Science.gov

Sample records for 1d cds nanostructures

  1. One-dimensional CdS nanostructures: synthesis, properties, and applications.

    PubMed

    Zhai, Tianyou; Fang, Xiaosheng; Li, Liang; Bando, Yoshio; Golberg, Dmitri

    2010-02-01

    One-dimensional (1D) semiconductor nanostructures are of prime interest due to their potential in investigating the size and dimensionality dependence of the materials' physical properties and constructing nanoscale electronic and optoelectronic devices. Cadmium sulfide (CdS) is an important semiconductor compound of the II-VI group, and its synthesis and properties have been of growing interest owing to prominent applications in several fields. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, novel properties and unique applications of 1D CdS nanostructures in nanotechnology. It begins with the rational design and synthesis of 1D CdS nanostructures, and then highlights a range of unique properties and applications (e.g. photoluminescence, cathodoluminescence, electrochemiluminescence, photocatalysis, lasers, waveguides, modulators, solar cells, field-effect transistors, photodetectors, field-emitters, and nanogenerators) associated with them. Finally, the review is concluded with the author outlook of the perspectives with respect to future research on 1D CdS nanostructures.

  2. 1D Nanostructures: Controlled Fabrication and Energy Applications

    SciTech Connect

    Hu, Michael Z.

    2013-01-01

    Jian Wei, Xuchun Song, Chunli Yang, and Michael Z. Hu, 1D Nanostructures: Controlled Fabrication and Energy Applications, Journal of Nanomaterials, published special issue (http://www.hindawi.com/journals/jnm/si/197254/) (2013).

  3. Flexible Photodetectors Based on 1D Inorganic Nanostructures

    PubMed Central

    Lou, Zheng

    2015-01-01

    Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404

  4. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  5. High-Performance Fully Nanostructured Photodetector with Single-Crystalline CdS Nanotubes as Active Layer and Very Long Ag Nanowires as Transparent Electrodes.

    PubMed

    An, Qinwei; Meng, Xianquan; Sun, Pan

    2015-10-21

    Long and single-crystalline CdS nanotubes (NTs) have been prepared via a physical evaporation process. A metal-semiconductor-metal full-nanostructured photodetector with CdS NTs as active layer and Ag nanowires (NWs) of low resistivity and high transmissivity as electrodes has been fabricated and characterized. The CdS NTs-based photodetectors exhibit high performance, such as lowest dark currents (0.19 nA) and high photoresponse ratio (Ilight/Idark ≈ 4016) (among CdS nanostructure network photodetectors and NTs netwok photodetectors reported so far) and very low operation voltages (0.5 V). The photoconduction mechanism, including the formation of a Schottky barrier at the interface of Ag NW and CdS NTs and the effect of oxygen adsorption process on the Schottky barrier has also been provided in detail based on the studies of CdS NTs photodetector in air and vacuum. Furthermore, CdS NTs photodetector exhibits an enhanced photosensitivity as compared with CdS NWs photodetector. The enhancement in performance is dependent on the larger surface area of NTs adsorbing more oxygen in air and the microcavity structure of NTs with higher light absorption efficiency and external quantum efficiency. It is believed that CdS NTs can potentially be useful in the designs of 1D CdS-based optoelectronic devices and solar cells.

  6. Carbon-assisted morphological manipulation of CdS nanostructures and their cathodoluminescence properties

    SciTech Connect

    Zhang Meng; Zhai, Tianyou; Wang Xi; Liao Qing; Ma Ying; Yao, Jiannian

    2009-11-15

    CdS nanostructures with different morphologies and sizes were successfully fabricated through a facile and effective carbon-assisted thermal evaporation method. Through simply changing the positions of silicon substrates, the temperatures and the effects of carbon in different zones were modified, and thus the morphologies of CdS nanostructures were varied from multipods to nanobrushes to nanocups. These nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDS), X-ray powder diffraction (XRD) and Raman spectroscopy. Cathodoluminescence (CL) measurement shows that the as-grown CdS nanostructures display different luminescent properties. CdS multipods and nanocups show mainly green emission centered at {approx}496 nm. However, nanobrushes exhibit predominant red emission band peaking at {approx}711 nm. These interesting results show that carbon not only affected the growth process but also influenced the properties of CdS nanostructures. - Graphical abstract: A facile and effective carbon-assisted thermal evaporation method is explored to synthesize CdS multipods, nanobrushes and nanocups. These CdS nanostructures display very different optical properties.

  7. Mixed-solvothermal synthesis of CdS micro/nanostructures and their optical properties

    NASA Astrophysics Data System (ADS)

    Zhong, Shengliang; Zhang, Linfei; Huang, Zhenzhong; Wang, Shangping

    2011-01-01

    Several novel cadmium sulfide (CdS) micro/nanostructures, including cauliflower-like microspheres, football-like microspheres, tower-like microrods, and dendrites were controllably prepared via an oxalic acid-assisted solvothermal route using ethylene glycol (EG) and H2O as pure and mixed solvents with different S sources. The as-prepared products were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM) and UV-vis spectrophotometer (UV). It was found that CdS micro/nanostructures can be selectively obtained by varying the composition of solvent, concentration of oxalic acid, and sulfur sources. UV-vis absorption spectra reveal that their absorption properties are shape-dependent. The possible formation process of the CdS micro/nanostructures was briefly discussed. This route provides a facile way to tune the morphologies of CdS over a wide range.

  8. Synthesis of CdS nanostructures using template-assisted ammonia-free chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Preda, N.; Enculescu, M.; Gherendi, F.; Matei, E.; Toimil-Molares, M. E.; Enculescu, I.

    2012-09-01

    CdS micro- and nano-structures (micro/nanotubes and nanostructured films) were obtained by ammonia-free chemical bath deposition using polymer templates (ion track-etched polycarbonate membranes and poly(styrene-hydroxyethyl methacrylate) nanosphere arrays). The semiconductor structures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), optical absorption, photoluminescence and electrical measurements. The diameters of CdS tubes are between 300 nm and few microns and the lengths are up to tens of micrometers. The SEM images prove that the CdS films are nanostructured due to the deposition on the polymer nanosphere arrays. For both CdS structures (tubes and films) the XRD patterns show a hexagonal phase. The optical studies reveal a band gap value of about 2.5-2.6 eV and a red luminescence at ˜1.77 eV. A higher increase of conductivity is observed for illuminating the CdS nanostructured film when compared to the simple semiconductor film. This is a consequence of the periodic patterning induced by the polymer nanosphere array.

  9. Solution precursor plasma deposition of nanostructured CdS thin films

    SciTech Connect

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Inexpensive process with capability to produce large scale nanostructured coatings. Black-Right-Pointing-Pointer Technique can be employed to spray the coatings on any kind of substrates including polymers. Black-Right-Pointing-Pointer The CdS coatings developed have good electrical conductivity and optical properties. Black-Right-Pointing-Pointer Coatings possess large amount of particulate boundaries and nanostructured grains. -- Abstract: Cadmium sulfide (CdS) films are used in solar cells, sensors and microelectronics. A variety of techniques, such as vapor based techniques, wet chemical methods and spray pyrolysis are frequently employed to develop adherent CdS films. In the present study, rapid deposition of CdS thin films via plasma spray route using a solution precursor was investigated, for the first time. Solution precursor comprising cadmium chloride, thiourea and distilled water was fed into a DC plasma jet via an axial atomizer to create ultrafine droplets for instantaneous and accelerated thermal decomposition in the plasma plume. The resulting molten/semi-molten ultrafine/nanoparticles of CdS eventually propel toward the substrate to form continuous CdS films. The chemistry of the solution precursor was found to be critical in plasma pyrolysis to control the stoichiometry and composition of the films. X-ray diffraction studies confirmed hexagonal {alpha}-CdS structure. Surface morphology and microstructures were investigated to compare with other synthesis techniques in terms of process mechanism and structural features. Transmission electron microscopy studies revealed nanostructures in the atomized particulates. Optical measurements indicated a decreasing transmittance in the visible light with increasing the film thickness and band gap was calculated to be {approx}2.5 eV. The electrical resistivity of the films (0.243 {+-} 0.188 Multiplication-Sign 10{sup 5} {Omega} cm) was comparable with the literature

  10. CDS

    NASA Astrophysics Data System (ADS)

    Allen, Mark

    2015-12-01

    The Centre de Donnees de Strasbourg (CDS) is a reference data centre for Astronomy. The CDS services; SIMBAD, Vizier, Aladin and X-Match, provide added value to scientific content in order to support the astronomy research community. Data and information are curated from refereed journals, major surveys, observatories and missions with a strong emphasis on maintaining a high level of quality. The current status and plans of the CDS will be presented, highlighting how the recent innovations of the HiPS (Hierarchical Progressive surveys) and MOC (Multi-Order Coverage map) systems enable the visualisation of hundreds of surveys and data sets, and brings new levels of interoperability between catalogues, surveys images and data cubes.

  11. Effects of Carbon Allotrope Interface on the Photoactivity of Rutile One-Dimensional (1D) TiO2 Coated with Anatase TiO2 and Sensitized with CdS Nanocrystals.

    PubMed

    Pathak, Pawan; Israel, Luis Henrique; Pereira, Ellen Jessica Monterio; Subramanian, Vaidyanathan Ravi

    2016-06-01

    The assembly of a large-bandgap one-dimensional (1D) oxide-conductive carbon-chalcogenide nanocomposite and its surface, optical, and photoelectrochemical properties are presented. Microscopy, surface analysis, and optical spectroscopy results are reported to provide insights into the assembly of the nanostructure. We have investigated (i) how the various carbon allotropes (C60), reduced graphene oxide (RGO), carbon nanotubes (CNTs), and graphene quantum dots (GQDs) can be integrated at the interface of the 1D TiO2 and zero-dimensional (0D) CdS nanocrystals; (ii) the carbon allotrope and CdS loading effects; (iii) the impact of the carbon allotrope presence on 0D CdS nanocrystals; and (iv) how they promote light absorbance. Subsequently, the functioning of the integrated nanostructured assembly in a photoelectrochemical cell has been systematically investigated. These studies include (i) chronoamperometry, (ii) impedance measurements or EIS, and (iii) linear sweep voltammetry. The results indicate that the presence of a GQD interface shows the most enhancement in the photoelectrochemical properties. The optimized photocurrent values were respectively noted to be 2.8, 2.2, 1.9, and 1.6 mA/cm(2), indicating JGQD > JRGO > JCNT > Jfullerene. Furthermore, the annealing conditions have indicated that ammonia treatment leads to an increase in the photoelectrochemical responses when using any form of the carbon allotropes. PMID:27121182

  12. Designing Heterogeneous 1D Nanostructure Arrays Based on AAO Templates for Energy Applications.

    PubMed

    Wen, Liaoyong; Wang, Zhijie; Mi, Yan; Xu, Rui; Yu, Shu-Hong; Lei, Yong

    2015-07-01

    In order to fulfill the multiple requirements for energy production, storage, and utilization in the future, the conventional planar configuration of current energy conversion/storage devices has to be reformed, since technological evolution has promoted the efficiency of the corresponding devices to be close to the theoretical values. One promising strategy is to construct multifunctional 1D nanostructure arrays to replace their planar counterparts for device fabrication, ascribing to the significant superiorities of such 1D nanostructure arrays. In the last three decades, technologies based on anodic aluminium oxide (AAO) templates have turned out to be valuable meaning for the realization of 1D nanostructures and have attracted tremendous interest. In this review, recent progress in energy-related devices equipped with heterogeneous 1D nanostructure arrays that fabricated through the assistance of AAO templates is highlighted. Particular emphasis is given on how to develop efficient devices via optimizing the componential and morphological parameters of the 1D nanostructure arrays. Finally, aspects relevant to the further improvement of device performance are discussed.

  13. Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile

    SciTech Connect

    Moon, Ji Won; Ivanov, Ilia N; Duty, Chad E; Love, Lonnie J; Rondinone, Adam Justin; Wang, Wei; Li, Dr. Yi-Liang; Madden, Andrew; Mosher, Jennifer J; Hu, Michael Z.; Suresh, Anil K; Rawn, Claudia J; Jung, Hyunsung; Lauf, Robert J; Phelps, Tommy Joe

    2013-01-01

    We report microbially facilitated synthesis of cadmium sulfide (CdS) nanostructured particles (NP) using anaerobic, metal-reducing Thermoanaerobacter sp. The extracellular CdS crystallites were <10 nm in size with yields of ~3 g/L of growth medium/month with demonstrated reproducibility and scalability up to 24 L. During synthesis, Thermoanaerobacter cultures reduced thiosulfate and sulfite salts to H2S, which reacted with Cd2+ cations to produce thermodynamically favored NP in a single step at 65oC with catalytic nucleation on the cell surfaces. Photoluminescence (PL) analysis of dry CdS NP revealed an exciton-dominated PL peak at 440 nm, having a narrow full width at half maximum of 10 nm. A PL spectrum of CdS NP produced by dissimilatory sulfur reducing bacteria was dominated by features associated with radiative exciton relaxation at the surface. High reproducibility of CdS NP PL features important for scale-up conditions was confirmed from test tubes to 24L batches at a small fraction of the manufacturing cost associated with conventional inorganic NP production processes.

  14. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room

  15. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room

  16. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.

    PubMed

    Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio

    2015-04-15

    The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure. PMID:25822757

  17. Recombinant Phage Coated 1D Al2O3 Nanostructures for Controlling the Adhesion and Proliferation of Endothelial Cells

    PubMed Central

    Lee, Juseok; Jeon, Hojeong; Haidar, Ayman; Abdul-Khaliq, Hashim; Veith, Michael; Kim, Youngjun

    2015-01-01

    A novel synthesis of a nanostructured cell adhesive surface is investigated for future stent developments. One-dimensional (1D) Al2O3 nanostructures were prepared by chemical vapor deposition of a single source precursor. Afterwards, recombinant filamentous bacteriophages which display a short binding motif with a cell adhesive peptide (RGD) on p3 and p8 proteins were immobilized on these 1D Al2O3 nanostructures by a simple dip-coating process to study the cellular response of human endothelial EA hy.926. While the cell density decreased on as-deposited 1D Al2O3 nanostructures, we observed enhanced cell proliferation and cell-cell interaction on recombinant phage overcoated 1D Al2O3 nanostructures. The recombinant phage overcoating also supports an isotropic cell spreading rather than elongated cell morphology as we observed on as-deposited Al2O3 1D nanostructures. PMID:26090458

  18. Localized self-heating in large arrays of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Monereo, O.; Illera, S.; Varea, A.; Schmidt, M.; Sauerwald, T.; Schütze, A.; Cirera, A.; Prades, J. D.

    2016-02-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called ``hot-spots''. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal

  19. Combustion synthesis as a novel method for production of 1-D SiC nanostructures.

    PubMed

    Huczko, Andrzej; Bystrzejewski, Michał; Lange, Hubert; Fabianowska, Agnieszka; Cudziło, Stanisław; Panas, Andrzej; Szala, Mateusz

    2005-09-01

    1-D nanostructures of cubic phase silicon carbide (beta-SiC) were efficiently produced by combustion synthesis of mixtures containing Si-containing compounds and halocarbons in a calorimetric bomb. The influence of the operating parameters on 1-D SiC formation yield was studied. The heat release, the heating rate, and the chamber pressure increase were monitored during the process. The composition and structural features of the products were characterized by elemental analysis, X-ray diffraction, differential thermal analysis/ thermogravimetric technique, Raman spectroscopy, scanning and transmission electron microscopy, and energy-dispersive X-ray spectrometry. This self-induced growth process can produce SiC nanofibers and nanotubes ca. 20-100 nm in diameter with the aspect ratio higher than 1000. Bulk scale Raman studies showed the product to be comprised of mostly cubic polytype of SiC and that finite size effects are present. We believe that the nucleation mechanism involving radical gaseous species is responsible for 1-D nanostructures growth. The present study has enlarged the family of nanofibers and nanotubes available and offers a possible, new general route to 1-D crystalline materials. PMID:16853065

  20. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    SciTech Connect

    Marinkovic, Bojan A.; Fredholm, Yann C.; Morgado, Edisson

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  1. Characterization and thermal stability of cobalt-modified 1-D nanostructured trititanates

    SciTech Connect

    Morgado, Edisson; Abreu, Marco A.S. de

    2009-01-15

    One-dimensional (1-D) nanostructured sodium trititanates were obtained via alkali hydrothermal method and modified with cobalt via ion exchange at different Co concentrations. The resulting cobalt-modified trititanate nanostructures (Co-TTNS) were characterized by TGA, XRD, TEM/SAED, DRS-UV-Vis and N{sub 2} adsorption techniques. Their general chemical formula was estimated as Na{sub x}Co{sub y/2}H{sub 2-x-y}Ti{sub 3}O{sub 7}.nH{sub 2}O and they maintained the same nanostructured and multilayered nature of the sodium precursor, with the growth direction of nanowires and nanotubes along [010]. As a consequence of the Co{sup 2+} incorporation replacing sodium between trititanate layers, two new diffraction lines became prominent and the interlayer distance was reduced with respect to that of the precursor sodium trititanate. Surface area was slightly increased with cobalt intake whereas pore size distribution was hardly affected. Besides, Co{sup 2+} incorporation in trititanate crystal structure also resulted in enhanced visible light photon absorption as indicated by a strong band-gap narrowing. Morphological and structural thermal transformations of Co-TTNS started nearly 400 deg. C in air and the final products after calcination at 800 deg. C were found to be composed of TiO{sub 2}-rutile, CoTiO{sub 3} and a bronze-like phase with general formula Na{sub 2x}Ti{sub 1-x}Co{sub x}O{sub 2}. - Graphical abstract: Co{sup 2+} incorporation in 1D-trititanate crystal nanostructure (Co-TTNS) causes reduction in interlayer distance by comparison with its sodium precursor (Na-TTNS) and leads to enhanced visible light photon absorption efficiency due to a strong band-gap narrowing.

  2. Novel electronic structures of self-organized 1D surface nanostructures

    NASA Astrophysics Data System (ADS)

    Yeom, Han Woong

    2002-03-01

    Recently we have searched for the exotic physical properties of the nanostructures formed on semiconductor surfaces by STM and photoelectron spectroscopy [1]. The major objects have been the 1D chains of metal adsorbates on Si or SiC surfaces. It now seems obvious that such (sub)nanometer-scale atomic chains possess significant technological implications for the future device technology. Furthermore those systems provide very attractive and unprecedented opportunity to study exotic physical properties of 1D electronic systems in detail, such as Peierls instability, charge density wave (CDW), electron correlation, non-Fermi liquid behavior, and interplay of defects with 1D excitations (1D solitons, 1D domain walls and etc). The present talk focuses on the recent experimental and theoretical studies for the novel electronic properties of the 1D atomic chain systems on the Si(111) surface such as Si(111)4x1-In [2], Si(111)5x2-Au [3], Si(557)5x2-Au [4], and Si(111)3x2-Ba(or Ca) [5]. These systems have well defined one dimensional electronic bands, which exhibit intriguing properties challenging our present understanding. The major points of debates right now are the origin of the periodicity-doubling phase transition of Si(111)4x1-In in relation to 1D CDW [2], the nature of the band gap (or pseudo gap) of Si(111)5x2-Au (also related to 1D CDW idea) [3], the Si(111)3x2-Ba (or Ca) surface (1D Mott-Hubbard system ?) [5], and the nature of the band dispersion of the Si(557)5x2-Au surface (any Luttinger liquid behavior ?) [4]. Some new aspects of these systems are introduced such as the doping dependence of the 1D CDW system and the transport measurements across the 1D CDW transition. References [1] For a recent review, see H. W. Yeom, J. Electron Spectro. and Rel. Phenom., 114-116, 283 (2001). [2] H.W. Yeom et al., Phys. Rev. Lett. 82, 4898 (1999); C. Kumpf et al, Phys. Rev. Lett. 85, 4916 (2001); H.W. Yeom et al., submitted; G. Le Lay et al., submitted; J.-H. Cho et al

  3. Effects of vanadium- and iron-doping on crystal morphology and electrochemical properties of 1D nanostructured manganese oxides

    NASA Astrophysics Data System (ADS)

    Yoo, Ha Na; Park, Dae Hoon; Hwang, Seong-Ju

    One-dimensional (1D) nanostructures of vanadium- and iron-doped manganese oxides, Mn 1- xM xO 2 (M = V and Fe), are synthesized via one-pot hydrothermal reactions. The results of X-ray diffraction studies and electron microscopic analyses demonstrate that all the present 1D nanostructured materials possess α-MnO 2-type structure. While the vanadium dopants produce 1D nanorods with a smaller aspect ratio of ∼3-5, iron dopants produce 1D nanowires with a high aspect ratio of >20. X-ray absorption spectroscopy clearly shows that the dopant vanadium ions are stabilized in tetravalent oxidation state with distorted octahedral symmetry, while the iron ions are stabilized in trivalent oxidation state with regular octahedral symmetry. Significant local structural distortion and size mismatch of dopant vanadium ions are responsible for the low aspect ratio of the vanadium-doped nanorods through the less effective growth of a 1D nanostructure. According to electrochemical measurements, doping with Fe and V can improve the electrode performance of 1D nanostructured manganate and such a positive effect is much more prominent for the iron dopant. The present study clearly indicates that doping with Fe and V provides an effective way of tailoring the crystal dimension and electrochemical properties of 1D nanostructured manganese oxides.

  4. Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.

    PubMed

    Passoni, Luca; Ghods, Farbod; Docampo, Pablo; Abrusci, Agnese; Martí-Rujas, Javier; Ghidelli, Matteo; Divitini, Giorgio; Ducati, Caterina; Binda, Maddalena; Guarnera, Simone; Li Bassi, Andrea; Casari, Carlo Spartaco; Snaith, Henry J; Petrozza, Annamaria; Di Fonzo, Fabio

    2013-11-26

    In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.

  5. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures

    SciTech Connect

    Dukovic, Gordana; Merkle, Maxwell G.; Nelson, James H.; Hughes, Steven M.; Alivisatos, A. Paul

    2008-08-06

    colloidal CdS and CdSe/CdS core/shell nanocrystals. Among the II-VI semiconductors, CdS is of particular interest because it has the correct band alignment for water photolysis[2] and has been demonstrated to be photocatalytically active.[11-16] We have found that the photoexcitation of CdS and CdSe/CdS in the presence of an organometallic Pt precursor leads to deposition of Pt nanoparticles on the semiconductor surface. Stark differences are observed in the Pt nanoparticle location on the two substrates, and the photodeposition can be completely inhibited by the modification of the semiconductor surface. Our results suggest that tuning of the semiconductor band structure, spatial organization and surface chemistry should be crucial in the design of photocatalytic nanostructures.

  6. Synthetic strategy of porous ZnO and CdS nanostructures doped ferroelectric liquid crystal and its optical behavior

    NASA Astrophysics Data System (ADS)

    Pal, Kaushik; Maiti, Uday Narayan; Majumder, Tapas Pal; Debnath, Subhas Chandra; Bennis, Noureddine; Otón, Jose Manuel

    2013-03-01

    A simple and scalable chemical approach has been proposed for the generation of 1-dimensional nanostructures of two most important inorganic materials such as zinc oxide and cadmium sulfide. By controlling the growth habit of the nanostructures with manipulated reaction conditions, the diameter and uniformity of the nanowires/nanorods were tailored. We studied extensively optical behavior and structural growth of CdS NWs and ZnO NRs doped ferroelectric liquid crystal Felix-017/100. Due to doping band gap has been changed and several blue shifts occurred in photoluminescence spectra because of nanoconfinement effect and mobility of charges.

  7. Wavelength modulated SERS hot spot distribution in 1D nanostructures on metal film

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Zeng, Xiping; Liu, Ting; Zhang, Xuemei; Wei, Hua; Huang, Yingzhou; Liu, Anping; Wang, Shuxia; Wen, Weijia

    2016-10-01

    Surface plasmons confining strong electromagnetic fields near metal surfaces, well-known as hot spots, provide an extremely efficient platform for surface-enhanced Raman scattering (SERS). In this work, SERS spectra of probing molecules in a silver particle-wire 1D nanostructure on a thin gold film are investigated. The Raman features of SERS spectra collected at the particle-wire joints exhibit an obvious wavelength dependence phenomenon. This result is confirmed electromagnetic field simulation, revealing that hot spot distribution is sensitively influenced by the wavelength of incident light at the joints. Further studies indicate this wavelength dependence of hot spot distribution is immune to influence from the geometric shape of the particle or the angle between wire and particle, which improves fabrication tolerance. This technology may have promising applications in surface plasmon related fields, such as ultrasensors, solar energy and selective surface catalysis.

  8. Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures.

    PubMed

    Yu, Yiling; Cao, Linyou

    2012-06-18

    We present an intuitive, simple theoretical model, coupled leaky mode theory (CLMT), to analyze the light absorption of 2D, 1D, and 0D semiconductor nanostructures. This model correlates the light absorption of nanostructures to the optical coupling between incident light and leaky modes of the nanostructure. Unlike conventional methods such as Mie theory that requests specific physical features of nanostructures to evaluate the absorption, the CLMT model provides an unprecedented capability to analyze the absorption using eigen values of the leaky modes. Because the eigenvalue shows very mild dependence on the physical features of nanostructures, we can generally apply one set of eigenvalues calculated using a real, constant refractive index to calculations for the absorption of various nanostructures with different sizes, different materials, and wavelength-dependent complex refractive index. This CLMT model is general, simple, yet reasonably accurate, and offers new intuitive physical insights that the light absorption of nanostructures is governed by the coupling efficiency between incident light and leaky modes of the structure.

  9. Switching of ferroelectric liquid crystal doped with cetyltrimethylammonium bromide-assisted CdS nanostructures

    NASA Astrophysics Data System (ADS)

    Pal, Kaushik; Narayan Maiti, Uday; Pal Majumder, Tapas; Debnath, Subhas Chandra; Ghosh, Sharmistha; Roy, Subir Kumar; Otón, José Manuel

    2013-03-01

    Large scale high yield cadmium sulfide (CdS) nanowires with uniform diameter were synthesized using a rapid and simple solvo-chemical and hydrothermal route assisted by the surfactant cetyltrimethylammonium bromide (CTAB). Unique CdS nanowires of different morphologies could be selectively produced by only varying the concentration of CTAB in the reaction system with cadmium acetate, sulfur powder and ethylenediamine. We obtained CdS nanowires with diameters of 64-65 nm and lengths of up to several micrometers. A comparative study of the optical properties of ferroelectric liquid crystal (FLC) Felix-017/100 doped with 1% of CdS nanowires was performed. Response times of the order of from 160 to 180 μs, rotational viscosities of the order of from 5000 to 3000 mN s m-2 and polarizations of the order of from 10 to 70 nC cm-2 were measured. We also observed an anti-ferroelectric to ferroelectric transition for CdS doped FLC instead of the ferroelectric to paraelectric transition for pure FLC.

  10. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes.

    PubMed

    Wang, Hao; Wang, Baoyuan; Yu, Jichao; Hu, Yunxia; Xia, Chen; Zhang, Jun; Liu, Rong

    2015-03-23

    The single-crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface area of TiO2 nanorod arrays, the 1D nanorods/3D nanotubes sample was synthesized using a facile two-step hydrothermal process involving hydrothermal growth 1D/3D nanorods and followed by post-etching treatment. In such bi-layer structure, the oriented TiO2 nanorods layer could provide direct pathway for fast electron transportation, and the 3D nanotubes layer offers a higher surface area for dye loading, therefore, the 1D nanorods/3D nanotubes photoanode exhibited faster electron transport and higher surface area than either 1D or 3D nanostructures alone, and an highest efficiency of 7.68% was achieved for the DSSCs based on 1D nanorods/3D nanotubes photoanode with further TiCl4 treatment.

  11. Fabrication of ZnO nanostructures sensitized with CdS quantum dots for photovoltaic application using a convenient solution method

    SciTech Connect

    Liu, Huan; Zhang, Gengmin; Yin, Jianbo; Liang, Jia; Sun, Wentao; Shen, Ziyong

    2015-01-15

    Zinc oxide (ZnO) nanostructures sensitized with cadmium sulfide quantum dots (CdS QDs) were fabricated using a simple and inexpensive solution method. ZnO nanostructures, in the form of either nanocones or nanorods, were first grown directly from fluorine-doped tin oxide (FTO) substrates in aqueous solutions of zinc nitrate (Zn(NO{sub 3}){sub 2}) and hexamethylenetetramine (HMTA, C{sub 6}H{sub 12}N{sub 4}) under external voltages. Then, CdS QDs were attached to these ZnO nanostructures via reactions in the mixed aqueous solutions of cadmium nitrate (Cd(NO{sub 3}){sub 2}) and thioacetamide (C{sub 2}H{sub 5}NS). Photovoltaic responses were obtained from the quantum dot sensitized solar cells (QDSSCs) in which these CdS QD-covered ZnO nanostructures were employed as the photoanodes. The morphologies of the ZnO nanostructures, which could be effectively modulated via the substrate location in the solutions during the fabrication, were found to have played an important role in determining the properties of the QDSSCs.

  12. Fabrication, structural characterization and photoluminescence of Q-1D semiconductor ZnS hierarchical nanostructures.

    PubMed

    Zhang, Jun; Yang, Yongdong; Jiang, Feihong; Li, Jianping; Xu, Baolong; Wang, Xichang; Wang, Shumei

    2006-05-28

    Quasi-one-dimensional semiconductor ZnS hierarchical nanostructures have been fabricated by thermal evaporation of a mixture of ZnS nanopowders and Sn powders. Sn nanoparticles are located at or close to the tips of the nanowires (or nanoneedles) and served as the catalyst for quasi-one-dimensional ZnS nanostructure growth by a vapour-liquid-solid mechanism. The morphology and microstructure of the ZnS hierarchical nanostructures were measured by scanning electron microscopy and high-resolution transmission electron microscopy. The results show that a large number of ZnS nanoneedles were formed on the outer shells of a long and straight ZnS axial nanowire. The ZnS axial nanowires grow along the [001] direction, and ZnS nanoneedles are aligned over the surface of the ZnS nanowire in the radial direction. The room temperature photoluminescence spectrum exhibits a UV weak emission centred at 337 nm and one blue emission centred at 436 nm from the as-synthesized single-crystalline semiconductor ZnS hierarchical nanostructures. PMID:21727526

  13. Doped ZnO 1D nanostructures: synthesis, properties, and photodetector application.

    PubMed

    Hsu, Cheng-Liang; Chang, Shoou-Jinn

    2014-11-01

    In the past decades, the doping of ZnO one-dimensional nanostructures has attracted a great deal of attention due to the variety of possible morphologies, large surface-to-volume ratios, simple and low cost processing, and excellent physical properties for fabricating high-performance electronic, magnetic, and optoelectronic devices. This article mainly concentrates on recent advances regarding the doping of ZnO one-dimensional nanostructures, including a brief overview of the vapor phase transport method and hydrothermal method, as well as the fabrication process for photodetectors. The dopant elements include B, Al, Ga, In, N, P, As, Sb, Ag, Cu, Ti, Na, K, Li, La, C, F, Cl, H, Mg, Mn, S, and Sn. The various dopants which act as acceptors or donors to realize either p-type or n-type are discussed. Doping to alter optical properties is also considered. Lastly, the perspectives and future research outlook of doped ZnO nanostructures are summarized.

  14. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    PubMed Central

    Jung, Sung Mi; Jung, Hyun Young; Dresselhaus, Mildred S.; Jung, Yung Joon; Kong, Jing

    2012-01-01

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology to enable aerogel production with a wide range of materials. The method is based on the assembly of anisotropic nano-objects (one-dimensional (1D) nanotubes, nanowires, or two-dimensional (2D) nanosheets) into a cross-linking network from their colloidal suspensions at the transition from the semi-dilute to the isotropic concentrated regime. The resultant aerogels have highly porous and ultrafine three-dimensional (3D) networks consisting of 1D (Ag, Si, MnO2, single-walled carbon nanotubes (SWNTs)) and 2D materials (MoS2, graphene, h-BN) with high surface areas, low densities, and high electrical conductivities. This method opens up a facile route for aerogel production with a wide variety of materials and tremendous opportunities for bio-scaffold, energy storage, thermoelectric, catalysis, and hydrogen storage applications. PMID:23152940

  15. A facile route for 3D aerogels from nanostructured 1D and 2D materials.

    PubMed

    Jung, Sung Mi; Jung, Hyun Young; Dresselhaus, Mildred S; Jung, Yung Joon; Kong, Jing

    2012-01-01

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology to enable aerogel production with a wide range of materials. The method is based on the assembly of anisotropic nano-objects (one-dimensional (1D) nanotubes, nanowires, or two-dimensional (2D) nanosheets) into a cross-linking network from their colloidal suspensions at the transition from the semi-dilute to the isotropic concentrated regime. The resultant aerogels have highly porous and ultrafine three-dimensional (3D) networks consisting of 1D (Ag, Si, MnO(2), single-walled carbon nanotubes (SWNTs)) and 2D materials (MoS(2), graphene, h-BN) with high surface areas, low densities, and high electrical conductivities. This method opens up a facile route for aerogel production with a wide variety of materials and tremendous opportunities for bio-scaffold, energy storage, thermoelectric, catalysis, and hydrogen storage applications.

  16. Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D

    NASA Astrophysics Data System (ADS)

    Lin, Qianglu

    Near infrared emitting semiconductors have been used widely in industry especially in solar-cell fabrications. The efficiency of single junction solar-cell can reach the Shockley-Queisser limit by using optimum band gap material such as silicon and cadmium telluride. The theoretical efficiency can be further enhanced through carrier multiplication, in which a high energy photon is absorbed and more than one electron-hole pair can be generated, reaching more than 100% quantum efficiency in the high energy region of sunlight. The realization of more than unity external quantum efficiency in lead selenide quantum dots solar cell has motivated vast investigation on lowering the carrier multiplication threshold and further improving the efficiency. This dissertation focuses on synthesis of lead chalcogenide nanostructures for their optical spectroscopy studies. PbSe/CdSe core/shell quantum dots were synthesized by cation exchange to obtain thick shells (up to 14 monolayers) for studies of visible and near infrared dual band emissions and carrier multiplication efficiency. By examining the reaction mechanism, a thermodynamic and a kinetic model are introduced to explain the vacancy driven cation exchange. As indicated by the effective mass model, PbSe/CdSe core/shell quantum dots has quasi-type-II band alignment, possessing electron delocalized through the entire quantum dot and hole localized in the core, which breaks down the symmetry of energy levels in the conduction and valence band, leading to hot-hole-assisted efficient multi-exciton generation and a lower carrier multiplication threshold to the theoretical value. For further investigation of carrier multiplication study, PbTe, possessing the highest efficiency among lead chalcogenides due to slow intraband cooling, is synthesized in one-dimensional and two-dimensional nanostructures. By using dodecanethiol as the surfactant, PbTe NRs can be prepared with high uniformity in width and resulted in fine quantum

  17. Synthesis of 1D Silica Nanostructures with Controllable Sizes Based on Short Anionic Peptide Self-Assembly.

    PubMed

    Wang, Shengjie; Cai, Qingwei; Du, Mingxuan; Xue, Junyi; Xu, Hai

    2015-09-10

    Artificial synthesis of silica under benign conditions is usually achieved by using cationic organic matrices as templates while the anionic analogues have not received enough consideration, albeit they are also functioning in biosilica formation. In this work, we report the design and self-assembly of an anionic peptide amphiphile (I3E) and the use of its self-assemblies as templates to synthesize 1D silica nanostructures with tunable sizes. We show that short I3E readily formed long nanofibrils in aqueous solution via a hierarchical self-assembly process. By using APTES and TEOS as silica precursors, we found that the I3E nanofibrils templated the production of silica nanotubes with a wide size distribution, in which the silica size regulation was achieved by tuning the interactions among the peptide template and silicon species. These results clearly illustrate a facile method for generating silica nanomaterials based on anionic matrices.

  18. Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures.

    PubMed

    Jurado, Rocío; Castello, Fabio; Bondia, Patricia; Casado, Santiago; Flors, Cristina; Cuesta, Rafael; Domínguez-Vera, José M; Orte, Angel; Gálvez, Natividad

    2016-05-01

    Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a heating process. Depending on the experimental conditions, fibers with different morphologies and sizes are obtained. The wire-like protein structure is rich in functional groups and allows chemical functionalization with diverse quantum dots (QD), as well as with different Alexa Fluor (AF) dyes, leading to hybrid fluorescent fibers with variable emission wavelengths, from green to near infrared, depending on the QD and AFs coupled. For fibers containing the pair AF488 and AF647, efficient fluorescence energy transfer from the covalently coupled donor (AF488) to acceptor tags (AF647) takes place. Apoferritin fibers are proposed here as a new promising template for obtaining hybrid functional materials. PMID:27103107

  19. Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Jurado, Rocío; Castello, Fabio; Bondia, Patricia; Casado, Santiago; Flors, Cristina; Cuesta, Rafael; Domínguez-Vera, José M.; Orte, Angel; Gálvez, Natividad

    2016-05-01

    Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a heating process. Depending on the experimental conditions, fibers with different morphologies and sizes are obtained. The wire-like protein structure is rich in functional groups and allows chemical functionalization with diverse quantum dots (QD), as well as with different Alexa Fluor (AF) dyes, leading to hybrid fluorescent fibers with variable emission wavelengths, from green to near infrared, depending on the QD and AFs coupled. For fibers containing the pair AF488 and AF647, efficient fluorescence energy transfer from the covalently coupled donor (AF488) to acceptor tags (AF647) takes place. Apoferritin fibers are proposed here as a new promising template for obtaining hybrid functional materials.Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a

  20. Preparation, Characterization and Photocatalytic Properties of CdS and Cd1-xZnxS nanostructures

    NASA Astrophysics Data System (ADS)

    Nirmal, R. Marx; Paulraj, P.; Pandian, K.; Sivakumar, K.

    2011-10-01

    Synthesis and photocatalytic properties of CdS and CdxZn1-xS nanoparticles from thermal decomposition of metal complexes in presence of long chain amines are presented. Thermal decomposition can be achieved by conventional heating process. The prepared samples were characterized by powder x-ray diffraction and UV-Visible spectroscopy. The absorption response in the UV region has been applied for the photocatalytic degradation of Rhodamine-B dye. The photocatalytic degradation reactions were performed on CdS and CdxZn1-xS nanoparticles under UV light irradiation. CdxZn1-xS nanoparticles show better photocatalytic degradation activity compared to CdS nanoparticles. Our studies prove that with the appropriate particle size, CdxZn1-xS can efficiently decompose organic dyes under UV light irradiation with 415 nm.

  1. CdS quantum dots sensitized Cu doped ZnO nanostructured thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Poornima, K.; Gopala Krishnan, K.; Lalitha, B.; Raja, M.

    2015-07-01

    ZnO nanorods and Cu doped ZnO nanorods thin films have been prepared by simple hydrothermal method. CdS quantum dots are sensitized with Cu doped ZnO nanorod thin films using successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction study reveals that ZnO nanorods, and CdS quantum dot sensitized Cu doped ZnO nanorods exhibit hexagonal structure. The scanning electron microscope image shows the presence of ZnO nanorods. The average diameter and length of the aligned nanorod is 300 nm and 1.5 μm respectively. The absorption spectra shows that the absorption edge of CdS quantum dot sensitized ZnO nanorod thin film is shifted toward longer wavelength region when compared to the absorption edge of ZnO nanorods film. The conversion efficiency of the CdS quantum dot sensitized Cu doped ZnO nanorod thin film solar cell is 1.5%.

  2. Tuning of ZnO 1D nanostructures by atomic layer deposition and electrospinning for optical gas sensor applications

    NASA Astrophysics Data System (ADS)

    Viter, Roman; Abou Chaaya, Adib; Iatsunskyi, Igor; Nowaczyk, Grzegorz; Kovalevskis, Kristaps; Erts, Donats; Miele, Philippe; Smyntyna, Valentyn; Bechelany, Mikhael

    2015-03-01

    We explored for the first time the ability of a three-dimensional polyacrylonitrile/ZnO material—prepared by a combination of electrospinning and atomic layer deposition (ALD) as a new material with a large surface area—to enhance the performance of optical sensors for volatile organic compound (VOC) detection. The photoluminescence (PL) peak intensity of these one-dimensional nanostructures has been enhanced by a factor of 2000 compared to a flat Si substrate. In addition, a phase transition of the ZnO ALD coating from amorphous to crystalline has been observed due to the properties of a polyacrylonitrile nanofiber template: surface strain, roughness, and an increased number of nucleation sites in comparison with a flat Si substrate. The greatly improved PL performance of these nanostructured surfaces could produce exciting materials for implantation in VOC optical sensor applications.

  3. PVP Assisted Shape-Controlled Synthesis of Self-Assembled 1D ZnO and 3D CuO Nanostructures

    NASA Astrophysics Data System (ADS)

    Haque, Fozia Z.; Parra, Mohammad Ramzan; Siddiqui, Hafsa; Singh, Neha; Singh, Nitu; Pandey, Padmini; Mishra, K. M.

    2016-03-01

    Self-assembled one-dimensional (1D) zinc oxide (ZnO) rods and three-dimensional (3D) cupric oxide (CuO) cubes like nanostructures with a mean crystallite size of approximately 33 and 32 nm were synthesized through chemical route in the presence of polyvinylpyrrolidone (PVP) under mild synthesis conditions. The technique used for the synthesis of nanoparticles seems to be an efficient, inexpensive and easy method. X-Ray diffraction patterns confirmed well crystallinity and phase purity of the as prepared samples, followed by the compositional investigation using Fourier Transform Infrared (FT-IR) spectroscopy. The formation of ZnO nanorods and CuO nanocubes like structures were through Scanning Electron Microscopy (SEM) images. The mechanism and the formation factors of the self-assembly were discussed in detail. It was clearly observed from results that the concentration of precursors and PVP were important factors in the synthesis of self-assembly ZnO and CuO nanostructures. These self-assembly nanostructures maybe used as novel materials in various potential applications.

  4. Continuous fabrication of scalable 2-dimensional (2D) micro- and nanostructures by sequential 1D mechanical patterning processes.

    PubMed

    Ok, Jong G; Panday, Ashwin; Lee, Taehwa; Jay Guo, L

    2014-12-21

    We present a versatile and simple methodology for continuous and scalable 2D micro/nano-structure fabrication via sequential 1D patterning strokes enabled by dynamic nano-inscribing (DNI) and vibrational indentation patterning (VIP) as well as a 'single-stroke' 2D patterning using a DNI tool in VIP. PMID:25363145

  5. Solvothermal Process Assisted Sensitization of 1D Anodized TiO2 Nanotubes with 0D Cadmium Chalcogenides (CdTe, CdS) for Efficient Solar to Clean Energy Generation

    NASA Astrophysics Data System (ADS)

    Sarker, Swagotom

    The creation of an n-n heterojunction between TiO2 nanotubes (T_NT) and CdTe nanocrystals (which mostly exist as p-type) is crucial for realizing the benefits of efficient directional charge transport in a photoanode of 1D/0D architecture. The presented one-pot solvothermal approach leverages temperature control to achieve linker-free spatial distribution of CdTe nanocrystals (NCs) on T_NT resulting in highly efficient optical and photoelectrochemical responses. As a result of this positive outcome, a comparative study between the solvothermal approach and the linker mediated approach was performed on water oxidation with CdS NC decorated T_NT. Solvothermally synthesized T_NT/CdS photoelectrode presents ˜600% higher value of short-circuit current density (Isc) than that of the plain T_NT (0.95 mA/cm2); in addition, it demonstrates 4.20-fold increased applied-bias-to photoconversion efficiency (ABPE) in comparison with the lone T_NT (0.77%). However, linker mediated T_NT/MPA-CdS photoelectrode exhibits relatively lower value of I sc (2.51 mA/cm2) and ABPE (1.79 %).

