9(5), 1820 (2002)]. It has been shown in 1-D that solutions with single light wave peak and paired structures are stable and hence long lived. However, solutions having multiple peaks of light wave are unstable due to Raman scattering instability [Saxena et al., Phys. Plasmas 14, 072307 (2007)]. Here, we have shown with the help of 2-D fluid simulation that single peak and paired solutions too get destabilized by the transverse filamentation instability. The numerical growth rates obtained from simulations is seen to compare well with the analytical values. It is also shown that multiple peaks solitons first undergo the regular 1-D forward Raman scattering instability. Subsequently, they undergo a distinct second phase of destabilization through transverse filamentation instability. This is evident from the structure as well as the plot of the perturbed energy which shows a second phase of growth after saturating initially. The growth rate of the filamentation instability being comparatively slower than the forward Raman instability this phase comes quite late and is clearly distinguishable.

  13. 75 FR 27411 - Airworthiness Directives; Turbomeca Arriel 1B, 1D, 1D1, and 1S1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... repetitive relative position checks of the gas generator 2nd stage turbine blades on Turbomeca Arriel 1B... turbines on Arriel 1B, 1D, and 1D1 engines. This AD requires lowering the initial and repetitive thresholds for replacement of 2nd stage turbines on Arriel 1B, 1D, and 1D1 engines. This AD results from reports...

  14. A new potential energy surface for the H2S system and dynamics study on the S(1D) + H2(X1Σg+) reaction

    PubMed Central

    Yuan, Jiuchuang; He, Di; Chen, Maodu

    2015-01-01

    We constructed a new global potential energy surface (PES) for the electronic ground state (1A′) of H2S based on 21,300 accurate ab initio energy points over a large configuration space. The ab initio energies are obtained from multireference configuration interaction calculations with a Davidson correction using basis sets of quadruple zeta quality. The neural network method is applied to fit the PES, and the root mean square error of fitting is small (1.68 meV). Time-dependent wave packet studies for the S(1D) + H2(X1Σg+) → H(2S) + SH(X2Π) reaction on the new PES are conducted to study the reaction dynamics. The calculated integral cross sections decrease with increasing collision energy and remain fairly constant within the high collision energy range. Both forward and backward scatterings can be observed as expected for a barrierless reaction with a deep well on the PES. The calculated integral cross sections and differential cross sections are in good agreement with the experimental results. PMID:26435516

  15. Engineered atom-light interactions in 1D photonic crystals

    NASA Astrophysics Data System (ADS)

    Martin, Michael J.; Hung, Chen-Lung; Yu, Su-Peng; Goban, Akihisa; Muniz, Juan A.; Hood, Jonathan D.; Norte, Richard; McClung, Andrew C.; Meenehan, Sean M.; Cohen, Justin D.; Lee, Jae Hoon; Peng, Lucas; Painter, Oskar; Kimble, H. Jeff

    2014-05-01

    Nano- and microscale optical systems offer efficient and scalable quantum interfaces through enhanced atom-field coupling in both resonators and continuous waveguides. Beyond these conventional topologies, new opportunities emerge from the integration of ultracold atomic systems with nanoscale photonic crystals. One-dimensional photonic crystal waveguides can be engineered for both stable trapping configurations and strong atom-photon interactions, enabling novel cavity QED and quantum many-body systems, as well as distributed quantum networks. We present the experimental realization of such a nanophotonic quantum interface based on a nanoscale photonic crystal waveguide, demonstrating a fractional waveguide coupling of Γ1 D /Γ' of 0 . 32 +/- 0 . 08 , where Γ1 D (Γ') is the atomic emission rate into the guided (all other) mode(s). We also discuss progress towards intra-waveguide trapping of ultracold Cs. This work was supported by the IQIM, an NSF Physics Frontiers Center with support from the Moore Foundation, the DARPA ORCHID program, the AFOSR QuMPASS MURI, the DoD NSSEFF program, NSF, and the Kavli Nanoscience Institute (KNI) at Caltech.

  16. 1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure

    NASA Astrophysics Data System (ADS)

    Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume

    We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.

  17. Constitutive modeling and control of 1D smart composite structures

    NASA Astrophysics Data System (ADS)

    Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro

    1998-07-01

    Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.

  18. Lesions to the CA2 region of the hippocampus impair social memory in mice

    PubMed Central

    Stevenson, Erica L.; Caldwell, Heather K.

    2014-01-01

    The function of the CA2 region of the hippocampus is poorly understood. While the CA1 and CA3 regions have been extensively studied, for years the CA2 region has primarily been viewed as a linking area between the two. However, the CA2 region is known to have distinct neurochemical and structural features that are different from the other parts of hippocampus and in recent years it has been suggested that the CA2 region may play a role in the formation and or recall of olfactory-based memories needed for normal social behavior. While this hypothesis has been supported by hippocampal lesion studies that have included the CA2 region, no studies have attempted to specifically lesion the CA2 region of the hippocampus in mice to determine the effects on social recognition memory and olfaction. To fill this knowledge gap, we sought to perform excitotoxic N-methyl-D aspartate (NMDA) lesions of the CA2 region in mice and determine the effects on social recognition memory. We predicted that lesions of the CA2 region would impair social recognition memory. We then went on to test olfaction in CA2 lesioned mice since social memory requires a functional olfactory system. Consistent with our prediction, we found that CA2 lesioned animals have impaired social recognition. These findings are significant because they confirm that the CA2 region of the hippocampus is a part of the neural circuitry that regulates social recognition memory, which may have implications for our understanding of the neural regulation of social behavior across species. PMID:25131412

  19. Blood flow quantification using 1D CFD parameter identification

    NASA Astrophysics Data System (ADS)

    Brosig, Richard; Kowarschik, Markus; Maday, Peter; Katouzian, Amin; Demirci, Stefanie; Navab, Nassir

    2014-03-01

    Patient-specific measurements of cerebral blood flow provide valuable diagnostic information concerning cerebrovascular diseases rather than visually driven qualitative evaluation. In this paper, we present a quantitative method to estimate blood flow parameters with high temporal resolution from digital subtraction angiography (DSA) image sequences. Using a 3D DSA dataset and a 2D+t DSA sequence, the proposed algorithm employs a 1D Computational Fluid Dynamics (CFD) model for estimation of time-dependent flow values along a cerebral vessel, combined with an additional Advection Diffusion Equation (ADE) for contrast agent propagation. The CFD system, followed by the ADE, is solved with a finite volume approximation, which ensures the conservation of mass. Instead of defining a new imaging protocol to obtain relevant data, our cost function optimizes the bolus arrival time (BAT) of the contrast agent in 2D+t DSA sequences. The visual determination of BAT is common clinical practice and can be easily derived from and be compared to values, generated by a 1D-CFD simulation. Using this strategy, we ensure that our proposed method fits best to clinical practice and does not require any changes to the medical work flow. Synthetic experiments show that the recovered flow estimates match the ground truth values with less than 12% error in the mean flow rates.

  20. Error analysis of subaperture processing in 1-D ultrasound arrays.

    PubMed

    Zhao, Kang-Qiao; Bjåstad, Tore Gruner; Kristoffersen, Kjell

    2015-04-01

    To simplify the medical ultrasound system and reduce the cost, several techniques have been proposed to reduce the interconnections between the ultrasound probe and the back-end console. Among them, subaperture processing (SAP) is the most straightforward approach and is widely used in commercial products. This paper reviews the most important error sources of SAP, such as static focusing, delay quantization, linear delay profile, and coarse apodization, and the impacts introduced by these errors are shown. We propose to use main lobe coherence loss as a simple classification of the quality of the beam profile for a given design. This figure-ofmerit (FoM) is evaluated by simulations with a 1-D ultrasound subaperture array setup. The analytical expressions and the coherence loss can work as a quick guideline in subaperture design by equalizing the merit degradations from different error sources, as well as minimizing the average or maximum loss over ranges. For the evaluated 1-D array example, a good balance between errors and cost was achieved using a subaperture size of 5 elements, focus at 40 mm range, and a delay quantization step corresponding to a phase of π/4.

  1. Diagnostics from a 1-D atmospheric column

    SciTech Connect

    Flatley, J.M.; Mace, G.

    1996-04-01

    Various diagnostics were computed from an array of radiosondes during an intensive field operation arranged by the Atmospheric Radiation Measurement Program. The network data was centered around the site at Lamont, Oklahoma. The apparent heat source and apparent moisture sink were computed and compared to the kinematic vertical velocity for both real data and the mesoscale analysis and prediction system. Three different case studies of various weathe regimes were examined.

  2. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    SciTech Connect

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  3. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Appenzeller, J.

    2015-10-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  4. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.

    PubMed

    Zhu, Y; Appenzeller, J

    2015-12-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  5. Combinatorial approach to exactly solve the 1D Ising model

    NASA Astrophysics Data System (ADS)

    Seth, Swarnadeep

    2017-01-01

    The Ising model is a well known statistical model which can be solved exactly by various methods. The most familiar one is the transfer matrix method. Sometimes it can be difficult to approach the open boundary case rather than periodic boundary ones in higher dimensions. But physically it is more intuitive to study the open boundary case, as it gives a closer view of the real system. We have introduced a new method called the pairing method to determine the exact partition function for the simplest case, a 1D Ising lattice. This method simplifies the problem's complexities and reduces it to a pure combinatorial problem. The study also reveals that it is possible to apply this pairing method in the case of a 2D square lattice. The obtained results agree perfectly with the values in the literature and this new approach provides an algorithmic insight to deal with such problems.

  6. 1-D ELECTRO-OPTIC BEAM STEERING DEVICE.

    PubMed

    Wang, Wei-Chih; Tsui, Chi Leung

    2011-06-05

    In this paper, we present the design and fabrication of a 1D beam steering device based on planar electro-optic thermal-plastic prisms and a collimator lens array. With the elimination of moving parts, the proposed device is able to overcome the mechanical limitations of present scanning devices, such as fatigue and low operating frequency, while maintaining a small system footprint (~0.5mm×0.5mm). From experimental data, our prototype device is able to achieve a maximum deflection angle of 5.6° for a single stage prism design and 29.2° for a cascaded three prisms stage design. The lens array shows a 4µm collimated beam diameter.

  7. 1-D ELECTRO-OPTIC BEAM STEERING DEVICE

    PubMed Central

    Wang, Wei-Chih; Tsui, Chi Leung

    2011-01-01

    In this paper, we present the design and fabrication of a 1D beam steering device based on planar electro-optic thermal-plastic prisms and a collimator lens array. With the elimination of moving parts, the proposed device is able to overcome the mechanical limitations of present scanning devices, such as fatigue and low operating frequency, while maintaining a small system footprint (~0.5mm×0.5mm). From experimental data, our prototype device is able to achieve a maximum deflection angle of 5.6° for a single stage prism design and 29.2° for a cascaded three prisms stage design. The lens array shows a 4µm collimated beam diameter. PMID:22199458

  8. Lanczos diagonalizations of the 1-D Peierls-Hubbard model

    SciTech Connect

    Loh, E.Y.; Campbell, D.K.; Gammel, J.T.

    1989-01-01

    In studies of interacting electrons in reduced dimensions'' one is trapped between the Scylla of exponential growth of the number of states in any exact many-body basis and the Charybdis of the failure of mean-field theories to capture adequately the effects of interactions. In the present article we focus on one technique -- the Lanczos method -- which, at least in the case of the 1-D Peierls-Hubbard model, appears to allow us to sail the narrow channel between these two hazards. In contrast to Quantum Monte Carlo methods, which circumvent the exponential growth of states by statistical techniques and importance sampling, the Lanczos approach attacks this problem head-on by diagonalizing the full Hamiltonian. Given the restrictions of present computers, this approach is thus limited to studying finite clusters of roughly 12--14 sites. Fortunately, in one dimension, such clusters are usually sufficient for extracting many of the properties of the infinite system provided that one makes full use of the ability to vary the boundary conditions. In this article we shall apply the Lanczos methodology and novel phase randomization'' techniques to study the 1-D Peierls-Hubbard model, with particular emphasis on the optical absorption properties, including the spectrum of absorptions as a function of photon energy. Despite the discreteness of the eigenstates in our finite clusters, we are able to obtain optical spectra that, in cases where independent tests can be made, agree well with the known exact results for the infinite system. Thus we feel that this combination of techniques represents an important and viable means of studying many interesting novel materials involving strongly correlated electrons. 26 refs., 6 figs.

  9. Coherent Synchrotron Radiation and Space Charge for a 1-D Bunch on an Arbitrary Planar Orbit

    SciTech Connect

    Warnock, R.L.; /SLAC

    2008-01-08

    Realistic modeling of coherent synchrotron radiation (CSR) and the space charge force in single-pass systems and rings usually requires at least a two-dimensional (2-D) description of the charge/current density of the bunch. Since that leads to costly computations, one often resorts to a 1-D model of the bunch for first explorations. This paper provides several improvements to previous 1-D theories, eliminating unnecessary approximations and physical restrictions.

  10. Circadian system functionality, hippocampal oxidative stress, and spatial memory in the APPswe/PS1dE9 transgenic model of Alzheimer disease: effects of melatonin or ramelteon.

    PubMed

    Baño Otalora, Beatriz; Popovic, Natalija; Gambini, Juan; Popovic, Miroljub; Viña, José; Bonet-Costa, Vicent; Reiter, Russel J; Camello, Pedro Javier; Rol, Maria Ángeles; Madrid, Juan Antonio

    2012-08-01

    Alzheimer disease (AD) is a neurodegenerative disorder that primarily causes β-amyloid accumulation in the brain, resulting in cognitive and behavioral deficits. AD patients, however, also suffer from severe circadian rhythm disruptions, and the underlying causes are still not fully known. Patients with AD show reduced systemic melatonin levels. This may contribute to their symptoms, since melatonin is an effective chronobiotic and antioxidant with neuroprotective properties. Here, the authors critically assessed the effects of long-term melatonin treatment on circadian system function, hippocampal oxidative stress, and spatial memory performance in the APPswe/PS1 double transgenic (Tg) mouse model of AD. To test if melatonin MT1/MT2 receptor activation, alone, was involved, the authors chronically treated some mice with the selective MT1/MT2 receptor agonist ramelteon. The results indicate that many of the circadian and behavioral parameters measured, including oxidative stress markers, were not significantly affected in these AD mice. During the day, though, Tg controls (Tg-CON) showed significantly higher mean activity and body temperature (BT) than wild-type (WT) mice. Overall, BT rhythm amplitude was significantly lower in Tg than in WT mice. Although melatonin treatment had no effect, ramelteon significantly reduced the amplitude of the BT rhythm in Tg mice. Towards the end of the experiment, Tg mice treated with ramelteon (Tg-RAM) showed significantly higher circadian rhythm fragmentation than Tg-CON and reduced circadian BT rhythm strength. The free-running period (τ) for the BT and locomotor activity (LA) rhythms of Tg-CON was <24 h. Whereas melatonin maintained τ at 24 h for BT and LA in both genotypes, ramelteon treatment had no effect. In the behavioral tests, the number of approaches and time spent exploring novel objects were significantly higher in Tg-CON than WT controls. Brain tissue analysis revealed significant reduction in hippocampal protein

  11. Data Management Systems (DMS): Complex data types study. Volume 1: Appendices A-B. Volume 2: Appendices C1-C5. Volume 3: Appendices D1-D3 and E

    NASA Technical Reports Server (NTRS)

    Leibfried, T. F., Jr.; Davari, Sadegh; Natarajan, Swami; Zhao, Wei

    1992-01-01

    Two categories were chosen for study: the issue of using a preprocessor on Ada code of Application Programs which would interface with the Run-Time Object Data Base Standard Services (RODB STSV), the intent was to catch and correct any mis-registration errors of the program coder between the user declared Objects, their types, their addresses, and the corresponding RODB definitions; and RODB STSV Performance Issues and Identification of Problems with the planned methods for accessing Primitive Object Attributes, this included the study of an alternate storage scheme to the 'store objects by attribute' scheme in the current design of the RODB. The study resulted in essentially three separate documents, an interpretation of the system requirements, an assessment of the preliminary design, and a detailing of the components of a detailed design.

  12. Co-localization of L-type voltage dependent calcium channel alpha 1D subunit (Ca(v)1.3) and calbindin (CB) in the mouse central nervous system.

    PubMed

    Xu, Jie Hua; Yang, Zhen Bang; Wang, Hui; Tang, Feng-Ru

    2014-02-21

    Previous study has shown that the co-localization of calbindin (CB) with L-type voltage dependent Ca(2+) channel (VDCC) alpha 1C subunit (Ca(v)1.2) in the rat insulinoma 1046-38 (RIN) beta cells may play an important regulatory role in Ca(2+) influx and exocytosis of insulin granules. In the present study, L-type voltage dependent Ca(2+) channel (VDCC) and calbindin (CB) were demonstrated in different regions of the mouse central nervous system (CNS). Double labeling immunofluorescence staining showed a co-localization of Ca(v)1.3 and CB. The co-localization of Ca(v)1.3 and CB in certain brain regions such as the hippocampus suggests their important roles in neuroplasticity. The relative high percentages of co-localization of Ca(v)1.3 with CB in the laminae II of the dorsal horn of the spinal cord indicate that the regulation mechanism of nociceptive transmission may be related with both VDCC and Ca(2+) binding protein.

  13. Brady 1D seismic velocity model ambient noise prelim

    SciTech Connect

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  14. O/1 D/ production in ozone photolysis near 3100 A

    NASA Technical Reports Server (NTRS)

    Lin, C.-L.; Demore, W. B.

    1974-01-01

    Relative quantum yields of O(1 D) production in ozone photolysis from 2750 to 3340 A have been determined in the gas phase at -40 C. The O(1 D) was monitored by means of its reaction with isobutane to form isobutyl alcohol. The light source was a high pressure mercury lamp combined with a monochromator, with a bandwidth of 16 A. The results show a constant O(1 D) production below 3000 A, which is taken as unity on the basis of previous work. There is a very sharp fall-off in O(1 D) production which is centered at 3080 A. At 3130 A, O(1 D) production is not greater than 0.1.

  15. An implicit solver for 1D arterial network models.

    PubMed

    Carson, Jason; Van Loon, Raoul

    2017-07-01

    In this study, the 1D blood flow equations are solved using a newly proposed enhanced trapezoidal rule method (ETM), which is an extension to the simplified trapezoidal rule method. At vessel junctions, the conservation of mass and conservation of total pressure are held as system constraints using Lagrange multipliers that can be physically interpreted as external flow rates. The ETM scheme is compared with published arterial network benchmark problems and a dam break problem. Strengths of the ETM scheme include being simple to implement, intuitive connection to lumped parameter models, and no restrictive stability criteria such as the Courant-Friedrichs-Lewy (CFL) number. The ETM scheme does not require the use of characteristics at vessel junctions, or for inlet and outlet boundary conditions. The ETM forms an implicit system of equations, which requires only one global solve per time step for pressure, followed by flow rate update on the elemental system of equations; thus, no iterations are required per time step. Consistent results are found for all benchmark cases, and for a 56-vessel arterial network problem, it gives very satisfactory solutions at a spatial and time discretization that results in a maximum CFL of 3, taking 4.44 seconds per cardiac cycle. By increasing the time step and element size to produce a maximum CFL number of 15, the method takes only 0.39 second per cardiac cycle with only a small compromise on accuracy. Copyright © 2016 John Wiley & Sons, Ltd.

  16. 1-D Numerical Analysis of RBCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1998-01-01

    An RBCC engine combines air breathing and rocket engines into a single engine to increase the specific impulse over an entire flight trajectory. Considerable research pertaining to RBCC propulsion was performed during the 1960's and these engines were revisited recently as a candidate propulsion system for either a single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO) launch vehicle. There are a variety of RBCC configurations that had been evaluated and new designs are currently under development. However, the basic configuration of all RBCC systems is built around the ejector scramjet engine originally developed for the hypersonic airplane. In this configuration, a rocket engine plays as an ejector in the air-augmented initial acceleration mode, as a fuel injector in scramjet mode and the rocket in all rocket mode for orbital insertion. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in RBCC propulsion systems. The objective of the present research was to develop a transient 1-D numerical model that could be used to predict flow behavior throughout a generic RBCC engine following a flight path.

  17. Engineered Solution-Liquid-Solid Growth of a "Treelike" 1D/1D TiO2 Nanotube-CdSe Nanowire Heterostructure: Photoelectrochemical Conversion of Broad Spectrum of Solar Energy.

    PubMed

    Mukherjee, Bratindranath; Sarker, Swagotom; Crone, Eric; Pathak, Pawan; Subramanian, Vaidyanathan R

    2016-12-07

    This work presents a hitherto unreported approach to assemble a 1D oxide-1D chalcogenide heterostructured photoactive film. As a representative system, bismuth (Bi) catalyzed 1D CdSe nanowires are directly grown on anodized 1D TiO2 nanotube (T_NT). A combination of the reductive successive-ionic-layer-adsorption-reaction (R-SILAR) and the solution-liquid-solid (S-L-S) approach is implemented to fabricate this heterostructured assembly, reported in this 1D/1D form for the first time. XRD, SEM, HRTEM, and elemental mapping are performed to systematically characterize the deposition of bismuth on T_NT and the growth of CdSe nanowires leading to the evolution of the 1D/1D heterostructure. The resulting "treelike" photoactive architecture demonstrates UV-visible light-driven electron-hole pair generation. The photoelectrochemical results highlight: (i) the formation of a stable n-n heterojunction between TiO2 nanotube and CdSe nanowire, (ii) an excellent correlation between the absorbance vis-à-vis light conversion efficiency (IPCE), and (iii) a photocurrent density of 3.84 mA/cm(2). This proof-of-concept features the viability of the approach for designing such complex 1D/1D oxide-chalcogenide heterostructures that can be of interest to photovoltaics, photocatalysis, environmental remediation, and sensing.

  18. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    SciTech Connect

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  19. Capturing 1D Channel Network Topology in NetCDF

    NASA Astrophysics Data System (ADS)

    Jagers, B.; van Dam, A.; Mooiman, J.

    2016-12-01

    Traditional Climate and Forecasting conventions for NetCDF files provide support for data on regular grids and data at a set of locations without well defined topology (connectivity). Over the past decade GridSpec, UGRID, and SGRID conventions have been proposed and adopted to capture the topology of numerical models (GridSpec for mosaics of grids, UGRID for unstructured meshes, and SGRID for staggered data on structured grids). UGRID includes conventions for capturing 1D, 2D, and 3D unstructured mesh topologies. The 2D and layered 3D conventions have been adopted by various numerical code developers in the Earth Sciences. The subset of 1D conventions are however less well widely used to this date. In the process of converting our 1D model output to the combined CF and 1D UGRID conventions, we have noticed that it lacks a couple of features. UGRID assumes that the channel geometry between the "nodes" is straight while in most 1D models these channels can be curved. We propose an extension to the UGRID conventions to allow for a two-layered approach in which first a 1D generic channel network topology is defined, and then a 1D mesh topology on that channel network using "branch number" and "branch offset" as coordinate variables.

  20. Controlled Growth of 1D MoSe2 Nanoribbons with Spatially Modulated Edge States.

    PubMed

    Cheng, Fang; Xu, Hai; Xu, Wentao; Zhou, Pinjia; Martin, Jens; Loh, Kian Ping

    2017-02-08

    Two-dimensional (2D) transition metal dichalcogenides (TMDCs) possess interesting one-dimensional (1D) properties at its edges and inversion domain boundaries, where properties markedly different from the 2D basal plane, such as 1D metallicity and charge density waves, can be observed. Although 2D TMDCs crystals are widely grown by chemical vapor deposition (CVD), the fabrication of 1D TMDCs ribbons is challenging due to the difficulty to confine growth in only one dimension. Here we report the controlled growth of MoSe2 nanoribbons with an aspect ratio >100 by using prepatterned Se reconstructions on Au(100). Using scanning tunneling microscope and spectroscopy (STM/STS), the atomic and electronic structure of MoSe2 nanoribbons are studied. The ultranarrow ribbons show metallic behavior, while wider ribbons show a crossover from metallic to semiconducting behavior going from the edge to the center of the ribbon. The observed conductance modulations of the ultranarrow ribbons are attributed to 1D Moiré pattern. Remarkably, it shows a different periodicity compared with the 2D Moiré pattern in wider ribbons indicating that the 1D system is softened due to the high ratio of edge to basal plane bonds. Further, we demonstrated that the nanoribbons are stable against ambient conditions, which suggests that 1D TMDCs can be exploited for further applications.

  1. D1/D5 dopamine receptors modulate spatial memory formation.

    PubMed

    da Silva, Weber C N; Köhler, Cristiano C; Radiske, Andressa; Cammarota, Martín

    2012-02-01

    We investigated the effect of the intra-CA1 administration of the D1/D5 receptor antagonist SCH23390 and the D1/D5 receptor agonist SKF38393 on spatial memory in the water maze. When given immediately, but not 3h after training, SCH23390 hindered long-term spatial memory formation without affecting non-spatial memory or the normal functionality of the hippocampus. On the contrary, post-training infusion of SKF38393 enhanced retention and facilitated the spontaneous recovery of the original spatial preference after reversal learning. Our findings demonstrate that hippocampal D1/D5 receptors play an essential role in spatial memory processing.

  2. 1D-Var assimilation of TMI and SSM/I observations in rainy areas

    NASA Astrophysics Data System (ADS)

    Moreau, E.; Lopez, P.; Bauer, P.

    2003-04-01

    The assimilation of observations related to cloud and precipitation has become a very important issue for most operational weather services including ECMWF. A 1D-Var method was developed by Marécal and Mahfouf (2000) for correcting individual profiles of the model's control variables in order to decrease the discrepancies that often exist between the simulated surface rainfall rates and corresponding retrievals obtained from TMI or SSM/I microwave measurements. Instead of performing the 1D-Var on surface rainfall rates that are derived from multi-channel microwave brightness temperatures (BTs) thanks to various algorithms, the 1D-Var calculations have been applied to the BTs directly. The multiple sensitivities of the BTs to the vertically integrated amounts of rain water and cloud water should provide a stronger constraint on the 1D-Var minimization. Another advantage of this method could result from the better knowledge of the errors on observed BTs than on derived rainfall rates. The potential of applying 1D-Var directly to TMI and SSM/I microwave brightness temperatures has been investigated in this study and its results have been compared with the 1D-Var with derived rainfall rates. Results are presented for a pacific super-typhoon and for a north-atlantic extratropical front. A comparison of the retrieved rain profiles using both methods with rain information deduced from the TRMM precipitation radar (PR) is also presented. Additional direct comparisons with the PR reflectivities will be shown by A. Benedetti (2003). Following the work by Marécal and Mahfouf (2002), indirect "1D-Var + 4D-Var" assimilation experiments will be performed. In this approach, the temperature and humidity increments provided by the 1D-Var are first converted into total column water vapour pseudo-observations that are in turn assimilated in ECMWF's 4D-Var system.

  3. 9 CFR 95.2 - Region of origin.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Region of origin. 95.2 Section 95.2... BYPRODUCTS (EXCEPT CASINGS), AND HAY AND STRAW, OFFERED FOR ENTRY INTO THE UNITED STATES § 95.2 Region of... Administrator, Veterinary Services, the name of the region of origin of such product or material: Provided,...

  4. 43 CFR 3420.2 - Regional leasing levels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Regional leasing levels. 3420.2 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COMPETITIVE LEASING Competitive Leasing § 3420.2 Regional leasing levels. This section sets out the process to be followed in...

  5. Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.

    PubMed

    Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich

    2016-04-01

    High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone.

  6. 1D Nanostructures: Controlled Fabrication and Energy Applications

    SciTech Connect

    Hu, Michael Z.

    2013-01-01

    Jian Wei, Xuchun Song, Chunli Yang, and Michael Z. Hu, 1D Nanostructures: Controlled Fabrication and Energy Applications, Journal of Nanomaterials, published special issue (http://www.hindawi.com/journals/jnm/si/197254/) (2013).

  7. New approach to image coding using 1-D subband filtering

    NASA Astrophysics Data System (ADS)

    Yu, Tian-Hu; Mitra, Sanjit K.

    1991-06-01

    Conventional subband coding for image data compression uses 2D separable QMF banks in which the analysis and synthesis filters are composed of 1D filters. Such an implementation produces a large size output image as a result of the convolution process. Various signal extension methods have been proposed to solve this problem. However, these methods have one or more of the following drawbacks: generation of boundary noise, inability to guarantee aliasing cancellation, and increased computation complexity. In this paper, we present an alternative solution to the problem by converting a 2D image array to a 1D array and then using a 1D QMF bank to process the 1D signal. In our approach, most of the above drawbacks mentioned above are eliminated. In addition, our approach offers more flexibility in the type of the filter that can be implemented.

  8. TBC1D24 genotype–phenotype correlation

    PubMed Central

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  9. On the origin of multi-step spin transition behaviour in 1D nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiruta, Daniel; Jureschi, Catalin-Maricel; Linares, Jorge; Dahoo, Pierre Richard; Garcia, Yann; Rotaru, Aurelian

    2015-09-01

    To investigate the spin state switching mechanism in spin crossover (SCO) nanoparticles, a special attention is given to three-step thermally induced SCO behavior in 1D chains. An additional term is included in the standard Ising-like Hamiltonian to account for the border interaction between SCO molecules and its local environment. It is shown that this additional interaction, together with the short range interaction, drives the multi-steps thermal hysteretic behavior in 1D SCO systems. The relation between a polymeric matrix and this particular multi-step SCO phenomenon is discussed accordingly. Finally, the environmental influence on the SCO system's size is analyzed as well.

  10. Altered expression profile of renal α(1D)-adrenergic receptor in diabetes and its modulation by PPAR agonists.

    PubMed

    Zhao, Xueying; Zhang, Yuanyuan; Leander, Michelle; Li, Lingyun; Wang, Guoshen; Emmett, Nerimiah

    2014-01-01

    Alpha(1D)-adrenergic receptor (α(1D)-AR) plays important roles in regulating physiological and pathological responses mediated by catecholamines, particularly in the cardiovascular and urinary systems. The present study was designed to investigate the expression profile of α(1D)-AR in the diabetic kidneys and its modulation by activation of peroxisome proliferator-activated receptors (PPARs). 12-week-old Zucker lean (ZL) and Zucker diabetic fatty (ZD) rats were treated with fenofibrate or rosiglitazone for 8-10 weeks. Gene microarray, real-time PCR, and confocal immunofluorescence microscopy were performed to assess mRNA and protein expression of α(1D)-AR in rat kidney tissue. Using microarray, we found that α(1D)-AR gene was dramatically upregulated in 22-week-old ZD rats compared to ZL controls. Quantitative PCR analysis verified a 16-fold increase in α(1D)-AR mRNA in renal cortex from ZD animals compared to normal controls. Chronic treatment with fenofibrate or rosiglitazone reduced renal cortical α(1D)-AR gene. Immunofluorescence staining confirmed that α(1D)-AR protein was induced in the glomeruli and tubules of diabetic rats. Moreover, dual immunostaining for α(1D)-AR and kidney injury molecule-1 indicated that α(1D)-AR was expressed in dedifferentiated proximal tubules of diabetic Zucker rats. Taken together, our results show that α(1D)-AR expression is upregulated in the diabetic kidneys. PPAR activation suppressed renal expression of α(1D)-AR in diabetic nephropathy.

  11. Recent developments in testing techniques for elastic mechanical properties of 1-D nanomaterials.

    PubMed

    Wang, Weidong; Li, Shuai; Zhang, Hongti; Lu, Yang

    2015-01-01

    One-dimensional (1-D) nanomaterials exhibit great potentials in their applications to functional materials, nano-devices and systems owing to their excellent properties. In the past decade, considerable studies have been done, with new patents being developed, on these 1-D building blocks for for their mechanical properties, especially elastic properties, which provide a solid foundation for the design of nanoelectromechanical systems (NEMS) and predictions of reliability and longevity for their devices. This paper reviews some of the recent investigations on techniques as well as patents available for the quantitative characterization of the elastic behaviors of various 1-D nanomaterials, with particular focus on on-chip testing system. The review begins with an overview of major testing methods for 1-D nanostructures' elastic properties, including nanoindentation testing, AFM (atomic force microscopy) testing, in situ SEM (scanning electron microscopy) testing, in situ TEM (transmission electron microscopy) testing and the testing system on the basis of MEMS (micro-electro-mechanical systems) technology, followed by advantages and challenges of each testing approach. This review also focuses on the MEMS-based testing apparatus, which can be actuated and measured inside SEM and TEM with ease, allowing users to highly magnify the continuous images of the specimen while measuring load electronically and independently. The combination of on-chip technologies and the in situ electron microscopy is expected to be a potential testing technique for nanomechanics. Finally, details are presented on the key challenges and possible solutions in the implementation of the testing techniques referred above.

  12. Ion-sensing properties of 1D vanadium pentoxide nanostructures

    PubMed Central

    2012-01-01

    The application of one-dimensional (1D) V2O5·nH2O nanostructures as pH sensing material was evaluated. 1D V2O5·nH2O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods. Deposited onto Au-covered substrates, 1D V2O5·nH2O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5·nH2O nanostructures showed pH sensitivity around the expected theoretical value. Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5·nH2O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes. PMID:22709724

  13. Theory of a 3+1D fractional chiral metal: Interacting variant of the Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Meng, Tobias; Grushin, Adolfo G.; Shtengel, Kirill; Bardarson, Jens H.

    2016-10-01

    Formulating consistent theories describing strongly correlated metallic topological phases is an outstanding problem in condensed-matter physics. In this work, we derive a theory defining a fractionalized analog of the Weyl semimetal state: the fractional chiral metal. Our approach is to construct a 4+1D quantum Hall insulator by stacking 3+1D Weyl semimetals in a magnetic field. In a strong enough field, the low-energy physics is determined by the lowest Landau level of each Weyl semimetal, which is highly degenerate and chiral, motivating us to use a coupled-wire approach. The one-dimensional dispersion of the lowest Landau level allows us to model the system as a set of degenerate 1+1D quantum wires that can be bosonized in the presence of electron-electron interactions and coupled such that a gapped phase is obtained whose response to an electromagnetic field is given in terms of a Chern-Simons field theory. At the boundary of this phase, we obtain the field theory of a 3+1D gapless fractional chiral state, which we show is consistent with a previous theory for the surface of a 4+1D Chern-Simons theory. The boundary's response to an external electromagnetic field is determined by a chiral anomaly with a fractionalized coefficient. We suggest that such an anomalous response can be taken as a working definition of a fractionalized strongly correlated analog of the Weyl semimetal state.

  14. Entangling strings of neutral atoms in 1D atomic pipeline structures.

    PubMed

    Dorner, U; Fedichev, P; Jaksch, D; Lewenstein, M; Zoller, P

    2003-08-15

    We study a string of neutral atoms with nearest neighbor interaction in a 1D beam splitter configuration, where the longitudinal motion is controlled by a moving optical lattice potential. The dynamics of the atoms crossing the beam splitter maps to a 1D spin model with controllable time dependent parameters, which allows the creation of maximally entangled states of atoms by crossing a quantum phase transition. Furthermore, we show that this system realizes protected quantum memory, and we discuss the implementation of one- and two-qubit gates in this setup.

  15. Polarons in endohedral Li+@C60- dimers and in 1D and 2D crystals

    NASA Astrophysics Data System (ADS)

    Kawazoe, Yoshiyuki; Belosludov, Vladimir R.; Zhdanov, Ravil K.; Belosludov, Rodion V.

    2017-10-01

    The electron charge distribution and polaron formation on the carbon sites of dimer clusters Li+@C60- and of 1D or 2D Li+@C60- periodic systems are studied with the use of the generalized Su-Schrieffer-Heeger model with respect to the intermolecular and intramolecular degrees of freedom. The charge distributions over the molecular surface and Jahn-Teller bond distortions of carbon atoms are calculated using the self-consistent iterative methods. Polarons formed in periodic 1D and 2D systems (chains and planar layers) as well as in dimer cluster system are examined. In the periodic systems polaron formation may be described by the cooperative Jahn-Teller effect. Orientation of the polarons on the molecule surface depends on the doping of the system, moreover, electron doping changes the energy levels in the system.

  16. Pitch-based pattern splitting for 1D layout

    NASA Astrophysics Data System (ADS)

    Nakayama, Ryo; Ishii, Hiroyuki; Mikami, Koji; Tsujita, Koichiro; Yaegashi, Hidetami; Oyama, Kenichi; Smayling, Michael C.; Axelrad, Valery

    2015-07-01

    The pattern splitting algorithm for 1D Gridded-Design-Rules layout (1D layout) for sub-10 nm node logic devices is shown. It is performed with integer linear programming (ILP) based on the conflict graph created from a grid map for each designated pitch. The relation between the number of times for patterning and the minimum pitch is shown systematically with a sample pattern of contact layer for each node. From the result, the number of times for patterning for 1D layout is fewer than that for conventional 2D layout. Moreover, an experimental result including SMO and total integrated process with hole repair technique is presented with the sample pattern of contact layer whose pattern density is relatively high among critical layers (fin, gate, local interconnect, contact, and metal).

  17. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures.

    PubMed

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-16

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof.

  18. Nanodamage and Nanofailure of 1d Zno Nanomaterials and Nanodevices

    NASA Astrophysics Data System (ADS)

    Li, Peifeng; Yang, Ya; Huang, Yunhua; Zhang, Yue

    2012-08-01

    One-dimensional (1D) ZnO nanomaterials include nanowires, nanobelts, and nanorods etc. The extensive applied fields and excellent properties of 1D ZnO nanomaterials can meet the requests of the electronic and electromechanical devices for "smaller, faster and colder", and would be applied in new energy convention, environmental protection, information science and technology, biomedical, security and defense fields. While micro porous, etching pits nanodamage and brittle fracture, dissolving, functional failure nanofailure phenomena of 1D ZnO nanomaterials and nanodevices are observed in some practical working environments like illumination, currents or electric fields, external forces, and some chemical gases or solvents. The more important thing is to discuss the mechanism and reduce or prohibit their generation.

  19. Flexible Photodetectors Based on 1D Inorganic Nanostructures

    PubMed Central

    Lou, Zheng

    2015-01-01

    Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404

  20. PC-1D installation manual and user's guide

    SciTech Connect

    Basore, P.A.

    1991-05-01

    PC-1D is a software package for personal computers that uses finite-element analysis to solve the fully-coupled two-carrier semiconductor transport equations in one dimension. This program is particularly useful for analyzing the performance of optoelectronic devices such as solar cells, but can be applied to any bipolar device whose carrier flows are primarily one-dimensional. This User's Guide provides the information necessary to install PC-1D, define a problem for solution, solve the problem, and examine the results. Example problems are presented which illustrate these steps. The physical models and numerical methods utilized are presented in detail. This document supports version 3.1 of PC-1D, which incorporates faster numerical algorithms with better convergence properties than previous versions of the program. 51 refs., 17 figs., 5 tabs.

  1. Localized self-heating in large arrays of 1D nanostructures.

    PubMed

    Monereo, O; Illera, S; Varea, A; Schmidt, M; Sauerwald, T; Schütze, A; Cirera, A; Prades, J D

    2016-03-07

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called "hot-spots". On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.

  2. Spatio-temporal stability of 1D Kerr cavity solitons

    NASA Astrophysics Data System (ADS)

    Gelens, L.; Parra-Rivas, P.; Leo, F.; Gomila, D.; Matias, Manuel A.; Coen, S.

    2014-05-01

    The Lugiato-Lefever equation (LLE) has been extensively studied since its derivation in 1987, when this meanfield model was introduced to describe nonlinear optical cavities. The LLE was originally derived to describe a ring cavity or a Fabry-Perot resonator with a transverse spatial extension and partially filled with a nonlinear medium but it has also been shown to be applicable to other types of cavities, such as fiber resonators and microresonators. Depending on the parameters used, the LLE can present a monostable or bistable input-output response curve. A large number of theoretical studies have been done in the monostable regime, but the bistable regime has remained widely unexplored. One of the reasons for this was that previous experimental setups were not able to works in such regimes of the parameter space. Nowadays the possibility of reaching such parameter regimes experimentally has renewed the interest in the LLE. In this contribution, we present an in-depth theoretical study of the different dynamical regimes that can appear in parameter space, focusing on the dynamics of localized solutions, also known as cavity solitons (CSs). We show that time-periodic oscillations of a 1D CS appear naturally in a broad region of parameter space. More than this oscillatory regime, which has been recently demonstrated experimentally,1 we theoretically report on several kinds of chaotic dynamics. We show that the existence of CSs and their dynamics is related with the spatial dynamics of the system and with the presence of a codimension-2 point known as a Fold-Hopf bifurcation point. These dynamical regimes can become accessible by using devices such as microresonators, for instance widely used for creating optical frequency combs.

  3. Collective mode damping and viscosity in a 1D unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Punk, M.; Zwerger, W.

    2006-08-01

    We calculate the damping of the Bogoliubov Anderson mode in a one-dimensional (1D) two-component attractive Fermi gas for arbitrary coupling strength within a quantum hydrodynamic approach. Using the Bethe-ansatz solution of the 1D BCS-BEC crossover problem, we derive analytic results for the viscosity covering the full range from a Luther Emery liquid of weakly bound pairs to a Lieb Liniger gas of strongly bound bosonic dimers. At the unitarity point, the system is a Tonks Girardeau gas with a universal constant αζ = 0.38 in the viscosity ζ = αζplanck n for T = 0. For the trapped case, we calculate the Q-factor of the breathing mode and show that the damping provides a sensitive measure of temperature in 1D Fermi gases.

  4. A comparison of 1D and 2D LSTM architectures for the recognition of handwritten Arabic

    NASA Astrophysics Data System (ADS)

    Yousefi, Mohammad Reza; Soheili, Mohammad Reza; Breuel, Thomas M.; Stricker, Didier

    2015-01-01

    In this paper, we present an Arabic handwriting recognition method based on recurrent neural network. We use the Long Short Term Memory (LSTM) architecture, that have proven successful in different printed and handwritten OCR tasks. Applications of LSTM for handwriting recognition employ the two-dimensional architecture to deal with the variations in both vertical and horizontal axis. However, we show that using a simple pre-processing step that normalizes the position and baseline of letters, we can make use of 1D LSTM, which is faster in learning and convergence, and yet achieve superior performance. In a series of experiments on IFN/ENIT database for Arabic handwriting recognition, we demonstrate that our proposed pipeline can outperform 2D LSTM networks. Furthermore, we provide comparisons with 1D LSTM networks trained with manually crafted features to show that the automatically learned features in a globally trained 1D LSTM network with our normalization step can even outperform such systems.

  5. Lesion of the tuberomammillary nucleus E2-region attenuates postictal seizure protection in rats.

    PubMed

    Jin, Chun-Lei; Zhuge, Zheng-Bing; Wu, Deng-Chang; Zhu, Yuan-Yuan; Wang, Shuang; Luo, Jian-Hong; Chen, Zhong

    2007-03-01

    Postictal seizure protection (PSP) is an endogenous anticonvulsant phenomenon that follows an epileptic seizure and inhibits the induction of further seizures. The tuberomammillary nucleus (TM), located in the posterior hypothalamus, consists of five subregions and is the sole source of histaminergic neurons in the brain. To determine whether the TM is involved in PSP in rats, we tested the effects of bilateral electrolytic lesions of the TM E2-region on seizures induced by intermittent maximal electroshock (MES). The TM E2-region lesions significantly attenuated PSP during the intermittent MES procedure. Furthermore, intracerebroventricular injection of alpha-fluoromethylhistidine (100 microg), a selective and irreversible histidine decarboxylase inhibitor, mimicked the attenuation of PSP induced by the lesion of TM E2-region. In addition, neurochemical experiments revealed that the TM E2-region lesions markedly decreased basal histamine levels in the cortex, hippocampus, brainstem and hypothalamus, but had no significant effect on basal glutamate and GABA levels. Moreover, intermittent MES induced a persistent decrease of brain histamine levels in both sham-operated and lesioned rats. These results indicate that through its intrinsic histaminergic system, the TM may exert powerful inhibitory function during the intermittent MES procedure and actively participate in the mechanisms of PSP.

  6. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    SciTech Connect

    KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  7. Regulation of Hippocampal α1d Adrenergic Receptor mRNA by Corticosterone in Adrenalectomized Rats

    PubMed Central

    Day, Heidi E.W.; Kryskow, Elisa M.; Watson, Stanley J.; Akil, Huda; Campeau, Serge

    2008-01-01

    The hippocampal formation receives extensive noradrenergic projections and expresses high levels of mineralocorticoid (MR) and glucocorticoid (GR) receptors. Considerable evidence suggests that the noradrenergic system influences hippocampal corticosteroid receptors. However, there is relatively little data describing the influence of glucocorticoids on noradrenergic receptors in the hippocampal formation. α1d adrenergic receptor (ADR) mRNA is expressed at high levels in the hippocampal formation, within cells that express MR or GR. In order to determine whether expression of α1d ADR mRNA is influenced by circulating glucocorticoids, male rats underwent bilateral adrenalectomy (ADX) or sham surgery, and were killed after 1, 3, 7 or 14 days. Levels of α1d ADR mRNA were profoundly decreased in hippocampal subfields CA1, CA2 and CA3 and the medial and lateral blades of the dentate gyrus, as early as 1 day after ADX, as determined by in situ hybridization. The effect was specific for the hippocampal formation, with levels of α1d mRNA unaltered by ADX in the lateral amygdala, reticular thalamic nucleus, retrosplenial cortex or primary somatosensory cortex. Additional rats underwent ADX or sham surgery and received a corticosterone pellet (10 or 50 mg) or placebo for 7 days. Corticosterone replacement prevented the ADX-induced decrease in hippocampal α1d ADR mRNA, with the magnitude of effect depending on corticosterone dose and hippocampal subregion. These data indicate that α1d ADR mRNA expression in the hippocampal formation is highly sensitive to circulating levels of corticosterone, and provides further evidence for a close interaction between glucocorticoids and the noradrenergic system in the hippocampus. PMID:18534559

  8. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room

  9. Rab28 is a TBC1D1/TBC1D4 substrate involved in GLUT4 trafficking.

    PubMed

    Zhou, Zhou; Menzel, Franziska; Benninghoff, Tim; Chadt, Alexandra; Du, Chen; Holman, Geoffrey D; Al-Hasani, Hadi

    2017-01-01

    The Rab-GTPase-activating proteins (GAPs) TBC1D1 and TBC1D4 play important roles in the insulin-stimulated translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane in muscle cells and adipocytes. We identified Rab28 as a substrate for the GAP domains of both TBC1D1 and TBC1D4 in vitro. Rab28 is expressed in adipose cells and skeletal muscle, and its GTP-binding state is acutely regulated by insulin. We found that in intact isolated mouse skeletal muscle, siRNA-mediated knockdown of Rab28 decreases basal glucose uptake. Conversely, in primary rat adipose cells, overexpression of Rab28-Q72L, a constitutively active mutant, increases basal cell surface levels of an epitope-tagged HA-GLUT4. Our results indicate that Rab28 is a novel GTPase involved in the intracellular retention of GLUT4 in insulin target cells. © 2016 Federation of European Biochemical Societies.

  10. Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir

    NASA Astrophysics Data System (ADS)

    Lauer, J. Wesley; Viparelli, Enrica; Piégay, Hervé

    2016-07-01

    Bed material transported in geomorphically active gravel bed rivers often has a local source at nearby eroding banks and ends up sequestered in bars not far downstream. However, most 1-D numerical models for gravel transport assume that gravel originates from and deposits on the channel bed. In this paper, we present a 1-D framework for simulating morphodynamic evolution of bed elevation and size distribution in a gravel-bed river that actively exchanges sediment with its floodplain, which is represented as an off-channel sediment reservoir. The model is based on the idea that sediment enters the channel at eroding banks whose elevation depends on total floodplain sediment storage and on the average elevation of the floodplain relative to the channel bed. Lateral erosion of these banks occurs at a specified rate that can represent either net channel migration or channel widening. Transfer of material out of the channel depends on a typical bar thickness and a specified lateral exchange rate due either to net channel migration or narrowing. The model is implemented using an object oriented framework that allows users to explore relationships between bank supply, bed structure, and lateral change rates. It is applied to a ∼50-km reach of the Ain River, France, that experienced significant reduction in sediment supply due to dam construction during the 20th century. Results are strongly sensitive to lateral exchange rates, showing that in this reach, the supply of sand and gravel at eroding banks and the sequestration of gravel in point bars can have strong influence on overall reach-scale sediment budgets.