  6. Room temperature fabrication of 1D carbon-copper composite nanostructures directly on Cu substrate and their field emission properties

    NASA Astrophysics Data System (ADS)

    Rosmi, Mohamad Saufi; Yaakob, Yazid; Mohd Yusop, Mohd Zamri; Sharma, Subash; Zulkifli, Zurita; Supee, Aizuddin; Kalita, Golap; Tanemura, Masaki

    2016-09-01

    This paper demonstrates a carbon-copper (C-Cu) composite nanostructure directly fabricated on a copper (Cu) substrate using the Ar+ ion irradiation method at room temperature. The morphology of C-Cu composite was controlled by a simultaneous carbon supply during ion irradiation. Conical protrusions formed on the surface of the Cu substrate with the low carbon supply rate (RC), whereas high RC area prominently produced nanoneedle structures. The field electron emission (FEE) tests demonstrated significant improvement between conical protrusions and nanoneedle structures, where the emission current increase from 5.70 μ Acm-2 to 4.37 mAcm-2, while the turn-on field reduced from 5.90 to 2.00 Vμ m-1 .

  7. ZnO Hierarchical Nanostructure Photoanode in a CdS Quantum Dot-Sensitized Solar Cell

    PubMed Central

    Liu, Huan; Zhang, Gengmin; Sun, Wentao; Shen, Ziyong; Shi, Mingji

    2015-01-01

    A hierarchical array of ZnO nanocones covered with ZnO nanospikes was hydrothermally fabricated and employed as the photoanode in a CdS quantum dot-sensitized solar cell (QDSSC). This QDSSC outperformed the QDSSC based on a simple ZnO nanocone photoanode in all the four principal photovoltaic parameters. Using the hierarchical photoanode dramatically increased the short circuit current density and also slightly raised the open circuit voltage and the fill factor. As a result, the conversion efficiency of the QDSSC based on the hierarchical photoanode was more than twice that of the QDSSC based on the simple ZnO nanocone photoanode. This improvement is attributable to both the enlarged specific area of the photoanode and the reduction in the recombination of the photoexcited electrons. PMID:26379268

  8. Efficiency enhancement due to self-organization of nano-structures in Cd(S, Te) solar cell material

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2014-03-01

    CdTe is one of the most important solar cell materials. Its energy gap is 1.44 eV, which is ideal for solar cell application. So far, conversion efficiency of 18.3 percent has been realized, but it is lower than the Shockley-Queisser limit. In this paper, we propose computational materials design for enhancing conversion efficiency by using self-organization in Cd(Te, S) alloy semiconductor. Firstly, we performed cluster expansion of total energy of the Cd(Te, S) system and simulated self-organization of nano-structures in Cd(Te, S) by using Monte Carlo method. It is found that layered structure becomes stable by applying strain during the crystal growth. The electronic structure of the self-organized layered structure was calculated by using the hybrid method (HSE06) implemented in the VASP code to derive optical absorption coefficient. By using the calculated absorption coefficient the efficiency limit was derived based on the Shockley-Queisser theory. It is shown that the efficiency limit does not change so much due to the nano-structure formation. However, our calculation shows spatial separation between photo-generated electrons and holes. This might enhance the efficiency due to the suppression of recombination.

  9. CdS sensitized 3D hierarchical TiO2/ZnO heterostructure for efficient solar energy conversion

    NASA Astrophysics Data System (ADS)

    Zheng, Zhaoke; Xie, Wen; Lim, Zhi Shiuh; You, Lu; Wang, Junling

    2014-07-01

    For conventional dye or quantum dot sensitized solar cells, which are fabricated using mesoporous films, the inefficient electron transport due to defects such as grain boundaries and surface traps is a major drawback. To simultaneously increase the carrier transport efficiency as well as the surface area, optimal-assembling of hierarchical nanostructures is an attractive approach. Here, a three dimensional (3D) hierarchical heterostructure, consisting of CdS sensitized one dimensional (1D) ZnO nanorods deposited on two dimensional (2D) TiO2 (001) nanosheet, is prepared via a solution-process method. Such heterstructure exhibits significantly enhanced photoelectric and photocatalytic H2 evolution performance compared with CdS sensitized 1D ZnO nanorods/1D TiO2 nanorods photoanode, as a result of the more efficient light harvesting over the entire visible light spectrum and the effective electron transport through a highly connected 3D network.

  10. CdS sensitized 3D hierarchical TiO2/ZnO heterostructure for efficient solar energy conversion

    PubMed Central

    Zheng, Zhaoke; Xie, Wen; Lim, Zhi Shiuh; You, Lu; Wang, Junling

    2014-01-01

    For conventional dye or quantum dot sensitized solar cells, which are fabricated using mesoporous films, the inefficient electron transport due to defects such as grain boundaries and surface traps is a major drawback. To simultaneously increase the carrier transport efficiency as well as the surface area, optimal-assembling of hierarchical nanostructures is an attractive approach. Here, a three dimensional (3D) hierarchical heterostructure, consisting of CdS sensitized one dimensional (1D) ZnO nanorods deposited on two dimensional (2D) TiO2 (001) nanosheet, is prepared via a solution-process method. Such heterstructure exhibits significantly enhanced photoelectric and photocatalytic H2 evolution performance compared with CdS sensitized 1D ZnO nanorods/1D TiO2 nanorods photoanode, as a result of the more efficient light harvesting over the entire visible light spectrum and the effective electron transport through a highly connected 3D network. PMID:25030846

  11. 2D Hybrid Nanostructure of Reduced Graphene Oxide-CdS Nanosheet for Enhanced Photocatalysis.

    PubMed

    Bera, Rajesh; Kundu, Simanta; Patra, Amitava

    2015-06-24

    Graphene-based hybrid nanostructures have recently emerged as a new class of functional materials for light-energy conversion and storage. Here, we have synthesized reduced graphene oxide (RGO)-semiconductor composites to improve the efficiency of photocatalysis. Zero-dimensional CdS nanoparticles (0D), one-dimensional CdS nanorods (1D), and two-dimensional CdS nanosheets (2D) are grafted on the RGO sheet (2D) by a surface modification method using 4-aminothiophenol (4-ATP). Structural analysis confirms the attachment of CdS nanocrystals with RGO, and the strong electronic interaction is found in the case of a CdS nanosheet and RGO, which has an influence on photocatalytic properties. The degradation of dye under visible light varies with changing the dimension of nanocrystals, and the catalytic activity of the CdS NS/RGO composite is ∼4 times higher than that of CdS nanoparticle/RGO and 3.4 times higher than that of CdS nanorod/RGO composite samples. The catalytic activity of the CdS nanosheet/RGO composite is also found to be ∼2.5 times than that of pure CdS nanosheet samples. The unique 2D-2D nanoarchitecture would be effective to harvest photons from solar light and transport electrons to reaction sites with respect to other 0D-2D and 1D-2D hybrid systems. This observation can be extended to other graphene-based inorganic semiconductor composites, which can provide a valuable opportunity to explore novel hybrid materials with superior visible-light-induced catalytic activity.

  12. 1D nanostructured Na7V4(P2O7)4(PO4) as high-potential and superior-performance cathode material for sodium-ion batteries.

    PubMed

    Deng, Chao; Zhang, Sen

    2014-06-25

    Tailoring materials into nanostructure offers unprecedented opportunities in the utilization of their functional properties. High-purity Na7V4(P2O7)4(PO4) with 1D nanostructure is prepared as a cathode material for rechargeable Na-ion batteries. An efficient synthetic approach is developed by carefully controlling the crystal growth in the molten sodium phosphate. Based on the XRD, XPS, TG, and morphological characterization, a molten-salt assisted mechanism for nanoarchitecture formation is revealed. The prepared Na7V4(P2O7)4(PO4) nanorod has rectangle sides and preferential [001] growth orientation. GITT evaluation indicates that the sodium de/intercalation of Na7V4(P2O7)4(PO4) nanorod involves V(3+)/V(4+) redox reaction and Na5V(3.5+)4(P2O7)4(PO4) as intermediate phase, which results in two pairs of potential plateaus at the equilibrium potentials of 3.8713 V (V(3+)/V(3.5+)) and 3.8879 V (V(3.5+)/V(4+)), respectively. The unique nanoarchitecture of the phase-pure Na7V4(P2O7)4(PO4) facilitates its reversible sodium de/intercalation, which is beneficial to the high-rate capability and the cycling stability. The Na7V4(P2O7)4(PO4) cathode delivers 80% of the capacity (obtained at C/20) at the 10 C rate and 95% of the initial capacity after 200 cycles. Therefore, it is feasible to design and fabricate an advanced rechargeable sodium-ion battery by employment of 1D nanostructured Na7V4(P2O7)4(PO4) as the cathode material.

  13. Alkali concentration-dependent tailoring of highly controllable titanate nanostructures: From yolk-shell, hollow 3D nanospheres to 1D nanowires

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Luan, Yi; Yang, Mu; Wang, Ge; Tan, Li; Li, Jie

    2014-02-01

    We demonstrate a facile strategy to access 0D nanoparticles to 3D hierarchical structures through a hydrothermal process. The morphology of the products is alkali concentration-dependent, which was systematically investigated. As the NaOH concentration rising, morphology transformations from yolk-shell, hollow hierarchical 3D nanospheres to 1D nanowires are achieved. The crystal phase, the transformation relationship, and the formation mechanisms were studied as well. Furthermore, TiO2 with diversified morphologies was evaluated as styrene oxidation catalyst and showed excellent catalytic activities and chemical stability.

  14. Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination.

    PubMed

    Hernández, Simelys; Cauda, Valentina; Chiodoni, Angelica; Dallorto, Stefano; Sacco, Adriano; Hidalgo, Diana; Celasco, Edvige; Pirri, Candido Fabrizio

    2014-08-13

    A fast and low-cost sol-gel synthesis used to deposit a shell of TiO2 anatase onto an array of vertically aligned ZnO nanowires (NWs) is reported in this paper. The influence of the annealing atmosphere (air or N2) and of the NWs preannealing process, before TiO2 deposition, on both the physicochemical characteristics and photoelectrochemical (PEC) performance of the resulting heterostructure, was studied. The efficient application of the ZnO@TiO2 core-shells for the PEC water-splitting reaction, under simulated solar light illumination (AM 1.5G) solar light illumination in basic media, is here reported for the first time. This application has had a dual function: to enhance the photoactivity of pristine ZnO NWs and to increase the photodegradation stability, because of the protective role of the TiO2 shell. It was found that an air treatment induces a better charge separation and a lower carrier recombination, which in turn are responsible for an improvement in the PEC performance with respect to N2-treated core-shell materials. Finally, a photocurrent of 0.40 mA/cm(2) at 1.23 V versus RHE (2.2 times with respect to the pristine ZnO NWs) was obtained. This achievement can be regarded as a valuable result, considering similar nanostructured electrodes reported in the literature for this application.

  15. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  16. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz

    2015-12-22

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  17. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-05-01

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II–VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures.

  18. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates.

    PubMed

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-05-01

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures. PMID:27102681

  19. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-05-01

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures.

  20. Burning Your Own CDs.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia

    2001-01-01

    Discusses the use of CDs (Compact Disks) for backing up data as an alternative to using floppy disks and explains how to burn, or record, a CD. Topics include differences between CD-R (CD-Recordable) and CD-RW (CD-Rewritable); advantages of CD-R and CD-RW; selecting a CD burner; technology trends; and care of CDs. (LRW)

  1. Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fibers

    SciTech Connect

    Li, Haopeng; Zhu, Yihua; Cao, Huimin; Yang, Xiaoling; Li, Chunzhong

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► The TiO{sub 2}-CDs nanostructured fibers are fabricated by using APS combining the electrospinning TiO{sub 2} nanostructured fibers and CDs. ► The CD can work as a photosensitizer in the degradation of rhodamine B under visible light irradiation. ► The TiO{sub 2}-CDs nanostructured fibers exhibit enhanced photocatalytic efficiency and can be easily handled and recycled. -- Abstract: The carbon dots (CDs) are new functional carbon-aceous materials. Compared to conventional dye molecules and semiconductor quantum dots, CDs are superior in chemical inertness and low toxicity. The TiO{sub 2}-CDs nanostructured fibers were fabricated by combining the electrospinning technique and reflux method. Compared with the pure TiO{sub 2} nanostructured fibers and P25, the TiO{sub 2}-CDs nanostructured fibers exhibited enhanced photocatalytic efficiency of photodegradation of rhodamine B (RhB) under visible light irradiation. The enhanced photocatalytic activity of TiO{sub 2}-CDs nanostructured fibers could be attributed to the presence of CDs embedded in TiO{sub 2} nanostructured fibers. The CD can work as a photosensitizer in the degradation. Furthermore, the TiO{sub 2}-CDs nanostructured fibers could be easily handled and recycled due to their one-dimensional nanostructural property.

  2. Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting

    SciTech Connect

    Deng, Chonghai; Tian, Xiaobo

    2013-10-15

    Graphical abstract: - Highlights: • Three kinds of CdS nanostructures have been controllably synthesized. • Ethanediamine acts as a phase and morphology controlling reagent. • Three CdS nanostructures display high visible light photocatalytic activities. • Cubic CdS-3 shows superior photocatalytic activity to the other hexagonal CdS. • The growth processes for fabrication of CdS nanocrystals are also discussed. - Abstract: Three kinds of CdS nanostructures, that is, hexagonal nanospheres (CdS-1), hierarchical caterpillar-fungus-like hexagonal nanorods (CdS-2) and hierarchical cubic microspheres (CdS-3), were controllably synthesized by a facile and one-pot microwave-assisted aqueous chemical method using ethanediamine as a phase and morphology controlling reagent. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra. The results show that CdS-1 is mainly composed of monodispersed hexagonal nanospheres with average diameters of about 100 nm; hexagonal CdS-2 has lengths in the range of 600–800 nm and diameters of 40–60 nm, assembled by nanoparticles about 20 nm in diameter; and CdS-3 is pure cubic microspheres with diameters in the range of 0.8–1.3 μm, aggregated by tiny nanograins with size of 5.8 nm. The band gap energies of CdS products were calculated to be 2.30, 2.31 and 2.24 eV observed from UV–vis DRS for CdS-1, CdS-2 and CdS-3, respectively. PL spectra of CdS samples showed that sphalerite CdS-3 possesses a very weak fluorescence, while wurtzite CdS-2 has a strongest green near-band edge emission (NBE) at 550 nm. The visible light photodegradation of methylene blue and rhodamine B in the presence of CdS photocatalysts illustrates that all of them display high photocatalytic activities. Significantly, the cubic CdS-3 exhibits more excellent photocatalytic

  3. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.

    PubMed

    Arabzadeh, Abbas; Salimi, Abdollah

    2016-10-01

    In this study, one-dimensional CdS nanowires@TiO2 nanoparticles core-shell structures (1D CdS NWs@TiO2 NPs) were synthesized by a facile wet chemical-solvothermal method. The different aspects of the properties of CdS NWs@TiO2 NPs were surveyed by using a comprehensive range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, scanning electron microscopy (SEM), fluorescence spectroscopy, energy dispersive X-ray spectroscopy (EDX), Cyclic Voltammetry (CV) and amperometry. The as-prepared nanostructure was applied as an effective photocatalyst for degradation of methyl orange (MO), methylene blue (MB) and rhodamine B (Rh B) under visible and sunlight irradiation. The results indicated significantly enhanced photocatalytic activity of CdS NWs@TiO2 NPs for degradation of MO, MB and Rh B compared to CdS NWs. The enhanced photocatalytic activity could be attributed to the enhanced sunlight absorbance and the efficient charge separation of the formed heterostructure between CdS NWs and TiO2. The results showed that MO, Rh B and MB were almost completely degraded after 2, 2 and 3min of exposure to sunlight, respectively; while under visible light irradiation (3W blue LED lamp) the dyes were decomposed with less half degradation rate. The catalytic activity was retained even after three degradation cycles of organic dyes, demonstrating that the proposed nanocomposite can be effectively used as efficient photocatalyst for removal of environmental pollutions caused by organic dyes under sunlight irradiation and it could be an important addition to the field of wastewater treatment. We hope the present study may open a new window of such 1-D semiconductor nanocomposites to be used as visible light photocatalysts in the promising field of organic dyes degradation. PMID:27348482

  4. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.

    PubMed

    Arabzadeh, Abbas; Salimi, Abdollah

    2016-10-01

    In this study, one-dimensional CdS nanowires@TiO2 nanoparticles core-shell structures (1D CdS NWs@TiO2 NPs) were synthesized by a facile wet chemical-solvothermal method. The different aspects of the properties of CdS NWs@TiO2 NPs were surveyed by using a comprehensive range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, scanning electron microscopy (SEM), fluorescence spectroscopy, energy dispersive X-ray spectroscopy (EDX), Cyclic Voltammetry (CV) and amperometry. The as-prepared nanostructure was applied as an effective photocatalyst for degradation of methyl orange (MO), methylene blue (MB) and rhodamine B (Rh B) under visible and sunlight irradiation. The results indicated significantly enhanced photocatalytic activity of CdS NWs@TiO2 NPs for degradation of MO, MB and Rh B compared to CdS NWs. The enhanced photocatalytic activity could be attributed to the enhanced sunlight absorbance and the efficient charge separation of the formed heterostructure between CdS NWs and TiO2. The results showed that MO, Rh B and MB were almost completely degraded after 2, 2 and 3min of exposure to sunlight, respectively; while under visible light irradiation (3W blue LED lamp) the dyes were decomposed with less half degradation rate. The catalytic activity was retained even after three degradation cycles of organic dyes, demonstrating that the proposed nanocomposite can be effectively used as efficient photocatalyst for removal of environmental pollutions caused by organic dyes under sunlight irradiation and it could be an important addition to the field of wastewater treatment. We hope the present study may open a new window of such 1-D semiconductor nanocomposites to be used as visible light photocatalysts in the promising field of organic dyes degradation.

  5. Current–Voltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope

    PubMed Central

    2009-01-01

    In this paper, we focus on current–voltage (I–V) characteristics in several kinds of quasi-one-dimensional (quasi-1D) nanofibers to investigate their electronic transport properties covering a wide temperature range from 300 down to 2 K. Since the complex structures composed of ordered conductive regions in series with disordered barriers in conducting polymer nanotubes/wires and CdS nanowires, all measured nonlinearI–Vcharacteristics show temperature and field-dependent features and are well fitted to the extended fluctuation-induced tunneling and thermal excitation model (Kaiser expression). However, we find that there are surprisingly similar deviations emerged between theI–Vdata and fitting curves at the low bias voltages and low temperatures, which can be possibly ascribed to the electron–electron interaction in such quasi-1D systems with inhomogeneous nanostructures.

  6. A Second Life for CDs

    ERIC Educational Resources Information Center

    Snoderly, Kathleen

    2011-01-01

    Cutting a few CDs apart with scissors, the author found that the process created somewhat brittle shards. As a result, she started to paint a few with acrylic, finding to her amazement that the paint gave the CDs a leathery, more manageable texture. Upon further experimentation, she found that if the CDs are painted somewhat translucently in…

  7. Ultrasonic/surfactant assisted of CdS nano hollow sphere synthesis and characterization

    SciTech Connect

    Rafati, Amir Abbas; Borujeni, Ahmad Reza Afraz; Najafi, Mojgan; Bagheri, Ahmad

    2011-01-15

    CdS hollow nanospheres with diameters ranging from 40 to 150 nm have been synthesized by a surfactant-assisted sonochemical route. The successful vesicle templating indicates that the outer leaflet of the bilayer is the receptive surface in the controlled growth of CdS nanoparticles which provide the unique reactor for the nucleation and mineralization growth of CdS nanoparticles. The CdS nanostructures obtained were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. Structural characterization of hollow CdS nanospheres indicates that these products packed with square subunits having sizes between 5 and 7 nm in diameter. The formation of the hollow nanostructure was explained by a vesicle template mechanism, in which sonication and surfactant play important roles. The band-edge emission and surface luminescence of the CdS nanoparticles were observed. -Research Highlights: {yields} CdS hollow nanospheres with diameters of 40-150 nm were synthesized. {yields} Nanoparticles were characterized by UV/Vis and photoluminescence. {yields} Nanospheres are composed of smaller nanocrystals with the average size of 6.8 nm. {yields} The band gap energy of the CdS nanoparticles is higher than its bulk value.

  8. Preparation and Structural Analysis of CdS Nanoparticle Embedded Polyurethane Nanocomposites

    SciTech Connect

    Indolia, Ajay Pal; Kumar, Purushottam; Gaur, M. S.

    2011-07-15

    Polymer nanocomposite samples of different weight ratio of CdS were developed by solution embedding of nanoparticles in polyurethane. XRD and Scanning Electron Microscopy (SEM) were used to understand the structural properties of polymer nanocomposite samples. SEM micrograph demonstrates the dispersion of CdS nanoparticles in polymer matrix. It has been observed that crystallinity of PU decreases with increase in concentration of CdS nanoparticles. The XRD data show the characteristic peaks of nanoparticles (i.e.CdS) in nanocomposite samples, which confirm the nanostructure formation in polymer matrix.

  9. CdS nanoparticles sensitization of Al-doped ZnO nanorod array thin film with hydrogen treatment as an ITO/FTO-free photoanode for solar water splitting

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (AZO) nanorod array thin film with hydrogen treatment possesses the functions of transparent conducting oxide thin film and 1-D nanostructured semiconductor simultaneously. To enhance the absorption in the visible light region, it is sensitized by cadmium sulfide (CdS) nanoparticles which efficiently increase the absorption around 460 nm. The CdS nanoparticles-sensitized AZO nanorod array thin film with hydrogen treatment exhibits significantly improved photoelectrochemical property. After further heat treatment, a maximum short current density of 5.03 mA cm−2 is obtained under illumination. They not only are much higher than those without CdS nanoparticles sensitization and those without Al-doping and/or hydrogen treatment, but also comparable and even slightly superior to some earlier works for the CdS-sensitized zinc oxide nanorod array thin films with indium tin oxide (ITO) or fluorine-doped tin oxide (FTO) as substrates. This demonstrated successfully that the AZO nanorod array thin film with hydrogen treatment is quite suitable as an ITO/FTO-free photoanode and has great potentials in solar water splitting after sensitization by quantum dots capable of visible light absorption. PMID:23098050

  10. Combustion Synthesis of Nanostructures

    NASA Astrophysics Data System (ADS)

    Huczko, A.; Lange, H.; Chojecki, G.; Cudziłło, S.; Zhu, Y. Q.; Walton, D. R. M.; Kroto, H. W.; Presz, A.; Diduszko, R.

    2002-10-01

    Novel carbon and inorganic 1D nanostructures were prepared by combustion of metal-polytetrafluoroethylene (PTFE) systems in a calorimetric bomb. The high carbon yield from silicon-containing PTFE starting materials is due to the production and volatility of SiF4.

  11. Plasma as a tool for growth of 1D and 2D nanomaterials and their conversions

    NASA Astrophysics Data System (ADS)

    Cvelbar, Uros

    2015-09-01

    The growth of 1D and 2D nanostructures in low pressure oxygen plasma is presented with the special stress on metal-oxide nanowires and their deterministic growth mechanisms. Since the resulting nanostructures not always have required properties for applications their modifications are required. Therefore their conversions into different oxides or sulphites/nitrides are required with either molecules, atoms, electrons or photons.

  12. Broad spectral response photodetector based on individual tin-doped CdS nanowire

    SciTech Connect

    Zhou, Weichang E-mail: dstang@hunnu.edu.cn; Peng, Yuehua; Yin, Yanling; Zhou, Yong; Zhang, Yong; Tang, Dongsheng E-mail: dstang@hunnu.edu.cn

    2014-12-15

    High purity and tin-doped 1D CdS micro/nano-structures were synthesized by a convenient thermal evaporation method. SEM, EDS, XRD and TEM were used to examine the morphology, composition, phase structure and crystallinity of as-prepared samples. Raman spectrum was used to confirm tin doped into CdS effectively. The effect of impurity on the photoresponse properties of photodetectors made from these as-prepared pure and tin-doped CdS micro/nano-structures under excitation of light with different wavelength was investigated. Various photoconductive parameters such as responsivity, external quantum efficiency, response time and stability were analyzed to evaluate the advantage of doped nanowires and the feasibility for photodetector application. Comparison with pure CdS nanobelt, the tin-doped CdS nanowires response to broader spectral range while keep the excellect photoconductive parameters. Both trapped state induced by tin impurity and optical whispering gallery mode microcavity effect in the doped CdS nanowires contribute to the broader spectral response. The micro-photoluminescence was used to confirm the whispering gallery mode effect and deep trapped state in the doped CdS nanowires.

  13. Broad spectral response photodetector based on individual tin-doped CdS nanowire

    NASA Astrophysics Data System (ADS)

    Zhou, Weichang; Peng, Yuehua; Yin, Yanling; Zhou, Yong; Zhang, Yong; Tang, Dongsheng

    2014-12-01

    High purity and tin-doped 1D CdS micro/nano-structures were synthesized by a convenient thermal evaporation method. SEM, EDS, XRD and TEM were used to examine the morphology, composition, phase structure and crystallinity of as-prepared samples. Raman spectrum was used to confirm tin doped into CdS effectively. The effect of impurity on the photoresponse properties of photodetectors made from these as-prepared pure and tin-doped CdS micro/nano-structures under excitation of light with different wavelength was investigated. Various photoconductive parameters such as responsivity, external quantum efficiency, response time and stability were analyzed to evaluate the advantage of doped nanowires and the feasibility for photodetector application. Comparison with pure CdS nanobelt, the tin-doped CdS nanowires response to broader spectral range while keep the excellect photoconductive parameters. Both trapped state induced by tin impurity and optical whispering gallery mode microcavity effect in the doped CdS nanowires contribute to the broader spectral response. The micro-photoluminescence was used to confirm the whispering gallery mode effect and deep trapped state in the doped CdS nanowires.

  14. Phase transfer of CdS nanocrystals mediated by heptamine β-cyclodextrin.

    PubMed

    Depalo, Nicoletta; Comparelli, Roberto; Huskens, Jurriaan; Ludden, Manon J W; Perl, Andras; Agostiano, Angela; Striccoli, Marinella; Curri, M Lucia

    2012-06-12

    A fundamental and systematic study on the fabrication of a supramolecularly assembled nanostructure of an organic ligand-capped CdS nanocrystal (NC) and multiple heptamine β-cyclodextrin ((NH(2))(7)βCD) molecules in aqueous solution has been here reported. The functionalization process of presynthesized hydrophobic CdS NCs by means of (NH(2))(7)βCD has been extensively investigated by using different spectroscopic and structural techniques, as a function of different experimental parameters, such as the composition and the concentration of CD, the concentration of CdS NCs, the nature of the NC surface capping ligand (oleic acid and octylamine), and the organic solvent. The formation of a complex based on the direct coordination of the (NH(2))(7)βCD amine groups at the NC surface has been demonstrated and found responsible for the CdS NC phase transfer process. The amine functional group in (NH(2))(7)βCD and the appropriate combination of pristine capping agent coordinating the NC surface and a suitable solvent have been found decisive for the success of the CdS NC phase transfer process. Furthermore, a layer-by-layer assembly experiment has indicated that the obtained (NH(2))(7)βCD functionalized CdS NCs are still able to perform the host-guest chemistry. Thus, they offer a model of a nanoparticle-based material with molecular receptors, useful for bio applications.

  15. One‐Dimensional Ferroelectric Nanostructures: Synthesis, Properties, and Applications

    PubMed Central

    Liang, Longyue; Kang, Xueliang

    2016-01-01

    One‐dimensional (1D) ferroelectric nanostructures, such as nanowires, nanorods, nanotubes, nanobelts, and nanofibers, have been studied with increasing intensity in recent years. Because of their excellent ferroelectric, ferroelastic, pyroelectric, piezoelectric, inverse piezoelectric, ferroelectric‐photovoltaic (FE‐PV), and other unique physical properties, 1D ferroelectric nanostructures have been widely used in energy‐harvesting devices, nonvolatile random access memory applications, nanoelectromechanical systems, advanced sensors, FE‐PV devices, and photocatalysis mechanisms. This review summarizes the current state of 1D ferroelectric nanostructures and provides an overview of the synthesis methods, properties, and practical applications of 1D nanostructures. Finally, the prospects for future investigations are outlined. PMID:27812477

  16. Gold electrodes from recordable CDs

    PubMed

    Angnes; Richter; Augelli; Kume

    2000-11-01

    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  17. Structural and transport properties of CdS films deposited on flexible substrates

    NASA Astrophysics Data System (ADS)

    Shur, M. S.; Rumyantsev, S.; Gaska, R.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M.; Sinius, J.

    2002-09-01

    We report on structural and electrical properties of CdS films chemically deposited at temperatures 60-70 °C from solutions containing cadmium citrate complex-ions and thiourea. We demonstrated the material deposition on a variety of flexible substrates, including viewfoils, cloth, and threads and fabricated devices on the deposited films including solar cells, stress sensors, and photoconductive sensors. Scanning electron microscopy and high resolution transmission electron microscopy data show that the films consist of nanocrystalline grains. The X-ray diffraction data identify crystalline CdS with hexagonal structure with a very high degree of crystallinity. The relative intensity of the peaks in the X-ray spectrum shows that the crystallites are oriented. The nanostructure of the CdS films results in a giant reproducible sensitivity to stress (tension) under UV illumination.

  18. Optical Characterization Of Chemically Deposited Nanostructured CdS Films

    NASA Astrophysics Data System (ADS)

    Goswami, Y. C.; Kansal, Archana

    2009-06-01

    Newly modified hot chemical deposition method was used to grow Cadmium sulfide films. Substrates were kept at relatively higher temperature than the bath using local heating. The bath was consisting of aqueous solutions of Cadmium chloride, Thiourea and complexed by TEA. The Ph of the bath was maintained around 8-10 by adding ammonia solution. The soda lime glass slides were used as substrates. Good thick films were obtained few minutes. Air annealing was used to study the effect of heat treatment on quality of the films. All films were analyzed using optical spectrophotometer. The step like nature in transmission spectra and band gap curves could be due to discrete energy levels, which exist in nanomaterials. Blue shift is observed in samples. Band gap shift from higher value to lower value suggest that films are either of thickness of few nanometer range and/or grain size is of the nanometer range. This paper includes details about new modified dipping technique and optical, structural studies of these films.

  19. From Nanorods to Nanowires of CdS Synthesized by a Solvothermal Method: Influence of the Morphology on the Photoactivity for Hydrogen Evolution from Water.

    PubMed

    Vaquero, Fernando; G Fierro, José Luis; Navarro Yerga, Rufino M

    2016-03-24

    The effect of temperature and water/thiourea ratio on the growth, crystallinity and morphological characteristics of CdS nanostructures synthetized by a solvothermal method using ethylenediamine as solvent were studied. The temperature and water/thiourea ratio used in the synthesis determine the surface area, shape, length and degree of crystallinity of the CdS nanostructures obtained. Nanowires of high crystallinity and length were obtained when the solvothermal synthesis was performed at 190 °C, while nanorods with lower length and crystallinity were obtained as the solvothermal temperature decreased to 120 °C. The change in the water/thiourea ratio affects the crystallinity and length of the CdS nanostructures to a lesser extent than temperature. Nevertheless an increase in the water/thiourea ratio used during the solvothermal synthesis resulted in CdS nanorods with higher crystallinity, lower aspect ratio and lower specific surface area. Textural, structural and surface properties of the prepared CdS nanostructures were determined and related to the activity results in the production of hydrogen from aqueous solutions containing SO3(2-) + S(2-) under visible light.

  20. Fabrication and characterization of nanostructured Mg-doped CdS/AAO nanoporous membrane for sensing applications

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Mustafa, Mona; Hamdy, Hany

    2016-04-01

    In this study, Mg-doped CdS nanostructure was deposited onto anodic aluminum oxide (AAO) membrane substrate using sol-gel spin coating method. The AAO membrane was prepared by a two-step anodization process combined with pore widening process. The morphology, chemical composition, and structure of the spin- coated CdS nanostructure have been studied. The morphology of the fabricated AAO membrane and the deposited Mg-doped CdS nanostructure was investigated using scanning electron microscopy (SEM). The SEM of AAO illustrates a typical hexagonal and smooth nanoporous alumina membrane with interpore distance of ~ 100 nm, the pore diameter of ~ 60 nm. SEM of Mgdoped CdS shows porous nanostructured film of CdS nanoparticles. This film well adherents and covers the AAO substrate. The energy dispersive X-ray (EDX) pattern exhibits the signals of Al, O from AAO membrane and Mg, Cd, and S from the deposited CdS. This indicates the high purity of the fabricated membrane and the deposited Mg-doped CdS nanostructure. Using X-ray diffraction (XRD) pattern, Scherrer equation was used to calculate the average crystallite size. Additionally, the texture coefficients and density of dislocations were calculated. The fabricated CdS/AAO was applied to detect glucose of different concentrations. The proposed method has some advantages such as simple technology, low cost of processing, and high throughput. All of these factors facilitate the use of the prepared films in sensing applications.

  1. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis.

    PubMed

    Xiao, Fang-Xing; Miao, Jianwei; Tao, Hua Bing; Hung, Sung-Fu; Wang, Hsin-Yi; Yang, Hong Bin; Chen, Jiazang; Chen, Rong; Liu, Bin

    2015-05-13

    Semiconductor-based photocatalysis and photoelectrocatalysis have received considerable attention as alternative approaches for solar energy harvesting and storage. The photocatalytic or photoelectrocatalytic performance of a semiconductor is closely related to the design of the semiconductor at the nanoscale. Among various nanostructures, one-dimensional (1D) nanostructured photocatalysts and photoelectrodes have attracted increasing interest owing to their unique optical, structural, and electronic advantages. In this article, a comprehensive review of the current research efforts towards the development of 1D semiconductor nanomaterials for heterogeneous photocatalysis and photoelectrocatalysis is provided and, in particular, a discussion of how to overcome the challenges for achieving full potential of 1D nanostructures is presented. It is anticipated that this review will afford enriched information on the rational exploration of the structural and electronic properties of 1D semiconductor nanostructures for achieving more efficient 1D nanostructure-based photocatalysts and photoelectrodes for high-efficiency solar energy conversion.

  2. Ferroelectric Gated Electrcial Transport in CdS Nanotetrapods

    SciTech Connect

    Fu, Wangyang; Qin, Shengyong; Liu, Lei; Kim, Tae Hwan; Hellstrom, Sondra L; Wang, Wenlong; Liang, Wenjie; Bai, Xuedong; Li, An-Ping; Wang, Enge

    2011-01-01

    Complex nanostructures such as semiconductor nanotetrapods are promising building blocks for next-generation nanoelectronics. Here we construct a field effect transistor (FET) based on single CdS nanotetrapods with a ferroelectric Ba0.7Sr0.3TiO3 (BST) film as high- , switchable gate dielectric. A cryogenic four-probe scanning tunneling microscopy (STM) is used to probe the electrical transport through individual nanotetrapods, which reveals a p-type field effect up to room temperature. The conductance modulation in the FET originates from the channel tuning in the arm-core-arm junctions of nanotetrapods, displaying a single-electron transistor effect at low temperature (8.5 K). The ferroelectric gate dielectric enables not only an enhanced capacitance coupling but the non-volatile memory effect as well. A proof-of-principle of ferroelectric FET operation has thus been demonstrated in a nanoscale three-dimensional object and at the single electron level.

  3. Construction and Functions of Cyclodextrin-Based 1D Supramolecular Strands and their Secondary Assemblies.

    PubMed

    Chen, Yong; Liu, Yu

    2015-09-23

    Cyclodextrins (CDs), a class of cyclic oligosaccharides, are water-soluble, nontoxic, and commercial available with a low price, and their well-defined hydrophobic cavity can bind various organic/biological substrates. Through their molecular assembly mediated by organic, inorganic, or polymeric molecules as templates, CDs and their functional derivatives can be assembled to 1D supramolecular strands, wherein the functional groups of the CDs are closely located in a highly ordered manner. This structural feature greatly favors the cooperative effect of numerous functional groups in the supramolecular strand, as well as the interactions of the supramolecular strands with the multiple binding sites of substrates, especially biological substrates. Therefore, CD-based 1D supramolecular strands exhibit many material, biological, and catalytic functions, and these properties can be further improved through their secondary assembly. An overview of recent advances in the development of the construction and functions of CD-based 1D supramolecular strands and their secondary assemblies is given here. It is expected that the representative contributions described can inspire future investigations and lead to discoveries that promote the research of CD-based functional materials. PMID:26270410

  4. Electron Microscopy Study of Exotic Nanostructures of Cadmium Sulfide

    NASA Astrophysics Data System (ADS)

    Dong, Lifeng; Jiao, Jun

    2005-04-01

    In this article, two simple methods, evaporation-condensation and catalytic thermal evaporation, were used to investigate the synthesis of CdS nanostructures for nanoscale optoelectronic applications. To understand their growth mechanisms, various electron microscopy and microanalysis techniques were utilized in characterizing their morphologies, internal structures, growth directions and elemental compositions. The electron microscopy study reveals that when using the evaporation-condensation method, branched CdS nanorods and self-assembled arrays of CdS nanorods were synthesized at 800°C and 1000°C, respectively. Instead of morphological differences, both types of CdS nanorods grew along the [0001] direction. However, when using the catalytic thermal evaporation method (Au as the catalyst), patterned CdS nanowires and nanobelts were formed at the temperature region of 500 600°C and 600 750°C, respectively. Their growth direction was along the direction [1010] instead of [0001]. Based on the microscopy and microanalysis results, we propose some growth mechanisms in relation to the growth processes of those exotic CdS nanostructures.

  5. An improved pyrolysis route to synthesize carbon-coated CdS quantum dots with fluorescence enhancement effect

    SciTech Connect

    Zhang Kejie; Liu Xiaoheng

    2011-10-15

    Well-dispersed carbon-coated CdS (CdS-C) quantum dots were successfully prepared via the improved pyrolysis of bis(1-dodecanethiol)-cadmium(II) under nitrogen atmosphere. This simple method effectively solved the sintered problem resulted from conventional pyrolysis process. The experimental results indicated that most of the as-prepared nanoparticles displayed well-defined core-shell structures. The CdS cores with diameter of {approx}5 nm exhibited hexagonal crystal phase, the carbon shells with thickness of {approx}2 nm acted as a good dispersion medium to prevent CdS particles from aggregation, and together with CdS effectively formed a monodisperse CdS-Carbon nanocomposite. This composite presented a remarkable fluorescence enhancement effect, which indicated that the prepared nanoparticles might be a promising photoresponsive material or biosensor. This improved pyrolysis method might also offer a facile way to prepare other carbon-coated semiconductor nanostructures. - Graphical abstract: We demonstrated a facile approach to synthesize well-dispersed carbon-coated CdS quantum dots. The as-prepared nanoparticles presented remarkable fluorescence enhancement effect. Highlights: > Carbon-coated CdS quantum dots were synthesized by an one-step pyrolysis method. > Well-dispersed CdS-carbon nanoparticles were obtained by an acid treatment process. > As-prepared nanoparticles presented remarkable fluorescence enhancement effect.

  6. Functionalized CdS nanospheres and nanorods

    NASA Astrophysics Data System (ADS)

    Lee, Hyeokjin; Yang, Heesun; Holloway, Paul H.

    2009-12-01

    Functionalized nanoparticles are discussed. Surfaces of CdS:Mn/ZnS core/shell nanospheres (Qdots) were converted from hydrophobic to hydrophilic by growth of a SiO 2 shell. The colloidal dispersion was stabilize by adding a surfactant with a negative surface charge, and a cell-penetrating-peptide, TAT, was attached through a primary amine group. The TAT functionalized Qdots were shown to pass the blood-brain-barrier and luminescence in the infused half of the brain. In addition, nanorods of S 2- rich CdS were synthesized by reaction of excess S with Cd precursors in the presence of ethylene diamine. The photoluminescence (PL) peak from the S 2- rich CdS nanorods was broad with a maximum at ∼710 nm, which was 40 nm longer in wavelength than the PL peak from Cd 2+ rich CdS (∼670 nm) nanorods. The influence of surface electron or hole trap states on the luminescent pathway of CdS nanorods were used to explain these shifts in wavelength. Nanocrystals of Au with ∼2 nm diameters were grown on S 2- rich surfaces of CdS nanorods. Significant quenching of photoluminescence was observed from Au nanocrystals on CdS nanorods due to interfacial charge separation. Charge separation by Au nanocrystals on CdS resulted in enhanced UV photocatalytic degradation of Procion red mix-5B (PRB) dye in aqueous solution.

  7. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  8. Superhydrophilic nanostructure

    DOEpatents

    Mao, Samuel S; Zormpa, Vasileia; Chen, Xiaobo

    2015-05-12

    An embodiment of a superhydrophilic nanostructure includes nanoparticles. The nanoparticles are formed into porous clusters. The porous clusters are formed into aggregate clusters. An embodiment of an article of manufacture includes the superhydrophilic nanostructure on a substrate. An embodiment of a method of fabricating a superhydrophilic nanostructure includes applying a solution that includes nanoparticles to a substrate. The substrate is heated to form aggregate clusters of porous clusters of the nanoparticles.

  9. Management of Catalogs at CDS

    NASA Astrophysics Data System (ADS)

    Landais, G.; Boch, T.; Brouty, M.; Guéhenneux, S.; Genova, F.; Lesteven, S.; Ochsenbein, F.; Ocvirk, P.; Perret, E.; Pineau, F.-X.; Simon, A.-C.; Vannier, P.

    2015-04-01

    VizieR (Ochsenbein et al. 2000) provides access to the most complete library of published astronomical catalogs (data tables and associated data) available online and organized in a self-documented database. (There were 11769 catalogs in November 2013.) Indexing the metadata in the VizieR search engine requires the expertise of scientists and documentalists for each catalog ingested. The metadata go into an efficient position search engine that is adapted to big data. (For instance, the GAIA simulation catalog has more than two billion objects). Information in VizieR tables is well described and can be retrieved easily. The search results provide visibility to catalogs with tools and protocols to disseminate data to the Virtual Observatory, thus giving scientists data that is reusable by dedicated tools (e.g. image vizualisation tools). Also, new functionality allows users to extract all photometric data in catalogs for a given position. Finally, it is also through cross-identification tools that the CDS becomes a partner in producing large data sets, such as GAIA.

  10. Visible Light Photocatalysis via CdS/ TiO 2 Nanocomposite Materials

    DOE PAGES

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    Nmore » anostructured colloidal semiconductors with heterogeneous photocatalytic behavior have drawn considerable attention over the past few years. This is due to their large surface area, high redox potential of the photogenerated charge carriers, and selective reduction/oxidation of different classes of organic compounds. In the present paper, we have carried out a systematic synthesis of nanostructured CdS- TiO 2 via reverse micelle process. The structural and microstructural characterizations of the as-prepared CdS- TiO 2 nanocomposites are determined using XRD and SEM-EDS techniques. The visible light assisted photocatalytic performance is monitored by means of degradation of phenol in water suspension.« less

  11. Individual dual-emitting CdS multi-branched nanowire arrays under various pumping powers

    NASA Astrophysics Data System (ADS)

    Guo, S.; Zhao, F. Y.; Li, Y.; Song, G. L.; Li, A.; Chai, K.; Liang, L.; Ma, Z.; Weller, D.; Liu, R. B.

    2016-10-01

    High-quality Tin doped Cadmium Sulfide (CdS) comb-like nanostructures have been synthesized by a simple in situ seeding chemical vapor deposition process. The color-tunable dual emission of these comb-like nanostructures is demonstrated by changing the excitation power intensity. In fact, the color-tunable emission is in principal due to the variation of the dual emission intensity, which is proven by photoluminescence spectra and real color photoluminescence charge-coupled device images. Especially for different parts in the nano comb, the emission color can be varied even under the same pumping power. This is mainly due to the difference in local structure. By comparison, the color variation was not observed in pure CdS multi-branched nanostructures. The lifetime results demonstrate that the green emission originate from the recombination of free excitons. The origin of red emission is from the recombination of the dopant-induced intrinsic or extrinsic defect states. These findings provide potential applications of laser assisted anti-counterfeit label and micro-size monitors.

  12. Cadmium (II) pyrrolidine dithiocarbamate complex as single source precursor for the preparation of CdS nanocrystals by microwave irradiation and conventional heating process

    NASA Astrophysics Data System (ADS)

    Marx Nirmal, R.; Pandian, K.; Sivakumar, K.