  11. Developing 1D nanostructure arrays for future nanophotonics

    PubMed Central

    Polanyi, John C; Yang, JodySY; Wu, Zhanghua; Philipose, Usha; Xu, Tao; Yang, Susan; Kavanagh, KL; Liu, JQ; Yang, L; Wang, Y; Robbie, Kevin; Yang, J; Kaminska, K; Cooke, DG; Hegmann, FA; Budz, AJ; Haugen, HK

    2006-01-01

    There is intense and growing interest in one-dimensional (1-D) nanostructures from the perspective of their synthesis and unique properties, especially with respect to their excellent optical response and an ability to form heterostructures. This review discusses alternative approaches to preparation and organization of such structures, and their potential properties. In particular, molecular-scale printing is highlighted as a method for creating organized pre-cursor structure for locating nanowires, as well as vapor–liquid–solid (VLS) templated growth using nano-channel alumina (NCA), and deposition of 1-D structures with glancing angle deposition (GLAD). As regards novel optical properties, we discuss as an example, finite size photonic crystal cavity structures formed from such nanostructure arrays possessing highQand small mode volume, and being ideal for developing future nanolasers.

  12. 1D Josephson quantum interference grids: diffraction patterns and dynamics

    NASA Astrophysics Data System (ADS)

    Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2016-02-01

    We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.

  13. Nonreciprocity of edge modes in 1D magnonic crystal

    NASA Astrophysics Data System (ADS)

    Lisenkov, I.; Kalyabin, D.; Osokin, S.; Klos, J. W.; Krawczyk, M.; Nikitov, S.

    2015-03-01

    Spin waves propagation in 1D magnonic crystals is investigated theoretically. Mathematical model based on plane wave expansion method is applied to different types of magnonic crystals, namely bi-component magnonic crystal with symmetric/asymmetric boundaries and ferromagnetic film with periodically corrugated top surface. It is shown that edge modes in magnonic crystals may exhibit nonreciprocal behaviour at much lower frequencies than in homogeneous films.

  14. Polarization independence of extraordinary transmission trough 1D metallic gratings.

    PubMed

    Ongarello, T; Romanato, F; Zilio, P; Massari, M

    2011-05-09

    Extraordinary optical transmission of 1D metallic gratings is studied. Experimental samples are fabricated by means of Electron Beam Lithography. The optical characterization is focused on far field transmission properties and in particular on polarization dependence of the incident light. A peculiar symmetry in transmission spectra at different polarization angles is shown; this symmetry is studied both experimentally, and numerically with FEM method. A comparison between numerical and experimental data is provided. © 2011 Optical Society of America

  15. Ultrahigh-Q nanocavity with 1D photonic gap.

    PubMed

    Notomi, M; Kuramochi, E; Taniyama, H

    2008-07-21

    Recently, various wavelength-sized cavities with theoretical Q values of approximately 10(8) have been reported, however, they all employ 2D or 3D photonic band gaps to realize strong light confinement. Here we numerically demonstrate that ultrahigh-Q (2.0x10(8)) and wavelength-sized (V(eff) approximately 1.4(lambda/n)3) cavities can be achieved by employing only 1D periodicity.

  16. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  17. CD1d-restricted NKT cells: an interstrain comparison.

    PubMed

    Hammond, K J; Pellicci, D G; Poulton, L D; Naidenko, O V; Scalzo, A A; Baxter, A G; Godfrey, D I

    2001-08-01

    CD1d-restricted Valpha14-Jalpha281 invariant alphabetaTCR(+) (NKT) cells are well defined in the C57BL/6 mouse strain, but they remain poorly characterized in non-NK1.1-expressing strains. Surrogate markers for NKT cells such as alphabetaTCR(+)CD4(-)CD8(-) and DX5(+)CD3(+) have been used in many studies, although their effectiveness in defining this lineage remains to be verified. Here, we compare NKT cells among C57BL/6, NK1.1-congenic BALB/c, and NK1.1-congenic nonobese diabetic mice. NKT cells were identified and compared using a range of approaches: NK1.1 expression, surrogate phenotypes used in previous studies, labeling with CD1d/alpha-galactosylceramide tetramers, and cytokine production. Our results demonstrate that NKT cells and their CD4/CD8-defined subsets are present in all three strains, and confirm that nonobese diabetic mice have a numerical and functional deficiency in these cells. We also highlight the hazards of using surrogate phenotypes, none of which accurately identify NKT cells, and one in particular (DX5(+)CD3(+)) actually excludes these cells. Finally, our results support the concept that NK1.1 expression may not be an ideal marker for CD1d-restricted NKT cells, many of which are NK1.1-negative, especially within the CD4(+) subset and particularly in NK1.1-congenic BALB/c mice.

  18. Examining Prebiotic Chemistry Using O(^1D) Insertion Reactions

    NASA Astrophysics Data System (ADS)

    Hays, Brian M.; Laas, Jacob C.; Weaver, Susanna L. Widicus

    2013-06-01

    Aminomethanol, methanediol, and methoxymethanol are all prebiotic molecules expected to form via photo-driven grain surface chemistry in the interstellar medium (ISM). These molecules are expected to be precursors for larger, biologically-relevant molecules in the ISM such as sugars and amino acids. These three molecules have not yet been detected in the ISM because of the lack of available rotational spectra. A high resolution (sub)millimeter spectrometer coupled to a molecular source is being used to study these molecules using O(^1D) insertion reactions. The O(^1D) chemistry is initiated using an excimer laser, and the products of the insertion reactions are adiabatically cooled using a supersonic expansion. Experimental parameters are being optimized by examination of methanol formed from O(^1D) insertion into methane. Theoretical studies of the structure and reaction energies for aminomethanol, methanediol, and methoxymethanol have been conducted to guide the laboratory studies once the methanol experiment has been optimized. The results of the calculations and initial experimental results will be presented.

  19. Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model

    NASA Astrophysics Data System (ADS)

    Kassebaum, Paul G.; Iannacchione, Germano S.

    The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.

  20. Behavioral Responses in Animal Model of Congenital Muscular Dystrophy 1D.

    PubMed

    Comim, Clarissa M; Schactae, Aryadnne L; Soares, Jaime A; Ventura, Letícia; Freiberger, Viviane; Mina, Francielle; Dominguini, Diogo; Vainzof, Mariz; Quevedo, João

    2016-01-01

    Congenital muscular dystrophies 1D (CMD1D) present a mutation on the LARGE gene and are characterized by an abnormal glycosylation of α-dystroglycan (α-DG), strongly implicated as having a causative role in the development of central nervous system abnormalities such as cognitive impairment seen in patients. However, in the animal model of CMD1D, the brain involvement remains unclear. Therefore, the objective of this study is to evaluate the cognitive involvement in the Large(myd) mice. To this aim, we used adult homozygous, heterozygous, and wild-type mice. The mice underwent six behavioral tasks: habituation to an open field, step-down inhibitory avoidance, continuous multiple trials step-down inhibitory avoidance task, object recognition, elevated plus-maze, and forced swimming test. It was observed that Large(myd) individuals presented deficits on the habituation to the open field, step down inhibitory avoidance, continuous multiple-trials step-down inhibitory avoidance, object recognition, and forced swimming. This study shows the first evidence that abnormal glycosylation of α-DG may be affecting memory storage and restoring process in an animal model of CMD1D.

  1. Synthesis, characterization and photocatalytic activity of 1D TiO2 nanostructures.

    PubMed

    Cabrera, Julieta; Alarcón, Hugo; López, Alcides; Candal, Roberto; Acosta, Dwight; Rodriguez, Juan

    2014-01-01

    Nanowire/nanorod TiO(2) structures of approximately 8 nm in diameter and around 1,000 nm long were synthesized by alkaline hydrothermal treatment of two different TiO(2) nanopowders. The first precursor was TiO(2) obtained by the sol-gel process (SG-TiO(2)); the second was the well-known commercial TiO(2) P-25 (P25-TiO(2)). Anatase-like 1D TiO(2) nanostructures were obtained in both cases. The one-dimensional (1D) nanostructures synthesized from SG-TiO(2) powders turned into rod-like nanostructures after annealing at 400 °C for 2 h. Conversely, the nanostructures synthesized from P25-TiO(2) preserved the tubular structure after annealing, displaying a higher Brunauer-Emmett-Teller surface area than the first system (279 and 97 m²/g, respectively). Despite the higher surface area shown by the 1D nanostructures, in both cases the photocatalytic activity was lower than for the P25-TiO(2) powder. However, the rod-like nanostructures obtained from SG-TiO(2) displayed slightly higher efficiency than the sol-gel prepared powders. The lower photocatalytic activity of the nanostructures with respect to P-25 can be associated with the lower crystallinity of 1D TiO(2) in both materials.

  2. Tensor network simulation of QED on infinite lattices: Learning from (1 +1 ) d , and prospects for (2 +1 ) d

    NASA Astrophysics Data System (ADS)

    Zapp, Kai; Orús, Román

    2017-06-01

    The simulation of lattice gauge theories with tensor network (TN) methods is becoming increasingly fruitful. The vision is that such methods will, eventually, be used to simulate theories in (3 +1 ) dimensions in regimes difficult for other methods. So far, however, TN methods have mostly simulated lattice gauge theories in (1 +1 ) dimensions. The aim of this paper is to explore the simulation of quantum electrodynamics (QED) on infinite lattices with TNs, i.e., fermionic matter fields coupled to a U (1 ) gauge field, directly in the thermodynamic limit. With this idea in mind we first consider a gauge-invariant infinite density matrix renormalization group simulation of the Schwinger model—i.e., QED in (1 +1 ) d . After giving a precise description of the numerical method, we benchmark our simulations by computing the subtracted chiral condensate in the continuum, in good agreement with other approaches. Our simulations of the Schwinger model allow us to build intuition about how a simulation should proceed in (2 +1 ) dimensions. Based on this, we propose a variational ansatz using infinite projected entangled pair states (PEPS) to describe the ground state of (2 +1 ) d QED. The ansatz includes U (1 ) gauge symmetry at the level of the tensors, as well as fermionic (matter) and bosonic (gauge) degrees of freedom both at the physical and virtual levels. We argue that all the necessary ingredients for the simulation of (2 +1 ) d QED are, a priori, already in place, paving the way for future upcoming results.

  3. Thrifty Tbc1d1 and Tbc1d4 proteins link signalling and membrane trafficking pathways

    PubMed Central

    Koumanov, Françoise; Holman, Geoffrey D.

    2007-01-01

    Establishing a complete pathway which links occupancy of the insulin receptor to GLUT4 translocation has been particularly elusive because of the complexities involved in studying both signalling and membrane trafficking processes. However, Lienhard's group has now discovered two related molecules that could function in this linking role. These proteins, Tbc1d4 (also known as AS160) and now Tbc1d1, as reported in this issue of the Biochemical Journal, have been demonstrated to be Rab GAPs (GTPase-activating proteins) that link upstream to Akt (protein kinase B) and phosphoinositide 3-kinase and downstream to Rabs involved in trafficking of GLUT4 vesicles. The data from Leinhard and colleagues suggest that high levels of Rab GAP activity lead to suppression of GLUT4 translocation and this observation has wide significance and is likely to be relevant to the recent discovery that mutations in the Tbc1d1 gene lead to some cases of severe human obesity. PMID:17376030

  4. Localized self-heating in large arrays of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Monereo, O.; Illera, S.; Varea, A.; Schmidt, M.; Sauerwald, T.; Schütze, A.; Cirera, A.; Prades, J. D.

    2016-02-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called ``hot-spots''. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal

  5. Ascites Specific Inhibition of CD1d-Mediated Activation of NKT cells

    PubMed Central

    Webb, Tonya J.; Giuntoli, Robert L.; Rogers, Ophelia; Schneck, Jonathan; Oelke, Mathias

    2009-01-01

    Purpose Natural killer T (NKT) cells recognize lipid antigen presented by CD1 molecules. NKT cells can both directly, through cytotoxicity, and indirectly, through activation of other effector cells, mediate anti-tumor immunity. However, it has been shown that tumor associated lipids are frequently shed into the tumor microenvironment, which can mediate immunosuppressive activity. Given that ovarian cancer associated ascites has been reported to have increased levels of gangliosides, we examined the effect of tumor associated and other ascites on CD1d-mediated antigen presentation to NKT cells. Experimental Design To investigate the effects of ascites on NKT cell activation, we pretreated CD1d-expressing cells with the ascites and measured their ability to stimulate cytokine production in NKT cells. To determine whether antigen processing or editing was necessary, CD1d-Ig-based artificial Antigen Presenting Cells (aAPC) were also incubated with ascites. In addition, to examine specificity, we analyzed whether ascites fluid could influence the activation of classical CD8+ T cells. Results Pretreatment of CD1d-expressing cells with ascites from the majority of patients inhibited the cells’ ability to stimulate/activate NKT cells in a dose-dependent manner. Ascites treatment also partially blocked the ability of α-GalCer loaded CD1d-Ig-based artificial Antigen Presenting Cells (aAPC) to activate NKT cells. In addition, our data demonstrate that treatment with ascites does not inhibit HLA-A2 mediated activation of classical CD8+ T cells. Conclusions Together, these data suggest that ovarian and other cancers may have developed immune evasion mechanisms specifically targeting the CD1/NKT cell system. PMID:19047090

  6. Density matrix spectra and order parameters in the 1D extended Hubbard model

    NASA Astrophysics Data System (ADS)

    Yu, Wing Chi; Gu, Shi-Jian; Lin, Hai-Qing

    2016-09-01

    Without any knowledge of the symmetry existing in a system, we derive the exact forms of the order parameters which show long-range correlations in the ground state of the one-dimensional (1D) extended Hubbard model using a quantum information approach. Our work demonstrates that the quantum information approach can help us to find the explicit form of the order parameter, which could not be derived systematically via traditional methods in the condensed matter theory.

  7. The hippocampal CA2 region is essential for social memory

    PubMed Central

    Hitti, Frederick L.; Siegelbaum, Steven A.

    2014-01-01

    Summary The hippocampus is critical for encoding declarative memory, our repository of knowledge of who, what, where, and when1. Mnemonic information is processed in the hippocampus through several parallel routes involving distinct subregions. In the classic trisynaptic pathway, information proceeds from entorhinal cortex (EC) to dentate gyrus (DG) to CA3 and then to CA1, the main hippocampal output2. Genetic lesions of EC3 and hippocampal DG4, CA35, and CA16 regions have revealed their distinct functions in learning and memory. In contrast, little is known about the role of CA2, a relatively small area interposed between CA3 and CA1 that forms the nexus of a powerful disynaptic circuit linking EC input with CA1 output7. Here, we report a novel transgenic mouse line that enabled us to selectively examine the synaptic connections and behavioral role of the CA2 region in adult mice. Genetically targeted inactivation of CA2 pyramidal neurons caused a pronounced loss of social memory, the ability of an animal to remember a conspecific, with no change in sociability or several other hippocampal-dependent behaviors, including spatial and contextual memory. These behavioral and anatomical results thus reveal CA2 as a critical hub of sociocognitive memory processing. PMID:24572357

  8. The hippocampal CA2 region is essential for social memory.

    PubMed

    Hitti, Frederick L; Siegelbaum, Steven A

    2014-04-03

    The hippocampus is critical for encoding declarative memory, our repository of knowledge of who, what, where and when. Mnemonic information is processed in the hippocampus through several parallel routes involving distinct subregions. In the classic trisynaptic pathway, information proceeds from entorhinal cortex (EC) to dentate gyrus to CA3 and then to CA1, the main hippocampal output. Genetic lesions of EC (ref. 3) and hippocampal dentate gyrus (ref. 4), CA3 (ref. 5) and CA1 (ref. 6) regions have revealed their distinct functions in learning and memory. In contrast, little is known about the role of CA2, a relatively small area interposed between CA3 and CA1 that forms the nexus of a powerful disynaptic circuit linking EC input with CA1 output. Here we report a novel transgenic mouse line that enabled us to selectively examine the synaptic connections and behavioural role of the CA2 region in adult mice. Genetically targeted inactivation of CA2 pyramidal neurons caused a pronounced loss of social memory--the ability of an animal to remember a conspecific--with no change in sociability or several other hippocampus-dependent behaviours, including spatial and contextual memory. These behavioural and anatomical results thus reveal CA2 as a critical hub of sociocognitive memory processing.

  9. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  10. Nanofluidic sustainable energy conversion using a 1D nanofluidic network.

    PubMed

    Kim, Sang Hui; Kwak, Seungmin; Han, Sung Il; Chun, Dong Won; Lee, Kyu Hyoung; Kim, Jinseok; Lee, Jeong Hoon

    2014-05-01

    We propose a 1-dimensional (1D) nanofluidic energy conversion device by implementing a surface-patterned Nafion membrane for the direct energy conversion of the pressure to electrical power. By implementing a -200-nm-thick nano-bridge with a 5-nm pore size between two microfluidic channels, we acquired an effective streaming potential of 307 mV and output power of 94 pW with 0.1 mM KCI under pressure difference of 45 MPa. The experimental results show both the effects of applied pressure differences and buffer concentrations on the effective streaming potential, and are consistent with the analytical prediction.

  11. Deconvolution/identification techniques for 1-D transient signals

    SciTech Connect

    Goodman, D.M.

    1990-10-01

    This paper discusses a variety of nonparametric deconvolution and identification techniques that we have developed for application to 1-D transient signal problems. These methods are time-domain techniques that use direct methods for matrix inversion. Therefore, they are not appropriate for large data'' problems. These techniques involve various regularization methods and permit the use of certain kinds of a priori information in estimating the unknown. These techniques have been implemented in a package using standard FORTRAN that should make the package readily transportable to most computers. This paper is also meant to be an instruction manual for the package. 25 refs., 17 figs., 1 tab.

  12. Breakdown of 1D water wires inside charged carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pant, Shashank

    2016-11-01

    Using molecular dynamics approach we investigated the structure and dynamics of water confined inside pristine and charged 6,6 carbon nanotubes (CNTs). This study reports the breakdown of 1D water wires and the emergence of triangular faced water on incorporating charges in 6,6 CNTs. Incorporation of charges results in high potential barriers to flipping of water molecules due to the formation of large number of hydrogen bonds. The PMF analyses show the presence of ∼2 kcal/mol barrier for the movement of water inside pristine CNT and almost negligible barrier in charged CNTs.

  13. Spatial coherence of polaritons in a 1D channel

    SciTech Connect

    Savenko, I. G.; Iorsh, I. V.; Kaliteevski, M. A.; Shelykh, I. A.

    2013-01-15

    We analyze time evolution of spatial coherence of a polariton ensemble in a quantum wire (1D channel) under constant uniform resonant pumping. Using the theoretical approach based on the Lindblad equation for a one-particle density matrix, which takes into account the polariton-phonon and excitonexciton interactions, we study the behavior of the first-order coherence function g{sup 1} for various pump intensities and temperatures in the range of 1-20 K. Bistability and hysteresis in the dependence of the first-order coherence function on the pump intensity is demonstrated.

  14. Nonlocal order parameters for the 1D Hubbard model.

    PubMed

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-07

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point U(c)=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at U(c). The behavior of the parity correlators is captured by an effective free spinless fermion model.

  15. Nonlocal Order Parameters for the 1D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-01

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point Uc=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at Uc. The behavior of the parity correlators is captured by an effective free spinless fermion model.

  16. ESO science data product standard for 1D spectral products

    NASA Astrophysics Data System (ADS)

    Micol, Alberto; Arnaboldi, Magda; Delmotte, Nausicaa A. R.; Mascetti, Laura; Retzlaff, Joerg

    2016-07-01

    The ESO Phase 3 process allows the upload, validation, storage, and publication of reduced data through the ESO Science Archive Facility. Since its introduction, 2 million data products have been archived and published; 80% of them are one-dimensional extracted and calibrated spectra. Central to Phase3 is the ESO science data product standard that defines metadata and data format of any product. This contribution describes the ESO data standard for 1d-spectra, its adoption by the reduction pipelines of selected instrument modes for in-house generation of reduced spectra, the enhanced archive legacy value. Archive usage statistics are provided.

  17. 1-D blood flow modelling in a running human body.

    PubMed

    Szabó, Viktor; Halász, Gábor

    2017-04-10

    In this paper an attempt was made to simulate blood flow in a mobile human arterial network, specifically, in a running human subject. In order to simulate the effect of motion, a previously published immobile 1-D model was modified by including an inertial force term into the momentum equation. To calculate inertial force, gait analysis was performed at different levels of speed. Our results show that motion has a significant effect on the amplitudes of the blood pressure and flow rate but the average values are not effected significantly.

  18. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed

    2016-11-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.

  19. Statistical mechanics of a one-component fluid of charged hard rods in 1D

    NASA Astrophysics Data System (ADS)

    Vericat, Fernando; Blum, Lesser

    1987-09-01

    The statistical mechanics of a classical one-component system of charged hard rods in a neutralizing background is investigated in 1D stressing on the effects of the hard-core interactions over the thermodynamics and the structure of the system. The crystalline status of the system at all temperatures and densities and the absence of phase transitions is shown by extending previous results of Baxter (1963) and Kunz (1974) on the one-component plasma of point particles. Explicit expressions for the thermodynamic functions and the one-particle correlation function are given in the limits of small and strong couplings.

  20. Simulations of Edge Effect in 1D Spin Crossover Compounds by Atom-Phonon Coupling Model

    NASA Astrophysics Data System (ADS)

    Linares, J.; Chiruta, D.; Jureschi, C. M.; Alayli, Y.; Turcu, C. O.; Dahoo, P. R.

    2016-08-01

    We used the atom-phonon coupling model to explain and illustrate the behaviour of a linear nano-chain of molecules. The analysis of the system's behaviour was performed using Free Energy method, and by applying Monte Carlo Metropolis (MCM) method which take into account the phonon contribution. In particular we tested both the MCM algorithm and the dynamic-matrix method and we expose how the thermal behaviour of a 1D spin crossover system varies as a function of different factors. Furthermore we blocked the edge atoms of the chain in its high spin state to study the effect on the system's behaviour.

  1. A simple quasi-1D model of Fibonacci anyons

    NASA Astrophysics Data System (ADS)

    Aasen, David; Mong, Roger; Clarke, David; Alicea, Jason; Fendley, Paul

    2015-03-01

    There exists various ways of understanding the topological properties of Ising anyons--from simple free-fermion toy models to formal topological quantum field theory. For other types of anyons simple toy models rarely exist; their properties have to be obtained using formal self-consistency relations. We explore a family of gapped 1D local bosonic models that in a certain limit become trivial to solve and provide an intuitive picture for Fibonacci anyons. One can interpret this model as a quasi-1D wire that forms the building block of a 2D topological phase with Fibonacci anyons. With this interpretation all topological properties of the Fibonacci anyons become manifest including ground state degeneracy and braid relations. We conjecture that the structure of the model is protected by an emergent symmetry analogous to fermion parity. 1) NSF Grant DMR-1341822 2) Institute for Quantum Information and Matter, an NSF physics frontier center with support from the Moore Foundation. 3) NSERC-PGSD.

  2. Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal

    PubMed Central

    Shaban, Mohamed; Ahmed, Ashour M.; Abdel-Rahman, Ehab; Hamdy, Hany

    2017-01-01

    Gold/one-dimensional photonic crystal (Au/1D-PC) is fabricated and applied for sensitive sensing of glucose and different chemical molecules of various refractive indices. The Au layer thickness is optimized to produce surface plasmon resonance (SPR) at the right edge of the photonic band gap (PBG). As the Au deposition time increased to 60 sec, the PBG width is increased from 46 to 86 nm in correlation with the behavior of the SPR. The selectivity of the optimized Au/1D-PC sensor is tested upon the increase of the environmental refractive index of the detected molecules. The resonance wavelength and the PBG edges increased linearly and the transmitted intensity increased nonlinearly as the environment refractive index increased. The SPR splits to two modes during the detection of chloroform molecules based on the localized capacitive coupling of Au particles. Also, this structure shows high sensitivity at different glucose concentrations. The PBG and SPR are shifted to longer wavelengths, and PBG width is decreased linearly with a rate of 16.04 Å/(μg/mm3) as the glucose concentration increased. The proposed structure merits; operation at room temperature, compact size, and easy fabrication; suggest that the proposed structure can be efficiently used for the biomedical and chemical application. PMID:28176799

  3. Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Ahmed, Ashour M.; Abdel-Rahman, Ehab; Hamdy, Hany

    2017-02-01

    Gold/one-dimensional photonic crystal (Au/1D-PC) is fabricated and applied for sensitive sensing of glucose and different chemical molecules of various refractive indices. The Au layer thickness is optimized to produce surface plasmon resonance (SPR) at the right edge of the photonic band gap (PBG). As the Au deposition time increased to 60 sec, the PBG width is increased from 46 to 86 nm in correlation with the behavior of the SPR. The selectivity of the optimized Au/1D-PC sensor is tested upon the increase of the environmental refractive index of the detected molecules. The resonance wavelength and the PBG edges increased linearly and the transmitted intensity increased nonlinearly as the environment refractive index increased. The SPR splits to two modes during the detection of chloroform molecules based on the localized capacitive coupling of Au particles. Also, this structure shows high sensitivity at different glucose concentrations. The PBG and SPR are shifted to longer wavelengths, and PBG width is decreased linearly with a rate of 16.04 Å/(μg/mm3) as the glucose concentration increased. The proposed structure merits; operation at room temperature, compact size, and easy fabrication; suggest that the proposed structure can be efficiently used for the biomedical and chemical application.

  4. Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal.

    PubMed

    Shaban, Mohamed; Ahmed, Ashour M; Abdel-Rahman, Ehab; Hamdy, Hany

    2017-02-08

    Gold/one-dimensional photonic crystal (Au/1D-PC) is fabricated and applied for sensitive sensing of glucose and different chemical molecules of various refractive indices. The Au layer thickness is optimized to produce surface plasmon resonance (SPR) at the right edge of the photonic band gap (PBG). As the Au deposition time increased to 60 sec, the PBG width is increased from 46 to 86 nm in correlation with the behavior of the SPR. The selectivity of the optimized Au/1D-PC sensor is tested upon the increase of the environmental refractive index of the detected molecules. The resonance wavelength and the PBG edges increased linearly and the transmitted intensity increased nonlinearly as the environment refractive index increased. The SPR splits to two modes during the detection of chloroform molecules based on the localized capacitive coupling of Au particles. Also, this structure shows high sensitivity at different glucose concentrations. The PBG and SPR are shifted to longer wavelengths, and PBG width is decreased linearly with a rate of 16.04 Å/(μg/mm(3)) as the glucose concentration increased. The proposed structure merits; operation at room temperature, compact size, and easy fabrication; suggest that the proposed structure can be efficiently used for the biomedical and chemical application.

  5. Measuring the Speed of Sound in a 1D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fry, Jacob; Revelle, Melissa; Hulet, Randall

    2016-05-01

    We report measurements of the speed of sound in a two-spin component, 1D gas of fermionic lithium. The 1D system is an array of one-dimensional tubes created by a 2D optical lattice. By increasing the lattice depth, the tunneling between tubes is sufficiently small to make each an independent 1D system. To measure the speed of sound, we create a density notch at the center of the atom cloud using a sheet of light tuned far from resonance. The dipole force felt by both spin states will be equivalent, so this notch can be thought of as a charge excitation. Once this beam is turned off, the notch propagates to the edge of the atomic cloud with a velocity that depends on the strength of interatomic interactions. We control interactions using a magnetically tuned Feshbach resonance, allowing us to measure the speed of sound over a wide range of interaction. This method may be used to extract the Luttinger parameter vs. interaction strength. Supported by an ARO MURI Grant, NSF, and The Welch Foundation.

  6. Study on Development of 1D-2D Coupled Real-time Urban Inundation Prediction model

    NASA Astrophysics Data System (ADS)

    Lee, Seungsoo

    2017-04-01

    In recent years, we are suffering abnormal weather condition due to climate change around the world. Therefore, countermeasures for flood defense are urgent task. In this research, study on development of 1D-2D coupled real-time urban inundation prediction model using predicted precipitation data based on remote sensing technology is conducted. 1 dimensional (1D) sewerage system analysis model which was introduced by Lee et al. (2015) is used to simulate inlet and overflow phenomena by interacting with surface flown as well as flows in conduits. 2 dimensional (2D) grid mesh refinement method is applied to depict road networks for effective calculation time. 2D surface model is coupled with 1D sewerage analysis model in order to consider bi-directional flow between both. Also parallel computing method, OpenMP, is applied to reduce calculation time. The model is estimated by applying to 25 August 2014 extreme rainfall event which caused severe inundation damages in Busan, Korea. Oncheoncheon basin is selected for study basin and observed radar data are assumed as predicted rainfall data. The model shows acceptable calculation speed with accuracy. Therefore it is expected that the model can be used for real-time urban inundation forecasting system to minimize damages.

  7. Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model.

    PubMed

    Wang, Xiaofei; Fullana, Jose-Maria; Lagrée, Pierre-Yves

    2015-01-01

    A reliable and fast numerical scheme is crucial for the 1D simulation of blood flow in compliant vessels. In this paper, a 1D blood flow model is incorporated with a Kelvin-Voigt viscoelastic arterial wall. This leads to a nonlinear hyperbolic-parabolic system, which is then solved with four numerical schemes, namely: MacCormack, Taylor-Galerkin, monotonic upwind scheme for conservation law and local discontinuous Galerkin. The numerical schemes are tested on a single vessel, a simple bifurcation and a network with 55 arteries. The numerical solutions are checked favorably against analytical, semi-analytical solutions or clinical observations. Among the numerical schemes, comparisons are made in four important aspects: accuracy, ability to capture shock-like phenomena, computational speed and implementation complexity. The suitable conditions for the application of each scheme are discussed.

  8. Component twist method for higher twists in D1-D5 CFT

    NASA Astrophysics Data System (ADS)

    Carson, Zaq; Jardine, Ian T.; Peet, Amanda W.

    2017-07-01

    The deformation operator of the D1-D5 orbifold CFT, a twist-2 operator, drives the CFT towards the black hole dual, and its physics is key to understanding thermalization in the D1-D5 system. To further study this deformation, we extend previous work on the effect of twist-2 operators to a method that works for higher orders, in the continuum limit. Our component twist method works by building higher-twist operators out of twist-2 operators, together with knowledge of Bogoliubov transformations. Consequently, this method sidesteps limitations in Lunin-Mathur technology by avoiding lifts to the covering space. We verify the method by reproducing results obtainable with Lunin-Mathur technology. Going further, our method upholds a previously conjectured scaling law in the continuum limit that applies to any generic configuration of twists. We illustrate this with computations for a new configuration of two twist-2 operators that twists three copies together.

  9. Axion string dynamics I: 2+1D

    SciTech Connect

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-03

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  10. The molecular spin filter constructed from 1D organic chain

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Xu, Ning; Wang, Baolin; Bian, Baoan

    2014-06-01

    We proposed a molecular spin filter, which is constructed from the 1D metallic organic chain (Fen+1(C6H4)n). The spin-polarized transport properties of the molecular spin filter are explored by combining density functional theory with nonequilibrium Green's function formalism. Theoretical results reveal that Fen+1(C6H4)n molecular chain exhibits robust spin filtering effect, and only the spin-down electrons can transmit through the molecular chain. At the given bias voltage window [-1 eV,1 eV], the calculated spin filter efficiency is close to 100% in the case of n≥3. We find that the effect of spin polarization origin from both Fen+1 and (C6H4)n. In addition, negative difference resistance behavior appears in Fen+1(C6H4)n molecular chain. The results can help us understand the spin transport properties of organic molecular chain.

  11. Statistical analysis of 1D HRR target features

    NASA Astrophysics Data System (ADS)

    Gross, David C.; Schmitz, James L.; Williams, Robert L.

    2000-08-01

    Automatic target recognition (ATR) and feature-aided tracking (FAT) algorithms that use one-dimensional (1-D) high range resolution (HRR) profiles require unique or distinguishable target features. This paper explores the use of statistical measures to quantify the separability and stability of ground target features found in HRR profiles. Measures of stability, such as the mean and variance, can be used to determine the stability of a target feature as a function of the target aspect and elevation angle. Statistical measures of feature predictability and separability, such as the Fisher and Bhattacharyya measures, demonstrate the capability to adequately predict the desired target feature over a specified aspect angular region. These statistical measures for separability and stability are explained in detail and their usefulness is demonstrated with measured HRR data.

  12. Effective theory of black holes in the 1/D expansion

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-06-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this `black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/ D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for `black droplets', i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

  13. Connected components of irreducible maps and 1D quantum phases

    SciTech Connect

    Szehr, Oleg; Wolf, Michael M.

    2016-08-15

    We investigate elementary topological properties of sets of completely positive (CP) maps that arise in quantum Perron-Frobenius theory. We prove that the set of primitive CP maps of fixed Kraus rank is path-connected and we provide a complete classification of the connected components of irreducible CP maps at given Kraus rank and fixed peripheral spectrum in terms of a multiplicity index. These findings are then applied to analyse 1D quantum phases by studying equivalence classes of translational invariant matrix product states that correspond to the connected components of the respective CP maps. Our results extend the previously obtained picture in that they do not require blocking of physical sites, they lead to analytic paths, and they allow us to decompose into ergodic components and to study the breaking of translational symmetry.

  14. Axion string dynamics I: 2+1D

    NASA Astrophysics Data System (ADS)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-01

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  15. Conductance anomalies in quantum point contacts and 1D wires

    NASA Astrophysics Data System (ADS)

    Das, Mukunda P.; Green, Frederick

    2017-06-01

    Over the last decade, interest in 1D charge transport has progressed from the seminal discovery of Landauer quantization of conductance, as a function of carrier density, to finer-scale phenomena at the onset of quantization. This has come to be called the ‘0.7 anomaly’, rather connoting a theoretical mystery of some profundity and universality, which remains open to date. Its somewhat imaginative appellation may tend to mislead, since the anomaly manifests itself over a range of conductance values: anywhere between 0.25-0.95 Landauer quanta. In this paper we offer a critique of the 0.7 anomaly and discuss the extent to which it represents a deep question of physics. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  16. Carbon Nanotubes for the Generation and Imaging of Interacting 1D States of Matter

    NASA Astrophysics Data System (ADS)

    Waissman, Jonah

    Low-dimensional systems in condensed matter physics exhibit a rich array of correlated electronic phases. One-dimensional systems stand out in this regard. Electrons cannot avoid each other in 1D, enhancing the effects of interactions. The resulting correlations leave distinct spatial imprints on the electronic density that can be imaged with scanning probes. Disorder, however, can destroy these delicate interacting states by breaking up the electron liquid into localized pieces. Thus, to generate fragile interacting quantum states, one requires an extremely clean system in which disorder does not overcome interactions, as well as a high degree of tunability to design potential landscapes. Furthermore, to directly measure the resulting spatial correlations, one requires an exceptionally sensitive scanning probe, but the most sensitive probes presently available are also invasive, perturbing the system and screening electron-electron interactions. In this thesis, we show how carbon nanotubes allow us to create pristine 1D electronic systems with unparalleled tunability. By realizing a new approach to device fabrication based on deterministic nano-assembly, we create devices of high complexity and low disorder by selectively attaching nanotubes of chosen bandgaps and cleanliness onto devices with large numbers of local gates. Using precision nano-assembly, we also demonstrate devices with multiple nanotubes placed at pre-determined locations. We then demonstrate the use of these devices as scanning charge detectors with the ability to image electrostatic potentials and to spatially resolve charging in a second nanotube device. By placing two such nanotube devices perpendicular to each other and bringing the two nanotubes into close proximity to each other, while distancing metal electrodes using our precise control over device geometry, we can use these devices as highly sensitive, high-resolution charge detectors that are also non-invasive. The capability to make

  17. Evaluating 1d Seismic Models of the Lunar Interior

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Thorne, M. S.; Weber, R. C.; Schmerr, N. C.

    2012-12-01

    A four station seismic network was established on the Moon from 1969 to 1977 as part of the Apollo Lunar Surface Experiment Package (ALSEP). A total of nine 1D seismic velocity models were generated using a variety of different techniques. In spite of the fact that these models were generated from the same data set, significant differences exist between them. We evaluate these models by comparing predicted travel-times to published catalogs of lunar events. We generate synthetic waveform predictions for 1D lunar models using a modified version of the Green's Function of the Earth by Minor Integration (GEMINI) technique. Our results demonstrate that the mean square errors between predicted and measured P-wave travel times are smaller than those for S-wave travel times in all cases. Moreover, models fit travel times for artificial and meteoroid impacts better than for shallow and deep moonquakes. Overall, models presented by Nakamura [Nakamura, 1983] and Garcia et al. [Garcia et al., 2011] predicted the observed travel times better than all other models and were comparable in their explanation of travel-times. Nevertheless, significant waveform differences exist between these models. In particular, the seismic velocity structure of the lunar crust and regolith strongly affect the waveform characteristics predicted by these models. Further complexity is added by possible mantle discontinuity structure that exists in a subset of these models. We show synthetic waveform predictions for these models demonstrating the role that crustal structure has in generating long duration seismic coda inherent in the lunar waveforms.

  18. Evidence against dopamine D1/D2 receptor heteromers.

    PubMed

    Frederick, A L; Yano, H; Trifilieff, P; Vishwasrao, H D; Biezonski, D; Mészáros, J; Urizar, E; Sibley, D R; Kellendonk, C; Sonntag, K C; Graham, D L; Colbran, R J; Stanwood, G D; Javitch, J A

    2015-11-01

    Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation, because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer, ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout (KO) mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq KO mice, as well as in knock-in mice expressing a mutant Ala(286)-CaMKIIα that cannot autophosphorylate to become active. Moreover, we found that, in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1/D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies.

  19. Inhibition of CD1d-mediated antigen presentation by the transforming growth factor-β/Smad signalling pathway.

    PubMed

    Bailey, Jennifer C; Iyer, Abhirami K; Renukaradhya, Gourapura J; Lin, Yinling; Nguyen, Hoa; Brutkiewicz, Randy R

    2014-12-01

    CD1d-mediated lipid antigen presentation activates a subset of innate immune lymphocytes called invariant natural killer T (NKT) cells that, by virtue of their potent cytokine production, bridge the innate and adaptive immune systems. Transforming growth factor (TGF-β) is a known immune modulator that can activate the mitogen-activated protein kinase p38; we have previously shown that p38 is a negative regulator of CD1d-mediated antigen presentation. Several studies implicate a role for TGF-β in the activation of p38. Therefore, we hypothesized that TGF-β would impair antigen presentation by CD1d. Indeed, a dose-dependent decrease in CD1d-mediated antigen presentation and impairment of lipid antigen processing was observed in response to TGF-β treatment. However, it was found that this inhibition was not through p38 activation. Instead, Smads 2, 3 and 4, downstream elements of the TGF-β canonical signalling pathway, contributed to the observed effects. In marked contrast to that observed with CD1d, TGF-β was found to enhance MHC class II-mediated antigen presentation. Overall, these results suggest that the canonical TGF-β/Smad pathway negatively regulates an important arm of the host's innate immune responses - CD1d-mediated lipid antigen presentation to NKT cells.

  20. Characterization of the interaction of staphylococcal enterotoxin B with CD1d expressed in human renal proximal tubule epithelial cells.

    PubMed

    Hammamieh, Rasha; Chakraborty, Nabarun; Lin, Yixin; Shupp, Jeffrey W; Miller, Stacy-Ann; Morris, Sam; Jett, Marti

    2015-02-04

    Participation of renal cells in the pathogenesis of staphylococcal enterotoxin B (SEB) is critical for late cleansing and sequestration of the antigens facilitated by CD1d mediated antigen sensing and recognition. This is a noted deviation from the typical antigen recognition process that recruits the major histocompatibility complex class II (MHC II) molecules. The immunological importance of CD1d is underscored by its influences on the performances of natural killer T-cells and thereby mediates the innate and adaptive immune systems. Using diffraction-based dotReady™ immunoassays, the present study showed that SEB directly and specifically conjugated to CD1d. The specificity of the conjugation between SEB and CD1d expressed on human renal proximal tubule epithelial cells (RPTEC) was further established by selective inhibition of CD1d prior to its exposure to SEB. We found that SEB induced the expression of CD1d on the cell surface prompting a rapid conjugation between them. The mRNA transcripts encoding CD1d remained elevated potentially after completing the antigen cleansing process. Molecular targets associated with the delayed pathogenic response have essential therapeutic values. Particularly in the event of bioterrorism, the caregivers are typically able to intervene much later than the toxic exposures. Given circumstances mandate a paradigm shift from the conventional therapeutic strategy that counts on targeting the host markers responding to the early assault of pathogens. We demonstrated the role of CD1d in the late stage of pathogen recognition and cleansing, and thereby underscored its clinical potential in treating bioweaponizable antigens, such as Staphylococcal enterotoxin B (SEB).

  1. Functional CD1d and/or NKT cell invariant chain transcript in horse, pig, African elephant and guinea pig, but not in ruminants

    PubMed Central

    Looringh van Beeck, Frank A.; Reinink, Peter; Hermsen, Roel; Zajonc, Dirk M.; Laven, Marielle J.; Fun, Axel; Troskie, Milana; Schoemaker, Nico J.; Morar, Darshana; Lenstra, Johannes A.; Vervelde, Lonneke; Rutten, Victor P.M.G.; van Eden, Willem; Van Rhijn, Ildiko

    2009-01-01

    CD1d-restricted invariant natural killer T cells (NKT cells) have been well characterized in humans and mice, but it is unknown whether they are present in other species. Here we describe the invariant TCR α chain and the full length CD1d transcript of pig and horse. Molecular modeling predicts that porcine (po) invariant TCR α chain/poCD1d/α-GalCer and equine (eq) invariant TCR α chain/eqCD1d/α-GalCer form complexes that are highly homologous to the human complex. Since a prerequisite for the presence of NKT cells is the expression of CD1d protein, we performed searches for CD1D genes and CD1d transcripts in multiple species. Previously, cattle and guinea pig have been suggested to lack CD1D genes. The CD1D genes of European taurine cattle (Bos taurus) are known to be pseudogenes because of disrupting mutations in the start codon and in the donor splice site of the first intron. Here we show that the same mutations are found in six other ruminants: African buffalo, sheep, bushbuck, bongo, N’Dama cattle, and roe deer. In contrast, intact CD1d transcripts were found in guinea pig, African elephant, horse, rabbit, and pig. Despite the discovery of a highly homologous NKT/CD1d system in pig and horse, our data suggest that functional CD1D and CD1d-restricted NKT cells are not universally present in mammals. PMID:19185921

  2. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection

    DOE PAGES

    Phatak, C.; Knoop, L. de; Houdellier, F.; ...

    2016-05-01

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as wellmore » as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.« less

  3. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection

    SciTech Connect

    Phatak, C.; Knoop, L. de; Houdellier, F.; Gatel, C.; Hÿtch, M. J.; Masseboeuf, A.

    2016-05-01

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.

  4. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection

    SciTech Connect

    Phatak, C.; Knoop, L. de; Houdellier, F.; Gatel, C.; Hÿtch, M. J.; Masseboeuf, A.

    2016-05-01

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.

  5. Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cao, Zhang; Li, Fangyan; Lin, Yuzhen; Xu, Lijun

    2017-05-01

    Distributions of temperature and H2O concentration in a swirling flame are critical to evaluate the performance of a gas turbine combustor. In this paper, 1D tunable diode laser absorption spectroscopy tomography (1D-TDLAST) was introduced to monitor swirling flames generated from a model swirl injector by simultaneously reconstructing the rotationally symmetric distributions of temperature and H2O concentration. The optical system was sufficiently simplified by introducing only one fan-beam illumination and a linear detector array of 12 equally-spaced photodetectors. The fan-beam illumination penetrated a cross section of interest in the swirling flame and the transmitted intensities were detected by the detector array. With the transmitted intensities in hand, projections were extracted and employed by a 1D tomographic algorithm to reconstruct the distributions of temperature and H2O concentration. The route of the precessing vortex core generated in the swirling flame can be easily inferred from the reconstructed profiles of temperature and H2O concentration at different heights above the nozzle of the swirl injector.

  6. Improved HMQC-Type and HSQC-Type 1D Spectra Using Pulsed Field Gradients

    NASA Astrophysics Data System (ADS)

    Parella, T.; Sanchezferrando, F.; Virgili, A.

    A family of 1D methods are described using a combination of HSQC-type (or HMQC-type) heteronuclear preparation blocks with homonuclear transfer schemes, such as COSY, n-step RELAY, TOCSY, ROESY, and NOESY, in order to reveal direct or long-range heteronuclear connectivities, as well as relayed (scalar or dipolar) interproton connectivities. Two essential features of this approach are: (i) selective carbon excitation simultaneous with a proton spin-lock period, to avoid dephasing during the selective carbon pulse length; and (ii) coherence selection by pulsed field gradients of the desired coherences, to improve time performance and get cleaner spectra devoid of artifacts usually produced by imperfect subtraction when using phase-cycling methods. The resulting high-quality 1D spectra allow the easy extraction of accurate values for the relevant homo- and heteronuclear coupling constants. This approach is particularly useful when strongly overlapped proton systems prevent the application of conventional 1D experiments based on proton-selective excitation. Results are presented for sucrose.

  7. Secure information embedding into 1D biomedical signals based on SPIHT.

    PubMed

    Rubio, Oscar J; Alesanco, Alvaro; García, José

    2013-08-01

    This paper proposes an encoding system for 1D biomedical signals that allows embedding metadata and provides security and privacy. The design is based on the analysis of requirements for secure and efficient storage, transmission and access to medical tests in e-health environment. This approach uses the 1D SPIHT algorithm to compress 1D biomedical signals with clinical quality, metadata embedding in the compressed domain to avoid extra distortion, digital signature to implement security and attribute-level encryption to support Role-Based Access Control. The implementation has been extensively tested using standard electrocardiogram and electroencephalogram databases (MIT-BIH Arrhythmia, MIT-BIH Compression and SCCN-EEG), demonstrating high embedding capacity (e.g. 3 KB in resting ECGs, 200 KB in stress tests, 30 MB in ambulatory ECGs), short delays (2-3.3s in real-time transmission) and compression of the signal (by ≃3 in real-time transmission, by ≃5 in offline operation) despite of the embedding of security elements and metadata to enable e-health services.

  8. Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns

    NASA Astrophysics Data System (ADS)

    Dong, Pinliang

    2009-10-01

    Spatial scale plays an important role in many fields. As a scale-dependent measure for spatial heterogeneity, lacunarity describes the distribution of gaps within a set at multiple scales. In Earth science, environmental science, and ecology, lacunarity has been increasingly used for multiscale modeling of spatial patterns. This paper presents the development and implementation of a geographic information system (GIS) software extension for lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Depending on the application requirement, lacunarity analysis can be performed in two modes: global mode or local mode. The extension works for: (1) binary (1-bit) and grey-scale datasets in any raster format supported by ArcGIS and (2) 1D, 2D, and 3D point datasets as shapefiles or geodatabase feature classes. For more effective measurement of lacunarity for different patterns or processes in raster datasets, the extension allows users to define an area of interest (AOI) in four different ways, including using a polygon in an existing feature layer. Additionally, directionality can be taken into account when grey-scale datasets are used for local lacunarity analysis. The methodology and graphical user interface (GUI) are described. The application of the extension is demonstrated using both simulated and real datasets, including Brodatz texture images, a Spaceborne Imaging Radar (SIR-C) image, simulated 1D points on a drainage network, and 3D random and clustered point patterns. The options of lacunarity analysis and the effects of polyline arrangement on lacunarity of 1D points are also discussed. Results from sample data suggest that the lacunarity analysis extension can be used for efficient modeling of spatial patterns at multiple scales.

  9. Assembling carbon fiber-graphene-carbon fiber hetero-structures into 1D-2D-1D junction fillers and patterned structures for improved microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Huimin; Liu, Lin; Li, Hai-Bing; Song, Wei-Li; Bian, Xing-Ming; Zhao, Quan-Liang; Chen, Mingji; Yuan, Xujin; Chen, Haosen; Fang, Daining

    2017-04-01

    Since carbon-based structures of various dimensions, including one-dimensional (1D) carbon nanotubes, two-dimensional (2D) graphene and three-dimensional (3D) carbon foams, have attracted significant attention as microwave absorption fillers, we present an exceptional hetero-junction filler with a 1D-2D-1D feature, achieved by manipulating 2D graphene into 1D carbon fibers in the fiber-extruding process under the electric field. The as-fabricated 1D-2D-1D structural fillers exhibited much-improved dielectric properties and promoted microwave absorption performance in their composites, which is linked to the establishment of enhanced polarization capability, the generation of increased electric loss pathway and the creation of more favorable electromagnetic energy consumption conditions. The results suggest that employing 2D graphene in the 1D-2D-1D nanostructures played the critical role in tuning the electromagnetic response ability, because of its intrinsic electric advantages and dimensional features. To broaden the effective absorption bandwidth, periodic pattern-absorbing structures were designed, which showed combined absorption advantages for various thicknesses. Our strategy for fabricating 1D-2D-1D structural fillers illuminates a universal approach for manipulating dimensions and structures in the nanotechnology.