    2011-01-01

    The complex of cadmium with pyrrolidine dithiocarbamate Cd(pdtc)2 has been used as single source precursor for the synthesis of CdS nanoparticles. The formation of CdS nanostructures was achieved by thermal decomposition of the complex under microwave irradiation and conventional heating in presence of hexadecylamine. The CdS nanoparticles with disordered close-packed structure were obtained under microwave irradiation, whereas wurtzite hexagonal phase CdS nanorods were obtained by conventional heating method (up to 150 °C). Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and high resolution transmission electron microscopy (HRTEM) studies also were carried out to study the structure and morphology of nanoparticles. The optical property of the CdS nanoparticles was studied by UV-visible and fluorescence emission spectral studies. Fluorescence measurements on the CdS nanoparticles show a strong emission spectrum with two sub bands that are attributed to band-edge and surface-defect emissions. The reduction of a suitable cadmium metal complex is considered to be one of the single pot methods to generate CdS semiconductor nanoparticles with different shapes and high yield.

  13. One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues

    PubMed Central

    Choi, Kyoung Jin; Jang, Ho Won

    2010-01-01

    In this article, we review gas sensor application of one-dimensional (1D) metal-oxide nanostructures with major emphases on the types of device structure and issues for realizing practical sensors. One of the most important steps in fabricating 1D-nanostructure devices is manipulation and making electrical contacts of the nanostructures. Gas sensors based on individual 1D nanostructure, which were usually fabricated using electron-beam lithography, have been a platform technology for fundamental research. Recently, gas sensors with practical applicability were proposed, which were fabricated with an array of 1D nanostructures using scalable micro-fabrication tools. In the second part of the paper, some critical issues are pointed out including long-term stability, gas selectivity, and room-temperature operation of 1D-nanostructure-based metal-oxide gas sensors. PMID:22319343

  14. Photoacoustic Study on a Photonic System CdS and Doped CdS

    NASA Astrophysics Data System (ADS)

    Sankar, N.; Ramachandran, K.; Sanjeeviraja, C.

    2002-12-01

    Using Photoacoustic spectroscopy thermal diffusion, thermal conductivity and energy band gap are studied on crystals of photonic system CdS and doped CdS grown by Physical Vapour transport. Optical band gap measured here agrees well with Photo current measurements. It is also found that the thermal diffusivity, effusivity, and optical band gap increases with increase of carrier concentration.

  15. Surface-roughness-assisted formation of large-scale vertically aligned CdS nanorod arrays via solvothermal method

    NASA Astrophysics Data System (ADS)

    Zhou, Minmin; Yan, Shancheng; Shi, Yi; Yang, Meng; Sun, Huabin; Wang, Jianyu; Yin, Yao; Gao, Fan

    2013-05-01

    Large-scale cadmium sulfide (CdS) nanorod arrays were successfully synthesized on several different substrates through solvothermal reaction. During the growth experiments, we observed that the adhesion strength of the CdS nanorod arrays to different substrates differed dramatically, causing some of the CdS coating being easily flushed away by deionized water (DI water). With doubts and suspicions, we seriously investigate the original morphology of all the substrates by using atomic force microscopy (AFM). The phase, morphology, crystal structure and photoelectric property of all the products were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and current-voltage (I-V) probe station. The growth mechanism of solvothermal reaction was proposed on the basis of all the characterizations. Our approach presents a universal method of liquid phase epitaxy of 1D material on a wide range of substrates of any shape.

  16. Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.

    PubMed

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting.

  17. Synthesis and characterization of CdS nanoparticle based multiwall carbon nanotube-maleic anhydride-1-octene nanocomposites

    NASA Astrophysics Data System (ADS)

    Malikov, E. Y.; Altay, M. C.; Muradov, M. B.; Akperov, O. H.; Eyvazova, G. M.; Puskás, R.; Madarász, D.; Kukovecz, Á.; Kónya, Z.

    2015-05-01

    CdS nanoparticles were synthesized by sonication from cadmium chloride and thiourea using a multiwall carbon nanotube (MWCNT)-maleic anhydride (MA)-1-octene system as the matrix. The matrix was obtained by the "grafting from" approach from oxidized carbon nanotubes and maleic anhydride-1-octene. Multiwall carbon nanotubes used for reinforcing the matrix were synthesized by Catalytic Chemical Vapor Deposition using Fe-Co/Al2O3 as the catalyst. The obtained nanostructures were characterized by FTIR, XRD, Raman spectroscopy, TEM, SEM and UV-vis spectroscopy. The average CdS particle diameter was 7.9 nm as confirmed independently by TEM and XRD. UV-vis spectroscopy revealed that the obtained nanostructure is an appropriate base material for making optical devices. The novelty of this work is the use of the MWCNT-MA-1-octene matrix obtained via the "grafting from" approach for the synthesis of uniformly dispersed CdS nanocrystals by ultrasonic cavitation to obtain a polymer nanocomposite.

  18. Synthesis and characterization of nanostructured semiconductors for photovoltaic and photoelectrochemical cell applications

    NASA Astrophysics Data System (ADS)

    Sebastian, P. J.; Castañeda, Rocio; Ixtlilco, Luis; Mejia, Rogelio; Pantoja, J.; Olea, A.

    2008-08-01

    We report the synthesis and characterization of nanostructured semiconductors such as CdS, CuInSe2 (CIS) and TiO2 for photovoltaic cells and photoelectrochemical cells for hydrogen production. The CdS was prepared by chemical deposition, CuInSe2 by electrodeposition and chemical method and TiO2 by sol-gel method. All the three semiconductors were prepared in the thin film and powder form. The CdS was synthesized as wide band gap n-type material in the nanostructured form. The p-CdS was prepared also in the nanostructured form with Cu doping. P-type CuInSe2 films and powders were synthesized in the nanostructured form. TiO2 was always formed in the nanostructured and n-type form. The films and powders were characterized by x-ray diffraction, atomic force microscopy, and opto-electronic methods. All the semiconductors were formed in the nanostructured form with different band gaps depending on the particle size and post-deposition treatments.

  19. Stable hydrogen generation from Ni- and Co-based co-catalysts in supported CdS PEC cell.

    PubMed

    Pareek, Alka; Paik, Pradip; Borse, Pramod H

    2016-07-01

    To improve the limited efficiency and stability of CdS photoanodes in a photoelectrochemical (PEC) cell, the nanostructured CdS photoanode was modified with Ni(OH)2, NiO, Co(OH)2, and Co3O4 water-oxidation-nano co-catalysts (WOC). Co(OH)2 nanorice and Ni(OH)2 nanosheet co-catalysts were obtained by a simple chemical precipitation method. Modification by the co-catalysts gives longer stability (>8 h) to CdS electrodes, and facilitates impulsive H2 evolution in PEC cells. Nano-NiO modification yields a two-fold increase in photocurrent density and the highest H2 evolution of 2.5 mmol h(-1). A dual role for Ni related co-catalysts over CdS surface, that is forming a p-n junction and acting as an effective co-catalyst, improves the photocurrent and hydrogen evolution rate, respectively. Improvement in stability was measured using X-ray photoelectron spectroscopy and prolong chronoamperometry measurements. The present report focuses on exploration of chemically synthesized earth-abundant and cost-effective co-catalysts for PEC H2 generation. PMID:27327992

  20. Stable hydrogen generation from Ni- and Co-based co-catalysts in supported CdS PEC cell.

    PubMed

    Pareek, Alka; Paik, Pradip; Borse, Pramod H

    2016-07-01

    To improve the limited efficiency and stability of CdS photoanodes in a photoelectrochemical (PEC) cell, the nanostructured CdS photoanode was modified with Ni(OH)2, NiO, Co(OH)2, and Co3O4 water-oxidation-nano co-catalysts (WOC). Co(OH)2 nanorice and Ni(OH)2 nanosheet co-catalysts were obtained by a simple chemical precipitation method. Modification by the co-catalysts gives longer stability (>8 h) to CdS electrodes, and facilitates impulsive H2 evolution in PEC cells. Nano-NiO modification yields a two-fold increase in photocurrent density and the highest H2 evolution of 2.5 mmol h(-1). A dual role for Ni related co-catalysts over CdS surface, that is forming a p-n junction and acting as an effective co-catalyst, improves the photocurrent and hydrogen evolution rate, respectively. Improvement in stability was measured using X-ray photoelectron spectroscopy and prolong chronoamperometry measurements. The present report focuses on exploration of chemically synthesized earth-abundant and cost-effective co-catalysts for PEC H2 generation.

  1. Intercalibration of SUMER and CDS on SOHO. I. SUMER detector A and CDS NIS.

    PubMed

    Pauluhn, A; Rüedi, I; Solanki, S K; Lang, J; Pike, C D; Schühle, U; Thompson, W T; Hollandt, J; Huber, M C

    1999-12-01

    The results of an intercalibration between the extreme ultraviolet spectrometers Coronal Diagnostic Spectrometer (CDS) and Solar Ultraviolet Measurements of Emitted Radiation (SUMER) onboard the Solar and Heliospheric Observatory (SOHO) are presented. During the joint observing program Intercal_01, CDS and SUMER were pointed at the same locations in quiet Sun areas and observed in the same wavelength bands located around the spectral lines He i 584 A, Mg x 609 A, and Mg x 624 A. The data sets analyzed here consist of raster images recorded by the CDS normal-incidence spectrometer and SUMER detector A and span the time from March 1996 to August 1996. Effects of the different spatial and spectral resolutions of both instruments have been investigated and taken into account in the analysis. We find that CDS measures generally a 30% higher intensity than SUMER in the He i 584-A line, while it measures 9% and 17% higher intensities in Mg x 609 A and Mg x 624 A, respectively. Both instruments show very good temporal correlation and stability, indicating that solar variations dominate over changes in instrumental sensitivity. Our analysis also provides in-flight estimates of the CDS spatial point-spread functions.

  2. Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry.

    PubMed

    Araneo, Rodolfo; Lovat, Giampiero; Burghignoli, Paolo; Falconi, Christian

    2012-09-01

    The piezopotential in floating, homogeneous, quasi-1D piezo-semiconductive nanostructures under axial stress is an anti-symmetric (i.e., odd) function of force. Here, after introducing piezo-nano-devices with floating electrodes for maximum piezo-potential, we show that breaking the anti-symmetric nature of the piezopotential-force relation, for instance by using conical nanowires, can lead to better nanogenerators, piezotronic and piezophototronic devices.

  3. A digital CDS technique and its performance testing

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Yan; Lu, Jing-Bin; Yang, Yan-Ji; Lu, Bo; Wang, Yu-Sa; Xu, Yu-Peng; Cui, Wei-Wei; Li, Wei; Li, Mao-Shun; Wang, Juan; Han, Da-Wei; Chen, Tian-Xiang; Huo, Jia; Hu, Wei; Zhang, Yi; Zhu, Yue; Zhang, Zi-Liang; Yin, Guo-He; Wang, Yu; Zhao, Zhong-Yi; Fu, Yan-Hong; Zhang, Ya; Ma, Ke-Yan; Chen, Yong

    2015-07-01

    Readout noise is a critical parameter for characterizing the performance of charge-coupled devices (CCDs), which can be greatly reduced by the correlated double sampling (CDS) circuit. However, a conventional CDS circuit inevitably introduces new noise since it consists of several active analog components such as operational amplifiers. This paper proposes a digital CDS circuit technique, which transforms the pre-amplified CCD signal into a train of digital presentations by a high-speed data acquisition card directly without the noisy CDS circuit, then implements the digital CDS algorithm through a numerical method. A readout noise of 3.3 e- and an energy resolution of 121 eV@5.9 keV can be achieved via the digital CDS technique. Supported by National Natural Science Foundation of China (10978002)

  4. The Genomic CDS Sandbox: An Assessment Among Domain Experts

    PubMed Central

    Aziz, Ayesha; Kawamoto, Kensaku; Eilbeck, Karen; Williams, Marc S.; Freimuth, Robert R.; Hoffman, Mark A.; Rasmussen, Luke V.; Overby, Casey L.; Shirts, Brian H.; Hoffman, James M.; Welch, Brandon M.

    2016-01-01

    Genomics is a promising tool that is becoming more widely available to improve the care and treatment of individuals. While there is much assertion, genomics will most certainly require the use of clinical decision support (CDS) to be fully realized in the routine clinical setting. The National Human Genome Research Institute (NHGRI) of the National Institutes of Health recently convened an in-person, multi-day meeting on this topic. It was widely recognized that there is a need to promote the innovation and development of resources for genomic CDS such as a CDS sandbox. The purpose of this study was to evaluate a proposed approach for such a genomic CDS sandbox among domain experts and potential users. Survey results indicate a significant interest and desire for a genomic CDS sandbox environment among domain experts. These results will be used to guide the development of a genomic CDS sandbox. PMID:26778834

  5. The genomic CDS sandbox: An assessment among domain experts.

    PubMed

    Aziz, Ayesha; Kawamoto, Kensaku; Eilbeck, Karen; Williams, Marc S; Freimuth, Robert R; Hoffman, Mark A; Rasmussen, Luke V; Overby, Casey L; Shirts, Brian H; Hoffman, James M; Welch, Brandon M

    2016-04-01

    Genomics is a promising tool that is becoming more widely available to improve the care and treatment of individuals. While there is much assertion, genomics will most certainly require the use of clinical decision support (CDS) to be fully realized in the routine clinical setting. The National Human Genome Research Institute (NHGRI) of the National Institutes of Health recently convened an in-person, multi-day meeting on this topic. It was widely recognized that there is a need to promote the innovation and development of resources for genomic CDS such as a CDS sandbox. The purpose of this study was to evaluate a proposed approach for such a genomic CDS sandbox among domain experts and potential users. Survey results indicate a significant interest and desire for a genomic CDS sandbox environment among domain experts. These results will be used to guide the development of a genomic CDS sandbox.

  6. Upstream Design and 1D-CAE

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroyuki

    Recently, engineering design environment of Japan is changing variously. Manufacturing companies are being challenged to design and bring out products that meet the diverse demands of customers and are competitive against those produced by rising countries(1). In order to keep and strengthen the competitiveness of Japanese companies, it is necessary to create new added values as well as conventional ones. It is well known that design at the early stages has a great influence on the final design solution. Therefore, design support tools for the upstream design is necessary for creating new added values. We have established a research society for 1D-CAE (1 Dimensional Computer Aided Engineering)(2), which is a general term for idea, methodology and tools applicable for the upstream design support, and discuss the concept and definition of 1D-CAE. This paper reports our discussion about 1D-CAE.

  7. Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution

    SciTech Connect

    Yu, Guiyang; Wang, Xiang; Cao, Jungang; Wu, Shujie; Yan, Wenfu; Liu, Gang

    2016-01-01

    A composite photocatalyst of embedding plasmonic Au nanoparticle into CdS (Au@CdS) was prepared with a cysteine-assisted hydrothermal approach. This structure could take fully advantage of electromagnetic fields at the surface of the Au nanoparticles under visible light illumination. The photocatalytic hydrogen evolution activity of CdS could be significantly improved. Without the use of any other metal or metal oxide as cocatalysts, the quantum efficiency can reach 12.1 % over 0.5%Au@CdS at 420 nm. When using 0.1%Pt as a cocatalyst, the quantum efficiency of 0.5%Au@CdS can be further improved to 45.6%. This efficiency can be maintained more than 100 h in the test 12 days, exhibiting a relatively high stability. Photoluminescence (PL) characterization shows that the formation rate of photoexcited e-/h+ was dramatically increased when Au nanoparticles were embedded into CdS. Time-resolved PL measurement shows that Au@CdS also has a longer luminescence lifetime than that of CdS, reflecting that the photoexcited electrons in Au@CdS be with much longer lifetime to reduce H+ forming H2. All these enhancements can be attributed to the effective energy transfer between the Au surface and CdS due to the well matched composite nanostructure. Dr. Xiang Wang gratefully acknowledges the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this work.

  8. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  9. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    PubMed Central

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  10. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kuo, Shou-Yi; Lin, Hsin-I.

    2014-02-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol-gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol-gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices.

  11. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays.

    PubMed

    Kuo, Shou-Yi; Lin, Hsin-I

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol-gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol-gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  12. DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS

    SciTech Connect

    L.R. Eisler

    1995-02-02

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.

  13. Electronic Publishing: The New Roles of CDS

    NASA Astrophysics Data System (ADS)

    Genova, F.; Bartlett, J. G.; Bonnarell, F.; Dubois, P.; Egret, D.; Fernique, P.; Jasniewicz, G.; Lesteven, S.; Monier, R.; Ochsenbein, F.; Wenger, M.

    The Centre de Données astronomiques de Strasbourg (CDS) has dealt with bibliographic information for many years. References of publications, published observational data related to astronomical objects, data tables, nomenclature, have been homogenized and organized into information retrieval systems.: SIMBAD, the reference database for the identification and bibliography of astronomical objects; the catalogue service and the ViezieR Catalogue Browser for data table; the Dictionary of Nomenclature of Astronomical Object, which is now maintained by the CDS. Evolution in recent years has brought the data centers closer to the publishing process. General standards for astronomy, for the description of references and of data tables, have been proposed and implemented. Data tables from research papers are now directly published in electronic form and distributed on-line by the data centers. The emergence of fully electronic publications paves the way to innovative new services, linking the journals to other sources of information (data bases, tables, images, data archives), and making use of new methods for information retrieval.

  14. Unesco Integrated Documentation Network; Computerized Documentation System (CDS).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Dept. of Documentation, Libraries, and Archives.

    Intended for use by the Computerized Documentation System (CDS), the Unesco version of ISIS (Integrated Set of Information Systems)--originally developed by the International Labour Organization--was developed in 1975 and named CDS/ISIS. This system has a comprehensive collection of programs for input, management, and output, running in batch or…

  15. Mechanical properties of one-dimensional nanostructures, experimental measurement and numerical simulation

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoxia

    One-Dimensional (1D) nanostructures are generally defined as having at least one dimension between 1 and 100 nm. Investigations of their mechanical properties are important from both fundamental study and application point of view. Different methods such as in-situ tensile test and Atomic Force Microscopy (AFM) bending test have been used to explore the mechanical properties of 1D nanostructures. However, searching for reliable measurement of 1D nanostructures is still under way. In this dissertation, two methods, Atomic Force Acoustic Microscopy (AFAM)-based method and nanoindentation, were explored to realize reliable study of mechanical properties of two kinds of energy conversion-related nanomaterials: single crystalline rutile TiO 2 nanoribbons and alkaline earth metal hexaboride MB6 (M=Ca, Sr, Ba) 1D nanostructures. The work principle of AFAM-based method is: while an AFM cantilever is in contact with a tested nanostructure, its contact resonance frequencies are different from its free resonance frequencies. The cantilever resonant frequency shift is correlated to the Young's modulus of the tested nanostructure based on Hertz contact mechanics. The measured modulus of BaB6 nanostructures was 129 GPa, which is much lower than the value determined using the nanoindentation method. Due to the small load (120 nN) applied on the nanostructure during the experiment, the AFAM-based method may actually measure the mechanical property of the outside oxidation layers of BaB6 nanostructures. Nanoindentation is capable of giving insights to both Young's modulus and hardness of bulk elastic-plastic materials. The assumptions behind this method are that the material being tested is a homogeneous half-space. Cares must be taken to extract properties of tested materials when those assumptions are broken down. Nanoindentation on a 1D nanostructure is one of such cases that those assumptions are invalid. However, this invalidity was not realized in most published work on

  16. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    NASA Astrophysics Data System (ADS)

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-08-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g‑1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g‑1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.

  17. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    PubMed Central

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-01-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g−1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g−1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective. PMID:27498979

  18. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability.

    PubMed

    Pawar, Rajendra C; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S

    2016-01-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g(-1)) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g(-1)). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective. PMID:27498979

  19. CdS colloidal nanocrystals with narrow green emission

    NASA Astrophysics Data System (ADS)

    Ghamsari, Morteza Sasani; Sasani Ghamsari, Amir Hossein

    2016-04-01

    Cadmium sulfide (CdS) colloidal nanocrystals have been synthesized by a chemical reaction route. Polyvinyl alcohol was employed to modify the surface of CdS nanocrystals and improved their optical properties. The prepared nanoparticles were characterized using techniques such as x-ray powder diffraction, UV-VIS absorption, and photoluminescence spectroscopy. The prepared sample displays a strong and narrow green emission peak centered at 519 nm that has not been reported before and it is longer than the onset of absorption of ˜512 nm for bulk CdS. Several weak emission peaks appeared at wavelengths 490, 506, 521, and 543 nm, too. These two important characteristics of the prepared sample are due to the strong band-edge emission of CdS nanocrystals. The obtained results confirm that the prepared CdS nanocrystals have potential for opto-electronic applications.

  20. Spectroscopic Analysis of Impurity Precipitates in CdS Films

    SciTech Connect

    Webb, J. D.; Keane, J.; Ribelin, R.; Gedvilas, L.; Swartzlander, A.; Ramanathan, K.; Albin, D. S.; Noufi, R.

    1999-10-31

    Impurities in cadmium sulfide (CdS) films are a concern in the fabrication of copper (indium, gallium) diselenide (CIGS) and cadmium telluride (CdTe) photovoltaic devices. Devices incorporating chemical-bath-deposited (CBD) CdS are comparable in quality to devices incorporating purer CdS films grown using vacuum deposition techniques, despite the higher impurity concentrations typically observed in the CBD CdS films. In this paper, we summarize and review the results of Fourier transform infrared (FTIR), Auger, electron microprobe, and X-ray photoelectron spectroscopic (XPS) analyses of the impurities in CBD CdS films. We show that these impurities differ as a function of substrate type and film deposition conditions. We also show that some of these impurities exist as 10{sup 2} micron-scale precipitates.

  1. Study on structural, optical properties of solvothermally synthesized Ni doped CdS nanorods

    SciTech Connect

    Kaur, Kamaldeep Verma, N. K.

    2015-05-15

    Undoped and alkali metal i.e Ni doped CdS nanorods (Cd{sub x}Ni{sub 1-x}S) with (x = 0.0, 0.3,) has been synthesized by using a convenient solvothermal technique. In order to confirm the structure of the synthesized nanorods X-ray diffraction (XRD) has been done which reveals the formation of hexagonal phase of the dilute magnetic semiconducting nanorods having size of undoped 27.79nm and doped 17.49nm. Energy dispersive X-ray analysis depicts the presence of elements Cd, Ni and S in their stoichiometric ratio. Optical behavior of undoped and doped nanorods has been investigated. UV-visible spectra show the blue shift in the band gap, as compared to the bulk CdS which may be due the quantum confinement occurs in the nanostructures. Morphological analysis has been done with the help of Transmission electron microscope which confirms the polycrystalline nature of the synthesized nanorods.

  2. From 1D chain to 3D network: A theoretical study on TiO{sub 2} low dimensional structures

    SciTech Connect

    Guo, Ling-ju; He, Tao; Zeng, Zhi

    2015-06-14

    We have performed a systematic study on a series of low dimensional TiO{sub 2} nanostructures under density functional theory methods. The geometries, stabilities, growth mechanism, and electronic structures of 1D chain, 2D ring, 2D ring array, and 3D network of TiO{sub 2} nanostructures are analyzed. Based on the Ti{sub 2}O{sub 4} building unit, a series of 1D TiO{sub 2} nano chains and rings can be built. Furthermore, 2D ring array and 3D network nanostructures can be constructed from 1D chains and rings. Among non-periodic TiO{sub 2} chain and ring structures, one series of ring structures is found to be more stable. The geometry model of the 2D ring arrays and 3D network structures in this work has provided a theoretical understanding on the structure information in experiments. Based on these semiconductive low dimensional structures, moreover, it can help to understand and design new hierarchical TiO{sub 2} nanostructure in the future.

  3. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  4. Effect of room temperature surface active ionic liquids on aggregated nanostructures of γ-Cyclodextrins: A picosecond fluorescence spectroscopic study

    NASA Astrophysics Data System (ADS)

    Kuchlyan, Jagannath; Banerjee, Chiranjib; Ghosh, Surajit; Kundu, Niloy; Banik, Debasis; Sarkar, Nilmoni

    2014-05-01

    In this Letter we report on controllable transition of aggregated γ-Cyclodextrins (γ-CDs) nanostructures by tuning the concentration of a long chain ionic liquid, 1-dodecyl-3-methyl imidazolium chloride (C12mimCl) added to the aqueous solution of γ-CDs. The gradual increase in concentration of C12mimCl first results in the breaking of γ-CDs aggregates by the formation of inclusion complexes with C12mimCl and then self-organizes into a new supramolecular aggregate. This spontaneous transition from one nanostructure to another has been established by spectroscopic and microscopic studies. It is worth to mention that addition of 1-octyl-3-methyl imidazolium chloride (C8mimCl) does not lead to any such transition.

  5. Crystal orbital studies on the 1D silic-diyne nanoribbons and nanotubes.

    PubMed

    Zhu, Ying; Bai, Hongcun; Huang, Yuanhe

    2016-02-01

    This work presents crystal orbital studies on novel one-dimensional (1D) nanoscale materials derived from a Si-diyne sheet, based on the density functional theory. The two-dimensional (2D) Si-diyne layer is observed to be carbo-merized silicene, with a similar structure to graphdiyne. The 2D Si-diyne and its 1D ribbons and tubes, of different size and chirality, have been addressed systematically. The low dimensional Si-diyne materials studied exhibit relatively high stability, according to phonon-frequency calculations and molecular dynamics simulations. With comparable diameters, the Si-diyne tubes have lower strain energies than silicene and silicon carbide nanotubes. The Si-diyne layer and its 1D derivatives are all semiconductors, regardless of the size and chirality of the strips and tubes. In addition, the band gaps of the 1D Si-diyne nanoribbons and nanotubes with different chirality, always monotonically decrease as their sizes increases. A quantitative relationship between the band gap and the size of the ribbons and tubes was obtained. The mobility of charge carriers for the 1D Si-diyne structures was also investigated. It was found that both hole and electron mobility of the ribbons and tubes exhibit linear increase with increasing size. The electrons have greater mobility than the holes for each strip and tube. In addition, the mechanical properties of the Si-diyne nanostructures were also investigated by calculation of the Young's modulus and the Poisson's ratio. PMID:26744378

  6. Directed self-assembly of CdS quantum dots on bacteriophage P22 coat protein templates

    NASA Astrophysics Data System (ADS)

    Kale, Anup; Bao, Yuping; Zhou, Ziyou; Prevelige, Peter E.; Gupta, Arunava

    2013-02-01

    The hierarchical organization of inorganic nanostructures has potential applications in diverse areas such as photocatalytic systems, composites, drug delivery and biomedicine. An attractive approach for this purpose is the use of biological organisms as templates since they often possess highly ordered arrays of protein molecules that can be genetically engineered for specific binding. Indeed, recent studies have shown that viruses can be used as versatile templates for the assembly of a variety of nanostructured materials because of their unique structural and chemical diversity. These highly ordered protein templates can be employed or adapted for specific binding interactions. Herein we report the directed self-assembly of independently synthesized 5 nm CdS nanocrystal quantum dots on ˜60 nm procapsid shells derived from wild-type P22 bacteriophage. The bacteriophage P22 shell is comprised of hexameric and pentameric clusters of subunits known as capsomeres. The pre-synthesized CdS QDs show the corresponding hexameric and pentameric patterns of assembly on these P22 shells, possibly by interacting with particular protein pockets.

  7. A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors

    PubMed Central

    Zhai, Tianyou; Fang, Xiaosheng; Liao, Meiyong; Xu, Xijin; Zeng, Haibo; Yoshio, Bando; Golberg, Dmitri

    2009-01-01

    One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area. PMID:22454597

  8. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  9. Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel.

    PubMed

    Del Buffa, Stefano; Rinaldi, Elia; Carretti, Emiliano; Ridi, Francesca; Bonini, Massimo; Baglioni, Piero

    2016-09-01

    The use of injectable materials in minimally invasive surgical procedures could help in facing the bone diseases connected to the ageing of world population. To this aim, materials integrating the rheological properties of biocompatible polymers with the mechanical properties of 1D inorganic nanostructures represent promising scaffolds. Here we describe the preparation of hydrogel composites made of carboxymethyl cellulose (CMC) and halloysite nanotubes (HNT) as injectable materials for the local treatment of bone defects. The rheology and injectability of the materials reflects their structural properties, showing the possibility of successfully injecting the prepared composites over a large range of operative conditions.

  10. Nanoscale stabilization of zintl compounds: 1D ionic Li-P double helix confined inside a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexander S.; Kar, Tapas; Boldyrev, Alexander I.

    2016-02-01

    One-dimensional (1D) ionic nanowires are extremely rare materials due to the difficulty in stabilizing 1D chains of ions under ambient conditions. We demonstrate here a theoretical prediction of a novel hybrid material, a nanotube encapsulated 1D ionic lithium monophosphide (LiP) chain, featuring a unique double-helix structure, which is very unusual in inorganic chemistry. This nanocomposite has been investigated with density functional theory, including molecular dynamics simulations and electronic structure calculations. We find that the formation of the LiP double-helical nanowire is facilitated by strong interactions between LiP and CNTs resulting in a charge transfer. This work suggests that nanostructured confinement may be used to stabilize other polyphosphide 1D chains, thus opening new ways to study the chemistry of zintl compounds at the nanoscale.One-dimensional (1D) ionic nanowires are extremely rare materials due to the difficulty in stabilizing 1D chains of ions under ambient conditions. We demonstrate here a theoretical prediction of a novel hybrid material, a nanotube encapsulated 1D ionic lithium monophosphide (LiP) chain, featuring a unique double-helix structure, which is very unusual in inorganic chemistry. This nanocomposite has been investigated with density functional theory, including molecular dynamics simulations and electronic structure calculations. We find that the formation of the LiP double-helical nanowire is facilitated by strong interactions between LiP and CNTs resulting in a charge transfer. This work suggests that nanostructured confinement may be used to stabilize other polyphosphide 1D chains, thus opening new ways to study the chemistry of zintl compounds at the nanoscale. Electronic supplementary information (ESI) available: Additional DOS, band structures, and Bader charges for LiP@SWCNTs. See DOI: 10.1039/c5nr07713c

  11. Hot electron induced NIR detection in CdS films

    PubMed Central

    Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir

    2016-01-01

    We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm2. The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications. PMID:26965055

  12. 1D fast coded aperture camera.

    PubMed

    Haw, Magnus; Bellan, Paul

    2015-04-01

    A fast (100 MHz) 1D coded aperture visible light camera has been developed as a prototype for imaging plasma experiments in the EUV/X-ray bands. The system uses printed patterns on transparency sheets as the masked aperture and an 80 channel photodiode array (9 V reverse bias) as the detector. In the low signal limit, the system has demonstrated 40-fold increase in throughput and a signal-to-noise gain of ≈7 over that of a pinhole camera of equivalent parameters. In its present iteration, the camera can only image visible light; however, the only modifications needed to make the system EUV/X-ray sensitive are to acquire appropriate EUV/X-ray photodiodes and to machine a metal masked aperture. PMID:25933861

  13. 1D fast coded aperture camera.

    PubMed

    Haw, Magnus; Bellan, Paul

    2015-04-01

    A fast (100 MHz) 1D coded aperture visible light camera has been developed as a prototype for imaging plasma experiments in the EUV/X-ray bands. The system uses printed patterns on transparency sheets as the masked aperture and an 80 channel photodiode array (9 V reverse bias) as the detector. In the low signal limit, the system has demonstrated 40-fold increase in throughput and a signal-to-noise gain of ≈7 over that of a pinhole camera of equivalent parameters. In its present iteration, the camera can only image visible light; however, the only modifications needed to make the system EUV/X-ray sensitive are to acquire appropriate EUV/X-ray photodiodes and to machine a metal masked aperture.

  14. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  15. Photocurrent spectroscopy of CdS nanosheets

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Wade, A.; Jackson, H. E.; Smith, L. M.; Rice, J. Yarrison; Choi, Y.-J.; Park, J.-G.

    2011-03-01

    We study the photocurrent from photoexcited charge carriers in CdS nanosheet (NS) structures. Metal-semiconductor-metal nanodevices are made with both Schottky and Ohmic contacts using photolithography followed by Ti/Al (20nm/200nm) metal evaporation and lift-off. Ohmic contacts are formed by Ar ion bombardment before the metal deposition to create donor sulfur vacancies which increases the electron concentration. Photocurrent spectra using a white light source filtered by a monochrometer show excitonic resonances at low temperatures corresponding to each of the A, B, and C hole bands. The photocurrent increases linearly with power for above gap excitation, and nonlinearly (quadratic) with laser power for below gap excitation, consistent with two-photon absorption with a nonlinear coefficient of β = 2 cm/GW. A wavelength dependence of the photocurrent with sub-band gap excitation to find the resonances and hence band structure is in progress. We acknowledge the financial support of the National Science Foundation through grants DMR-0806700, 0806572 and ECCS-0701703, and the KIST institutional research program 2E21060R.

  16. The CDS Cross-Match Service

    NASA Astrophysics Data System (ADS)

    Boch, T.; Pineau, F.; Derriere, S.

    2012-09-01

    The CDS has released a cross-match service allowing astronomers to cross-identify sources between very large catalogues (up to 1 billion rows) or between a user-uploaded list of positions and a large catalogue. This service has been built on top of the methods described at ADASS 2010 in (Pineau et al. 2011), which are based on a dedicated binary table file format and the HEALPix pixelisation associated to specialized k-d trees. Popular cross-identifications, such as SDSS vs. 2MASS, are pre-computed in order to accelerate these queries. We will present the architecture of the service, whose core relies on an implementation of the UWS (Universal Worker Service) pattern, a Virtual Observatory standard for asynchronous, stateful services. Scalability is achieved thanks to a distribution of the different crossmatch jobs on a set of workers. Users interact with the service through a Web interface. Results of the cross-match are stored on the user personal storage space, backed up by iRODS. In this paper, we present the architecture of the service, and the current user interface. We will also show the performances we manage to achieve and discuss our hardware choice, in term of RAM and hard disk drive.

  17. Magnetic field induced controllable self-assembly of maghemite nanocrystals: From 3D arrays to 1D nanochains

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Chen, Qianwang; Chen, Rongsheng

    2015-08-01

    A hydrothermal process has been used to synthesize walnut-like maghemite superstructures which can be further self-assembled in a controllable manner into ordered three-dimensional (3D) architectures and one-dimensional (1D) nanochains in the presence of different external magnetic field. The assembly behavior of the maghemite nanoparticles isclosely related to the van der Waals interactions and external-field-induced magnetic dipole interactions. The magnetic properties of these nanostructures are also investigated.

  18. Recent developments in testing techniques for elastic mechanical properties of 1-D nanomaterials.

    PubMed

    Wang, Weidong; Li, Shuai; Zhang, Hongti; Lu, Yang

    2015-01-01

    One-dimensional (1-D) nanomaterials exhibit great potentials in their applications to functional materials, nano-devices and systems owing to their excellent properties. In the past decade, considerable studies have been done, with new patents being developed, on these 1-D building blocks for for their mechanical properties, especially elastic properties, which provide a solid foundation for the design of nanoelectromechanical systems (NEMS) and predictions of reliability and longevity for their devices. This paper reviews some of the recent investigations on techniques as well as patents available for the quantitative characterization of the elastic behaviors of various 1-D nanomaterials, with particular focus on on-chip testing system. The review begins with an overview of major testing methods for 1-D nanostructures' elastic properties, including nanoindentation testing, AFM (atomic force microscopy) testing, in situ SEM (scanning electron microscopy) testing, in situ TEM (transmission electron microscopy) testing and the testing system on the basis of MEMS (micro-electro-mechanical systems) technology, followed by advantages and challenges of each testing approach. This review also focuses on the MEMS-based testing apparatus, which can be actuated and measured inside SEM and TEM with ease, allowing users to highly magnify the continuous images of the specimen while measuring load electronically and independently. The combination of on-chip technologies and the in situ electron microscopy is expected to be a potential testing technique for nanomechanics. Finally, details are presented on the key challenges and possible solutions in the implementation of the testing techniques referred above.

  19. Configuration space method for calculating binding energies of exciton complexes in quasi-1D/2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor

    A configuration space method, pioneered by Landau and Herring in studies of molecular binding and magnetism, is developed to obtain universal asymptotic relations for lowest energy exciton complexes (trion, biexciton) in confined semiconductor nanostructures such as nanowires and nanotubes, as well as coupled quantum wells. Trions are shown to be more stable (have greater binding energy) than biexcitons in strongly confined quasi-1D structures with small reduced electron-hole masses. Biexcitons are more stable in less confined quasi-1D structures with large reduced electron-hole masses. The theory predicts a crossover behavior, whereby trions become less stable than biexcitons as the transverse size of the quasi-1D nanostructure increases, which might be observed on semiconducting carbon nanotubes of increasing diameters. This method is also efficient in calculating binding energies for trion-type electron-hole complexes formed by indirect excitons in double coupled quantum wells, quasi-2D nanostructures that show new interesting electroabsorption/refraction phenomena. Supported by DOE-DE-SC0007117.

  20. Mimicking bone nanostructure by combining block copolymer self-assembly and 1D crystal nucleation.

    PubMed

    Chen, Xi; Wang, Wenda; Cheng, Shan; Dong, Bin; Li, Christopher Y

    2013-09-24

    The orientation and spatial distribution of nanocrystals in the organic matrix are two distinctive structural characteristics associated with natural bone. Synthetic soft materials have been used to successfully control the orientation of mineral crystals. The spatial distribution of minerals in a synthetic scaffold, however, has yet to be reproduced in a biomimetic manner. Herein, we report using block copolymer-decorated polymer nanofibers to achieve biomineralized fibrils with precise control of both mineral crystal orientation and spatial distribution. Exquisite nanoscale structural control in biomimetic hybrid materials has been demonstrated.

  1. Twisted Graphene Nanostructures

    NASA Astrophysics Data System (ADS)

    Gani, Satrio; Virgus, Yudistira; Rossi, Enrico

    2015-03-01

    Recent advances in fabrication techniques have made possible the realization of graphene nanostructures with atomic precision. Some of the nanostructures realized are completely novel. We study the electronic properties of such novel graphene nanostructures when deposited on two dimensional crystals. In particular we study the case when the two dimensional crystal is graphene, or bilayer graphene. We obtain results for the nanostructure electronic spectrum and find how the spectrum is affected by the coupling between the nanostructure and the two-dimensional substrate. In particular we study how the ``twist'' angle between the graphene nanostructure and the two-dimensional crystal affects the spectrum of the nanostructure. Work supported by ONR-N00014-13-1-0321 and ACS-PRF # 53581-DNI5.

  2. 1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure

    NASA Astrophysics Data System (ADS)

    Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume

    We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.

  3. Optical sensor based on a single CdS nanobelt.

    PubMed

    Li, Lei; Yang, Shuming; Han, Feng; Wang, Liangjun; Zhang, Xiaotong; Jiang, Zhuangde; Pan, Anlian

    2014-04-23

    In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL) technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 10⁴, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  4. Photoelectrochemical properties of chemosynthesized CdS thin film

    NASA Astrophysics Data System (ADS)

    Pawar, S. B.; Pawar, S. A.; Bhosale, P. N.; Patil, P. S.

    2012-06-01

    Thin film of cadmium sulphide (CdS) consisting cabbage like morphology was chemically synthesized at room temperature from an aqueous alkaline bath onto soda lime glass and fluorine-doped tin oxide (FTO)-coated glass substrates. The synthesized cabbages of CdS were characterized using X-ray diffraction (XRD), UV-vis spectroscopy and scanning electron microscopy (SEM). The XRD pattern revealed the formation of CdS particles with a cubic crystal structure. SEM micrographs show that the cabbage like morphology is composed of nanopetals. Further, the photoelectochemical (PEC) performance was tested in Na2S-NaOH-S electrolyte which has maximum short circuit current of (Isc) 359μA/cm2.

  5. Bacterium Escherichia coli- and phage P22-templated synthesis of semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Shen, Liming

    The properties of inorganic materials in the nanoscale are found to be size- and shape-dependent due to quantum confinement effects, and thereby nanomaterials possess properties very different from those of single molecules as well as those of bulk materials. Assembling monodispersed nanoparticles into highly ordered hierarchical architectures is expected to generate novel collective properties for potential applications in catalysis, energy, biomedicine, etc. The major challenge in the assembly of nanoparticles lies in the development of controllable synthetic strategies that enable the growth and assembly of nanoparticles with high selectivity and good controllability. Biological matter possesses robust and precisely ordered structures that exist in a large variety of shapes and sizes, providing an ideal platform for synthesizing high-performance nanostructures. The primary goal of this thesis work has been to develop rational synthetic strategies for high-performance nanostructured materials using biological templates, which are difficult to achieve through traditional chemical synthetic methods. These approaches can serve as general bio-inspired approaches for synthesizing nanoparticle assemblies with desired components and architectures. CdS- and TiO2-binding peptides have been identified using phage display biopanning technique and the mechanism behind the specific affinity between the selected peptides and inorganic substrates are analyzed. The ZnS- and CdS-binding peptides, identified by the phage display biopanning, are utilized for the selective nucleation and growth of sulfides over self-assembled genetically engineered P22 coat proteins, resulting in ordered nanostructures of sulfide nanocrystal assemblies. The synthetic strategy can be extended to the fabrication of a variety of other nanostructures. A simple sonochemical route for the synthesis and assembly of CdS nanostructures with high yield under ambient conditions has been developed by exploiting

  6. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  7. Synthesis of hybrid CdS-Au colloidal nanostructures.

    PubMed

    Saunders, Aaron E; Popov, Inna; Banin, Uri

    2006-12-21

    We explore the growth mechanism of gold nanocrystals onto preformed cadmium sulfide nanorods to form hybrid metal nanocrystal/semiconductor nanorod colloids. By manipulating the growth conditions, it is possible to obtain nanostructures exhibiting Au nanocrystal growth at only one nanorod tip, at both tips, or at multiple locations along the nanorod surface. Under anaerobic conditions, Au growth occurs only at one tip of the nanorods, producing asymmetric structures. In contrast, the presence of oxygen and trace amounts of water during the reaction promotes etching of the nanorod surface, providing additional sites for metal deposition. Three growth stages are observed when Au growth is performed under air: (1) Au nanocrystal formation at both nanorod tips, (2) growth onto defect sites on the nanorod surface, and finally (3) a ripening process in which one nanocrystal tip grows at the expense of the other particles present on the nanorod. Analysis of the hybrid nanostructures by high-resolution TEM shows that there is no preferred orientation between the Au nanocrystal and the CdS nanorod, indicating that growth is nonepitaxial. The optical signatures of the nanocrystals and the nanorods (i.e., the surface plasmon and first exciton transition peaks, respectively) are spectrally distinct, allowing the different stages of the growth process to be easily monitored. The initial CdS nanorods exhibit band gap and trap state emission, both of which are quenched during Au growth. PMID:17165989

  8. Selective response inversion to NO2 and acetic acid in ZnO and CdS nanocomposite gas sensor

    NASA Astrophysics Data System (ADS)

    Calestani, D.; Villani, M.; Mosca, R.; Lazzarini, L.; Coppedè, N.; Dhanabalan, S. C.; Zappettini, A.

    2014-09-01

    High sensitivity zinc oxide (ZnO) tetrapods (TPs) have been functionalized by nucleating cadmium sulphide (CdS) nanoparticles (NPs) directly on their surface with a spotted coverage thanks to an optimized synthesis in dimethylformamide (DMF). The obtained hybrid coupled material has been used to realize a gas sensing device with a highly porous nanostructured network, in which the proper alternation of ZnO-TPs and CdS-NPs gives rise to unconventional chemoresistive behaviours. Among the different tested gases and vapours, the sensor showed a unique fingerprint response-inversion between 300 °C and 400 °C only for nitrogen dioxide (NO2) and acetic acid (CH3COOH).

  9. Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta.

    PubMed Central

    Weinshank, R L; Zgombick, J M; Macchi, M J; Branchek, T A; Hartig, P R

    1992-01-01

    The serotonin 1D (5-HT1D) receptor is a pharmacologically defined binding site and functional receptor site. Observed variations in the properties of 5-HT1D receptors in different tissues have led to the speculation that multiple receptor proteins with slightly different properties may exist. We report here the cloning, deduced amino acid sequences, pharmacological properties, and second-messenger coupling of a pair of human 5-HT1D receptor genes, which we have designated 5-HT1D alpha and 5-HT1D beta due to their strong similarities in sequence, pharmacological properties, and second-messenger coupling. Both genes are free of introns in their coding regions, are expressed in the human cerebral cortex, and can couple to inhibition of adenylate cyclase activity. The pharmacological binding properties of these two human receptors are very similar, and match closely the pharmacological properties of human, bovine, and guinea pig 5-HT1D sites. Both receptors exhibit high-affinity binding of sumatriptan, a new anti-migraine medication, and thus are candidates for the pharmacological site of action of this drug. Images PMID:1565658

  10. The Learning Management System Evolution. CDS Spotlight Report. Research Bulletin

    ERIC Educational Resources Information Center

    Lang, Leah; Pirani, Judith A.

    2014-01-01

    This Spotlight focuses on data from the 2013 Core Data Service (CDS) to better understand how higher education institutions approach learning management systems (LMSs). Information provided for this Spotlight was derived from Module 8 of the Core Data Service, which contains several questions regarding information systems and applications.…

  11. Options for Putting CDS/ISIS Databases on the Internet

    ERIC Educational Resources Information Center

    Buxton, Andrew

    2006-01-01

    Purpose: To review the variety of software solutions available for putting CDS/ISIS databases on the internet. To help anyone considering which route to take. Design/methodology/approach: Briefly describes the characteristics, history, origin and availability of each package. Identifies the type of skills required to implement the package and the…

  12. Automated quantification of one-dimensional nanostructure alignment on surfaces

    NASA Astrophysics Data System (ADS)

    Dong, Jianjin; Goldthorpe, Irene A.; Mohieddin Abukhdeir, Nasser

    2016-06-01

    A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.

  13. Surface biofunctionalized CdS and ZnS quantum dot nanoconjugates for nanomedicine and oncology: to be or not to be nanotoxic?

    PubMed Central

    Mansur, Alexandra AP; Mansur, Herman S; de Carvalho, Sandhra M; Lobato, Zélia IP; Guedes, Maria IMC; Leite, Maria F

    2016-01-01

    Herein, for the first time, we demonstrated that novel biofunctionalized semiconductor nanomaterials made of Cd-containing fluorescent quantum dot nanoconjugates with the surface capped by an aminopolysaccharide are not biologically safe for clinical applications. Conversely, the ZnS-based nanoconjugates proved to be noncytotoxic, considering all the parameters investigated. The results of in vitro cytotoxicity were remarkably dependent on the chemical composition of quantum dot (CdS or ZnS), the nature of the cell (human cancerous and embryonic types), and the concentration and time period of exposure to these nanomaterials, caused by the effects of Cd2+ on the complex nanotoxicity pathways involved in cellular uptake. Unexpectedly, no decisive evidence of nanotoxicity of CdS and ZnS conjugates was observed in vivo using intravenous injections in BALB/c mice for 30 days, with minor localized fluorescence detected in liver tissue specimens. Therefore, these results proved that CdS nanoconjugates could pose an excessive threat for clinical applications due to unpredicted and uncorrelated in vitro and in vivo responses caused by highly toxic cadmium ions at biointerfaces. On the contrary, ZnS nanoconjugates proved that the “safe by design” concept used in this research (ie, biocompatible core–shell nanostructures) could benefit a plethora of applications in nanomedicine and oncology. PMID:27695325

  14. Surface biofunctionalized CdS and ZnS quantum dot nanoconjugates for nanomedicine and oncology: to be or not to be nanotoxic?

    PubMed Central

    Mansur, Alexandra AP; Mansur, Herman S; de Carvalho, Sandhra M; Lobato, Zélia IP; Guedes, Maria IMC; Leite, Maria F

    2016-01-01

    Herein, for the first time, we demonstrated that novel biofunctionalized semiconductor nanomaterials made of Cd-containing fluorescent quantum dot nanoconjugates with the surface capped by an aminopolysaccharide are not biologically safe for clinical applications. Conversely, the ZnS-based nanoconjugates proved to be noncytotoxic, considering all the parameters investigated. The results of in vitro cytotoxicity were remarkably dependent on the chemical composition of quantum dot (CdS or ZnS), the nature of the cell (human cancerous and embryonic types), and the concentration and time period of exposure to these nanomaterials, caused by the effects of Cd2+ on the complex nanotoxicity pathways involved in cellular uptake. Unexpectedly, no decisive evidence of nanotoxicity of CdS and ZnS conjugates was observed in vivo using intravenous injections in BALB/c mice for 30 days, with minor localized fluorescence detected in liver tissue specimens. Therefore, these results proved that CdS nanoconjugates could pose an excessive threat for clinical applications due to unpredicted and uncorrelated in vitro and in vivo responses caused by highly toxic cadmium ions at biointerfaces. On the contrary, ZnS nanoconjugates proved that the “safe by design” concept used in this research (ie, biocompatible core–shell nanostructures) could benefit a plethora of applications in nanomedicine and oncology.

  15. Supersensitization of CdS quantum dots with a near-infrared organic dye: toward the design of panchromatic hybrid-sensitized solar cells.

    PubMed

    Choi, Hyunbong; Nicolaescu, Roxana; Paek, Sanghyun; Ko, Jaejung; Kamat, Prashant V

    2011-11-22

    The photoresponse of quantum dot solar cells (QDSCs) has been successfully extended to the near-IR (NIR) region by sensitizing nanostructured TiO(2)-CdS films with a squaraine dye (JK-216). CdS nanoparticles anchored on mesoscopic TiO(2) films obtained by successive ionic layer adsorption and reaction (SILAR) exhibit limited absorption below 500 nm with a net power conversion efficiency of ~1% when employed as a photoanode in QDSC. By depositing a thin barrier layer of Al(2)O(3), the TiO(2)-CdS films were further modified with a NIR absorbing squaraine dye. Quantum dot sensitized solar cells supersensitized with a squariand dye (JK-216) showed good stability during illumination with standard global AM 1.5 solar conditions, delivering a maximum overall power conversion efficiency (η) of 3.14%. Transient absorption and pulse radiolysis measurements provide further insight into the excited state interactions of squaraine dye with SiO(2), TiO(2), and TiO(2)/CdS/Al(2)O(3) films and interfacial electron transfer processes. The synergy of combining semiconductor quantum dots and NIR absorbing dye provides new opportunities to harvest photons from different regions of the solar spectrum.

  16. Functionalization of gold nanoparticles and CdS quantum dots with cell penetrating peptides

    NASA Astrophysics Data System (ADS)

    Berry, Catherine C.; de la Fuente, Jesus M.

    2009-02-01

    During the last decade, there has been great deal of interest in the self-assembly fabrication of hybrid materials from inorganic nanoparticles and biomolecules. Nanoparticles are similar in size range to many common biomolecules, thus, nanoparticles appear to be natural companions in hybrid systems. At present, it is straightforward to control and modify properties of nanostructures to better suit their integration with biological systems; for example, controlling their size, modifying their surface layer for enhanced aqueous solubility, biocompatibility, or biorecognition. A particularly desirable target for therapeutic uses is the cell nucleus, because the genetic information is there. We review in this article the synthesis developed by our research group of water-soluble gold nanoparticles and CdS nanocrystals functionalized with a Tat protein-derived peptide sequence by straightforward and economical methodologies. The particles were subsequently tested in vitro with a human fibroblast cell line using optical and transmission electron microscopy to determine the biocompatibility of these nanoparticles and whether the functionalization with the cell penetrating peptide allowed particles to transfer across the cell membrane and locate into the nucleus.

  17. The nanostructure problem

    SciTech Connect

    Billinge, S.

    2010-03-22

    multitude of Bragg peak intensities, providing ample redundant intensity information to make up for the lost phases. Finally, there are highly efficient algorithms, such as 'direct methods,' that make excellent use of the available information and constraints to find the solution quickly from a horrendously large search space. The problem is often so overconstrained that we can cavalierly throw away lots of directional information. In particular, even though Bragg peaks are orientationally averaged to a 1D function in a powder diffraction measurement, we still can get a 3D structural solution. Now it becomes easy to understand the enormous challenge of solving nanostructures: the information content in the data is degraded while the complexity of the model is much greater.

  18. Metal-dielectric photonic crystal superlattice: 1D and 2D models and empty lattice approximation

    NASA Astrophysics Data System (ADS)

    Kichin, G.; Weiss, T.; Gao, H.; Henzie, J.; Odom, T. W.; Tikhodeev, S. G.; Giessen, H.

    2012-10-01

    Periodic nanostructures are one of the main building blocks in modern nanooptics. They are used for constructing photonic crystals and metamaterials and provide optical properties that can be changed by adjusting the geometrical parameters of the structures. In this paper the optical properties of a photonic crystal slab with a 2D superlattice are discussed. The structure consists of a gold layer with a finite periodic pattern of air holes that is itself repeated periodically with a larger superperiod. We propose simplified 1D and 2D models to understand the physical nature of Wood's anomalies in the optical spectra of the investigated structure. The latter are attributed to the Rayleigh anomalies, surface plasmon Bragg resonances and the hole-localized plasmons.

  19. Controlling Orientational Order in 1-D Assemblies of Multivalent Triangular Prisms.

    PubMed

    Kohlstedt, Kevin L; Olvera de la Cruz, Monica; Schatz, George C

    2013-01-01

    Multivalent nanostructures are becoming an increasingly important player in the self-assembly of supramolecular lattices. Understanding the role that shape plays in the coordination of the assemblies is crucial for the functional response of the material. We develop a simple design rule for the assembly of multivalent Au triangular nanoprisms into 1-D ordered arrays based on both the length of the valent DNA and the aspect ratio of the prism. Using MD simulations, we describe an order parameter that captures the short-range order of the assembly controlled by the design parameters. The order parameter shows that even short chains (N = 4) of prisms have a high degree of orientational order that transitions to no orientational order when the DNA length is similar to the prism length. Unlike isotropic polyvalent assemblies, we find that the highly oriented chains of prisms lose orientational order in discrete steps during melting as the prisms in the arrays dissociate.

  20. New method for the controlled creation of sub-15 nm aluminum nanowires to probe the 1D superconductor-insulator transition

    NASA Astrophysics Data System (ADS)

    Morgan-Wall, Tyler; Hughes, Hannah; Hartman, Nik; McQueen, Tyrell; Markovic, Nina

    2014-03-01

    We have developed a new method for the creation of sub-15 nm aluminum nanostructures using a sodium bicarbonate solution. Using PMMA masks patterned with e-beam lithography, we can controllably etch lithographically-produced nanostructures while measuring their resistances in-situ using a 4-probe measurement. This technique allows for precise control over the final resistance and thus can be used to create a wide variety of nanodevices. In particular, this technique allows for the creation of nanowires to probe the superconductor-insulator transition in 1D.

  1. A composite CdS thin film/TiO2 nanotube structure by ultrafast successive electrochemical deposition toward photovoltaic application

    NASA Astrophysics Data System (ADS)

    Fu, Han; Liu, Hong; Shen, Wenzhong

    2014-11-01

    Fabricating functional compounds on substrates with complicated morphology has been an important topic in material science and technology, which remains a challenging issue to simultaneously achieve a high growth rate for a complex nanostructure with simple controlling factors. Here, we present a novel simple and successive method based on chemical reactions in an open reaction system manipulated by an electric field. A uniform CdS/TiO2 composite tubular structure has been fabricated in highly ordered TiO2 nanotube arrays in a very short time period (~90 s) under room temperature (RT). The content of CdS in the resultant and its crystalline structure was tuned by the form and magnitude of external voltage. The as-formed structure has shown a quite broad and bulk-like light absorption spectrum with the absorption of photon energy even below that of the bulk CdS. The as-fabricated-sensitized solar cell based on this composite structure has achieved an efficiency of 1.43% without any chemical doping or co-sensitizing, 210% higher than quantum dot-sensitized solar cell (QDSSC) under a similar condition. Hopefully, this method can also easily grow nanostructures based on a wide range of compound materials for energy science and electronic technologies, especially for fast-deploying devices.

  2. A composite CdS thin film/TiO2 nanotube structure by ultrafast successive electrochemical deposition toward photovoltaic application

    PubMed Central

    2014-01-01

    Fabricating functional compounds on substrates with complicated morphology has been an important topic in material science and technology, which remains a challenging issue to simultaneously achieve a high growth rate for a complex nanostructure with simple controlling factors. Here, we present a novel simple and successive method based on chemical reactions in an open reaction system manipulated by an electric field. A uniform CdS/TiO2 composite tubular structure has been fabricated in highly ordered TiO2 nanotube arrays in a very short time period (~90 s) under room temperature (RT). The content of CdS in the resultant and its crystalline structure was tuned by the form and magnitude of external voltage. The as-formed structure has shown a quite broad and bulk-like light absorption spectrum with the absorption of photon energy even below that of the bulk CdS. The as-fabricated-sensitized solar cell based on this composite structure has achieved an efficiency of 1.43% without any chemical doping or co-sensitizing, 210% higher than quantum dot-sensitized solar cell (QDSSC) under a similar condition. Hopefully, this method can also easily grow nanostructures based on a wide range of compound materials for energy science and electronic technologies, especially for fast-deploying devices. PMID:25520588

  3. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  4. Optical waveguide beam splitters based on hybrid metal-dielectric-semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liang, Junwu; Zhang, Qinglin; Zhou, Zidong; Li, Honglai; Fan, Xiaopeng; Wang, Xiaoxia; Fan, Peng; Yang, Yankun; Guo, Pengfei; Zhuang, Xiujuan; Zhu, Xiaoli; Liao, Lei; Pan, Anlian

    2015-11-01

    Miniature integration is desirable for the future photonics circuit. Low-dimensional semiconductor and metal nanostructures is the potential building blocks in compact photonic circuits for their unique electronic and optical properties. In this work, a hybrid metal-dielectric-semiconductor nanostructure is designed and fabricated to realizing a nano-scale optical waveguide beam splitter, which is constructed with the sandwiched structure of a single CdS nanoribbon/HfO2 thin film/Au nanodisk arrays. Micro-optical investigations reveal that the guided light outputting at the terminal end of the CdS ribbon is well separated into several light spots. Numerical simulations further demonstrate that the beam splitting mechanism is attributed to the strong electromagnetic coupling between the Au nanodisks and light guided in the nanoribbon. The number of the split beams (light spots) at the terminal end of the nanoribbon is mainly determined by the number of the Au nanodisk rows, as well as the distance of the blank region between the nanodisks array and the end of the CdS ribbon, owing to the interference between the split beams. These optical beam splitters may find potential applications in high-density integrated photonic circuits and systems.

  5. Endoplasmic Reticulum Glycoprotein Quality Control Regulates CD1d Assembly and CD1d-mediated Antigen Presentation*

    PubMed Central

    Kunte, Amit; Zhang, Wei; Paduraru, Crina; Veerapen, Natacha; Cox, Liam R.; Besra, Gurdyal S.; Cresswell, Peter

    2013-01-01

    The non-classical major histocompatibility complex (MHC) homologue CD1d presents lipid antigens to innate-like lymphocytes called natural-killer T (NKT) cells. These cells, by virtue of their broad cytokine repertoire, shape innate and adaptive immune responses. Here, we have assessed the role of endoplasmic reticulum glycoprotein quality control in CD1d assembly and function, specifically the role of a key component of the quality control machinery, the enzyme UDP glucose glycoprotein glucosyltransferase (UGT1). We observe that in UGT1-deficient cells, CD1d associates prematurely with β2-microglobulin (β2m) and is able to rapidly exit the endoplasmic reticulum. At least some of these CD1d-β2m heterodimers are shorter-lived and can be rescued by provision of a defined exogenous antigen, α-galactosylceramide. Importantly, we show that in UGT1-deficient cells the CD1d-β2m heterodimers have altered antigenicity despite the fact that their cell surface levels are unchanged. We propose that UGT1 serves as a quality control checkpoint during CD1d assembly and further suggest that UGT1-mediated quality control can shape the lipid repertoire of newly synthesized CD1d. The quality control process may play a role in ensuring stability of exported CD1d-β2m complexes, in facilitating presentation of low abundance high affinity antigens, or in preventing deleterious responses to self lipids. PMID:23615906

  6. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    SciTech Connect

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  7. EUV line intensities above the limb measured by CDS

    NASA Technical Reports Server (NTRS)

    Fludra, A.; DelZanna, G.; Bromage, B. J. I.; Thomas, R. J.

    1997-01-01

    The extreme ultraviolet (EUV) above the limb observed with the coronal diagnostic spectrometer (CDS) are discussed. The CDS spectra were obtained up to 0.3 solar radii above the east and west limb, and above the polar coronal holes. A large data set was acquired during the campaign in August 1996. The intensities of the chromospheric, transition region and coronal lines were derived as a function of the radial distance. The density-sensitive line ratios of Si IX 350/342 A and Si X 356/347 A were used to derive an average electron density. The temperature and density in the coronal holes were found to be lower than in the closed field regions.

  8. Optoelectronic characteristics of single CdS nanobelts

    SciTech Connect

    Li, Q.H.; Gao, T.; Wang, T.H.

    2005-05-09

    Optoelectronic properties of single CdS nanobelts are investigated by performing transport measurements with different laser ON/OFF circles. The current increases linearly with the bias voltage in the dark, and superlinearly under illumination. The superlinear increase can be related to the enhanced mobility due to the partial release of surface adsorbates under illumination. The current jumps up by five orders of magnitude upon turning on the laser with an intensity of 0.3 W/cm{sup 2} within 91 ms and decreases by five orders 6 ms just after turning off the laser. The high sensitivity and fast response in the visible range indicate potential applications of CdS nanobelts in realizing optoelectronic switches.

  9. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.

    PubMed

    Güder, Firat; Yang, Yang; Krüger, Michael; Stevens, Gregory B; Zacharias, Margit

    2010-12-01

    A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface. PMID:21047101

  10. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.

    PubMed

    Güder, Firat; Yang, Yang; Krüger, Michael; Stevens, Gregory B; Zacharias, Margit

    2010-12-01

    A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface.

  11. Preliminary Results from Coordinated UVCS-CDS-Ulysses Observations

    NASA Technical Reports Server (NTRS)

    Parenti, S.; Bromage, B. J.; Poletto, G.; Suess, S. T.; Raymond, J. C.; Noci, G.; Bromage, G. E.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The June 2000 quadrature between the Sun, Earth, and Ulysses took place with Ulysses at a distance of 3.35 AU from the Sun and at heliocentric latitude 58.2 deg south, in the southeast quadrant. This provided an opportunity to observe the corona close to the Sun with Coronal Diagnostic Spectrometer (CDS) and Ultraviolet Coronograph Spectrometer (UVCS) and, subsequently, to sample the same plasma when it reached Ulysses. Here we focus on simultaneous observations of UVCS and CDS made on June 12, 13, 16 and 17. The UVCS data were acquired at heliocentric altitudes ranging from 1.6 to 2.2 solar radii, using different grating positions, in order to get a wide wavelength range. CDS data consisted of Normal Incidence Spectrometer (NIS) full wavelength rasters of 120" x 150" centered at altitudes up to 1.18 solar radii, together with Grazing Incidence Spectrometer (GIS) 4" x 4" rasters within the same field of view, out to 1.2 solar radii. The radial direction to Ulysses passed through a high latitude streamer, throughout the 4 days of observations, Analysis of the spectra taken by UVCS shows a variation of the element abundances in the streamer over our observing interval: however, because the observations were in slightly different parts of the streamer on different days, the variation could be ascribed either to a temporal or spatial effect. The oxygen abundance, however, seems to increase at the edge of the streamer, as indicated by previous analyses. This suggests the variation may be a function of position within the streamer, rather than a temporal effect. Oxygen abundances measured by SWICS on Ulysses are compared with the CDS and UVCS results to see whether changes measured in situ follow the same pattern.

  12. Measuring Strong Nanostructures

    ScienceCinema

    Andy Minor

    2016-07-12

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  13. Measuring Strong Nanostructures

    SciTech Connect

    Andy Minor

    2008-10-16

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  14. Bioinspired chemistry: Rewiring nanostructures

    NASA Astrophysics Data System (ADS)

    Ulijn, Rein V.; Caponi, Pier-Francesco

    2010-07-01

    The cell's dynamic skeleton, a tightly regulated network of protein fibres, continues to provide inspiration for the design of synthetic nanostructures. Genetic engineering has now been used to encode non-biological functionality within these structures.

  15. D1/D5 dopamine receptors modulate spatial memory formation.

    PubMed

    da Silva, Weber C N; Köhler, Cristiano C; Radiske, Andressa; Cammarota, Martín

    2012-02-01

    We investigated the effect of the intra-CA1 administration of the D1/D5 receptor antagonist SCH23390 and the D1/D5 receptor agonist SKF38393 on spatial memory in the water maze. When given immediately, but not 3h after training, SCH23390 hindered long-term spatial memory formation without affecting non-spatial memory or the normal functionality of the hippocampus. On the contrary, post-training infusion of SKF38393 enhanced retention and facilitated the spontaneous recovery of the original spatial preference after reversal learning. Our findings demonstrate that hippocampal D1/D5 receptors play an essential role in spatial memory processing.

  16. Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures

    PubMed Central

    Huang, Jin; Wan, Qing

    2009-01-01

    This article provides a comprehensive review of recent (2008 and 2009) progress in gas sensors based on semiconducting metal oxide one-dimensional (1D) nanostructures. During last few years, gas sensors based on semiconducting oxide 1D nanostructures have been widely investigated. Additionally, modified or doped oxide nanowires/nanobelts have also been synthesized and used for gas sensor applications. Moreover, novel device structures such as electronic noses and low power consumption self-heated gas sensors have been invented and their gas sensing performance has also been evaluated. Finally, we also point out some challenges for future investigation and practical application. PMID:22303154

  17. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies.

    PubMed

    Stojanović, Zoran S; Ignjatović, Nenad; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana; Škapin, Srečo; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

    2016-11-01

    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous

  18. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies.

    PubMed

    Stojanović, Zoran S; Ignjatović, Nenad; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana; Škapin, Srečo; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

    2016-11-01

    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous

  19. Low-dimensional hyperthin FeS2 nanostructures for efficient and stable hydrogen evolution electrocatalysis

    DOE PAGES

    Jasion, Daniel; Qiao, Qiao; Barforoush, Joseph M.; Zhu, Yimei; Ren, Shenqiang; Leonard, Kevin C.

    2015-10-05

    We report a scalable, solution-processing method for synthesizing low-dimensional hyperthin FeS2 nanostructures, and we show that 2D FeS2 disc nanostructures are an efficient and stable hydrogen evolution electrocatalyst. By changing the Fe:S ratio in the precursor solution, we were able to preferentially synthesize either 1D wire or 2D disc nanostructures. The 2D FeS2 disc structure has the highest electrocatalytic activity for the hydrogen evolution reaction, comparable to platinum in neutral pH conditions. Moreover, the ability of the FeS2 nanostructures to generate hydrogen was confirmed by scanning electrochemical microscopy, and the 2D disc nanostructures were able to generate hydrogen for overmore » 125 h.« less

  20. A human serotonin 1D receptor variant (5HT1D beta) encoded by an intronless gene on chromosome 6.

    PubMed Central

    Demchyshyn, L; Sunahara, R K; Miller, K; Teitler, M; Hoffman, B J; Kennedy, J L; Seeman, P; Van Tol, H H; Niznik, H B

    1992-01-01

    An intronless gene encoding a serotonin receptor (5HT1D beta) has been cloned and functionally expressed in mammalian fibroblast cultures. Based on the deduced amino acid sequence, the gene encodes a 390-amino acid protein displaying considerable homology, within putative transmembrane domains (approximately 75% identity) to the canine and human 5HT1D receptors. Membranes prepared from CHO cells stably expressing the receptor bound [3H]serotonin with high affinity (Kd 4 nM) and displayed a pharmacological profile consistent, but not identical, with that of the characterized serotonin 5HT1D receptor. Most notably, metergoline and serotonergic piperazine derivatives, as a group, display 3- to 8-fold lower affinity for the 5HT1D beta receptor than for the 5HT1D receptor, whereas both receptors display similar affinities for tryptamine derivatives, including the antimigraine drug sumatriptan. Northern blot analysis revealed an mRNA of approximately 5.5 kilobases expressed in human and monkey frontal cortex, medulla, striatum, hippocampus and amygdala but not in cerebellum, olfactory tubercle, and pituitary. The 5HT1D beta gene maps to human chromosome 6. The existence of multiple neuronal 5HT1D-like receptors may help account for some of the complexities associated with [3H]serotonin binding patterns in native membranes. Images PMID:1351684

  1. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    PubMed

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. PMID:27389477

  2. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    PubMed

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.

  3. 60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND MAIN COOLANT PUMP LOOKING NORTHEAST (LOCATION OOO) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  4. Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.

    PubMed

    Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich

    2016-04-01

    High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. PMID:26902182

  5. Synthesis of nitrogen-doped carbon nanostructures from polyurethane sponge for bioimaging and catalysis.

    PubMed

    Yang, Yong; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2015-08-01

    A facile and environmentally friendly method was developed for the fabrication of N-doped carbon nanomaterials by hydrothermal treatment using polyurethane (PU) sponge as a carbon source. We have demonstrated that the hydrothermal decomposition of PU sponge involves top-down hydrolysis and bottom-up polymerization processes for the synthesis of N-doped carbon dots (N-CDs). Fluorescence spectroscopy and cytotoxicity studies indicated that these highly-soluble N-CDs show excellent photoluminescence properties and low cytotoxicity, and can be used as good probes for cellular imaging. Additionally, the N-doped hollow carbon nanostructures can be designed using a simple template method. The prepared N-doped double-shelled hollow carbon nanotubes exhibited excellent ORR electrocatalytic activity and superior durability. Indeed, our method described here can provide an efficient way to synthesize N-doped carbon-based materials for a broad range of applications.

  6. TBC1D24 genotype–phenotype correlation

    PubMed Central

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  7. Analysis on surface nanostructures present in hindwing of dragon fly (Sympetrum vulgatum) using atomic force microscopy.

    PubMed

    Selvakumar, Rajendran; Karuppanan, Karthikeyan K; Pezhinkattil, Radhakrishnan

    2012-12-01

    The present study involves the analysis of surface nanostructures and its variation present in the hind wing of dragon fly (Sympetrum vulgatum) using atomic force microscopy (AFM). The hindwing was dissected into 4 parts (D1-D4) and each dissected section was analyzed using AFM in tapping mode at different locations. The AFM analysis revealed the presence of irregular shaped nanostructures on the surface of the wing membrane with size varying between 83.25±1.79 nm to 195.08±10.25 nm. The size and shape of the nanostructure varied from tip (pterostigma) to the costa part. The membrane surface of the wing showed stacked arrangement leading to increase in size of the nanostructure. Such arrangement of the nanostructures has lead to the formation of nanometer sized valleys of different depth and length on the membrane surface giving them ripple wave morphology. The average roughness of the surface nanostructures varied from 18.58±3.12 nm to 24.25±8.33 nm. Surfaces of the wings had positive skewness in D1, D2 and D4 regions and negative skewness in D3 region. These surface nanostructures may contribute asymmetric resistance under mechanical loading during the flight by increasing the bending and torsional resistance of the wing. PMID:22099389

  8. Analysis on surface nanostructures present in hindwing of dragon fly (Sympetrum vulgatum) using atomic force microscopy.

    PubMed

    Selvakumar, Rajendran; Karuppanan, Karthikeyan K; Pezhinkattil, Radhakrishnan

    2012-12-01

    The present study involves the analysis of surface nanostructures and its variation present in the hind wing of dragon fly (Sympetrum vulgatum) using atomic force microscopy (AFM). The hindwing was dissected into 4 parts (D1-D4) and each dissected section was analyzed using AFM in tapping mode at different locations. The AFM analysis revealed the presence of irregular shaped nanostructures on the surface of the wing membrane with size varying between 83.25±1.79 nm to 195.08±10.25 nm. The size and shape of the nanostructure varied from tip (pterostigma) to the costa part. The membrane surface of the wing showed stacked arrangement leading to increase in size of the nanostructure. Such arrangement of the nanostructures has lead to the formation of nanometer sized valleys of different depth and length on the membrane surface giving them ripple wave morphology. The average roughness of the surface nanostructures varied from 18.58±3.12 nm to 24.25±8.33 nm. Surfaces of the wings had positive skewness in D1, D2 and D4 regions and negative skewness in D3 region. These surface nanostructures may contribute asymmetric resistance under mechanical loading during the flight by increasing the bending and torsional resistance of the wing.

  9. Extracellular Synthesis of Luminescent CdS Quantum Dots Using Plant Cell Culture.

    PubMed

    Borovaya, Mariya N; Burlaka, Olga M; Naumenko, Antonina P; Blume, Yaroslav B; Yemets, Alla I

    2016-12-01

    The present study describes a novel method for preparation of water-soluble CdS quantum dots, using bright yellow-2 (BY-2) cell suspension culture. Acting as a stabilizing and capping agent, the suspension cell culture mediates the formation of CdS nanoparticles. These semiconductor nanoparticles were determined by means of an UV-visible spectrophotometer, photoluminescence, high-resolution transmission electron microscopy (HRTEM), and XRD. Followed by the electron diffraction analysis of a selected area, transmission electron microscopy indicated the formation of spherical, crystalline CdS ranging in diameter from 3 to 7 nm and showed wurtzite CdS quantum dots. In the present work, the toxic effect of synthesized CdS quantum dots on Nicotiana tabacum protoplasts as a very sensitive model was under study. The results of this research revealed that biologically synthesized CdS nanoparticles in low concentrations did not induce any toxic effects. PMID:26909780

  10. Extracellular Synthesis of Luminescent CdS Quantum Dots Using Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Borovaya, Mariya N.; Burlaka, Olga M.; Naumenko, Antonina P.; Blume, Yaroslav B.; Yemets, Alla I.

    2016-02-01

    The present study describes a novel method for preparation of water-soluble CdS quantum dots, using bright yellow-2 (BY-2) cell suspension culture. Acting as a stabilizing and capping agent, the suspension cell culture mediates the formation of CdS nanoparticles. These semiconductor nanoparticles were determined by means of an UV-visible spectrophotometer, photoluminescence, high-resolution transmission electron microscopy (HRTEM), and XRD. Followed by the electron diffraction analysis of a selected area, transmission electron microscopy indicated the formation of spherical, crystalline CdS ranging in diameter from 3 to 7 nm and showed wurtzite CdS quantum dots. In the present work, the toxic effect of synthesized CdS quantum dots on Nicotiana tabacum protoplasts as a very sensitive model was under study. The results of this research revealed that biologically synthesized CdS nanoparticles in low concentrations did not induce any toxic effects.

  11. Photo current generation in RGO - CdS nanorod thin film device

    NASA Astrophysics Data System (ADS)

    Chakraborty, Koushik; Chakrabarty, Sankalpita; Ibrahim, Sk.; Pal, Tanusri; Ghosh, Surajit

    2016-05-01

    Herein, we report the synthesis and characterization of reduced graphene oxide (RGO) - cadmium sulfide (CdS) nanocomposite materials. The reduction of GO, formation of CdS and decoration of CdS onto RGO sheets were done in a one- pot solvothermal process. We have observed that the PL intensity for CdS nanorods remarkably quenched after the attachment of RGO, which established the photo induced charge transformation from the CdS nanorod to RGO sheets through the RGO-CdS interface. The optoelectronic transport properties of our fabricated large area thin film device exhibits excellent photo induced charge generation under simulated solar light illumination. The photo sensitivity of the device increases linearly with the increase of illuminated light intensity. The RGO-CdS composite exhibits enhance photocatalytic dye degradation efficiency in compare to control CdS under simulated solar light illumination.

  12. Synthesis of nitrogen-doped carbon nanostructures from polyurethane sponge for bioimaging and catalysis

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2015-07-01

    A facile and environmentally friendly method was developed for the fabrication of N-doped carbon nanomaterials by hydrothermal treatment using polyurethane (PU) sponge as a carbon source. We have demonstrated that the hydrothermal decomposition of PU sponge involves top-down hydrolysis and bottom-up polymerization processes for the synthesis of N-doped carbon dots (N-CDs). Fluorescence spectroscopy and cytotoxicity studies indicated that these highly-soluble N-CDs show excellent photoluminescence properties and low cytotoxicity, and can be used as good probes for cellular imaging. Additionally, the N-doped hollow carbon nanostructures can be designed using a simple template method. The prepared N-doped double-shelled hollow carbon nanotubes exhibited excellent ORR electrocatalytic activity and superior durability. Indeed, our method described here can provide an efficient way to synthesize N-doped carbon-based materials for a broad range of applications.A facile and environmentally friendly method was developed for the fabrication of N-doped carbon nanomaterials by hydrothermal treatment using polyurethane (PU) sponge as a carbon source. We have demonstrated that the hydrothermal decomposition of PU sponge involves top-down hydrolysis and bottom-up polymerization processes for the synthesis of N-doped carbon dots (N-CDs). Fluorescence spectroscopy and cytotoxicity studies indicated that these highly-soluble N-CDs show excellent photoluminescence properties and low cytotoxicity, and can be used as good probes for cellular imaging. Additionally, the N-doped hollow carbon nanostructures can be designed using a simple template method. The prepared N-doped double-shelled hollow carbon nanotubes exhibited excellent ORR electrocatalytic activity and superior durability. Indeed, our method described here can provide an efficient way to synthesize N-doped carbon-based materials for a broad range of applications. Electronic supplementary information (ESI) available. See DOI

  13. Nanostructured Semiconductor Device Design in Solar Cells

    NASA Astrophysics Data System (ADS)

    Dang, Hongmei

    We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the highest efficiency of 12% in nanostructured CdS-CdTe solar cells. Reliability is improved by approximately 3 times over the cells with the traditional planar CdS counterpart. Junction transport mechanisms are delineated for advancing the basic understanding of device physics at the interface. Our results prove the efficacy of this nanowire approach for enhancing the quantum efficiency and the reliability in windowabsorber type solar cells (CdS-CdTe, CdS-CIGS and CdS-CZTSSe etc) and other optoelectronic devices. We further introduce MoO3-x as a transparent, low barrier back contact. We design nanowire CdS-CdTe solar cells on flexible foils of metals in a superstrate device structure, which makes low-cost roll-to-roll manufacturing process feasible and greatly reduces the complexity of fabrication. The MoO3 layer reduces the valence band offset relative to the CdTe, and creates improved cell performance. Annealing as-deposited MoO3 in N 2 reduces series resistance from 9.98 O/cm2 to 7.72 O/cm2, and hence efficiency of the nanowire solar cell is improved from 9.9% to 11%, which efficiency comparable to efficiency of planar counterparts. When the nanowire solar cell is illuminated from MoO 3-x /Au side, it yields an efficiency of 8.7%. This reduction in efficiency is attributed to decrease in Jsc from 25.5m

  14. Surface modification of cadmium sulfide thin film honey comb nanostructures: Effect of in situ tin doping using chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Wilson, K. C.; Basheer Ahamed, M.

    2016-01-01

    Even though nanostructures possess large surface to volume ratio compared to their thin film counterpart, the complicated procedure that demands for the deposition on a substrate kept them back foot in device fabrication techniques. In this work, a honey comb like cadmium sulfide (CdS) thin films nanostructure are deposited on glass substrates using simple chemical bath deposition technique at 65 °C. Energy band gaps, film thickness and shell size of the honey comb nanostructures are successfully controlled using tin (Sn) doping and number of shells per unit area is found to be maximum for 5% Sn doped (in the reaction mixture) sample. X-ray diffraction and optical absorption analysis showed that cadmium sulfide and cadmium hydroxide coexist in the samples. TEM measurements showed that CdS nanostructures are embedded in cadmium hydroxide just like "plum pudding". Persistent photoconductivity measurements of the samples are also carried out. The decay constants found to be increased with increases in Sn doping.

  15. Nanostructured materials in potentiometry.

    PubMed

    Düzgün, Ali; Zelada-Guillén, Gustavo A; Crespo, Gastón A; Macho, Santiago; Riu, Jordi; Rius, F Xavier

    2011-01-01

    Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

  16. From 1D to 3D - macroscopic nanowire aerogel monoliths

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-07-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h

  17. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  18. Synthesis of porphyrin nanostructures

    DOEpatents

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  19. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-01

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof.

  20. The GIRAFFE Archive: 1D and 3D Spectra

    NASA Astrophysics Data System (ADS)

    Royer, F.; Jégouzo, I.; Tajahmady, F.; Normand, J.; Chilingarian, I.

    2013-10-01

    The GIRAFFE Archive (http://giraffe-archive.obspm.fr) contains the reduced spectra observed with the intermediate and high resolution multi-fiber spectrograph installed at VLT/UT2 (ESO). In its multi-object configuration and the different integral field unit configurations, GIRAFFE produces 1D spectra and 3D spectra. We present here the status of the archive and the different functionalities to select and download both 1D and 3D data products, as well as the present content. The two collections are available in the VO: the 1D spectra (summed in the case of integral field observations) and the 3D field observations. These latter products can be explored using the VO Paris Euro3D Client (http://voplus.obspm.fr/ chil/Euro3D).

  1. PC-1D installation manual and user's guide

    SciTech Connect

    Basore, P.A.

    1991-05-01

    PC-1D is a software package for personal computers that uses finite-element analysis to solve the fully-coupled two-carrier semiconductor transport equations in one dimension. This program is particularly useful for analyzing the performance of optoelectronic devices such as solar cells, but can be applied to any bipolar device whose carrier flows are primarily one-dimensional. This User's Guide provides the information necessary to install PC-1D, define a problem for solution, solve the problem, and examine the results. Example problems are presented which illustrate these steps. The physical models and numerical methods utilized are presented in detail. This document supports version 3.1 of PC-1D, which incorporates faster numerical algorithms with better convergence properties than previous versions of the program. 51 refs., 17 figs., 5 tabs.

  2. Pitch-based pattern splitting for 1D layout

    NASA Astrophysics Data System (ADS)

    Nakayama, Ryo; Ishii, Hiroyuki; Mikami, Koji; Tsujita, Koichiro; Yaegashi, Hidetami; Oyama, Kenichi; Smayling, Michael C.; Axelrad, Valery

    2015-07-01

    The pattern splitting algorithm for 1D Gridded-Design-Rules layout (1D layout) for sub-10 nm node logic devices is shown. It is performed with integer linear programming (ILP) based on the conflict graph created from a grid map for each designated pitch. The relation between the number of times for patterning and the minimum pitch is shown systematically with a sample pattern of contact layer for each node. From the result, the number of times for patterning for 1D layout is fewer than that for conventional 2D layout. Moreover, an experimental result including SMO and total integrated process with hole repair technique is presented with the sample pattern of contact layer whose pattern density is relatively high among critical layers (fin, gate, local interconnect, contact, and metal).

  3. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures.

    PubMed

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-16

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof. PMID:27634531

  4. Simulation of Semiconductor Nanostructures

    SciTech Connect

    Williamson, A J; Grossman, J C; Puzder, A; Benedict, L X; Galli, G

    2001-07-19

    The field of research into the optical properties of silicon nanostructures has seen enormous growth over the last decade. The discovery that silicon nanoparticles exhibit visible photoluminescence (PL) has led to new insights into the mechanisms responsible for such phenomena. The importance of understanding and controlling the PL properties of any silicon based material is of paramount interest to the optoelectronics industry where silicon nanoclusters could be embedded into existing silicon based circuitry. In this talk, we present a combination of quantum Monte Carlo and density functional approaches to the calculation of the electronic, structural, and optical properties of silicon nanostructures.

  5. Plasmonic nanostructures: artificial molecules.

    PubMed

    Wang, Hui; Brandl, Daniel W; Nordlander, Peter; Halas, Naomi J

    2007-01-01

    This Account describes a new paradigm for the relationship between the geometry of metallic nanostructures and their optical properties. While the interaction of light with metallic nanoparticles is determined by their collective electronic or plasmon response, a compelling analogy exists between plasmon resonances of metallic nanoparticles and wave functions of simple atoms and molecules. Based on this insight, an entire family of plasmonic nanostructures, artificial molecules, has been developed whose optical properties can be understood within this picture: nanoparticles (nanoshells, nanoeggs, nanomatryushkas, nanorice), multi-nanoparticle assemblies (dimers, trimers, quadrumers), and a nanoparticle-over-metallic film, an electromagnetic analog of the spinless Anderson model. PMID:17226945

  6. Plasmonics in nanostructures.

    PubMed

    Fang, Zheyu; Zhu, Xing

    2013-07-26

    Plasmonics has developed into one of the rapidly growing research topics for nanophotonics. With advanced nanofabrication techniques, a broad variety of nanostructures can be designed and fabricated for plasmonic devices at nanoscale. Fundamental properties for both surface plasmon polaritons (SPP) and localized surface plasmons (LSP) arise a new insight and understanding for the electro-optical device investigations, such as plasmonic nanofocusing, low-loss plasmon waveguide and active plasmonic detectors for energy harvesting. Here, we review some typical functional plasmonic nanostructures and nanosmart devices emerging from our individual and collaborative research works.

  7. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    SciTech Connect

    KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  8. Observation of Dynamical Fermionization in 1D Bose Gases

    NASA Astrophysics Data System (ADS)

    Malvania, Neel; Xia, Lin; Xu, Wei; Wilson, Joshua M.; Zundel, Laura A.; Rigol, Marcos; Weiss, David S.

    2016-05-01

    The momentum distribution of a harmonically trapped 1D Bose gases in the Tonks-Girardeau limit is expected to undergo dynamical fermionization. That is, after the harmonic trap is suddenly turned off, the momentum distribution steadily transforms into that of an ideal Fermi gas in the same initial trap. We measure 1D momentum distributions at variable times after such a quench, and observe the predicted dynamical fermionization. In addition to working in the strong coupling limit, we also perform the experiment with intermediate coupling, where theoretical calculations are more challenging.

  9. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review

    PubMed Central

    Arafat, M. M.; Dinan, B.; Akbar, Sheikh A.; Haseeb, A. S. M. A.

    2012-01-01

    Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research. PMID:22969344

  10. Synthesis of monodispersed CdS nanoballs through {gamma}-irradiation route and building core-shell structure CdS SiO{sub 2}

    SciTech Connect

    Wang Zhaoxu; Chen Jiafu Xue Xuan; Hu Yong

    2007-12-04

    Monodispersed CdS nanoballs were synthesized through {gamma}-irradiating CdCl{sub 2}, Na{sub 2}S{sub 2}O{sub 3} and polyvinylpyrrolidone aqueous solution at room temperature. With these well monodispersed CdS nanoballs, CdS SiO{sub 2} core-shell structures were prepared under hydrolysis of tetraethylorthosilicate without adding a coupling agent. Field emission scanning electron micrograph, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, ultraviolet absorption and photoluminescence spectroscopy were used to characterize the products. It is hoped that the core-shell CdS SiO{sub 2} nanoballs would be used as good luminescence detecting material for biological systems, so this may stimulate technological interest and prospect many other applications in materials related fields.

  11. Non-cooperative Brownian donkeys: A solvable 1D model

    NASA Astrophysics Data System (ADS)

    Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.

    2003-12-01

    A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.

  12. 1D design style implications for mask making and CEBL

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.

    2013-09-01

    At advanced nodes, CMOS logic is being designed in a highly regular design style because of the resolution limitations of optical lithography equipment. Logic and memory layouts using 1D Gridded Design Rules (GDR) have been demonstrated to nodes beyond 12nm.[1-4] Smaller nodes will require the same regular layout style but with multiple patterning for critical layers. One of the significant advantages of 1D GDR is the ease of splitting layouts into lines and cuts. A lines and cuts approach has been used to achieve good pattern fidelity and process margin to below 12nm.[4] Line scaling with excellent line-edge roughness (LER) has been demonstrated with self-aligned spacer processing.[5] This change in design style has important implications for mask making: • The complexity of the masks will be greatly reduced from what would be required for 2D designs with very complex OPC or inverse lithography corrections. • The number of masks will initially increase, as for conventional multiple patterning. But in the case of 1D design, there are future options for mask count reduction. • The line masks will remain simple, with little or no OPC, at pitches (1x) above 80nm. This provides an excellent opportunity for continual improvement of line CD and LER. The line pattern will be processed through a self-aligned pitch division sequence to divide pitch by 2 or by 4. • The cut masks can be done with "simple OPC" as demonstrated to beyond 12nm.[6] Multiple simple cut masks may be required at advanced nodes. "Coloring" has been demonstrated to below 12nm for two colors and to 8nm for three colors. • Cut/hole masks will eventually be replaced by e-beam direct write using complementary e-beam lithography (CEBL).[7-11] This transition is gated by the availability of multiple column e-beam systems with throughput adequate for high- volume manufacturing. A brief description of 1D and 2D design styles will be presented, followed by examples of 1D layouts. Mask complexity for 1

  13. Nanostructured catalyst supports

    SciTech Connect

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  14. Measuring Strong Nanostructures

    SciTech Connect

    Minor, Andy

    2008-01-01

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information:http://newscenter.lbl.gov/press-releases/2008/10/20/engineering-nanoparticles-for-maximum-strength/

  15. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  16. The Financial Management System: A Pivotal Tool for Fiscal Viability. CDS Spotlight. ECAR Research Bulletin

    ERIC Educational Resources Information Center

    Lang, Leah; Pirani, Judith A.