  10. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle.

    PubMed

    Cartee, Gregory D

    2015-01-01

    This review focuses on two paralogue Rab GTPase activating proteins known as TBC1D1 Tre-2/BUB2/cdc 1 domain family (TBC1D) 1 and TBC1D4 (also called Akt Substrate of 160 kDa, AS160) and their roles in controlling skeletal muscle glucose transport in response to the independent and combined effects of insulin and exercise. Convincing evidence implicates Akt2-dependent TBC1D4 phosphorylation on T642 as a key part of the mechanism for insulin-stimulated glucose uptake by skeletal muscle. TBC1D1 phosphorylation on several insulin-responsive sites (including T596, a site corresponding to T642 in TBC1D4) does not appear to be essential for in vivo insulin-stimulated glucose uptake by skeletal muscle. In vivo exercise or ex vivo contraction of muscle result in greater TBC1D1 phosphorylation on S237 that is likely to be secondary to increased AMP-activated protein kinase activity and potentially important for contraction-stimulated glucose uptake. Several studies that evaluated both normal and insulin-resistant skeletal muscle stimulated with a physiological insulin concentration after a single exercise session found that greater post-exercise insulin-stimulated glucose uptake was accompanied by greater TBC1D4 phosphorylation on several sites. In contrast, enhanced post-exercise insulin sensitivity was not accompanied by greater insulin-stimulated TBC1D1 phosphorylation. The mechanism for greater TBC1D4 phosphorylation in insulin-stimulated muscles after acute exercise is uncertain, and a causal link between enhanced TBC1D4 phosphorylation and increased post-exercise insulin sensitivity has yet to be established. In summary, TBC1D1 and TBC1D4 have important, but distinct roles in regulating muscle glucose transport in response to insulin and exercise.

  11. Low-field single-sided NMR for one-shot 1D-mapping: Application to membranes

    NASA Astrophysics Data System (ADS)

    Judeinstein, Patrick; Ferdeghini, Filippo; Oliveira-Silva, Rodrigo; Zanotti, Jean-Marc; Sakellariou, Dimitrios

    2017-04-01

    Many single-sided permanent magnet NMR systems have been proposed over the years allowing for 1D proton-density profiling, diffusion measurements and relaxometry. In this manuscript we make use of a recently published unilateral magnet for low-field NMR exhibiting an extremely uniform magnetic field gradient with moderate strength and cylindrical symmetry, allowing for a well-defined sweet spot. Combined with a goniometer, our system is used to characterize precisely the uniformity of its gradient and to achieve micrometric precision 1D profiling, as well as spatially localized relaxometry and diffusometry on thick (∼150 μm) membrane samples. Profiling with this magnet did not require repositioning of the samples with respect to the 1D tomograph.

  12. Energy eigenfunctions of the 1D Gross-Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Marojević, Želimir; Göklü, Ertan; Lämmerzahl, Claus

    2013-08-01

    We developed a new and powerful algorithm by which numerical solutions for excited states in a gravito-optical surface trap have been obtained. They represent solutions in the regime of strong nonlinearities of the Gross-Pitaevskii equation. In this context we also briefly review several approaches which allow, in principle, for calculating excited state solutions. It turns out that without modifications these are not applicable to strongly nonlinear Gross-Pitaevskii equations. The importance of studying excited states of Bose-Einstein condensates is also underlined by a recent experiment of Bücker et al. in which vibrational state inversion of a Bose-Einstein condensate has been achieved by transferring the entire population of the condensate to the first excited state. Here we focus on demonstrating the applicability of our algorithm for three different potentials by means of numerical results for the energy eigenstates and eigenvalues of the 1D Gross-Pitaevskii-equation. We compare the numerically found solutions and find out that they completely agree with the case of known analytical solutions.

  13. Low complexity 1D IDCT for 16-bit parallel architectures

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2007-09-01

    This paper shows that using the Loeffler, Ligtenberg, and Moschytz factorization of 8-point IDCT [2] one-dimensional (1-D) algorithm as a fast approximation of the Discrete Cosine Transform (DCT) and using only 16 bit numbers, it is possible to create in an IEEE 1180-1990 compliant and multiplierless algorithm with low computational complexity. This algorithm as characterized by its structure is efficiently implemented on parallel high performance architectures as well as due to its low complexity is sufficient for wide range of other architectures. Additional constraint on this work was the requirement of compliance with the existing MPEG standards. The hardware implementation complexity and low resources where also part of the design criteria for this algorithm. This implementation is also compliant with the precision requirements described in MPEG IDCT precision specification ISO/IEC 23002-1. Complexity analysis is performed as an extension to the simple measure of shifts and adds for the multiplierless algorithm as additional operations are included in the complexity measure to better describe the actual transform implementation complexity.

  14. 1-D Modeling of Massive Particle Injection (MPI) in Tokamaks

    NASA Astrophysics Data System (ADS)

    Wu, W.; Parks, P. B.; Izzo, V. A.

    2008-11-01

    A 1-D Fast Current Quench (FCQ) model is developed to study current evolution and runaway electron suppression under massive density increase. The model consists of coupled toroidal electric field and energy equations, and it is solved numerically for DIII-D and ITER operating conditions. Simulation results suggest that fast shutdown by D2 liquid jet/pellet injection is in principle achievable for the desired plasma cooling time (˜15 ms for DIII-D and ˜50 ms for ITER) under ˜150x or higher densification. The current density and pressure profile are practically unaltered during the initial phase of jet propagation when dilution cooling dominates. With subsequent radiation cooling, the densified discharge enters the strongly collisional regime where Pfirsch-Schluter thermal diffusion can inhibit current contraction on the magnetic axis. Often the 1/1 kink instability, addressed by Kadomtsev's magnetic reconnection model, can be prevented. Our results are compared with NIMROD simulations in which the plasma is suddenly densified by ˜100x and experiences instantaneous dilution cooling, allowing for use of actual (lower) Lundquist numbers.

  15. Dynamic decoupling in the presence of 1D random walk

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Arnab; Chakraborty, Ipsita; Bhattacharyya, Rangeet

    2016-05-01

    In the recent past, many dynamic decoupling sequences have been proposed for the suppression of decoherence of spins connected to thermal baths of various natures. Dynamic decoupling schemes for suppressing decoherence due to Gaussian diffusion have also been developed. In this work, we study the relative performances of dynamic decoupling schemes in the presence of a non-stationary Gaussian noise such as a 1D random walk. Frequency domain analysis is not suitable to determine the performances of various dynamic decoupling schemes in suppressing decoherence due to such a process. Thus, in this work, we follow a time domain calculation to arrive at the following conclusions: in the presence of such a noise, we show that (i) the traditional Carr-Purcell-Meiboom-Gill (CPMG) sequence outperforms Uhrig’s dynamic decoupling scheme, (ii) CPMG remains the optimal sequence for suppression of decoherence due to random walk in the presence of an external field gradient. Later, the theoretical predictions are experimentally verified by using nuclear magnetic resonance spectroscopy on spin 1/2 particles diffusing in a liquid medium.

  16. 1D X-ray Beam Compressing Monochromators

    SciTech Connect

    Korytar, D.; Dobrocka, E.; Konopka, P.; Zaprazny, Z.; Ferrari, C.; Mikulik, P.; Vagovic, P.; Ac, V.; Erko, A.; Abrosimov, N.

    2010-04-06

    A total beam compression of 5 and 10 corresponding to the asymmetry angles of 9 deg. and 12 deg. is achieved with V-5 and V-10 monochromators, respectively, in standard single crystal pure germanium (220) X-ray beam compressing (V-shaped) monochromators for CuKalpha{sub 1} radiation. A higher 1D compression of X-ray beam is possible using larger angles of asymmetry, however it is achieved at the expense of the total intensity, which is decreased due to the refraction effect. To increase the monochromator intensity, several ways are considered both theoretically and experimentally. Linearly graded germanium rich Ge{sub x}Si{sub (1-x)} single crystal was used to prepare a V-21 single crystal monochromator with 15 deg. asymmetry angles (compression factor of 21). Its temperature gradient version is discussed for CuKalpha{sub 1} radiation. X-ray diffraction measurements on the graded GeSi monochromator showed more than 3-times higher intensity at the output compared with that of a pure Ge monochromator.

  17. Control and imaging of O(1D2) precession.

    PubMed

    Wu, Shiou-Min; Radenovic, Dragana Č; van der Zande, Wim J; Groenenboom, Gerrit C; Parker, David H; Vallance, Claire; Zare, Richard N

    2011-01-01

    Larmor precession of a quantum mechanical angular momentum vector about an applied magnetic field forms the basis for a range of magnetic resonance techniques, including nuclear magnetic resonance spectroscopy and magnetic resonance imaging. We have used a polarized laser pump-probe scheme with velocity-map imaging detection to visualize, for the first time, the precessional motion of a quantum mechanical angular momentum vector. Photodissociation of O(2) at 157 nm provides a clean source of fast-moving O((1)D(2)) atoms, with their electronic angular momentum vector strongly aligned perpendicular to the recoil direction. In the presence of an external magnetic field, the distribution of atomic angular momenta precesses about the field direction, and polarization-sensitive images of the atomic scattering distribution recorded as a function of field strength yield 'time-lapse-photography' style movies of the precessional motion. We present movies recorded in various experimental geometries, and discuss potential consequences and applications in atmospheric chemistry and reaction dynamics.

  18. Cavitation Influence in 1D Part-load Vortex Models

    NASA Astrophysics Data System (ADS)

    Dörfler, P. K.

    2016-11-01

    Residual swirl in the draft tube of Francis turbines may cause annoying low- frequency pulsation of pressure and power output, in particular during part-load operation. A 1D analytical model for these dynamic phenomena would enable simulation by some conventional method for computing hydraulic transients. The proper structure of such a model has implications for the prediction of prototype behaviour based on laboratory tests. The source of excitation as well as the dynamic transmission behaviour of the draft tube flow may both be described either by lumped or distributed parameters. The distributed version contains more information and, due to limited possibilities of identification, some data must be estimated. The distributed cavitation compliance is an example for this dilemma. In recent publications, the customary assumption of a constant wave speed has produced dubious results. The paper presents a more realistic model for distributed compressibility. The measured influence of the Thoma number is applied with the local cavitation factor. This concept is less sensitive to modelling errors and explains both the Thoma and Froude number influence. The possible effect of the normally unknown non-condensable gas content in the vortex cavity is shortly commented. Its measurement in future tests is recommended. It is also recommended to check the available analytical vortex models for possible dispersion effects.

  19. Johnson-Nyquist Noise Coupling Formulation of Near-Field Heat Transfer for 1D Conductors

    NASA Astrophysics Data System (ADS)

    Prunnila, Mika; Laakso, Sampo; Gunnarsson, David

    Near-field heat transfer has been formulated using different levels of theoretical sophistication and complexity ranging from fluctuational electrodynamics to quasi-static Coulomb interaction description. Our goal is to find a simple description for the near-field heat transfer between coupled 1D electron systems (conductors). We will show that by considering distributed Johnson-Nyquist voltage sources, arising from the dissipative part of the electron systems' response, a compact fundamental formula for the near-field heat transfer can be found. We will describe the details of the derivation and discuss the regime of validity of our approach. Several special cases will be considered and experimental configurations will be discussed. The presented analysis is especially suitable for closely spaced graphene ribbons and nanowires. We will also show that by including inductive responses, which are necessary at high frequencies, speed of light emerges in the heat flow formula, thereby showing the link between fundamental physical quantities/constants and near-field heat transfer in coupled 1D systems. Our formulation also provides the possibility to use different boundary conditions for the physical system and this enables design of near-field heat transfer circuits.

  20. MAST-1D, a Model to Route Sediment and Tracers in Channel-Floodplain Complexes

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Lauer, J. W.; Belmont, P.

    2014-12-01

    Sediment exchange between the channel and floodplain can occur via meander migration, overbank deposition or erosion, and channel widening or narrowing. Depending on channel and floodplain history, floodplains can act either as sources or sinks of bed material and/or wash load. The Morphodynamics And Sediment Tracers in 1D program (MAST-1D) is a numerical model built to describe grain size specific transport of sediment and tracers and the long-term - i.e. decadal and longer - evolution of channel floodplain complexes. MAST-1D differs from other 1D numerical models because it allows for 1) uneven exchange of sediment and tracers between the river channel and the floodplain, 2) temporal changes in channel geometry, bed elevation and floodplain thickness, which result in changes in the channel hydraulic capacity, and 3) temporal changes of size distribution and tracer content in the floodplain, in the load and in the underlying substrate. Under conditions of constant base level, water and sediment supply, the main assumptions in the model result in the system evolving asymptotically toward a steady state wherein channel bed erosion is balanced by channel bed deposition. When at this condition, the amount of sediment deposited on the floodplain through point bar deposition and overbank sedimentation is balanced by the erosion of sediment from the floodplain through lateral migration. However, imbalances in floodplain storage can persist for many years even when the channel bed elevation and size distribution are near steady state. The MAST-1D program is applied to study the long term response of a sand bed river, an 80 km long reach of the Minnesota River between Mankato and Jordan, Minnesota, to changes in flow regime and the sediment load due to the development of intensive agriculture in the watershed. The simulations are performed in successive phases, the model is first set up so that under the best estimates available for pre-agriculture conditions, channel

  1. Scratched-XY Universality and Phase Diagram of Disordered 1D Bosons in Optical Lattice

    NASA Astrophysics Data System (ADS)

    Yao, Zhiyuan; Pollet, Lode; Prokof'ev, Nikolay; Svistunov, Boris

    The superfluid-insulator quantum phase transition in a 1D system with weak links belongs to the so-called scratched-XY universality class, provided the irrenormalizable exponent ζ characterizing the distribution of weak links is smaller than 2 / 3 . With a combination of worm-algorithm Monte Carlo simulations and asymptotically exact analytics, we accurately trace the position of the scratched-XY critical line on the ground-state phase diagram of bosonic Hubbard model at unity filling. In particular, we reveal the location of the tricritical point separating the scratched-XY criticality from the Giamarchi-Schulz one.

  2. KAM Tori for 1D Nonlinear Wave Equationswith Periodic Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Chierchia, Luigi; You, Jiangong

    In this paper, one-dimensional (1D) nonlinear wave equations with periodic boundary conditions are considered; V is a periodic smooth or analytic function and the nonlinearity f is an analytic function vanishing together with its derivative at u≡0. It is proved that for ``most'' potentials V(x), the above equation admits small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system. The proof is based on an infinite dimensional KAM theorem which allows for multiple normal frequencies.

  3. Quantum Nucleation of Phase Slips in a 1D Model of a Superfluid

    SciTech Connect

    Freire, J.A.; Arovas, D.P.; Levine, H.

    1997-12-01

    We use a 1D model of a superfluid based on the Gross-Pitaevskii Lagrangian to illustrate a general numerical method designed to find quantum tunneling rates in extended bosonic systems. Specifically, we study flow past an obstacle and directly solve the imaginary time dynamics to find the {open_quotes}bounce{close_quotes} solution connected with the decay of the metastable laminar state via phase slip nucleation. The action for the tunneling configuration goes to zero at the threshold (in superfluid velocity) for classical production of these slips. Applications to other processes are briefly discussed. {copyright} {ital 1997} {ital The American Physical Society}

  4. Delocalization of Weakly Interacting Bosons in a 1D Quasiperiodic Potential

    NASA Astrophysics Data System (ADS)

    Michal, V. P.; Altshuler, B. L.; Shlyapnikov, G. V.

    2014-07-01

    We consider weakly interacting bosons in a 1D quasiperiodic potential (Aubry-Azbel-Harper model) in the regime where all single-particle states are localized. We show that the interparticle interaction may lead to the many-body delocalization and we obtain the finite-temperature phase diagram. Counterintuitively, in a wide range of parameters the delocalization requires stronger coupling as the temperature increases. This means that the system of bosons can undergo a transition from a fluid to insulator (glass) state under heating.

  5. Probing the Quantum State of a 1D Bose Gas Using Off-Resonant Light Scattering

    SciTech Connect

    Sykes, A. G.; Ballagh, R. J.

    2011-12-30

    We present a theoretical treatment of coherent light scattering from an interacting 1D Bose gas at finite temperatures. We show how this can provide a nondestructive measurement of the atomic system states. The equilibrium states are determined by the temperature and interaction strength, and are characterized by the spatial density-density correlation function. We show how this correlation function is encoded in the angular distribution of the fluctuations of the scattered light intensity, thus providing a sensitive, quantitative probe of the density-density correlation function and therefore the quantum state of the gas.

  6. Restrained dark U (1 )d at low energies

    NASA Astrophysics Data System (ADS)

    Correia, Fagner C.; Fajfer, Svjetlana

    2016-12-01

    We investigate a spontaneously broken U (1 )d gauge symmetry with a muon-specific dark Higgs. Our first goal is to verify how the presence of a new dark Higgs, ϕ , and a dark gauge boson, V , can simultaneously face the anomalies from the muon magnetic moment and the proton charge radius. Second, by assuming that V must decay to an electron-positron pair, we explore the corresponding parameter space determined with the low-energy constraints coming from K →μ X , electron (g -2 )e, K →μ νμe+e-, K →μ νμμ+μ-, and τ →ντμ νμe+e-. We focus on the scenario where the V mass is below ˜2 mμ and the ϕ mass runs from few MeV to 250 MeV, with V -photon mixing of the order ˜O (10-3). Among weak process at low energies, we check the influence of the new light vector on kaon decays as well as on the scattering e+e-→μ+μ-e+e- and discuss the impact of the dark Higgs on e+e-→μ+μ-μ+μ-. Finally, we consider contributions of the V -photon mixing in the decays π0→γ e+e-, η →γ e+e-, ρ →π e+e-, K*→K e+e-, and ϕ (1020 )→η e+e-.

  7. Evidence against dopamine D1/D2 receptor heteromers

    PubMed Central

    Frederick, Aliya L.; Yano, Hideaki; Trifilieff, Pierre; Vishwasrao, Harshad D.; Biezonski, Dominik; Mészáros, József; Sibley, David R.; Kellendonk, Christoph; Sonntag, Kai C.; Graham, Devon L.; Colbran, Roger J.; Stanwood, Gregg D.; Javitch, Jonathan A.

    2014-01-01

    Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies. PMID:25560761

  8. A new general 1-D vadose zone flow solution method

    NASA Astrophysics Data System (ADS)

    Ogden, Fred L.; Lai, Wencong; Steinke, Robert C.; Zhu, Jianting; Talbot, Cary A.; Wilson, John L.

    2015-06-01

    We have developed an alternative to the one-dimensional partial differential equation (PDE) attributed to Richards (1931) that describes unsaturated porous media flow in homogeneous soil layers. Our solution is a set of three ordinary differential equations (ODEs) derived from unsaturated flux and mass conservation principles. We used a hodograph transformation, the Method of Lines, and a finite water-content discretization to produce ODEs that accurately simulate infiltration, falling slugs, and groundwater table dynamic effects on vadose zone fluxes. This formulation, which we refer to as "finite water-content", simulates sharp fronts and is guaranteed to conserve mass using a finite-volume solution. Our ODE solution method is explicitly integrable, does not require iterations and therefore has no convergence limits and is computationally efficient. The method accepts boundary fluxes including arbitrary precipitation, bare soil evaporation, and evapotranspiration. The method can simulate heterogeneous soils using layers. Results are presented in terms of fluxes and water content profiles. Comparing our method against analytical solutions, laboratory data, and the Hydrus-1D solver, we find that predictive performance of our finite water-content ODE method is comparable to or in some cases exceeds that of the solution of Richards' equation, with or without a shallow water table. The presented ODE method is transformative in that it offers accuracy comparable to the Richards (1931) PDE numerical solution, without the numerical complexity, in a form that is robust, continuous, and suitable for use in large watershed and land-atmosphere simulation models, including regional-scale models of coupled climate and hydrology.

  9. Modeling shear band interaction in 1D torsion

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda; Hanina, Erez

    2017-01-01

    When two shear bands are being formed at close distance from each other they interact, and further development of one of them may be quenched down. As a result there should be a minimum distance between shear bands. In the literature there are at least three analytical models for this minimum distance. Predictions of these models do not generally agree with each other and with test results. Recently we developed a 1D numerical scheme to predict the formation of shear bands in a torsion test of a thin walled pipe. We validated our code by reproducing results of the pioneering experiments of Marchand and Duffy, and then used it to investigate the mechanics of shear localization and shear band formation. We describe our shear band code in a separate publication, and here we use it only as a tool to investigate the interaction between two neighboring shear bands during the process of their formation. We trigger the formation of shear bands by specifying two perturbations of the initial strength. We vary the perturbations in terms of their amplitude and/or their width. Usually, the stronger perturbation triggers a faster developing shear band, which then prevails and quenches the development of the other shear band. We change the distance between the two shear bands and find, that up to a certain distance one of the shear bands becomes fully developed, and the other stays only partially developed. Beyond this distance the two shear bands are both fully developed. Finally, we check the influence of certain material and loading parameters on the interaction between the two shear bands, and compare the results to predictions of the analytical models from the literature.

  10. Nonlinear electrical conductivity in a 1D granular medium

    NASA Astrophysics Data System (ADS)

    Falcon, E.; Castaing, B.; Creyssels, M.

    2004-04-01

    We report on observations of the electrical transport within a chain of metallic beads (slightly oxidized) under an applied stress. A transition from an insulating to a conductive state is observed as the applied current is increased. The voltage-current ( U- I) characteristics are nonlinear and hysteretic, and saturate to a low voltage per contact (0.4 V). Our 1D experiment allows us to understand phenomena (such as the “Branly effect”) related to this conduction transition by focusing on the nature of the contacts instead of the structure of the granular network. We show that this transition comes from an electro-thermal coupling in the vicinity of the microcontacts between each bead - the current flowing through these contact points generates their local heating which leads to an increase of their contact areas, and thus enhances their conduction. This current-induced temperature rise (up to 1050 ^{circ}C) results in the microsoldering of the contact points (even for voltages as low as 0.4 V). Based on this self-regulated temperature mechanism, an analytical expression for the nonlinear U- I back trajectory is derived, and is found to be in very good agreement with the experiments. In addition, we can determine the microcontact temperature with no adjustable parameters. Finally, the stress dependence of the resistance is found to be strongly non-hertzian due to the presence of the surface films. This dependence cannot be usually distinguished from the one due to the disorder of the granular contact network in 2D or 3D experiments.

  11. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  12. SCCRO3 (DCUN1D3) Antagonizes the Neddylation and Oncogenic Activity of SCCRO (DCUN1D1)*

    PubMed Central

    Huang, Guochang; Stock, Cameron; Bommeljé, Claire C.; Weeda, Víola B.; Shah, Kushyup; Bains, Sarina; Buss, Elizabeth; Shaha, Manish; Rechler, Willi; Ramanathan, Suresh Y.; Singh, Bhuvanesh

    2014-01-01

    The activity of cullin-RING type ubiquitination E3 ligases is regulated by neddylation, a process analogous to ubiquitination that culminates in covalent attachment of the ubiquitin-like protein Nedd8 to cullins. As a component of the E3 for neddylation, SCCRO/DCUN1D1 plays a key regulatory role in neddylation and, consequently, cullin-RING ligase activity. The essential contribution of SCCRO to neddylation is to promote nuclear translocation of the cullin-ROC1 complex. The presence of a myristoyl sequence in SCCRO3, one of four SCCRO paralogues present in humans that localizes to the membrane, raises questions about its function in neddylation. We found that although SCCRO3 binds to CAND1, cullins, and ROC1, it does not efficiently bind to Ubc12, promote cullin neddylation, or conform to the reaction processivity paradigms, suggesting that SCCRO3 does not have E3 activity. Expression of SCCRO3 inhibits SCCRO-promoted neddylation by sequestering cullins to the membrane, thereby blocking its nuclear translocation. Moreover, SCCRO3 inhibits SCCRO transforming activity. The inhibitory effects of SCCRO3 on SCCRO-promoted neddylation and transformation require both an intact myristoyl sequence and PONY domain, confirming that membrane localization and binding to cullins are required for in vivo functions. Taken together, our findings suggest that SCCRO3 functions as a tumor suppressor by antagonizing the neddylation activity of SCCRO. PMID:25349211

  13. Modeling of subsurface structures in Telomoyo Volcano geothermal area, Magelang using 1-D magnetotelluric method

    NASA Astrophysics Data System (ADS)

    Sarjan, Achmad Fajar Narotama; Niasari, Sintia Windhi

    2017-07-01

    There are some of geothermal prospects around Java Island. One of them are located in Telomoyo Volcano area, Magelang, Central Java. The existence of hot spring manifestations in Telomoyo Volcano area shows the presence of geothermal system. The upflow zone of this geothermal system was formed in the caldera of Telomoyo Volcano area, while the outflow zone was formed around Candi Umbul. In addition, from the geological map shows a geological structure assumed as a normal fault with southwest-northeast orientation that was caused by the volcanic activity. The aim of this research is to give a brief introduction about subsurface resistivity beneath Telomoyo Volcano area using 1-D magnetotelluric forward model. Thus, we can determine the possibility of data that will obtained during the acquisition process based on the geological model that was made. The apparent resistivity, phase, and period values were obtained from the forward modeling process. The result from this study is a 1-D resistivity section with synthetics curves of each geothermal model. In each model the presence of clay cap characterized by a low resistivity layer. A layer below the clay cap with a medium resistivity value interpreted as the reservoir of this geothermal system. The heat source of this geothermal area is characterized by a low resistivity that is located at depth 4000-5500m. This study is still in progress to acquire the exact values of resistivity from each layer from the field data acquisition in Telomoyo Volcano area, Magelang.

  14. Resolution-optimized NMR measurement of (1)D(CH), (1)D(CC) and (2)D(CH) residual dipolar couplings in nucleic acid bases.

    PubMed

    Boisbouvier, Jérôme; Bryce, David L; O'neil-Cabello, Erin; Nikonowicz, Edward P; Bax, Ad

    2004-11-01

    New methods are described for accurate measurement of multiple residual dipolar couplings in nucleic acid bases. The methods use TROSY-type pulse sequences for optimizing resolution and sensitivity, and rely on the E.COSY principle to measure the relatively small two-bond (2)D(CH) couplings at high precision. Measurements are demonstrated for a 24-nt stem-loop RNA sequence, uniformly enriched in (13)C, and aligned in Pf1. The recently described pseudo-3D method is used to provide homonuclear (1)H-(1)H decoupling, which minimizes cross-correlation effects and optimizes resolution. Up to seven (1)H-(13)C and (13)C-(13)C couplings are measured for pyrimidines (U and C), including (1)D(C5H5), (1)D(C6H6), (2)D(C5H6), (2)D(C6H5), (1)D(C5C4), (1)D(C5C6), and (2)D(C4H5). For adenine, four base couplings ((1)D(C2H2), (1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)) are readily measured whereas for guanine only three couplings are accessible at high relative accuracy ((1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)). Only three dipolar couplings are linearly independent in planar structures such as nucleic acid bases, permitting cross validation of the data and evaluation of their accuracies. For the vast majority of dipolar couplings, the error is found to be less than +/-3% of their possible range, indicating that the measurement accuracy is not limiting when using these couplings as restraints in structure calculations. Reported isotropic values of the one- and two-bond J couplings cluster very tightly for each type of nucleotide.

  15. From nonfinite to finite 1D arrays of origami tiles.

    PubMed

    Wu, Tsai Chin; Rahman, Masudur; Norton, Michael L

    2014-06-17

    average solution structures for blocks is more readily achieved using computer models than using direct imaging methods. The development of scalable 1D-origami arrays composed of uniquely addressable components is a logical, if not necessary, step in the evolution of higher order fully addressable structures. Our research into the fabrication of arrays has led us to generate a listing of several important areas of future endeavor. Of high importance is the re-enforcement of the mechanical properties of the building blocks and the organization of multiple arrays on a surface of technological importance. While addressing this short list of barriers to progress will prove challenging, coherent development along each of these lines of inquiry will accelerate the appearance of commercial scale molecular manufacturing.

  16. GNSS meteorology for severe weather - 1D, 2D and 3D solution

    NASA Astrophysics Data System (ADS)

    Rohm, Witold; Manning, Toby; Yuan, Yubin; Biadeglgne, Bertukan; Choy, Sue Lynn; Zhang, Kefei

    2013-04-01

    The variability of water vapour (WV) is strongly correlated with the formation, course and dissipation of the mesoscale convective storm systems, due to the large latent heat transfers in the evaporation/condensation process. Contrary to its importance WV space and time distribution remains under sampled in both domains, especially in sparsely populated countries such as Australia. GPS meteorology currently is a very important data source for meteorology, climatology and forecasting, due to the relatively dense network of receivers, operating in the unified reference frame. Point observations of troposphere delay (1D), integrated water vapour (1D), as well as maps of these parameters (2D) are highly sensitive to building up of high amount of water vapour in the troposphere, as well as storm passage. The Kalman filter based GNSS tomography is an emerging method of reconstructing dynamically changing wet refractivity fields (3D). All types of ground based GNSS products has solid scientific foundations and are routinely estimated by major GNSS processing centres with high accuracy and low latency (ie. EGVAP AC). The forthcoming challenge of for the analyse of GNSS meteorology estimates (1D, 2D and 3D) is developing a quantifiable method to predict as well as identify location, size and severity of mesoscale convective storm system. In the course of this research several spatial and temporal filter and indicators have been developed to aid in early detection, prediction and monitoring of severe weather events using all types of GNSS meteorology by-products estimates (1D, 2D and 3D). This research presents a case study based on the analysis of an extreme convective super cell storm in the Victorian region during March 2010 using GPS tomography. Integrated Perceptible Water readings collected from MOBS stations confirmed high time resolution as well as sensitivity to incoming severe weather. Another, special measure of Refractive Index adopted for GPS tomography wet

  17. Pharmacological evidence that 5-HT1D activation induces renal vasodilation by NO pathway in rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-06-01

    5-HT is a powerful vasoconstrictor substance in renal vasculature (mainly by 5-HT₂ activation). Nevertheless, 5-HT is notable for its dual cardiovascular effects, producing both vasodilator and vasoconstrictor actions. This study aimed to investigate whether, behind the predominant serotonergic vasoconstrictor action, THE 5-HT system may exert renal vasodilator actions, and, if so, characterize the 5-HT receptors and possible indirect pathways. Renal perfusion pressure (PP), systemic blood pressure (SBP) and heart rate (HR) measurement in in situ autoperfused rat kidney was determined in phenylephrine infused rats. Intra arterial (i.a.) bolus administration of 5-HT (0.00000125-0.1 μg/kg) decreased renal PP in the presence of a phenylephrine continuous infusion (phenylephrine-infusion group), without modifying SBP or HR. These vasodilator responses were potentiated by 5-HT₂ antagonism (ritanserin, 1 mg/kg i.v.), whereas the responses were abolished by 5-HT₁ /₇ antagonist (methiothepin, 100 μg/kg i.v.) or 5-HT1D antagonist (LY310762, 1 mg/kg i.v.). The i.a. administration (0.00000125 to 0.1 μg/kg) of 5-CT or L-694,247 (5-HT1D agonist) mimicked 5-HT vasodilator effect, while other agonists (1-PBG, α-methyl-5-HT, AS-19 (5-HT₇), 8-OH-DPAT (5-HT1A) or CGS-12066B (5-HT1B)) did not alter baseline haemodynamic variables. L-694,247 vasodilation was abolished by i.v. bolus of antagonists LY310762 (5-HT1D, 1 mg/kg) or L-NAME (nitric oxide, 10 mg/kg), but not by i.v. bolus of indomethacin (cyclooxygenase, 2 mg/kg) or glibenclamide (ATP-dependent K(+) channel, 20 mg/kg). These outcomes suggest that 5-HT1D activation produces a vasodilator effect in the in situ autoperfused kidney of phenylephrine-infusion rats mediated by the NO pathway. © 2015 Wiley Publishing Asia Pty Ltd.

  18. 1D GAS-DYNAMIC SIMULATION OF SHOCK-WAVE PROCESSES VIA INTERNET

    SciTech Connect

    Khishchenko, K. V.; Levashov, P. R.; Povarnitsyn, M. E.; Zakharenkov, A. S.

    2009-12-28

    We present a Web-interface for 1D simulation of different shock-wave experiments. The choosing of initial parameters, the modeling itself and output data treatment can be made directly via the Internet. The interface is based upon the expert system on shock-wave data and equations of state and contains both the Eulerian and Lagrangian Godunov hydrocodes. The availability of equations of state for a broad set of substances makes this system a useful tool for planning and interpretation of shock-wave experiments. As an example of simulation with the system, results of modeling of multistep shock loading of potassium between polytetrafluoroethylene and stainless steel plates are presented in comparison with experimental data from Shakhray et al.(2005).

  19. Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

    PubMed Central

    Jaeken, Jan W; De Baerdemacker, Stijn; Lejaeghere, Kurt; Van Speybroeck, Veronique

    2014-01-01

    Summary The geometric and electronic structure of the MIL-47(V) metal-organic framework (MOF) is investigated by using ab initio density functional theory (DFT) calculations. Special focus is placed on the relation between the spin configuration and the properties of the MOF. The ground state is found to be antiferromagnetic, with an equilibrium volume of 1554.70 Å3. The transition pressure of the pressure-induced large-pore-to-narrow-pore phase transition is calculated to be 82 MPa and 124 MPa for systems with ferromagnetic and antiferromagnetic chains, respectively. For a mixed system, the transition pressure is found to be a weighted average of the ferromagnetic and antiferromagnetic transition pressures. Mapping DFT energies onto a simple-spin Hamiltonian shows both the intra- and inter-chain coupling to be antiferromagnetic, with the latter coupling constant being two orders of magnitude smaller than the former, suggesting the MIL-47(V) to present quasi-1D behavior. The electronic structure of the different spin configurations is investigated and it shows that the band gap position varies strongly with the spin configuration. The valence and conduction bands show a clear V d-character. In addition, these bands are flat in directions orthogonal to VO6 chains, while showing dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials. PMID:25383285

  20. Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles.

    PubMed

    Vanpoucke, Danny E P; Jaeken, Jan W; De Baerdemacker, Stijn; Lejaeghere, Kurt; Van Speybroeck, Veronique

    2014-01-01

    The geometric and electronic structure of the MIL-47(V) metal-organic framework (MOF) is investigated by using ab initio density functional theory (DFT) calculations. Special focus is placed on the relation between the spin configuration and the properties of the MOF. The ground state is found to be antiferromagnetic, with an equilibrium volume of 1554.70 Å(3). The transition pressure of the pressure-induced large-pore-to-narrow-pore phase transition is calculated to be 82 MPa and 124 MPa for systems with ferromagnetic and antiferromagnetic chains, respectively. For a mixed system, the transition pressure is found to be a weighted average of the ferromagnetic and antiferromagnetic transition pressures. Mapping DFT energies onto a simple-spin Hamiltonian shows both the intra- and inter-chain coupling to be antiferromagnetic, with the latter coupling constant being two orders of magnitude smaller than the former, suggesting the MIL-47(V) to present quasi-1D behavior. The electronic structure of the different spin configurations is investigated and it shows that the band gap position varies strongly with the spin configuration. The valence and conduction bands show a clear V d-character. In addition, these bands are flat in directions orthogonal to VO6 chains, while showing dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials.

  1. PPM1D exerts its oncogenic properties in human pancreatic cancer through multiple mechanisms.

    PubMed

    Wu, Bo; Guo, Bo-Min; Kang, Jie; Deng, Xian-Zhao; Fan, You-Ben; Zhang, Xiao-Ping; Ai, Kai-Xing

    2016-03-01

    Protein phosphatase, Mg(2+)/Mn(2+) dependent, 1D (PPM1D) is emerging as an oncogene by virtue of its negative control on several tumor suppressor pathways. However, the clinical significance of PPM1D in pancreatic cancer (PC) has not been defined. In this study, we determined PPM1D expression in human PC tissues and cell lines and their irrespective noncancerous controls. We subsequently investigated the functional role of PPM1D in the migration, invasion, and apoptosis of MIA PaCa-2 and PANC-1 PC cells in vitro and explored the signaling pathways involved. Furthermore, we examined the role of PPM1D in PC tumorigenesis in vivo. Our results showed that PPM1D is overexpressed in human PC tissues and cell lines and significantly correlated with tumor growth and metastasis. PPM1D promotes PC cell migration and invasion via potentiation of the Wnt/β-catenin pathway through downregulation of apoptosis-stimulating of p53 protein 2 (ASPP2). In contrast to PPM1D, our results showed that ASPP2 is downregulated in PC tissues. Additionally, PPM1D suppresses PC cell apoptosis via inhibition of the p38 MAPK/p53 pathway through both dephosphorylation of p38 MAPK and downregulation of ASPP2. Furthermore, PPM1D promotes PC tumor growth in vivo. Our results demonstrated that PPM1D is an oncogene in PC.

  2. Large Area Synthesis of 1D-MoSe2 Using Molecular Beam Epitaxy.

    PubMed

    Poh, Sock Mui; Tan, Sherman J R; Zhao, Xiaoxu; Chen, Zhongxin; Abdelwahab, Ibrahim; Fu, Deyi; Xu, Hai; Bao, Yang; Zhou, Wu; Loh, Kian Ping

    2017-01-23

    Large area synthesis of 1D-MoSe2 nanoribbons on both insulating and conducting substrates via molecular beam epitaxy is presented. Dimensional controlled growth of 2D, 1D-MoSe2 , and 1D-2D-MoSe2 hybrid heterostructure is achieved by tuning the growth temperature or Mo:Se precursor ratio.

  3. Preliminary abatement device evaluation: 1D-2D KGM cyclone design

    USDA-ARS?s Scientific Manuscript database

    Cyclones are predominately used in controlling cotton gin particulate matter (PM) emissions. The most commonly used cyclone designs are the 2D-2D and 1D-3D; however other designs such as the 1D-2D KGM have or are currently being used. A 1D-2D cyclone has a barrel length equal to the barrel diamete...

  4. Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes.

    PubMed

    Vabbina, Phani Kiran; Kaushik, Ajeet; Pokhrel, Nimesh; Bhansali, Shekhar; Pala, Nezih

    2015-01-15

    We report on label free, highly sensitive and selective electrochemical immunosensors based on one-dimensional 1D ZnO nanorods (ZnO-NRs) and two-dimensional 2D ZnO nanoflakes (ZnO-NFs) which were synthesized on Au-coated substrates using simple one step sonochemical approach. Selective detection of cortisol using cyclic voltammetry (CV) is achieved by immobilizing anti-cortisol antibody (Anti-C(ab)) on the ZnO nanostructures (NSs). 1D ZnO-NRs and 2D ZnO-NFs provide unique sensing advantages over bulk materials. While 1D-NSs boast a high surface area to volume ratio, 2D-NSs with large area in polarized (0001) plane and high surface charge density could promote higher Anti-C(ab) loading and thus better sensing performance. Beside large surface area, ZnO-NSs also exhibit higher chemical stability, high catalytic activity, and biocompatibility. TEM studies showed that both ZnO-NSs are single crystalline oriented in (0001) plane. The measured sensing parameters are in the physiological range with a sensitivity of 11.86 µA/M exhibited by ZnO-NRs and 7.74 µA/M by ZnO-NFs with the lowest detection limit of 1 pM which is 100 times better than conventional enzyme-linked immunosorbant immunoassay (ELISA). ZnO-NSs based cortisol immunosensors were tested on human saliva samples and the performance were validated with conventional (ELISA) method which exhibits a remarkable correlation. The developed sensors can be integrated with microfluidic system and miniaturized potentiostat for point-of-care cortisol detection and such developed protocol can be used in personalized health monitoring/diagnostic.

  5. Natural Outbreak of BVDV-1d-Induced Mucosal Disease Lacking Intestinal Lesions.

    PubMed

    Bianchi, M V; Konradt, G; de Souza, S O; Bassuino, D M; Silveira, S; Mósena, A C S; Canal, C W; Pavarini, S P; Driemeier, D

    2017-03-01

    Bovine viral diarrhea virus (BVDV) belongs to the Pestivirus genus, which is further divided into subgenotypes (1a-1u and 2a-c). When persistent infection occurs, the calf will be immunotolerant to BVDV and possibly develop mucosal disease. This study describes an outbreak of BVDV-1d-induced mucosal disease lacking intestinal lesions. Eleven calves presented with anorexia, sialorrhea, lameness, recumbency, and death. Three calves were necropsied, showing ulceration of the interdigital skin and the oral and nasal mucosa; linear ulcers in the tongue, esophagus, and rumen; and rounded ulcers in the abomasum. Microscopically, mucosa and skin had superficial necrosis, with single-cell necrosis and vacuolation in epithelial cells, and severe parakeratosis. Immunohistochemistry (IHC) showed BVDV antigen in the cytoplasm of epithelial cells in skin and mucosa. All 11 dead calves were positive upon reverse transcription-polymerase chain reaction (RT-PCR) for the detection of Pestivirus along with another 11 live calves from the herd, which were positive again by RT-PCR and IHC after a 4-week interval. Sequencing of the 5' untranslated region and N-terminal protease showed that viruses from these 22 calves were homologous and of subgenotype BVDV-1d. Cytopathic BVDV was isolated from 8 of 11 dead calves, but only noncytopathic BVDV was isolated from the 11 live animals. The findings indicate that this was an outbreak of mucosal disease caused by BVDV-1d, with high morbidity, and lesions restricted to the upper alimentary system and skin and absent from intestine. Thus, the epidemiological and pathological features in this form of mucosal disease may be similar to vesicular diseases, including foot and mouth disease.

  6. A 1-D Granular Gas as a Knudsen Gas

    DTIC Science & Technology

    2000-07-09

    thermal walls. For low dissipation in collisions the system may be treated as a perturbation on a non-interacting system, being thus conceptually similar...Author(s) Project Number Task Number Work Unit Number Performing Organization Name(s) and Address(es) Departamento de Fisica , Universidad de Chile

  7. Williams performs LAB1D1 Rack rotation

    NASA Image and Video Library

    2007-01-03

    ISS014-E-11069 (3 Jan. 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, looks through an opening during the Oxygen Generator System (OGS) rack rotation in the Destiny laboratory of the International Space Station.

  8. Analysis of the rotational structure in the high-resolution infrared spectra of trans-hexatriene-1,1-d2 and -cis-1-d1

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Fuson, Hannah A.; Tian, Hengfeng; Blake, Thomas A.

    2012-09-01

    Mixtures of trans-hexatriene-1,1-d2, -cis-1-d1, and -trans-1-d1 have been synthesized. Anharmonic frequencies and harmonic intensities were predicted with the B3LYP/cc-pVTZ model for the out-of-plane (a″) modes of the three isotopologues. Assignments are proposed for most of the a″ vibrational modes above 500 cm-1. Ground state (GS) rotational constants have been determined for the 1,1-d2 and cis-1-d1 species from the analysis of rotational structure of C-type bands in the high-resolution (0.0015 cm-1) infrared spectra in a mixture of the three isotopologues. The GS constants for the 1,1-d2 species are A0 = 0.8018850(6), B0 = 0.0418540(6), and C0 = 0.0397997(4) cm-1. The GS constants for the cis-1-d1 species are A0 = 0.809388(1), B0 = 0.043532(2), and C0 = 0.041320(1) cm-1. Small inertial defects confirm planarity for both species. These ground state rotational constants are intended for use in determining a semiexperimental equilibrium structure and evaluating the influence of chain length on π-electron delocalization in polyenes.

  9. EEF1D modulates proliferation and epithelial-mesenchymal transition in oral squamous cell carcinoma.

    PubMed

    Flores, Isadora L; Kawahara, Rebeca; Miguel, Márcia C C; Granato, Daniela C; Domingues, Romênia R; Macedo, Carolina C S; Carnielli, Carolina M; Yokoo, Sami; Rodrigues, Priscila C; Monteiro, Bárbara V B; Oliveira, Carine E; Salmon, Cristiane R; Nociti, Francisco H; Lopes, Márcio A; Santos-Silva, Alan; Winck, Flavia V; Coletta, Ricardo D; Paes Leme, Adriana F

    2016-05-01

    EEF1D (eukaryotic translation elongation factor 1δ) is a subunit of the elongation factor 1 complex of proteins that mediates the elongation process during protein synthesis via enzymatic delivery of aminoacyl-tRNAs to the ribosome. Although the functions of EEF1D in the translation process are recognized, EEF1D expression was found to be unbalanced in tumours. In the present study, we demonstrate the overexpression of EEF1D in OSCC (oral squamous cell carcinoma), and revealed that EEF1D and protein interaction partners promote the activation of cyclin D1 and vimentin proteins. EEF1D knockdown in OSCC reduced cell proliferation and induced EMT (epithelial-mesenchymal transition) phenotypes, including cell invasion. Taken together, these results define EEF1D as a critical inducer of OSCC proliferation and EMT. © 2016 Authors; published by Portland Press Limited.

  10. Rational design of D-A1-D-A2 conjugated polymers with superior spectral coverage.

    PubMed

    Hedström, Svante; Tao, Qiang; Wang, Ergang; Persson, Petter

    2015-10-28

    The spectral coverage of a light-harvesting polymer largely determines the maximum achievable photocurrent in organic photovoltaics, and therefore constitutes a crucial parameter for improving their performance. The D-A1-D-A2 copolymer motif is a new and promising design strategy for extending the absorption range by incorporating two acceptor units with complementary photoresponses. The fundamental factors that promote an extended absorption are here determined for three prototype D-A1-D-A2 systems through a combination of experimental and computational methods. Systematic quantum chemical calculations are then used to reveal the intrinsic optical properties of ten further D-A1-D-A2 polymer candidates. These investigated polymers are all predicted to exhibit intense primary absorption peaks at 615-954 nm, corresponding to charge-transfer (CT) transitions to the stronger acceptor, as well as secondary absorption features at 444-647 nm that originate from CT transitions to the weaker acceptors. Realization of D-A1-D-A2 polymers with superior spectral coverage is thereby found to depend critically on the spatial and energetic separation between the two distinct acceptor LUMOs. Two promising D-A1-D-A2 copolymer candidates were finally selected for further theoretical and experimental study, and demonstrate superior light-harvesting properties in terms of significantly extended spectral coverage. This demonstrates great potential for enhanced light-harvesting in D-A1-D-A2 polymers via multiple absorption features compared to traditional D-A polymers.

  11. Revisiting the Anderson Model with Power-Law Correlated Disorder in 1D and 2D

    NASA Astrophysics Data System (ADS)

    Petersen, Greg; Sandler, Nancy

    2011-03-01

    The dimensionality of a disordered system directly affects the critical energy where a localization/delocalization transition occurs. In non-interacting systems with uncorrelated disorder, it is widely known that all states in one-dimension are localized. However, for some correlations there exist transition energies similar to mobility edges or small subsets of extended states that are robust against disorder. In this talk, we will present results on the diffusion of a wavepacket in a power-law correlated random potential of the form < V (r) V (0) > =1/(a + r)α . We also report results for the participation ratio Pr =1/N 2 < |ai |4 > . Preliminary results for 1D chains support the existence of a mobility edge near the band center. Square and graphene lattices will also be discussed. This work has been supported by the NSF-PIRE mwn/ciam and NSF Grant DMR-0710581.

  12. Dendritic cell recognition using template matching based on one-dimensional (1D) Fourier descriptors (FD)

    NASA Astrophysics Data System (ADS)

    Muhd Suberi, Anis Azwani; Wan Zakaria, Wan Nurshazwani; Tomari, Razali; Lau, Mei Xia

    2016-07-01

    Identification of Dendritic Cell (DC) particularly in the cancer microenvironment is a unique disclosure since fighting tumor from the harnessing immune system has been a novel treatment under investigation. Nowadays, the staining procedure in sorting DC can affect their viability. In this paper, a computer aided system is proposed for automatic classification of DC in peripheral blood mononuclear cell (PBMC) images. Initially, the images undergo a few steps in preprocessing to remove uneven illumination and artifacts around the cells. In segmentation, morphological operators and Canny edge are implemented to isolate the cell shapes and extract the contours. Following that, information from the contours are extracted based on Fourier descriptors, derived from one dimensional (1D) shape signatures. Eventually, cells are classified as DC by comparing template matching (TM) of established template and target images. The results show that the proposed scheme is reliable and effective to recognize DC.

  13. Hot Gas in SMC SNR 0057-7226 and the Giant H 2 Region N66

    NASA Astrophysics Data System (ADS)

    Danforth, C. W.; Hoopes, C. G.; Sankrit, R.; Chu, Y.-H.; Sembach, K. R.; Blair, W. P.