    2014-01-01

    This spotlight focuses on data from the 2013 CDS to better understand how higher education institutions approach financial management systems. Information provided for this spotlight was derived from Module 8 of Core Data Service (CDS), which asked several questions regarding information systems and applications. Responses from 525 institutions…

  17. White luminescence from CdS nanocrystals under the blue light excitation

    SciTech Connect

    Li, Bo; Zhang, Xiaosong Li, Lan; Li, Mengzhen; Xu, Jianping; Hong, Yuan

    2014-06-01

    Trap-rich CdS nanocrystals were synthesized by employing CdSt{sub 2} and sulfur as precursors via thermal decomposition. Furthermore, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), absorption and photoluminescence (PL) spectra were used to characterize structure, morphology and luminescence properties of CdS nanocrystals (NCs). CdS NCs have a broad emission across 500–700 nm under the excitation of blue light with 460 nm, consequently, white light can be produced by mixing broad emission from CdS NCs excited by blue light, with the remaining blue light. In addition, the broad emission generation is closely and inseparably related to surface defects. Moreover, LaMer model was used to explain the phenomenon that the intensity of the trap emission gradually decreases as the reaction time increases in contrast with that of the band-edge emission. - Graphical abstract: Trap-rich CdS nanocrystals were synthesized. Furthermore, white light is produced by mixing broad emission across 500–700 nm from CdS NCs excited by blue light, in combination with the remaining blue light. - Highlights: • Trap-rich CdS nanocrystals were synthesized. • CdS NCs have a broad emission across 500–700 nm under the excitation of blue light. • White light can be produced by mixing broad emission with the remaining blue light.

  18. The Ever-Present Demand for Public Computing Resources. CDS Spotlight

    ERIC Educational Resources Information Center

    Pirani, Judith A.

    2014-01-01

    This Core Data Service (CDS) Spotlight focuses on public computing resources, including lab/cluster workstations in buildings, virtual lab/cluster workstations, kiosks, laptop and tablet checkout programs, and workstation access in unscheduled classrooms. The findings are derived from 758 CDS 2012 participating institutions. A dataset of 529…

  19. BI Reporting, Data Warehouse Systems, and Beyond. CDS Spotlight Report. Research Bulletin

    ERIC Educational Resources Information Center

    Lang, Leah; Pirani, Judith A.

    2014-01-01

    This Spotlight focuses on data from the 2013 Core Data Service [CDS] to better understand how higher education institutions approach business intelligence (BI) reporting and data warehouse systems (see the Sidebar for definitions). Information provided for this Spotlight was derived from Module 8 of CDS, which contains several questions regarding…

  20. Preparation of CdS Nanoparticles by First-Year Undergraduates

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Noviello, Thomas; Brooks, Stephen

    2007-01-01

    The first year undergraduates use a simple method to synthesize 5-nm CdS nanoparticles in a water-in-oil microemulsion. The quantum size effect, the relationship between colors, optical absorbance, band-gap energy and the CdS particles affected by the formation of micelles are observed.

  1. Multi-particle assembled porous nanostructured MgO: its application in fluoride removal

    NASA Astrophysics Data System (ADS)

    Gangaiah, Vijayakumar; Siddaramanna, Ashoka; Thimanna Chandrappa, Gujjarahalli

    2014-12-01

    In this article, a simple and economical route based on ethylene glycol mediated process was developed to synthesize one-dimensional (1D) multiparticle assembled nanostructured MgO using magnesium acetate and urea as reactants. Porous multiparticle chain-like MgO has been synthesized by the calcination of a solvothermally derived single nanostructured precursor. The prepared products were characterized by an x-ray diffraction (XRD) pattern, thermogravimetry, scanning/transmission electron microscopy (SEM/TEM) and N2 adsorption (BET). As a proof of concept, the porous multiparticle chain-like MgO has been applied in a water treatment for isolated and rural communities, and it has exhibited an excellent adsorption capability to remove fluoride in waste water. In addition, this method could be generalized to prepare other 1D nanostructures with great potential for various attractive applications.

  2. Optical properties of colloidal aqueous synthesized 3 mercaptopropionic acid stabilized CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Sumanth Kumar, D.; Jai Kumar, B.; Mahesh H., M.

    2016-05-01

    We have explored an easiest and simplest aqueous route to synthesize bright green luminescent CdS QDs using 3-Mercaptopropionic acid (MPA) as a stabilizer in air ambient for solar cell applications. The CdS quantum dots showed a strong quantum confinement effect with good stability, size and excellent photoluminescence. MPA Capping on CdS QDs was confirmed through FTIR. The Optical absorption spectrum revealed the CdS quantum dots are highly transparent in the visible region with absorption peak at 380 nm, confirming the quantum confinement. Photoluminescence showed an emission peak at 525 nm wavelength. The optical band gap energy was found to be 3.19 eV and CdS quantum dots radius calculated using Brus equation is 1.5 nm. The results are presented and discussed in detail.

  3. A biocatalytic approach towards synthesis of polymer CdS nanocomposites

    SciTech Connect

    Banerjee, S.; Premchandran, R.; Baumgartner, T.

    1996-10-01

    Copolymers of hydroxythiophenol and ethylphenol have been prepared using a biocatalytic route. Specifically, the method utilizes an oxidative enzyme, horseradish peroxidase, solubilized within the aqueous phase of a AOT/isooctane microemulsion. The monomers are oil soluble and are thus present in the organic phase. High conversions are obtained upto 1:1 molar ratio of the two monomers. The resulting polymers have the overall morphology of interconnected submicron spheres and are soluble in common organic solvents. Following their synthesis these copolymers have been derivatized by attaching Q-sized CdS particles. Though the copolymer itself is nonfluorescent, the CdS nanoclusters within it can be selectively excited and made to fluoresce. The fluorescent properties of the polymer CdS composite are distinctive from underivatized CdS or hydroxythiophenol monomer capped CdS.

  4. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    PubMed

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. PMID:27315521

  5. Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells.

    PubMed

    Prasad, Rajendra M B; Pathan, Habib M

    2016-04-01

    In spite of the promising design and architecture, quantum dot sensitized solar cells (QDSSCs) have a long way to go before they attain the actual projected photoconversion efficiencies. Such an inferior performance displayed by QDSSCs is primarily because of many unwanted recombination losses of charge carriers at various interfaces of the cell. Electron recombination due to back electron transfer at the photoanode/electrolyte interface is an important one that needs to be addressed, to improve the efficiency of these third generation nanostructured solar cells. The present work highlights the importance of conformal coverage of CdS quantum dots (QDs) on the surface of the nanocrystalline titania photoanode in arresting such recombinations, leading to improvement in the performance of the cells. Using the successive ionic layer adsorption and reaction (SILAR) process, photoanodes are subjected to different amounts of CdS QD sensitization by varying the number of cycles of deposition. The sensitized electrodes are characterized using UV-visible spectroscopy, cyclic voltammetry and transmission electron microscopy to evaluate the extent of surface coverage of titania electrodes by QDs. Sandwich solar cells are then fabricated using these electrodes and characterized employing electrochemical impedance spectroscopy and J-V characteristics. It is observed that maximum solar cell efficiency is obtained for photoanodes with conformal coating of QDs and any further deposition of sensitizer leads to QD aggregation and so reduces the performance of the solar cells.

  6. Experimental and theoretical XANES of CdS{sub x}Se{sub 1−x} nanostructures

    SciTech Connect

    Yiu, Y. M.; Sham, T. K.; Murphy, M. W.; Liu, L.; Hu, Y.

    2014-03-31

    The morphology and electronic properties of the CdS{sub x}Se{sub 1−x} nanostructures with varying alloy compositions have been acquired experimentally by X-ray Absorption Near-Edge Structures (XANES) at the Cd, Se and S K-edge and L{sub 3,2}-edges. The theoretical XANES spectra have been calculated using the density functional approach. It is found that the optical band-gap emission of these CdS{sub x}Se{sub 1−x} nano-ribbons can be tuned to the range between that of pure CdS (2.43 eV) and CdSe (1.74 eV) by changing the S and Se ratio. This gradual shift in (optical and structural) properties from CdS character to CdSe character is also seen in the electronic structures. The densities of states and band structures show that with the addition of Se replacing S in CdS, the band gap shrinks. The K and L{sub 3,2} edges of Cd, Se, and S of the XANES structures of both the CdS and CdSe in B4 (wurtzite) and B3 (cubic zinc-blende) structures have been calculated and compared.

  7. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization.

    PubMed

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2015-03-01

    This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259

  8. Analytical predictions of the temperature profile within semiconductor nanostructures for solid-state laser refrigeration

    NASA Astrophysics Data System (ADS)

    Smith, Bennett E.; Zhou, Xuezhe; Davis, E. James; Pauzauskie, Peter J.

    2016-03-01

    The laser refrigeration of solid-state materials with nanoscale dimensions has been demonstrated for both semi- conducting (cadmium sulfide, CdS) and insulating dielectrics (Yb:YLiF4, YLF) in recent years. During laser refrigeration it is possible to observe morphology dependent resonances (MDRs), analogous to what is well- known in classical (Mie) light scattering theory, when the characteristic dimensions of the nanostructure are comparable to the wavelength of light used to initiate the laser cooling process. Mie resonances can create substantial increases for internal optical fields within a given nanostructure with the potential to enhance the absorption efficiency at the beginning of the cooling cycle. Recent breakthroughs in the laser refrigeration of semiconductor nanostructures have relied on materials that exhibit rectangular symmetry (nanoribbons). Here, we will present recent analytical, closed-form solutions to the energy partial differential equation that can be used to calculate the internal spatial temperature profile with a given semiconductor nanoribbon during irradiation by a continuous-wave laser. First, the energy equation is made dimensionless through the substitution of variables before being solved using the classical separation-of-variables approach. In particular, calculations will be presented for chalcogenide (CdS) nanoribbons using a pump wavelength of 1064 nm. For nanostructures with lower symmetry (such as YLF truncated tetragonal bipyramids) it is also possible to observe MDRs through numerical simulations using either the discrete dipole approximation or finite-difference time-domain simulations, and the resulting temperature profile can be calculated using the finite element method. Theoretical predictions are presented using parameters that will allow comparison with experimental data in the near future.

  9. Manganese Nanostructures and Magnetism

    NASA Astrophysics Data System (ADS)

    Simov, Kirie Rangelov

    The primary goal of this study is to incorporate adatoms with large magnetic moment, such as Mn, into two technologically significant group IV semiconductor (SC) matrices, e.g. Si and Ge. For the first time in the world, we experimentally demonstrate Mn doping by embedding nanostructured thin layers, i.e. delta-doping. The growth is observed by in-situ scanning tunneling microscopy (STM), which combines topographic and electronic information in a single image. We investigate the initial stages of Mn monolayer growth on a Si(100)(2x1) surface reconstruction, develop methods for classification of nanostructure types for a range of surface defect concentrations (1.0 to 18.2%), and subsequently encapsulate the thin Mn layer in a SC matrix. These experiments are instrumental in generating a surface processing diagram for self-assembly of monoatomic Mn-wires. The role of surface vacancies has also been studied by kinetic Monte Carlo modeling and the experimental observations are compared with the simulation results, leading to the conclusion that Si(100)(2x1) vacancies serve as nucleation centers in the Mn-Si system. Oxide formation, which happens readily in air, is detrimental to ferromagnetism and lessens the magnetic properties of the nanostructures. Therefore, the protective SC cap, composed of either Si or Ge, serves a dual purpose: it is both the embedding matrix for the Mn nanostructured thin film and a protective agent for oxidation. STM observations of partially deposited caps ensure that the nanostructures remain intact during growth. Lastly, the relationship between magnetism and nanostructure types is established by an in-depth study using x-ray magnetic circular dichroism (XMCD). This sensitive method detects signals even at coverages less than one atomic layer of Mn. XMCD is capable of discerning which chemical compounds contribute to the magnetic moment of the system, and provides a ratio between the orbital and spin contributions. Depending on the amount

  10. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  11. 1-D Numerical Analysis of ABCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Holden, Richard

    1999-01-01

    ABCC engine combines air breathing and rocket engine into a single engine to increase the specific impulse over an entire flight trajectory. Except for the heat source, the basic operation of the ABCC is similar to the basic operation of the RBCC engine. The ABCC is intended to have a higher specific impulse than the RBCC for single stage Earth to orbit vehicle. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in ABCC propulsion system. The objective of the present research was to develop a transient 1-D numerical model using conservation of mass, linear momentum, and energy equations that could be used to predict flow behavior throughout a generic ABCC engine following a flight path. At specific points during the development of the 1-D numerical model a myriad of tests were performed to prove the program produced consistent, realistic numbers that follow compressible flow theory for various inlet conditions.

  12. Phase diagram of a bulk 1d lattice Coulomb gas

    NASA Astrophysics Data System (ADS)

    Démery, V.; Monsarrat, R.; Dean, D. S.; Podgornik, R.

    2016-01-01

    The exact solution, via transfer matrix, of the simple one-dimensional lattice Coulomb gas (1d LCG) model can reproduce peculiar features of ionic liquid capacitors, such as overscreening, layering, and camel- and bell-shaped capacitance curves. Using the same transfer matrix method, we now compute the bulk properties of the 1d LCG in the constant voltage ensemble. We unveil a phase diagram with rich structure exhibiting low-density disordered and high-density ordered phases, separated by a first-order phase transition at low temperature; the solid state at full packing can be ordered or not, depending on the temperature. This phase diagram, which is strikingly similar to its three-dimensional counterpart, also sheds light on the behaviour of the confined system.

  13. 1D Josephson quantum interference grids: diffraction patterns and dynamics

    NASA Astrophysics Data System (ADS)

    Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2016-02-01

    We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.

  14. Engineering DNA self-assemblies as templates for functional nanostructures.

    PubMed

    Wang, Zhen-Gang; Ding, Baoquan

    2014-06-17

    CONSPECTUS: DNA is a well-known natural molecule that carries genetic information. In recent decades, DNA has been used beyond its genetic role as a building block for the construction of engineering materials. Many strategies, such as tile assembly, scaffolded origami and DNA bricks, have been developed to design and produce 1D, 2D, and 3D architectures with sophisticated morphologies. Moreover, the spatial addressability of DNA nanostructures and sequence-dependent recognition enable functional elements to be precisely positioned and allow for the control of chemical and biochemical processes. The spatial arrangement of heterogeneous components using DNA nanostructures as the templates will aid in the fabrication of functional materials that are difficult to produce using other methods and can address scientific and technical challenges in interdisciplinary research. For example, plasmonic nanoparticles can be assembled into well-defined configurations with high resolution limit while exhibiting desirable collective behaviors, such as near-field enhancement. Conducting metallic or polymer patterns can be synthesized site-specifically on DNA nanostructures to form various controllable geometries, which could be used for electronic nanodevices. Biomolecules can be arranged into organized networks to perform programmable biological functionalities, such as distance-dependent enzyme-cascade activities. DNA nanostructures can carry multiple cytoactive molecules and cell-targeting groups simultaneously to address medical issues such as targeted therapy and combined administration. In this Account, we describe recent advances in the functionalization of DNA nanostructures in different fashions based on our research efforts in nanophotonics, nanoelectronics, and nanomedicine. We show that DNA origami nanostructures can guide the assembly of achiral, spherical, metallic nanoparticles into nature-mimicking chiral geometries through hybridization between complementary DNA

  15. Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir

    NASA Astrophysics Data System (ADS)

    Lauer, J. Wesley; Viparelli, Enrica; Piégay, Hervé

    2016-07-01

    Bed material transported in geomorphically active gravel bed rivers often has a local source at nearby eroding banks and ends up sequestered in bars not far downstream. However, most 1-D numerical models for gravel transport assume that gravel originates from and deposits on the channel bed. In this paper, we present a 1-D framework for simulating morphodynamic evolution of bed elevation and size distribution in a gravel-bed river that actively exchanges sediment with its floodplain, which is represented as an off-channel sediment reservoir. The model is based on the idea that sediment enters the channel at eroding banks whose elevation depends on total floodplain sediment storage and on the average elevation of the floodplain relative to the channel bed. Lateral erosion of these banks occurs at a specified rate that can represent either net channel migration or channel widening. Transfer of material out of the channel depends on a typical bar thickness and a specified lateral exchange rate due either to net channel migration or narrowing. The model is implemented using an object oriented framework that allows users to explore relationships between bank supply, bed structure, and lateral change rates. It is applied to a ∼50-km reach of the Ain River, France, that experienced significant reduction in sediment supply due to dam construction during the 20th century. Results are strongly sensitive to lateral exchange rates, showing that in this reach, the supply of sand and gravel at eroding banks and the sequestration of gravel in point bars can have strong influence on overall reach-scale sediment budgets.

  16. Temperature Evolution of Quasi-one-dimensional C60 Nanostructures on Rippled Graphene

    PubMed Central

    Chen, Chuanhui; Zheng, Husong; Mills, Adam; Heflin, James R.; Tao, Chenggang

    2015-01-01

    We report the preparation of novel quasi-one-dimensional (quasi-1D) C60 nanostructures on rippled graphene. Through careful control of the subtle balance between the linear periodic potential of rippled graphene and the C60 surface mobility, we demonstrate that C60 molecules can be arranged into a quasi-1D C60 chain structure with widths of two to three molecules. At a higher annealing temperature, the quasi-1D chain structure transitions to a more compact hexagonal close packed quasi-1D stripe structure. This first experimental realization of quasi-1D C60 structures on graphene may pave a way for fabricating new C60/graphene hybrid structures for future applications in electronics, spintronics and quantum information. PMID:26391054

  17. Temperature Evolution of Quasi-one-dimensional C60 Nanostructures on Rippled Graphene

    NASA Astrophysics Data System (ADS)

    Chen, Chuanhui; Zheng, Husong; Mills, Adam; Heflin, James R.; Tao, Chenggang

    2015-09-01

    We report the preparation of novel quasi-one-dimensional (quasi-1D) C60 nanostructures on rippled graphene. Through careful control of the subtle balance between the linear periodic potential of rippled graphene and the C60 surface mobility, we demonstrate that C60 molecules can be arranged into a quasi-1D C60 chain structure with widths of two to three molecules. At a higher annealing temperature, the quasi-1D chain structure transitions to a more compact hexagonal close packed quasi-1D stripe structure. This first experimental realization of quasi-1D C60 structures on graphene may pave a way for fabricating new C60/graphene hybrid structures for future applications in electronics, spintronics and quantum information.

  18. Electronic characteristics of 'real' CdS surfaces.

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Balestra, C. L.; Gatos, H. C.

    1972-01-01

    Photovoltage spectroscopy (including photovoltage inversion and photovoltage quenching) was used to determine the electronic characteristics of real (basal and prismatic) surfaces of CdS. In room atmosphere, surface states with the following positions were found in the cadmium surfaces: Ec - Et equal to 0.05, 0.4, and 0.8 eV, and Ev - Et equal to 0.83 eV. The same surface states were present in the sulfur surfaces, with the exception of those at Ec - Et equal to 0.4 eV. In the prismatic and unetched basal surfaces, states at Ec - Et equal to 1.1 eV were found in addition to all of those found on the cadmium surfaces.

  19. Constructing 3D interaction maps from 1D epigenomes

    PubMed Central

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W.; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter–promoter, promoter–enhancer and enhancer–enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  20. Constructing 3D interaction maps from 1D epigenomes.

    PubMed

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter-promoter, promoter-enhancer and enhancer-enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  1. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  2. Low-dimensional hyperthin FeS2 nanostructures for efficient and stable hydrogen evolution electrocatalysis

    SciTech Connect

    Jasion, Daniel; Qiao, Qiao; Barforoush, Joseph M.; Zhu, Yimei; Ren, Shenqiang; Leonard, Kevin C.

    2015-10-05

    We report a scalable, solution-processing method for synthesizing low-dimensional hyperthin FeS2 nanostructures, and we show that 2D FeS2 disc nanostructures are an efficient and stable hydrogen evolution electrocatalyst. By changing the Fe:S ratio in the precursor solution, we were able to preferentially synthesize either 1D wire or 2D disc nanostructures. The 2D FeS2 disc structure has the highest electrocatalytic activity for the hydrogen evolution reaction, comparable to platinum in neutral pH conditions. Moreover, the ability of the FeS2 nanostructures to generate hydrogen was confirmed by scanning electrochemical microscopy, and the 2D disc nanostructures were able to generate hydrogen for over 125 h.

  3. Molecular characterization of zebrafish Oatp1d1 (Slco1d1), a novel organic anion-transporting polypeptide.

    PubMed

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2013-11-22

    The organic anion-transporting polypeptide (OATP/Oatp) superfamily includes a group of polyspecific transporters that mediate transport of large amphipathic, mostly anionic molecules across cell membranes of eukaryotes. OATPs/Oatps are involved in the disposition and elimination of numerous physiological and foreign compounds. However, in non-mammalian species, the functional properties of Oatps remain unknown. We aimed to elucidate the role of Oatp1d1 in zebrafish to gain insights into the functional and structural evolution of the OATP1/Oatp1 superfamily. We show that diversification of the OATP1/Oatp1 family occurs after the emergence of jawed fish and that the OATP1A/Oatp1a and OATP1B/Oatp1b subfamilies appeared at the root of tetrapods. The Oatp1d subfamily emerged in teleosts and is absent in tetrapods. The zebrafish Oatp1d1 is similar to mammalian OATP1A/Oatp1a and OATP1B/Oatp1b members, with the main physiological role in transport and balance of steroid hormones. Oatp1d1 activity is dependent upon pH gradient, which could indicate bicarbonate exchange as a mode of transport. Our analysis of evolutionary conservation and structural properties revealed that (i) His-79 in intracellular loop 3 is conserved within OATP1/Oatp1 family and is crucial for the transport activity; (ii) N-glycosylation impacts membrane targeting and is conserved within the OATP1/Oatp1 family with Asn-122, Asn-133, Asn-499, and Asn-512 residues involved; (iii) the evolutionarily conserved cholesterol recognition interaction amino acid consensus motif is important for membrane localization; and (iv) Oatp1d1 is present in dimeric and possibly oligomeric form in the cell membrane. In conclusion, we describe the first detailed characterization of a new Oatp transporter in zebrafish, offering important insights into the functional evolution of the OATP1/Oatp1 family and the physiological role of Oatp1d1.

  4. Fabrication and characterization of integrated nanostructures & their applications to nanophotonics

    NASA Astrophysics Data System (ADS)

    Shukla, Shobha

    Current developments in optical devices are being directed toward nanocrystals based devices, where photons are manipulated using nanoscale optical phenomenon. Nanochemistry is a powerful tool for making nanostructures based on such nanocrystals. In this dissertation, various applications such as photodetectors/photovoltaics, photonic crystals and plasmonic applications involving nanoparticles and organic: inorganic hybrid systems have been investigated. The hall marks of quantum dots are well defined excitonic absorption and sharp emission profiles and their unique behavior comprises intense and immune to photobleaching luminescence, photon upconversion, slow exciton relaxation, multiexciton generation due to impact ionization, enhanced lasing, etc. Various quantum dots such as Indium Phosphide (InP), Cadmium Sulphide (CdS), Cadmium Selenide (CdSe), InP-CdS type-II core-shell, Lead Sulphide (PbS), Lead Selenide (PbSe) etc. have been prepared via hot colloidal synthesis and have been extensively characterized spectroscopically as well as structurally. These quantum dots were utilized for making solution processed organic: inorganic hybrid photodevices. Photodetecting device with enhanced efficiency has been fabricated using physical blend of PbSe and carbon nanotubes. Type-II quantum dots (InP-CdS) were also utilized for making solar cells and their efficiency was found to be much more than their parent quantum dots (InP and CdS). Photonic composite materials, such as polymers doped with nanoparticles, have attracted a great deal of attention because of relative ease and flexibility of their engineering as well as improved performance for applications in photonic or optoelectronic devices. 2D Photonic Crystals of enhanced structural and optical properties were fabricated by doping small amount of colloidal gold nanoparticles and patterned via multi-beam interference lithography. Spontaneous emission of quantum rods doped in such photonic crystal was controlled by

  5. Nanostructured Superhydrophobic Coatings

    SciTech Connect

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.

  6. Pickled luminescent silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Boukherroub, R.; Morin, S.; Wayner, D. D. M.; Lockwood, D. J.

    2001-05-01

    In freshly prepared porous Si, the newly exposed silicon-nanostructure surface is protected with a monolayer of hydrogen, which is very reactive and oxidizes in air leading to a loss of luminescence intensity and a degradation of the electronic properties. We report a surface passivation approach based on organic modification that stabilizes the luminescence. This novel 'pickling' process not only augments the desired optoelectronic properties, but also is adaptable to further chemical modification for integration into chemical and biophysical sensors.

  7. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells.

    PubMed

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar

    2013-09-15

    The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC₅₀ value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells.

  8. Synthesis, Characterization, Fluorescence, Photocatalytic and Antibacterial Activity of CdS Nanoparticles Using Schiff Base.

    PubMed

    Ayodhya, Dasari; Venkatesham, M; Kumari, A Santoshi; Reddy, G Bhagavanth; Ramakrishna, D; Veerabhadram, G

    2015-09-01

    Cadmium sulfide nanoparticles (CdS NPs) were successfully prepared using sonochemical method by employing Schiff-base, (2-[(4-methoxy-phenylimino)-methyl]-4-nitro phenol) as a complexing agent. Here, SB is used as a ligand to control the morphology of NPs. XRD patterns and TEM images show that the synthesized CdS NPs have cubic structures with a diameter of about 2-10 nm. The formation of CdS NPs and their optical, structure, thermal and morphologies were studied by means of UV-vis DRS, fluorescence, FTIR, zeta potential, XRD, SEM and TEM. The interactions between CdS NPs and SB were investigated in an aqueous solution using fluorescence spectroscopy. The fluorescence quenching studies suggest that SB quenches the fluorescence of CdS NPs effectively. The degradation kinetics of methyl red (MR) by the photocatalyst was followed by Langmuir-Hinshelwood model. The results revealed that photocatalytic degradation of MR by SB capped CdS NPs could be considered as a practical and reliable technique for the removal of environmental pollutants. The antibacterial activity of samples was evaluated against E. coli, S. aureus and P. aeruginosa and the results were compared. SB and SB capped CdS NPs could be a potential antibacterial compounds after further investigation. PMID:26275559

  9. Two-Dimensional Nanostructure- Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering

    PubMed Central

    Lalwani, Gaurav; Henslee, Allan M.; Farshid, Behzad; Lin, Liangjun; Kasper, F. Kurtis; Qin, Yi-Xian; Mikos, Antonios G.; Sitharaman, Balaji

    2013-01-01

    This study investigates the efficacy of two dimensional (2D) carbon and inorganic nanostructures as reinforcing agents of crosslinked composites of the biodegradable and biocompatible polymer polypropylene fumarate (PPF) as a function of nanostructure concentration. PPF composites were reinforced using various 2D nanostructures: single- and multi-walled graphene oxide nanoribbons (SWGONRs, MWGONRs), graphene oxide nanoplatelets (GONPs), and molybdenum di-sulfite nanoplatelets (MSNPs) at 0.01–0.2 weight% concentrations. Cross-linked PPF was used as the baseline control, and PPF composites reinforced with single- or multi-walled carbon nanotubes (SWCNT, MWCNT) were used as positive controls. Compression and flexural testing show a significant enhancement (i.e., compressive modulus = 35–108%, compressive yield strength = 26–93%, flexural modulus = 15–53%, and flexural yield strength = 101–262% greater than the baseline control) in the mechanical properties of the 2D-reinforced PPF nanocomposites. MSNPs nanocomposites consistently showed the highest values among the experimental or control groups in all the mechanical measurements. In general, the inorganic nanoparticle MSNPs showed a better or equivalent mechanical reinforcement compared to carbon nanomaterials, and 2-D nanostructures (GONP, MSNP) are better reinforcing agents compared to 1-D nanostructures (e.g. SWCNTs). The results also indicate that the extent of mechanical reinforcement is closely dependent on the nanostructure morphology and follows the trend nanoplatelets > nanoribbons > nanotubes. Transmission electron microscopy of the cross-linked nanocomposites indicates good dispersion of nanomaterials in the polymer matrix without the use of a surfactant. The sol-fraction analysis showed significant changes in the polymer cross-linking in the presence of MSNP (0.01–0.2 wt %) and higher loading concentrations of GONP and MWGONR (0.1–0.2 wt%). The analysis of surface area and aspect ratio of

  10. Alternative nanostructures for thermophones.

    PubMed

    Aliev, Ali E; Mayo, Nathanael K; Jung de Andrade, Monica; Robles, Raquel O; Fang, Shaoli; Baughman, Ray H; Zhang, Mei; Chen, Yongsheng; Lee, Jae Ah; Kim, Seon Jeong

    2015-05-26

    Thermophones are highly promising for applications such as high-power SONAR arrays, flexible loudspeakers, and noise cancellation devices. So far, freestanding carbon nanotube aerogel sheets provide the most attractive performance as a thermoacoustic heat source. However, the limited accessibility of large-size freestanding carbon nanotube aerogel sheets and other even more exotic materials recently investigated hampers the field. We describe alternative materials for a thermoacoustic heat source with high-energy conversion efficiency, additional functionalities, environmentally friendly, and cost-effective production technologies. We discuss the thermoacoustic performance of alternative nanostructured materials and compare their spectral and power dependencies of sound pressure in air. We demonstrate that the heat capacity of aerogel-like nanostructures can be extracted by a thorough analysis of the sound pressure spectra. The study presented here focuses on engineering thermal gradients in the vicinity of nanostructures and subsequent heat dissipation processes from the interior of encapsulated thermoacoustic projectors. Applications of thermoacoustic projectors for high-power SONAR arrays, sound cancellation, and optimal thermal design, regarding enhanced energy conversion efficiency, are discussed.

  11. Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect

    NASA Astrophysics Data System (ADS)

    Ashalley, Eric; Chen, Haiyuan; Tong, Xin; Li, Handong; Wang, Zhiming M.

    2015-05-01

    Bismuth telluride is known to wield unique properties for a wide range of device applications. However, as devices migrate to the nanometer scale, significant amount of studies are being conducted to keep up with the rapidly growing nanotechnological field. Bi2Te3 possesses distinctive properties at the nanometer level from its bulk material. Therefore, varying synthesis and characterization techniques are being employed for the realization of various Bi2Te3 nanostructures in the past years. A considerable number of these works have aimed at improving the thermoelectric (TE) figure-of-merit (ZT) of the Bi2Te3 nanostructures and drawing from their topological insulating properties. This paper reviews the various Bi2Te3 and Bi2Te3-based nanostructures realized via theoretical and experimental procedures. The study probes the preparation techniques, TE properties and the topological insulating effects of 0D, 1D, 2D and Bi2Te3 nanocomposites. With several applications as a topological insulator (TI), the topological insulating effect of the Bi2Te3 is reviewed in detail with the time reversal symmetry (TRS) and surface state spins which characterize TIs. Schematics and preparation methods for the various nanostructural dimensions are accordingly categorized.

  12. NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION

    SciTech Connect

    Wang, Lumin; Lu, Wei

    2013-01-31

    Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the

  13. A novel ozone gas sensor based on one-dimensional (1D) α-Ag₂WO₄ nanostructures.

    PubMed

    da Silva, Luís F; Catto, Ariadne C; Avansi, Waldir; Cavalcante, Laécio S; Andrés, Juan; Aguir, Khalifa; Mastelaro, Valmor R; Longo, Elson

    2014-04-21

    This paper reports on a new ozone gas sensor based on α-Ag₂WO₄ nanorod-like structures. Electrical resistance measurements proved the efficiency of α-Ag₂WO₄ nanorods, which rendered good sensitivity even for a low ozone concentration (80 ppb), a fast response and a short recovery time at 300 °C, demonstrating great potential for a variety of applications.

  14. Coherent control near metallic nanostructures

    SciTech Connect

    Efimov, Ilya; Efimov, Anatoly

    2008-01-01

    We study coherent control in the vicinity of metallic nanostructures. Unlike in the case of control in gas or liquid phase, the collective response of electrons in a metallic nanostructure can significantly enhance different frequency components of the control field. This enhancement strongly depends on the geometry of the nanostructure and can substantially modify the temporal profile of the local control field. The changes in the amplitude and phase of the control field near the nanostructure are studied using linear response theory. The inverse problem of finding the external electromagnetic field to generate the desired local control field is considered and solved.

  15. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes.

    PubMed

    Singh, Ashutosh K; Sarkar, Debasish; Karmakar, Keshab; Mandal, Kalyan; Khan, Gobinda Gopal

    2016-08-17

    We report a facile method to design Co3O4-MnO2-NiO ternary hybrid 1D nanotube arrays for their application as active material for high-performance supercapacitor electrodes. This as-prepared novel supercapacitor electrode can store charge as high as ∼2020 C/g (equivalent specific capacitance ∼2525 F/g) for a potential window of 0.8 V and has long cycle stability (nearly 80% specific capacitance retains after successive 5700 charge/discharge cycles), significantly high Coulombic efficiency, and fast response time (∼0.17s). The remarkable electrochemical performance of this unique electrode material is the outcome of its enormous reaction platform provided by its special nanostructure morphology and conglomeration of the electrochemical properties of three highly redox active materials in a single unit. PMID:27430868

  16. PREFACE: Nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  17. PVP capped CdS nanoparticles for UV-LED applications

    SciTech Connect

    Sivaram, H.; Selvakumar, D.; Jayavel, R.

    2015-06-24

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  18. PVP capped CdS nanoparticles for UV-LED applications

    NASA Astrophysics Data System (ADS)

    Sivaram, H.; Selvakumar, D.; Jayavel, R.

    2015-06-01

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  19. Synthesis of CdS nanoparticles for photocatalytic application of methyleneblue degradation

    SciTech Connect

    Muthuraj, V.; Umadevi, M.; Sankarasubramanian, K.; Kajamuhideen, M. S.

    2014-04-24

    CdS nanoparticles were prepared by the reaction of cadmium acetate with thiourea in the presence and absence of methylene blue dye (MB). The nanoparticles were characterized by, XRD, FT-IR, UV-Vis. XRD study shows the presence of hexagonal phase for the nanoparticles whereas in case of the bulk samples only the hexagonal phase is observed. Fourier transform infrared spectroscopy (FT-IR) showed a strong interaction of methyl groups with CdS nanoparticles. The degradation of methylene blue was analysed using UV-Vis absorbance spectrum. Thus the results authenticate that methylene blue dye influences the structural and optical properties of the CdS nanoparticles.

  20. CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property

    NASA Astrophysics Data System (ADS)

    Guo, Jixi; Guo, Mingxi; Jia, Dianzeng; Song, Xianli; Tong, Fenglian

    2016-08-01

    The coal based activated carbon nanofibers (CBACFs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and acid treated coal. Cadmium sulfide (CdS) nanoparticles loaded on CBACFs were fabricated by solvothermal method. The obtained samples were characterized by FESEM, TEM, and XRD. The results reveal that the CdS nanoparticles are homogeneously dispersed on the surfaces of CBACFs. The CdS/CBACFs nanocomposites exhibited higher photoactivity for photodegradation of methyl blue (MB) under visible light irradiation than pure CdS nanoparticles. CBACFs can be used as low cost support materials for the preparation of nanocomposites with high photocatalytic activity.

  1. Tailoring properties and functionalities of nanostructures through compositions, components and morphologies

    NASA Astrophysics Data System (ADS)

    Weng, Lin

    The field of nanoscience and nanotechnology has made significant progresses over the last thirty years. Sophisticated nanostructures with tunable properties for novel physics and applications have been successfully fabricated, characterized and underwent practical test. In this thesis, I will focus on our recent efforts to develop new strategies to manipulate the properties of nanostructures. Particularly, three questions have been answered from our perspective, based on the nanomaterials synthesized: (1) How does the composition affect a novel nanostructure? We started from single-molecule precursors to reach nanostructures whose bulk counterparts only exist under extreme conditions. Fe3S and Fe3S2 are used as examples to demonstrate this synthetic strategy. Their potential magnetic properties have been measured, which may lead to interesting findings in astronomy and materials science. (2) How to achieve modularity control at nanoscale by a general bottom-up approach? Starting with reviewing the current status of this field, our recent experimental progresses towards delicate modularity control are presented by abundant novel heteronanostructures. An interesting catalytic mechanism of these nanostructures has also been verified, which involves the interaction between phonons, photons, plasmons, and excitons. (3) What can the morphology difference tell us about the inside of nanostructures? By comparing a series of data from three types of CdSe/CdS core-shell structures, a conclusion has been reached on the CdS growth mechanism on CdSe under different conditions, which also may lead to a solution to the asymmetry problem in the synthesis of CdSe/CdS nanorods. Finally this thesis is concluded by a summary and future outlook.

  2. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  3. Non-linearity in Bayesian 1-D magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dettmer, Jan; Tong, Xiaozhong

    2011-05-01

    This paper applies a Bayesian approach to examine non-linearity for the 1-D magnetotelluric (MT) inverse problem. In a Bayesian formulation the posterior probability density (PPD), which combines data and prior information, is interpreted in terms of parameter estimates and uncertainties, which requires optimizing and integrating the PPD. Much work on 1-D MT inversion has been based on (approximate) linearized solutions, but more recently fully non-linear (numerical) approaches have been applied. This paper directly compares results of linearized and non-linear uncertainty estimation for 1-D MT inversion; to do so, advanced methods for both approaches are applied. In the non-linear formulation used here, numerical optimization is carried out using an adaptive-hybrid algorithm. Numerical integration applies Metropolis-Hastings sampling, rotated to a principal-component parameter space for efficient sampling of correlated parameters, and employing non-unity sampling temperatures to ensure global sampling. Since appropriate model parametrizations are generally not known a priori, both under- and overparametrized approaches are considered. For underparametrization, the Bayesian information criterion is applied to determine the number of layers consistent with the resolving power of the data. For overparametrization, prior information is included which favours simple structure in a manner similar to regularized inversion. The data variance and/or trade-off parameter regulating data and prior information are treated in several ways, including applying fixed optimal estimates (an empirical Bayesian approach) or including them as hyperparameters in the sampling (hierarchical Bayesian). The latter approach has the benefit of accounting for the uncertainty in the hyperparameters in estimating model parameter uncertainties. Non-linear and linearized inversion results are compared for synthetic test cases and for the measured COPROD1 MT data by considering marginal probability

  4. Viscous behavior in a quasi-1D fractal cluster glass.

    PubMed

    Etzkorn, S J; Hibbs, Wendy; Miller, Joel S; Epstein, A J

    2002-11-11

    The spin glass transition of a quasi-1D organic-based magnet ([MnTPP][TCNE]) is explored using both ac and dc measurements. A scaling analysis of the ac susceptibility shows a spin glass transition near 4 K, with a viscous decay of the thermoremanent magnetization recorded above 4 K. We propose an extension to a fractal cluster model of spin glasses that determines the dimension of the spin clusters (D) ranging from approximately 0.8 to over 1.5 as the glass transition is approached. Long-range dipolar interactions are suggested as the origin of this low value for the apparent lower critical dimension.

  5. Practical variational tomography for critical 1D systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong Yeon; Landon-Cardinal, Olivier

    2015-03-01

    We further investigate a recently introduced efficient quantum state reconstruction procedure targeted to states well-approximated by the multi-scale entanglement renormalization ansatz (MERA). First, we introduce an improved optimization scheme that can be easily generalized for MERA states with larger bond dimension. Second, we provide a detailed analysis of the error propagation and quantify how it affects the distance between the experimental state and the reconstructed state. Third, we explain how to bound this distance using local data, providing an efficient scalable certification method. Fourth, we examine the performance of MERA tomography on the ground states of several 1D critical models.

  6. Structural stability of a 1D compressible viscoelastic fluid model

    NASA Astrophysics Data System (ADS)

    Huo, Xiaokai; Yong, Wen-An

    2016-07-01

    This paper is concerned with a compressible viscoelastic fluid model proposed by Öttinger. Although the model has a convex entropy, the Hessian matrix of the entropy does not symmetrize the system of first-order partial differential equations due to the non-conservative terms in the constitutive equation. We show that the corresponding 1D model is symmetrizable hyperbolic and dissipative and satisfies the Kawashima condition. Based on these, we prove the global existence of smooth solutions near equilibrium and justify the compatibility of the model with the Navier-Stokes equations.

  7. Nonlocal Order Parameters for the 1D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-01

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point Uc=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at Uc. The behavior of the parity correlators is captured by an effective free spinless fermion model.

  8. Deconvolution/identification techniques for 1-D transient signals

    SciTech Connect

    Goodman, D.M.

    1990-10-01

    This paper discusses a variety of nonparametric deconvolution and identification techniques that we have developed for application to 1-D transient signal problems. These methods are time-domain techniques that use direct methods for matrix inversion. Therefore, they are not appropriate for large data'' problems. These techniques involve various regularization methods and permit the use of certain kinds of a priori information in estimating the unknown. These techniques have been implemented in a package using standard FORTRAN that should make the package readily transportable to most computers. This paper is also meant to be an instruction manual for the package. 25 refs., 17 figs., 1 tab.

  9. Coherent thermal conductance of 1-D photonic crystals

    NASA Astrophysics Data System (ADS)

    Tschikin, Maria; Ben-Abdallah, Philippe; Biehs, Svend-Age

    2012-10-01

    We present an exact calculation of coherent thermal conductance in 1-D multilayer photonic crystals using the S-matrix method. In particular, we study the thermal conductance in a bilayer structure of Si/vacuum or Al2O3/vacuum slabs by means of the exact radiative heat flux expression. Based on the results obtained for the Al2O3/vacuum structure we show by comparison with previous works that the material losses and (localized) surface modes supported by the inner layers play a fundamental role and cannot be omitted in the definition of thermal conductance. Our results could have significant implications in the conception of efficient thermal barriers.

  10. Glancing angle deposited villi-like nanostructures for enhanced chemo-resistive performances

    NASA Astrophysics Data System (ADS)

    Moon, Hi Gyu; Jung, Youngmo; Lee, Taikjin; Lee, Seok; Park, Hyung-Ho; Kim, Chulki; Kang, Chong-Yun

    Metal oxide nanostructures have attracted enormous attention for diverse applications such as solar cells, nanogenerators, nanolasers, optoelectronic devices and chemoresistive sensor. To achieve the enhanced electrical properties for these applications, one-dimensional (1D) metal oxide materials including nanowires, nanorods, nanotubes and nanobelts have been widely studied. However, the use of 1D nanomaterials as chemoresistive sensors is still in the beginning stage in how to integrate them. As an alternative, porous thin films based on 1D metal oxide nanostructures are considered as more desirable configuration due to their simplicity in synthesis, high reproducibility. In this study, we propose facile synthesis and self-assembled villi-like nanofingers (VLNF) WO3 thin films with large specific surface area on the SiO2/Si substrate. Room-temperature glancing angle deposition of WO3 by a simple controlling in both polar and azimuthal directions resulted in anisotropic nanostructures with large aspect ratio and porous structures with a relative surface area of 350 m2/g. Glancing angle deposited villi-like nanostructures for enhanced chemo-resistive performances.

  11. Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures

    PubMed Central

    Fu, Jinglin; Liu, Minghui; Liu, Yan; Yan, Hao

    2013-01-01

    Conspectus Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D and 3D) nanostructures that utilize spontaneous and sequence specific DNA hybridization. Compared to other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions, and surface features to which other nanoparticles and bio-molecules can be precisely positioned. The ability to control the spatial arrangement of the components while constructing highly-organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraining target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities. This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially-interactive biomolecular networks. For example, researchers have constructed synthetic multi-enzyme cascades

  12. A simple quasi-1D model of Fibonacci anyons

    NASA Astrophysics Data System (ADS)

    Aasen, David; Mong, Roger; Clarke, David; Alicea, Jason; Fendley, Paul

    2015-03-01

    There exists various ways of understanding the topological properties of Ising anyons--from simple free-fermion toy models to formal topological quantum field theory. For other types of anyons simple toy models rarely exist; their properties have to be obtained using formal self-consistency relations. We explore a family of gapped 1D local bosonic models that in a certain limit become trivial to solve and provide an intuitive picture for Fibonacci anyons. One can interpret this model as a quasi-1D wire that forms the building block of a 2D topological phase with Fibonacci anyons. With this interpretation all topological properties of the Fibonacci anyons become manifest including ground state degeneracy and braid relations. We conjecture that the structure of the model is protected by an emergent symmetry analogous to fermion parity. 1) NSF Grant DMR-1341822 2) Institute for Quantum Information and Matter, an NSF physics frontier center with support from the Moore Foundation. 3) NSERC-PGSD.

  13. A 1D analysis of two high order MOC methods

    SciTech Connect

    Everson, M. S.; Forget, B.

    2012-07-01

    The work presented here provides two different methods for evaluating angular fluxes along long characteristics. One is based off a projection of the 1D transport equation onto a complete set of Legendre polynomials, while the other uses the 1D integral transport equation to evaluate the angular flux values at specific points along each track passing through a cell. The Moment Long Characteristic (M-LC) method is shown to provide 2(P+1) spatial convergence and significant gains in accuracy with the addition of only a few spatial degrees of freedom. The M-LC method, though, is shown to be ill-conditioned at very high order and for optically thin geometries. The Point Long Characteristic (P-LC) method, while less accurate, significantly improves stability to problems with optically thin cells. The P-LC method is also more flexible, allowing for extra angular flux evaluations along a given track to give a more accurate representation of the shape along each track. This is at the expense of increasing the degrees of freedom of the system, though, and requires an increase in memory storage. This work concludes that both may be used simultaneously within the same geometry to provide the best mix of accuracy and stability possible. (authors)

  14. Engineered atom-light interactions in 1D photonic crystals

    NASA Astrophysics Data System (ADS)

    Martin, Michael J.; Hung, Chen-Lung; Yu, Su-Peng; Goban, Akihisa; Muniz, Juan A.; Hood, Jonathan D.; Norte, Richard; McClung, Andrew C.; Meenehan, Sean M.; Cohen, Justin D.; Lee, Jae Hoon; Peng, Lucas; Painter, Oskar; Kimble, H. Jeff

    2014-05-01

    Nano- and microscale optical systems offer efficient and scalable quantum interfaces through enhanced atom-field coupling in both resonators and continuous waveguides. Beyond these conventional topologies, new opportunities emerge from the integration of ultracold atomic systems with nanoscale photonic crystals. One-dimensional photonic crystal waveguides can be engineered for both stable trapping configurations and strong atom-photon interactions, enabling novel cavity QED and quantum many-body systems, as well as distributed quantum networks. We present the experimental realization of such a nanophotonic quantum interface based on a nanoscale photonic crystal waveguide, demonstrating a fractional waveguide coupling of Γ1 D /Γ' of 0 . 32 +/- 0 . 08 , where Γ1 D (Γ') is the atomic emission rate into the guided (all other) mode(s). We also discuss progress towards intra-waveguide trapping of ultracold Cs. This work was supported by the IQIM, an NSF Physics Frontiers Center with support from the Moore Foundation, the DARPA ORCHID program, the AFOSR QuMPASS MURI, the DoD NSSEFF program, NSF, and the Kavli Nanoscience Institute (KNI) at Caltech.

  15. Continuous Microreactor-Assisted Solution Deposition for Scalable Production of CdS Films

    SciTech Connect

    Ramprasad, Sudhir; Su, Yu-Wei; Chang, Chih-Hung; Paul, Brian; Palo, Daniel R.

    2013-06-13

    Solution deposition offers an attractive, low temperature option in the cost effective production of thin film solar cells. Continuous microreactor-assisted solution deposition (MASD) was used to produce nanocrystalline cadmium sulfide (CdS) films on fluorine doped tin oxide (FTO) coated glass substrates with excellent uniformity. We report a novel liquid coating technique using a ceramic rod to efficiently and uniformly apply reactive solution to large substrates (152 mm × 152 mm). This technique represents an inexpensive approach to utilize the MASD on the substrate for uniform growth of CdS films. Nano-crystalline CdS films have been produced from liquid phase at ~90°C, with average thicknesses of 70 nm to 230 nm and with a 5 to 12% thickness variation. The CdS films produced were characterized by UV-Vis spectroscopy, transmission electron microscopy, and X-Ray diffraction to demonstrate their suitability to thin-film solar technology.

  16. Computer code to interchange CDS and wave-drag geometry formats

    NASA Technical Reports Server (NTRS)

    Johnson, V. S.; Turnock, D. L.

    1986-01-01

    A computer program has been developed on the PRIME minicomputer to provide an interface for the passage of aircraft configuration geometry data between the Rockwell Configuration Development System (CDS) and a wireframe geometry format used by aerodynamic design and analysis codes. The interface program allows aircraft geometry which has been developed in CDS to be directly converted to the wireframe geometry format for analysis. Geometry which has been modified in the analysis codes can be transformed back to a CDS geometry file and examined for physical viability. Previously created wireframe geometry files may also be converted into CDS geometry files. The program provides a useful link between a geometry creation and manipulation code and analysis codes by providing rapid and accurate geometry conversion.

  17. Development of a Higher Fidelity Model for the Cascade Distillation Subsystem (CDS)

    NASA Technical Reports Server (NTRS)

    Perry, Bruce; Anderson, Molly

    2014-01-01

    Significant improvements have been made to the ACM model of the CDS, enabling accurate predictions of dynamic operations with fewer assumptions. The model has been utilized to predict how CDS performance would be impacted by changing operating parameters, revealing performance trade-offs and possibilities for improvement. CDS efficiency is driven by the THP coefficient of performance, which in turn is dependent on heat transfer within the system. Based on the remaining limitations of the simulation, priorities for further model development include: center dot Relaxing the assumption of total condensation center dot Incorporating dynamic simulation capability for the buildup of dissolved inert gasses in condensers center dot Examining CDS operation with more complex feeds center dot Extending heat transfer analysis to all surfaces

  18. Structural and chemical properties of highly oriented cadmium sulfide (CdS) cauliflower films

    NASA Astrophysics Data System (ADS)

    Vemuri, R. S.; Gullapalli, S. K.; Zubia, D.; McClure, J. C.; Ramana, C. V.

    2010-08-01

    Cadmium sulfide (CdS) films have been produced by sputter-deposition varying the sputtering-power ( P) in the range of 60-120 W. The crystal structure, morphology and chemical quality of the CdS films has been investigated employing X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray spectrometry (EDS). Structural characterization indicates that all the CdS layers exhibit cauliflower morphology. Highly oriented, single phase hexagonal-CdS films can be produced at P = 75-105 W while the films at other power contain mixed phases. Characterization using XPS and EDS indicate that the CdS layers are nearly stoichiometric at P = 75-105 W, at which point S-deficiency is induced resulting in Cd-rich-CdS layers.

  19. Effect of surface scattering of carriers in the photoconductivity spectra of CdS

    SciTech Connect

    Batyrev, A. S. Bisengaliev, R. A.; Novikov, B. V.

    2013-05-15

    The effect caused by electron scattering at a semiconductor surface is revealed in the low-temperature (77 K) photoconductivity spectra of second-group CdS crystals subjected to the influence of an external enriching transverse electric field.

  20. Study on the effect of high-temperature air treatment on particulate CdS

    NASA Astrophysics Data System (ADS)

    Zhengshi, Chen; Huqing, Zhang; Zhensheng, Jin

    1989-07-01

    The influence of high-temperature air treatment on the surface composition and structure of CdS was studied by means of XPS, XRD, and H +/OH - adsorption. The results show that the relative concentration of surface oxygen atoms increases considerably with duration of the air treatment, but there is no apparent change in percentage of oxygen atoms consumed in forming CdSO 4. In the ion sputtering of samples treated with different times, it was found that the CdO can be formed deep within the CdS particles, but formation of CdSO 4 takes place only at the surface. The high-temperature air treatment also increases the surface basicity of CdS and the content of hexagonal crystal form in bulk CdS.

  1. An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks.

    PubMed

    Penumalli, Chakradhar; Palanichamy, Yogesh

    2015-01-01

    A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results.

  2. Nanostructures for peroxidases

    PubMed Central

    Carmona-Ribeiro, Ana M.; Prieto, Tatiana; Nantes, Iseli L.

    2015-01-01

    Peroxidases are enzymes catalyzing redox reactions that cleave peroxides. Their active redox centers have heme, cysteine thiols, selenium, manganese, and other chemical moieties. Peroxidases and their mimetic systems have several technological and biomedical applications such as environment protection, energy production, bioremediation, sensors and immunoassays design, and drug delivery devices. The combination of peroxidases or systems with peroxidase-like activity with nanostructures such as nanoparticles, nanotubes, thin films, liposomes, micelles, nanoflowers, nanorods and others is often an efficient strategy to improve catalytic activity, targeting, and reusability. PMID:26389124

  3. Biomimetics of photonic nanostructures

    NASA Astrophysics Data System (ADS)

    Parker, Andrew R.; Townley, Helen E.

    2007-06-01

    Biomimetics is the extraction of good design from nature. One approach to optical biomimetics focuses on the use of conventional engineering methods to make direct analogues of the reflectors and anti-reflectors found in nature. However, recent collaborations between biologists, physicists, engineers, chemists and materials scientists have ventured beyond experiments that merely mimic what happens in nature, leading to a thriving new area of research involving biomimetics through cell culture. In this new approach, the nanoengineering efficiency of living cells is harnessed and natural organisms such as diatoms and viruses are used to make nanostructures that could have commercial applications.

  4. Nanoindentation of Carbon Nanostructures.

    PubMed

    Kumar, Dinesh; Singh, Karamjit; Verma, Veena; Bhatti, H S

    2016-06-01

    In the present research paper carbon nanostructures viz. single walled carbon nanotubes, multi-walled carbon nanotubes, single walled carbon nanohorns and graphene nanoplatelets have been synthesized by CVD technique, hydrothermal method, DC arc discharge method in liquid nitrogen and microwave technique respectively. After synthesis 5 mm thick pallets of given nanomaterial are prepared by making a paste in isopropyl alcohol and using polyvinylidene difluoride as a binder and then these pallets were used for nanoindentation measurements. Hardness, reduced modulus, stiffness, contact height and contact area have been measured using nanoindenter. PMID:27427726

  5. Clusius-Dickel Separations (CDS): A new look at an old technique

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The history, applications, and theoretical basis of the CDS technique are reviewed. The advantage to be realized by conduction of CDSs in low-g, space environments are deduced. The results are reported of investigations aimed at further improving CDS efficiencies by altering convective flow patterns. The question of whether multicellular flow or turbulence can introduce a new separation mechanism which would boost separation efficiencies at least an order of magnitude is considered. Results are presented and discussed.

  6. TiO{sub 2} flower-like nanostructures decorated with CdS/PbS nanoparticles

    SciTech Connect

    Trenczek-Zajac, Anita; Kusior, Anna; Lacz, Agnieszka; Radecka, Marta; Zakrzewska, Katarzyna

    2014-12-15

    Highlights: • TiO{sub 2} flower-like nanostructures were prepared with the use of Ti foil and 30% H{sub 2}O{sub 2}. • QDs of CdS and PbS were deposited using the SILAR method. • The SILAR method makes it possible to control the size of QDs. • Band gap energy of CdS was found to be 2.35 eV. • Sensitization of TiO{sub 2} with CdS or PbS improves the photoelectrochemical properties. - Abstract: Flower-like nanostructures of TiO{sub 2} were prepared by immersing Ti foil in 30% H{sub 2}O{sub 2} at 80 °C for times varying from 15 to 240 min. Upon annealing at 450 °C in an Ar atmosphere, the received amorphous samples crystallized in an anatase structure with rutile as a minority phase. SEM images revealed that partially formed flowers were present at the surface of the prepared samples as early as after 15 min of immersion. The size of the individual flowers increased from 400–800 nm after 15 min of reaction to 2.5–6.0 μm after 240 min. It was also found that surface is very rough and surface development is considerable. After 45 min of immersion, the nanoflowers were sensitized with CdS and PbS quantum dots (QDs-CdS/QDs-PbS) deposited using the SILAR method from water- and methanol-based precursor solutions at different concentrations (0.001–0.1 M). QDs-CdS crystallized in the hawleyite structure, while QDs-PbS in the galena form. SEM analysis showed the tendency of quantum dots to agglomerate at high concentrations of the precursor in water-based solutions. QDs obtained from methanol-based solutions were uniformly distributed. The produced QDs-PbS were smaller than QDs-CdS. Based on the optical reflectance spectra, the band-gap energies of TiO{sub 2} nanostructures with and without QDs were calculated to be 3.32 eV for flower-like TiO{sub 2} nanostructures and 2.35 eV for QDs-CdS. The photoelectrochemical behaviour of nanoflowers was found to improve significantly after the deposition of QDs-CdS.

  7. Raman spectroscopic studies of thin film carbon nanostructures deposited using electro deposition technique

    NASA Astrophysics Data System (ADS)

    Dayal, Saurabh; Sasi, Arshali; Jhariya, Sapna; Sasikumar, C.

    2016-05-01

    In the present work our focus is to synthesize carbon nanostructures (CNS) by electro deposition technique without using any surface pretreatment or catalyst preparation before CNS formation. The process were carried out at significantly low voltage and at low temperature as reported elsewhere. Further the samples were characterized using different characterization tools such as SEM and Raman spectroscopy. The SEM results showed the fibres or tubular like morphology. Raman spectra shows strong finger print at 1600 cm-1 (G peak), 1350 cm-1 (D peak) along with the radial breathing mode (RBM) between 150cm-1 to 300 cm-1. This confirms the formation of tubular carbon nanostructures.

  8. Three-dimensional hyperbranched PdCu nanostructures with high electrocatalytic activity.

    PubMed

    Jiang, Bo; Li, Cuiling; Malgras, Victor; Bando, Yoshio; Yamauchi, Yusuke

    2016-01-21

    In this study, three-dimensional (3D) PdCu alloyed nanostructures, consisting of one-dimensional (1D) branches, were successfully synthesized through a facile wet-chemical method without using any seeds or organic solvent. The success of this approach relies on the use of hydrochloric acid (HCl) to control the reduction rate, and on the presence of bromide ions (Br(-)) to selectively adsorb on certain facets of the PdCu nucleus. The as-prepared 3D PdCu nanostructures exhibit a greatly enhanced catalytic activity toward formic acid oxidation, owing to a suitable electronic landscape resulting from the alloy structure and the unique morphology. PMID:26602439

  9. Synthesis of uniform CdS nanowires in high yield and its single nanowire electrical property

    SciTech Connect

    Yan Shancheng; Sun Litao; Qu Peng; Huang Ninping; Song Yinchen; Xiao Zhongdang

    2009-10-15

    Large-scale high quality CdS nanowires with uniform diameter were synthesized by using a rapid and simple solvothermal route. Field emission scan electron microscopy (FESEM) and transmission electron microscopy (TEM) images show that the CdS nanowires have diameter of about 26 nm and length up to several micrometres. High resolution TEM (HRTEM) study indicates the single-crystalline nature of CdS nanowires with an oriented growth along the c-axis direction. The optical properties of the products were characterized by UV-vis absorption spectra, photoluminescence spectra and Raman spectra. The resistivity, electron concentration and electron mobility of single NW are calculated by fitting the symmetric I-V curves measured on single NW by the metal-semiconductor-metal model based on thermionic field emission theory. - Graphical abstract: Large-scale high quality CdS nanowires (NWs) with uniform diameter were synthesized by using a rapid and simple solvothermal route. The reaction time is reduced to 2 h, comparing to other synthesis which needed long reaction time up to 12 h. In addition, the as-prepared CdS nanowires have more uniform diameter and high yield. More importantly, the I-V curve of present single CdS nanowire has a good symmetric characteristic as expected by the theory.

  10. Optical and structural properties of sputtered CdS films for thin film solar cell applications

    SciTech Connect

    Kim, Donguk; Park, Young; Kim, Minha; Choi, Youngkwan; Park, Yong Seob; Lee, Jaehyoeng

    2015-09-15

    Graphical abstract: Photo current–voltage curves (a) and the quantum efficiency (QE) (b) for the solar cell with CdS film grown at 300 °C. - Highlights: • CdS thin films were grown by a RF magnetron sputtering method. • Influence of growth temperature on the properties of CdS films was investigated. • At higher T{sub g}, the crystallinity of the films improved and the grains enlarged. • CdS/CdTe solar cells with efficiencies of 9.41% were prepared at 300 °C. - Abstract: CdS thin films were prepared by radio frequency magnetron sputtering at various temperatures. The effects of growth temperature on crystallinity, surface morphology and optical properties of the films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectra, UV–visible spectrophotometry, and photoluminescence (PL) spectra. As the growth temperature was increased, the crystallinity of the sputtered CdS films was improved and the grains were enlarged. The characteristics of CdS/CdTe thin film solar cell appeared to be significantly influenced by the growth temperature of the CdS films. Thin film CdS/CdTe solar cells with efficiencies of 9.41% were prepared at a growth temperature of 300 °C.

  11. Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium.

    PubMed

    Chen, Guiqiu; Yi, Bin; Zeng, Guangming; Niu, Qiuya; Yan, Ming; Chen, Anwei; Du, Jianjian; Huang, Jian; Zhang, Qihua

    2014-05-01

    This study details a novel method for the extracellular microbial synthesis of cadmium sulfide (CdS) quantum dots (QDs) by the white rot fungus Phanerochaete chrysosporium. P. chrysosporium was incubated in a solution containing cadmium nitrate tetrahydrate, which became yellow from 12h onwards, indicating the formation of CdS nanocrystals. The purified solution showed a maximum absorbance peak between 296 and 298 nm due to CdS particles in the quantum size regime. The fluorescence emission at 458 nm showed the blue fluorescence of the nanoparticles. X-ray analysis of the nanoparticles confirmed the production of CdS with a face-centered cubic (fcc) crystal structure. The average grain size of the nanoparticles was approximately 2.56 nm, as determined from the full width at half-maximum (FWHM) measurement of the most intense peak using Scherer's equation. Transmission electron microscopic analysis showed the nanoparticles to be of a uniform size with good crystallinity. The changes to the functional groups on the biomass surface were investigated through Fourier transform infrared spectroscopy. Furthermore, the secretion of cysteine and proteins was found to play an important role in the formation and stabilization of CdS QDs. In conclusion, our study outlines a chemical process for the molecular synthesis of CdS nanoparticles.

  12. A new 9T global shutter pixel with CDS technique

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Cheng; Zhou, Quan; Wang, Xinyang

    2015-04-01

    Benefiting from motion blur free, Global shutter pixel is very widely used in the design of CMOS image sensors for high speed applications such as motion vision, scientifically inspection, etc. In global shutter sensors, all pixel signal information needs to be stored in the pixel first and then waiting for readout. For higher frame rate, we need very fast operation of the pixel array. There are basically two ways for the in pixel signal storage, one is in charge domain, such as the one shown in [1], this needs complicated process during the pixel fabrication. The other one is in voltage domain, one example is the one in [2], this pixel is based on the 4T PPD technology and normally the driving of the high capacitive transfer gate limits the speed of the array operation. In this paper we report a new 9T global shutter pixel based on 3-T partially pinned photodiode (PPPD) technology. It incorporates three in-pixel storage capacitors allowing for correlated double sampling (CDS) and pipeline operation of the array (pixel exposure during the readout of the array). Only two control pulses are needed for all the pixels at the end of exposure which allows high speed exposure control.

  13. Spin Relaxation in Spherical CdS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Nahalkova, P.; Sprinzl, D.; Nemec, P.; Maly, P.; Gladilin, V. N.; Devreese, J. T.

    2006-03-01

    We present results of the time-resolved spin-sensitive differential transmission experiments and the quantitative theoretical analysis of the spin relaxation mechanism in quasi-spherical CdS quantum dots (QD) in a glass matrix. The measured decay of the degree of circular polarization (DCP) on ns timescale can be explained well by intralevel exciton transitions with electron spin flip, driven by the electron-hole exchange interaction and assisted by two LO phonons. The predicted spin relaxation rates for different QD sizes and temperatures are in line with experimentally determined values. The developed theoretical model provides also a qualitative understanding of the observed behavior of DCP as a function of central energy of pump and probe pulses. This work was supported by the Ministry of Education of the Czech Republic in the framework of research plan MSM 0021620834 and the research centre LC510, as well as by the GOA BOF UA 2000, IUAP, FWO-V projects G.0274.01N, G.0435.03, WOG WO.035.04N (Belgium) and the European Commission SANDiE Network of Excellence, contract No. NMP4-CT-2004-500101.

  14. Axion string dynamics I: 2+1D

    NASA Astrophysics Data System (ADS)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-01

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  15. 1D-transport properties of single superconducting lead nanowires

    NASA Astrophysics Data System (ADS)

    Michotte, S.; Mátéfi-Tempfli, S.; Piraux, L.

    2003-09-01

    We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ∼40 nm and a very large aspect ratio (∼500). The diameter of the nanowire is small enough to ensure a 1D superconducting regime in a wide temperature range below Tc. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied DC current (or voltage). The current induced breakdowns in the V- I characteristics may be explained by the formation of phase slip centers. Moreover, DC voltage driven measurements reveal the existence of a new S-shape behavior near the formation of these phase slip centers.

  16. Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    2014-12-01

    One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al. (2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy can be broken in many cases using the relatively crude 2-D parallax information that is often available for microlensing events. I also develop an explicit formula for the region of parameter space where it is more difficult to break this degeneracy. Although no mass/distance measurements have yet been made using this technique, it is likely to become quite common over the next decade.

  17. Quadratic Finite Element Method for 1D Deterministic Transport

    SciTech Connect

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  18. Effective theory of black holes in the 1/D expansion

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-06-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this `black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/ D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for `black droplets', i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

  19. Connected components of irreducible maps and 1D quantum phases

    NASA Astrophysics Data System (ADS)

    Szehr, Oleg; Wolf, Michael M.

    2016-08-01

    We investigate elementary topological properties of sets of completely positive (CP) maps that arise in quantum Perron-Frobenius theory. We prove that the set of primitive CP maps of fixed Kraus rank is path-connected and we provide a complete classification of the connected components of irreducible CP maps at given Kraus rank and fixed peripheral spectrum in terms of a multiplicity index. These findings are then applied to analyse 1D quantum phases by studying equivalence classes of translational invariant matrix product states that correspond to the connected components of the respective CP maps. Our results extend the previously obtained picture in that they do not require blocking of physical sites, they lead to analytic paths, and they allow us to decompose into ergodic components and to study the breaking of translational symmetry.

  20. Glycolipid antigen processing for presentation by CD1d molecules.

    PubMed

    Prigozy, T I; Naidenko, O; Qasba, P; Elewaut, D; Brossay, L; Khurana, A; Natori, T; Koezuka, Y; Kulkarni, A; Kronenberg, M

    2001-01-26

    The requirement for processing glycolipid antigens in T cell recognition was examined with mouse CD1d-mediated responses to glycosphingolipids (GSLs). Although some disaccharide GSL antigens can be recognized without processing, the responses to three other antigens, including the disaccharide GSL Gal(alpha1-->2)GalCer (Gal, galactose; GalCer, galactosylceramide), required removal of the terminal sugars to permit interaction with the T cell receptor. A lysosomal enzyme, alpha-galactosidase A, was responsible for the processing of Gal(alpha1-->2)GalCer to generate the antigenic monosaccharide epitope. These data demonstrate a carbohydrate antigen processing system analogous to that used for peptides and an ability of T cells to recognize processed fragments of complex glycolipids.

  1. Magnetic Properties of Nanostructures

    NASA Astrophysics Data System (ADS)

    Ciraldo, John

    2007-10-01

    The recent development of the superlattice nanowire pattern transfer (SNAP) technique has enabled the fabrication of complex molecular-electronic circuits at unprecedented densities. In this project, we explore the possibility of extending this technique to generate comparably dense arrays of nanoscale giant magnetoresistive (GMR) and tunneling magnetoresistive (TMR) devices. My primary contribution to this project has focused on using a vibrating sample magnetometer (VSM), as well as a superconducting interference device (SQUID) magnetometer to monitor the magnetic properties of the devices as they are processed from thin 2D films into nanostructure arrays. This investigation allows us to investigate both fundamental and technological aspects of the nanopatterning process. For example, the effects of changing surface to volume ratios on the ferromagnetic exchange interaction and the role of various patterning techniques in determining surface chemistry and oxidation of the final nanostructures, respectively. Additionally I have worked on simulations of the materials using NIST's OOMF program, allowing me to compare actual results with theoretical expectations. I am also designing a magneto-optical Kerr effect (MOKE) detector, which will allow faster approximations of magnetic behavior.

  2. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle

    PubMed Central

    Cartee, Gregory D.

    2014-01-01

    This review focuses on two paralogue Rab GTPase activating proteins known as TBC1D1 Tre-2/BUB2/cdc 1 domain family (TBC1D) 1 and TBC1D4 (also called Akt Substrate of 160 kDa, AS160) and their roles in controlling skeletal muscle glucose transport in response to the independent and combined effects of insulin and exercise. Convincing evidence implicates Akt2-dependent TBC1D4 phosphorylation on T642 as a key part of the mechanism for insulin-stimulated glucose uptake by skeletal muscle. TBC1D1 phosphorylation on several insulin-responsive sites (including T596, a site corresponding to T642 in TBC1D4) does not appear to be essential for in vivo insulin-stimulated glucose uptake by skeletal muscle. In vivo exercise or ex vivo contraction of muscle result in greater TBC1D1 phosphorylation on S237 that is likely to be secondary to increased AMP-activated protein kinase activity and potentially important for contraction-stimulated glucose uptake. Several studies that evaluated both normal and insulin-resistant skeletal muscle stimulated with a physiological insulin concentration after a single exercise session found that greater post-exercise insulin-stimulated glucose uptake was accompanied by greater TBC1D4 phosphorylation on several sites. In contrast, enhanced post-exercise insulin sensitivity was not accompanied by greater insulin-stimulated TBC1D1 phosphorylation. The mechanism for greater TBC1D4 phosphorylation in insulin-stimulated muscles after acute exercise is uncertain, and a causal link between enhanced TBC1D4 phosphorylation and increased post-exercise insulin sensitivity has yet to be established. In summary, TBC1D1 and TBC1D4 have important, but distinct roles in regulating muscle glucose transport in response to insulin and exercise. PMID:25280670

  3. One-dimensional Fe Nanostructures Formed on Vicinal Au(111) Surfaces

    NASA Astrophysics Data System (ADS)

    Shiraki, Susumu; Fujisawa, Hideki; Nantoh, Masashi; Kawai, Maki

    2005-07-01

    In this study of fabricated one-dimensional (1D) nanostructures of Fe adatoms on vicinal Au(111) surfaces, the growth mechanism and electronic structures are investigated by scanning tunneling microscopy (STM) and by angle-resolved photoemission spectroscopy (ARPES). STM observations reveal that dosed Fe atoms are trapped at the lower corners of the steps. They create nucleation centers near the intersections between steps and discommensuration lines, and grow into evenly spaced Fe fragments located at face-centered-cubic (fcc) stacking regions of the substrate. The connection of these fragments aligned along the steps results in the formation of Fe monatomic rows. As the Fe coverage increases, the Fe growth proceeds predominantly at the fcc stacking regions, and forms quasi-1D nanostructures with undulating edges. At an Fe coverage of ˜0.6 ML, the fast-growing parts connect with the adjacent Fe structures and a two-dimensional network structure is built up. ARPES measurements reveal that the decoration of the step edges with Fe has a significant influence on the periodic potential of the surface state electrons confined between the regularly arranged steps. On the surface with Fe monatomic rows, photoemission spectra measured in the direction perpendicular to the steps show a parabolic dispersion of the Au(111) surface state with downward energy shift of the band bottom; the clean surface, in contrast, shows two 1D quantum-well levels. A simple analysis using a 1D Kronig-Penny model reveals that the Fe decoration reduces the potential barrier height at the steps from 20 to 4.6 eV Å, suggesting that the Fe adatoms work as attractive scatterers and increase the probability of transmission through the barriers. Furthermore, for the higher Fe coverage, the spectra reflecting the electronic nature of the 1D nanostructures show little dispersion, suggesting that the Fe 3d states are localized in the 1D structures.

  4. One-pot solvothermal route to self-assembly of cauliflower-shaped CdS microspheres

    NASA Astrophysics Data System (ADS)

    Ge, Ming; Cui, Yao; Liu, Lu; Zhou, Zhen

    2011-05-01

    Nearly monodispersed cauliflower-shaped CdS microspheres were prepared through a simple one-step solvothermal route on a large scale by employing sodium dodecyl sulfate (SDS) as the surfactant. Images by field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) indicate that cauliflower-shaped CdS microspheres with diameters in the range from 1.3 to 4.5 μm are assembled by nanoparticles with an average diameter of approximately 30 nm. The possible formation mechanism of the cauliflower-shaped CdS microspheres was also proposed. The photovoltaic activity of cauliflower-shaped CdS architectures has been investigated, indicating that the as-obtained CdS microspheres exhibited higher photovoltaic performance in comparison with CdS nanoparticles.

  5. Improved stoichiometry and photoanode efficiency of thermally evaporated CdS film with quantum dots as precursor.

    PubMed

    Fan, Libo; Wang, Peng; Guo, Qiuquan; Lei, Yan; Li, Ming; Han, Hongpei; Zhao, Haifeng; Yang, Dongluo; Zheng, Zhi; Yang, Jun

    2015-08-21

    Good stoichiometry of cadmium sulfide (CdS) film facilitates its application in photovoltaic devices; however, traditional thermal evaporation usually results in a Cd-deficient CdS film at a low-substrate temperature. In this study, Cd-rich CdS quantum dots (QDs) were synthesized by a facile co-precipitation method and used as the precursor to thermally evaporate CdS film on indium tin oxide-coated glass (ITO/glass). As a consequence, the stoichiometry of CdS film was greatly improved with atomic ratio of Cd to S restored to unity. More importantly, the newly developed CdS film, with its rod-like surface microstructure, acted as an efficient photoanode in a photoelectrochemical (PEC) cell. Its properties, including surface morphology and roughness, crystal structure, chemical composition, film thickness, energy-level structure and photosensitivity, are studied in detail. PMID:26221785

  6. Improved stoichiometry and photoanode efficiency of thermally evaporated CdS film with quantum dots as precursor

    NASA Astrophysics Data System (ADS)

    Fan, Libo; Wang, Peng; Guo, Qiuquan; Lei, Yan; Li, Ming; Han, Hongpei; Zhao, Haifeng; Yang, Dongluo; Zheng, Zhi; Yang, Jun

    2015-08-01

    Good stoichiometry of cadmium sulfide (CdS) film facilitates its application in photovoltaic devices; however, traditional thermal evaporation usually results in a Cd-deficient CdS film at a low-substrate temperature. In this study, Cd-rich CdS quantum dots (QDs) were synthesized by a facile co-precipitation method and used as the precursor to thermally evaporate CdS film on indium tin oxide-coated glass (ITO/glass). As a consequence, the stoichiometry of CdS film was greatly improved with atomic ratio of Cd to S restored to unity. More importantly, the newly developed CdS film, with its rod-like surface microstructure, acted as an efficient photoanode in a photoelectrochemical (PEC) cell. Its properties, including surface morphology and roughness, crystal structure, chemical composition, film thickness, energy-level structure and photosensitivity, are studied in detail.

  7. Synthesis and characterization of CdS nanocrystals in Maleic anhydride-Octene-1-Vinylbutyl Ether terpolymer matrix

    NASA Astrophysics Data System (ADS)

    Akperov, Oktay H.; Muradov, Mustafa B.; Malikov, Elvin Y.; Akperov, Elchin O.; Mammadova, Rasmiyya E.; Eyvazova, Goncha M.; Kukovecz, Ákos; Kónya, Zoltán

    2016-07-01

    A Maleic anhydride-Octene-1-Vinylbutyl Ether terpolymer was synthesized via the radical terpolymerization method in order to prepare a new matrix for CdS nanocrystal synthesis. CdS nanocrystals were synthesized through the reaction of thiourea with cadmium chloride. The synthesized terpolymer/CdS nanocrystal composites were characterized by several methods. Energy Dispersive X-ray analysis, Raman spectroscopy and powder X-ray diffraction methods. The room temperature UV-visible absorption spectra show a shift of the absorption edge towards higher energies. The band gap of the CdS nanocomposite is bigger than that of bulk CdS. Raman spectrum exhibits characteristic peaks of CdS. Images of the nanocomposite obtained with Atomic Force Microscopy and Transmission Electron Microscopy are the evidences of CdS nanocrystal formation in the terpolymer. Thermal investigation shows that the nanocomposite is more thermostable than the terpolymer which could be useful for application in thermo aggressive medium.

  8. Repairable, nanostructured biomimetic hydrogels

    NASA Astrophysics Data System (ADS)

    Firestone, M.; Brombosz, S.; Grubjesic, S.

    2013-03-01

    Proteins facilitate many key cellular processes, including signal recognition and energy transduction. The ability to harness this evolutionarily-optimized functionality could lead to the development of protein-based systems useful for advancing alternative energy storage and conversion. The future of protein-based, however, requires the development of materials that will stabilize, order and control the activity of the proteins. Recently we have developed a synthetic approach for the preparation of a durable biomimetic chemical hydrogel that can be reversibly swollen in water. The matrix has proven ideal for the stable encapsulation of both water- and membrane-soluble proteins. The material is composed of an aqueous dispersion of a diacrylate end-derivatized PEO-PPO-PEO macromer, a saturated phospholipid and a zwitterionic co-surfactant that self-assembles into a nanostructured physical gel at room temperature as determined by X-ray scattering. The addition of a water soluble PEGDA co-monomer and photoinitator does not alter the self-assembled structure and UV irradiation serves to crosslink the acrylate end groups on the macromer with the PEGDA forming a network within the aqueous domains as determined by FT-IR. More recently we have begun to incorporate reversible crosslinks employing Diels-Alder chemistry, allowing for the extraction and replacement of inactive proteins. The ability to replenish the materials with active, non-denatured forms of protein is an important step in advancing these materials for use in nanostructured devices This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, USDoE under Contract No. DE-AC02-06CH11357.

  9. 1D X-ray Beam Compressing Monochromators

    SciTech Connect

    Korytar, D.; Dobrocka, E.; Konopka, P.; Zaprazny, Z.; Ferrari, C.; Mikulik, P.; Vagovic, P.; Ac, V.; Erko, A.; Abrosimov, N.

    2010-04-06

    A total beam compression of 5 and 10 corresponding to the asymmetry angles of 9 deg. and 12 deg. is achieved with V-5 and V-10 monochromators, respectively, in standard single crystal pure germanium (220) X-ray beam compressing (V-shaped) monochromators for CuKalpha{sub 1} radiation. A higher 1D compression of X-ray beam is possible using larger angles of asymmetry, however it is achieved at the expense of the total intensity, which is decreased due to the refraction effect. To increase the monochromator intensity, several ways are considered both theoretically and experimentally. Linearly graded germanium rich Ge{sub x}Si{sub (1-x)} single crystal was used to prepare a V-21 single crystal monochromator with 15 deg. asymmetry angles (compression factor of 21). Its temperature gradient version is discussed for CuKalpha{sub 1} radiation. X-ray diffraction measurements on the graded GeSi monochromator showed more than 3-times higher intensity at the output compared with that of a pure Ge monochromator.

  10. 1-D Numerical Analysis of RBCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1998-01-01

    An RBCC engine combines air breathing and rocket engines into a single engine to increase the specific impulse over an entire flight trajectory. Considerable research pertaining to RBCC propulsion was performed during the 1960's and these engines were revisited recently as a candidate propulsion system for either a single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO) launch vehicle. There are a variety of RBCC configurations that had been evaluated and new designs are currently under development. However, the basic configuration of all RBCC systems is built around the ejector scramjet engine originally developed for the hypersonic airplane. In this configuration, a rocket engine plays as an ejector in the air-augmented initial acceleration mode, as a fuel injector in scramjet mode and the rocket in all rocket mode for orbital insertion. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in RBCC propulsion systems. The objective of the present research was to develop a transient 1-D numerical model that could be used to predict flow behavior throughout a generic RBCC engine following a flight path.

  11. Dynamic decoupling in the presence of 1D random walk

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Arnab; Chakraborty, Ipsita; Bhattacharyya, Rangeet

    2016-05-01

    In the recent past, many dynamic decoupling sequences have been proposed for the suppression of decoherence of spins connected to thermal baths of various natures. Dynamic decoupling schemes for suppressing decoherence due to Gaussian diffusion have also been developed. In this work, we study the relative performances of dynamic decoupling schemes in the presence of a non-stationary Gaussian noise such as a 1D random walk. Frequency domain analysis is not suitable to determine the performances of various dynamic decoupling schemes in suppressing decoherence due to such a process. Thus, in this work, we follow a time domain calculation to arrive at the following conclusions: in the presence of such a noise, we show that (i) the traditional Carr–Purcell–Meiboom–Gill (CPMG) sequence outperforms Uhrig’s dynamic decoupling scheme, (ii) CPMG remains the optimal sequence for suppression of decoherence due to random walk in the presence of an external field gradient. Later, the theoretical predictions are experimentally verified by using nuclear magnetic resonance spectroscopy on spin 1/2 particles diffusing in a liquid medium.

  12. Control and imaging of O(1D2) precession

    NASA Astrophysics Data System (ADS)

    Wu, Shiou-Min; Radenovic, Dragana Č.; van der Zande, Wim J.; Groenenboom, Gerrit C.; Parker, David H.; Vallance, Claire; Zare, Richard N.

    2011-01-01

    Larmor precession of a quantum mechanical angular momentum vector about an applied magnetic field forms the basis for a range of magnetic resonance techniques, including nuclear magnetic resonance spectroscopy and magnetic resonance imaging. We have used a polarized laser pump-probe scheme with velocity-map imaging detection to visualize, for the first time, the precessional motion of a quantum mechanical angular momentum vector. Photodissociation of O2 at 157 nm provides a clean source of fast-moving O(1D2) atoms, with their electronic angular momentum vector strongly aligned perpendicular to the recoil direction. In the presence of an external magnetic field, the distribution of atomic angular momenta precesses about the field direction, and polarization-sensitive images of the atomic scattering distribution recorded as a function of field strength yield ‘time-lapse-photography’ style movies of the precessional motion. We present movies recorded in various experimental geometries, and discuss potential consequences and applications in atmospheric chemistry and reaction dynamics.

  13. Plasmonic properties and applications of metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Zhen, Yurong

    Plasmonic properties and the related novel applications are studied on various types of metallic nano-structures in one, two, or three dimensions. For 1D nanostructure, the motion of free electrons in a metal-film with nanoscale thickness is confined in its normal dimension and free in the other two. Describing the free-electron motion at metal-dielectric surfaces, surface plasmon polariton (SPP) is an elementary excitation of such motions and is well known. When further perforated with periodic array of holes, periodicity will introduce degeneracy, incur energy-level splitting, and facilitate the coupling between free-space photon and SPP. We applied this concept to achieve a plasmonic perfect absorber. The experimentally observed reflection dip splitting is qualitatively explained by a perturbation theory based on the above concept. If confined in 2D, the nanostructures become nanowires that intrigue a broad range of research interests. We performed various studies on the resonance and propagation of metal nanowires with different materials, cross-sectional shapes and form factors, in passive or active medium, in support of corresponding experimental works. Finite- Difference Time-Domain (FDTD) simulations show that simulated results agrees well with experiments and makes fundamental mode analysis possible. Confined in 3D, the electron motions in a single metal nanoparticle (NP) leads to localized surface plasmon resonance (LSPR) that enables another novel and important application: plasmon-heating. By exciting the LSPR of a gold particle embedded in liquid, the excited plasmon will decay into heat in the particle and will heat up the surrounding liquid eventually. With sufficient exciting optical intensity, the heat transfer from NP to liquid will undergo an explosive process and make a vapor envelop: nanobubble. We characterized the size, pressure and temperature of the nanobubble by a simple model relying on Mie calculations and continuous medium assumption. A

  14. Nanostructured Materials for Renewable Energy

    SciTech Connect

    2009-11-01

    This factsheet describes a research project whose overall objective is to advance the fundamental understanding of novel photoelectronic organic device structures integrated with inorganic nanostructures, while also expanding the general field of nanomaterials for renewable energy devices and systems.

  15. In Situ Quantitative Mechanical Characterization and Integration of One Dimensional Metallic Nanostructures

    NASA Astrophysics Data System (ADS)

    Lu, Yang

    2011-12-01

    One dimensional (1-D) metallic nanostructures (e.g. nanowires, nanorods) have stimulated great interest recently as important building blocks for future nanoscale electronic and electromechanical devices. In this thesis work, gold and nickel nanowires with various diameters were successfully fabricated, and two dedicated platforms, based on (1) a novel micro mechanical device (MMD) assisted with a quantitative nanoindenter and (2) a TEM-AFM sample holder system, were developed and adopted to perform in situ tensile tests inside SEM and TEM on samples with diameter ranging from a few nanometers to hundreds nanometers. Size-dependent mechanical behavior and different fracture mechanisms of gold nanowires had been revealed and discussed. In addition, we discovered cold welding phenomenon for ultrathin gold nanowires (diameter < 10nm), which is anticipated to have potential applications in the future bottom-up integration of metallic 1-D nanostructures and next-generation interconnects for extremely dense logic circuits.

  16. Absolute rate constant determinations for the deactivation of O/1D/ by time resolved decay of O/1D/ yields O/3P/ emission

    NASA Technical Reports Server (NTRS)

    Davidson, J. A.; Sadowski, C. M.; Schiff, H. I.; Howard, C. J.; Schmeltekopf, A. L.; Jennings, D. A.; Streit, G. E.

    1976-01-01

    Absolute rate constants for the deactivation of O(1D) atoms by some atmospheric gases have been determined by observing the time-resolved emission of O(1D) at 630 nm. O(1D) atoms were produced by the dissociation of ozone via repetitive laser pulses at 266 nm. Absolute rate constants for the relaxation of O(1D) at 298 K are reported for N2, O2, CO2, O3, H2, D2, CH4, HCl, NH3, H2O, N2O, and Ne. The results obtained are compared with previous relative and absolute measurements reported in the literature.

  17. Programmed self-assembly of complex DNA nanostructures

    NASA Astrophysics Data System (ADS)

    Tian, Cheng

    DNA has served as an excellent building block to self-assemble into a wide range of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) structures with the bottom-up method. Due to the specificity of base pairing, the DNA assembly system is predictable and robust. These DNA structures with higher diversity and complexity have potential applications as templates to organize guest molecules or nanoparticles for the nanofabrication, as biosensors for the genetic diagnosis and environmental detection, and as nanocarriers to deliver and release drugs for the therapy. My major researches focus on designing a novel building block and assembly strategies to self-assemble DNA into complex nanostructures to increase the diversity and complexity. A novel building block was first constructed, which is a parallel, left-handed DNA helix containing multiple domains of half-turn-long standard B-DNA. Such a structure can be used to introduce left-handed crossings in order to increase the diversity and complexity of DNA nanostructures, and can be taken into consideration when predicting the secondary structure of DNA/RNA molecules in cells. In addition, a tile-based directed self-assembly strategy was developed to construct DNA nanocages. In this strategy, directing building blocks were employed to control the self-assembly process of assembly building blocks. This strategy greatly expands the scope of accessible DNA nanostructures and would facilitate technological applications such as nano-guest encapsulation, drug delivery, and nanoparticle organization. As the complexity of DNA nanostructures increases, more errors might be involved in the assembly process. Therefore, a simplified design system based on T-junction was designed to build DNA arrays and minimize the assembly errors. In such system, due to the sequence symmetry, only one DNA single strand is employed and assembled into predesigned 1D and 2D arrays. This design system can be applied to assemble a

  18. Absorption and emission spectroscopy of individual semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.

    The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally

  19. [Spectroscopic study on CdS nanoparticles prepared by microwave irradiation].