    2001-12-01

    The supernova remnant SNR 0057-7226 and the dense, young cluster NGC 346 lie within the giant H 2 region N66, the most active star formation site in the SMC. Far Ultraviolet Spectroscopic Explorer (FUSE) observations of the Wolf-Rayet binary system HD 5980, which lies behind the SNR, show high velocity, O 6 and C 3 absorption associated with the far side of the remnant (Hoopes et al 2001, ApJ, 558, L35). Chandra ACIS-I and ROSAT HRI images of N66 show the diffuse X-ray emission associated with the SNR, but little or no diffuse emission around the core of the central cluster. We present high-dispersion, long-slit optical echelle observations of five positions within N66 including positions across the SNR 0057-7226 and NGC 346. These data show bright Hα emission at the SMC rest velocity (v ~155 km s-1). Where the spectrograph slits intersect the SNR, faint Hα emission at high (v ~300 km s-1) and low (v ~50 km s-1) velocities reveals clumps of material on the back and front sides of the SNR shell. Ten FUSE observations of sight lines toward stars in N66--including four toward NGC 346 cluster stars--provide sensitive absorption-line measurements of several ionic species including O 6 which traces hot (T ~3*E5 K), highly-ionized gas and Fe 2 which traces cooler (T ~104 K), ionized and neutral gas. We also present ground based optical narrowband images in Hα , [S 2], and [O 3] which show the morphology of the H 2 region. We use this data set to study the kinematics of the gas in this complex region and to model the properties of the SNR-ISM interaction. This work is supported by NASA Contract NAS5-32985 to the Johns Hopkins University.

  14. From 2D graphene to 1D graphene nanoribbons: dimensional crossover signals in the structural thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Dobry, Ariel; Costamagna, Sebastián

    2011-03-01

    I this work, by analyzing the thermal excited rippling in the graphene honeycomb lattice, we find clear signals of an existing dimensional crossover from 2D to 1D while reducing one of the dimensions of the graphene layer. Trough a joint study, using montecarlo atomistic simulations and analytical calculation based, we find that the normal-normal correlation function G (q) does not change the power law behavior valid on the long wavelength limit, however the system size dependency of the quadratic out of plane displacement h2 shows a breakdown of its corresponding scaling law. In this case we show that a new scaling law appear which correspond to a truly 1D system. On the basis of these results, and having explored a wide number of realistic systems size, we conclude that narrow nanoribbons presents strongest corrugations than the square graphene sheets. This result could have important consequences on the electron transport properties of freestanding graphene systems.

  15. 1D and 2D Assembly of Plant Viruses for Materials Development

    SciTech Connect

    Qian Wang

    2013-01-11

    The research focused on the development of novel bionanoparticle (BNP)-based materials, especially the assembly of chemically and genetically-tailored BNP at the interface between immiscible fluids. The chemical, physical, dynamical and mechanistic aspects have been studied in this research. In particular, rod-like tobacco mosaic virus (TMV) based anisotropic nanorods were synthesized via RNA or polymer assisted assembling process. Such kind of TMV-rods offers an ideal model system for the mechanistic study of orienting and packing anisotropic nanoparticles, which may have great potential in the applications of photovoltaic and field emission devices. Specific objectives include: 1) Synthesize BNPs with controlled functionality at defined positions; 2) synthesize 1D nanorods with defined length via polymer or RNA assisted assembly of TMV or TMV coat proteins; 3) self-assemble and crosslink BNPs and TMV-nanorods at liquid-liquid interfaces; 4) quantitatively characterize the structural organization of the 1D and 2D BNP-assemblies using both small angle neutron scattering and synchrotron small angle X-ray scattering; and 5) develop methods to apply grazing incidence small angle X-ray/neutron scattering to investigate the assemblies of BNPs.

  16. Pullback, forward and chaotic dynamics in 1D non-autonomous linear-dissipative equations

    NASA Astrophysics Data System (ADS)

    Caraballo, T.; Langa, J. A.; Obaya, R.

    2017-01-01

    The global attractor of a skew product semiflow for a non-autonomous differential equation describes the asymptotic behaviour of the model. This attractor is usually characterized as the union, for all the parameters in the base space, of the associated cocycle attractors in the product space. The continuity of the cocycle attractor in the parameter is usually a difficult question. In this paper we develop in detail a 1D non-autonomous linear differential equation and show the richness of non-autonomous dynamics by focusing on the continuity, characterization and chaotic dynamics of the cocycle attractors. In particular, we analyse the sets of continuity and discontinuity for the parameter of the attractors, and relate them with the eventually forward behaviour of the processes. We will also find chaotic behaviour on the attractors in the Li-Yorke and Auslander-Yorke senses. Note that they hold for linear 1D equations, which shows a crucial difference with respect to the presence of chaotic dynamics in autonomous systems.

  17. Self-assembled 1D magnetic Ising chains: epitaxial islands of Co/Ru(0001)

    NASA Astrophysics Data System (ADS)

    Li, Dongqi; Yu, Chengtao; Pearson, John; Bader, Samuel

    2002-03-01

    We have self-assembled magnetic Co dot chains via epitaxial island decoration of grooved Ru(0001) to create a model 1D system. Co wedge-like structures of 0-60 nm thick were deposited onto flat and grooved Ru(0001) substrates via molecular beam epitaxy at 350¢ªC and characterized ex-situ with atomic force and the magnetic force microscopy (MFM), and magneto-optic Kerr effect. The grooved substrate has a saw-tooth profile with spacing of order of 1 um, due to residual polishing scratches / step bunching. Co forms strain-induced, quasi-hexagonal dots of 70-500 nm in diameter and 1-20 nm high, depending on nominal dosage. On grooved substrate, the dots self align into chains along the groove near the top and bottom of the saw-tooth structure.[1] The dots are ferromagnetically coupled along the chain and exhibit magnetic single-domains with in-plane uniaxial anisotropy along the grooves. The inter-dot magnetic pair correlation was deduced from the MFM images of the dot-chains, and can be understood in terms of the classic 1D Ising model. * Work supported by DOE BES-MS under #W-31-109-ENG-38. 1. Chengtao Yu, Dongqi Li, J. Pearson, and S.D. Bader, Appl. Phys. Lett. 78, 1228 (2001); ibid. 79, 3848 (2001).

  18. CD1d- and MR1-Restricted T Cells in Sepsis

    PubMed Central

    Szabo, Peter A.; Anantha, Ram V.; Shaler, Christopher R.; McCormick, John K.; Haeryfar, S.M. Mansour

    2015-01-01

    Dysregulated immune responses to infection, such as those encountered in sepsis, can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s) and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes, including CD1d- and MR1-restricted T cells as effectors and/or regulators of inflammatory responses during sepsis. These cell types are typified by invariant natural killer T (iNKT) cells, variant NKT (vNKT) cells, and mucosa-associated invariant T (MAIT) cells. iNKT and vNKT cells are CD1d-restricted, lipid-reactive cells with remarkable immunoregulatory properties. MAIT cells participate in antimicrobial defense, and are restricted by major histocompatibility complex-related protein 1 (MR1), which displays microbe-derived vitamin B metabolites. Importantly, NKT and MAIT cells are rapid and potent producers of immunomodulatory cytokines. Therefore, they may be considered attractive targets during the early hyperinflammatory phase of sepsis when immediate interventions are urgently needed, and also in later phases when adjuvant immunotherapies could potentially reverse the dangerous state of immunosuppression. We will highlight recent findings that point to the significance or the therapeutic potentials of NKT and MAIT cells in sepsis and will also discuss what lies ahead in research in this area. PMID:26322041

  19. 2+1-D Insoluble Surfactant Model for a Vertical Draining Free Film

    NASA Astrophysics Data System (ADS)

    Naire, S.; Braun, R. J.; Snow, S. A.

    2000-11-01

    A 2+1-D mathematical model is constructed to study the evolution of a vertically-oriented thin liquid free film draining under gravity when there is an insoluble surfactant with finite surface viscosity on its free surface. Lubrication theory for this free film results in four coupled nonlinear partial differential equations (PDEs) describing the time-evolution of the free surface shape, the surface velocities and the surfactant transport at leading order. The draining film is assumed to terminate on a 1-D static meniscus. Numerical experiments are performed to understand the stability of the system to perturbations across the film. The limit of large surface viscosities recover the tangentially-immobile film and is also found to have a stabilizing influence on transverse perturbations due to their energy dissipating effect. An instability is seen in the mobile film case; this is caused by a competition between gravity and the Marangoni effect. The instability is closely related to that calculated by Miller and coworkers in nonaxisymmetric film drainage in a ring. This work is partially supported by the NSF and Dow Corning.

  20. NOKIN1D: one-dimensional neutron kinetics based on a nodal collocation method

    NASA Astrophysics Data System (ADS)

    Verdú, G.; Ginestar, D.; Miró, R.; Jambrina, A.; Barrachina, T.; Soler, Amparo; Concejal, Alberto

    2014-06-01

    The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method.

  1. Transient 1D transport equation simulated by a mixed Green element formulation

    NASA Astrophysics Data System (ADS)

    Taigbenu, Akpofure Efemena; Onyejekwe, Okey Oseloka

    1997-08-01

    New discrete element equations or coefficients are derived for the transient 1D diffusion-advection or transport equation based on the Green element replication of the differential equation using linear elements. The Green element method (GEM), which solves the singular boundary integral theory (a Fredholm integral equation of the second kind) on a typical element, gives rise to a banded global coefficient matrix which is amenable to efficient matrix solvers. It is herein derived for the transient 1D transport equation with uniform and non-uniform ambient flow conditions and in which first-order decay of the containment is allowed to take place. Because the GEM implements the singular boundary integral theory within each element at a time, the integrations are carried out in exact fashion, thereby making the application of the boundary integral theory more utilitarian. This system of discrete equations, presented herein for the first time, using linear interpolating functions in the spatial dimensions shows promising stable characteristics for advection-dominant transport. Three numerical examples are used to demonstrate the capabilities of the method. The second-order-correct Crank-Nicolson scheme and the modified fully implicit scheme with a difference weighting value of two give superior solutions in all simulated examples.

  2. A multiple digital watermarking algorithm based on 1D and 2D chaotic sequences

    NASA Astrophysics Data System (ADS)

    Ji, Zhen; Jiang, Lai; Jin, Jing; Zhang, Jihong

    2003-09-01

    Multiple digital watermarking is attracting more and more researchers because it is more valuable in the practical applications than single watermarking. In this paper, a multiple watermarking algorithm based on 1-D and 2-D chaotic sequences is proposed. The chaotic sequences have the advantages of massive, high security, and weakest correlation. The massive and independent digital watermark signals are generated through 1-D chaotic maps, which are determined by different initial conditions and parameters. The chaotic digital watermark signals effectively resolve the construction of massive watermarks with good performance. The embedding of multiple watermakrs is more complex than the single watermarking scheme. In this paper, each watermark is added to the middle frequency coefficients of wavelet domain randomly by exploiting 2-D chaotic system, so the embedding and extracting of each watermark would not disturb each other. Considering the parameters of 2-D chaotic systsem as the key to embedding procedure can prevent the watermarks to be removed maliciously, therefore the performance of security is better. The capacity of the multiple watermarking is also analyzed in this paper. The experimental results demonstrate that this proposed watermarking algorithm is robust to many common attacks and it is a reliable copyright protection for multiple legal owners.

  3. Probing the 1D-3D Crossover of a Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa; Olsen, Ben A.; Liao, Yean-An; Hulet, Randall G.

    2012-06-01

    We have previously mapped the phase diagram of a 1D spin-imbalanced Fermi gas by confining the atoms in an array of tubes using a 2D optical lattice.ootnotetextY.A. Liao et al., Nature 467, 567 (2010). Within each tube we observed separation of the atoms into a partially polarized superfluid core and fully paired or fully polarized wings (depending on the spin polarization). In 3D, the phase separation is inverted, such that the cloud center is fully paired.ootnotetextG. B. Partridge et al., Science 311, 503 (2006); Y. Shin et al., Phys. Rev. Lett. 97, 030401 (2006). We investigate the transition from a 1D to 3D gas by smoothly varying the lattice depth which changes the tunneling between the tubes. This allows us to study how the spin density changes as a function of inter-tube coupling. By varying the lattice depth quickly, we can measure the spin transport properties in a strongly interacting system. Progress will be reported.

  4. 1-D Photochemical Modeling of the Martian Atmosphere: Seasonal Variations

    NASA Astrophysics Data System (ADS)

    Boxe, C.; Emmanuel, S.; Hafsa, U.; Griffith, E.; Moore, J.; Tam, J.; Khan, I.; Cai, Z.; Bocolod, B.; Zhao, J.; Ahsan, S.; Tang, N.; Bartholomew, J.; Rafi, R.; Caltenco, K.; Smith, K.; Rivas, M.; Ditta, H.; Alawlaqi, H.; Rowley, N.; Khatim, F.; Ketema, N.; Strothers, J.; Diallo, I.; Owens, C.; Radosavljevic, J.; Austin, S. A.; Johnson, L. P.; Zavala-Gutierrez, R.; Breary, N.; Saint-Hilaire, D.; Skeete, D.; Stock, J.; Blue, S.; Gurung, D.; Salako, O.

    2016-12-01

    High school and undergraduate students, representative of academic institutions throughout USA's Tri-State Area (New York, New Jersey, Connecticut), utilize Caltech/JPL's one-dimensional atmospheric, photochemical models. These sophisticated models, were built over the course of the last four decades, describing all planetary bodies in our Solar System and selected extrasolar planets. Specifically, students employed the Martian one-dimensional photochemical model to assess the seasonal variability of molecules in its atmosphere. Students learned the overall model construct, running a baseline simulation, and fluctuating parameters (e.g., obliquity, orbital eccentricity) which affects the incoming solar radiation on Mars, temperature and pressure induce by seasonal variations. Students also attain a `real-world' experience that exemplifies the required level of coding competency and innovativeness needed for building an environment that can simulate observations and forecast. Such skills permeate STEM-related occupations that model systems and/or predict how that system may/will behave.

  5. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

    NASA Astrophysics Data System (ADS)

    Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim

    2017-07-01

    Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

  6. 1D quantum simulation using a solid state platform

    NASA Astrophysics Data System (ADS)

    Kirkendall, Megan; Irvin, Patrick; Huang, Mengchen; Levy, Jeremy; Lee, Hyungwoo; Eom, Chang-Beom

    Understanding the properties of large quantum systems can be challenging both theoretically and numerically. One experimental approach-quantum simulation-involves mapping a quantum system of interest onto a physical system that is programmable and experimentally accessible. A tremendous amount of work has been performed with quantum simulators formed from optical lattices; by contrast, solid-state platforms have had only limited success. Our experimental approach to quantum simulation takes advantage of nanoscale control of a metal-insulator transition at the interface between two insulating complex oxide materials. This system naturally exhibits a wide variety of ground states (e.g., ferromagnetic, superconducting) and can be configured into a variety of complex geometries. We will describe initial experiments that explore the magnetotransport properties of one-dimensional superlattices with spatial periods as small as 4 nm, comparable to the Fermi wavelength. The results demonstrate the potential of this solid-state quantum simulation approach, and also provide empirical constraints for physical models that describe the underlying oxide material properties. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL), FA9550-10-1-0524 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).

  7. Quasi 1D Modeling of Mixed Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.

  8. XPB Induces C1D Expression to Counteract UV-Induced Apoptosis

    PubMed Central

    Li, Guang; Liu, Juhong; Abu-Asab, Mones; Masabumi, Shibuya; Maru, Yoshiro

    2010-01-01

    Although C1D has been shown to be involved in DNA double-strand breaks repair, how C1D expression was induced and the mechanism(s) by which C1D facilitates DNA repair in mammalian cells remain poorly understood. We and others have previously shown that expression of XPB protein efficiently compensated the UV-irradiation sensitive phenotype of 27-1 cells which lacks functional XPB. To further explore XPB-regulated genes that could be involved in UV-induced DNA repair, Differential Display analysis of mRNA level from CHO-9, 27-1 and 27-1 complemented with wild-type XPB were performed and C1D gene was identified as one of the major genes whose expression was significantly up-regulated by restoring XPB function. We found that XPB is essential to induce C1D transcription after UV-irradiation. The increase of C1D expression effectively compensates the UV-induced proteolysis of C1D and thus maintains cellular C1D level to cope with DNA damage inflicted by UV-irradiation. We further showed that although insufficient to rescue 27-1 cells from UV-induced apoptosis by itself, C1D facilitates XPB DNA repair through direct interaction with XPB. Our findings provided direct evidence that C1D is associated with DNA repair complex and may promote repair of UV-induced DNA damage. PMID:20530579

  9. Zerumbone modulates CD1d expression and lipid antigen presentation pathway in breast cancer cells.

    PubMed

    Shyanti, Ritis K; Sehrawat, Anuradha; Singh, Shivendra V; Mishra, J P N; Singh, Rana P

    2017-10-01

    Natural Killer T (NKT) cells based cancer immunotherapy is an evolving area of cancer therapy, but tumors escape from this treatment modality by altering CD1d expression and its antigen presentation pathway. Here, we have studied the relation of CD1d expression in various breast cancer cell lines to their viability and progression. We observed a novel phenomenon that CD1d expression level increases with the progressive stage of the cancer. A small molecule, zerumbone (ZER) caused down-regulation of CD1d that was accompanied by breast cancer cell growth in vitro. The growth inhibitory effect of ZER against breast cancer cells was augmented by treatment with anti-CD1d mAb. This effect was mediated by G1-phase cell cycle arrest and apoptosis induction coupled with an increase in mitochondrial membrane depolarization. CD1d expression and cell proliferation were inhibited by both CD1d siRNA and ZER. The α-galactosylceramide, a ligand for CD1d, showed increased CD1d expression as well as cell proliferation which was opposite to the effects of ZER. This study shows that, CD1d overexpression is associated with the progressive stages of breast cancer and ZER could be an adjuvant to potentiate cancer immunotherapy. Copyright © 2017. Published by Elsevier Ltd.

  10. A 1D model of the arterial circulation in mice.

    PubMed

    Aslanidou, Lydia; Trachet, Bram; Reymond, Philippe; Fraga-Silva, Rodrigo A; Segers, Patrick; Stergiopulos, Nikolaos

    2016-01-01

    At a time of growing concern over the ethics of animal experimentation, mouse models are still an indispensable source of insight into the cardiovascular system and its most frequent pathologies. Nevertheless, reference data on the murine cardiovascular anatomy and physiology are lacking. In this work, we developed and validated an in silico, one dimensional model of the murine systemic arterial tree consisting of 85 arterial segments. Detailed aortic dimensions were obtained in vivo from contrast-enhanced micro-computed tomography in 3 male, C57BL/6J anesthetized mice and 3 male ApoE(-/-) mice, all 12-weeks old. Physiological input data were gathered from a wide range of literature data. The integrated form of the Navier-Stokes equations was solved numerically to yield pressures and flows throughout the arterial network. The resulting model predictions have been validated against invasive pressure waveforms and non-invasive velocity and diameter waveforms that were measured in vivo on an independent set of 47 mice. In conclusion, we present a validated one-dimensional model of the anesthetized murine cardiovascular system that can serve as a versatile tool in the field of preclinical cardiovascular research.

  11. Bcl-xL regulates CD1d-mediated antigen presentation to NKT cells by altering CD1d trafficking through the endocytic pathway

    PubMed Central

    Subrahmanyam, Priyanka B.; Carey, Gregory B.; Webb, Tonya J.

    2014-01-01

    Natural killer T (NKT) cells are a unique subset of T cells that recognize glycolipid antigens presented in the context of CD1d molecules. NKT cells mount strong anti-tumor responses and are a major focus in developing effective cancer immunotherapy. It is known that CD1d molecules are constantly internalized from the cell surface, recycled through the endocytic compartments, and re-expressed on the cell surface. However, very little is known about the regulation of CD1d-mediated antigen processing and presentation in B cell lymphoma. Pro-survival factors of the Bcl-2 family, such as Bcl-xL are often upregulated in B cell lymphomas, and are intimately linked to sphingolipid metabolism as well as the endocytic compartments. We hypothesized that Bcl-xL can regulate CD1d-mediated antigen presentation to NKT cells. We found that over-expression or induction of Bcl-xL led to increased antigen presentation to NKT cells. Conversely, the inhibition or knockdown of Bcl-xL led to decreased NKT cell activation. Furthermore, knockdown of Bcl-xL resulted in the loss of CD1d trafficking to LAMPl+ compartments. Rab7, a late endosomal protein was upregulated and CD1d molecules accumulated in the Rab7+ late endosomal compartment. These results demonstrate that Bcl-xL regulates CD1d-mediated antigen processing and presentation to NKT cells by altering the late endosomal compartment and changing the intracellular localization of CD1d. PMID:25070854

  12. Novel function of α1D L-type calcium channel in the atria.

    PubMed

    Srivastava, Ujala; Aromolaran, Ademuyiwa S; Fabris, Frank; Lazaro, Deana; Kassotis, John; Qu, Yongxia; Boutjdir, Mohamed

    2017-01-22

    Ca entry through atrial L-type Calcium channels (α1C and α1D) play an important role in muscular contraction, regulation of gene expression, and release of hormones including atrial natriuretic peptide (ANP), and brain natriuretic peptide (BNP). α1D Ca channel is exclusively expressed in atria, and has been shown to play a key role in the pathogenesis of atrial fibrillation. Recent data have shown that the small conductance calcium-activated potassium channel, SK4 is also atrial specific and also contributes prominently to the secretion of ANP and BNP. However, its functional role in the heart is still poorly understood. Here we used α1D gene heterozygous (α1D(+/-)) mice and HL-1 cells to determine the functional contribution of SK4 channels to α1D-dependent regulation of ANP and BNP secretion in response to endothelin (ET), and/or mechanical stretch. Immunoprecipitation with α1D specific antibody and western blotting with SK4 specific antibody on the immuno-precipitated protein complex showed a band at 50 KDa confirming the presence of SK4 in the complex and provided evidence of interaction between SK4 and α1D channels. Using RT-PCR, we observed a 2.9 fold decrease in expression of Cacna1d (gene encoding α1D) mRNA in atria from α1D(+/-)mice. The decrease in α1D mRNA corresponded with a 4.2 fold decrease in Kcnn4 (gene encoding SK4) mRNA from α1D(+/-) mice. These changes were paralleled with a 77% decrease in BNP serum levels from α1D(+/-) mice. When α1D was knocked down in HL-1cardiomyocytes using CRISPR/Cas9 technology, a 97% decrease in secreted BNP was observed even in cells subjected to stretch and endothelin. In conclusion, our data are first to show that α1D Ca and SK4 channels are coupled in the atria, and that deletion of α1D leads to decreased SK4 mRNA and BNP secretion providing evidence for a novel role of α1D in atrial endocrine function. Elucidating the regulatory factors that underlie the secretory function of atria will identify

  13. 1D valence bond solids in a magnetic field

    NASA Astrophysics Data System (ADS)

    Iaizzi, Adam; Sandvik, Anders W.

    2015-09-01

    A Valence bond solid (VBS) is a nonmagnetic, long-range ordered state of a quantum spin system where local spin singlets are formed in some regular pattern. We here study the competition between VBS order and a fully polarized ferromagnetic state as function of an external magnetic field in a one-dimensional extended Heisenberg model—the J-Q2 model— using stochastic series expansion (SSE) quantum Monte Carlo simulations with directed loop updates. We discuss the ground state phase diagram.

  14. Spectral models for 1D blood flow simulations.

    PubMed

    Tamburrelli, Vincenzopio; Ferranti, Francesco; Antonini, Giulio; Cristina, Saverio; Dhaene, Tom; Knockaert, Luc

    2010-01-01

    In this paper we introduce a new theoretical formulation for the description of the blood flow in the circulatory system. Starting from a linearized version of the Navier-Stokes equations, the Green's function of the propagation problem is computed in a rational form. As a consequence, the input-output transfer function relating the upstream and downstream pressure and blood flow is written in a rational form as well, leading to a time-domain state-space model suitable for transient analysis. The proposed theoretical formulation has been validated by pertinent numerical results.

  15. Full Waveform 3D Synthetic Seismic Algorithm for 1D Layered Anelastic Models

    NASA Astrophysics Data System (ADS)

    Schwaiger, H. F.; Aldridge, D. F.; Haney, M. M.

    2007-12-01

    Numerical calculation of synthetic seismograms for 1D layered earth models remains a significant aspect of amplitude-offset investigations, surface wave studies, microseismic event location approaches, and reflection interpretation or inversion processes. Compared to 3D finite-difference algorithms, memory demand and execution time are greatly reduced, enabling rapid generation of seismic data within workstation or laptop computational environments. We have developed a frequency-wavenumber forward modeling algorithm adapted to realistic 1D geologic media, for the purpose of calculating seismograms accurately and efficiently. The earth model consists of N layers bounded by two halfspaces. Each layer/halfspace is a homogeneous and isotropic anelastic (attenuative and dispersive) solid, characterized by a rectangular relaxation spectrum of absorption mechanisms. Compressional and shear phase speeds and quality factors are specified at a particular reference frequency. Solution methodology involves 3D Fourier transforming the three coupled, second- order, integro-differential equations for particle displacements to the frequency-horizontal wavenumber domain. An analytic solution of the resulting ordinary differential system is obtained. Imposition of welded interface conditions (continuity of displacement and stress) at all interfaces, as well as radiation conditions in the two halfspaces, yields a system of 6(N+1) linear algebraic equations for the coefficients in the ODE solution. An optimized inverse 2D Fourier transform to the space domain gives the seismic wavefield on a horizontal plane. Finally, three-component seismograms are obtained by accumulating frequency spectra at designated receiver positions on this plane, followed by a 1D inverse FFT from angular frequency ω to time. Stress-free conditions may be applied at the top or bottom interfaces, and seismic waves are initiated by force or moment density sources. Examples reveal that including attenuation

  16. Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations

    PubMed Central

    Epstein, Sally; Willemet, Marie; Chowienczyk, Phil J.

    2015-01-01

    Patient-specific one-dimensional (1D) blood flow modeling requires estimating model parameters from available clinical data, ideally acquired noninvasively. The larger the number of arterial segments in a distributed 1D model, the greater the number of input parameters that need to be estimated. We investigated the effect of a reduction in the number of arterial segments in a given distributed 1D model on the shape of the simulated pressure and flow waveforms. This is achieved by systematically lumping peripheral 1D model branches into windkessel models that preserve the net resistance and total compliance of the original model. We applied our methodology to a model of the 55 larger systemic arteries in the human and to an extended 67-artery model that contains the digital arteries that perfuse the fingers. Results show good agreement in the shape of the aortic and digital waveforms between the original 55-artery (67-artery) and reduced 21-artery (37-artery) models. Reducing the number of segments also enables us to investigate the effect of arterial network topology (and hence reflection sites) on the shape of waveforms. Results show that wave reflections in the thoracic aorta and renal arteries play an important role in shaping the aortic pressure and flow waves and in generating the second peak of the digital pressure and flow waves. Our novel methodology is important to simplify the computational domain while maintaining the precision of the numerical predictions and to assess the effect of wave reflections. PMID:25888513

  17. Low-Frequency Electronic Noise in Quasi-1D TaSe3 van der Waals Nanowires.

    PubMed

    Liu, Guanxiong; Rumyantsev, Sergey; Bloodgood, Matthew A; Salguero, Tina T; Shur, Michael; Balandin, Alexander A

    2017-01-11

    We report results of investigation of the low-frequency electronic excess noise in quasi-1D nanowires of TaSe3 capped with quasi-2D h-BN layers. Semimetallic TaSe3 is a quasi-1D van der Waals material with exceptionally high breakdown current density. It was found that TaSe3 nanowires have lower levels of the normalized noise spectral density, SI/I(2), compared to carbon nanotubes and graphene (I is the current). The temperature-dependent measurements revealed that the low-frequency electronic 1/f noise becomes the 1/f(2) type as temperature increases to ∼400 K, suggesting the onset of electromigration (f is the frequency). Using the Dutta-Horn random fluctuation model of the electronic noise in metals, we determined that the noise activation energy for quasi-1D TaSe3 nanowires is approximately EP ≈ 1.0 eV. In the framework of the empirical noise model for metallic interconnects, the extracted activation energy, related to electromigration is EA = 0.88 eV, consistent with that for Cu and Al interconnects. Our results shed light on the physical mechanism of low-frequency 1/f noise in quasi-1D van der Waals semimetals and suggest that such material systems have potential for ultimately downscaled local interconnect applications.

  18. Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential

    NASA Astrophysics Data System (ADS)

    Guillamon, I.; Vieira, S.; Suderow, H.; Cordoba, R.; Sese, J.; de Teresa, J. M.; Ibarra, R.

    In two dimensional (2D) systems, theory has proposed that random disorder destroys long range correlations driving a transition to a glassy state. Here, I will discuss new insights into this issue obtained through the direct visualization of the critical behaviour of a 2D superconducting vortex lattice formed in a thin film with a smooth 1D thickness modulation. Using scanning tunneling microscopy at 0.1K, we have tracked the modification in the 2D vortex arrangements induced by the 1D thickness modulation while increasing the vortex density by three orders of magnitude. Upon increasing the field, we observed a two-step order-disorder transition in the 2D vortex lattice mediated by the appearance of dislocations and disclinations and accompanied by an increase in the local vortex density fluctuations. Through a detailed analysis of correlation functions, we find that the transition is driven by the incommensurate 1D thickness modulation. We calculate the critical points and exponents and find that they are well above theoretical expectation for random disorder. Our results show that long range 1D correlations in random potentials enhance the stability range of the ordered phase in a 2D vortex lattice. Work supported by Spanish MINECO, CIG Marie Curie Grant, Axa Research Fund and FBBVA.

  19. Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations.

    PubMed

    Epstein, Sally; Willemet, Marie; Chowienczyk, Phil J; Alastruey, Jordi

    2015-07-01

    Patient-specific one-dimensional (1D) blood flow modeling requires estimating model parameters from available clinical data, ideally acquired noninvasively. The larger the number of arterial segments in a distributed 1D model, the greater the number of input parameters that need to be estimated. We investigated the effect of a reduction in the number of arterial segments in a given distributed 1D model on the shape of the simulated pressure and flow waveforms. This is achieved by systematically lumping peripheral 1D model branches into windkessel models that preserve the net resistance and total compliance of the original model. We applied our methodology to a model of the 55 larger systemic arteries in the human and to an extended 67-artery model that contains the digital arteries that perfuse the fingers. Results show good agreement in the shape of the aortic and digital waveforms between the original 55-artery (67-artery) and reduced 21-artery (37-artery) models. Reducing the number of segments also enables us to investigate the effect of arterial network topology (and hence reflection sites) on the shape of waveforms. Results show that wave reflections in the thoracic aorta and renal arteries play an important role in shaping the aortic pressure and flow waves and in generating the second peak of the digital pressure and flow waves. Our novel methodology is important to simplify the computational domain while maintaining the precision of the numerical predictions and to assess the effect of wave reflections.

  20. A 1D-2D Shallow Water Equations solver for discontinuous porosity field based on a Generalized Riemann Problem

    NASA Astrophysics Data System (ADS)

    Ferrari, Alessia; Vacondio, Renato; Dazzi, Susanna; Mignosa, Paolo

    2017-09-01

    A novel augmented Riemann Solver capable of handling porosity discontinuities in 1D and 2D Shallow Water Equation (SWE) models is presented. With the aim of accurately approximating the porosity source term, a Generalized Riemann Problem is derived by adding an additional fictitious equation to the SWEs system and imposing mass and momentum conservation across the porosity discontinuity. The modified Shallow Water Equations are theoretically investigated, and the implementation of an augmented Roe Solver in a 1D Godunov-type finite volume scheme is presented. Robust treatment of transonic flows is ensured by introducing an entropy fix based on the wave pattern of the Generalized Riemann Problem. An Exact Riemann Solver is also derived in order to validate the numerical model. As an extension of the 1D scheme, an analogous 2D numerical model is also derived and validated through test cases with radial symmetry. The capability of the 1D and 2D numerical models to capture different wave patterns is assessed against several Riemann Problems with different wave patterns.

  1. Reactions of HO2 with carbon monoxide and nitric oxide and of O/1 D/ with water.

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1973-01-01

    Investigation of the reactions of the hydroperoxyl radical with carbon monoxide and nitric oxide in a static system, and reexamination of the reaction of O(1 D) with water. The HO2 radicals were generated by the photolysis of N2O at 2139 A in the presence of excess H2O or H2 and smaller amounts of CO and O2. The O(1 D) atoms produced from the photolysis of N2O react with H2O or with H2 to give OH radicals in the case of H2O or OH radicals and H atoms in the case of H2. With H2O, two OH radicals are produced for each O(1 D) removed at low pressures, but the OH yield drops as the pressure is raised. This drop is attributed to an insertion reaction which removes from 10 to 30% of the O(1 D) atoms at about 650 torr of H2O at 200 F. The OH radicals generated can react with either CO or H2 to produce H atoms, which then add to O2 to produce HO2. In the absence of NO, the HO2 radicals could react by two routes, while with NO present NO2 is produced in a long chain process.

  2. Exact solutions for 1D lattice models with topological complicated configuration

    NASA Astrophysics Data System (ADS)

    Fang, Lei; Schmeltzer, David

    In this work a transfer matrix method is developed to study 1D lattice models within the tight binding framework. Employing this method we show, from simple to difficult, the solutions of a semi-infinite wire, a finite open wire, a single closed ring and two coupled rings. We start by studying local properties of solutions in a homogeneous region. It is found that a calculation of the exponential of the transfer matrix is necessary for us to obtain the general form of wave functions in the entire homogenous region. Then by matching wave functions at boundaries or connecting junctions we can get equations that determine the spectrum. In this way we have solved the problem of two coupled rings (a topologically complicated configuration) and it is shown there can exist bound state in this system. This work was supported in part by the U.S. DOE O?ce of Basic Energy Sciences (Program Code: E304).

  3. GE SBWR stability analysis using TRAC-BF1 1-D kinetics model

    SciTech Connect

    Lu, S.; Baratta, A.J.; Robinson, G.E.

    1996-07-01

    GE`s simplified boiling water reactor, with its unique feature of using natural circulation to remove the heat from the reactor core, is a complicated dynamic system. Previous work by authors using the TRAC-BF1 code and a point kinetics model predicted that an SBWR may experience large amplitude power oscillation under certain low pressure and high power operating conditions. To further confirm the existence of this power oscillation and explore the dynamic spatial reactor power distribution, the TRAC-BF1 1-D kinetics model was used. The results show that an instability exists and the power oscillation starting time and maximum peak power are different from the point kinetics results.

  4. Statistics of scattered photons from a driven three-level emitter in 1D open space

    SciTech Connect

    Roy, Dibyendu; Bondyopadhaya, Nilanjan

    2014-01-07

    We derive the statistics of scattered photons from a Λ- or ladder-type three-level emitter (3LE) embedded in a 1D open waveguide. The weak probe photons in the waveguide are coupled to one of the two allowed transitions of the 3LE, and the other transition is driven by a control beam. This system shows electromagnetically induced transparency (EIT) which is accompanied with the Autler-Townes splitting (ATS) at a strong driving by the control beam, and some of these effects have been observed recently. We show that the nature of second-order coherence of the transmitted probe photons near two-photon resonance changes from bunching to antibunching to constant as strength of the control beam is ramped up from zero to a higher value where the ATS appears.

  5. A novel CMOS digital pixel sensor for 1D barcode scanning

    NASA Astrophysics Data System (ADS)

    Yan, Mei; DeGeronimo, Gianluigi; O'Connor, Paul; Carlson, Bradley S.

    2004-06-01

    A 1-D CMOS digital pixel image sensor system architecture is presented. Each pixel contains a photodiode, a low-power charge-sensitive amplifier, low noise sample/hold circuit, an 8-bit single-slope ADC, a 12-bit shift register and timing & control logic. The pixel is laid out on a 4μm pitch to enable a cost efficient implementation of high-resolution pixel arrays. Fixed pattern noise (FPN) is reduced by a charge-sensitive feedback amplifier, and the reset noise is cancelled by correlated double sampling read out. A prototype chip containing 512 pixels has been fabricated in the TSMC .25um logic process. A 40μV/e- conversion gain is measured with 100 e- rms read noise.

  6. Stratospheric Impact of 1D-Variation Assimilation of TOVS/ATOVS Data

    NASA Technical Reports Server (NTRS)

    Rokke, Laurie; Joiner, Joanna

    1999-01-01

    This paper will present an assessment of the impact to the stratospheric circulation of the DAO-GEOS2 (Data Assimilation Office -Goddard Earth Observing System) attributable to an improved 1D-Variational retrieval of heights. The assimilated heights are retrieved from both the TOVS (TIROS Operational Vertical Sounder) and the ATOVS (Advanced TOVS) sounders. Each sounder's sensitivity to temperature changes in the stratosphere will be addressed and its relationship to the model's background flow evaluated. Also detailed are the steps to ensure the quality of the data being assimilated. Finally the temporal and spatial scales, important to the stratospheric mean flow, will be evaluated in terms of the DAO-GEOS2 response to the assimilated heights.

  7. TAU: A 1D radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres

    NASA Astrophysics Data System (ADS)

    Hollis, M. D. J.; Tessenyi, M.; Tinetti, G.

    2013-10-01

    The TAU code is a 1D line-by-line radiative transfer code, which is generally applicable for modelling transmission spectra of close-in extrasolar planets. The inputs are the assumed pressure-temperature profile of the planetary atmosphere, the continuum absorption coefficients and the absorption cross-sections for the trace molecular absorbers present in the model, as well as the fundamental system parameters taken from the published literature. The program then calculates the optical path through the planetary atmosphere of the radiation from the host star, and quantifies the absorption due to the modelled composition in a transmission spectrum of transit depth as a function of wavelength. The code is written in C++, parallelised using OpenMP, and is available for public download and use from http://www.ucl.ac.uk/exoplanets/. Running time: From 0:5 to 500 s, depending on run parameters

  8. TAU: A 1D radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres

    NASA Astrophysics Data System (ADS)

    Hollis, M. D. J.; Tessenyi, M.; Tinetti, G.

    2014-02-01

    The TAU code is a 1D line-by-line radiative transfer code, which is generally applicable for modeling transmission spectra of close-in extrasolar planets. The inputs are the assumed temperature-pressure profile of the planetary atmosphere, the continuum absorption coefficients and the absorption cross-sections for the trace molecular absorbers present in the model, as well as the fundamental system parameters taken from the published literature. The program then calculates the optical path through the planetary atmosphere of the radiation from the host star, and quantifies the absorption due to the modeled composition in a transmission spectrum of transit depth as a function of wavelength. The code is written in C++, parallelized using OpenMP, and is available for public download and use from http://www.ucl.ac.uk/exoplanets/.

  9. Tandem repeats modify the structure of the canine CD1D gene.

    PubMed

    Looringh van Beeck, F A; Leegwater, P A J; Herrmann, T; Broere, F; Rutten, V P M G; Willemse, T; Van Rhijn, I

    2013-06-01

    Among the CD1 proteins that present lipid antigens to T cells, CD1d is the only one that stimulates a population of T cells with an invariant T-cell receptor known as NKT cells. Sequencing of a 722 nucleotide gap in the dog (Canis lupus familiaris) genome revealed that the canine CD1D gene lacks a sequence homologous to exon 2 of human CD1D, coding for the start codon and signal peptide. Also, the canine CD1D gene contains three different short tandem repeats that disrupt the expected gene structure. Because canine CD1D cDNA lacks sequences homologous to human exon 2 and 3, the functionality of canine CD1d protein may be affected, and this could have consequences for the development and activation of canine NKT cells.

  10. Onset of thermalization in a 1D Bose gas

    NASA Astrophysics Data System (ADS)

    Riou, Jean-Felix; Reinhard, Aaron W.; Adams, Laura; Weiss, David S.

    2011-05-01

    There has been considerable theoretical debate about how nearly integrable many-body quantum systems approach thermal equilibrium. Experiments on one dimensional Bose gases in optical lattices may shed light on this issue. We have studied the time evolution of momentum distributions of Rb clouds initially prepared in ``quantum Newton's cradle'' states [T. Kinoshita, T. Wenger and David S. Weiss, ``A quantum Newton's Cradle,'' Nature 440, 900 (2006)]. The measured evolution rates are found to depend on density and lattice depth. In order to isolate the part of the approach to equilibrium due to atom-atom interactions, it has been necessary to quantify, experimentally and theoretically, the contributions of various heating and loss processes to these rates.

  11. Exact Extremal Statistics in the Classical 1D Coulomb Gas

    NASA Astrophysics Data System (ADS)

    Dhar, Abhishek; Kundu, Anupam; Majumdar, Satya N.; Sabhapandit, Sanjib; Schehr, Grégory

    2017-08-01

    We consider a one-dimensional classical Coulomb gas of N -like charges in a harmonic potential—also known as the one-dimensional one-component plasma. We compute, analytically, the probability distribution of the position xmax of the rightmost charge in the limit of large N . We show that the typical fluctuations of xmax around its mean are described by a nontrivial scaling function, with asymmetric tails. This distribution is different from the Tracy-Widom distribution of xmax for Dyson's log gas. We also compute the large deviation functions of xmax explicitly and show that the system exhibits a third-order phase transition, as in the log gas. Our theoretical predictions are verified numerically.

  12. Multiscale Modeling Techniques for Plasmas: 1D Scaling Results and Application to Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Dorland, B.; Drake, J. F.; Stantchev, G.

    2005-12-01

    We examine a novel simulation scheme called "equation free projective integration"[1] which has the potential to allow global simulations which still include microscale physics, a necessary ingredient in order to model multiscale problems. Such codes could be used to examine the global effects of reconnection and turbulence in the Earth's magnetosphere, and the solar corona, as well as in laboratory Tokamaks. Using this method to simulate the propagation and steepening of a 1D ion acoustic wave, we have already achieved excellent agreement between full particle codes and equation free with a factor of 20 speed-up. This speedup appears to scale linearly with system size, so large scale 2D and 3D simulations using this method will show a speedup of 100 or more. In this method of simulation, the global plasma variables stepped forward in time are not time-integrated directly using dynamical differential equations, hence the name "equation free." Instead, these variables are represented on a microgrid using a kinetic simulation. This microsimulation is integrated forward long enough to determine the time derivatives of the global plasma variables, which are then used to integrate forward the global variables with much larger timesteps. Results will be presented of the successful application of equation free to 1-D ion acoustic wave steepening with a PIC code serving as the underlying kinetic model. Initial results of this technique applied to magnetic reconnection will also be discussed. 1 I. G. Kevrekidis et. al., Equation-free multiscale computation: Enabling microscopic simulators to perform system-level tasks, arXiv:physics/0209043.

  13. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  14. Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.

    PubMed

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting.

  15. Engineering 1D Quantum Stripes from Superlattices of 2D Layered Materials.

    PubMed

    Gruenewald, John H; Kim, Jungho; Kim, Heung Sik; Johnson, Jared M; Hwang, Jinwoo; Souri, Maryam; Terzic, Jasminka; Chang, Seo Hyoung; Said, Ayman; Brill, Joseph W; Cao, Gang; Kee, Hae-Young; Seo, Sung S Ambrose

    2017-01-01

    Dimensional tunability from two dimensions to one dimension is demonstrated for the first time using an artificial superlattice method in synthesizing 1D stripes from 2D layered materials. The 1D confinement of layered Sr2 IrO4 induces distinct 1D quantum-confined electronic states, as observed from optical spectroscopy and resonant inelastic X-ray scattering. This 1D superlattice approach is generalizable to a wide range of layered materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Differential pharmacology between the guinea-pig and the gorilla 5-HT1D receptor as probed with isochromans (5-HT1D-selective ligands).

    PubMed

    Pregenzer, J F; Alberts, G L; Im, W B; Slightom, J L; Ennis, M D; Hoffman, R L; Ghazal, N B; TenBrink, R E

    1999-05-01

    1. Both the 5-HT1D and 5-HT1B receptors are implicated in migraine pathophysiology. Recently isochromans have been discovered to bind primate 5-HT1D receptors with much higher affinity than 5-HT1B receptors. In the guinea-pig, a primary animal model for anti-migraine drug testing, however, isochromans bound the 5-HT1D receptor with lower affinity than the gorilla receptor. 2. This species-specific pharmacology was investigated, using site-directed mutagenesis on cloned guinea-pig receptors heterologously expressed in human embryonic kidney 293 cells. Mutations of threonine 100 and arginine 102 at the extracellular side of transmembrane II of the guinea-pig 5-HT1D receptor to the corresponding primate residues, isoleucine and histidine, respectively, enhanced its affinity for isochromans to that of the gorilla receptor, with little effects on its affinities for serotonin, sumatriptan and metergoline. Free energy change from the R102H mutation was about twice as much as that from the T100I mutation. 3. For G protein-coupling, serotonin marginally enhanced GTPgamma35S binding in membranes expressing the guinea-pig 5-HT1D receptor and its mutants, but robustly in membranes expressing the gorilla receptor. Sumatriptan enhanced GTPgamma35S binding in the latter nearly as much as serotonin, and several isochromans by 30-60% of serotonin. 4. We discovered key differences in the function and binding properties of guinea-pig and gorilla 5-HT1D receptors, and identified contributions of I100 and H102 of primate 5-HT1D receptors to isochroman binding. Among common experimental animals, only the rabbit shares I100 and H102 with primates, and could be useful for studying isochroman actions in vivo.

  17. Double resonant processes in 1D nonlinear periodic media

    NASA Astrophysics Data System (ADS)

    Kuzmiak, Vladimir; Konotop, Vladimir

    2001-03-01

    We consider one-dimensional periodic structure consisting of alternating layers fabricated from the materials possessing \\chi^(2) nonlinearity and assume that the filling fraction and the dielectric permittivities of the slabs are chosen in such a way that resonant contions for the generation for the second and third harmonic are satisfied simultaneously. The possibility of such process is demonstrated in the structure consisting of the alternating slabs of AlGaAs and InSb. The wave evolution is described in terms of envelope function approach. By taking account three resonant waves one obtains a system of coupled-mode differential equations. One of the solutions which is of special importance is that of having a constant amplitude and the first and third harmonic having zero amplitude. We analyze the stability of the solutions and show that the use of the double resonance allows one to obtain difference generation. A particular example of such a process is fractional conversion ω arrow (2/3)ω which takes place with the participation of the mode with the frequency ω/3.

  18. The Magical Geometry of 1D Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Plamadeala, Eugeniu

    We investigate the edge properties of Abelian topological phases in two spatial dimensions. We discover that many of them support multiple fully chiral edge phases, with surprising and measurable experimental consequences. Using the machinery of conformal field theory and integral quadratic forms we establish that distinct chiral edge phases correspond to genera of positive-definite integral lattices. This completes the notion of bulk-boundary correspondence for topological phases. We establish that by tuning inter-channel interactions the system can be made to transition between the different edge phases without closing the bulk gap. Separately we construct a family of one-dimensional models, called Perfect Metals, with no relevant mass-generating operators. These theories describe stable quantum critical phases of interacting fermions, bosons or spins in a quantum nanowire. These models rigorously answer a long-standing question about the existence of stable metallic phases in one and two spatial dimensions in the presence of generic disorder. Separately, they are the first example of a stable phase of an infinite parallel array of coupled Luttinger liquids. We perform a detailed study of the transport properties of Perfect Metals and show that in addition to violating the Wiedemann-Franz law, they naturally exhibit low power-law dependence of electric and thermal conductivities on temperature all the way to zero temperature. We dub this phenomenological set of properties a hyperconductor because in some sense, hyperconductors are better conductors that superconductors, which may have thermal conductivities that are exponentially small in temperature.