    PubMed

    Cheng, Wei-qing; Liu, Di; Yan, Zheng-yu

    2008-06-01

    CdS nanoparticles capped by mercaptoacetic acid have been successfully synthesized by microwave method employing thioacetamide as sulfur source, which was proved to be a simple, rapid and specific mothod compared with traditional synthetical methods, such as precipitation, sol-gel, solvo-thermal method and so on. The concrete procedure synthesizing CdS nanoparticles was as follows: Cd(NO3)2 (40 mL, 5 mmol c L(-1)) was titrated with mercaptoacetic acid to pH 2.0, resulting in a turbid blue solution. NaOH (0.1 mol x L(-1)) was then added dropwise until the pH was 7 and the solution was again colorless. While quickly stirring the solution, 40 mL of 5 mmol x L(-1) CH3CSNH2 was added. Subsequently, the solution was adjusted to pH 9.0 and placed in a microwave oven for 25 min with power 30% (it means that if microwave works in a 30 s regime, it works 6 s, and does not work 24 s. This is some kind of pulse regime, but the totalpower is still 100%). This kind of nanoparticles were water-soluble and symmetrical. The diameter of CdS nanoparticles which have a spherical morphology was determined to be 12 nm by transmission electron microscopy(TEM), which posess perfect uniforminty. According to literatures report, there are two kinds of emission peak: one is edge-emission peak, and the other is surface blemish emission. In contrast to edge-emission peak, the surface blemish emission shows red shift on fluorescence spectra. In the present paper, the prominent peak of CdS QDs fluorescence spectrum was located at 490 nm, the humpbacked peak caused by surface blemish of CdS nanoparticles was located at 565 nm. However, the surface blemish emission was unconspicuous, thus we can conclude that the synthetical CdS QDs possesses excellent luminescence capability and favorable structure. The size and absorption and fluorescence spectra of CdS nanoparticles at different microwave power, pH value, reaction time and different sulfur source were investigated. The result showed that the

  20. [Spectroscopic study on CdS nanoparticles prepared by microwave irradiation].

    PubMed

    Cheng, Wei-qing; Liu, Di; Yan, Zheng-yu

    2008-06-01

    CdS nanoparticles capped by mercaptoacetic acid have been successfully synthesized by microwave method employing thioacetamide as sulfur source, which was proved to be a simple, rapid and specific mothod compared with traditional synthetical methods, such as precipitation, sol-gel, solvo-thermal method and so on. The concrete procedure synthesizing CdS nanoparticles was as follows: Cd(NO3)2 (40 mL, 5 mmol c L(-1)) was titrated with mercaptoacetic acid to pH 2.0, resulting in a turbid blue solution. NaOH (0.1 mol x L(-1)) was then added dropwise until the pH was 7 and the solution was again colorless. While quickly stirring the solution, 40 mL of 5 mmol x L(-1) CH3CSNH2 was added. Subsequently, the solution was adjusted to pH 9.0 and placed in a microwave oven for 25 min with power 30% (it means that if microwave works in a 30 s regime, it works 6 s, and does not work 24 s. This is some kind of pulse regime, but the totalpower is still 100%). This kind of nanoparticles were water-soluble and symmetrical. The diameter of CdS nanoparticles which have a spherical morphology was determined to be 12 nm by transmission electron microscopy(TEM), which posess perfect uniforminty. According to literatures report, there are two kinds of emission peak: one is edge-emission peak, and the other is surface blemish emission. In contrast to edge-emission peak, the surface blemish emission shows red shift on fluorescence spectra. In the present paper, the prominent peak of CdS QDs fluorescence spectrum was located at 490 nm, the humpbacked peak caused by surface blemish of CdS nanoparticles was located at 565 nm. However, the surface blemish emission was unconspicuous, thus we can conclude that the synthetical CdS QDs possesses excellent luminescence capability and favorable structure. The size and absorption and fluorescence spectra of CdS nanoparticles at different microwave power, pH value, reaction time and different sulfur source were investigated. The result showed that the

  1. Water induced size and structure phase transition of CdS crystals and their photocatalytic property

    SciTech Connect

    Li, Xiaoyan; Xi, Yi; Hu, Chenguo; Wang, Xue

    2013-02-15

    Graphical abstract: Excellent photocatalytic activity in degradation of RhB was found with the hexagonal CdS nanorods growing along [0 0 0 1] direction, which is a result of the exposed (0 0 0 1) facets in the ends. Display Omitted Highlights: ► CdS microwires and nanorods were attained by a modified CHM approach. ► The phase transition (cubic to hexagonal) was achieved by tuning the amount of H{sub 2}O. ► Excellent photocatalytic activity was found with the hexagonal CdS. ► Hexagonal CdS has the better catalytic property due to more (0 0 0 1) facets exposed. -- Abstract: Single-crystalline CdS microwires (mixed cubic and hexagonal phase) and nanorods (pure hexagonal phase) were synthesized by a modified composite-hydroxide-mediated (CHM) approach. Photocatalytic degradation of rhodamine B with the CdS nanorods was studied under the simulated sunlight irradiation. Crystalline phase transition from cubic to hexagonal phase was achieved by adding a small amount of water in the melts. The phase structures and morphologies of the prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area of electron diffraction (SAED) and scanning electron microscopy (SEM), respectively. The results show that the pure hexagonal phase structure could be obtained with 5 mL or more than 5 mL water added in the composite-hydroxide melts. The band–gap of the hexagonal nanorods was 2.435 eV observed from UV–vis reflection spectrum. Compared with the CdS nanoparticles (mixed cubic and hexagonal phase), we found that the hexagonal phase structure CdS nanorods revealed much better photocatalytic activity owing to the exposure of (0 0 0 1) polar facet on the end. It is expected that the present research may offer useful guidance to the potential application of CdS in the treatment of environmental pollution.

  2. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy.

    PubMed

    Lee, Jung Ah; Lim, Young Rok; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-21

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes. PMID:27640642

  3. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  4. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy.

    PubMed

    Lee, Jung Ah; Lim, Young Rok; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-21

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  5. [Research on the polycrystalline CdS thin films prepared by close-spaced sublimation].

    PubMed

    Yang, Ding-Yu; Xia, Geng-Pei; Zheng, Jia-Gui; Feng, Liang-Huan; Cai, Ya-Ping

    2009-01-01

    In the present paper, the factors of influence on the deposition rate of CdS films prepared by close-spaced sublimation (CSS) were first studied systematically, and it was found from the experiments that the deposition rate increased with the raised temperature of sublimation source, while decreased with the raised substrate temperature and the deposition pressure. The structure, morphology and light transmittance of the prepared samples were tested subsequently, and the results show: (1) The CdS films deposited under different oxygen partial pressure all present predominating growth lattice orientation (103), and further more the films will be strengthened after annealed under CdCl2 atmosphere. (2) The AFM images of CdS show that the films are compact and uniform in grain diameter, and the grain size becomes larger with the increased substrate temperature. Along with it, the film roughness was also augmented. (3) The transmittance in the shortwave region of visible light through the CdS films would be enhanced when its thickness is reduced, and that will help improve the shortwave spectral response of CdTe solar cells. Finally, the prepared CdS films were employed to fabricate CdTe solar cells, which have achieved a conversion efficiency of 10.29%, and thus the feasibility of CSS process in the manufacture of CdTe solar cells was validated primarily.

  6. Template-free solution approach to synthesize CdS dendrites with SCN based ionic liquid

    SciTech Connect

    Li, Kangfeng; Li, Jiajia; Cheng, Xianyi; Liu, Weidong; Ying, Taokai

    2011-07-15

    Highlights: {yields} Template-free solution approach to synthesize CdS hierarchical dendrites. {yields} The 1-butyl-3-methlyimidazole thiocyanate ([BMIM][SCN]) plays doubly functional roles in the progress. {yields} The CdS hierarchical dendrites exhibit a more intense emission at 710 nm belongs to infrared band. -- Abstract: Cadmium sulfide dendrites were synthesized by a facile hydrothermal treatment from CdCl{sub 2} and ionic liquid 1-butyl-3-methlyimidazole thiocyanate acted both as sulfur source and surfactant. The product was characterized by means of X-ray powder diffraction and scanning electron microscopy. X-ray powder diffraction studies indicated that the product was well-crystallized hexagonal phase of CdS, and the scanning electron microscopy images showed that the obtained powders consisted of a wealth of well-defined CdS dendritic microstructures with a pronounced trunk and highly ordered branches. The UV-Vis and photoluminescence spectroscopy measurements were taken as well. The possible formation mechanism of CdS dendrites was simply proposed in the end.

  7. Optical characterization of CdS semiconductor nanoparticles capped with starch

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fragoso, P.; de la Cruz, G. González; Tomas, S. A.; Zelaya-Angel, O.

    2010-11-01

    Starch capped cadmium sulfide (CdS) nanoparticles were synthesized by aqueous solution precipitation. Starch added during the synthesis of nanoparticles resulted in cadmium-rich nanoparticles forming a stable complex with starch. The size of the CdS quantum dots was measured using high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The average diameter (d) of nanoparticles spanned the range 4.8 ± 0.4 to 5.7 ± 0.2 nm when the pH of the solution was varied within the range 10-14. The main Raman phonon of CdS, the longitudinal optical mode located around 300 cm-1, softens as diameter decreases, in accordance with theoretical predictions. In addition, the largest Raman response of starch, near 478 cm-1, related with the important skeletal vibration modes of the starch pyranose ring, dominates the spectra of the CdS capped nanoparticles and also softens as the size decreases. This fact indicates a strain variation on CdS as a function of d which increases as the pH increases.

  8. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics.

    PubMed

    Mokurala, Krishnaiah; Baranowski, Lauryn L; de Souza Lucas, Francisco W; Siol, Sebastian; van Hest, Maikel F A M; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers. PMID:27479495

  9. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics.

    PubMed

    Mokurala, Krishnaiah; Baranowski, Lauryn L; de Souza Lucas, Francisco W; Siol, Sebastian; van Hest, Maikel F A M; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.

  10. In situ growth of well-dispersed CdS nanocrystals in semiconducting polymers.

    PubMed

    Laera, Anna Maria; Resta, Vincenzo; Piscopiello, Emanuela; Miceli, Valerio; Schioppa, Monica; Scalone, Anna Grazia; Benedetto, Francesca Di; Tapfer, Leander

    2013-09-09

    A straight synthetic route to fabricate hybrid nanocomposite films of well-dispersed CdS nanocrystals (NCs) in poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) is reported. A soluble cadmium complex [Cd(SBz)2]2·MI, obtained by incorporating a Lewis base (1-methylimidazole, MI) on the cadmium bis(benzyl)thiol, is used as starting reagent in an in situ thermolytic process. CdS NCs with spherical shape nucleate and grow well below 200°C in a relatively short time (30 min). Photoluminescence spectroscopy measurements performed on CdS/MEH-PPV nanocomposites show that CdS photoluminescence peaks are totally quenched inside MEH-PPV, if compared to CdS/PMMA nanocomposites, as expected due to overlapping of the polymer absorption and CdS emission spectra. The CdS NCs are well-dispersed in size and homogeneously distributed within MEH-PPV matrix as proved by transmission electron microscopy. Nanocomposites with different precursor/polymer weight ratios were prepared in the range from 1:4 to 4:1. Highly dense materials, without NCs clustering, were obtained for a weight/weight ratio of 2:3 between precursor and polymer, making these nanocomposites particularly suitable for optoelectronic and solar energy conversion applications.

  11. Plasmid CDS5 influences infectivity and virulence in a mouse model of Chlamydia trachomatis urogenital infection.

    PubMed

    Ramsey, K H; Schripsema, J H; Smith, B J; Wang, Y; Jham, B C; O'Hagan, K P; Thomson, N R; Murthy, A K; Skilton, R J; Chu, P; Clarke, I N

    2014-08-01

    The native plasmid of both Chlamydia muridarum and Chlamydia trachomatis has been shown to control virulence and infectivity in mice and in lower primates. We recently described the development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis that for the first time provides a platform for the molecular dissection of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In the present study, we transformed a plasmid-free lymphogranuloma venereum isolate of C. trachomatis, serovar L2, with either the original shuttle vector (pGFP::SW2) or a derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene (pCDS5KO). Female mice were inoculated with these strains either intravaginally or transcervically. We found that transformation of the plasmid-free isolate with the intact pGFP::SW2 vector significantly enhanced infectivity and induction of host inflammatory responses compared to the plasmid-free parental isolate. Transformation with pCDS5KO resulted in infection courses and inflammatory responses not significantly different from those observed in mice infected with the plasmid-free isolate. These results indicate a critical role of plasmid CDS5 in in vivo fitness and in induction of inflammatory responses. To our knowledge, these are the first in vivo observations ascribing infectivity and virulence to a specific plasmid gene. PMID:24866804

  12. Plasmid CDS5 Influences Infectivity and Virulence in a Mouse Model of Chlamydia trachomatis Urogenital Infection

    PubMed Central

    Schripsema, J. H.; Smith, B. J.; Wang, Y.; Jham, B. C.; O'Hagan, K. P.; Thomson, N. R.; Murthy, A. K.; Skilton, R. J.; Chu, P.; Clarke, I. N.

    2014-01-01

    The native plasmid of both Chlamydia muridarum and Chlamydia trachomatis has been shown to control virulence and infectivity in mice and in lower primates. We recently described the development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis that for the first time provides a platform for the molecular dissection of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In the present study, we transformed a plasmid-free lymphogranuloma venereum isolate of C. trachomatis, serovar L2, with either the original shuttle vector (pGFP::SW2) or a derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene (pCDS5KO). Female mice were inoculated with these strains either intravaginally or transcervically. We found that transformation of the plasmid-free isolate with the intact pGFP::SW2 vector significantly enhanced infectivity and induction of host inflammatory responses compared to the plasmid-free parental isolate. Transformation with pCDS5KO resulted in infection courses and inflammatory responses not significantly different from those observed in mice infected with the plasmid-free isolate. These results indicate a critical role of plasmid CDS5 in in vivo fitness and in induction of inflammatory responses. To our knowledge, these are the first in vivo observations ascribing infectivity and virulence to a specific plasmid gene. PMID:24866804

  13. Study on the fluorescence resonance energy transfer between CdS quantum dots and Eosin Y.

    PubMed

    Yan, Zhengyu; Zhang, Zhengwei; Yu, Yan; Chen, Jianqiu

    2015-03-01

    Water-soluble CdS quantum dots (QDs) were prepared using mercaptoacetic acid (TGA) as the stabilizer in an aqueous system. A fluorescence resonance energy transfer (FRET) system was constructed between water-soluble CdS QDs (donor) and Eosin Y (acceptor). Several factors that impacted the fluorescence spectra of the FRET system, such as pH (3.05-10.10), concentration of Eosin Y (2-80 mg/L) and concentration of CdS QDs (2-80 mg/L), were investigated and refined. Donor-to-acceptor ratios, the energy transfer efficiency (E) and the distance (r) between CdS QDs and Eosin Y were obtained. The results showed that a FRET system could be established between water-soluble CdS QDs and Eosin Y at pH 5.0; donor-to-acceptor ratios demonstrated a 1: 8 proportion of complexes; the energy transfer efficiency (E) and the distance (r) between the QDs and Eosin Y were 20.07% and 4.36 nm,respectively.

  14. Effect of porosity on electrical conduction of simulated nanostructures by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Dariani, R. S.; Abbas Hadi, N.

    2016-09-01

    Electrical conduction of deposited nanostructures is studied by oblique angle deposition. At first, a medium is simulated as nanocolumns by Monte Carlo method, then the effects of porosity on electron transport in 1D and 2D are investigated. The results show that more electrons transfer in media with low porosity, but with increasing porosity, the distance between nanocolumns expands and less electrons transfer. Therefore, the transport current reduces at the surface.

  15. Evidence against dopamine D1/D2 receptor heteromers

    PubMed Central

    Frederick, Aliya L.; Yano, Hideaki; Trifilieff, Pierre; Vishwasrao, Harshad D.; Biezonski, Dominik; Mészáros, József; Sibley, David R.; Kellendonk, Christoph; Sonntag, Kai C.; Graham, Devon L.; Colbran, Roger J.; Stanwood, Gregg D.; Javitch, Jonathan A.

    2014-01-01

    Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies. PMID:25560761

  16. Dynamical functions of a 1D correlated quantum liquid

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Bozi, D.; Penc, K.

    2008-10-01

    The dynamical correlation functions in one-dimensional electronic systems show power-law behaviour at low energies and momenta close to integer multiples of the charge and spin Fermi momenta. These systems are usually referred to as Tomonaga-Luttinger liquids. However, near well defined lines of the (k,ω) plane the power-law behaviour extends beyond the low-energy cases mentioned above, and also appears at higher energies, leading to singular features in the photoemission spectra and other dynamical correlation functions. The general spectral-function expressions derived in this paper were used in recent theoretical studies of the finite-energy singular features in photoemission of the organic compound tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) metallic phase. They are based on a so-called pseudofermion dynamical theory (PDT), which allows us to systematically enumerate and describe the excitations in the Hubbard model starting from the Bethe ansatz, as well as to calculate the charge and spin object phase shifts appearing as exponents of the power laws. In particular, we concentrate on the spin-density m\\rightarrow 0 limit and on effects in the vicinity of the singular border lines, as well as close to half filling. Our studies take into account spectral contributions from types of microscopic processes that do not occur for finite values of the spin density. In addition, the specific processes involved in the spectral features of TTF-TCNQ are studied. Our results are useful for the further understanding of the unusual spectral properties observed in low-dimensional organic metals and also provide expressions for the one- and two-atom spectral functions of a correlated quantum system of ultracold fermionic atoms in a 1D optical lattice with on-site two-atom repulsion.

  17. SCCRO3 (DCUN1D3) Antagonizes the Neddylation and Oncogenic Activity of SCCRO (DCUN1D1)*

    PubMed Central

    Huang, Guochang; Stock, Cameron; Bommeljé, Claire C.; Weeda, Víola B.; Shah, Kushyup; Bains, Sarina; Buss, Elizabeth; Shaha, Manish; Rechler, Willi; Ramanathan, Suresh Y.; Singh, Bhuvanesh

    2014-01-01

    The activity of cullin-RING type ubiquitination E3 ligases is regulated by neddylation, a process analogous to ubiquitination that culminates in covalent attachment of the ubiquitin-like protein Nedd8 to cullins. As a component of the E3 for neddylation, SCCRO/DCUN1D1 plays a key regulatory role in neddylation and, consequently, cullin-RING ligase activity. The essential contribution of SCCRO to neddylation is to promote nuclear translocation of the cullin-ROC1 complex. The presence of a myristoyl sequence in SCCRO3, one of four SCCRO paralogues present in humans that localizes to the membrane, raises questions about its function in neddylation. We found that although SCCRO3 binds to CAND1, cullins, and ROC1, it does not efficiently bind to Ubc12, promote cullin neddylation, or conform to the reaction processivity paradigms, suggesting that SCCRO3 does not have E3 activity. Expression of SCCRO3 inhibits SCCRO-promoted neddylation by sequestering cullins to the membrane, thereby blocking its nuclear translocation. Moreover, SCCRO3 inhibits SCCRO transforming activity. The inhibitory effects of SCCRO3 on SCCRO-promoted neddylation and transformation require both an intact myristoyl sequence and PONY domain, confirming that membrane localization and binding to cullins are required for in vivo functions. Taken together, our findings suggest that SCCRO3 functions as a tumor suppressor by antagonizing the neddylation activity of SCCRO. PMID:25349211

  18. Evaluating Cytotoxicity and Cellular Uptake from the Presence of Variously Processed Ti02 Nanostructured Morphologies

    SciTech Connect

    Chen, J.; Wong, S.; Zhou, H.; Santull, A.C.

    2010-05-01

    We evaluated the cytotoxicity of various morphological classes of TiO{sub 2} nanostructures (including 0-D nanoparticles, 1-D nanorods, and 3-D assemblies) toward living cells. These TiO{sub 2} nanostructures were modified with fluorescent dye molecules, mediated via a dopamine linkage, in order to facilitate a confocal study of their internalization. Specifically, we noted that both TiO{sub 2} 1-D nanorods and 0-D nanoparticles could internalize into cells after 24 h of incubation time. However, only incubation with TiO{sub 2} 1-D nanorods and 3-D micrometer-scale sea urchin-like assemblies at concentrations of up to 125 {mu}g/mL yielded data suggestive of cell viabilities of close to 100%. Moreover, upon irradiation with UV light for periods of a few minutes at energy densities of up to 1 J/cm{sub 2}, we observed up to 60% mortality rates, indicative of the cytotoxic potential of photoirradiated TiO{sub 2} nanostructures due to the generation of reactive oxygen species.

  19. Morphological evolution, growth mechanism, and magneto-transport properties of silver telluride one-dimensional nanostructures

    PubMed Central

    2013-01-01

    Single crystalline one-dimensional (1D) nanostructures of silver telluride (Ag2Te) with well-controlled shapes and sizes were synthesized via the hydrothermal reduction of sodium tellurite (Na2TeO3) in a mixed solution. The morphological evolution of various 1D nanostructures was mainly determined by properly controlling the nucleation and growth process of Ag2Te in different reaction times. Based on the transmission electron microscopy and scanning electron microscopy studies, the formation mechanism for these 1D nanostructures was rationally interpreted. In addition, the current–voltage (I-V) characteristics as a function of magnetic field of the highly single crystal Ag2Te nanowires were systematically measured. From the investigation of I-V characteristics, we have observed a rapid change of the current in low magnetic field, which can be used as the magnetic field sensor. The magneto-resistance behavior of the Ag2Te nanowires with monoclinic structure was also investigated. Comparing to the bulk and thin film materials, we found that there is generally a larger change in R (T) as the sample size is reduced, which indicates that the size of the sample has a certain impact on magneto-transport properties. Simultaneously, some possible reasons resulting in the observed large positive magneto-resistance behavior are discussed. PMID:23958372

  20. Wedding Cake Growth Mechanism in One-Dimensional and Two-Dimensional Nanostructure Evolution.

    PubMed

    Yin, Xin; Shi, Jian; Niu, Xiaobin; Huang, Hanchen; Wang, Xudong

    2015-11-11

    The kinetic processes and atomistic mechanisms in nanostructure growth are of fundamental interest to nanomaterial syntheses with precisely controlled morphology and functionality. By programming deposition conditions at time domain, we observed the wedding cake growth mechanism in the formation of 1D and 2D ZnO nanostructures. Within a narrow growth window, the surfaces of the 1D and 2D structures were covered with a unique concentric terrace feature. This mechanism was further validated by comparing the characteristic growth rates to the screw dislocation-driven model. An interesting 1D to 2D morphology transition was also found during the wedding cake growth, when the adatoms overcome the Ehrlich-Schwoebel (ES) barrier along the edge of the top crystal facet triggered by lowering the supersaturation. The wedding cake model might be a general growth mechanism for flat-tipped nanowires that do not possess any dislocations. This study enriches our understanding on the fundamental kinetics of nanostructured crystal growth and provides a transformative strategy to achieve rational design and control of nanoscale geometry.

  1. Chemically enabled nanostructure fabrication

    NASA Astrophysics Data System (ADS)

    Huo, Fengwei

    The first part of the dissertation explored ways of chemically synthesizing new nanoparticles and biologically guided assembly of nanoparticle building blocks. Chapter two focuses on synthesizing three-layer composite magnetic nanoparticles with a gold shell which can be easily functionalized with other biomolecules. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, while maintaining the magnetic properties of the Fe3O4 inner shell. Chapter three describes a new method for synthesizing nanoparticles asymmetrically functionalized with oligonucleotides and the use of these novel building blocks to create satellite structures. This synthetic capability allows one to introduce valency into such structures and then use that valency to direct particle assembly events. The second part of the thesis explored approaches of nanostructure fabrication on substrates. Chapter four focuses on the development of a new scanning probe contact printing method, polymer pen lithography (PPL), which combines the advantages of muCp and DPN to achieve high-throughput, flexible molecular printing. PPL uses a soft elastomeric tip array, rather than tips mounted on individual cantilevers, to deliver inks to a surface in a "direct write" manner. Arrays with as many as ˜11 million pyramid-shaped pens can be brought into contact with substrates and readily leveled optically in order to insure uniform pattern development. Chapter five describes gel pen lithography, which uses a gel to fabricate pen array. Gel pen lithography is a low-cost, high-throughput nanolithography method especially useful for biomaterials patterning and aqueous solution patterning which makes it a supplement to DPN and PPL. Chapter 6 shows a novel form of optical nanolithography, Beam Pen Lithography (BPL), which uses an array of NSOM pens to do nanoscale optical

  2. Characterization of CdS nanoparticles during their growth in paraffin hot-matrix

    SciTech Connect

    Yordanov, Georgi G.; Adachi, Eiki; Dushkin, Ceco D. . E-mail: nhtd@wmail.chem.uni-sofia.bg

    2007-03-15

    This paper describes the optical and structural properties of CdS nanoparticles during their growth in paraffin hot-matrix containing stearic acid ligand. The nanocrystalline species are characterized with absorbance and photoluminescence spectroscopy, fluorescence microscopy, High-Resolution Transmission Electron Microscopy and X-ray diffraction. The nanoparticles size-distribution, Stokes shift and mean molar concentration are derived from the optical spectra as functions of time. Their time evolution confirms a two-stage nanocrystal growth for CdS. The stability of aggregates of stearate-coated nanoparticles, tested against UV-illumination, shows that the band-edge emission is more sensitive to photo bleaching than the trap-state emission. The obtained new quantitative results are important for the large-scale manufacturing of CdS nanoparticles and their practical applications.

  3. Pseudocapacitive behavior of unidirectional CdS nanoforest in 3D architecture through solution chemistry

    NASA Astrophysics Data System (ADS)

    Nair, Nikila; Majumder, Sutripto; Sankapal, Babasaheb R.

    2016-08-01

    Two step soft chemical route has been utilized for the fabrication of CdS nanowire electrode in 3D architecture at room temperature (300 K). The electrochemical pseudocapacitive behavior of thin film consisting of CdS nanowires has been evaluated by using cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy in an aqueous media. The electrochemical test revealed that CdS nanowire attained a specific capacitance of 181 F/g at a scan rate of 5 mV/s. An energy density of 1.72 Wh/kg and power density of 27.14 W/kg has been achieved at 89 mA/g current density in 1 M Na2SO3 solution.

  4. Biosynthesis of luminescent CdS quantum dots using plant hairy root culture

    NASA Astrophysics Data System (ADS)

    Borovaya, Mariya N.; Naumenko, Antonina P.; Matvieieva, Nadia A.; Blume, Yaroslav B.; Yemets, Alla I.

    2014-12-01

    CdS nanoparticles have a great potential for application in chemical research, bioscience and medicine. The aim of this study was to develop an efficient and environmentally-friendly method of plant-based biosynthesis of CdS quantum dots using hairy root culture of Linaria maroccana L. By incubating Linaria root extract with inorganic cadmium sulfate and sodium sulfide we synthesized stable luminescent CdS nanocrystals with absorption peaks for UV-visible spectrometry at 362 nm, 398 nm and 464 nm, and luminescent peaks at 425, 462, 500 nm. Transmission electron microscopy of produced quantum dots revealed their spherical shape with a size predominantly from 5 to 7 nm. Electron diffraction pattern confirmed the wurtzite crystalline structure of synthesized cadmium sulfide quantum dots. These results describe the first successful attempt of quantum dots synthesis using plant extract.

  5. Nonlinear Faraday effect in CdS semiconductor in an ultrahigh magnetic field

    SciTech Connect

    Druzhinin, V.V.; Tatsenko, O.M.; Bykov, A.I.

    1994-08-01

    A significant nonlinearity in the angle of rotation polarization plane was observed in CdS at wavelengths of 494 in the presence of high magnetic fields (0.5-5 MG). The onset significant nonlinearity also depended on sample temperature. An absorption study with probe wavelength of {approximately} 494 nm revealed an increase in optical transmission associated with a splitting of the conduction band. Dispersion, field and temperature curves indicate a low conduction electron mass m{sub e} = 0.3 m{sub o}. A numerical calculation and interpretation of the observed effects was carried out using band theory. The optical and magnetooptical properties of semiconducting crystals of CdS were studied, reviews of which are presented in [1,2]. This article describes joint American-Russian experiments to study the optical and magnetooptical properties of CdS in ultrahigh fields to {approximately} 7 MG.

  6. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    SciTech Connect

    Kumar, Pragati; Saxena, Nupur; Gupta, Vinay; Agarwal, Avinash

    2015-05-15

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  7. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode.

    PubMed

    Huang, Yinxi; Zhang, Wenjun; Xiao, Han; Li, Genxi

    2005-11-15

    The direct electrochemistry of glucose oxidase (GOD) adsorbed on a CdS nanoparticles modified pyrolytic graphite electrode was investigated, where the enzyme demonstrated significantly enhanced electron-transfer reactivity. GOD adsorbed on CdS nanoparticles maintained its bioactivity and structure, and could electro-catalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. Upon the addition of glucose, the reduction peak current decreased, which could be used for glucose detection. Performance and characteristics of the fabricated glucose biosensor were assessed with respect to detection limit, sensitivity, storage stability and interference exclusion. The results showed that the fabricated biosensor was sensitive and stable in detecting glucose, indicating that CdS nanoparticle was a good candidate material for the immobilization of enzyme in glucose biosensor construction. PMID:16242622

  8. Zinc oxide nanostructures for electrochemical cortisol biosensing

    NASA Astrophysics Data System (ADS)

    Vabbina, Phani Kiran; Kaushik, Ajeet; Tracy, Kathryn; Bhansali, Shekhar; Pala, Nezih

    2014-05-01

    In this paper, we report on fabrication of a label free, highly sensitive and selective electrochemical cortisol immunosensors using one dimensional (1D) ZnO nanorods (ZnO-NRs) and two dimensional nanoflakes (ZnO-NFs) as immobilizing matrix. The synthesized ZnO nanostructures (NSs) were characterized using scanning electron microscopy (SEM), selective area diffraction (SAED) and photoluminescence spectra (PL) which showed that both ZnO-NRs and ZnO-NFs are single crystalline and oriented in [0001] direction. Anti-cortisol antibody (Anti-Cab) are used as primary capture antibodies to detect cortisol using electrochemical impedance spectroscopy (EIS). The charge transfer resistance increases linearly with increase in cortisol concentration and exhibits a sensitivity of 3.078 KΩ. M-1 for ZnO-NRs and 540 Ω. M -1 for ZnO-NFs. The developed ZnO-NSs based immunosensor is capable of detecting cortisol at 1 pM. The observed sensing parameters are in physiological range. The developed sensors can be integrated with microfluidic system and miniaturized potentiostat to detect cortisol at point-of-care.

  9. 1-D Tremor Streaks: Implications for a Streak Source Model

    NASA Astrophysics Data System (ADS)

    Houston, H.; Ghosh, A.; Vidale, J. E.

    2009-12-01

    Recent observations of non-volcanic tremor in Cascadia and Japan show “streaks” of tremor moving up and down dip in a convergence-parallel direction at “driving velocities” (i.e., 30 to 120 km/hr). Streak lengths of 30 to 40 km are occasionally observed. We explore the implications of these observations for a source model and spectrum of tremor. Key elements involve the extreme geometry and slow “rupture velocity” implied by the streaks. The source spectrum of tremor and other ETS seismic radiation exhibits a spectral falloff roughly as the inverse of frequency (1/f) in contrast to that of earthquakes, which follow a spectral falloff of 1/f squared above a corner frequency. Nevertheless, several observations suggest that the deformation that generates tremor is shear slip in the plate convergence direction. A fundamental question, then, has been what slip source could produce such an observed 1/f falloff over a wide frequency range. We propose a kinematic model, consistent with the 1-D geometry of the tremor streaks, in which fault displacement and width are strongly limited and rupture growth occurs only along fault length, which is oriented in a convergence-parallel direction (up or down dip). This is a version of the well-known Haskell model in which the durations of the two boxcars are very different. A 1/f spectral falloff holds between the corner frequencies associated with the two durations. Thus, the frequency range of the observed 1/f spectral falloff of tremor provides constraints on the durations of the boxcars. Further constraints involve the maximum likely displacement in an ETS event, the rupture velocities of the streaks, and the moment release rate. The narrow streak geometry implies fairly high strain and stress drops, in contrast to the low overall stress drops inferred from tidal modulation of tremor and the low strain across the entire ETS region. The observation of tremor streaks migrating at 10's of km/hour, in conjunction with the

  10. CdS quantum dots: growth, microstructural, optical and electrical characteristics

    NASA Astrophysics Data System (ADS)

    Ahamad, Tansir; Majeed Khan, M. A.; Kumar, Sushil; Ahamed, Maqusood; Shahabuddin, Mohammed; Alhazaa, Abdulaziz N.

    2016-06-01

    Cadmium sulfide (CdS) quantum dots (QDs) with cubic phase were prepared using simple precursors by chemical precipitation technique, and their thin films were grown on glass substrates by chemical bath deposition. The obtained quantum dots were characterized for their structural, morphological, optical, thermal and electrical properties using X-ray diffraction (XRD), field emission transmission electron microscopy, UV-visible absorption spectroscopy, Raman spectroscopy, photoluminescence, thermogravimetric analysis/differential thermal analysis and low-temperature electrical transport measurements, respectively. XRD pattern reveals that the prepared CdS QDs are highly pure and crystalline in nature with cubic phase. The average particle size, estimated to be ~2 nm, is almost in agreement with the values calculated by Brusïs formula. Selected area electron diffraction also recognizes the cubic structure of CdS quantum dots. The UV-visible spectra exhibit a blueshift with respect to that of bulk sample which is attributed to the quantum size effect of electrons and holes. The band gap of CdS QDs is calculated from absorption data using Tauc plot and found to be 2.84 eV. Energy-dispersive X-ray analysis reveals the presence of Cd and S in almost stoichiometric ratio in the prepared CdS QDs. Micro-Raman spectroscopic studies also yield convincing evidence for the transformation of structure. The emission spectra of CdS QDs show peak centered at 541 nm, which is attributed to the presence of cadmium vacancies in the lattice. The DC resistivity data at low temperatures are qualitatively consistent with the variable-range hopping model, and the density of states at the Fermi level is determined.

  11. Surfactant-Assisted Growth of CdS Thin Films for Photovoltaic Applications

    SciTech Connect

    Perkins, C. L.; Hasoon, F. S.

    2006-05-01

    A common nonionic surfactant, Triton X-100, was used to modify the chemical bath deposition of CdS 'buffer' layers on Cu(In,Ga)Se{sub 2} (CIGS) thin films. Addition of the surfactant to the CdS deposition bath allowed increased wetting of Cu(In,Ga)Se{sub 2} substrates and an increase in the uniformity of films, especially on model hydrophobic substrates. X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy data demonstrate that films produced with the surfactant have the same chemical and electronic properties as films grown without it. In CdS/Cu(In,Ga)Se{sub 2} devices, it was found that Triton X-100 allowed the use of CdS layers that were three to four times thinner than those used normally in high efficiency CIGS-based devices and eliminated the large drops in open-circuit voltage that usually accompany very thin buffer layers. For these thin CdS layers and relative to devices made without the surfactant, average absolute cell efficiencies were increased from 10.5% to 14.8% or by a relative 41%. Visual inspection of the CdS depositions reveals one possible mechanism of the surfactant's effects: Bubbles that form and adhere to the CIGS surface during the chemical bath deposition are almost completely eliminated with the addition of the TX-100. Thus, junction nonuniformities, pinholes, and thin areas in the CdS layer caused by poor wetting of the substrate surface are sharply reduced, leading to large increases in the open-circuit voltage in devices produced with the surfactant.

  12. Human CD1d knock-in mouse model demonstrates potent antitumor potential of human CD1d-restricted invariant natural killer T cells

    PubMed Central

    Wen, Xiangshu; Rao, Ping; Carreño, Leandro J.; Kim, Seil; Lawrenczyk, Agnieszka; Porcelli, Steven A.; Cresswell, Peter; Yuan, Weiming

    2013-01-01

    Despite a high degree of conservation, subtle but important differences exist between the CD1d antigen presentation pathways of humans and mice. These differences may account for the minimal success of natural killer T (NKT) cell-based antitumor therapies in human clinical trials, which contrast strongly with the powerful antitumor effects in conventional mouse models. To develop an accurate model for in vivo human CD1d (hCD1d) antigen presentation, we have generated a hCD1d knock-in (hCD1d-KI) mouse. In these mice, hCD1d is expressed in a native tissue distribution pattern and supports NKT cell development. Reduced numbers of invariant NKT (iNKT) cells were observed, but at an abundance comparable to that in most normal humans. These iNKT cells predominantly expressed mouse Vβ8, the homolog of human Vβ11, and phenotypically resembled human iNKT cells in their reduced expression of CD4. Importantly, iNKT cells in hCD1d knock-in mice exert a potent antitumor function in a melanoma challenge model. Our results show that replacement of mCD1d by hCD1d can select a population of functional iNKT cells closely resembling human iNKT cells. These hCD1d knock-in mice will allow more accurate in vivo modeling of human iNKT cell responses and will facilitate the preclinical assessment of iNKT cell-targeted antitumor therapies. PMID:23382238

  13. Topological crystalline insulator nanostructures.

    PubMed

    Shen, Jie; Cha, Judy J

    2014-11-01

    Topological crystalline insulators are topological insulators whose surface states are protected by the crystalline symmetry, instead of the time reversal symmetry. Similar to the first generation of three-dimensional topological insulators such as Bi₂Se₃ and Bi₂Te₃, topological crystalline insulators also possess surface states with exotic electronic properties such as spin-momentum locking and Dirac dispersion. Experimentally verified topological crystalline insulators to date are SnTe, Pb₁-xSnxSe, and Pb₁-xSnxTe. Because topological protection comes from the crystal symmetry, magnetic impurities or in-plane magnetic fields are not expected to open a gap in the surface states in topological crystalline insulators. Additionally, because they have a cubic structure instead of a layered structure, branched structures or strong coupling with other materials for large proximity effects are possible, which are difficult with layered Bi₂Se₃ and Bi₂Te₃. Thus, additional fundamental phenomena inaccessible in three-dimensional topological insulators can be pursued. In this review, topological crystalline insulator SnTe nanostructures will be discussed. For comparison, experimental results based on SnTe thin films will be covered. Surface state properties of topological crystalline insulators will be discussed briefly.

  14. Nanostructured Interfaces for Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Marconnet, A. M.; Panzer, M. A.; Leblanc, S.; Dogbe, S.; Ezzahri, Y.; Shakouri, A.; Goodson, K. E.

    2010-09-01

    Temperature drops at the interfaces between thermoelectric materials and the heat source and sink reduce the overall efficiency of thermoelectric systems. Nanostructured interfaces based on vertically aligned carbon nanotubes (CNTs) promise the combination of mechanical compliance and high thermal conductance required for thermoelectric modules, which are subjected to severe thermomechanical stresses. This work discusses the property require- ments for thermoelectric interface materials, reviews relevant data available in the literature for CNT films, and characterizes the thermal properties of vertically aligned multiwalled CNTs grown on a candidate thermoelectric material. Nanosecond thermoreflectance thermometry provides thermal property data for 1.5- μm-thick CNT films on SiGe. The thermal interface resistances between the CNT film and surrounding materials are the dominant barriers to thermal transport, ranging from 1.4 m2 K MW-1 to 4.3 m2 K MW-1. The volumetric heat capacity of the CNT film is estimated to be 87 kJ m-3 K-1, which corresponds to a volumetric fill fraction of 9%. The effect of 100 thermal cycles from 30°C to 200°C is also studied. These data provide the groundwork for future studies of thermoelectric materials in contact with CNT films serving as both a thermal and electrical interface.

  15. Phonon engineering for nanostructures.

    SciTech Connect

    Aubry, Sylvie; Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H.; Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen

    2010-01-01

    Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.

  16. Rf sputtering of CdTE and CdS for thin film PV

    NASA Astrophysics Data System (ADS)

    Compaan, A. D.; Tabory, C. N.; Shao, M.; Fischer, A.; Feng, Z.; Bohn, R. G.

    1994-06-01

    In late 1992 we demonstrated the first rf sputtered CdS/CdTe photovoltaic cell with efficiency exceeding 10%. In this cell both CdS and CdTe layers were deposited by rf sputtering. In this paper we report preliminary measurements of 1) optical emission spectroscopy of the rf plasma, 2) the width of the phonon Raman line as a function of deposition temperature for CdS, and 3) studies of oxygen doping during pulsed laser deposition of CdTe.

  17. Negative infrared photoconductivity in CdS1-xSex films

    NASA Astrophysics Data System (ADS)

    Abdinov, A. S.; Jafarov, M. A.; Mamedov, H. M.; Nasirov, E. F.

    2003-09-01

    The negative infrared photoconductivity (NPH) has been observed for the first time in CdS1-xSex films, in the wavelength region of 0.700 - 1.23 μm. at values of stimulating light intensity Φ = 100 - 400 Lk. electrical field E = 0.5 - 130 V/cm and temperature T = 265 - 310 Κ. It is established, that basic laws of NPH explains on the basis of two-barrier model and in the considered conditions a charge carriers, overcome a barrier by tunneling. A films of CdS1-xSex can be used in IR engineering and negatronics.

  18. Formation of CdS nanoparticles using starch as capping agent

    NASA Astrophysics Data System (ADS)

    Rodríguez, P.; Muñoz-Aguirre, N.; Martínez, E. San-Martin; Gonzalez, G.; Zelaya, O.; Mendoza, J.

    2008-11-01

    CdS nanoparticles have been synthesized using starch as capping agent in aqueous solution. The morphology and crystalline structure of such samples were measured by high-resolution transmission electron microscopy and X-ray diffraction, respectively. The average grain size of the nanoparticles determined by these techniques was of the order of 5 nm. Photoluminescence of CdS nanoparticles shows a strong emission peak below to the band gap bulk semiconductor attributed to center trap states, also the broadening peak was interpreted in terms of electron-phonon interaction.

  19. Coronal Magnetography of Solar Active Regions Using Coordinated SOHO/CDS and VLA Observations

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.

    1999-01-01

    The purpose of this project is to apply the coronal magnetographic technique to SOHO (Solar Heliospheric Observatory) /CDS (Coronal Diagnostic Spectrometer) EUV (Extreme Ultraviolet Radiation) and coordinated VLA microwave observations of solar active regions to derive the strength and structure of the coronal magnetic field. A CDS observing plan was developed for obtaining spectra needed to derive active region differential emission measures (DEMs) required for coronal magnetography. VLA observations were proposed and obtained. SOHO JOP 100 was developed, tested, approved, and implemented to obtain coordinated CDS (Coronal Diagnostic Spectrometer)/EIT (Ultraviolet Imaging Telescope)/ VLA (Very Large Array)/ TRACE (Transition Region and Coronal Explorer)/ SXT (Solar X Ray Telescope) observations of active regions on April 12, May 9, May 13, and May 23. Analysis of all four data sets began, with heaviest concentration on COS data. It is found that 200-pixel (14 A in NIS1) wavelength windows are appropriate for extracting broadened Gaussian line profile fit parameters for lines including Fe XIV at 334.2, Fe XVI at 335.4, Fe XVI at 360.8, and Mg IX at 368.1 over the 4 arcmin by 4 arcmin CDS field of view. Extensive efforts were focused on learning and applying were focused on learning and applying CDS software, and including it in new IDL procedures to carry out calculations relating to coronal magnetography. An important step is to extract Gaussian profile fits to all the lines needed to derive the DEM in each spatial pixel of any given active region. The standard CDS absolute intensity calibration software was applied to derived intensity images, revealing that ratios between density-insensitive lines like Fe XVI 360.8/335.4 yield good agreement with theory. However, the resulting absolute intensities of those lines are very high, indicating that revisions to the CDS absolute intensity calibrations remain to be included in the CDS software, an essential step to

  20. Photocatalysis on (CdS) x (ZnTe)1 - x solid solutions

    NASA Astrophysics Data System (ADS)

    Karpova, E. O.; Nagibina, I. Yu.; Makarova, A. S.