  19. Nanoelectronic Modeling (NEMO): Moving from commercial grade 1-D simulation to prototype 3-D simulation

    NASA Astrophysics Data System (ADS)

    Klimeck, Gerhard

    2001-03-01

    The quantum mechanical functionality of commercially pursued heterostructure devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, and quantum well lasers are enabled by material variations on an atomic scale. The creation of these heterostructure devices is realized in a vast design space of material compositions, layer thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a reliable design tool is needed. The Nanoelectronic Modeling tool (NEMO) is one of the first commercial grade attempts for such a modeling tool. NEMO was developed as a general-purpose quantum mechanics-based 1-D device design and analysis tool from 1993-97 by the Central Research Laboratory of Texas Instruments (later Raytheon Systems). NEMO enables(R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81), 7845 (1997). the fundamentally sound inclusion of the required(G. Klimeck et al.), in the 1997 55th Annual Device Research Conference Digest, (IEEE, NJ, 1997), p. 92^,(R. C. Bowen et al.), J. Appl. Phys 81, 3207 (1997). physics: bandstructure, scattering, and charge self-consistency based on the non-equilibrium Green function approach. A new class of devices which require full 3-D quantum mechanics based models is starting to emerge: quantum dots, or in general semiconductor based deca-nano devices. We are currently building a 3-D modeling tool based on NEMO to include the important physics to understand electronic stated in such superscaled structures. This presentation will overview various facets of the NEMO 1-D tool such electron transport physics in RTDs, numerical technology, software engineering and graphical user interface. The lessons learned from that work are now entering the NEMO 3-D development and first results using the NEMO 3-D prototype will be shown. More information about

  20. Effects of GWAS-Associated Genetic Variants on lncRNAs within IBD and T1D Candidate Loci

    PubMed Central

    Brorsson, Caroline A.; Pociot, Flemming

    2014-01-01

    Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs. We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs within and in close proximity (+/−5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable information that could be potentially useful for future structure-function studies on lncRNAs. PMID:25144376

  1. Density of states and extent of wave function: two crucial factors for small polaron hopping conductivity in 1D

    NASA Astrophysics Data System (ADS)

    Dimakogianni, M.; Simserides, C.; Triberis, G. P.

    2013-07-01

    We introduce a theoretical model to scrutinize the conductivity of small polarons in 1D disordered systems, focusing on two crucial - as will be demonstrated - factors: the density of states and the spatial extent of the electronic wave function. The investigation is performed for any temperature up to 300 K and under electric field of arbitrary strength up to the polaron dissociation limit. To accomplish this task, we combine analytical work with numerical calculations.

  2. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.

    PubMed

    Lim, Sung-Hwan; Lee, Taehoon; Oh, Younghoon; Narayanan, Theyencheri; Sung, Bong June; Choi, Sung-Min

    2017-08-25

    Synthesis of binary nanoparticle superlattices has attracted attention for a broad spectrum of potential applications. However, this has remained challenging for one-dimensional nanoparticle systems. In this study, we investigate the packing behavior of one-dimensional nanoparticles of different diameters into a hexagonally packed cylindrical micellar system and demonstrate that binary one-dimensional nanoparticle superlattices of two different symmetries can be obtained by tuning particle diameter and mixing ratios. The hexagonal arrays of one-dimensional nanoparticles are embedded in the honeycomb lattices (for AB2 type) or kagome lattices (for AB3 type) of micellar cylinders. The maximization of free volume entropy is considered as the main driving force for the formation of superlattices, which is well supported by our theoretical free energy calculations. Our approach provides a route for fabricating binary one-dimensional nanoparticle superlattices and may be applicable for inorganic one-dimensional nanoparticle systems.Binary mixtures of 1D particles are rarely observed to cooperatively self-assemble into binary superlattices, as the particle types separate into phases. Here, the authors design a system that avoids phase separation, obtaining binary superlattices with different symmetries by simply tuning the particle diameter and mixture composition.

  3. Mapping of the serotonin 5-HT{sub 1D{alpha}} autoreceptor gene (HTR1D) on chromosome 1 using a silent polymorphism in the coding region

    SciTech Connect

    Ozaki, N.; Lappalainen, J.; Linnoila, M.

    1995-04-24

    Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.

  4. Analysis of Rotational Structure in the High-Resolution Infrared Spectra of the TRANS-HEXATRIENE-1,1-D2 and -CIS-1-D1 Species

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Fuson, Hannah A.; Tian, Hengfeng; Blake, Thomas A.

    2011-06-01

    Hexatriene-1,1-D2 with some admixture of the cis-1-D1 and trans-1-D1 species was synthesized by reaction of 2,4-pentadienal and (methyl-D3)-triphenylphosphonium iodide (Wittig reagent). The trans isomer was isolated by preparative gas chromatography, and the high-resolution (0.0015 Cm-1) infrared spectrum was recorded on a Bruker IFS 125HR instrument. The rotational structure in two C-type bands for the 1,1-D2 species was analyzed. For this species the bands at 902.043 and 721.864 Cm-1 yielded composite ground state rotational constants of A0 = 0.801882(1), B0 = 0.041850(2), and C0 = 0.039804(1) Cm-1. For the cis-1-D1 species the C-type band at 803.018 Cm-1 gave A0 = 0.809384(2), B0 = 0.043530(3), and C0 = 0.041321(2) Cm-1. By iodine-catalyzed isomerization, we have obtained some of the much less favored cis isomer and hope to obtain microwave spectra for its three deuterium-substituted species. The rotational constants reported here contribute to data needed for determining a semi-experimental structure for trans-hexatriene, which should show that the structural consequences of pi-electron delocalization increase with the chain length of polyenes.

  5. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.

    PubMed

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.

  6. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model

    PubMed Central

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125

  7. Therapeutic implications of CD1d expression and tumor-infiltrating macrophages in pediatric medulloblastomas.

    PubMed

    Teo, Wan-Yee; Elghetany, M Tarek; Shen, Jianhe; Man, Tsz-Kwong; Li, Xiaonan; Chintagumpala, Murali; Su, Jack Meng Fen; Dauser, Robert; Whitehead, William; Adesina, Adekunle M; Lau, Ching C

    2014-11-01

    Immunobiology of medulloblastoma (MB), the most common malignant brain tumor in children, is poorly understood. Although tumor cells in some MBs were recently shown to express CD1d and be susceptible to Vα24-invariant natural killer T (NKT)-cell cytotoxicity, the clinical relevance of CD1d expression in MB patients remains unknown. We investigated the expression of CD1d in pediatric MBs and correlated with molecular and clinical characteristics. Specifically, we explored if NKT cell therapy can be targeted at a subset of pediatric MBs with poorer prognosis. Particularly, infantile MBs have a worse outcome because radiotherapy is delayed to avoid neurocognitive sequelae. Immunohistochemistry for CD1d was performed on a screening set of 38 primary pediatric MBs. Gene expression of the membrane form of M2 macrophage marker, CD163, was studied in an expanded cohort of 60 tumors. Outcome data was collected prospectively. Thirteen of 38 MBs (34.2 %) expressed CD1d on immunohistochemistry. CD1d was expressed mainly on MB tumor cells, and on some tumor-associated macrophages. Majority (18/22, 82 %) of non sonic-hedgehog/Wingless-activated MBs (group 3 and 4) were CD1d-negative (p = 0.05). A subset of infantile MBs (4/9, 44.4 %) expressed CD1d. Macrophages infiltrating MB expressed CD163 apart from CD1d. Molecular subtypes demonstrated statistical differences in CD163 expression, SHH-tumors were the most enriched (p = 0.006). Molecular and clinical subtypes of pediatric MB exhibit distinct differences in CD1d expression, which have important therapeutic implications. High CD1d expression in infantile MBs offers potential new immunotherapeutic treatment with NKT cell therapy in infants, where treatment is suboptimal due delayed radiotherapy.

  8. Variational Assimilation of Sparse and Uncertain Satellite Data For 1D Saint-Venant River Models

    NASA Astrophysics Data System (ADS)

    Garambois, P. A.; Brisset, P.; Monnier, J.; Roux, H.

    2016-12-01

    Profusion of satellites are providing increasingly accurate measurements of continental water cyle, and water bodies variations while in situ observability is declining. The future Surface Water and Ocean Topography (SWOT) mission will provide maps of river surface elevations widths and slopes with an almost global coverage and temporal revisits. This will offer the possibility to address a larger variety of inverse problems in surface hydrology. Data assimilation techniques, that are broadly used in several scientific fields, aim to optimally combine models, system observations and prior information. Variational assimilation consists in iterative minimization of a discrepency measure between model outputs and observations, here for retrieving boundary conditions and parameters of a 1D Saint Venant model. Nevertheless, inferring river discharge and hydraulic parameters thanks to the observation of river surface is not straightforward. This is particularly true in the case of sparse and uncertain observations of flow state variables since they are governed by nonlinear physical processes. This paper investigates the identifiability of hydraulic controls given sparse and uncertain satellite observations of a river. The identifiability of river discharge alone and with roughness is tested for several spatio temporal patterns of river observations, including SWOT like observations. A new 1D Shallow water model with variational data assimilation, within the DassFlow chain is presented as well as postprocessing and observation operator dedicated to the future SWOT and SWOT simulator data. In view to decrease inverse problem dimensionality discharge is represented in a reduced basis. Moreover we introduce an original and reduced parametrization of the flow resistance that can account for various flow regimes along with a cross section design dedicated to remote sensing. We show which discharge temporal frequencies can be identified w.r.t observation ones and at which

  9. Effects of polyamine inhibitors on zinc uptake by COMMA-1D mammary epithelial cells

    SciTech Connect

    Allen, J.C.; Haedrich, L.H. )

    1991-03-15

    Zn uptake or transport is stimulated by glucocorticoids in many types of epithelial cells, including the COMMA-1D mouse mammary cell line. The current objective was to determine whether polyamines also mediate glucocorticoid stimulation of Zn-uptake. Initially, cells grown in lactogenic hormone supplemented-media had approximately 65% greater {sup 65}Zn-uptake over 24 h than cells in nonsupplemented growth media (GM). {sup 65}Zn-uptake from HM with 10{sup {minus}5}M methylglyoxal-bis(guanylhydrazone) (MGBG) (s-adenosyl-methionine decarboxylase inhibitor to block polyamine synthesis) added was less than from GM. Exogenous spermidine added to the MGBG-HM media increased {sup 65}Zn-uptake. However, up to 10mM difluoromethylornithine (DFMO), a more specific inhibitor of sperimidine synthesis, had no significant effect on 24-h {sup 65}Zn-uptake by cells in HM. In GM, DFMO caused a slight dose-dependent decrease in {sup 65}Zn-uptake over the range 10{sup {minus}6} to 5 {times} 10{sup 3}M. Also, with 8 h of incubation, DFMO tended to decrease {sup 65}Zn-uptake in HM-stimulated cells. These data cannot yet distinguish between the possibilities that DFMO is inactivated during the 24-h incubation or that the dramatic effects of MGBG on {sup 65}Zn-uptake in these mammary-derived cells is not related to its inhibition of polyamine synthesis. Because COMMA-1D cells alter Zn uptake in response to lactogenic hormones and MGBG, the model system is suitable for further studies of the mechanisms of zinc transport in epithelia.

  10. Inhibition of Ser/Thr phosphatase PPM1D induces neutrophil differentiation in HL-60 cells.

    PubMed

    Kamada, Rui; Kudoh, Fuki; Yoshimura, Fumihiko; Tanino, Keiji; Sakaguchi, Kazuyasu

    2017-05-09

    Protein phosphatase Magnesium-dependent 1, Delta (PPM1D) is a wild-type p53-inducible Ser/Thr phosphatase that acts as a negative regulator of the p53 tumor suppressor. Gene amplification and overexpression of PPM1D have been reported in various cancers including leukemia and neuroblastoma. Therefore, PPM1D is a promising target in cancer therapy. It has been reported that PPM1D knockout mice exhibit neutrophilia in blood and show a defective immune response. Here, we found that inhibition of PPM1D induced neutrophil differentiation of human promyelocytic leukemia cell line HL-60. The combination of a PPM1D inhibitor and all-trans retinoic acid significantly increased their differentiation efficiency. The PPM1D inhibitor also induced G1 arrest in HL-60 cells. Our results suggest that PPM1D may be a potential therapeutic target for blood cell diseases including leukemia. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. X(3872) as a {sup 1}D{sub 2} charmonium state

    SciTech Connect

    Kalashnikova, Yu. S.; Nefediev, A. V.

    2010-11-01

    The {sup 1}D{sub 2} charmonium assignment for the X(3872) meson is considered, as prompted by a recent result from the BABAR Collaboration, favoring 2{sup -+} quantum numbers for X. It is shown that established properties of X(3872) are in a drastic conflict with the {sup 1}D{sub 2} cc assignment.

  12. A rational route to SCM materials based on a 1-D cobalt selenocyanato coordination polymer.

    PubMed

    Boeckmann, Jan; Näther, Christian

    2011-07-07

    Thermal annealing of a discrete complex with terminal SeCN anions and monodentate coligands enforces the formation of a 1D cobalt selenocyanato coordination polymer that shows slow relaxation of the magnetization. Therefore, this approach offers a rational route to 1D materials that might show single chain magnetic behaviour.

  13. The organic anion transport polypeptide 1d1 (Oatp1d1) mediates hepatocellular uptake of phalloidin and microcystin into skate liver

    SciTech Connect

    Meier-Abt, F.; Hammann-Haenni, A.; Stieger, B.; Ballatori, N.; Boyer, J.L. . E-mail: james.boyer@yale.edu

    2007-02-01

    Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [{sup 3}H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km {approx} 0.4 {mu}M), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki {approx} 150 {mu}M). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km {approx} 2.2 {mu}M) and microcystin-LR (Km {approx} 27 {mu}M) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ost{alpha}/{beta}, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin.

  14. Non-thermal distribution of O(1D) atoms in the night-time thermosphere

    NASA Technical Reports Server (NTRS)

    Yee, Jeng-Hwa

    1988-01-01

    The 6300 A O(1D-3P) emission has been used for many years to remotely monitor the thermospheric temperature from the Doppler width of its line profile. The O(1D) atoms in the nighttime thermosphere are initially produced by the dissociative recombination of O2(+) ions with kinetic energy much greater than the thermal energy of the ambient neutrals. The validity of the technique to monitor neutral ambient temperature by measuring O(1D) 6300 A emission depends on the degree of thermalization of the O(1D) atoms. The object of this study is to calculate the velocity distribution of the O(1D) atoms and to examine the effect of nonthermal distribution on the nighttime thermospheric neutral temperature determined.

  15. Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.

    PubMed

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2017-03-02

    This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.

  16. Tctex1d2 Is a Negative Regulator of GLUT4 Translocation and Glucose Uptake.

    PubMed

    Shimoda, Yoko; Okada, Shuichi; Yamada, Eijiro; Pessin, Jeffrey E; Yamada, Masanobu

    2015-10-01

    Tctex1d2 (Tctex1 domain containing 2) is an open reading frame that encodes for a functionally unknown protein that contains a Tctex1 domain found in dynein light chain family members. Examination of gene expression during adipogenesis demonstrated a marked increase in Tctex1d2 protein expression that was essentially undetectable in preadipocytes and markedly induced during 3T3-L1 adipocyte differentiation. Tctex1d2 overexpression significantly inhibited insulin-stimulated glucose transporter 4 (GLUT4) translocation and 2-deoxyglucose uptake. In contrast, Tctex1d2 knockdown significantly increased insulin-stimulated GLUT4 translocation and 2-deoxyglucose uptake. However, acute insulin stimulation (up to 30 min) in 3T3-L1 adipocytes with overexpression or knockdown of Tctex1d2 had no effect on Akt phosphorylation, a critical signal transduction target required for GLUT4 translocation. Although overexpression of Tctex1d2 had no significant effect on GLUT4 internalization, Tctex1d2 was found to associate with syntaxin 4 in an insulin-dependent manner and inhibit Doc2b binding to syntaxin 4. In addition, glucose-dependent insulinotropic polypeptide rescued the Tctex1d2 inhibition of insulin-stimulated GLUT4 translocation by suppressing the Tctex1d2-syntaxin 4 interaction and increasing Doc2b-Synatxin4 interactions. Taking these results together, we hypothesized that Tctex1d2 is a novel syntaxin 4 binding protein that functions as a negative regulator of GLUT4 plasma membrane translocation through inhibition of the Doc2b-syntaxin 4 interaction.

  17. Reactions in the system HfO/sub 2/-SrO, HfO/sub 2/-BaO, and ZrO/sub 2/-BaO in high HfO/sub 2/ or ZrO/sub 2/ regions

    SciTech Connect

    Shevchenko, A.V.; Lopato, L.M.; Gerasimyuk, G.I.; Zaitseva, Z.A.

    1988-02-01

    The objective of this work was to study phase equilibria in the systems HfO/sub 2/-SrO, HfO/sub 2/-BaO, and ZrO/sub 2/-BaO in the 0 to 50 mole% SrO or BaO range and between 1600 and 2800/sup 0/C with the aid of high-temperature calcining and quenching methods. The samples' phase composition was determined by x-ray, microstructural, and petrographic methods. Samples calcined and melted in the solar furnace were analyzed by x-ray diffraction at room temperature on a DRON-1.5 diffractometer with Cu-K/sub ..cap alpha../ radiation and a Ni filter. Refractive indices were measured in high-refraction immersion liquids and in sulfur and selenium alloys. They form characteristic narrow solid solution regions based on the monoclinic, tetragonal, and cubic modifications of HfO/sub 2/(ZrO/sub 2/).

  18. Topological defect formation in 1D and 2D spin chains realized by network of optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Hamerly, Ryan; Inaba, Kensuke; Inagaki, Takahiro; Takesue, Hiroki; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-09-01

    A network of optical parametric oscillators (OPOs) is used to simulate classical Ising and XY spin chains. The collective nonlinear dynamics of this network, driven by quantum noise rather than thermal fluctuations, seeks out the Ising/XY ground state as the system transitions from below to above the lasing threshold. We study the behavior of this “Ising machine” for three canonical problems: a 1D ferromagnetic spin chain, a 2D square lattice and problems where next-nearest-neighbor couplings give rise to frustration. If the pump turn-on time is finite, topological defects form (domain walls for the Ising model, winding number and vortices for XY) and their density can be predicted from a numerical model involving a linear “growth stage” and a nonlinear “saturation stage”. These predictions are compared against recent data for a 10,000-spin 1D Ising machine.

  19. Monitoring Radionuclide Transport and Spatial Distribution with a 1D Gamma-Ray Scanner

    NASA Astrophysics Data System (ADS)

    Dozier, R.; Erdmann, B.; Sams, A.; Barber, K.; DeVol, T. A.; Moysey, S. M.; Powell, B. A.

    2016-12-01

    Understanding radionuclide movement in the environment is important for informing strategies for radioactive waste management and disposal. A 1-dimensional (1D) gamma-ray emission scanning system was developed to investigate radionuclide transport behavior within soils. Two case studies illustrate the use of the system for non-destructively monitoring transport processes within a soil column. The first case study explores the system capabilities for simultaneously detecting technetium-99m (99mTc), iodine-131 (131I), and sodium-22 (22Na) moving through a column (length = 14.1 cm, diameter = 3.8 cm) packed with soil from the Department of Energy's Savannah River Site. A sodium iodide (NaI) detector was placed at 4 cm above the influent and a Bismuth germanate (BGO) detector at about 10 cm above the influent. The NaI detector results show 99mTc, 131I, and 22Na having similar breakthrough curves with the tail of 99mTc being lower than that of 131I and 22Na. NaCl tracer results compliment the gamma-ray emission measurements. These results are promising because we are able to monitor movement of the isotopes in the column in real-time. In the second case study, the 1D gamma scanner was used to quantify radionuclide mobility within a lysimeter (length = 51 cm, diameter = 10 cm). A cementitious waste form containing cobalt-60 (60Co), barium-133 (133Ba), cesium-137 (137Cs), and europium-152 (152Eu), with the amount of each contained in the cement ranging from 3 to 8.5 MBq, was placed at the midpoint of the lysimeter. The lysimeter was then exposed to natural rainfall and environmental conditions and effluent samples were collected and quantified on a quarterly basis. Following 3.3 years of exposure, the radionuclide distribution in the lysimeter was quantified with a 0.64 cm collimated high-purity germanium gamma-ray spectrometer. Diffusion of 137Cs away from the cementitious wasteform was observed. No movement was seen for 133Ba, 60Co, or 152Eu within the detection limits

  20. Optical bullets in (2+1)D photonic structures and their interaction with localized defects

    NASA Astrophysics Data System (ADS)

    Dohnal, Tomas

    2005-11-01

    This dissertation studies light propagation in Kerr-nonlinear two dimensional waveguides with a Bragg resonant, periodic structure in the propagation direction. The model describing evolution of the electric field envelopes is the system of 2D Nonlinear Coupled Mode Equations (2D CME). The periodic structure induces a range of frequencies (frequency gap) in which linear waves do not propagate. It is shown that, similarly to the ID case of a fiber grating, the 2D nonlinear system supports localized solitary wave solutions, referred to as 2D gap solitons, which have frequencies inside the linear gap and can travel at, any speed smaller than or equal to the speed of light in the corresponding homogeneous medium. Such solutions are constructed numerically via Newton's iteration. Convergence is obtained only near the upper edge of the gap. Gap solitons with a nonzero velocity are constructed by numerically following a bifurcation curve parameterized by the velocity v. It is shown that gap solitons are saddle points of the corresponding Hamiltonian functional and that no (constrained) local minima of the Hamiltonian exist. The linear stability problem is formulated and reasons for the failure of the standard Hamiltonian PDE approach for determining linear stability are discussed. In the second part of the dissertation interaction of 2D gap solitons with localized defects is studied and trapping of slow enough 2D gap solitons is demonstrated. This study builds on [JOSA B 19, 1635 (2002)], where such trapping of 1D gap solitons is considered. Analogously to this 1D problem trapping in the 2D model is explained as a resonant energy transfer into one or more defect modes existent for the particular defect. For special localized defects exact linear modes are found explicitly via the separation of variables. Numerical computation of linear defect modes is used for more general defects. Corresponding nonlinear modes are then constructed via Newton's iteration by following a

  1. Light-directing chiral liquid crystal nanostructures: from 1D to 3D.

    PubMed

    Bisoyi, Hari Krishna; Li, Quan

    2014-10-21

    Endowing external, remote, and dynamic control to self-organized superstructures with desired functionalities is a principal driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media capable of self-organizing into optically tunable one-dimensional (1D) and three-dimensional (3D) superstructures represent such an elegant system. As a consequence, photoresponsive cholesteric LCs (CLCs), i.e., self-organized 1D helical superstructures, and LC blue phases (BPs), i.e., self-organized 3D periodic cubic lattices, are emerging as a new generation of multifunctional supramolecular 1D and 3D photonic materials in their own right because of their fundamental academic interest and technological significance. These smart stimuli-responsive materials can be facilely fabricated from achiral LC hosts by the addition of a small amount of a light-driven chiral molecular switch or motor. The photoresponsiveness of these materials is a result of both molecular interaction and geometry changes in the chiral molecular switch upon light irradiation. The doped photoresponsive CLCs undergo light-driven pitch modulation and/or helix inversion, which has many applications in color filters, polarizers, all-optical displays, optical lasers, sensors, energy-saving smart devices, and so on. Recently, we have conceptualized and rationally synthesized different light-driven chiral molecular switches that have very high helical twisting powers (HTPs) and exhibit large changes in HTP in different states, thereby enabling wide phototunability of the systems by the addition of very small amounts of the molecular switches into commercially available achiral LCs. The light-driven chiral molecular switches are based on well-recognized azobenzene, dithienylcyclopentene, and spirooxazine derivatives. We have demonstrated high-resolution and lightweight photoaddressable displays without patterned electronics on

  2. The FC-1D: The profitable alternative Flying Circus Commercial Aviation Group

    NASA Technical Reports Server (NTRS)

    Meza, Victor J.; Alvarez, Jaime; Harrington, Brook; Lujan, Michael A.; Mitlyng, David; Saroughian, Andy; Silva, Alex; Teale, Tim

    1994-01-01

    The FC-1D was designed as an advanced solution for a low cost commercial transport meeting or exceeding all of the 1993/1994 AIAA/Lockheed request for proposal requirements. The driving philosophy behind the design of the FC-1D was the reduction of airline direct operating costs. Every effort was made during the design process to have the customer in mind. The Flying Circus Commercial Aviation Group targeted reductions in drag, fuel consumption, manufacturing costs, and maintenance costs. Flying Circus emphasized cost reduction throughout the entire design program. Drag reduction was achieved by implementation of the aft nacelle wing configuration to reduce cruise drag and increase cruise speeds. To reduce induced drag, rather than increasing the wing span of the FC-1D, spiroids were included in the efficient wing design. Profile and friction drag are reduced by using riblets in place of paint around the fuselage and empennage of the FC-1D. Choosing a single aisle configuration enabled the Flying Circus to optimize the fuselage diameter. Thus, reducing fuselage drag while gaining high structural efficiency. To further reduce fuel consumption a weight reduction program was conducted through the use of composite materials. An additional quality of the FC-1D is its design for low cost manufacturing and assembly. As a result of this design attribute, the FC-1D will have fewer parts which reduces weight as well as maintenance and assembly costs. The FC-1D is affordable and effective, the apex of commercial transport design.

  3. Regulation of the actin cytoskeleton by Rho kinase controls antigen presentation by CD1d1

    PubMed Central

    Gallo, Richard M.; Khan, Masood A.; Shi, Jianjian; Kapur, Reuben; Wei, Lei; Bailey, Jennifer C.; Liu, Jianyun; Brutkiewicz, Randy R.

    2012-01-01

    CD1d molecules are major histocompatibility complex (MHC) class I-like molecules that present lipid antigens to Natural Killer T (NKT) cells. Although we have previously shown that several different cell signaling molecules can play a role in the control of antigen presentation by CD1d, a defined mechanism by which a cell signaling pathway regulates CD1d function has been unclear. In the current study, we have found that the Rho kinases, ROCK1 and ROCK2, negatively regulate both human and mouse CD1d-mediated antigen presentation. Inhibition of ROCK pharmacologically, through specific ROCK1 and ROCK2 shRNA, or by using dendritic cells generated from ROCK1-deficient mice all resulted in enhanced CD1d-mediated antigen presentation compared to controls. ROCK regulates the actin cytoskeleton by phosphorylating LIM kinase which, in turn, phosphorylates cofilin, prohibiting actin fiber depolymerization. Treatment of antigen presenting cells with the actin filament depolymerizing agent, cytochalasin D, as well as knockdown of LIM kinase by shRNA, resulted in enhanced antigen presentation to NKT cells by CD1d, consistent with our ROCK inhibition data. Therefore, our overall results reveal a model whereby CD1d-mediated antigen presentation is negatively regulated by ROCK via its effects on the actin cytoskeleton. PMID:22798677

  4. Structure and Catalytic Mechanism of Human Steroid 5-Reductase (AKR1D1)

    SciTech Connect

    Costanzo, L.; Drury, J; Christianson, D; Penning, T

    2009-01-01

    Human steroid 5{beta}-reductase (aldo-keto reductase (AKR) 1D1) catalyzes reduction of {Delta}{sup 4}-ene double bonds in steroid hormones and bile acid precursors. We have reported the structures of an AKR1D1-NADP{sup +} binary complex, and AKR1D1-NADP{sup +}-cortisone, AKR1D1-NADP{sup +}-progesterone and AKR1D1-NADP{sup +}-testosterone ternary complexes at high resolutions. Recently, structures of AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone complexes showed that the product is bound unproductively. Two quite different mechanisms of steroid double bond reduction have since been proposed. However, site-directed mutagenesis supports only one mechanism. In this mechanism, the 4-pro-R hydride is transferred from the re-face of the nicotinamide ring to C5 of the steroid substrate. E120, a unique substitution in the AKR catalytic tetrad, permits a deeper penetration of the steroid substrate into the active site to promote optimal reactant positioning. It participates with Y58 to create a 'superacidic' oxyanion hole for polarization of the C3 ketone. A role for K87 in the proton relay proposed using the AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone structure is not supported.

  5. Deterministic control of the emission from light sources in 1D nanoporous photonic crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Galisteo-López, Juan F.

    2017-02-01

    Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.

  6. Growth and Magnetic characterization of 1D Permalloy Nanowires using self developed AAO Templates

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Khan, G. G.; Das, B.; Mandal, K.

    2015-02-01

    1D Permalloy refers to an alloy of Ni and Fe with 80% and 20% composition respectively. 1D Permalloy nanowires are particularly attractive because of their high permeability, low coercivity, near zero magnetostriction and high anisotropic magnetoresistance. Because of low magnetostriction of Permalloy shape anisotropy plays a very important role. As a result, the nanowires show unidirectional anisotropy along their length. Because of this property, they can be used in many applications such as recording head sensors, magnetic storage devices etc. In the present work 1D Permalloy nanowires arrays were fabricated into the pores of self engineered Anodic Aluminium Oxide (AAO) templates by a simple electrodeposition technique (EDT). By varying the Anodization voltage and the parameters of the electrolytic solutions we developed various AAO templates with different average pore diameters. We developed the 1D Permalloy NW's of different diameters depending on the pore size arrangement of AAO templates by varying the deposition conditions. Structural characterization of AAO templates and 1D Permalloy NW's was performed by Transmission and Scanning Electron Microscopy (TEM & SEM). XRD studies of 1D Permalloy NW's shows their fcc crystalline structure and the AAO template was found to be amorphous in nature. Magnetic studies show the 1D Permalloy NW's arrays to have obvious anisotropy, and the easy axis was found to be parallel to the nanowires axis. We performed the angular dependence measurement of 1D Permalloy NW's. When the applied magnetic field was parallel to the nanowires, the coercivity (Hc) and the maximum remanent ratio (Mr/Ms) were considerably higher than those while the magnetic field perpendicular to the nanowires. 1D Permalloy NW's developed in this work are expected to be utilize in magnetic memory and magnetic recording devices.

  7. 50 CFR Table 1d to Part 660... - At-Sea Whiting Fishery Annual Set-Asides, 2013

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false At-Sea Whiting Fishery Annual Set-Asides, 2013 1d Table 1d to Part 660, Subpart C Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... COAST STATES Pt. 660, Subpt. C, Table 1d Table 1d to Part 660, Subpart C—At-Sea Whiting Fishery Annual...

  8. 50 CFR Table 1d to Part 660... - At-Sea Whiting Fishery Annual Set-Asides, 2013

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false At-Sea Whiting Fishery Annual Set-Asides, 2013 1d Table 1d to Part 660, Subpart C Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... COAST STATES Pt. 660, Subpt. C, Table 1d Table 1d to Part 660, Subpart C—At-Sea Whiting Fishery Annual...

  9. 2D Biotope Mapping Using Combined LIDAR, Topographic Survey And Segmented 1D Flow Modelling

    NASA Astrophysics Data System (ADS)

    Entwistle, N. S.; Heritage, G. L.; Milan, D. J.

    2009-12-01

    Reach averaged habitat availability models such as PHABSIM are limited due principally to their failure to adequately map hydraulic habitat distribution at a representative scale. A lack of morphologic data, represented in the form of sparse geometric cross-sections fails to generate the necessary detail. Advances in data collection, improved spatial modelling algorithms and the advent of cross-section based segmentation routines in 1D hydraulic models provides the opportunity to revisit the issue of hydraulic habitat mapping and modelling. This paper presents a combined technique for habitat characterisation at the sub-bar scale is presented for the River Rede, Northumberland, UK. Terrestrial LIDAR data of floodplain, banks and exposed bar surfaces at an average 0.05 m spacing are combined with sparser total station survey data of submerged morphologic features. These data are interpolated to create a uniform DEM grid at 0.2 m spacing (adequate to detect the smallest variation in hydraulic habitat in this system). The data grid were then imported into the HECRAS 1D hydraulic model to generate a 2 m spaced series of cross-sections along a 220 m sinuous single thread reach exhibiting pool - riffle point-bar morphology. The hydraulic segmentation routine then generated estimates of depth averaged flow velocity, flow depth and sub unit discharge for 40 sub-divisions of the flow width for a series of flows from 0.5 m3s-1 up to bankfull flow of approximately 9 m3s-1. The resultant hydraulic data were exported in the project coordinate system and plotted to reveal the 2D pattern of hydraulic biotopes present across the range of flows modelled. The results reveal broadly realistic patterns consistent with previous empirical studies and compare well with LIDAR based biotope maps. Analysis of the temporal pattern of biotope change indicates that biotope diversity and complexity is at a maximum at lower flows and across shallower area (riffles) and that these dominate the

  10. A comparison of 1-D and 2-D algorithms for radar target classification

    NASA Astrophysics Data System (ADS)

    Novak, Leslie M.

    The use of high-resolution radar measurement data from four ground vehicles (bulldozer, Dodge Power Wagon, Dodge Van, and Camaro) to evaluate the performance of several 1D and 2D classifiers is discussed. The 1D classifiers use high-resolution range profiles to classify targets; the 2D classifier uses high-resolution inverse synthetic aperture radar (ISAR) images to classify targets. Classification performance results using the 1D and 2D algorithms are presented, and it is shown that the 2D algorithm performed best.

  11. 1D cerium(III) coordination polymer with pivalate bridges: Synthesis, structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Akhtar, Muhammad Nadeem; Mateen, Muhammad; Sadakiyo, Masaaki; Warsi, Muhammad Farooq; AlDamen, Murad A.; Song, You

    2017-08-01

    In the present work, synthesis, characterization, and properties of a new 1D-polymeric chain of [Ce(piv)3(MeOH)2]n (1D-Ce) are described. This polymeric structure was synthesized via reaction of Ce(NO3)3·6H2O with pivalic acid in presence of triethylamine. Crystal structure consists of cerium coordinated to eight oxygen atoms from five pivalate and two methanol moieties. Magnetic studies on the complex revealed a strong antiferromagnetic interaction between CeIII ions in the 1D chain.

  12. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    PubMed Central

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R.; Mans, Dorus A.; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E. C.; Yap, Zhi Min; Letteboer, Stef J. F.; Taylor, S. Paige; Herridge, Warren; Johnson, Colin A.; Scambler, Peter J.; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M.; Beales, Philip L.; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M.; Witman, George B.; Al-Turki, Saeed; Anderson, Carl; Anney, Richard; Antony, Dinu; Asimit, Jennifer; Ayub, Mohammad; Barrett, Jeff; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Boustred, Chris; Breen, Gerome; Brion, Marie-Jo; Brown, Andrew; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Daly, Allan; Danecek, Petr; Smith, George Davey; Day-Williams, Aaron; Day, Ian; Durbin, Richard; Edkins, Sarah; Ellis, Peter; Evans, David; Farooqi, I. Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David; Flicek, Paul; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Gallagher, Louise; Gaunt, Tom; Geschwind, Daniel; Greenwood, Celia; Grozeva, Detelina; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Huang, Jie; Humphries, Steve E.; Hurles, Matt; Hysi, Pirro; Jackson, David; Jamshidi, Yalda; Jewell, David; Chris, Joyce; Kaye, Jane; Keane, Thomas; Kemp, John; Kennedy, Karen; Kent, Alastair; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lee, Irene; Li, Rui; Li, Yingrui; Ryan, Liu; Lönnqvist, Jouko; Lopes, Margarida; MacArthur, Daniel G.; Massimo, Mangino; Marchini, Jonathan; Maslen, John; McCarthy, Shane; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Min, Josine; Moayyeri, Alireza; Morris, James; Muddyman, Dawn; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael; O'Rahilly, Stephen; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Perry, John; Pietilainen, Olli; Plagnol, Vincent; Quail, Michael A.; Quaye, Lydia; Raymond, Lucy; Rehnström, Karola; Brent Richards, J.; Ring, Sue; Ritchie, Graham R S; Savage, David B.; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Shihab, Hashem; Shin, So-Youn; Skuse, David; Small, Kerrin; Smee, Carol; Soler, Artigas María; Soranzo, Nicole; Southam, Lorraine; Spector, Tim; St Pourcain, Beate; St. Clair, David; Stalker, Jim; Surdulescu, Gabriela; Suvisaari, Jaana; Tachmazidou, Ioanna; Tian, Jing; Timpson, Nic; Tobin, Martin; Valdes, Ana; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Wain, Louise; Walter, Klaudia; Wang, Jun; Ward, Kirsten; Wheeler, Ellie; Whittall, Ros; Williams, Hywel; Williamson, Kathy; Wilson, Scott G.; Wong, Kim; Whyte, Tamieka; ChangJiang, Xu; Zeggini, Eleftheria; Zhang, Feng; Zheng, Hou-Feng

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  13. GaAs solar cell photoresponse modeling using PC-1D V2.1

    NASA Technical Reports Server (NTRS)

    Huber, D. A.; Olsen, L. C.; Dunham, G.; Addis, F. W.

    1991-01-01

    Photoresponse data of high efficiency GaAs solar cells were analyzed using PC-1D V2.1. The approach required to use PC-1D for photoresponse data analysis, and the physical insights gained from performing the analysis are discussed. In particular, the effect of Al(x)Ga(1-x)As heteroface quality was modeled. Photoresponse or spectral quantum efficiency is an important tool in characterizing material quality and predicting cell performance. The strength of the photoresponse measurement lies in the ability to precisely fit the experimental data with a physical model. PC-1D provides a flexible platform for calculations based on these physical models.

  14. [Dmt1, d-1-Nal3]morphiceptin, a novel opioid peptide analog with high analgesic activity.

    PubMed

    Fichna, Jakub; do-Rego, Jean-Claude; Chung, Nga N; Costentin, Jean; Schiller, Peter W; Janecka, Anna

    2008-04-01

    The morphiceptin-derived peptide [Dmt1, d-1-Nal3]morphiceptin, labeled mu-opioid receptor (MOP) with very high affinity and selectivity in the receptor binding assays. In the mouse hot plate test, [Dmt1, d-1-Nal3]morphiceptin given intracerebroventricularly (i.c.v.) produced profound supraspinal analgesia, being approximately 100-fold more potent than the endogenous MOP receptor ligand, endomorphin-2. The antinociceptive effect of this new analog lasted up to 120min. Thus, [Dmt1, d-1-Nal3]morphiceptin is an interesting and extraordinarily potent analgesic, raising the possibility of novel approaches in the design of clinically useful drugs for pain treatment.

  15. Involvement of Dopamine D1/D5 and D2 Receptors in Context-Dependent Extinction Learning and Memory Reinstatement

    PubMed Central

    André, Marion Agnès Emma; Manahan-Vaughan, Denise

    2016-01-01

    Dopamine contributes to the regulation of higher order information processing and executive control. It is important for memory consolidation processes, and for the adaptation of learned responses based on experience. In line with this, under aversive learning conditions, application of dopamine receptor antagonists prior to extinction result in enhanced memory reinstatement. Here, we investigated the contribution of the dopaminergic system to extinction and memory reinstatement (renewal) of an appetitive spatial learning task in rodents. Rats were trained for 3 days in a T-maze (context “A”) to associate a goal arm with a food reward, despite low reward probability (acquisition phase). On day 4, extinction learning (unrewarded) occurred, that was reinforced by a context change (“B”). On day 5, re-exposure to the (unrewarded) “A” context took place (renewal of context “A”, followed by extinction of context “A”). In control animals, significant extinction occurred on day 4, that was followed by an initial memory reinstatement (renewal) on day 5, that was, in turn, succeeded by extinction of renewal. Intracerebral treatment with a D1/D5-receptor antagonist prior to the extinction trials, elicited a potent enhancement of extinction in context “B”. By contrast, a D1/D5-agonist impaired renewal in context “A”. Extinction in the “A” context on day 5 was unaffected by the D1/D5-ligands. Treatment with a D2-receptor antagonist prior to extinction had no overall effect on extinction in context “B” or renewal in context “A”, although extinction of the renewal effect was impaired on day 5, compared to controls. Taken together, these data suggest that dopamine acting on the D1/D5-receptor modulates both acquisition and consolidation of context-dependent extinction. By contrast, the D2-receptor may contribute to context-independent aspects of this kind of extinction learning. PMID:26834599

  16. Determination of the absolute configuration of (+)-neopentyl-1-d alcohol by neutron and x-ray diffraction analysis

    SciTech Connect

    Yuan, H.S.H.; Stevens, R.C.; Bau, R. ); Mosher, H.S. ); Koetzle, T.F. )

    1994-12-20

    The absolute configuration of (+)-neopentyl-1-d alcohol, prepared by the reduction of 2,2-dimethylpropanol-1-d by actively fermenting yeast, has been determined to be S by neutron diffraction. The neutron study was carried out on the phthalate half ester of neopentyl-1-d alcohol, crystallized as its strychnine salt. The absolute configuration of the (-)-strychninium cation was first determined by an x-ray anomalous dispersion study of its iodide salt. The chiral skeleton of strychnine then served as a reference from which the absolute configuration of the -O-CHD-C(CH[sub 3])[sub 3] group of neopentyl phthalate was determined. Difference Fourier maps calculated from the neutron data showed unambiguously that the -O-CHD-C(CH[sub 3])[sub 3] groups of both independent molecules in the unit cell had the S configuration. This work proves conclusively that the yeast system reduces aldehydes by delivering hydrogen to the re face of the carbonyl group. Crystallographic details: (-)-strychninium (+)-neopentyl-1-d phthalate, space group P2[sub 1] (monoclinic), a = 18.564(6) [angstrom], b = 7.713(2) [angstrom], c = 23.361(8) [angstrom], [beta] = 94.18(4)[degrees], V = 3336.0(5) [angstrom][sup 3], Z = 2 (T = 100 K). Final agreement factors are R(F) = 0.073 for 2768 reflections collected at room temperature (x-ray analysis) and R(F) = 0.144 for 960 reflections collected at 100 K (neutron analysis). 49 refs., 7 figs., 2 tabs.

  17. Ruthenium and osmium complexes of hemilabile chiral monophosphinite ligands derived from 1D-pinitol or 1D-chiro-inositol as catalysts for asymmetric hydrogenation reactions.

    PubMed

    Slade, Angela T; Lensink, Cornelis; Falshaw, Andrew; Clark, George R; Wright, L James

    2014-12-07

    The monophosphinite ligands, 1D-1,2;5,6-di-O-cyclopentylidene-3-O-methyl-4-O-diphenylphosphino-chiro-inositol (D-P1), 1D-1,2;5,6-di-O-isopropylidene-3-O-methyl-4-O-diphenylphosphino-chiro-inositol (D-P2), 1D-1,2;5,6-di-O-cyclohexylidene-3-O-methyl-4-O-diphenylphosphino-chiro-inositol (D-P3), and 1D-1,2;5,6-di-O-cyclopentylidene-3-O-ethyl-4-O-diphenylphosphino-chiro-inositol (D-P4), can be conveniently prepared from the chiral natural products 1D-pinitol or 1D-chiro-inositol. On treatment of toluene solutions of RuCl2(PPh3)3 with two mole equivalents of the ligands D-PY (Y = 1-4) the complexes RuCl2(D-P1)2 (1), RuCl2(D-P2)2 (4), RuCl2(D-P3)2 (5), or RuCl2(D-P4)2 (6), respectively, are formed. Similarly, treatment of OsCl2(PPh3)3 with D-P1 gives OsCl2(D-P1)2 (7). The single crystal X-ray structure determination of 1 reveals that each D-P1 ligand coordinates to ruthenium through phosphorus and the oxygen atom of the methoxyl group. Treatment of 1 with excess LiBr or LiI results in metathesis of the chloride ligands and RuBr2(D-P1)2 (2) or RuI2(D-P1)2 (3), respectively, are formed. Exposure of a solution of 1 to carbon monoxide results in the very rapid formation of RuCl2(CO)2(D-P1)2 (8), thereby demonstrating the ease with which the oxygen donors are displaced from the metal and hence the hemilabile nature of the two bidentate D-P1 ligands in 1. Preliminary studies indicate that 1-7 act as catalysts for the asymmetric hydrogenation reactions of acetophenone and 3-quinuclidinone to give the corresponding alcohols in generally high conversions but low enantiomeric excesses.

  18. Vorticity and Λ polarization in event-by-event (3+1)D viscous hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pang, Long-Gang; Fang, Ren-Hong; Petersen, Hannah; Wang, Qun; Wang, Xin-Nian

    2017-01-01

    We visualized the vortical fluid in fluctuating QGP using (3+1)D viscous hydrodynamics, computed the spin distribution and correlation of hyperons and estimated the polarization splitting between Λ and .

  19. Quantum and semi-classical transport in RTDs using NEMO 1-D

    NASA Technical Reports Server (NTRS)

    Klimeck, G.; Stout, P.; Bowen, R. C.

    2003-01-01

    NEMO 1-D has been developed primarily for the simulation of resonant tunneling diodes, and quantitative and predictive agreements with experimental high performance, high current density devices have been achieved in the past.

  20. Quantum and semi-classical transport in RTDs using NEMO 1-D

    NASA Technical Reports Server (NTRS)

    Klimeck, G.; Stout, P.; Bowen, R. C.

    2003-01-01

    NEMO 1-D has been developed primarily for the simulation of resonant tunneling diodes, and quantitative and predictive agreements with experimental high performance, high current density devices have been achieved in the past.

  1. 7. VIEW TO NORTH. FROM WEST PLATFORM. SAME AS IL1D3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW TO NORTH. FROM WEST PLATFORM. SAME AS IL-1D-3, AFTER TRAIN HAS DEPARTED EAST PLATFORM. - Union Elevated Railroad, Randolph-Wabash Avenue Station, Randolph Street & Wabash Avenue, Chicago, Cook County, IL

  2. The importance of B cell CD1d expression for humoral immunity.

    PubMed

    Lang, Mark L

    2014-11-01

    It was reported over a decade previously that CD1d-restricted Natural Killer T (NKT) cells could interact with CD1d-expressing B cells and facilitate antibody secretion. Since then, several studies have observed that NKT cells can provide B-cell help for production of antibody against model and pathogen-derived glycolipids, carbohydrates and proteins. In regard to T cell-dependent protein antigens, it is still not entirely clear to what extent cognate interactions between CD1d-expressing B cells and NKT cells contribute to initial and long-lived B-cell responses that are characteristic of such antigens. In this editorial, we review evidence that NKT cells provide CD1d-dependent cognate and non-cognate forms of B-cell help following immunization with protein antigen. Elucidating these mechanisms will be important for harnessing NKT cells during vaccination.

  3. The importance of B cell CD1d expression for humoral immunity

    PubMed Central

    Lang, Mark L.

    2015-01-01

    It was reported over a decade previously that CD1d-restricted Natural Killer T (NKT) cells could interact with CD1d-expressing B cells and facilitate antibody secretion. Since then, several studies have observed that NKT cells can provide B-cell help for production of antibody against model and pathogen-derived glycolipids, carbohydrates and proteins. In regard to T cell-dependent protein antigens, it is still not entirely clear to what extent cognate interactions between CD1d-expressing B cells and NKT cells contribute to initial and long-lived B-cell responses that are characteristic of such antigens. In this editorial, we review evidence that demonstrates that NKT cells provide CD1d-dependent cognate and non-cognate forms of B-cell help following immunization with protein antigen. Elucidating these mechanisms will be important for harnessing NKT cells during vaccination. PMID:24946838

  4. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation

    SciTech Connect

    Kong, Chen; Lange, Jeffrey J.; Samovski, Dmitri; Su, Xiong; Liu, Jialiu; Sundaresan, Sinju; Stahl, Philip D.

    2013-05-03

    Highlights: •Hominoid-specific oncogene TBC1D3 is targeted to plasma membrane by palmitoylation. •TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. •TBC1D3 palmitoylation governs growth factors-induced TBC1D3 degradation. •Post-translational modifications may regulate oncogenic properties of TBC1D3. -- Abstract: Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.

  5. Design, synthesis, and functional activity of labeled CD1d glycolipid agonists.

    PubMed

    Jervis, Peter J; Polzella, Paolo; Wojno, Justyna; Jukes, John-Paul; Ghadbane, Hemza; Garcia Diaz, Yoel R; Besra, Gurdyal S; Cerundolo, Vincenzo; Cox, Liam R

    2013-04-17

    Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR-α-GalCer-CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR-glycolipid-CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for attaching

  6. Design, Synthesis, and Functional Activity of Labeled CD1d Glycolipid Agonists

    PubMed Central

    2013-01-01

    Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR−α-GalCer–CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR–glycolipid–CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for

  7. Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients

    PubMed Central

    Zajkowicz, A; Butkiewicz, D; Drosik, A; Giglok, M; Suwiński, R; Rusin, M

    2015-01-01

    Background: PPM1D (WIP1) negatively regulates by dephosphorylation many proteins including p53 tumour suppressor. The truncating mutations (nonsense and frameshift) in exon 6 of PPM1D were found recently in blood cells of patients with breast, ovarian or colorectal cancer. These mutants code for gain-of-function PPM1D with retained phosphatase activity. Their significance in carcinogenesis is unknown. Methods: The exon 6 of PPM1D was sequenced in blood DNA of 543 non-small-cell lung cancer patients (NSCLC). The functional significance of selected PPM1D alterations (Arg458X, Lys469Glu) was compared with the wild-type gene and examined by recombinant DNA techniques, immunoblotting and luciferase reporter assays. Results: The frameshift mutations were found in five NSCLC patients (5/543; 0.92%), all of them had squamous cell carcinomas (5/328; 1.5%). All patients with the mutations were exposed, before the blood collection, to the DNA damaging agents as a part of chemotherapeutic regimen. Functional tests demonstrated that truncating mutation Arg458X causes enhancement of dephosphorylation activity of PPM1D toward serine 15 of p53, whereas Lys469Glu version is equivalent to the wild-type. Neither version of PPM1D (wild-type, Arg458X, Lys469Glu) significantly modulated the ability of p53 to transactivate promoters of the examined p53-target genes (BAX and MDM2). Conclusions: The truncating mutations of PPM1D are present in blood DNA of NSCLC patients at frequency similar to percentage determined for ovarian cancer patients. Our findings raise a question if the detected lesions are a result of chemotherapy. PMID:25742468

  8. Actinometric measurement of j(O3-O(1D)) using a luminol detector

    NASA Astrophysics Data System (ADS)

    Bairai, Solomon T.; Stedman, Donald H.

    1992-10-01

    The photolysis frequency of ozone to singlet D oxygen atoms has been measured by means of a chemical actinometer using a luminol based detector. The instrument measures j(O3-O(1D)) with a precision of 10 percent. The data collected in winter and spring of 1991 is in agreement with model predictions and previously measured values. Data from a global solar radiometer can be used to estimate the effects of local cloudiness on j(O3-O(1D)).

  9. Actinometric measurement of j(O3-O(1D)) using a luminol detector

    NASA Technical Reports Server (NTRS)

    Bairai, Solomon T.; Stedman, Donald H.

    1992-01-01

    The photolysis frequency of ozone to singlet D oxygen atoms has been measured by means of a chemical actinometer using a luminol based detector. The instrument measures j(O3-O(1D)) with a precision of 10 percent. The data collected in winter and spring of 1991 is in agreement with model predictions and previously measured values. Data from a global solar radiometer can be used to estimate the effects of local cloudiness on j(O3-O(1D)).

  10. Physical Activity Levels of Adolescents with Type 1 Diabetes Physical Activity in T1D.

    PubMed

    de Lima, Valderi Abreu; Mascarenhas, Luis Paulo Gomes; Decimo, Juliana Pereira; de Souza, William Cordeiro; Monteiro, Anna Louise Stellfeld; Lahart, Ian; França, Suzana Nesi; Leite, Neiva

    2017-05-01

    The aim of this study was to evaluate the level of physical activity and cardiorespiratory fitness in teenagers with type 1 diabetes mellitus (T1D) in comparison with healthy scholar participants. Total of 154 teenagers (T1D = 45 and CON = 109). Height, weight, cardiorespiratory fitness (VO2max), and the level of physical activity by the Bouchard's Physical Activity Record were measured, and glycated hemoglobin (HbA1c) in T1D. The VO2max was lower in the T1D (38.38 ± 7.54) in comparison with the CON (42.44 ± 4.65; p < .05). The VO2max had correlation with the amount of time of moderate-to-vigorous physical activity (r = .63; p = .0001) and an inverse correlation with sedentary activities (r= -0.46; p = .006). In the T1D the levels of HbA1c had an inverse correlation with the amount of time of moderate-to-vigorous physical activity (r= -0.34; p = .041) and correlation with the BMI z-score (r = .43; p = .017). Only 37,8% of the participants in the T1D reached the adequate amount of daily moderate-to-vigorous intensity physical activity, in the CON 81,7% reached the WHO's recommendation. T1D had less cardiorespiratory capacity then healthy controls, the teenagers of T1D with lower BMI z-score and that dedicated a greater time in moderate-to-vigorous intensity physical activity demonstrated a better glycemic control.

  11. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    SciTech Connect

    Marinkovic, Bojan A.; Fredholm, Yann C.; Morgado, Edisson

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  12. Energy dependent 3-body loss in out-of-equilibrium 1D Bose gases

    NASA Astrophysics Data System (ADS)

    Zundel, Laura; Xia, Lin; Wilson, Joshua; Riou, Jean-Felix; Weiss, David

    2015-05-01

    We measure the three-body loss of out-of-equilibrium one-dimensional (1D) Bose gases and find that it depends strongly on the average energy of the distribution. The theory of three-body loss in 1D gas experiments is incomplete due to the challenge of calculating how correlations evolve. We present an empirical model based on energy dependent correlations and show that it reproduces the data.

  13. Design and analysis of an extended mission of CE-2: From lunar orbit to Sun-Earth L2 region

    NASA Astrophysics Data System (ADS)

    Qiao, Dong; Cui, Pingyuan; Wang, Yamin; Huang, Jiangchuan; Meng, Linzhi; Jie, Degang

    2014-11-01

    Chang'E-2 (CE-2) has firstly successfully achieved the exploring mission from lunar orbit to Sun-Earth L2 region. In this paper, we discuss the design problem of transfer trajectory and at the same time analyze the visible segment of Tracking, Telemetry & Control (TT&C) system for this mission. Firstly, the four-body problem of Sun-Earth-Moon and Spacecraft can be decoupled in two different three-body problems (Sun-Earth + Moon Restricted Three-Body Problems (RTBPs) and Earth-Moon ephemeris model). Then, the transfer trajectory segments in different model are computed, respectively, and patched by Poincaré sections. The full-flight trajectory including transfer trajectory from lunar orbit to Sun-Earth L2 region and target Lissajous orbit is obtained by the differential correction method. Finally, the visibility of TT&C system at the key time is analyzed. Actual execution of CE-2 extended mission shows that the trajectory design of CE-2 mission is feasible.

  14. A Deconstruction Lattice Description of the D1/D5 Brane World-Volume Gauge Theory

    DOE PAGES

    Giedt, Joel

    2011-01-01

    I genermore » alize the deconstruction lattice formulation of Endres and Kaplan to two-dimensional super-QCD with eight supercharges, denoted by (4,4), and bifundamental matter. I specialize to a particularly interesting (4,4) gauge theory, with gauge group U ( N c ) × U ( N f ) , and U ( N f ) being weakly gauged. It describes the infrared limit of the D1/D5 brane system, which has been studied extensively as an example of the AdS 3 /CFT 2 correspondence. The construction here preserves two supercharges exactly and has a lattice structure quite similar to that which has previously appeared in the deconstruction approach, that is, site, link, and diagonal fields with both the Bose and Fermi statistics. I remark on possible applications of the lattice theory that would test the AdS 3 /CFT 2 correspondence, particularly one that would exploit the recent worldsheet instanton analysis of Chen and Tong.« less

  15. Wave propagation through bimodular medium: 1D discrete and homogenised models

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Maria; Dyskin, Arcady; Pasternak, Elena

    2017-04-01

    In many cases the Earth's crust exhibits bimodular behaviour characterised by different moduli in tension and compression. This paper analyses the effect of the bimodularity on the wave propagation. Two different models of the bimodular media have been considered: a chain of discrete masses coupled by bilinear springs (bilinear oscillators) and its 1D homogenised approximation - a rod made of a bimodular material. We analysed the process of longitudinal wave propagation under several types of external harmonic excitation. The prominent feature of the behaviour of bimodular medium is a phenomenon of gradual change of the sign of displacement, which we term sign inversion of the displacement. It occurs only when a faster compressive phase of the excitation follows the tensile phase. The systems considered are conservative, which is confirmed by the conservation of the total energy throughout the entire numerical solution. Thus the hypothesis (commonly used in e.g. fluid mechanics) of the energy loss due to the impact of compressive and tensile phases is not confirmed for bimodular solids.

  16. Coccinelle 1D: A one-dimensional neutron kinetic code using time-step size control

    SciTech Connect

    Engrand, P.R.; Effantin, M.E.; Gherchanoc, J.; Larive, B.

    1995-12-31

    COCCINELLE 1D is a one-dimensional neutron kinetic code that has been adapted from Electricite de France (EDF)`s core design code : COCCINELLE. The aim of this work is to integrate a code, derived from COCCINELLE and therefore taking advantage of most of its developments, into EDF`s Pressurized Water Reactors (PWR) simulation tools. The neutronic model of COCCINELLE ID has been optimized so that the code executes as rapidly as possible. In particular, a fast and stable kinetic method has been implemented: the Generalized Runge-Kutta (GRK) method together with its associated time-step size control. Moreover, efforts have been made to structure the code such that it could be easily integrated into any PWR simulation tool. Results show that the code executes at a rate faster than real-time on several test cases, and that, once integrated in a PWR simulation tool, the system is in good agreement with an experimental transient, that is a 3-hour load follow transient.

  17. Generation of Multiband Chorus in the Earth's Magnetosphere: 1-D PIC Simulation

    NASA Astrophysics Data System (ADS)

    Gao, Xinliang; Ke, Yangguang; Lu, Quanming; Chen, Lunjin; Wang, Shui

    2017-01-01

    Multiband chorus waves, where the frequency of upper band chorus is about twice that of lower band chorus, have recently been reported based on THEMIS observations. The generation of multiband chorus waves is attributed to the mechanism of lower band cascade, where upper band chorus is excited via the nonlinear coupling process between lower band chorus and the associated density mode with the frequency equal to that of lower band chorus. In this letter, with a one-dimensional (1-D) particle-in-cell (PIC) simulation model, we have successfully reproduced multiband chorus waves. During the simulation, the significant density fluctuation is driven by the fluctuating electric field along the wave vector of the pump wave (lower band chorus), which can be directly observed in this self-consistent plasma system. Then, the second harmonic of the pump whistler-mode wave (upper band chorus) is generated. After quantitatively analyzing resonant conditions among wave numbers, we can confirm that the generation is caused due to the coupling between the pump wave and the density fluctuation along its wave vector. The third harmonic can also be excited through lower band cascade if the pump whistler-mode wave has a sufficiently large amplitude. Our simulation results not only provide a theoretical support to the mechanism of lower band cascade to generate multiband chorus but also propose a new pattern of evolution for whistler-mode waves in the Earth's magnetosphere.

  18. Cardiac phase extraction in IVUS sequences using 1-D Gabor filters.

    PubMed

    Barajas, Joel; Caballero, Karla L; Rodriguez, Oriol; Radeva, Petia

    2007-01-01

    A main issue in the automatic analysis of Intravascular Ultrasound (IVUS) images is the presence of periodic changes provoked by heart motion during the cardiac cycle. Although the Electrocardiogram (ECG) signal can be used to gate the sequence, few IVUS systems incorporate the ECG-gating option, and the synchronization between them implies several issues. In this paper, we present a fast and robust method to assign a phase in the cardiac cycle to each image in the sequence directly from in vivo clinical IVUS sequences. It is based on the assumption that the vessel wall is significantly brighter than the blood in each IVUS beam. To guarantee stability in this assumption, we use normalized reconstructed images. Then, the wall boundary is extracted for all the radial beams in the sequence and a matrix with these positions is formed. This matrix is filtered using a bank of 1-D Gabor filters centered at the predominant frequency of a given number of windows in the sequence. After filtering, we combine the responses to obtain a unique phase within the cardiac cycle for each image. For this study, we gate the sequence to make the sequence comparable with other ones of the same patient. The method is tested with 12 pullbacks of real patients and 15 synthetic tests.

  19. O(1S → 1D,3P) branching ratio as measured in the terrestrial nightglow

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.; Cosby, P. C.; Sharpee, B. D.; Minschwaner, K. R.; Siskind, D. E.

    2006-12-01

    The branching ratio of the two optically forbidden atmospheric emission lines, O(1S - 1D) at 557.7 nm and O(1S - 3P) at 297.2 nm, is a fixed number in the upper atmosphere because the O(1S) level is common to both lines. The value for the ratio A(557.7)/A(297.2) currently recommended by NIST is 16.7, and the ratio found in the laboratory is somewhat larger. Field observations require space-based instruments, in which case calibration between the two wavelength regions is the critical issue. We circumvent this problem by using the O2(A-X) Herzberg I emission system as a bridge between the UV region below 310 nm and the ground-accessible region above that wavelength. These two spectral regions can be separately calibrated in terms of intensity, and the results of a disparate set of observations (satellite, rocket, ground-based sky spectra) lead to a quite consistent value of 9.8 ± 1.0 for A(557.7)/A(297.2). This conclusion has consequences for auroral and dayglow processes and for spectral calibration. It is particularly important to ascertain the cause of the substantial difference between this value and those from theory.

  20. The O(1S - 1D,3P) Line Intensity Ratio

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.; Sharpee, B. D.; Cosby, P. C.; Minschwaner, K. R.; Siskind, D. E.

    2005-05-01

    The line intensity ratio of the two optically-forbidden atmospheric emissions, O(1S-1D) at 557.7 nm and O(1S-3P) at 297.2 nm, must be a single-valued number in the upper atmosphere because the upper level is common to both lines. The calculated transition probability ratio A(557.7)/A(297.2) is 16, by several authors, and the ratio found in the laboratory is significantly larger. Field observations require space-based instruments, in which case calibration between the two wavelengths is the critical issue. We circumvent this problem by using the O2 Herzberg I emission system as a bridge between the UV region below 310 nm and the ground-accessible region above that wavelength. These two spectral regions can be separately calibrated in terms of intensity, and the results of a disparate set of observations (satellite, rocket, ground-based) lead to A(557.7)/A(297.2) ratios that are consistently much smaller than the calculated value. These results have consequences for auroral and dayglow processes, and it is particularly important to ascertain the cause of the substantial difference between theory and observation.

  1. Controlling Structural Anisotropy of Anisotropic 2D Layers in Pseudo-1D/2D Material Heterojunctions.

    PubMed

    Chen, Bin; Wu, Kedi; Suslu, Aslihan; Yang, Sijie; Cai, Hui; Yano, Aliya; Soignard, Emmanuel; Aoki, Toshihiro; March, Katia; Shen, Yuxia; Tongay, Sefaattin

    2017-07-10

    Chemical vapor deposition and growth dynamics of highly anisotropic 2D lateral heterojunctions between pseudo-1D ReS2 and isotropic WS2 monolayers are reported for the first time. Constituent ReS2 and WS2 layers have vastly different atomic structure, crystallizing in anisotropic 1T' and isotropic 2H phases, respectively. Through high-resolution scanning transmission electron microscopy, electron energy loss spectroscopy, and angle-resolved Raman spectroscopy, this study is able to provide the very first atomic look at intimate interfaces between these dissimilar 2D materials. Surprisingly, the results reveal that ReS2 lateral heterojunctions to WS2 produce well-oriented (highly anisotropic) Re-chains perpendicular to WS2 edges. When vertically stacked, Re-chains orient themselves along the WS2 zigzag direction, and consequently, Re-chains exhibit six-fold rotation, resulting in loss of macroscopic scale anisotropy. The degree of anisotropy of ReS2 on WS2 largely depends on the domain size, and decreases for increasing domain size due to randomization of Re-chains and formation of ReS2 subdomains. Present work establishes the growth dynamics of atomic junctions between novel anisotropic/isotropic 2D materials, and overall results mark the very first demonstration of control over anisotropy direction, which is a significant leap forward for large-scale nanomanufacturing of anisotropic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The structure of nanocomposite 1D cationic conductor crystal@SWNT.

    PubMed

    Kiselev, N A; Kumskov, A S; Zakalyukin, R M; Vasiliev, A L; Chernisheva, M V; Eliseev, A A; Krestinin, A V; Freitag, B; Hutchison, J L

    2012-06-01

    Nanocomposites consisting of one-dimensional (1D) crystals of the cationic conductors CuI, CuBr and AgBr inside single-walled carbon nanotubes, mainly (n, 0), were obtained using the capillary technique. 1D crystal structure models were proposed based on the high resolution transmission electron microscopy performed on a FEI Titan 80-300 at 80 kV with aberration correction. According to the models and image simulations there are two modifications of 1D crystal: hexagonal close-packed bromine (iodine) anion sublattice (growth direction <001>) and 1D crystal cubic structure (growth direction <112>) compressed transversely to the nanotube (D(m) ∼1.33 nm) axis. Tentatively this kind of 1D crystal can be considered as monoclinic. One modification of the anion sublattice reversibly transforms into the other inside the nanotube, probably initiated by electron beam heating. As demonstrated by micrographs, copper or silver cations can occupy octahedral positions or are statistically distributed across two tetrahedral positions. A 1DAgBr@SWNT (18, 0; 19, 0) pseudoperiodic 'lattice distortion' is revealed resulting from convolution of the nanotube wall function image with 1D cubic crystal function image.

  3. PPM1D controls nucleolar formation by up-regulating phosphorylation of nucleophosmin

    PubMed Central

    Kozakai, Yuuki; Kamada, Rui; Furuta, Junya; Kiyota, Yuhei; Chuman, Yoshiro; Sakaguchi, Kazuyasu

    2016-01-01

    An increase of nucleolar number and size has made nucleoli essential markers for cytology and tumour development. However, the underlying basis for their structural integrity and abundance remains unclear. Protein phosphatase PPM1D was found to be up-regulated in different carcinomas including breast cancers. Here, we demonstrate for the first time that PPM1D regulates nucleolar formation via inducing an increased phosphorylation of the nucleolar protein NPM. We show that PPM1D overexpression induces an increase in the nucleolar number regardless of p53 status. We also demonstrated that specific sequential phosphorylation of NPM is important for nucleolar formation and that PPM1D is a novel upstream regulator of this phosphorylation pathway. These results enhance our understanding of the molecular mechanisms that govern nucleoli formation by demonstrating that PPM1D regulates nucleolar formation by regulating NPM phosphorylation status through a novel signalling pathway, PPM1D-CDC25C-CDK1-PLK1. PMID:27619510

  4. Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR

    PubMed Central

    Vizoso, Miguel; Ferreira, Humberto J; Lopez-Serra, Paula; Javier Carmona, F; Martínez-Cardús, Anna; Girotti, Maria Romina; Villanueva, Alberto; Guil, Sonia; Moutinho, Catia; Liz, Julia; Portela, Anna; Heyn, Holger; Moran, Sebastian; Vidal, August; Martinez-Iniesta, Maria; Manzano, Jose L; Fernandez-Figueras, Maria Teresa; Elez, Elena; Muñoz-Couselo, Eva; Botella-Estrada, Rafael; Berrocal, Alfonso; Pontén, Fredrik; van den Oord, Joost; Gallagher, William M; Frederick, Dennie T; Flaherty, Keith T; McDermott, Ultan; Lorigan, Paul; Marais, Richard; Esteller, Manel

    2016-01-01

    Metastasis is responsible for most cancer-related deaths, and, among common tumor types, melanoma is one with great potential to metastasize. Here we study the contribution of epigenetic changes to the dissemination process by analyzing the changes that occur at the DNA methylation level between primary cancer cells and metastases. We found a hypomethylation event that reactivates a cryptic transcript of the Rab GTPase activating protein TBC1D16 (TBC1D16-47 kDa; referred to hereafter as TBC1D16-47KD) to be a characteristic feature of the metastatic cascade. This short isoform of TBC1D16 exacerbates melanoma growth and metastasis both in vitro and in vivo. By combining immunoprecipitation and mass spectrometry, we identified RAB5C as a new TBC1D16 target and showed that it regulates EGFR in melanoma cells. We also found that epigenetic reactivation of TBC1D16-47KD is associated with poor clinical outcome in melanoma, while conferring greater sensitivity to BRAF and MEK inhibitors. PMID:26030178

  5. Multicolour far infrared photometry of galactic H2 regions. [data acquisition using high altitude balloons

    NASA Technical Reports Server (NTRS)

    Olthof, H.

    1974-01-01

    Results are presented of far infrared photometric measurements of H2 regions in the galactic plane between longitudes 350 and 40 degrees. The results are combined from balloon flights in 1972 and 1973 carried out in cooperation with CNES in the south of France.

  6. Application of the Ribosomal DNA ITS2 Region of Physalis (Solanaceae): DNA Barcoding and Phylogenetic Study.

    PubMed

    Feng, Shangguo; Jiang, Mengying; Shi, Yujun; Jiao, Kaili; Shen, Chenjia; Lu, Jiangjie; Ying, Qicai; Wang, Huizhong

    2016-01-01

    Recently, commercial interest in Physalis species has grown worldwide due to their high nutritional value, edible fruit, and potential medicinal properties. However, many Physalis species have similar shapes and are easily confused, and consequently the phylogenetic relationships between Physalis species are poorly understood. This hinders their safe utilization and genetic resource conservation. In this study, the nuclear ribosomal ITS2 region was used to identify species and phylogenetically examine Physalis. Eighty-six ITS2 regions from 45 Physalis species were analyzed. The ITS2 sequences were aligned using Clustal W and genetic distances were calculated using MEGA V6.0. The results showed that ITS2 regions have significant intra- and inter-specific divergences, obvious barcoding gaps, and higher species discrimination rates (82.2% for both the BLASTA1 and nearest distance methods). In addition, the secondary structure of ITS2 provided another way to differentiate species. Cluster analysis based on ITS2 regions largely concurred with the relationships among Physalis species established by many previous molecular analyses, and showed that most sections of Physalis appear to be polyphyletic. Our results demonstrated that ITS2 can be used as an efficient and powerful marker in the identification and phylogenetic study of Physalis species. The technique provides a scientific basis for the conservation of Physalis plants and for utilization of resources.

  7. Application of the Ribosomal DNA ITS2 Region of Physalis (Solanaceae): DNA Barcoding and Phylogenetic Study

    PubMed Central

    Feng, Shangguo; Jiang, Mengying; Shi, Yujun; Jiao, Kaili; Shen, Chenjia; Lu, Jiangjie; Ying, Qicai; Wang, Huizhong

    2016-01-01

    Recently, commercial interest in Physalis species has grown worldwide due to their high nutritional value, edible fruit, and potential medicinal properties. However, many Physalis species have similar shapes and are easily confused, and consequently the phylogenetic relationships between Physalis species are poorly understood. This hinders their safe utilization and genetic resource conservation. In this study, the nuclear ribosomal ITS2 region was used to identify species and phylogenetically examine Physalis. Eighty-six ITS2 regions from 45 Physalis species were analyzed. The ITS2 sequences were aligned using Clustal W and genetic distances were calculated using MEGA V6.0. The results showed that ITS2 regions have significant intra- and inter-specific divergences, obvious barcoding gaps, and higher species discrimination rates (82.2% for both the BLASTA1 and nearest distance methods). In addition, the secondary structure of ITS2 provided another way to differentiate species. Cluster analysis based on ITS2 regions largely concurred with the relationships among Physalis species established by many previous molecular analyses, and showed that most sections of Physalis appear to be polyphyletic. Our results demonstrated that ITS2 can be used as an efficient and powerful marker in the identification and phylogenetic study of Physalis species. The technique provides a scientific basis for the conservation of Physalis plants and for utilization of resources. PMID:27486467

  8. Kinetics of O(1D) + H2O and O(1D) + H2: absolute rate coefficients and O(3P) yields between 227 and 453 K.

    PubMed

    Vranckx, Stijn; Peeters, Jozef; Carl, Shaun

    2010-08-28

    The rate coefficients for the crucial atmospheric reactions of O((1)D) with H(2)O and H(2), k(1) and k(2), were measured over a wide temperature range using O((1)D) detection based on the chemiluminescence reaction of O((1)D) with C(2)H. Analyzing the decays of the chemiluminescence intensities yielded a value for k(1)(T) of (1.70 x 10(-10)exp[36 K/T]) cm(3) s(-1). Multiplying or dividing k(1)(T) by a factor f(T) = 1.04 exp(5.59(|1 K/T- 1/287|)), gives the 95% confidence limits; our new determination, in good agreement with previous studies, further reduces the uncertainty in k(1). An extended study of k(2) yielded a temperature independent rate constant of (1.35 +/- 0.05) x 10(-10) cm(3) s(-1). This precise value, based on an extended set of determinations with very low scatter, is significantly larger than the current recommendations, as were two other recent k(2) determinations. Secondly, the fractions of O((1)D) quenched to O((3)P) by H(2)O and H(2), k(1b)/k(1) and k(2b)/k(2), were precisely determined from fits to chemiluminescence decays. A temperature-independent value for k(1b)/k(1) of 0.010 +/- 0.003 was found. For the quenching fraction k(2b)/k(2) a value of 0.007 +/- 0.007 was obtained at room temperature. Both determinations are significantly smaller than values and upper limits from previous studies.

  9. Synthesis and Electron Field-Emission of 1-D Carbon-Related Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Shih, Han C.

    2002-10-01

    Carbon nanotubes, a new stable form of carbon that was first identified in 1991 [1], are fullerene-related structures which consist of graphitic cylinders closed at either end with caps containing pentagonal rings. Although carbon nanotube structures are closely related to graphite, the curvature, symmetry and small size induce marked deviations from the graphitic behavior. Various methods have been used to produce carbon nanotubes, e.g., arc-discharge, laser-vaporization, catalytic chemical vapor deposition, but too many impurities also be produced, such as fullerenes, carbon nanoparticles and amorphous carbons. The microwave plasma enhanced chemical vapor deposition (MPECVD) system has been used to grow carbon nanotubes in this work and other 1-D carbon-related nanostructured materials was synthesized by the electron cyclotron resonance (ECR) plasma system. Plasma is generated by microwave excitation at 2.45 GHz by a magnetron passes through a waveguide and fed perpendicularly through a quartz dome into an 875 G magnetic field generated by the coils surrounding the resonance volume that creates the ECR condition. The deposition chamber was pumped down to the base pressure of 6.7X10-4 Pa (5X10-6 Torr) with a turbomolecular pump for ECR-plasma and subatmospheric pressures for MPECVD by a rotary mechanical pump. Well-aligned carbon-related nanostructures have been synthesized in nanoporous alumina or silicon with a uniform diameter of 30-100 nm by microwave excited plasma of CH_4, C_2H_2, N_2, H2 and Ar precursors. Nickel nanowires not only serve as catalysts to decompose hydrocarbons to form nanostructures but also function as an electrical conductor for other advanced applications. A negative dc bias is always applied to the substrate to promote the flow of ion fluxes through the nanochannels of the template materials that facilitate the physical adsorption and subsequent chemical absorption in the formation of carbon- and carbon-nitride nanotubes[2]. The electron

  10. Benchmarks and models for 1-D radiation transport in stochastic participating media

    NASA Astrophysics Data System (ADS)

    Miller, David Scott

    Benchmark calculations for radiation transport coupled to a material temperature equation in a 1-D slab and 1-D spherical geometry binary random media are presented. The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but only approximately Markov statistics in the 1-D sphere. The material chunk sizes are described by Poisson distribution functions. The material opacities are first taken to be constant and then allowed to vary as a strong function of material temperature. Benchmark values and variances for time evolution of the ensemble average of material temperature energy density and radiation transmission are computed via a Monte Carlo type method. These benchmarks are used as a basis for comparison with three other approximate methods of solution. One of these approximate methods is simple atomic mix. The second approximate model is an adaptation of what is commonly called the Levermore-Pomraning model and which is referred to here as the standard model. It is shown that recasting the temperature coupling as a type of effective scattering can be useful in formulating the third approximate model, an adaptation of a model due to Su and Pomraning which attempts to account for the effects of scattering in a stochastic context. This last adaptation shows consistent improvement over both the atomic mix and standard models when used in the 1-D slab geometry but shows limited improvement in the 1-D spherical geometry. Benchmark values are also computed for radiation transmission from the 1-D sphere without material heating present. This is to evaluate the performance of the standard model on this geometry-something which has never been done before. All of the various tests demonstrate the importance of stochastic structure on the solution. Also demonstrated are the range of usefulness and limitations of a simple atomic mix formulation.

  11. The autophagy machinery restrains iNKT cell activation through CD1D1 internalization.

    PubMed

    Keller, Christian W; Loi, Monica; Ewert, Svenja; Quast, Isaak; Theiler, Romina; Gannagé, Monique; Münz, Christian; De Libero, Gennaro; Freigang, Stefan; Lünemann, Jan D

    2017-03-15

    Invariant natural killer T (iNKT) cells are innate T cells with powerful immune regulatory functions that recognize glycolipid antigens presented by the CD1D protein. While iNKT-cell-activating glycolipids are currently being explored for their efficacy to improve immunotherapy against infectious diseases and cancer, little is known about the mechanisms that control CD1D antigen presentation and iNKT cell activation in vivo. CD1D molecules survey endocytic pathways to bind lipid antigens in MHC class II containing compartments (MIICs) before recycling to the plasma membrane. Autophagosomes intersect with MIICs and autophagy-related proteins are known to support antigen loading for increased CD4(+) T cell immunity. Here, we report that mice with dendritic cell (DC)-specific deletion of the essential autophagy gene Atg5 showed better CD1D1-restricted glycolipid presentation in vivo. These effects led to enhanced iNKT cell cytokine production upon antigen recognition and lower bacterial loads during Sphingomonas paucimobilis infection. Enhanced iNKT cell activation was independent of receptor-mediated glycolipid uptake or costimulatory signals. Instead, loss of Atg5 in DCs impaired clathrin-dependent internalization of CD1D1 molecules via the adaptor protein complex 2 (AP2) and, thus, increased surface expression of stimulatory CD1D1-glycolipid complexes. These findings indicate that the autophagic machinery assists in the recruitment of AP2 to CD1D1 molecules resulting in attenuated iNKT cell activation, in contrast to the supporting role of macroautophagy in CD4(+) T cell stimulation.

  12. Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO

    NASA Astrophysics Data System (ADS)

    Reffray, G.; Bourdalle-Badie, R.; Calone, C.

    2015-01-01

    Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k+l from Blanke and Delecluse, 1993, and two equation models: generic length scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a 1-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However, the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (1D_PAPA">http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.

  13. Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO

    NASA Astrophysics Data System (ADS)

    Reffray, G.; Bourdalle-Badie, R.; Calone, C.

    2014-08-01

    Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k + l from Blanke and Delecluse, 1993 and two equation models: Generic Lengh Scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a one-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (1D_PAPA">http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.

  14. Benchmarks and models for 1-D radiation transport in stochastic participating media

    SciTech Connect

    Miller, David Scott

    2000-08-01

    Benchmark calculations for radiation transport coupled to a material temperature equation in a 1-D slab and 1-D spherical geometry binary random media are presented. The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but only approximately Markov statistics in the 1-D sphere. The material chunk sizes are described by Poisson distribution functions. The material opacities are first taken to be constant and then allowed to vary as a strong function of material temperature. Benchmark values and variances for time evolution of the ensemble average of material temperature energy density and radiation transmission are computed via a Monte Carlo type method. These benchmarks are used as a basis for comparison with three other approximate methods of solution. One of these approximate methods is simple atomic mix. The second approximate model is an adaptation of what is commonly called the Levermore-Pomraning model and which is referred to here as the standard model. It is shown that recasting the temperature coupling as a type of effective scattering can be useful in formulating the third approximate model, an adaptation of a model due to Su and Pomraning which attempts to account for the effects of scattering in a stochastic context. This last adaptation shows consistent improvement over both the atomic mix and standard models when used in the 1-D slab geometry but shows limited improvement in the 1-D spherical geometry. Benchmark values are also computed for radiation transmission from the 1-D sphere without material heating present. This is to evaluate the performance of the standard model on this geometry--something which has never been done before. All of the various tests demonstrate the importance of stochastic structure on the solution. Also demonstrated are the range of usefulness and limitations of a simple atomic mix formulation.

  15. 1-D/3-D geologic model of the Western Canada Sedimentary Basin

    USGS Publications Warehouse

    Higley, D.K.; Henry, M.; Roberts, L.N.R.; Steinshouer, D.W.

    2005-01-01

    The 3-D geologic model of the Western Canada Sedimentary Basin comprises 18 stacked intervals from the base of the Devonian Woodbend Group and age equivalent formations to ground surface; it includes an estimated thickness of eroded sediments based on 1-D burial history reconstructions for 33 wells across the study area. Each interval for the construction of the 3-D model was chosen on the basis of whether it is primarily composed of petroleum system elements of reservoir, hydrocarbon source, seal, overburden, or underburden strata, as well as the quality and areal distribution of well and other data. Preliminary results of the modeling support the following interpretations. Long-distance migration of hydrocarbons east of the Rocky Mountains is indicated by oil and gas accumulations in areas within which source rocks are thermally immature for oil and (or) gas. Petroleum systems in the basin are segmented by the northeast-trending Sweetgrass Arch; hydrocarbons west of the arch were from source rocks lying near or beneath the Rocky Mountains, whereas oil and gas east of the arch were sourced from the Williston Basin. Hydrocarbon generation and migration are primarily due to increased burial associated with the Laramide Orogeny. Hydrocarbon sources and migration were also influenced by the Lower Cretaceous sub-Mannville unconformity. In the Peace River Arch area of northern Alberta, Jurassic and older formations exhibit high-angle truncations against the unconformity. Potential Paleozoic though Mesozoic hydrocarbon source rocks are in contact with overlying Mannville Group reservoir facies. In contrast, in Saskatchewan and southern Alberta the contacts are parallel to sub-parallel, with the result that hydrocarbon source rocks are separated from the Mannville Group by seal-forming strata within the Jurassic. Vertical and lateral movement of hydrocarbons along the faults in the Rocky Mountains deformed belt probably also resulted in mixing of oil and gas from numerous

  16. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    SciTech Connect

    Lee, Andrew; Miller, David C.

    2012-01-01

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  17. PmTBC1D20, a Rab GTPase-activating protein from the black tiger shrimp, Penaeus monodon, is involved in white spot syndrome virus infection.

    PubMed

    Yingvilasprasert, Wanchart; Supungul, Premruethai; Tassanakajon, Anchalee

    2014-02-01

    TBC (TRE2/BUB2/CDC16) domain proteins contain an ≈ 200-amino-acid motif and function as Rab GTPase-activating proteins that are required for regulating the activity of Rab proteins, and so, in turn, endocytic membrane trafficking in cells. TBC domain family member 20 (TBC1D20) has recently been reported to mediate Hepatitis C virus replication. Herein, PmTBC1D20 identified from the black tiger shrimp, Penaeus monodon, was characterized and evaluated for its role in white spot syndrome virus (WSSV) infection. The full-length cDNA sequence of PmTBC1D20 contains 2003 bp with a predicted 1443 bp open reading frame encoding a deduced 480 amino acid protein. Its transcript levels were significantly up-regulated at 24 and 48 h by ≈ 2.3- and 2.1-fold, respectively, after systemic infection with WSSV. In addition, depletion of PmTBC1D20 transcript in shrimps by double stranded RNA interference led to a decrease in the level of transcripts of three WSSV genes (VP28, ie1 and wsv477). This suggests the importance of PmTBC1D20 in WSSV infection. This is the first report of TBC1D20 in a crustacean and reveals the possible mechanism used by WSSV to modulate the activity of the host protein, PmTBC1D20, for its benefit in viral trafficking and replication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.

    PubMed

    Hughes, Travis S; Wilson, Henry D; de Vera, Ian Mitchelle S; Kojetin, Douglas J

    2015-01-01

    Fluorine (19F) NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D) 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC) to objectively determine which model (number of peaks) would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/).

  19. Epitaxial 1D electron transport layers for high-performance perovskite solar cells.

    PubMed

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-10-07

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.

  20. 1D pixelated MV portal imager with structured privacy film: a feasibility study

    NASA Astrophysics Data System (ADS)

    Baturin, Pavlo; Shedlock, Daniel; Myronakis, Marios; Berbeco, Ross; Star-Lack, Josh

    2017-03-01

    Modern amorphous silicon flat panel-based electronic portal imaging devices that utilize thin gadolinium oxysulfide scintillators suffer from low quantum efficiencies (QEs). Thick two dimensionally (2D) pixelated scintillator arrays offer an effective but expensive option for increasing QE. To reduce costs, we have investigated the possibility of combining a thick one dimensional (1D) pixelated scintillator (PS) with an orthogonally placed 1D structured optical filter to provide for overall good 2D spatial resolution. In this work, we studied the potential for using a 1D video screen privacy film (PF) to serve as a directional optical attenuator and filter. A Geant4 model of the PF was built based on reflection and transmission measurements taken with a laser-based optical reflectometer. This information was incorporated into a Geant4-based x-ray detector simulator to generate modulation transfer functions (MTFs), noise power spectra (NPS), and detective quantum efficiencies (DQEs) for various 1D and 2D configurations. It was found that the 1D array with PF can provide the MTFs and DQEs of 2D arrays. Although the PF significantly reduced the amount of optical photons detected by the flat panel, we anticipate using a scintillator with an inherently high optical yield (e.g. cesium iodide) for MV imaging, where fluence rates are inherently high, will still provide adequate signal intensities for the imaging tasks associated with radiotherapy.

  1. Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals

    PubMed Central

    Luo, Kun; Han, Jianping; Li, Ying; Pang, Xiaohui; Xu, Hongxi; Zhu, Yingjie; Xiao, Peigen; Chen, Shilin

    2010-01-01

    Background The internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA is regarded as one of the candidate DNA barcodes because it possesses a number of valuable characteristics, such as the availability of conserved regions for designing universal primers, the ease of its amplification, and sufficient variability to distinguish even closely related species. However, a general analysis of its ability to discriminate species in a comprehensive sample set is lacking. Methodology/Principal Findings In the current study, 50,790 plant and 12,221 animal ITS2 sequences downloaded from GenBank were evaluated according to sequence length, GC content, intra- and inter-specific divergence, and efficiency of identification. The results show that the inter-specific divergence of congeneric species in plants and animals was greater than its corresponding intra-specific variations. The success rates for using the ITS2 region to identify dicotyledons, monocotyledons, gymnosperms, ferns, mosses, and animals were 76.1%, 74.2%, 67.1%, 88.1%, 77.4%, and 91.7% at the species level, respectively. The ITS2 region unveiled a different ability to identify closely related species within different families and genera. The secondary structure of the ITS2 region could provide useful information for species identification and could be considered as a molecular morphological characteristic. Conclusions/Significance As one of the most popular phylogenetic markers for eukaryota, we propose that the ITS2 locus should be used as a universal DNA barcode for identifying plant species and as a complementary locus for CO1 to identify animal species. We have also developed a web application to facilitate ITS2-based cross-kingdom species identification (http://its2-plantidit.dnsalias.org). PMID:20957043

  2. Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process.

    PubMed

    Li, Fa-Liang; Zhang, Hai-Jun

    2017-08-25

    The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined.

  3. Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process

    PubMed Central

    Li, Fa-Liang; Zhang, Hai-Jun

    2017-01-01

    The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined. PMID:28841188

  4. TBC1D24 Mutation Causes Autosomal Dominant Non-Syndromic Hearing Loss

    PubMed Central

    Azaiez, Hela; Booth, Kevin T.; Bu, Fengxiao; Huygen, Patrick; Shibata, Seiji; Shearer, A. Eliot; Kolbe, Diana; Meyer, Nicole; Black-Ziegelbein, E. Ann; Smith, Richard J.H.

    2014-01-01

    Hereditary hearing loss (HHL) is extremely heterogeneous. Over 70 genes have been identified to date, and with the advent of massively parallel sequencing, the pace of novel gene discovery has accelerated. In a family segregating progressive autosomal dominant non-syndromic hearing loss (ADNSHL) we used OtoSCOPE® to exclude mutations in known deafness genes and then performed segregation mapping and whole exome sequencing (WES) to identify a unique variant, p.Ser178Leu, in TBC1D24 that segregates with the hearing loss phenotype. TBC1D24 encodes a GTPase-activating protein expressed in the cochlea. Ser178 is highly conserved across vertebrates and its change is predicted to be damaging. Other variants in TBC1D24 have been associated with a panoply of clinical symptoms including autosomal recessive NSHL (ARNSHL), syndromic hearing impairment associated with onychodystrophy, osteodystrophy, mental retardation and seizures (DOORS syndrome), and a wide range of epileptic disorders. PMID:24729539

  5. Defective transient endogenous spleen colony formation in S1/S1d mice.

    PubMed

    Wiktor-Jedrzejczak, W; Ahmed, A; Sharkis, S J; McKee, A; Sell, K W

    1979-04-01

    WCB6F1 mice of the genotype S1/S1d did not form transient 5-day endogenous spleen colonies following midlethal irradiation, either spontaneously or in response to postirradiation bleeding. Their hematologically normal (+/+) littermates produced colonies equivalent in number and morphologic type to a normal strain (D2B6F1), as evaluated by both macroscopic and microscopic criteria. Bone marrow cells from S1/S1d mice, when transplanted into lethally irradiated +/+ mice, were able to generate equivalent numbers of transient endogenous spleen colonies (TE-CFUs), as compared to that obtained when syngeneic +/+ marrow cells were injected into lethally irradiated +/+ recipients. A defective growth of an early class of hematopoietic progenitor cells, resulting in the clinical course of the S1/S1d anemia is suggested and confirms previous reports on the microenvironmental nature of this abnormality.

  6. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag

    PubMed Central

    Islam, Shahidul; Haque, Asadul; Bui, Ha Hong

    2016-01-01

    Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ′) behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis. PMID:28773415

  7. Dynamical Analysis and Big Bang Bifurcations of 1D and 2D Gompertz's Growth Functions

    NASA Astrophysics Data System (ADS)

    Rocha, J. Leonel; Taha, Abdel-Kaddous; Fournier-Prunaret, D.

    In this paper, we study the dynamics and bifurcation properties of a three-parameter family of 1D Gompertz's growth functions, which are defined by the population size functions of the Gompertz logistic growth equation. The dynamical behavior is complex leading to a diversified bifurcation structure, leading to the big bang bifurcations of the so-called “box-within-a-box” fractal type. We provide and discuss sufficient conditions for the existence of these bifurcation cascades for 1D Gompertz's growth functions. Moreover, this work concerns the description of some bifurcation properties of a Hénon's map type embedding: a “continuous” embedding of 1D Gompertz's growth functions into a 2D diffeomorphism. More particularly, properties that characterize the big bang bifurcations are considered in relation with this coupling of two population size functions, varying the embedding parameter. The existence of communication areas of crossroad area type or swallowtails are identified for this 2D diffeomorphism.

  8. Peptide conjugates for directing the morphology and assembly of 1D nanoparticle superstructures.

    PubMed

    Zhang, Chen; Song, Chengyi; Fry, H Christopher; Rosi, Nathaniel L

    2014-01-20

    Designed peptide conjugates molecules are used to direct the synthesis and assembly of gold nanoparticles into complex 1D nanoparticle superstructures with various morphologies. Four peptide conjugates, each based on the gold-binding peptide (AYSSGAPPMPPF; PEPAu ), are prepared: C12H23O-AYSSGAPPMPP (1), C12H23O-AYSSGAPPMPPF (2), C12H23O-AYSSGAPPMPPFF (3), and C12H23O-AYSSGAPPMPPFFF (4). The affect that C-terminal hydrophobic F residues have on both the soft-assembly of the peptide conjugates and the resulting assembly of gold nanoparticle superstructures is examined. It is shown that the addition of two C-terminal F residues (3) leads to thick, branched 1D gold nanoparticle superstructures, whereas the addition of three C-terminal F residues (4) leads to bundling of thin 1D nanoparticle superstructures.

  9. Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications.

    PubMed

    Erol, Ozlem; Uyan, Idil; Hatip, Meryem; Yilmaz, Canelif; Tekinay, Ayse B; Guler, Mustafa O

    2017-05-26

    One-dimensional (1D) carbon nanotubes (CNTs) and the two-dimensional (2D) graphene represent the most widely studied allotropes of carbon. Due to their unique structural, electrical, mechanical and optical properties, 1D and 2D carbon nanostructures are considered to be leading candidates for numerous applications in biomedical fields, including tissue engineering, drug delivery, bioimaging and biosensors. The biocompatibility and toxicity issues associated with these nanostructures have been a critical impediment for their use in biomedical applications. In this review, we present an overview of the various materials types, properties, functionalization strategies and characterization methods of 1D and 2D carbon nanomaterials and their derivatives in terms of their biomedical applications. In addition, we discuss various factors and mechanisms affecting their toxicity and biocompatibility. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Lars Onsager Prize Talk: 1+1d conformal field theories as natural languages for asymptotically large-scale quantum computing

    NASA Astrophysics Data System (ADS)

    Friedan, Daniel

    2010-03-01

    An abstract argument is offered that the ideal physical systems for asymptotically large-scale quantum computers are near-critical quantum circuits, critical in the bulk, whose bulk universality classes are described by 1+1d conformal field theories. One in particular -- the Monster conformal field theory -- is especially ideal, because all of its bulk couplings are irrelevant.

  11. A 1D plug flow reactor as validation tool for reactive transport simulations

    NASA Astrophysics Data System (ADS)

    Battaïa, G.; Garcia, D.

    2012-04-01

    Predictions in CO2 geological sequestration involve a broad range of earth sciences linked in complex models. Amongst the processes commonly described, fluid-rock interactions are both a central issue and a source of discomfort for modelers since it has to deal with 1) kinetics data obtained through experimental procedures that dramatically differ from natural systems and 2) reactive surface model that are very diverse and often empirical. This study presents a new type of plug flow reactor developed to provide an experimental validation of reactive transport simulations. This is a 1D pressurized packed-bed plug-flow reactor containing a granular mixture as a porous medium. This mixture is composed of a reactive solids and unreactive quartz used to set an adequate ratio between fluid and reactive mineral to control the front velocity. A seven sampling valve unit allows concentration profiles of the reacting fluid to be captured at any time. One the one side, a low reaction rate (diopside, HNO3, pH 2) produces linear profile resulting from a constant dissolution rate along the reactor length. But on the other side, when performing the reaction of CO2 saturated solutions (5 bar) at 40°C with dolomite it gives rise to dissolution fronts migrating downstream. A proper projection of experimental data reveals a dynamic steady state of front shape is reached. Texture of the mineral recovered at the end of the experiment is quantified by Hg-porosimetry and these results are linked to SEM observations. Altogether, this provides a robust way for the parameterization of a reactive surface area model.

  12. Beamforming of Ultrasound Signals from 1-D and 2-D Arrays under Challenging Imaging Conditions

    NASA Astrophysics Data System (ADS)

    Jakovljevic, Marko

    Beamforming of ultrasound signals in the presence of clutter, or partial aperture blockage by an acoustic obstacle can lead to reduced visibility of the structures of interest and diminished diagnostic value of the resulting image. We propose new beamforming methods to recover the quality of ultrasound images under such challenging conditions. Of special interest are the signals from large apertures, which are more susceptible to partial blockage, and from commercial matrix arrays that suffer from low sensitivity due to inherent design/hardware limitations. A coherence-based beamforming method designed for suppressing the in vivo clutter, namely Short-lag Spatial Coherence (SLSC) Imaging, is first implemented on a 1-D array to enhance visualization of liver vasculature in 17 human subjects. The SLSC images show statistically significant improvements in vessel contrast and contrast-to-noise ratio over the matched B-mode images. The concept of SLSC imaging is then extended to matrix arrays, and the first in vivo demonstration of volumetric SLSC imaging on a clinical ultrasound system is presented. The effective suppression of clutter via volumetric SLSC imaging indicates it could potentially compensate for the low sensitivity associated with most commercial matrix arrays. The rest of the dissertation assesses image degradation due to elements blocked by ribs in a transthoracic scan. A method to detect the blocked elements is demonstrated using simulated, ex vivo, and in vivo data from the fully-sampled 2-D apertures. The results show that turning off the blocked elements both reduces the near-field clutter and improves visibility of anechoic/hypoechoic targets. Most importantly, the ex vivo data from large synthetic apertures indicates that the adaptive weighing of the non-blocked elements can recover the loss of focus quality due to periodic rib structure, allowing large apertures to realize their full resolution potential in transthoracic ultrasound.

  13. A 1-D evolutionary model for icy satellites, applied to Enceladus

    NASA Astrophysics Data System (ADS)

    Malamud, Uri; Prialnik, Dina

    2016-04-01

    We develop a long-term 1-D evolution model for icy satellites that couples multiple processes: water migration and differentiation, geochemical reactions and silicate phase transitions, compaction by self-gravity, and ablation. The model further considers the following energy sources and sinks: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy and insolation, and heat transport by conduction, convection, and advection. We apply the model to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, assuming the initial structure to have been homogeneous. Assuming the satellite has been losing water continually along its evolution, we postulate that it was formed as a more massive, more icy and more porous satellite, and gradually transformed into its present day state due to sustained long-term tidal heating. We consider several initial compositions and evolution scenarios and follow the evolution for the age of the Solar System, testing the present day model results against the available observational constraints. Our model shows the present configuration to be differentiated into a pure icy mantle, several tens of km thick, overlying a rocky core, composed of dehydrated rock at the center and hydrated rock in the outer part. For Enceladus, it predicts a higher rock/ice mass ratio than previously assumed and a thinner ice mantle, compatible with recent estimates based on gravity field measurements. Although, obviously, the model cannot be used to explain local phenomena, it sheds light on the internal structure invoked in explanations of localized features and activities.

  14. Northern Korean Peninsula 1-D velocity model from surface wave dispersion and full-waveform data

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Rhie, J.; Kim, S.; Kang, T. S.; Cho, C.

    2016-12-01

    Monitoring seismic activities in the northern Korean Peninsula is important not only for understanding the characteristics of earthquakes but also for watching nuclear tests. To better monitor those natural and man-made seismic activities, reliable seismic velocity models are required. However, the seismic velocity structure of the region is not known well due to the lack of available seismic data directly measured in the region. This study presents 1-D velocity models of the region using two different datasets comprised of two-year-long continuous waveform and the 2013 North Korea nuclear test event waveform recorded at stations surrounding the region. Two reference 1-D models for the inland and offshore areas (Western East Sea) were estimated by 1-D inversion of surface wave dispersion measurements from ambient noise cross-correlations of the continuous waveform. To investigate the variations in the velocity models, many 1-D models for the paths between the 2013 nuclear test site and stations in China and South Korea were constructed by forward waveform modeling. The velocity variations are not significant for both models representing the inland and offshore paths, respectively. The 1-D models for the inland paths are similar to the models constructed for the southern Korean Peninsula. Interestingly, waveforms sampling through the offshore paths are not well explained by simple 1-D isotropic models. The preliminary result indicates that there exists radial anisotropy with SH being faster than SV by 3-5% in the upper mantle beneath the offshore northern Korean Peninsula, although further studies are necessary to explain the origin of anisotropy. A proper characterization of propagation effects along the offshore paths would be useful for monitoring future nuclear tests because many seismic stations in the eastern South Korea record waveforms sampling the offshore region from the nuclear test site to those stations.

  15. Regulation of DNA methylation on EEF1D and RPL8 expression in cattle.

    PubMed

    Liu, Xuan; Yang, Jie; Zhang, Qin; Jiang, Li

    2017-06-30

    Dynamic changes to the epigenome play a critical role in a variety of biology processes and complex traits. Many important candidate genes have been identified through our previous genome wide association study (GWAS) on milk production traits in dairy cattle. However, the underlying mechanism of candidate genes have not yet been clearly understood. In this study, we analyzed the methylation variation of the candidate genes, EEF1D and RPL8, which were identified to be strongly associated with milk production traits in dairy cattle in our previous studies, and its effect on protein and mRNA expression. We compared DNA methylation profiles and gene expression levels of EEF1D and RPL8 in five different tissues (heart, liver, mammary gland, ovary and muscle) of three cows. Both genes showed the highest expression level in mammary gland. For RPL8, there was no difference in the DNA methylation pattern in the five tissues, suggesting no effect of DNA methylation on gene expression. For EEF1D, the DNA methylation levels of its first CpG island differed in the five tissues and were negatively correlated with the gene expression levels. To further investigate the function of DNA methylation on the expression of EEF1D, we collected blood samples of three cows at early stage of lactation and in dry period and analyzed its expression and the methylation status of the first CpG island in blood. As a result, the mRNA expression of EEF1D in the dry period was higher than that at the early stage of lactation, while the DNA methylation level in the dry period was lower than that at the early stage of lactation. Our result suggests that the DNA methylation of EEF1D plays an important role in the spatial and temporal regulation of its expression and possibly have an effect on the milk production traits.

  16. 50 CFR Table 1d to Part 660... - At-Sea Whiting Fishery Annual Set-Asides, 2011 and 2012.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false At-Sea Whiting Fishery Annual Set-Asides, 2011 and 2012. 1d Table 1d to Part 660, Subpart C Wildlife and Fisheries FISHERY CONSERVATION AND... WEST COAST STATES Pt. 660, Subpt. C, Table 1d Table 1d to Part 660, Subpart C— At-Sea Whiting Fishery...

  17. DOPEX-1D2C: A one-dimensional, two-constraint radiation shield optimization code

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1973-01-01

    A one-dimensional, two-constraint radiation sheild weight optimization procedure and a computer program, DOPEX-1D2C, is described. The DOPEX-1D2C uses the steepest descent method to alter a set of initial (input) thicknesses of a spherical shield configuration to achieve a minimum weight while simultaneously satisfying two dose-rate constraints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. Code input instruction, a FORTRAN-4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is less than 1/2 minute on an IBM 7094.

  18. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    SciTech Connect

    Johnson, Raymond H.; Morrison, Stan; Morris, Sarah; Tigar, Aaron; Dam, William; Dayvault, Jalena

    2016-04-26

    Motivation for Study: Natural flushing of contaminants at various U.S. Department of Energy Office of Legacy Management sites is not proceeding as quickly as predicted (plume persistence) Objectives: Help determine natural flushing rates using column tests. Use 1D reactive transport modeling to better understand the major processes that are creating plume persistence Approach: Core samples from under a former mill tailings area Tailings have been removed. Column leaching using lab-prepared water similar to nearby Gunnison River water. 1D reactive transport modeling to evaluate processes

  19. A User's Guide to AMR1D: An Instructional Adaptive Mesh Refinement Code for Unstructured Grids

    NASA Technical Reports Server (NTRS)

    deFainchtein, Rosalinda

    1996-01-01

    This report documents the code AMR1D, which is currently posted on the World Wide Web (http://sdcd.gsfc.nasa.gov/ESS/exchange/contrib/de-fainchtein/adaptive _mesh_refinement.html). AMR1D is a one-dimensional finite element fluid-dynamics solver, capable of adaptive mesh refinement (AMR). It was written as an instructional tool for AMR on unstructured mesh codes. It is meant to illustrate the minimum requirements for AMR on more than one dimension. For that purpose, it uses the same type of data structure that would be necessary on a two-dimensional AMR code (loosely following the algorithm described by Lohner).

  20. Synthesis and characterization of 1D iron(II) spin crossover coordination polymers with hysteresis.

    PubMed

    Bauer, Wolfgang; Lochenie, Charles; Weber, Birgit

    2014-02-07

    Purposeful ligand design was used for the synthesis of eight new 1D iron(II) spin crossover coordination polymers aiming for cooperative spin transitions with hysteresis. The results from magnetic measurements and X-ray structure analysis show that the combination of rigid linkers and a hydrogen bond network between the 1D chains is a promising tool to reach this goal. Five of the eight new samples show a cooperative spin transition with hysteresis with up to 43 K wide hysteresis loops.

  1. Ultrasonic waves in biaxially stressed multi-layered and 1D phononic structures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Demcenko, Andriejus; Volker, Arno W. F.; Cooper, Jonathan M.

    2017-04-01

    Elastic wave velocities as a function of applied stress are analysed in multilayered and 1-D phononic structures. The analysis is conducted by the means of the acoustoelasticity theory for isotropic elastic structures with application of this theory to stable formulation of stiffness and hybrid matrix methods for the eigenvalue analysis in the stressed elastic structures. The reformulated matrix methods are used for obtaining modal solutions, reflection and transmission coefficients for different multilayered media cases. Floquet wave analysis is presented for the stressed 1-D phononic structures. The analysis is supported by numerical examples.

  2. The (2 + 1)-d U(1) quantum link model masquerading as deconfined criticality

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Jiang, F.-J.; Widmer, P.; Wiese, U.-J.

    2013-12-01

    The (2 + 1)-d U(1) quantum link model is a gauge theory, amenable to quantum simulation, with a spontaneously broken SO(2) symmetry emerging at a quantum phase transition. Its low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by an SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. At the quantum phase transition, the model mimics some features of deconfined quantum criticality, but remains linearly confining. Deconfinement only sets in at high temperature. Dedicated to the memory of Bernard B Beard (1957-2012).

  3. Coupled 1-D sewer and street networks and 2-D flooding model to rapidly evaluate surface inundation

    NASA Astrophysics Data System (ADS)

    Kao, Hong-Ming; Hsu, Hao-Ming

    2017-04-01

    Flash floods have occurred frequently in the urban areas around the world and cause the infrastructure and people living to expose continuously in the high risk level of pluvial flooding. According to historical surveys, the major reasons of severe surface inundations in the urban areas can be attributed to heavy rainfall in the short time and/or drainage system failure. In order to obtain real-time flood forecasting with high accuracy and less uncertainty, an appropriate system for predicting floods is necessary. For the reason, this study coupled 1-D sewer and street networks and 2-D flooding model as an operational modelling system for rapidly evaluating surface inundation. The proposed system is constructed by three significant components: (1) all the rainfall-runoff of a sub-catchment collected via gullies is simulated by the RUNOFF module of the Storm Water Management Model (SWMM); (2) and directly drained to the 1-D sewer and street networks via manholes as inflow discharges to conduct flow routing by using the EXTRAN module of SWMM; (3) after the 1-D simulations, the surcharges from manholes are considered as point sources in 2-D overland flow simulations that are executed by the WASH123D model. It can thus be used for urban flood modelling that reflects the rainfall-runoff processes, and the dynamic flow interactions between the storm sewer system and the ground surface in urban areas. In the present study, we adopted the Huwei Science and Technology Park, located in the south-western part of Taiwan, as the demonstration area because of its high industrial values. The region has an area about 1 km2 with approximately 1 km in both length and width. It is as isolated urban drainage area in which there is a complete sewer system that collects the runoff and drains to the detention pond. Based on the simulated results, the proposed modelling system was found that the simulated floods fit to the survey records because the physical rainfall-runoff phenomena in

  4. Verification of the Production Safe Flight Instrument Corporation OV/RV- 1D Stall Warning System

    DTIC Science & Technology

    1988-11-01

    Interchangeability, Louvered Scarfed Shroud Suppressor ( LSSS ). Prototype, Warning Margin 44 19. ABSTRACT (Continuo on niuese If necessar’y and Identify by block...conducted with the Louvered Scarfed Shroud Suppresser ( LSSS ) not installed clu toexessve ntne aceleand Tirewall temperatures previously encountered with...een (3rum- man’s test on airtraft/SN _67-18922 nd U.S. Army Aviation Engineering Flight Activity’s (AEFA’s) test on aircraft,. 62-5867 for LSSS not

  5. On features of magnetization self-organization in 1D stochastic ferromagnetic systems

    NASA Astrophysics Data System (ADS)

    Ivanov, Anatoly A.; Orlov, Vitaly A.

    2017-03-01

    The magnetic structure of a polycrystalline nanowire at the weak or missing magnetostatic interaction exhibits the special self-organization of magnetization. As is known, the magnetization structure forming in a random crystallographic anisotropy field has a characteristic length range, which involves tens and hundreds of crystallites. This leads to the occurrence of stochastic domains. The induced uniform anisotropy of magnetostatic nature or the texture co-directed with the crystallite anisotropy axes masks the picture of stochastic domains. Nevertheless, as we show, the information on stochastic domains remains in the magnetization structure. The experimental techniques for obtaining information on the magnetic properties of stochastic domains are proposed.

  6. A refined count of BPS states in the D1/D5 system

    NASA Astrophysics Data System (ADS)

    Benjamin, Nathan

    2017-06-01

    We examine the low-lying quarter BPS spectrum of a 2d conformal field theory with target Sym N ( K3) at various points in the moduli space, and look at a more refined count than the ordinary elliptic genus. We compute growth of the spectrum at both the symmetric orbifold point, as well as at the supergravity point in the moduli space. Finally we do a decomposition of the spectra into \\mathcal{N}=4 characters and discuss possible relations to interesting symmetry groups. A similar analysis is done with T 4.

  7. Quantum phase diagram of Polar Molecules in 1D Double Wire Systems

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Ming; Wang, Daw-Wei

    2007-03-01

    We study the quantum phase transitions of fermionic polar molecules loaded in a double wire potential. By tuning the magnitude and direction of external electric field we observed many interesting quantum phases in different parameter range, including an easy-plane spin density wave, a triplet superconducting phase, and a truly long range order of easy-axis ferromagnetic phase in strong interacting regime. We also discuss how these exotic quantum phases can be measured in the existing experimental techniques.

  8. Magnetostriction and thermal expansion on 1D quantum spin system azurite

    SciTech Connect

    Fabris, Frederick W; Wolff-fabris, F; Francoual, S; Zapf, V; Jaime, M; Scott, B; Lacerda, A; Tozer, S; Hannahs, S; Murphy, T

    2008-01-01

    Recently the natural mineral Azurite has been proposed as model substance for the distorted S = 1/2 diamond chain in the spin fluid state. Azurite has alternating doublet monomers and singlet dimers along the chains yielding plateau-like features in the magnetization curves. Although Azurite was also reported to order antiferromagnetically at 1.86 K, the detailed phase diagram and its relationship to the 1/3 plateau is largely unknown. In the present paper, we report preliminary results from a dilatometry study on Azurite carried out in the 0.05--2.30 K temperature range at magnetic fields up to 31 T. It is shown that sizable structural distortions accompany the magnetic ordering and that at 100 mK the long range order between monomers is suppressed precisely at the transition field where the 1/3 plateau sets in.

  9. 1-D transient numerical model of a regenerator in a novel sub Kelvin Active Magnetic Regenerative Refrigerator

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.; Miller, Franklin K.

    2016-03-01

    A sub Kelvin Active Magnetic Regenerative Refrigerator (AMRR) is being developed at the University of Wisconsin - Madison. This AMRR consists of two circulators, two regenerators, one superleak, one cold heat exchanger, and two warm heat exchangers. The circulators are novel non-moving part pumps that reciprocate a superfluid mixture of 4He-3He in the system. Heat from the mixture is removed within the two regenerators of this tandem system. An accurate model of the regenerators in this AMRR is necessary in order to predict the performance of these components, which in turn helps predicting the overall performance of the AMRR system. This work presents modeling methodology along with results from a 1-D transient numerical model of the regenerators of an AMRR capable of removing 2.5 mW at 850 mK at cyclic steady state.

  10. Quantization of Energy in 1D Model of Crystal Lattice with Local Perturbations Induced by Ion-Beam Impact

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav

    2015-08-01

    In this paper, we propose theoretical basis for investigation of dynamics of acoustic phonons in a thin layers containing nano-scale structural inhomogeneities. One-dimensional (1D) model of a crystal lattice was considered to reveal specific features of the processes arising in such system of phonons in equilibrium state. Standard quantization of energy of 1D ionic chain vibrating by acoustic frequencies was carried out while the presence of foreign ions in this chain was taken into account. Since only two dimensions are dominant in thin layers, only longitudinal vibrations of the chain in the plane of the layer were considered. Results showed that foreign ions affect the energy quantization. Phonon-phonon interaction between two phonon`s modes can be expected if the mass of foreign ions implanted by ion-beam differs from the mass of ions in the initial layer. We believe that the obtained results will help to understand the character of phonon systems in nanostructured thin layers prepared by ion-bem technology, and will allow better explain some thermal and electrical phenomena associated with lattice dynamics in such layers.

  11. 40 CFR Table W - 1D of Subpart W of Part 98-Designation Of Eastern And Western U.S.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false 1D of Subpart W of Part 98-Designation Of Eastern And Western U.S. W Table W Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Definitions. Pt. 98, Subpt. W, Table W-1D Table W-1D of Subpart W of Part 98—Designation Of Eastern And...

  12. Building dictionaries of 1D and 3D motifs by mining the Unaligned 1D sequences of 17 archaeal and bacterial genomes.

    PubMed

    Rigoutsos, I; Gao, Y; Floratos, A; Parida, L

    1999-01-01

    We have used the Teiresias algorithm to carry out unsupervised pattern discovery in a database containing the unaligned ORFs from the 17 publicly available complete archaeal and bacterial genomes and build a 1D dictionary of motifs. These motifs which we refer to as seqlets account for and cover 97.88% of this genomic input at the level of amino acid positions. Each of the seqlets in this 1D dictionary was located among the sequences in Release 38.0 of the Protein Data Bank and the structural fragments corresponding to each seqlet's instances were identified and aligned in three dimensions: those of the seqlets that resulted in RMSD errors below a pre-selected threshold of 2.5 Angstroms were entered in a 3D dictionary of structurally conserved seqlets. These two dictionaries can be thought of as cross-indices that facilitate the tackling of tasks such as automated functional annotation of genomic sequences, local homology identification, local structure characterization, comparative genomics, etc.

  13. Epitaxial 1D electron transport layers for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-09-01

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport

  14. Advanced Fuel Cycle Initiative AFC-1D, AFC-1G and AFC-1H End of FY-06 Irradiation Report

    SciTech Connect

    Advanced Fuel Cycle Initiative AFC-1D, AFC-1G and

    2006-09-01

    The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxity and heat load of high-level waste sent to a geologic repository. The AFC-1 irradiation experiments on transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. The metallic fuel experiments and nitride experiment are high burnup analogs to previously irradiated experiments and are to be irradiated to = 40 at.% burnup and = 25 at.% burnup, respectively. Based on the results of the physics evaluations it has been determined that the AFC-1D experiment will remain in the ATR for approximately 4 additional cycles, the AFC-1G experiment for an additional 4-5 cycles, and the AFC-1H experiment for approximately 8 additional cycles, in order to reach the desired programmatic burnup. The specific irradiation schedule for these tests will be determined based on future physics evaluations and all results will be documented in subsequent reports.

  15. Exponents of the spectral functions and dynamical structure factor of the 1D Lieb-Liniger Bose gas

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Sacramento, P. D.

    2016-06-01

    We study the (k , ω) -plane finite-energy line shape of the zero-temperature one-boson removal spectral function (ω < 0) , one-boson addition spectral function (ω > 0) , and charge dynamical structure factor (ω > 0) of the 1D Lieb-Liniger Bose gas with repulsive boson interaction c > 0. Our analysis of the problem focuses on the line shape at finite excitation energies in the vicinity of these functions spectrum upper (ω < 0) or lower (ω > 0) threshold. Specifically, we derive the exact momentum, interaction, and density dependences of the exponents controlling such a line shape in each of the N = 1 , 2 , 3 , … momentum subdomains k ∈ [(N - 1) 2 πn , N 2 πn ] . Here n = N / L is the boson density, N the boson number, and L the system length. In the thermodynamic limit considered in our study nearly all spectral weight of the dynamical correlation functions is for large values of n / c contained in the N = 1 momentum subdomain k ∈ [ 0 , 2 πn ] . As n / c decreases a small fraction of that weight is transferred to the remaining set of N = 2 , 3 , 4 , … momentum subdomains, particularly to the N = 2 subdomain. In the case of the momentum subdomain k ∈ [ 0 , 2 πn ] , our exact results agree with those of previous studies. For that subdomain the above exponents are plotted as a function of the momentum for several n / c values. Our derivation of the line shapes of the three dynamical correlation functions relies on the use of a simplified form of the pseudofermion dynamical theory of the fermionic 1D Hubbard model suitably modified in this paper for the 1D Bose gas.

  16. Fluctuations of Hyperglycemia and Insulin Sensitivity Are Linked to Menstrual Cycle Phases in Women With T1D

    PubMed Central

    Brown, Sue A.; Jiang, Boyi; McElwee-Malloy, Molly; Wakeman, Christian; Breton, Marc D.

    2015-01-01

    Background: Factors influencing glycemic variability in type 1 diabetes (T1D) may play a significant role in the refinement of closed loop insulin administration. Phase of menstrual cycle is one such factor that has been inadequately investigated. We propose that unique individual patterns can be constructed and used as parameters of closed loop systems. Method: Women with T1D on continuous subcutaneous insulin infusion and continuous glucose monitoring were studied for 3 consecutive menstrual cycles. Ovulation prediction kits and labs were used to confirm phase of menstrual cycle. Glycemic risks were assessed using the low- and high blood glucose indices (LBGI and HBGI). Insulin sensitivity (SI) was estimated using a Kalman filtering method from meal and insulin data. Overall change significance for glycemic risks was assessed by repeated measures ANOVA, with specific phases emphasized using contrasts. Results: Ovulation was confirmed in 33/36 cycles studied in 12 subjects (age = 33.1 ± 7.0 years, BMI = 25.7 ± 2.9 kg/m2, A1c = 6.8 ± 0.7%). Risk for hyperglycemia changed significantly during the cycle (P = .023), with HBGI increasing until early luteal phase and returning to initial levels thereafter. LBGI was steady in the follicular phase, decreasing thereafter but not significantly. SI was depressed during the luteal phase when compared to the early follicular phase (P ≤ .05). Total daily insulin, carbohydrates, or calories did not show any significant fluctuations. Conclusions: Women with T1D have glycemic variability changes that are specific to the individual and are linked to phase of cycle. An increased risk of hyperglycemia was observed during periovulation and early luteal phases compared to the early follicular phase; these changes appear to be associated with decreased insulin sensitivity during the luteal phase. PMID:26468135

  17. Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving.

    PubMed

    Pauli, Guido F; Niemitz, Matthias; Bisson, Jonathan; Lodewyk, Michael W; Soldi, Cristian; Shaw, Jared T; Tantillo, Dean J; Saya, Jordy M; Vos, Klaas; Kleinnijenhuis, Roel A; Hiemstra, Henk; Chen, Shao-Nong; McAlpine, James B; Lankin, David C; Friesen, J Brent

    2016-02-05

    The revision of the structure of the sesquiterpene aquatolide from a bicyclo[2.2.0]hexane to a bicyclo[2.1.1]hexane structure using compelling NMR data, X-ray crystallography, and the recent confirmation via full synthesis exemplify that the achievement of "structural correctness" depends on the completeness of the experimental evidence. Archived FIDs and newly acquired aquatolide spectra demonstrate that archiving and rigorous interpretation of 1D (1)H NMR data may enhance the reproducibility of (bio)chemical research and curb the growing trend of structural misassignments. Despite being the most accessible NMR experiment, 1D (1)H spectra encode a wealth of information about bonds and molecular geometry that may be fully mined by (1)H iterative full spin analysis (HiFSA). Fully characterized 1D (1)H spectra are unideterminant for a given structure. The corresponding FIDs may be readily submitted with publications and collected in databases. Proton NMR spectra are indispensable for structural characterization even in conjunction with 2D data. Quantum interaction and linkage tables (QuILTs) are introduced for a more intuitive visualization of 1D J-coupling relationships, NOESY correlations, and heteronuclear experiments. Overall, this study represents a significant contribution to best practices in NMR-based structural analysis and dereplication.

  18. Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving

    PubMed Central

    2016-01-01

    The revision of the structure of the sesquiterpene aquatolide from a bicyclo[2.2.0]hexane to a bicyclo[2.1.1]hexane structure using compelling NMR data, X-ray crystallography, and the recent confirmation via full synthesis exemplify that the achievement of “structural correctness” depends on the completeness of the experimental evidence. Archived FIDs and newly acquired aquatolide spectra demonstrate that archiving and rigorous interpretation of 1D 1H NMR data may enhance the reproducibility of (bio)chemical research and curb the growing trend of structural misassignments. Despite being the most accessible NMR experiment, 1D 1H spectra encode a wealth of information about bonds and molecular geometry that may be fully mined by 1H iterative full spin analysis (HiFSA). Fully characterized 1D 1H spectra are unideterminant for a given structure. The corresponding FIDs may be readily submitted with publications and collected in databases. Proton NMR spectra are indispensable for structural characterization even in conjunction with 2D data. Quantum interaction and linkage tables (QuILTs) are introduced for a more intuitive visualization of 1D J-coupling relationships, NOESY correlations, and heteronuclear experiments. Overall, this study represents a significant contribution to best practices in NMR-based structural analysis and dereplication. PMID:26812443

  19. Build up An Operational Flood Simulation from Existing 1D Channel Flow Works

    NASA Astrophysics Data System (ADS)

    Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Lien, Ho-Cheng; Shen, Jhih-Cyuan; Chung, Ming-Ko

    2016-04-01

    Several 2D flood simulations will be developed for urban area in recent years in Taiwan. Original ideas focus on the static flood maps produced by the 2D flood simulation with respect to design events, which could be useful no matter for planning or disaster awareness. However, an extra bonus is expected to see if we can reuse the 2D flood simulation framework for operational use or not. Such a project goal inspire us to setup a standard operation procedure before any progress from existing 1D channel flow works. 3 key issues are taken into account in the SOP: 1. High Resolution Terrain: A 1m resolution digital terrain model (DTM) is considered as a reference. The Channels and structures should be setup in 1D channel flow works if we can identify under such high resolution. One should examine the existing 1D channel flow works consistent with the DTM or not. 2. Meteo Stations Referenced: Real time precipitation would be send to referenced location in RR models during an operational forecast. Existing 1D channels flow works are usually specifically for design events which are not necessarily equipped with such references. 3. Time Consuming: A full scale 2D flood simulation needs a lot of computation resources. A solution should be derived within practical time limits. Under the above consideration, some impacts and procedures will be analyzed and developed to setup the SOP for further model modification.

  20. Quasi 1-D Study of Pulse Detonation Rocket Engine Blowdown Gasdynamics and Performance

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2002-01-01

    Pulse detonation rocket engines (PDREs) offer potential performance improvements over conventional designs, but represent a challenging modeling task. A quasi 1-D, finite-rate chemistry CFD model for a PDRE is described and implemented. A parametric study of the effect of blowdown pressure ratio on the performance of several different PDRE nozzle configurations is reported.

  1. Fluctuation of Density of States for 1d Schrödinger Operators

    NASA Astrophysics Data System (ADS)

    Nakano, Fumihiko

    2017-03-01

    We consider the 1d Schrödinger operator with random decaying potential and compute the 2nd term asymptotics of the density of states, which shows substantial differences between the cases α > 1/2, α < 1/2 and α = 1/2.

  2. Combustion synthesis as a novel method for production of 1-D SiC nanostructures.

    PubMed

    Huczko, Andrzej; Bystrzejewski, Michał; Lange, Hubert; Fabianowska, Agnieszka; Cudziło, Stanisław; Panas, Andrzej; Szala, Mateusz

    2005-09-01

    1-D nanostructures of cubic phase silicon carbide (beta-SiC) were efficiently produced by combustion synthesis of mixtures containing Si-containing compounds and halocarbons in a calorimetric bomb. The influence of the operating parameters on 1-D SiC formation yield was studied. The heat release, the heating rate, and the chamber pressure increase were monitored during the process. The composition and structural features of the products were characterized by elemental analysis, X-ray diffraction, differential thermal analysis/ thermogravimetric technique, Raman spectroscopy, scanning and transmission electron microscopy, and energy-dispersive X-ray spectrometry. This self-induced growth process can produce SiC nanofibers and nanotubes ca. 20-100 nm in diameter with the aspect ratio higher than 1000. Bulk scale Raman studies showed the product to be comprised of mostly cubic polytype of SiC and that finite size effects are present. We believe that the nucleation mechanism involving radical gaseous species is responsible for 1-D nanostructures growth. The present study has enlarged the family of nanofibers and nanotubes available and offers a possible, new general route to 1-D crystalline materials.

  3. Adapting HYDRUS-1D to simulate overland flow and reactive transport during sheet flow deviations

    USDA-ARS?s Scientific Manuscript database

    The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil sur...

  4. Characterizing diabetes burnout in parents of youth with type 1 diabetes (T1D)

    USDA-ARS?s Scientific Manuscript database

    Managing type 1 diabetes (T1D) is complex and requires round-the-clock attention, much of which falls to parents. Parental stress and family conflict about diabetes are associated with suboptimal youth self-management and glycemic outcomes, yet little research has described parents' experiences with...

  5. Stability of Flame-Shock Coupling in Detonation Waves: 1D Dynamics (Preprint)

    DTIC Science & Technology

    2011-09-01

    be known as the ZND model for a detonation wave. While the true structure of detonation waves inevitably calls for multidimensional effects, the... ZND model for a detonation wave. While the true structure of detonation waves inevitably calls for multi- dimensional effects, the simple 1D structure

  6. [Biodegradation characteristics of o-chlorophenol with photosynthetic bacteria PSB-1D].

    PubMed

    Hu, Xiao-min; Dong, Yi-hu; Li, Liang; Lu, Juan; He, Ying-dian; Gao, Yang

    2010-07-01

    A strain of photosynthetic bacteria named PSB-1D with degradation of o-chlorophenol (2-CP) was isolated and screened from the shallow substrate sludge in downstream side of the sewage outfall of an insecticide factory. The PSB-1D is identified preliminarily as Rhodopseudomonas sp. according to its colony and cell morphological properties, physiological biochemical characteristics and absorption spectrum analysis of living cells. The experiments results of relationship between PSB-1D growth and o-chlorophenol degradation showed that the degradation rate of o-chlorophenol was up to 57.26% after 7 days cultural time. The main environmental factors including way of illumination and oxygen, initial pH, cultural temperature, illumination intensity had distinctly influenced on the o-chlorophenol degradation with PSB-1D. The results showed that the optimum conditions were as following: an anaerobic light, pH 7.0, temperature 30 degrees C, illumination intensity 4000 lx,initial o-chlorophenol concentration 50 mg/L. Under that cultural condition, the degradation rate of o-chlorophenol could reach to 62.08%. The degradation kinetic data fitted the Andrews model well. In addition, the biodegradation process of o-chlorophenol can be well described by enzymatic reaction of high concentration inhibition, with the maximum substrate utilization rate 0.309 d(-1), Michaelis-Menten constant 2.733 mg/L, inhibitory constant 230.15 mg/L respectively.

  7. Classical solution to 1D viscous polytropic perfect fluids with constant diffusion coefficients and vacuum

    NASA Astrophysics Data System (ADS)

    Liang, Zhilei; Wu, Shanqiu

    2017-02-01

    This paper deals with the initial boundary value problem for one-dimensional (1D) viscous, compressible and heat conducting fluids. We establish the global existence and uniqueness of classical solutions, with large data and possible vacuum at initial time. Our approach is based on the Calderón-Zygmund decomposition technique and allows that the viscosity and heat conductivity are both constant.

  8. 1D and 2D economical FIR filters generated by Chebyshev polynomials of the first kind

    NASA Astrophysics Data System (ADS)

    Dragoljub Pavlović, Vlastimir; Stanojko Dončov, Nebojša; Gradimir Ćirić, Dejan

    2013-11-01

    Christoffel-Darboux formula for Chebyshev continual orthogonal polynomials of the first kind is proposed to find a mathematical solution of approximation problem of a one-dimensional (1D) filter function in the z domain. Such an approach allows for the generation of a linear phase selective 1D low-pass digital finite impulse response (FIR) filter function in compact explicit form by using an analytical method. A new difference equation and structure of corresponding linear phase 1D low-pass digital FIR filter are given here. As an example, one extremely economic 1D FIR filter (with four adders and without multipliers) is designed by the proposed technique and its characteristics are presented. Global Christoffel-Darboux formula for orthonormal Chebyshev polynomials of the first kind and for two independent variables for generating linear phase symmetric two-dimensional (2D) FIR digital filter functions in a compact explicit representative form, by using an analytical method, is proposed in this paper. The formula can be most directly applied for mathematically solving the approximation problem of a filter function of even and odd order. Examples of a new class of extremely economic linear phase symmetric selective 2D FIR digital filters obtained by the proposed approximation technique are presented.

  9. Complex-coordinate calculation of 1D(e) resonances using Hylleraas functions

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Ho, Y. K.

    1990-01-01

    The lowest 1D(e) resonances below the n = 2 and n = 3 thresholds are calculated using a method of complex-coordinate rotation. The results, obtained with the use of Hylleraas functions, are believed to be of high accuracy. This work should serve as a useful reference for other investigations.

  10. Medulloblastoma expresses CD1d and can be targeted for immunotherapy with NKT cells.

    PubMed

    Liu, Daofeng; Song, Liping; Brawley, Vita S; Robison, Nathan; Wei, Jie; Gao, Xiuhua; Tian, Gengwen; Margol, Ashley; Ahmed, Nabil; Asgharzadeh, Shahab; Metelitsa, Leonid S

    2013-10-01

    Medulloblastoma (MB) is the most common malignant brain tumor of childhood. Current therapies are toxic and not always curative that necessitates development of targeted immunotherapy. However, little is known about immunobiology of this tumor. In this study, we show that MB cells in 9 of 20 primary tumors express CD1d, an antigen-presenting molecule for Natural Killer T cells (NKTs). Quantitative RT-PCR analysis of 61 primary tumors revealed an elevated level of CD1d mRNA expression in a molecular subgroup characterized by an overactivation of Sonic Hedgehog (SHH) oncogene compared with Group 4. CD1d-positive MB cells cross-presented glycolipid antigens to activate NKT-cell cytotoxicity. Intracranial injection of NKTs resulted in regression of orthotopic MB xenografts in NOD/SCID mice. Importantly, the numbers and function of peripheral blood type-I NKTs were preserved in MB patients. Therefore, CD1d is expressed on tumor cells in a subset of MB patients and represents a novel target for immunotherapy.

  11. Accuracy of 1D microvascular flow models in the limit of low Reynolds numbers.

    PubMed

    Pindera, Maciej Z; Ding, Hui; Athavale, Mahesh M; Chen, Zhijian

    2009-05-01

    We describe results of numerical simulations of steady flows in tubes with branch bifurcations using fully 3D and reduced 1D geometries. The intent is to delineate the range of validity of reduced models used for simulations of flows in microcapillary networks, as a function of the flow Reynolds number Re. Results from model problems indicate that for Re less than 1 and possibly as high as 10, vasculatures may be represented by strictly 1D Poiseuille flow geometries with flow variation in the axial dimensions only. In that range flow rate predictions in the different branches generated by 1D and 3D models differ by a constant factor, independent of Re. When the cross-sectional areas of the branches are constant these differences are generally small and appear to stem from an uncertainty of how the individual branch lengths are defined. This uncertainty can be accounted for by a simple geometrical correction. For non-constant cross-sections the differences can be much more significant. If additional corrections for the presence of branch junctions and flow area variations are not taken into account in 1D models of complex vasculatures, the resultant flow predictions should be interpreted with caution.

  12. Sensitivity of quantum yield for O(/sup 1/D) production from ozone photolysis

    SciTech Connect

    Wuebbles, D.J.; Tarp, R.L.

    1980-06-01

    Recent laboratory studies have indicated that the quantum yield for O(/sup 1/D) production from photolysis of ozone may be less than unity at wavelengths shorter than 300 nm (below the fall off region). Previously it had been assumed that the quantum yield was unity at these wavelengths. Based on the recent work of Brock and Watson (who measured the quantum yield at 266 nm), the effect of assuming a quantum yield of 0.9 for O(/sup 1/D) production at wavelengths less than 300 nm in the LLL 1-d model was tested. Since measurements of the quantum yield fall off at longer wavelength also assume unity quantum yield below the fall off region, we also multiplied the O(/sup 1/D) quantum yield through this region by 0.9. The remaining quantum yield from the photolysis reaction is assumed to produce O(/sup 3/P) at all wavelengths so that the total quantum yield is unity.

  13. Structural and mechanistic insights into regulation of the retromer coat by TBC1d5

    PubMed Central

    Jia, Da; Zhang, Jin-San; Li, Fang; Wang, Jing; Deng, Zhihui; White, Mark A.; Osborne, Douglas G.; Phillips-Krawczak, Christine; Gomez, Timothy S.; Li, Haiying; Singla, Amika; Burstein, Ezra; Billadeau, Daniel D.; Rosen, Michael K.

    2016-01-01

    Retromer is a membrane coat complex that is recruited to endosomes by the small GTPase Rab7 and sorting nexin 3. The timing of this interaction and consequent endosomal dynamics are thought to be regulated by the guanine nucleotide cycle of Rab7. Here we demonstrate that TBC1d5, a GTPase-activating protein (GAP) for Rab7, is a high-affinity ligand of the retromer cargo selective complex VPS26/VPS29/VPS35. The crystal structure of the TBC1d5 GAP domain bound to VPS29 and complementary biochemical and cellular data show that a loop from TBC1d5 binds to a conserved hydrophobic pocket on VPS29 opposite the VPS29–VPS35 interface. Additional data suggest that a distinct loop of the GAP domain may contact VPS35. Loss of TBC1d5 causes defective retromer-dependent trafficking of receptors. Our findings illustrate how retromer recruits a GAP, which is likely to be involved in the timing of Rab7 inactivation leading to membrane uncoating, with important consequences for receptor trafficking. PMID:27827364

  14. CD1d-restricted peripheral T cell lymphoma in mice and humans

    PubMed Central

    Bachy, Emmanuel; Urb, Mirjam; Chandra, Shilpi; Robinot, Rémy; Bricard, Gabriel; de Bernard, Simon; Traverse-Glehen, Alexandra; Gazzo, Sophie; Blond, Olivier; Khurana, Archana; Baseggio, Lucile; Heavican, Tayla; Ffrench, Martine; Crispatzu, Giuliano; Mondière, Paul; Schrader, Alexandra; Taillardet, Morgan; Thaunat, Olivier; Martin, Nadine; Dalle, Stéphane; Le Garff-Tavernier, Magali; Salles, Gilles; Lachuer, Joel; Hermine, Olivier; Asnafi, Vahid; Roussel, Mikael; Lamy, Thierry; Herling, Marco; Iqbal, Javeed; Buffat, Laurent; Marche, Patrice N.; Gaulard, Philippe; Kronenberg, Mitchell; Defrance, Thierry

    2016-01-01

    Peripheral T cell lymphomas (PTCLs) are a heterogeneous entity of neoplasms with poor prognosis, lack of effective therapies, and a largely unknown pathophysiology. Identifying the mechanism of lymphomagenesis and cell-of-origin from which PTCLs arise is crucial for the development of efficient treatment strategies. In addition to the well-described thymic lymphomas, we found that p53-deficient mice also developed mature PTCLs that did not originate from conventional T cells but from CD1d-restricted NKT cells. PTCLs showed phenotypic features of activated NKT cells, such as PD-1 up-regulation and loss of NK1.1 expression. Injections of heat-killed Streptococcus pneumonia, known to express glycolipid antigens activating NKT cells, increased the incidence of these PTCLs, whereas Escherichia coli injection did not. Gene expression profile analyses indicated a significant down-regulation of genes in the TCR signaling pathway in PTCL, a common feature of chronically activated T cells. Targeting TCR signaling pathway in lymphoma cells, either with cyclosporine A or anti-CD1d blocking antibody, prolonged mice survival. Importantly, we identified human CD1d-restricted lymphoma cells within Vδ1 TCR-expressing PTCL. These results define a new subtype of PTCL and pave the way for the development of blocking anti-CD1d antibody for therapeutic purposes in humans. PMID:27069116

  15. Prompt release of O 1D products upon UV excitation of CH2OO Criegee intermediates

    NASA Astrophysics Data System (ADS)

    Vansco, Michael F.; Li, Hongwei; Lester, Marsha I.

    2017-07-01

    Velocity map imaging has been used to characterize the angular and velocity distributions of O 1D photofragments arising from UV excitation of the simplest Criegee intermediate CH2OO in the long wavelength tail region (364 to 417 nm) of the B1A'-X1A' spectrum. The O 1D images exhibit anisotropic angular distributions indicative of rapid dissociation to H2CO X1A1 + O 1D products, which occurs faster than the rotational period (ps) of CH2OO. As a result, the broad oscillatory structure reported previously in the long wavelength region of the UV absorption spectrum is attributed to short-lived resonances associated with the excited B1A' state of CH2OO, which decay by nonadiabatic coupling to repulsive singlet states. The total kinetic energy distributions show that nearly half of the available energy, on average, is partitioned to product translation. The balance results in significant internal excitation of the H2CO co-fragments. The product anisotropy and energy partitioning are unchanged across the UV spectrum and consistent with previously reported experimental and theoretical findings of the CH2OO B-X transition moment and dissociation energy to H2CO X1A1 + O 1D products.

  16. Characterization of 5-HT1D receptor binding sites in post-mortem human brain cortex.

    PubMed Central

    Martial, J; de Montigny, C; Cecyre, D; Quirion, R

    1991-01-01

    The present study provides further evidence for the presence of serotonin1D (5-HT1D) receptors in post-mortem human brain. Receptor binding parameters in temporal cortex homogenates were assessed using [3H]5-HT in the presence of 100 nM 8-OH-DPAT, 1 microM propranolol and 1 microM mesulergine to prevent labelling of the 5-HT1A, 5-HT1B and 5-HT1C sites, respectively. Under these conditions, [3H]5-HT apparently bound to a class of high affinity (Kd = 5.0 +/- 1.0 nM) low capacity (Bmax = 96 +/- 23 fmol/mg protein) sites. In competition experiments, 5-HT and 5-carboxyamidotryptamine (5-CT), as well as ergotamine, lysergic acid, sumatriptan and RU-24969 exhibited high affinity for these sites. This pharmacological profile is concordant with the ligand selectivity pattern reported for 5-HT1D receptors in other species and thus provides further evidence for its existence in human temporal cortex. In addition, the competition profile of some ligands, particularly of unlabelled 5-HT, 5-CT and ergotamine, revealed the existence of a lower affinity binding site. The latter suggests receptor heterogeneity or the presence of a lower affinity state of 5-HT1D receptors. PMID:1911737

  17. 1D Seismic reflection technique to increase depth information in surface seismic investigations

    NASA Astrophysics Data System (ADS)

    Camilletti, Stefano; Fiera, Francesco; Umberto Pacini, Lando; Perini, Massimiliano; Prosperi, Andrea

    2017-04-01

    1D seismic methods, such as MASW Re.Mi. and HVSR, have been extensively used in engineering investigations, bedrock research, Vs profile and to some extent for hydrologic applications, during the past 20 years. Recent advances in equipment, sound sources and computer interpretation techniques, make 1D seismic methods highly effective in shallow subsoil modeling. Classical 1D seismic surveys allows economical collection of subsurface data however they fail to return accurate information for depths greater than 50 meters. Using a particular acquisition technique it is possible to collect data that can be quickly processed through reflection technique in order to obtain more accurate velocity information in depth. Furthermore, data processing returns a narrow stratigraphic section, alongside the 1D velocity model, where lithological boundaries are represented. This work will show how collect a single-CMP to determine: (1) depth of bedrock; (2) gravel layers in clayey domains; (3) accurate Vs profile. Seismic traces was processed by means a new software developed in collaboration with SARA electronics instruments S.r.l company, Perugia - ITALY. This software has the great advantage of being able to be used directly in the field in order to reduce the times elapsing between acquisition and processing.

  18. On the extrema of a nonconvex functional with double-well potential in 1D

    NASA Astrophysics Data System (ADS)

    Gao, David Yang; Lu, Xiaojun

    2016-06-01

    This paper mainly investigates the extrema of a nonconvex functional with double-well potential in 1D through the approach of nonlinear differential equations. Based on the canonical duality method, the corresponding Euler-Lagrange equation with Neumann boundary condition can be converted into a cubic dual algebraic equation, which will help find the local extrema for the primal problem.

  19. Observing the 1D-3D Crossover in a Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Fry, Jacob A.; Olsen, Ben A.; Hulet, Randall G.

    2016-05-01

    Trapped two-component Fermi gases phase separate into superfluid and normal phases when their spin populations are imbalanced. In 3D, a balanced superfluid core is surrounded by shells of partially polarized and normal phases, while in 1D, the balanced superfluid occupies the low density wings. We explored the crossover from 3D to 1D using a two-spin component ultracold atomic gas of 6 Li prepared in the lowest two hyperfine sublevels, where the interactions are tuned by a Feshbach resonance. The atoms are confined to 1D tubes where the tunneling rate t between tubes is varied by changing the depth of a 2D optical lattice. We observe the transition from 1D to 3D-like phase separation by varying t and interaction strength which changes the pair binding energy ɛB. We find a universal scaling of the dimensional crossover with t /ɛB , in agreement with previous theory. The crossover region is believed to be the most promising to find the exotic FFLO superfluid phase. Supported by the NSF and the Welch Foundation.

  20. CAMK1D amplification implicated in epithelial-mesenchymal transition in basal-like breast cancer.

    PubMed

    Bergamaschi, Anna; Kim, Young H; Kwei, Kevin A; La Choi, Yoon; Bocanegra, Melanie; Langerød, Anita; Han, Wonshik; Noh, Dong-Young; Huntsman, David G; Jeffrey, Stefanie S; Børresen-Dale, Anne-Lise; Pollack, Jonathan R

    2008-12-01

    Breast cancer exhibits clinical and molecular heterogeneity, where expression profiling studies have identified five major molecular subtypes. The basal-like subtype, expressing basal epithelial markers and negative for estrogen receptor (ER), progesterone receptor (PR) and HER2, is associated with higher overall levels of DNA copy number alteration (CNA), specific CNAs (like gain on chromosome 10p), and poor prognosis. Discovering the molecular genetic basis of tumor subtypes may provide new opportunities for therapy. To identify the driver oncogene on 10p associated with basal-like tumors, we analyzed genomic profiles of 172 breast carcinomas. The smallest shared region of gain spanned just seven genes at 10p13, including calcium/calmodulin-dependent protein kinase ID (CAMK1D), functioning in intracellular signaling but not previously linked to cancer. By microarray, CAMK1D was overexpressed when amplified, and by immunohistochemistry exhibited elevated expression in invasive carcinomas compared to carcinoma in situ. Engineered overexpression of CAMK1D in non-tumorigenic breast epithelial cells led to increased cell proliferation, and molecular and phenotypic alterations indicative of epithelial-mesenchymal transition (EMT), including loss of cell-cell adhesions and increased cell migration and invasion. Our findings identify CAMK1D as a novel amplified oncogene linked to EMT in breast cancer, and as a potential therapeutic target with particular relevance to clinically unfavorable basal-like tumors.

  1. Formation of 1D adsorbed water structures on CaO(001)

    NASA Astrophysics Data System (ADS)

    Zhao, Xunhua; Bhattacharya, Saswata; Ghiringhelli, Luca M.; Levchenko, Sergey V.; Scheffler, Matthias

    2015-03-01

    Understanding the interaction of water with oxide surfaces is of fundamental importance for basic and engineering sciences. Recently, a spontaneous formation of one-dimensional (1D) adsorbed water structures have been observed on CaO(001). Interestingly, at other alkaline earth metal oxides, in particular MgO(001) and SrO(001), such structures have not been found experimentally. We calculate the relative stability of adsorbed water structures on the three oxides using density-functional theory combined with the ab initio atomistic thermodynamics. Low-energy structures at different coverages are obtained with a first-principles genetic algorithm. Finite-temperature vibrational spectra are calculated using ab initio molecular dynamics. We find a range of (T, p) conditions where 1D structures are thermodynamically stable on CaO(001). The orientation and vibrational spectra of the 1D structures are in agreement with the experiments. The formation of the 1D structures is found to be actuated by a symmetry breaking in the adsorbed water tetramer, as well as by a balance between water-water and water-substrate interactions, determined by the lattice constant of the oxide.

  2. Controlled way to prepare quasi-1D nanostructures with complex chemical composition in porous anodic alumina.

    PubMed

    Lukatskaya, Maria R; Trusov, Lev A; Eliseev, Andrey A; Lukashin, Alexey V; Jansen, Martin; Kazin, Pavel E; Napolskii, Kirill S

    2011-02-28

    Herein we propose a novel approach to the preparation of quasi-1D nanostructures with various chemical compositions based on infiltration of colloidal solution into the asymmetric anodic alumina membrane. The proposed technique was successfully applied for the preparation of ordered arrays of the magnetically hard anisotropic hexaferrite nanostructures.

  3. Millimeter and Submillimeter Studies of O(^1D) Insertion Reactions to Form Molecules of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Hays, Brian; Wehres, Nadine; Deprince, Bridget Alligood; Roy, Althea A. M.; Laas, Jacob; Widicus Weaver, Susanna L.

    2015-06-01

    While both the number of detected interstellar molecules and their chemical complexity continue to increase, understanding of the processes leading to their formation is lacking. Our research group combines laboratory spectroscopy, observational astronomy, and astrochemical modeling for an interdisciplinary examination of the chemistry of star and planet formation. This talk will focus on our laboratory studies of O(^1D) insertion reactions with organic molecules to produce molecules of astrophysical interest. By employing these reactions in a supersonic expansion, we are able to produce interstellar organic reaction intermediates that are unstable under terrestrial conditions; we then probe the products using millimeter and submillimeter spectroscopy. We benchmarked this setup using the well-studied O(^1D) + methane reaction to form methanol. After optimizing methanol production, we moved on to study the O(^1D) + ethylene reaction to form vinyl alcohol (CH_2CHOH), and the O(^1D) + methyl amine reaction to form aminomethanol (NH_2CH_2OH). Vinyl alcohol measurements have now been extended up to 450 GHz, and the associated spectral analysis is complete. A possible detection of aminomethanol has also been made, and continued spectral studies and analysis are underway. We will present the results from these experiments and discuss future applications of these molecular and spectroscopic techniques.

  4. HYDRUS-1D Modeling of an Irrigated Agricultural Plot with Application to Aquifer Recharge Estimation

    USDA-ARS?s Scientific Manuscript database

    A variety of methods are available for estimating aquifer recharge in semi-arid regions, each with advantages and disadvantages. We are investigating a procedure for estimating recharge in an irrigated basin. The method involves computing irrigation return flows based on HYDRUS-1D modeling of root z...

  5. A South American Prehistoric Mitogenome: Context, Continuity, and the Origin of Haplogroup C1d.

    PubMed

    Sans, Mónica; Figueiro, Gonzalo; Hughes, Cris E; Lindo, John; Hidalgo, Pedro C; Malhi, Ripan S

    2015-01-01

    Based on mitochondrial DNA (mtDNA), it has been estimated that at least 15 founder haplogroups peopled the Americas. Subhaplogroup C1d3 was defined based on the mitogenome of a living individual from Uruguay that carried a lineage previously identified in hypervariable region I sequences from ancient and modern Uruguayan individuals. When complete mitogenomes were studied, additional substitutions were found in the coding region of the mitochondrial genome. Using a complete ancient mitogenome and three modern mitogenomes, we aim to clarify the ancestral state of subhaplogroup C1d3 and to better understand the peopling of the region of the Río de la Plata basin, as well as of the builders of the mounds from which the ancient individuals were recovered. The ancient mitogenome, belonging to a female dated to 1,610±46 years before present, was identical to the mitogenome of one of the modern individuals. All individuals share the mutations defining subhaplogroup C1d3. We estimated an age of 8,974 (5,748-12,261) years for the most recent common ancestor of C1d3, in agreement with the initial peopling of the geographic region. No individuals belonging to the defined lineage were found outside of Uruguay, which raises questions regarding the mobility of the prehistoric inhabitants of the country. Moreover, the present study shows the continuity of Native lineages over at least 6,000 years.

  6. A South American Prehistoric Mitogenome: Context, Continuity, and the Origin of Haplogroup C1d

    PubMed Central

    Sans, Mónica; Figueiro, Gonzalo; Hughes, Cris E.; Lindo, John; Hidalgo, Pedro C.; Malhi, Ripan S.

    2015-01-01

    Based on mitochondrial DNA (mtDNA), it has been estimated that at least 15 founder haplogroups peopled the Americas. Subhaplogroup C1d3 was defined based on the mitogenome of a living individual from Uruguay that carried a lineage previously identified in hypervariable region I sequences from ancient and modern Uruguayan individuals. When complete mitogenomes were studied, additional substitutions were found in the coding region of the mitochondrial genome. Using a complete ancient mitogenome and three modern mitogenomes, we aim to clarify the ancestral state of subhaplogroup C1d3 and to better understand the peopling of the region of the Río de la Plata basin, as well as of the builders of the mounds from which the ancient individuals were recovered. The ancient mitogenome, belonging to a female dated to 1,610±46 years before present, was identical to the mitogenome of one of the modern individuals. All individuals share the mutations defining subhaplogroup C1d3. We estimated an age of 8,974 (5,748–12,261) years for the most recent common ancestor of C1d3, in agreement with the initial peopling of the geographic region. No individuals belonging to the defined lineage were found outside of Uruguay, which raises questions regarding the mobility of the prehistoric inhabitants of the country. Moreover, the present study shows the continuity of Native lineages over at least 6,000 years. PMID:26509686

  7. Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming.

    PubMed

    Wang, Haizhou; Song, Mingzhou

    2011-12-01

    The heuristic k-means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called Ckmeans.1d.dp. We demonstrate its advantage in optimality and runtime over the standard iterative k-means algorithm.

  8. A new EEG measure using the 1D cluster variation method

    NASA Astrophysics Data System (ADS)

    Maren, Alianna J.; Szu, Harold H.

    2015-05-01

    A new information measure, drawing on the 1-D Cluster Variation Method (CVM), describes local pattern distributions (nearest-neighbor and next-nearest neighbor) in a binary 1-D vector in terms of a single interaction enthalpy parameter h for the specific case where the fractions of elements in each of two states are the same (x1=x2=0.5). An example application of this method would be for EEG interpretation in Brain-Computer Interfaces (BCIs), especially in the frontier of invariant biometrics based on distinctive and invariant individual responses to stimuli containing an image of a person with whom there is a strong affiliative response (e.g., to a person's grandmother). This measure is obtained by mapping EEG observed configuration variables (z1, z2, z3 for next-nearest neighbor triplets) to h using the analytic function giving h in terms of these variables at equilibrium. This mapping results in a small phase space region of resulting h values, which characterizes local pattern distributions in the source data. The 1-D vector with equal fractions of units in each of the two states can be obtained using the method for transforming natural images into a binarized equi-probability ensemble (Saremi & Sejnowski, 2014; Stephens et al., 2013). An intrinsically 2-D data configuration can be mapped to 1-D using the 1-D Peano-Hilbert space-filling curve, which has demonstrated a 20 dB lower baseline using the method compared with other approaches (cf. SPIE ICA etc. by Hsu & Szu, 2014). This CVM-based method has multiple potential applications; one near-term one is optimizing classification of the EEG signals from a COTS 1-D BCI baseball hat. This can result in a convenient 3-D lab-tethered EEG, configured in a 1-D CVM equiprobable binary vector, and potentially useful for Smartphone wireless display. Longer-range applications include interpreting neural assembly activations via high-density implanted soft, cellular-scale electrodes.

  9. Increased Expression of Two Alternative Spliced Variants of CD1d Molecule in Human Gastric Cancer.

    PubMed

    Hafezi, Nasim; Ajami, Abolghasem; Farazmandfar, Touraj; Hosseini, Vahid; Alizadeh-Navaei, Reza; Tehrani, Mohsen

    2015-06-01

    CD1d presents glycolipid antigens to invariant natural killer T (iNKT) cells. The role of CD1d in the development of peptic ulcer and gastric cancer has not been revealed, yet. To clarify the expression of alternatively spliced variants of CD1d in peptic ulcer and gastric cancer. Patients with dyspepsia were selected and divided into three groups of non-ulcer dyspepsia (NUD), peptic ulcer disease (PUD), and gastric cancer (GC), according to their endoscopic and histopathological examinations. H. pylori infection was diagnosed by rapid urease test and histopathology. The expression levels of V2, V4, and V5 spliced variants of CD1d molecule were determined by quantitative Reverse Transcriptase PCR. Relative gene expression levels of V4 were higher in GC patients (n=37) than those in NUD (n=49) and PUD (n=51) groups (p<0.05 and p<0.01, respectively). Moreover, GC patients showed higher expression levels of V5 compared to NUD and PUD groups (p<0.001 and p<0.001, respectively). Positive correlation coefficients were attained between V4 and V5 expression in patients with PUD (r=0.734, p<0.0001) and GC (r=0.423, p<0.01), but not in patients with NUD. Among NUD patients, the expression levels of V4, but not V5, were higher in H. pylori-positive patients than in H. pylori-negative ones (p<0.01). Collectively, both membrane-bound (V4) and soluble (V5) isoforms of CD1d were over-expressed in gastric tumor tissues, suggesting that they are involved in anti-tumor immune responses.

  10. Crystal orbital studies on the 1D silic-diyne nanoribbons and nanotubes

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Bai, Hongcun; Huang, Yuanhe

    2016-02-01

    This work presents crystal orbital studies on novel one-dimensional (1D) nanoscale materials derived from a Si-diyne sheet, based on the density functional theory. The two-dimensional (2D) Si-diyne layer is observed to be carbo-merized silicene, with a similar structure to graphdiyne. The 2D Si-diyne and its 1D ribbons and tubes, of different size and chirality, have been addressed systematically. The low dimensional Si-diyne materials studied exhibit relatively high stability, according to phonon-frequency calculations and molecular dynamics simulations. With comparable diameters, the Si-diyne tubes have lower strain energies than silicene and silicon carbide nanotubes. The Si-diyne layer and its 1D derivatives are all semiconductors, regardless of the size and chirality of the strips and tubes. In addition, the band gaps of the 1D Si-diyne nanoribbons and nanotubes with different chirality, always monotonically decrease as their sizes increases. A quantitative relationship between the band gap and the size of the ribbons and tubes was obtained. The mobility of charge carriers for the 1D Si-diyne structures was also investigated. It was found that both hole and electron mobility of the ribbons and tubes exhibit linear increase with increasing size. The electrons have greater mobility than the holes for each strip and tube. In addition, the mechanical properties of the Si-diyne nanostructures were also investigated by calculation of the Young’s modulus and the Poisson’s ratio.

  11. Improvement of the 2D/1D Method in MPACT Using the Sub-Plane Scheme

    SciTech Connect

    Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

    2017-01-01

    Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACTcode to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA). To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of 2D planes that are then coupled with a 1D axial calculation. MPACT uses the Method of Characteristics for the 2D transport calculations and P3 for the 1D axial calculations, then accelerates the solution using the 3D Coarse mesh Finite Dierence (CMFD) method. Increasing the number of 2D MOC planes will increase the accuracy of the alculation, but will increase the computational burden of the calculations and can cause slow convergence or instability. To prevent these problems while maintaining accuracy, the sub-plane scheme has been implemented in MPACT. This method sub-divides the MOC planes into sub-planes, refining the 1D P3 and 3D CMFD calculations without increasing the number of 2D MOC planes. To test the sub-plane scheme, three of the VERA Progression Problems were selected: Problem 3, a single assembly problem; Problem 4, a 3x3 assembly problem with control rods and pyrex burnable poisons; and Problem 5, a quarter core problem. These three problems demonstrated that the sub-plane scheme can accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The eigenvalue dierences are negligibly small, and dierences in 3D power distributions are less than 0.1% for realistic axial meshes. Furthermore, the convergence behavior with the sub-plane scheme compares favorably with the conventional 2D/1D method, and the computational expense is decreased for all calculations due to the reduction in expensive MOC calculations.

  12. Combined crossed beam and theoretical studies of the C(1D) + CH4 reaction

    NASA Astrophysics Data System (ADS)

    Leonori, Francesca; Skouteris, Dimitrios; Petrucci, Raffaele; Casavecchia, Piergiorgio; Rosi, Marzio; Balucani, Nadia

    2013-01-01

    The reaction involving atomic carbon in its first electronically excited state 1D and methane has been investigated in crossed molecular beam experiments at a collision energy of 25.3 kJ mol-1. Electronic structure calculations of the underlying potential energy surface (PES) and Rice-Ramsperger-Kassel-Marcus (RRKM) estimates of rates and branching ratios have been performed to assist the interpretation of the experimental results. The reaction proceeds via insertion of C(1D) into one of the C-H bonds of methane leading to the formation of the intermediate HCCH3 (methylcarbene or ethylidene), which either decomposes directly into the products C2H3 + H or C2H2 + H2 or isomerizes to the more stable ethylene, which in turn dissociates into C2H3 + H or H2CC + H2. The experimental results indicate that the H-displacement and H2-elimination channels are of equal importance and that for both channels the reaction mechanism is controlled by the presence of a bound intermediate, the lifetime of which is comparable to its rotational period. On the contrary, RRKM estimates predict a very short lifetime for the insertion intermediate and the dominance of the H-displacement channel. It is concluded that the reaction C(1D) + CH4 cannot be described statistically and a dynamical treatment is necessary to understand its mechanism. Possibly, nonadiabatic effects are responsible for the discrepancies, as triplet and singlet PES of methylcarbene cross each other and intersystem crossing is possible. Similarities with the photodissociation of ethylene and with the related reactions N(2D) + CH4, O(1D) + CH4 and S(1D) + CH4 are also commented on.

  13. Role of α1D -adrenoceptors in vascular wall hypertrophy during angiotensin II-induced hypertension.

    PubMed

    Gallardo-Ortíz, I A; Rodríguez-Hernández, S N; López-Guerrero, J J; Del Valle-Mondragón, L; López-Sánchez, P; Touyz, R M; Villalobos-Molina, R

    2015-09-01

    The in vivo effect of continuous angiotensin II (Ang II) infusion on arterial blood pressure, vascular hypertrophy and α1 -adrenoceptors (α1 -ARs) expression was explored. Alzet(®) minipumps filled with Ang II (200 ng kg(-1)  min(-1) ) were subcutaneously implanted in male Wistar rats (3 months-old). Groups of rats were also treated with losartan, an AT1 R antagonist, or with BMY 7378, a selective α1D -AR antagonist. Blood pressure was measured by tail-cuff; after 2 or 4 weeks of treatment, vessels were isolated for functional and structural analyses. Angiotensin II increased systolic blood pressure. Phenylephrine-induced contraction in aorta was greater (40% higher) in Ang II-treated rats than in the controls, and similar effect occurred with KCl 80 mm. Responses in tail arteries were not significantly different among the different groups. Angiotensin II decreased α1D -ARs without modifying the other α1 -ARs and induced an increase in media thickness (hypertrophy) in aorta, while no structural change occurred in tail artery. Losartan prevented and reversed hypertension and hypertrophy, while BMY 7378 prevented and reversed the aorta's hypertrophic response, without preventing or reversing hypertension. Findings indicate that Ang II-induced aortic hypertrophic response involves Ang II-AT1 Rs and α1D -ARs. Angiotensin II-induced α1D -AR-mediated vascular remodeling occurs independently of hypertension. Findings identify a α1D -AR-mediated process whereby Ang II influences aortic hypertrophy independently of blood pressure elevation. © 2016 John Wiley & Sons Ltd.

  14. Application of the ITS2 Region for Barcoding Medicinal Plants of Selaginellaceae in Pteridophyta

    PubMed Central

    Gu, Wei; Song, Jingyuan; Cao, Yuan; Sun, Qingwen; Yao, Hui; Wu, Qinan; Chao, Jianguo; Zhou, Juanjuan; Xue, Wenda; Duan, Jinao

    2013-01-01

    Background Selaginellaceae is a family of nonseed plants with special evolutionary significance. Plants of the family Selaginellaceae are similarly shaped and easily confused, complicating identification via traditional methods. This study explored, for the first time, the use of the DNA barcode ITS2 to identify medicinal plants of the Selaginellaceae family. Methodology/Principal Findings In our study, 103 samples were collected from the main distribution areas in China; these samples represented 34 species and contained almost all of the medicinal plants of Selaginellaceae. The ITS2 region of the genome was amplified from these samples and sequenced using universal primers and reaction conditions. The success rates of the PCR amplification and sequencing were 100%. There was significant divergence between the interspecific and intraspecific genetic distances of the ITS2 regions, while the presence of a barcoding gap was obvious. Using the BLAST1 and nearest distance methods, our results proved that the ITS2 regions could successfully identify the species of all Selaginellaceae samples examined. In addition, the secondary structures of ITS2 in the helical regions displayed clear differences in stem loop number, size, position, and screw angle among the medicinal plants of Selaginellaceae. Furthermore, cluster analysis using the ITS2 barcode supported the relationship between the species of Selaginellaceae established by traditional morphological methods. Conclusion The ITS2 barcode can effectively identify medicinal plants of Selaginellaceae. The results provide a scientific basis for the precise identification of plants of the family Selaginellaceae and the reasonable development of these resources. This study may broaden the application of DNA barcoding in the medicinal plant field and benefit phylogenetic investigations. PMID:23826345

  15. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  16. Strong 1D localization and highly anisotropic electron-hole masses in heavy-halogen functionalized graphenes.

    PubMed

    Marsoner Steinkasserer, Lukas Eugen; Zarantonello, Alessandra; Paulus, Beate

    2016-09-14

    While halogenation of graphene presents a fascinating avenue to the construction of a chemically and physically diverse class of systems, their application in photovoltaics has been hindered by often prohibitively large optical gaps. Herein we study the effects of partial bromination and chlorination on the structure and optoelectronic properties of both graphane and fluorographene. We find brominated and chlorinated fluorographene derivatives to be as stable as graphane with a detailed investigation of the systems band structure revealing significant 1D localization of the charge carriers as well as strongly electron-hole asymmetric effective masses. Lastly using G0W0 and BSE, we investigate the optical adsorption spectra of the aforementioned materials whose first adsorption peak is shown to lie close to the optimal peak position for photovoltaic applications (≈1.5 eV).

  17. Validation of Sea Surface Temperature Retrieved from the MVISR sensor onboard the Chinese Feng Yun 1D Meteorological Satellite

    NASA Astrophysics Data System (ADS)

    Kamal, Mohammed; Cervone, Guido; Kafatos, M.

    The purpose of this paper is to use the Direct Broadcast (DB) system located on the George Mason University Fenwick Library, validating Sea Surface Temperature in National Oceanic and Atmospheric Administration (NOAA) - Advanced Very High Resolution Radiometer (AVHRR) and Chinese Feng Yun 1D (FY1D) - Multi-channel Visible and Infrared Scan Radiometer (MVISR) data sets. The MVISR sensor flying shares many similarities with the NOAA AVHRR sensor in terms of spatial, temporal and spectral resolutions, orbital position and data transmission. MVISR has twice the spectral resolution than the AVHRR sensor, employing 10 channels with wavelengths between .43 and 12.5 microns, covering the visible, near and thermal infrared parts of the electromagnetic spectrum. Measurements from the MVISR sensor have not been extensively investigated due to difficulties in obtaining data, lack of sensor calibration information and product generation algorithms. The current work presents a detailed comparison of Sea Surface Temperature calibrated data derived from channels 3, 4 and 5 were utilized for MVISR and AVHRR measurements from different regions along the Atlantic coast of the USA, and Gulf of Mexico. Cross calibration between AVHRR and MVISR measurements were performed. Values measured by MVISR are found to agree well with AVHRR measurements.

  18. Development of a 3D to 1D Particle Transport Model to Predict Deposition in the Lungs

    NASA Astrophysics Data System (ADS)

    Oakes, Jessica M.; Grandmont, Celine; Shadden, Shawn C.; Vignon-Clementel, Irene E.

    2014-11-01

    Aerosolized particles are commonly used for therapeutic drug delivery as they can be delivered to the body systemically or be used to treat lung diseases. Recent advances in computational resources have allowed for sophisticated pulmonary simulations, however it is currently impossible to solve for airflow and particle transport for all length and time scales of the lung. Instead, multi-scale methods must be used. In our recent work, where computational methods were employed to solve for airflow and particle transport in the rat airways (Oakes et al. (2014), Annals of Biomedical Engineering 42, 899), the number of particles to exit downstream of the 3D domain was determined. In this current work, the time-dependent Lagrangian description of particles was used to numerically solve a 1D convection-diffusion model (trumpet model, Taulbee and Yu (1975), Journal of Applied Physiology, 38, 77) parameterized specifically for the lung. The expansion of the airway dimensions was determined based on data collected from our aerosol exposure experiments (Oakes et al. (2014), Journal of Applied Physiology, 116, 1561). This 3D-1D framework enables us to predict the fate of particles in the whole lung. This work was supported by the Whitaker Foundation at the IIE, a INRIA Associated Team Postdoc Grant, and a UC Presidential Fellowship.

  19. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice

    PubMed Central

    Hargett, Stefan R.; Walker, Natalie N.; Hussain, Syed S.; Hoehn, Kyle L.

    2015-01-01

    Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1−/−) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1−/− mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1−/− mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1−/− mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1−/− mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1−/− mice and between male Tbc1d1−/− mice in different studies due to variations in body composition and nutrient handling. PMID:26015432

  20. Estimating annual buildings ground floors heat losses using a one-dimensional (1-D) numerical model

    NASA Astrophysics Data System (ADS)

    Giakoumakis, Andreas

    In this work, an estimation of the annual buildings ground floors heat losses by means of numerical simulations of two different geometrical models (constructional details of buildings ground floors), using a 1-D numerical model, is attempted. Given the three-dimensional (3-D) nature of the heat transfer through the ground, the annual ground floor heat losses are first estimated using a 3-D model, constructed and simulated with the thermal analysis computer programs: "TRISCO" & "VOLTRA". Then, the 3-D model is converted to the 'respective' one-dimensional (1-D) one and the 'equalization' of the two models - for the both cases (geometrical models) - as far as the annual ground floor heat losses per unit surface area are concerned, is done by changing the values of the various simulation parameters of the used computer programs. Furthermore, since the various simulation tools, such as "TAS" thermal analysis software, generally simulate all heat transfer processes in one dimension - those through the ground floors included - and model the soil depth, in particular, to be: 1m, an estimation of the possibly introduced, in this 'methodology', errors is made, by comparing the respective results derived from the 3-D & 1-D numerical models. As far as the 'equalization' of the 1-D & 3-D numerical models is concerned, the results in question 'revealed' that, the (1-D numerical model's) soil depth, primarily and the soil thermal conductivity (A), secondly, are the most significant simulation parameters for the achievement of this aim. Regarding the errors possibly introduced in the process of estimating the annual buildings ground floor heat losses using a 1-D numerical model (with a soil depth value of: 1m), it is shown that, the size of these errors - for the specific models examined in this work - is approximately: -38% for the first and: +59% for the second one and, furthermore, that, the definition of the 'proper' soil depth value depends on the specific numerical model

  1. 1D Runoff-runon stochastic model in the light of queueing theory : heterogeneity and connectivity

    NASA Astrophysics Data System (ADS)

    Harel, M.-A.; Mouche, E.; Ledoux, E.

    2012-04-01

    Runoff production on a hillslope during a rainfall event may be simplified as follows. Given a soil of constant infiltrability I, which is the maximum amount of water that the soil can infiltrate, and a constant rainfall intensity R, runoff is observed where R is greater than I. The infiltration rate equals the infiltrability when runoff is produced, R otherwise. When ponding time, topography, and overall spatial and temporal variations of physical parameters, such as R and I, are neglected, the runoff equation remains simple. In this study, we consider soils of spatially variable infiltrability. As runoff can re-infiltrate on down-slope areas of higher infiltrabilities (runon), the resulting process is highly non-linear. The stationary runoff equation is: Qn+1 = max(Qn + (R - In)*Δx , 0) where Qn is the runoff arriving on pixel n of size Δx [L2/T], R and In the rainfall intensity and infiltrability on that same pixel [L/T]. The non-linearity is due to the dependence of infiltration on R and Qn, that is runon. This re-infiltration process generates patterns of runoff along the slope, patterns that organise and connect to each other differently depending on the rainfall intensity and the nature of the soil heterogeneity. The runoff connectivity, assessed using the connectivity function of Allard (1993), affects greatly the dynamics of the runoff hillslope. Our aim is to assess, in a stochastic framework, the runoff organization on 1D slopes with random infiltrabilities (log-normal, exponential, bimodal and uniform distributions) by means of theoretical developments and numerical simulations. This means linking the nature of soil heterogeneity with the resulting runoff organisation. In term of connectivity, we investigate the relations between structural (infiltrability) and functional (runoff) connectivity. A theoretical framework based on the queueing theory is developed. We implement the idea of Jones et al. (2009), who remarked that the above formulation is

  2. Minimum 1D P- and S- Velocity Models for Montenegro and Vicinity

    NASA Astrophysics Data System (ADS)

    Vucic, Ljiljana; Kissling, Edi; Spakman, Wim; Glavatovic, Branislav

    2015-04-01

    The territory of Montenegro and its vicinity are characterized by high-seismicity rate and very complex tectonics. Namely, southern Adria microplate subducts beneath Eurasia, forming the Dinarides fold-and-thrust belt which spreads through whole Montenegro and the western Balkans. Present-day lithosphere structure of the Adria-Dinarides collision zone in general is not constrained very well and, consequently, there is a lack of three-dimensional (3D) velocity models in this region. For these reasons, high resolution 3D tomography modeling of this area is considered to be of great importance. As part of preparatory phase for conducting a 3D local earthquake tomography study, a substantial amount of waveform data was collected, from all surroundings national seismic networks including 130 seismic stations from 11 countries. The data set comprises waveforms from 1452 earthquakes in the region recorded during time period 1990 - 2014. The collected data were obtained in different formats and the data base was harmonized by converting and integrating all data to miniseed format. The potential resolution of collected data for seismic tomography purpose was analyzed by ray density testing, using specially developed software for this specific purpose. The result is expressed as the number of rays between selected group of earthquake hypocenters and seismic stations, penetrating through the 3D model of the Earth crust and it documents the great potential of the data set for 3D seismic tomography. As a prerequisite to 3D tomography and for consistent high-precision earthquake locations, a minimum 1D velocity model has been calculated. The data set of around 400 earthquakes was selected from the main database and consistent wave onsets picking was performed, including seismic phase interpretation and its quality assessment. This highly consistent travel time data set is used for calculation of 1D velocity models for the region under study. The minimum 1D models were derived

  3. Loss-of-Function of hNav1.5 by ZASP1-D117N Associated with Intraventricular Conduction Disturbances in Left Ventricular Noncompaction

    PubMed Central

    Xi, Yutao; Ai, Tomohiko; De Lange, Enno; Li, Zhaohui; Wu, Geru; Brunelli, Luca; Kyle, W. Buck; Turker, Isik; Cheng, Jie; Ackerman, Michael J.; Kimura, Akinori; Weiss, James N.; Qu, Zhilin; Kim, Jeffrey J.; Faulkner, Georgine; Vatta, Matteo

    2013-01-01

    Background Defects of cytoarchitectural proteins can cause left ventricular noncompaction (LVNC), which is often associated with conduction system diseases. We have previously identified a p.D117N mutation in the LDB3-encoding Z-band Alternatively Spliced PDZ motif gene (ZASP) in a patient with LVNC and conduction disturbances. We sought to investigate a role of p.D117N mutation in the LBD3 NM_001080114.1 isoform (ZASP1-D117N) in the regulation of cardiac sodium channel (Nav1.5) that plays an important role in the cardiac conduction system. Methods and Results Effects of ZASP1-wt and ZASP1-D117N on Nav1.5 were studied in HEK-293 cells and neonatal rat cardiomyocytes (NRCMs). Patch-clamp study demonstrated that ZASP1-D117N significantly attenuated INa by 27% in HEK-293 cells and by 32% in NRCMs. In addition, ZASP1-D117N rightward shifted the voltage-dependent activation and inactivation in both systems. In silico simulation using Luo-Rudy phase 1 model demonstrated that altered Nav1.5 function can reduce cardiac conduction velocity by 28% compared to the control. Pull-down assays showed that both wt and ZASP1-D117N can complex with Nav1.5 and telethonin/T-Cap, which required intact PDZ domains. Immunohistochemical staining in NRCMs demonstrates that ZASP1-D117N did not significantly disturb the Z-line structure. Disruption of cytoskeletal networks with ML-7 and cytochalasin D abolished the effects of ZASP1-D117N on the Nav1.5. Conclusions ZASP1 can form protein complex with telethonin/T-Cap and Nav1.5. The LVNC-specific ZASP1 mutation can cause loss-of-function of Nav1.5 without significant alteration of the cytoskeletal protein complex. Our study suggests that electrical remodeling can occur in LVNC subject due to a direct effect of mutant ZASP on Nav1.5. PMID:22929165

  4. The CG-1D neutron imaging beamline at the Oak Ridge National Laboratory High Flux Isotope Reactor

    SciTech Connect

    Santodonato, Louis J; Bilheux, Hassina Z; Bailey, William Barton; Bilheux, Jean-Christophe; Nguyen, Phong T; Tremsin, Anton S; Selby, Douglas L; Walker, Lakeisha MH

    2015-01-01

    The Oak Ridge National Laboratory Neutron Sciences Directorate has installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. CG-1D is one of the three instruments that make up the CG1 instrument suite. The beamline optics and detector have recently been upgraded to meet the needs of the neutron imaging community (better smoothing of guide system artifacts, higher flux or spatial resolution). These upgrades comprise a new diffuser/aperture system, two new detectors, a He-filled flight tube and silicon (Si) windows. Shielding inside the flight tube, beam scrapers and a beam stop ensure that biological dose is less than 50 Sv/hr outside of the radiation boundary. A set of diffusers and apertures (pinhole geometry) has been installed at the exit of the guide system to allow motorized L/D variation. Samples sit on a translation/rotation stage for alignment and tomography purposes. Detectors for the CG-1D beamline are (1) an ANDOR DW936 charge coupled device (CCD) camera with a field of view of approximately 7 cm x 7 cm and ~ 80 microns spatial resolution and 1 frame per second time resolution, (2) a new Micro-Channel Plate (MCP) detector with a 2.8 cm x 2.8 cm field of view and 55 microns spatial resolution, and 5 s timing capability. 6LiF/ZnS scintillators of thickness varying from 50 to 200 microns are being used at this facility. An overview of the beamline upgrade and preliminary data is presented here.

  5. The CG-1D Neutron Imaging Beamline at the Oak Ridge National Laboratory High Flux Isotope Reactor

    NASA Astrophysics Data System (ADS)

    Santodonato, Lou; Bilheux, Hassina; Bailey, Barton; Bilheux, Jean; Nguyen, Phong; Tremsin, Anton; Selby, Doug; Walker, Lakeisha

    The Oak Ridge National Laboratory Neutron Sciences Directorate has installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. CG-1D is one of the three instruments that make up the CG1 instrument suite. The beamline optics and detector have recently been upgraded to meet the needs of the neutron imaging community (better ;smoothing; of guide system artifacts, higher flux or spatial resolution). These upgrades comprise a new diffuser/aperture system, two new detectors, a He-filled flight tube and silicon (Si) windows. Shielding inside the flight tube, beam scrapers and a beam stop ensure that biological dose is less than 50 μSv/hr outside of the radiation boundary. A set of diffusers and apertures (pinhole geometry) has been installed at the exit of the guide system to allow motorized L/D variation. Samples sit on a translation/rotation stage for alignment and tomography purposes. Detectors for the CG-1D beamline are (1) an ANDOR DW936 charge coupled device (CCD) camera with a field of view of approximately 7 cm x 7 cm and ∼ 80 microns spatial resolution and 1 frame per second time resolution, (2) a new Micro-Channel Plate (MCP) detector with a 2.8 cm x 2.8 cm field of view and 55 microns spatial resolution, and 5 μs timing capability. 6LiF/ZnS scintillators of thickness varying from 50 to 200 microns are being used at this facility. An overview of the beamline upgrade and preliminary data is presented here.

  6. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    SciTech Connect

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  7. (3 +1 )D Quasiparticle Anisotropic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mubarak; Nopoush, Mohammad; Ryblewski, Radoslaw; Strickland, Michael

    2017-07-01

    We present the first comparisons of experimental data with phenomenological results from (3 +1 )D quasiparticle anisotropic hydrodynamics (aHydroQP). We compare particle spectra, average transverse momentum, and elliptic flow. The dynamical equations used for the hydrodynamic stage utilize aHydroQP, which naturally includes both shear and bulk viscous effects. The (3 +1 )D aHydroQP evolution obtained is self-consistently converted to hadrons using anisotropic Cooper-Frye freeze-out. Hadron production and decays are modeled using a customized version of therminator 2. In this first study, we utilized smooth Glauber-type initial conditions and a single effective freeze-out temperature TFO=130 MeV with all hadronic species in full chemical equilibrium. With this rather simple setup, we find a very good description of many heavy-ion observables.

  8. Regulation of Translation Factor EEF1D Gene Function by Alternative Splicing

    PubMed Central

    Kaitsuka, Taku; Matsushita, Masayuki

    2015-01-01

    Alternative splicing is an exquisite mechanism that allows one coding gene to have multiple functions. The alternative splicing machinery is necessary for proper development, differentiation and stress responses in a variety of organisms, and disruption of this machinery is often implicated in human diseases. Previously, we discovered a long form of eukaryotic elongation factor 1Bδ (eEF1Bδ; this long-form eEF1Bδ results from alternative splicing of EEF1D transcripts and regulates the cellular stress response by transcriptional activation, not translational enhancement, of heat-shock responsive genes. In this review, we discuss the molecular function of EEF1D alternative splicing products and the estimated implication of human diseases. PMID:25686034

  9. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    SciTech Connect

    Sabtaji, Agung E-mail: agung.sabtaji@bmkg.go.id; Nugraha, Andri Dian

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.

  10. Rogue-wave bullets in a composite (2+1)D nonlinear medium.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Baronio, Fabio; Grelu, Philippe; Mihalache, Dumitru

    2016-07-11

    We show that nonlinear wave packets localized in two dimensions with characteristic rogue wave profiles can propagate in a third dimension with significant stability. This unique behavior makes these waves analogous to light bullets, with the additional feature that they propagate on a finite background. Bulletlike rogue-wave singlet and triplet are derived analytically from a composite (2+1)D nonlinear wave equation. The latter can be interpreted as the combination of two integrable (1+1)D models expressed in different dimensions, namely, the Hirota equation and the complex modified Korteweg-de Vries equation. Numerical simulations confirm that the generation of rogue-wave bullets can be observed in the presence of spontaneous modulation instability activated by quantum noise.

  11. Elucidation of the O(1D) + HF → F + OH mechanism by means of quasiclassical trajectories.

    PubMed

    Jambrina, P G; Montero, I; Aoiz, F J; Aldegunde, J; Alvariño, J M

    2012-12-21

    The dynamics and mechanism of the O((1)D) + HF → F + OH reaction have been studied through quasi-classical trajectory calculations carried out on the 1(1)A' Potential Energy Surface (PES) fitted by Gómez-Carrasco et al. [Chem. Phys. Lett., 2007, 435, 188]. The influence of the collision energy and the initial rovibrational state on the reaction has been considered. As a result of this study, we conclude that for v = 0 the reactive collisions take place exclusively through an indirect mechanism that involves a long-lived complex. Interestingly and somewhat unexpectedly for a barrierless reaction, vibrational excitation causes a large enhancement of the reactivity due to the concurrence of a direct abstraction mechanism. Unlike other reactions also taking place on a barrierless PES featuring deep wells, no insertion mechanism is observed in O((1)D) + HF reactive collisions.

  12. Constraint on the 1D earth model near core-mantle boundary by free core nutation

    NASA Astrophysics Data System (ADS)

    Huang, Chengli; Zhang, Mian

    2015-04-01

    Free core nutation (FCN) is a normal mode of the rotating earth with fluid outer core (FOC). Its period depends on the physics of the mantle and FOC, especially the parameters near core-mantle boundary (CMB), like the density and elastic (Lame) parameters. FCN period can be determined very accurately by VLBI and superconductive tidal gravimetry, but the theoretical calculation results of FCN period from traditional approaches and 1D earth model (like PREM) deviate significantly from the accurate observation. Meanwhile, the influence of the uncertainty of a given earth model on nutation has never been studied before. In this work, a numerical experiment is presented to check this problem, and we want to see whether FCN can provide a constraint on the construction of a 1D earth model, especially on the gradient of material density near CMB.

  13. Formation of Water Chains on CaO(001): What Drives the 1D Growth?

    PubMed

    Zhao, Xunhua; Shao, Xiang; Fujimori, Yuichi; Bhattacharya, Saswata; Ghiringhelli, Luca M; Freund, Hans-Joachim; Sterrer, Martin; Nilius, Niklas; Levchenko, Sergey V

    2015-04-02

    Formation of partly dissociated water chains is observed on CaO(001) films upon water exposure at 300 K. While morphology and orientation of the 1D assemblies are revealed from scanning tunneling microscopy, their atomic structure is identified with infrared absorption spectroscopy combined with density functional theory calculations. The latter exploit an ab initio genetic algorithm linked to atomistic thermodynamics to determine low-energy H2O configurations on the oxide surface. The development of 1D structures on the C4v symmetric CaO(001) is triggered by symmetry-broken water tetramers and a favorable balance between adsorbate-adsorbate versus adsorbate-surface interactions at the constraint of the CaO lattice parameter.

  14. Bifurcations of families of 1D-tori in 4D symplectic maps

    NASA Astrophysics Data System (ADS)

    Onken, Franziska; Lange, Steffen; Ketzmerick, Roland; Bäcker, Arnd

    2016-06-01

    The regular structures of a generic 4d symplectic map with a mixed phase space are organized by one-parameter families of elliptic 1d-tori. Such families show prominent bends, gaps, and new branches. We explain these features in terms of bifurcations of the families when crossing a resonance. For these bifurcations, no external parameter has to be varied. Instead, the longitudinal frequency, which varies along the family, plays the role of the bifurcation parameter. As an example, we study two coupled standard maps by visualizing the elliptic and hyperbolic 1d-tori in a 3d phase-space slice, local 2d projections, and frequency space. The observed bifurcations are consistent with the analytical predictions previously obtained for quasi-periodically forced oscillators. Moreover, the new families emerging from such a bifurcation form the skeleton of the corresponding resonance channel.

  15. X(3872) as the {sup 1}D{sub 2} charmonium

    SciTech Connect

    Kalashnikova, Yu. S.; Nefediev, A. V.

    2013-12-15

    The {sup 1}D{sub 2} charmonium assignment for the X(3872) is considered, which is compatible with the 2{sup −+} quantum numbers, as favoured by the BABAR Collaboration analysis presented recently for the π{sup +}π{sup −}π{sup 0}J/ψ decay mode. It is demonstrated that established properties of the X(3872) are in a drastic conflict with the {sup 1}D{sub 2}c c-bar assignment. Furthermore, it is argued that a combined analysis of the data for different decay channels of the X, with the help of theoretical formulae which meet a number of constraints imposed by phenomenology, results in a suitable description of the experimental data for the X compatible with its quantum numbers 1{sup ++}.

  16. A 1D (radial) Plasma Jet Propagation Study for the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.; Welch, D. R.; Thoma, C.; Golovkin, I.; Macfarlane, J. J.; Case, A.; Messer, S. J.; Witherspoon, F. D.; Cassibry, J. T.; Awe, T. J.; Hsu, S. C.

    2011-10-01

    The Plasma Liner Experiment will explore the formation of imploding spherical ``plasma liners'' that reach peak pressures of 0.1 Mbar upon stagnation. The liners will be formed through the merging of dense, high velocity plasma jets (n ~1017 cm-3, T ~3 eV, v ~50 km/s) in a spherically convergent geometry. The focus of this 1D (radial) study is argon plasma jet evolution during propagation from the rail gun source to the jet merging radius. The study utilizes the Large Scale Plasma (LSP) PIC code with atomic physics included through the use of a non-Local Thermal Equilibrium (NLTE) Equation of State (EOS) table. We will present scenarios for expected 1D (radial) plasma jet evolution, from upon exiting the PLX rail gun to reaching the jet merging radius. The importance of radiation cooling early in the simulation is highlighted. Work supported by US DOE grant DE-FG02-05ER54835.

  17. Channel specific rate constants for reactions of O(1D) with HCl and HBr

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Wells, J. R.; Ravishankara, A. R.

    1986-01-01

    The absolute rate coefficients and product yields for reactions of O(1D) with HCl(1) and HBr(2) at 287 K are presently determined by means of the time-resolved resonance fluorescence detection of O(3P) and H(2S) in conjunction with pulsed laser photolysis of O3/HX/He mixtures. Total rate coefficients for O(1D) removal are found to be, in units of 10 to the -10th cu cm/molecule per sec, k(1) = 1.50 + or - 0.18 and k(2) 1.48 + or - 0.16; the absolute accuracy of these rate coefficients is estimated to be + or - 20 percent.

  18. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.

    PubMed

    Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio

    2015-04-15

    The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure.

  19. 1D to 3D Crossover of a Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Fry, Jacob A.; Olsen, Ben A.; Hulet, Randall G.

    2016-12-01

    We have characterized the one-dimensional (1D) to three-dimensional (3D) crossover of a two-component spin-imbalanced Fermi gas of 6Li atoms in a 2D optical lattice by varying the lattice tunneling and the interactions. The gas phase separates, and we detect the phase boundaries using in situ imaging of the inhomogeneous density profiles. The locations of the phases are inverted in 1D as compared to 3D, thus providing a clear signature of the crossover. By scaling the tunneling rate t with respect to the pair binding energy ɛB, we observe a collapse of the data to a universal crossover point at a scaled tunneling value of t˜c=0.025 (7 ).

  20. In silico analysis of protein Lys-N&#x1D700;-acetylation in plants

    PubMed Central

    Rao, R. Shyama Prasad; Thelen, Jay J.; Miernyk, Ján A.

    2014-01-01

    Among post-translational modifications, there are some conceptual similarities between Lys-N&#x1D700;-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. The study of Lys-acetylation of plant proteins has lagged behind studies of mammalian and microbial cells; 1000s of acetylation sites have been identified in mammalian proteins compared with only hundreds of sites in plant proteins. While most previous emphasis was focused on post-translational modifications of histones, more recent studies have addressed metabolic regulation. Being directly coupled with cellular CoA/acetyl-CoA and NAD/NADH, reversible Lys-N&#x1D700;-acetylation has the potential to control, or contribute to control, of primary metabolism, signaling, and growth and development. PMID:25136347

  1. Evaluated rate constants for selected HCFC's and HFC's with OH and O((sup)1D)

    NASA Technical Reports Server (NTRS)

    Hampson, Robert F.; Kurylo, Michael J.; Sander, Stanley P.

    1990-01-01

    The chemistry of HCFC's and HFC's in the troposphere is controlled by reactions with OH in which a hydrogen atom is abstracted from the halocarbon to form water and a halo-alkyl radical. The halo-alkyl radical subsequently reacts with molecular oxygen to form a peroxy radical. The reactions of HCFC's and HFC's with O(exp1D) atoms are unimportant in the troposphere, but may be important in producing active chlorine of OH in the stratosphere. Here, the rate constants for the reactions of OH and O(exp1D) with many HFC's and HCFC's are evaluated. Recommendations are given for the five HCFC's and three HFC's specified by AFEAS as primary alternatives as well as for all other isomers of C1 and C2 HCFC's and HFC's where rate data exist. In addition, recommendations are included for CH3CCl3, CH2Cl2, and CH4.

  2. Self-assembly of magnetic Ni nanoparticles into 1D arrays with antiferromagnetic order

    NASA Astrophysics Data System (ADS)

    Bliznyuk, V.; Singamaneni, S.; Sahoo, S.; Polisetty, S.; He, Xi; Binek, Ch

    2009-03-01

    In this paper, we report on the magnetic properties of isolated nanoparticles and interacting nanochains formed by the self-assembly of Ni nanoparticles. The magnetic properties were studied using superconducting quantum interference device (SQUID) magnetometry and magnetic force microscopy (MFM). We demonstrate that single-domain Ni nanoparticles spontaneously form one-dimensional (1D) chains under the influence of an external magnetic field. Furthermore, such magnetic field-driven self-assembly in conjunction with surface templating produces regular arrays of 1D nanochains with antiferromagnetic intra-chain order. The antiferromagnetic order, which is in striking contrast to what is found for non-interacting nanoparticle assemblies within the chains, can be evidenced from MFM and SQUID measurements.

  3. Self-assembly of magnetic Ni nanoparticles into 1D arrays with antiferromagnetic order.

    PubMed

    Bliznyuk, V; Singamaneni, S; Sahoo, S; Polisetty, S; He, Xi; Binek, Ch

    2009-03-11

    In this paper, we report on the magnetic properties of isolated nanoparticles and interacting nanochains formed by the self-assembly of Ni nanoparticles. The magnetic properties were studied using superconducting quantum interference device (SQUID) magnetometry and magnetic force microscopy (MFM). We demonstrate that single-domain Ni nanoparticles spontaneously form one-dimensional (1D) chains under the influence of an external magnetic field. Furthermore, such magnetic field-driven self-assembly in conjunction with surface templating produces regular arrays of 1D nanochains with antiferromagnetic intra-chain order. The antiferromagnetic order, which is in striking contrast to what is found for non-interacting nanoparticle assemblies within the chains, can be evidenced from MFM and SQUID measurements.

  4. A novel coordination polymer containing both interdigitated 1D chains and interpenetrated 2D grids.

    PubMed

    Ayyappan, Ponnaiyan; Evans, Owen R; Lin, Wenbin

    2002-07-01

    A hydro(solvo)thermal reaction between zinc perchlorate and ethyl ester of a new pyridinecarboxylate bridging ligand of approximately 17.6 A in length yields a unique coordination polymer which contains both interdigitated infinite 1D chains and interpenetrated 2D rhombohedral grids [Zn(2.5)(L)(4)(mu(3)-OH)] x (H(2)O)(5), 1, where L is 3-[[4-(4-pyridylethenyl)phenyl]ethenyl]benzoate. The 1D chains contain mu(3)-bridged hydroxy groups and have a [Zn(4)(mu(3)-OH)(2)(L)(6)] stoichiometry, while the 2D grids have a Zn(L)(2) formula and diagonal distances of 31.7 and 25.2 A. Crystal data for 1: monoclinic space group P2/c, a = 15.686(2) A, b = 12.6103(16) A, c = 38.999(5) A, beta = 98.397(2) degrees, and Z = 4.

  5. 1D Scaling with Ablation for K-Shell Radiation from Stainless Steel Wire Arrays

    SciTech Connect

    Giuliani, J. L.; Thornhill, J. W.; Dasgupta, A.; Davis, J.; Clark, R. W.; Jones, B.; Cuneo, M.; Coverdale, C. A.; Deeney, C.

    2009-01-21

    A 1D Lagrangian magnetohydrodynamic z-pinch simulation code is extended to include wire ablation. The plasma transport coefficients are calibrated to reproduce the K-shell yields measured on the Z generator for three stainless steel arrays of diameter 55 mm and masses ranging from 1.8 to 2.7 mg. The resulting 1D scaling model is applied to a larger SS array (65 mm and 2.5 mg) on the refurbished Z machine. Simulation results predict a maximum K-shell yield of 77 kJ for an 82 kV charging voltage. This maximum drops to 42 kJ at 75 kV charging. Neglecting the ablation precursor leads to a {approx}10% change in the calculated yield.

  6. Progress towards alkaline-earth fermions in a 1D uniform potential

    NASA Astrophysics Data System (ADS)

    Reschovsky, Benjamin J.; Barker, Daniel S.; Pisenti, Neal C.; Campbell, Gretchen K.

    2016-05-01

    We present our progress towards realizing a 1D uniform ''box trap'' potential for degenerate fermionic alkaline-earth atoms in order to study highly symmetric SU(N) spin models. Our experiment first generates a degenerate gas of 87 Sr atoms via evaporation in a crossed dipole trap. Next, we plan to load the atoms into an array of 1D box traps formed by a red-detuned 2D optical lattice and blue-detuned end-caps. The end-caps are generated by direct imaging of a digital micromirror device (DMD), which gives us dynamic control of the potential. We report initial characterization of the blue traps and heating rate measurements.

  7. Static sign language recognition using 1D descriptors and neural networks

    NASA Astrophysics Data System (ADS)

    Solís, José F.; Toxqui, Carina; Padilla, Alfonso; Santiago, César

    2012-10-01

    A frame work for static sign language recognition using descriptors which represents 2D images in 1D data and artificial neural networks is presented in this work. The 1D descriptors were computed by two methods, first one consists in a correlation rotational operator.1 and second is based on contour analysis of hand shape. One of the main problems in sign language recognition is segmentation; most of papers report a special color in gloves or background for hand shape analysis. In order to avoid the use of gloves or special clothing, a thermal imaging camera was used to capture images. Static signs were picked up from 1 to 9 digits of American Sign Language, a multilayer perceptron reached 100% recognition with cross-validation.

  8. Quasi-1D Superfluids In A Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Olsen, Ben A.; Fry, Jacob A.; Hulet, Randall G.

    2015-05-01

    We experimentally study the phases of an ultracold two-spin component gas of atomic fermions (6Li) confined to 1D tubes formed by a 2D optical lattice. The atoms are prepared in the lowest two hyperfine sublevels where their interactions are tuned by a Feshbach resonance. We previously observed phase separation into a partially-polarized superfluid core and either fully-paired or fully-polarized wings (depending on the spin polarization). In 3D, the phase separation is inverted, such that the cloud center is fully paired. We investigate the transition from a 1D to 3D gas by varying the lattice depth and interaction strength which changes the ratio of the tunneling rate between the tubes to the pair binding energy. The region of parameter space we are exploring is believed to be the most promising region for the exotic FFLO superfluid phase. Supported by ARO, NSF, ONR, and the Welch Foundation.

  9. Measuring Spin-Charge Separation in a 1D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fry, Jacob A.; Revelle, Melissa C.; Hulet, Randall G.

    2016-05-01

    We present progress on measurement of spin-charge separation in a two-component, strongly interacting, 1D gas of fermionic lithium. A characteristic feature of interacting 1D Fermi gases is that the velocity of a charge excitation propagates faster than a spin excitation. We create an excitation by applying a dipole force at the center of the cloud using a sheet of light. Depending on the detuning of this beam, we can either excite both spin species equally (charge excitation) or preferentially (spin excitation). Once this beam is turned off, the excitations propagate to the edges of the atomic cloud at a velocity determined by coupling strength. A magnetically tuned Feshbach resonance enables us to vary this coupling and map out the velocities of spin and charge excitations. Supported by an ARO MURI Grant, NSF, and The Welch Foundation

  10. Na-ion dynamics in Quasi-1D compound NaV2O4

    NASA Astrophysics Data System (ADS)

    Månsson, M.; Umegaki, I.; Nozaki, H.; Higuchi, Y.; Kawasaki, I.; Watanabe, I.; Sakurai, H.; Sugiyama, J.

    2014-12-01

    We have used the pulsed muon source at ISIS to study high-temperature Na-ion dynamics in the quasi-one-dimensional (Q1D) metallic antiferromagnet Na