    2015-01-01

    Photocatalytic properties of the surface of binary compounds (CdS, ZnTe) and solid solutions (CdS) x (ZnTe)1 - x formed on their basis are studied by means of potentiometry and chromatography. The values of forbidden gap Δ E are calculated from the resulting UV spectra, according to which the components of the CdS-ZnTe system can display photocatalytic activity in the wavelength range of 364 to 670 nm. A scheme of a model setup for producing hydrogen from water is proposed using the authors' method.

  1. Surface plasmon polaritons suppress photoresponse of colloidal CdS nanorods in nanogap

    NASA Astrophysics Data System (ADS)

    Li, Peigang; Song, Jia; Pan, Aoqiu; Chen, Jianjun; Wang, Shunli; Shen, Jingqin; Wang, Pengchao; Zhan, Jianming; Qian, Huiqin; Tang, Weihua

    2015-05-01

    Colloidal CdS nanorods ∼4.9 nm in diameter and ∼60 nm long were positioned in gold bow-tie electrodes with a gap of ∼50 nm by an AC dielectrophoresis process to construct optoelectronic devices. The fabricated devices exhibited an excellent photoresponse to white and blue light, but no response to green light. However, the response of the devices to white light could be degraded by green light. This is considered to be related to surface plasmon polaritons suppressing the generation of photo-carriers in the CdS nanorods. The results indicate that surface plasmons do not always benefit nano-optoeletronic devices.

  2. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials.

    PubMed

    Zhang, Xiang; Thavasi, Velmurugan; Mhaisalkar, S G; Ramakrishna, Seeram

    2012-03-01

    Hollow mesoporous one dimensional (1D) TiO(2) nanofibers are successfully prepared by co-axial electrospinning of a titanium tetraisopropoxide (TTIP) solution with two immiscible polymers; polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) using a core-shell spinneret, followed by annealing at 450 °C. The annealed mesoporous TiO(2) nanofibers are found to having a hollow structure with an average diameter of 130 nm. Measurements using the Brunauer-Emmett-Teller (BET) method reveal that hollow mesoporous TiO(2) nanofibers possess a high surface area of 118 m(2) g(-1) with two types of mesopores; 3.2 nm and 5.4 nm that resulted from gaseous removal of PEO and PVP respectively during annealing. With hollow mesoporous TiO(2) nanofibers as the photoelectrode in dye sensitized solar cells (DSSC), the solar-to-current conversion efficiency (η) and short circuit current (J(sc)) are measured as 5.6% and 10.38 mA cm(-2) respectively, which are higher than those of DSSC made using regular TiO(2) nanofibers under identical conditions (η = 4.2%, J(sc) = 8.99 mA cm(-2)). The improvement in the conversion efficiency is mainly attributed to the higher surface area and mesoporous TiO(2) nanostructure. It facilitates the adsorption of more dye molecules and also promotes the incident photon to electron conversion. Hollow mesoporous TiO(2) nanofibers with close packing of grains and crystals intergrown with each other demonstrate faster electron diffusion, and longer electron recombination time than regular TiO(2) nanofibers as well as P25 nanoparticles. The surface effect of hollow mesoporous TiO(2) nanofibers as a photocatalyst for the degradation of rhodamine dye was also investigated. The kinetic study shows that the hollow mesoporous surface of the TiO(2) nanofibers influenced its interactions with the dye, and resulted in an increased catalytic activity over P25 TiO(2) nanocatalysts. PMID:22315140

  3. A Dynamic Approach to Make CDS/ISIS Databases Interoperable over the Internet Using the OAI Protocol

    ERIC Educational Resources Information Center

    Jayakanth, F.; Maly, K.; Zubair, M.; Aswath, L.

    2006-01-01

    Purpose: A dynamic approach to making legacy databases, like CDS/ISIS, interoperable with OAI-compliant digital libraries (DLs). Design/methodology/approach: There are many bibliographic databases that are being maintained using legacy database systems. CDS/ISIS is one such legacy database system. It was designed and developed specifically for…

  4. Adapting the Established SIS to Meet Higher Education's Increasingly Dynamic Needs. CDS Spotlight Report. ECAR Research Bulletin

    ERIC Educational Resources Information Center

    Lang, Leah; Pirani, Judith A.

    2014-01-01

    This Spotlight focuses on data from the 2013 Core Data Service (CDS) to better understand how higher education institutions approach student information systems (SISs). Information provided for this spotlight was derived from Module 8 of the CDS survey, which asked several questions regarding information systems and applications. Responses from…

  5. Chemical Synthesis and Optical Properties of CdS Poly(Lactic Acid) Nanocomposites and Their Transparent Fluorescent Films

    SciTech Connect

    Wang, Cai-Feng; Cheng, Yu-Peng; Xie, He-Yi; Chen, Li; Hu, Michael Z.; Chen, Su

    2011-01-01

    This paper describes the chemical synthesis of cadmium sulfide (CdS) polymer nanocomposites by covalently grafting poly(lactic acid) (PLA) onto the surfaces of CdS nanocrystals (NCs). Synthesis of the nanocomposites involved two steps. Lactic acid (LA) capped CdS NCs were first prepared by reacting cadmium chloride (CdCl2) with sodium sulfide (Na2S) using LA as the organic ligand in H2O/N,N-dimethylformamide (DMF) solution. Next CdS PLA nanocomposites were formed by in situ ring-opening polymerization of lactide on the surface of modified CdS NCs. Transparent fluorescent films were then successfully prepared by blending as-prepared CdS PLA nanocomposites with high-molecular-weight PLA. The as-prepared CdS NCs and their nanocomposites were studied by transmission electron microscopic imaging, thermogravimetric analyses, and spectroscopic measurements (ultraviolet-visible absorption and photoluminescence). The spectroscopic studies revealed that the CdS polymer nanocomposites exhibited good optical properties in terms of their photoluminescence and transparency.

  6. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers.

    PubMed

    Pahari, Sandip Kumar; Pal, Provas; Srivastava, Divesh N; Ghosh, Subhash Ch; Panda, Asit Baran

    2015-06-28

    We report here a visible light driven selective nitro-reduction and oxidation of saturated sp(3) C-H bonds using ultrathin (0.8 nm) sheet mediated uniform CdS flowers as catalyst under a household 40 W CFL lamp and molecular oxygen as oxidant. The CdS flowers were synthesized using a simple surfactant assisted hydrothermal method. PMID:26024214

  7. Photodetectors of slit and sandwich types based on CdS and CdS1-xSex films obtained using MOCVD method from dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Zavyalova, Ludmila V.; Svechnikov, Sergey V.; Tchoni, Vladimir G.

    1997-04-01

    Here we report the results of working out an original, simple in control and not requiring expensive equipment MOCVD-method for depositing films of semiconductor compounds A2B6. Dithiocarbamates (DTC) are used as starting materials. The compounds are stable, easily synthesized, cheap and low toxic. Atoms of metal and sulfur in the DTC are strongly bonded. The DTC could be easily dissolved in various organic solvents. The experimental unit for film deposition comprises a spraying apparatus, a substrate heater, and a quartz cylinder for separation of a reaction zone from ambience. The process of film deposition is carried out in air conditions. Films of CdS, bright-yellow, transparent, having mirror smooth surface at thickness less than 2 mkm and rough surface at thickness 8-12 mkm, were deposited by spraying cadmium dithiocarbamate, that is DTC with radical C2H5, solution in pyridine on substrates heated to 240-280 degrees C. Deposition rate was 60-90 nm/min. Films obtained were of hexagonal modification, polycrystalline, textured, with low, at the level of centipercents content of oxygen and carbon. Slit type photodetectors based on CdS and CdS1-xSex of 1.0 mkm thickness have dark conductivity (sigma) d equals 10-9 divided by 10-8 Ohm-1cm-1 and photoconductivity (sigma) ph equals 10-2 divided by 10-1 Ohm-1cm-1 at 200 lux. Industrially suitable technology for production of photopotentiometer on the base of these films was developed. Sandwich-type photodetectors In2S3 - CdS: Cu, Cl - In with 8-12 mkm thickness have the same value of photoconductivity and the light-to-dark ratio is 106 divided by 107. Based on sandwich-type photodetectors, a hybrid structure of pyroelectric-photodetector as a resonant-type coordinate-sensitive detector was developed.

  8. Proteasome-mediated degradation antagonizes critical levels of the apoptosis-inducing C1D protein

    PubMed Central

    Rothbarth, Karsten; Stammer, Hermann; Werner, Dieter

    2002-01-01

    The C1D gene is expressed in a broad spectrum of mammalian cells and tissues but its product induces apoptotic cell death when exceeding a critical level. Critical levels are achieved in a fraction of cells by transient transfection with EGFP-tagged C1D expression constructs. However, transfected cells expressing sub-critical levels of C1D(EGFP) escape apoptotic cell death by activation of a proteasome-mediated rescue mechanism. Inhibition of the proteasome-dependent degradation of the C1D(EGFP) protein results in a parallel increase of the intracellular C1D level and in the fraction of apoptotic cells. PMID:12379155

  9. Surfactant mediated one- and two-dimensional ZnO nanostructured thin films for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Mummoorthi, M.; Rajendran, S.; Ravi, G.

    2015-01-01

    One-dimensional (1D) and two-dimensional (2D) nanostructured zinc oxide (ZnO) thin films were electrodeposited from aqueous zinc chloride on FTO glass substrates. The effects of organic surfactant such as cetyltrimethyl ammonium bromide (CTAB) and polyvinyl alcohol (PVA) on structural, morphological, crystal quality and optical properties of electrodeposited ZnO films were investigated. The x-ray diffraction pattern revealed that the prepared thin films were pure wutrzite hexagonal structure. The thin films deposited using organic surfactant in this work showed different morphologies such as nanoplatelet and flower. The hexagonal platelet and flower-like nanostructures were obtained in the presence of CTAB and PVA surfactant, respectively. The crystal quality and atomic vacancies of the prepared nanostructured thin films were investigated by micro Raman spectroscopic technique. The emission properties and optical quality of the films were studied by photoluminescence spectrometry. PEMA-LiClO4-EC gel polymer electrolyte has been used to replace the liquid electrolyte for reducing the leakage problem. Graphene counter electrode was used as an alternative for platinum electrode. Eosin yellow dye was used as a sensitizer. J-V characterizations were carried out for different 1D and 2D nanostructures. The nanoflower structure exhibited higher efficiency (η = 0.073%) than the other two nanostructures.

  10. Enhanced performance of branched TiO{sub 2} nanorod based Mn-doped CdS and Mn-doped CdSe quantum dot-sensitized solar cell

    SciTech Connect

    Kim, Soo-Kyoung; Gopi, Chandu V. V. M.; Lee, Jae-Cheol; Kim, Hee-Je

    2015-04-28

    TiO{sub 2} branched nanostructures could be efficient as photoanodes for quantum dot-sensitized solar cells (QDSCs) due to their large surface area for QD deposition. In this study, Mn-doped CdS/Mn-doped CdSe deposited branched TiO{sub 2} nanorods were fabricated to enhance the photovoltaic performance of QDSCs. Mn doping in CdS and CdSe retards the recombination losses of electrons, while branched TiO{sub 2} nanorods facilitate effective electron transport and compensate for the low surface area of the nanorod structure. As a result, the charge-transfer resistance (R{sub CT}), electron lifetime (τ{sub e}), and the amount of QD deposition were significantly improved with branched TiO{sub 2} nanorod based Mn-doped CdS/Mn-doped CdSe quantum dot-sensitized solar cell.

  11. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect

    Dr Stephan Bremner

    2010-07-21

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  12. Effects of experimental conditions on the morphologies, structures and growth modes of pulsed laser-deposited CdS nanoneedles

    PubMed Central

    2014-01-01

    CdS nanoneedles with different morphologies, structures, and growth modes have been grown on Ni-coated Si(100) surface under different experimental conditions by pulsed laser deposition method. The effects of catalyst layer, substrate temperature, and laser pulse energy on the growth of the CdS nanoneedles were studied in detail. It was confirmed that the formation of the molten catalyst spheres is the key to the nucleation of the CdS nanoneedles by observing the morphologies of the Ni catalyst thin films annealed at different substrate temperatures. Both the substrate temperature and laser pulse energy strongly affected the growth modes of the CdS nanoneedles. The secondary growth of the smaller nanoneedles on the top of the main nanoneedles was found at appropriate conditions. A group of more completed pictures of the growth modes of the CdS nanoneedles were presented. PMID:24559455

  13. Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice.

    PubMed

    Yoon, KiJung; Lewallen, Sam; Kinkhabwala, Amina A; Tank, David W; Fiete, Ila R

    2016-03-01

    Grid cells, defined by their striking periodic spatial responses in open 2D arenas, appear to respond differently on 1D tracks: the multiple response fields are not periodically arranged, peak amplitudes vary across fields, and the mean spacing between fields is larger than in 2D environments. We ask whether such 1D responses are consistent with the system's 2D dynamics. Combining analytical and numerical methods, we show that the 1D responses of grid cells with stable 1D fields are consistent with a linear slice through a 2D triangular lattice. Further, the 1D responses of comodular cells are well described by parallel slices, and the offsets in the starting points of the 1D slices can predict the measured 2D relative spatial phase between the cells. From these results, we conclude that the 2D dynamics of these cells is preserved in 1D, suggesting a common computation during both types of navigation behavior. PMID:26898777

  14. Nanostructured materials in electroanalysis of pharmaceuticals.

    PubMed

    Rahi, A; Karimian, K; Heli, H

    2016-03-15

    Basic strategies and recent developments for the enhancement of the sensory performance of nanostructures in the electroanalysis of pharmaceuticals are reviewed. A discussion of the properties of nanostructures and their application as modified electrodes for drug assays is presented. The electrocatalytic effect of nanostructured materials and their application in determining low levels of drugs in pharmaceutical forms and biofluids are discussed.

  15. Method of fabrication of anchored nanostructure materials

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  16. Interfacing nanostructures to biological cells

    DOEpatents

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  17. PREFACE: Self-organized nanostructures

    NASA Astrophysics Data System (ADS)

    Rousset, Sylvie; Ortega, Enrique

    2006-04-01

    In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by

  18. Nanostructure Neutron Converter Layer Development

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  19. Properties of Ferroelectric Nanostructures

    NASA Astrophysics Data System (ADS)

    Ponomareva, Inna

    2008-03-01

    Ferroelectric nanostructures (FENs) such as thin films, nanowires and nanodots are receiving a lot of attention due to their potential for technological applications and to the rich variety of underlying physics. Interestingly, properties of FENs can substantially deviate from their bulk counterpart due to their sensitivity to many factors. Examples of such factors are the electrical boundary conditions (associated with the full, partial or non-existent screening of polarization-induced surface charges) and mechanical boundary conditions (arising from the lattice mismatch between the FEN and its substrate). Here, we developed and used computational schemes to predict many properties in various FENs, as well as, to provide atomistic insight to their complex phenomena. In particular, we will show the striking following features and reveal their origins: *The interplay between electrical boundary conditions, mechanical boundary conditions and growth direction results in the appearance of novel dipole patterns and new low-symmetry phases possessing superior dielectric properties in ferroelectric dots, wires and films [1,2]. *FENs can exhibit dielectric anomalies, such as a negative dielectric susceptibility [3]. *Nanobubbles can form in ferroelectric films under an external electric field [4]. *An homogeneous electric field can be used to control the chirality of vortex structures in asymmetric ferroelectric dots, via the creation of original intermediate states [5]. [1] I. Ponomareva et al., Phys. Rev. B 72, 214118 (2005). [2] I. Ponomareva and L. Bellaiche, Phys. Rev. B 74, 064102 (2006). [3] I. Ponomareva et al., to be published in Phys. Rev. Lett. (2007). [4] B.-K. Lai et al., Phys. Rev. Lett. 96, 137602 (2006). [5] S. Prosandeev et al., submitted (2007). These works have been done in collaboration with L. Bellaiche, I. Kornev, B.-K. Lai, I.I. Naumov, R. Resta and S. Prosandeev. Some computations were made possible thanks to the MRI Grants 0421099 and 0722625 from

  20. Nanostructured Substrates for Optical Sensing

    PubMed Central

    Kemling, Jonathan W.; Qavi, Abraham J.; Bailey, Ryan C.

    2011-01-01

    Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolecules and environmental monitoring. This perspective focuses on recent optical sensor devices that utilize nanostructured substrates. PMID:22174955

  1. Vortex ice in nanostructured superconductors

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, Andras J

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  2. Shape-controlled continuous synthesis of metal nanostructures

    NASA Astrophysics Data System (ADS)

    Sebastian, Victor; Smith, Christopher D.; Jensen, Klavs F.

    2016-03-01

    A segmented flow-based microreactor is used for the continuous production of faceted nanocrystals. Flow segmentation is proposed as a versatile tool to manipulate the reduction kinetics and control the growth of faceted nanostructures; tuning the size and shape. Switching the gas from oxygen to carbon monoxide permits the adjustment in nanostructure growth from 1D (nanorods) to 2D (nanosheets). CO is a key factor in the formation of Pd nanosheets and Pt nanocubes; operating as a second phase, a reductant, and a capping agent. This combination confines the growth to specific structures. In addition, the segmented flow microfluidic reactor inherently has the ability to operate in a reproducible manner at elevated temperatures and pressures whilst confining potentially toxic reactants, such as CO, in nanoliter slugs. This continuous system successfully synthesised Pd nanorods with an aspect ratio of 6; thin palladium nanosheets with a thickness of 1.5 nm; and Pt nanocubes with a 5.6 nm edge length, all in a synthesis time as low as 150 s.A segmented flow-based microreactor is used for the continuous production of faceted nanocrystals. Flow segmentation is proposed as a versatile tool to manipulate the reduction kinetics and control the growth of faceted nanostructures; tuning the size and shape. Switching the gas from oxygen to carbon monoxide permits the adjustment in nanostructure growth from 1D (nanorods) to 2D (nanosheets). CO is a key factor in the formation of Pd nanosheets and Pt nanocubes; operating as a second phase, a reductant, and a capping agent. This combination confines the growth to specific structures. In addition, the segmented flow microfluidic reactor inherently has the ability to operate in a reproducible manner at elevated temperatures and pressures whilst confining potentially toxic reactants, such as CO, in nanoliter slugs. This continuous system successfully synthesised Pd nanorods with an aspect ratio of 6; thin palladium nanosheets with a

  3. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Thavasi, Velmurugan; Mhaisalkar, S. G.; Ramakrishna, Seeram

    2012-02-01

    Hollow mesoporous one dimensional (1D) TiO2 nanofibers are successfully prepared by co-axial electrospinning of a titanium tetraisopropoxide (TTIP) solution with two immiscible polymers; polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) using a core-shell spinneret, followed by annealing at 450 °C. The annealed mesoporous TiO2 nanofibers are found to having a hollow structure with an average diameter of 130 nm. Measurements using the Brunauer-Emmett-Teller (BET) method reveal that hollow mesoporous TiO2 nanofibers possess a high surface area of 118 m2 g-1 with two types of mesopores; 3.2 nm and 5.4 nm that resulted from gaseous removal of PEO and PVP respectively during annealing. With hollow mesoporous TiO2 nanofibers as the photoelectrode in dye sensitized solar cells (DSSC), the solar-to-current conversion efficiency (η) and short circuit current (Jsc) are measured as 5.6% and 10.38 mA cm-2 respectively, which are higher than those of DSSC made using regular TiO2 nanofibers under identical conditions (η = 4.2%, Jsc = 8.99 mA cm-2). The improvement in the conversion efficiency is mainly attributed to the higher surface area and mesoporous TiO2 nanostructure. It facilitates the adsorption of more dye molecules and also promotes the incident photon to electron conversion. Hollow mesoporous TiO2 nanofibers with close packing of grains and crystals intergrown with each other demonstrate faster electron diffusion, and longer electron recombination time than regular TiO2 nanofibers as well as P25 nanoparticles. The surface effect of hollow mesoporous TiO2 nanofibers as a photocatalyst for the degradation of rhodamine dye was also investigated. The kinetic study shows that the hollow mesoporous surface of the TiO2 nanofibers influenced its interactions with the dye, and resulted in an increased catalytic activity over P25 TiO2 nanocatalysts.Hollow mesoporous one dimensional (1D) TiO2 nanofibers are successfully prepared by co-axial electrospinning of a titanium

  4. Ammonia free growth of CdS thin films by Chemical Bath Technique

    NASA Astrophysics Data System (ADS)

    Jaber, A.; Alamri, S. N.; Aida, M. S.

    2011-10-01

    CdS thin films were deposited by a chemical bath deposition technique (CBD). The bath solution is composed of CdCl2 (0.1 M) salt as a source for Cd and thiourea (0.1M) as a source of sulphur (S). To avoid the toxicity and volatility of the commonly used ammonia, ethanolamine (ETA ) is used as complexing agent. Films were deposited with different times from 30 to 120 minutes in order to study the films growth mechanism. The solution temperature was fixed at 60°C. The structural and morphological films characterizations were carried by XRD analysis and AFM observations. From the XRD analysis we inferred that obtained CdS films have a pure hexagonal structure with the preferential orientation along the plane (101). The pure hexagonal structure is highly recommended for the realization of CdTe/ CdS or CuInSe/CdS solar cells. The presence of the hexagonal structure and the low growth rate in order of 1nm/min suggest that the growth mechanism is achieved through the ion by ion process. The optical characterization result indicates that the obtained films have a high transparency from 80 to 60 % in the visible range. In conclusion we inferred that CBD ammonia free CdS thin films deposition enables the production of films suitable for photovoltaic applications.

  5. Maximize Institutional Relationships with CRMs. CDS Spotlight Report. ECAR Research Bulletin

    ERIC Educational Resources Information Center

    Lang, Leah; Pirani, Judith A.

    2014-01-01

    This Spotlight focuses on data from the 2013 Core Data Service (CDS) to better understand how higher education institutions approach customer relationship management (CRM) systems. Information provided for this Spotlight was derived from Module 8 of the Core Data survey, which asked several questions regarding information systems and applications.…

  6. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.

    PubMed

    Qi, Peng; Zhang, Dun; Zeng, Yan; Wan, Yi

    2016-01-15

    CdS nanoparticles were synthesized with an environmentally friendly method by taking advantage of the characteristic metabolic process of sulfate-reducing bacteria (SRB), and used as fluorescence labels for SRB detection. The presence of CdS nanoparticles was observed within and immediately surrounded bacterial cells, indicating CdS nanoparticles were synthesized both intracellularly and extracellularly. Moreover, fluorescent properties of microbial synthesized CdS nanoparticles were evaluated for SRB detection, and a linear relationship between fluorescence intensity and the logarithm of bacterial concentration was obtained in the range of from 1.0×10(2) to 1.0×10(7)cfu mL(-1). The proposed SRB detection method avoided the use of biological bio-recognition elements which are easy to lose their specific recognizing abilities, and the bacterial detection time was greatly shortened compared with the widely used MPN method which would take up to 15 days to accomplish the detection process. PMID:26592588

  7. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.

    PubMed

    Qi, Peng; Zhang, Dun; Zeng, Yan; Wan, Yi

    2016-01-15

    CdS nanoparticles were synthesized with an environmentally friendly method by taking advantage of the characteristic metabolic process of sulfate-reducing bacteria (SRB), and used as fluorescence labels for SRB detection. The presence of CdS nanoparticles was observed within and immediately surrounded bacterial cells, indicating CdS nanoparticles were synthesized both intracellularly and extracellularly. Moreover, fluorescent properties of microbial synthesized CdS nanoparticles were evaluated for SRB detection, and a linear relationship between fluorescence intensity and the logarithm of bacterial concentration was obtained in the range of from 1.0×10(2) to 1.0×10(7)cfu mL(-1). The proposed SRB detection method avoided the use of biological bio-recognition elements which are easy to lose their specific recognizing abilities, and the bacterial detection time was greatly shortened compared with the widely used MPN method which would take up to 15 days to accomplish the detection process.

  8. Optical absorption, photoluminescence and structural analysis of CdS quantum dots in weak confinement

    NASA Astrophysics Data System (ADS)

    Mishra, Rakesh K.; Vedeshwar, A. G.; Tandon, R. P.

    2014-02-01

    The diffusion-controlled growth of CdS quantum dots (QDs) dispersed in a silicate glass matrix was investigated. It was found that the size of CdS QDs can be controlled by either heat treatment at various temperatures for a fixed duration or varying times at a constant temperature. Pastel yellow colored glass samples were obtained due to the presence of CdS petite crystals. X-ray diffraction (XRD) was used for determining the average dot size which varied from 3.8 to 30 nm. The typical quantum confinement effect was clearly observed from the blue shift measured in the optical absorption edge with decreasing dot size in the absorption spectroscopy. The band gap of CdS QDs ranges from 2.41 to 2.82 eV. Measured photoluminescence (PL) at an excitation wavelength of 350 nm showed the red shift of emission wavelength with increasing thermal treatment time and temperature in agreement with the increasing dot sizes. The half-width of PL spectra seems to indicate qualitatively the size distribution of dots and is consistent with the treatment parameters.

  9. Emission energy, exciton dynamics and lasing properties of buckled CdS nanoribbons

    PubMed Central

    Wang, Qi; Sun, Liaoxin; Lu, Jian; Ren, Ming-Liang; Zhang, Tianning; Huang, Yan; Zhou, Xiaohao; Sun, Yan; Zhang, Bo; Chen, Changqing; Shen, Xuechu; Agarwal, Ritesh; Lu, Wei

    2016-01-01

    We report the modulation of emission energy, exciton dynamics and lasing properties in a single buckled CdS nanoribbon (NR) by strain-engineering. Inspired by ordered structure fabrication on elastomeric polymer, we develop a new method to fabricate uniform buckled NRs supported on polydimethylsiloxane (PDMS). Wavy structure, of which compressive and tensile strain periodically varied along the CdS NR, leads to a position-dependent emission energy shift as large as 14 nm in photoluminescence (PL) mapping. Both micro-PL and micro-reflectance reveal the spectral characteristics of broad emission of buckled NR, which can be understood by the discrepancy of strain-induced energy shift of A- and B-exciton of CdS. Furthermore, the dynamics of excitons under tensile strain are also investigated; we find that the B-exciton have much shorter lifetime than that of redshifted A-exciton. In addition, we also present the lasing of buckled CdS NRs, in which the strain-dominated mode selection in multi-mode laser and negligible mode shifts in single-mode laser are clearly observed. Our results show that the strained NRs may serve as new functional optical elements for flexible light emitter or on-chip all-optical devices. PMID:27210303

  10. Synthesis and Photoluminescence of Single-Crystalline Fe(III)-Doped CdS Nanobelts.

    PubMed

    Kamran, Muhammad Arshad; Zou, Bingsuo; Majid, A; Alharbil, Thamer; Saeed, M A; Abdullah, Ali; Javed, Qurat-ul-ain

    2016-04-01

    In this paper, we report the synthesis and optical properties of Fe(III) doped CdS nanobelts (NBs) via simple Chemical Vapor Deposition (CVD) technique to explore their potential in nano-optics. The energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis manifested the presence of Fe(III) ions in the NBs subsequently confirmed by the peak shifting to lower phonon energies as recorded by Raman spectra and shorter lifetime in ns. Photoluminescence (PL) spectrum investigations of the single Fe(III)-doped CdS NBs depicted an additional PL peak centered at 573 nm (orange emission) in addition to the bandedge(BE) emission. The redshift and decrease in the BE intensity of the PL peaks, as compared to the bulk CdS, confirmed the quenching of spectra upon Fe doping. The synthesis and orange emission for Fe-doped CdS NBs have been observed for the first time and point out their potential in nanoscale devices. PMID:27451769

  11. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    PubMed

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%.

  12. Preparation, structural and linear optical properties of Zn doped CdS nanopowders

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    A series of Zn doped cadmium sulfide (CdS:Zn) nanopowders were prepared by a simple co-precipitation method at room temperature by mixing the stoichiometric amount of reactants in a Milli Q water solvent. The composition of nanopowders was accurately adjusted by controlling the molar ratio of Cd, Zn acetate in the mixed reactants. Spectroscopic studies on as prepared nanopowders were investigated by using XRD, Raman, UV-Vis absorption, FE- SEM-EDAX and photoluminescence. Extremely broad reflections of XRD peaks of as prepared powders establish the nanometer scale dimensions and cubic structure. Doping with Zn in CdS does not lead to any structural phase transformation but introduces a decrease in the lattice constants. Two characteristics of LO phonon peaks were observed in pure and Zn doped CdS samples. Raman peaks of Zn doped CdS nanopowders shifts slightly towards higher energy side compared to the pure CdS nanopowders. Exciton-phonon confinement factor (S) varies in between 0.3-0.4. At lower wavelength excitation we observed a broad emission peak maximum centered at 404 nm is attributed to localized band edge emission.

  13. Surface piezoelectric effect in non-centrosymmetric semiconductors - CdS.

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Gatos, H. C.

    1972-01-01

    It was found that mechanical bending of CdS wafers with the (00.1) orientation causes pronounced changes in the contact potential difference. The changes were of the order of one volt. This effect was attributed to the polarization induced in the depletion layer by the mechanical stress. On this basis a model was developed which accounts for the experimental results.

  14. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    PubMed

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%. PMID:27483883

  15. CdS nanoparticles-enhanced chemiluminescence and determination of baicalin in pharmaceutical preparations.

    PubMed

    Chen, Xiaolan; Tan, Xinmei; Wang, Jianxiu

    2013-01-01

    CdS nanoparticles (CdS NPs) of different sizes were synthesized by the citrate reduction method. It was found that CdS NPs could enhance the chemiluminescence (CL) of the luminol-potassium ferricyanide system and baicalin could inhibit CdS NPs-enhanced luminol-potassium ferricyanide CL signals in alkaline solution. Based on this inhibition, a flow-injection CL method was established for determination of baicalin in pharmaceutical preparations and human urine samples. Under optimized conditions, the linear range for determination of baicalin was 5.0 x 10(-6) to 1.0 x 10(-3) g/L. The detection limit at a signal-to-noise ratio of 3 was 1.7 x 10(-6) g/L. CL spectra, UV-visible spectra and transmission electron microscopy (TEM) were used to investigate the CL mechanism. The method described is simple, selective and obviates the need of extensive sample pretreatment.

  16. Synthesis and characterization of functionalized dithiocarbamates: New single-source precursors for CdS

    NASA Astrophysics Data System (ADS)

    Srinivasan, Narayanaswamy

    2014-01-01

    Novel single-molecular precursors for CdS are prepared by reacting functionalized secondary amine and CS2 with cadmium acetate dihydrate. All these precursors are characterized by elemental analysis, infrared spectroscopy and solid-state 13C NMR. CdS semiconductor nanoparticles are synthesized using these precursors by a single-step solvothermal method with ethylenediamine at 117 °C. The synthesized semiconductor nanoparticles are investigated by infra-red spectroscopy, powder X-ray diffraction analysis, energy-dispersive X-ray spectroscopy analysis, scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission microscopy, selected area electron diffraction analysis and Raman spectroscopy. The synthesized CdS are hexagonal (zinc wurtzite) crystalline material, which are indicative of the reduction of particles. Comparison with the CdS and the mixture of CdS/CdSṡ0.5gl revealed that the CdS/CdSṡ0.5gl exhibited a well crystalline structure.

  17. Working Together at CDS: The Symbiosis Between Astronomers, Documentalists, and IT Specialists

    NASA Astrophysics Data System (ADS)

    Perret, E.; Boch, T.; Bonnarel, F.; Bot, C.; Buga, M.; Brouty, M.; Bruneau, C.; Brunet, C.; Cambrésy, L.; Derrière, S.; Eisele, A.; Fernique, P.; Genova, F.; Guéhenneux, S.; Landais, G.; Lesteven, S.; Loup, C.; Neuville, M.; Oberto, A.; Ochsenbein, F.; Ocvirk, P.; Pineau, F.-X.; Schaaff, A.; Siebert, A.; Simon, A.-C.; Son, E.; Vannier, P.; Vollmer, B.; Vonflie, P.; Wenger, M.; Woelfel, F.

    2015-04-01

    Since the CDS (Centre de Données astronomiques de Strasbourg) began a little more than forty years ago, astronomers, documentalists, and information technology (IT) specialists have been working together. The synergy between these three professional groups support the core of the work and is becoming more and more crucial with the increasing volume and complexity of data handled. The astronomers use their understanding of the subject and of users' needs to help to maintain the accuracy and the relevance of data. The computer engineers enhance these data by maintaining the database framework and continuing to add useful tools to retrieve and reuse this content. Finally, the documentalists, by definition, manage the content. They do so with the help of IT tools developed at CDS; they analyze the publications, extract the relevant information, verify the data, make comparisons with existing data, add the useful information in VizieR and SIMBAD, and confer with astronomers to make corrections, if needed. After an historical review of the evolution in data and the way data have been provided at CDS, we will further discuss the fundamental roles of the three professional groups to support the mission of the CDS.

  18. Emission energy, exciton dynamics and lasing properties of buckled CdS nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Sun, Liaoxin; Lu, Jian; Ren, Ming-Liang; Zhang, Tianning; Huang, Yan; Zhou, Xiaohao; Sun, Yan; Zhang, Bo; Chen, Changqing; Shen, Xuechu; Agarwal, Ritesh; Lu, Wei

    2016-05-01

    We report the modulation of emission energy, exciton dynamics and lasing properties in a single buckled CdS nanoribbon (NR) by strain-engineering. Inspired by ordered structure fabrication on elastomeric polymer, we develop a new method to fabricate uniform buckled NRs supported on polydimethylsiloxane (PDMS). Wavy structure, of which compressive and tensile strain periodically varied along the CdS NR, leads to a position-dependent emission energy shift as large as 14 nm in photoluminescence (PL) mapping. Both micro-PL and micro-reflectance reveal the spectral characteristics of broad emission of buckled NR, which can be understood by the discrepancy of strain-induced energy shift of A- and B-exciton of CdS. Furthermore, the dynamics of excitons under tensile strain are also investigated; we find that the B-exciton have much shorter lifetime than that of redshifted A-exciton. In addition, we also present the lasing of buckled CdS NRs, in which the strain-dominated mode selection in multi-mode laser and negligible mode shifts in single-mode laser are clearly observed. Our results show that the strained NRs may serve as new functional optical elements for flexible light emitter or on-chip all-optical devices.

  19. Emission energy, exciton dynamics and lasing properties of buckled CdS nanoribbons.

    PubMed

    Wang, Qi; Sun, Liaoxin; Lu, Jian; Ren, Ming-Liang; Zhang, Tianning; Huang, Yan; Zhou, Xiaohao; Sun, Yan; Zhang, Bo; Chen, Changqing; Shen, Xuechu; Agarwal, Ritesh; Lu, Wei

    2016-01-01

    We report the modulation of emission energy, exciton dynamics and lasing properties in a single buckled CdS nanoribbon (NR) by strain-engineering. Inspired by ordered structure fabrication on elastomeric polymer, we develop a new method to fabricate uniform buckled NRs supported on polydimethylsiloxane (PDMS). Wavy structure, of which compressive and tensile strain periodically varied along the CdS NR, leads to a position-dependent emission energy shift as large as 14 nm in photoluminescence (PL) mapping. Both micro-PL and micro-reflectance reveal the spectral characteristics of broad emission of buckled NR, which can be understood by the discrepancy of strain-induced energy shift of A- and B-exciton of CdS. Furthermore, the dynamics of excitons under tensile strain are also investigated; we find that the B-exciton have much shorter lifetime than that of redshifted A-exciton. In addition, we also present the lasing of buckled CdS NRs, in which the strain-dominated mode selection in multi-mode laser and negligible mode shifts in single-mode laser are clearly observed. Our results show that the strained NRs may serve as new functional optical elements for flexible light emitter or on-chip all-optical devices. PMID:27210303

  20. Polyphenylenepyridyl dendrimers as stabilizing and controlling agents for CdS nanoparticle formation.

    PubMed

    Kuchkina, Nina V; Morgan, David Gene; Stein, Barry D; Puntus, Lada N; Sergeev, Alexander M; Peregudov, Alexander S; Bronstein, Lyudmila M; Shifrina, Zinaida B

    2012-04-01

    Semiconductor nanoparticles (NPs) are being actively explored for applications in medical diagnostics and therapy and numerous electronic devices including solar cells. In this paper we demonstrate the influence of the third generation rigid polyphenylenepyridyl dendrimers (PPPDs) of a different architecture on the formation of well-defined CdS NPs. A high temperature approach to the synthesis of novel CdS/PPPD nanocomposites is feasible due to the high thermal stability of PPPDs. The PPPD architecture affects the CdS NP formation: larger NPs are obtained in the presence of dendrimers with 1,3,5-triphenylbenzene cores compared to those with tetrakis(4-ethynylphen-1-yl)methane cores. The reaction conditions such as concentrations of PPPDs and NP precursors and the temperature regime also influence the CdS NP sizes. For the first time, we elucidated a mechanism of CdS NP formation in a non-coordinating solvent through the CdO redispersion in the presence of PPPDs. Interesting optical properties of these CdS/PPPD nanocomposites make them promising candidates for imaging applications. PMID:22374388

  1. Optimization of CdS Buffer Layer for High Efficiency CIGS Solar Cells.

    PubMed

    Kim, Donguk; Jang, Yong-Jun; Jung, Ho-Sung; Kim, Minha; Baek, Dohyun; Yi, Junsin; Lee, Jaehyeong; Choi, Youngkwan

    2016-05-01

    In present work, effects of the thickness on the structural and optical properties of chemically deposited CdS thin films were investigated. In addition, we fabricated Cu(In, Ga)Se2 solar cells with various thicknesses of CdS buffer layer and optimized the thickness for a high efficiency. When the CdS thin films were thicker, the crystallinity improved but the transmittance decreased. The short-circuit current density (J(sc)) and the fill factor are the major efficiency limiting factors for the CIGS solar cells. As the thickness of the CdS buffer layer, the open-circuit voltage (V(oc)) and the fill factor increased, whereas the J(sc) slightly decreased. The improvement of the fill factor and thus efficiency resulted from larger shunt resistance. For the solar cells without a high resistive intrinsic ZnO layer, the highest efficiency was acquired at the thickness of 89 nm. With further increasing the thickness, the J(sc) decreased significantly, resulting in poor efficiency. PMID:27483874

  2. Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes

    SciTech Connect

    Liu, Xiao-Lin; Zhu, Ying-Jie; Zhang, Qian; Li, Zhi-Feng; Yang, Bin

    2012-12-15

    Graphical abstract: Cadmium sulfide polycrystalline nanotubes have been successfully synthesized by microwave-assisted transformation method using Cd–cysteine precursor nanowires as the source material and template in ethylene glycol at 160 °C or ethanol at 60 °C. Display Omitted Highlights: ► Cd–cysteine precursor nanowires were successfully synthesized in alkaline solution. ► CdS nanotubes were prepared by templated microwave-assisted transformation method. ► CdS nanotubes can well duplicate the size and morphology of precursor nanowires. ► This method has the advantages of the simplicity and low cost. -- Abstract: We report the Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. In this method, the Cd–cysteine precursor nanowires are synthesized using CdCl{sub 2}·2.5H{sub 2}O, L-cysteine and ethanolamine in water at room temperature. The Cd–cysteine precursor nanowires are used as the source material and template for the subsequent preparation of CdS nanotubes by a microwave-assisted transformation method using ethylene glycol or ethanol as the solvent. This method has the advantages of the simplicity and low cost, and may be extended to the synthesis of nanotubes of other compounds. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  3. UNDERFLIGHT CALIBRATION OF SOHO/CDS AND HINODE/EIS WITH EUNIS-07

    SciTech Connect

    Wang Tongjiang; Brosius, Jeffrey W.; Thomas, Roger J.; Rabin, Douglas M.; Davila, Joseph M.; Young, Peter R.; Del Zanna, Giulio

    2011-12-01

    Flights of Goddard Space Flight Center's Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket in 2006 and 2007 provided updated radiometric calibrations for Solar and Heliospheric Observatory/Coronal Diagnostic Spectrometer (SOHO/CDS) and Hinode/Extreme Ultraviolet Imaging Spectrometer (Hinode/EIS). EUNIS carried two independent imaging spectrographs covering wavebands of 300-370 A in first order and 170-205 A in second order. After each flight, end-to-end radiometric calibrations of the rocket payload were carried out in the same facility used for pre-launch calibrations of CDS and EIS. During the 2007 flight, EUNIS, SOHO/CDS, and Hinode/EIS observed the same solar locations, allowing the EUNIS calibrations to be directly applied to both CDS and EIS. The measured CDS NIS 1 line intensities calibrated with the standard (version 4) responsivities with the standard long-term corrections are found to be too low by a factor of 1.5 due to the decrease in responsivity. The EIS calibration update is performed in two ways. One uses the direct calibration transfer of the calibrated EUNIS-07 short wavelength (SW) channel. The other uses the insensitive line pairs, in which one member was observed by the EUNIS-07 long wavelength (LW) channel and the other by EIS in either the LW or SW waveband. Measurements from both methods are in good agreement, and confirm (within the measurement uncertainties) the EIS responsivity measured directly before the instrument's launch. The measurements also suggest that the EIS responsivity decreased by a factor of about 1.2 after the first year of operation (although the size of the measurement uncertainties is comparable to this decrease). The shape of the EIS SW response curve obtained by EUNIS-07 is consistent with the one measured in laboratory prior to launch. The absolute value of the quiet-Sun He II 304 A intensity measured by EUNIS-07 is consistent with the radiance measured by CDS NIS in quiet regions near the

  4. One-pot noninjection route to CdS quantum dots via hydrothermal synthesis.

    PubMed

    Aboulaich, Abdelhay; Billaud, Denis; Abyan, Mouhammad; Balan, Lavinia; Gaumet, Jean-Jacques; Medjadhi, Ghouti; Ghanbaja, Jaafar; Schneider, Raphaël

    2012-05-01

    Water-dispersible CdS quantum dots (QDs) emitting from 510 to 650 nm were synthesized in a simple one-pot noninjection hydrothermal route using cadmium chloride, thiourea, and 3-mercaptopropionic acid (MPA) as starting materials. All these chemicals were loaded at room temperature in a Teflon sealed tube and the reaction mixture heated at 100 °C. The effects of CdCl(2)/thiourea/MPA feed molar ratios, pH, and concentrations of precursors affecting the growth of the CdS QDs, was monitored via the temporal evolution of the optical properties of the CdS nanocrystals. High concentration of precursors and high MPA/Cd feed molar ratios were found to lead to an increase in the diameter of the resulting CdS nanocrystals and of the trap state emission of the dots. The combination of moderate pH value, low concentration of precursors and slow growth rate plays the crucial role in the good optical properties of the obtained CdS nanocrystals. The highest photoluminescence achieved for CdS@MPA QDs of average size 3.5 nm was 20%. As prepared colloids show rather narrow particle size distribution, although all reactants were mixed at room temperature. CdS@MPA QDs were characterized by UV-vis and photoluminescence spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectrometry and MALDI TOF mass spectrometry. This noninjection one-pot approach features easy handling and large-scale production with excellent synthetic reproducibility. Surface passivation of CdS@MPA cores by a wider bandgap material, ZnS, led to enhanced luminescence intensity. CdS@MPA and CdS/ZnS@MPA QDs exhibit high photochemical stability and hold a good potential to be applied in optoelectronic devices and biological applications.

  5. Controlled placement and orientation of nanostructures

    DOEpatents

    Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M

    2014-04-08

    A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.

  6. Expression of CD1d protein in human testis showing normal and abnormal spermatogenesis.

    PubMed

    Adly, Mohamed A; Abdelwahed Hussein, Mahmoud-Rezk

    2011-05-01

    CD1d is a member of CD1 family of transmembrane glycoproteins, which represent antigen-presenting molecules. Immunofluorescent staining methods were utilized to examine expression pattern of CD1d in human testicular specimens. In testis showing normal spermatogenesis, a strong CD1d cytoplasmic expression was seen the Sertoli cells, spermatogonia, and Leydig cells. A moderate expression was observed in the spermatocytes. In testes showing maturation arrest, CD1d expression was strong in the Sertoli cells and weak in spermatogonia and spermatocytes compared to testis with normal spermatogenesis. In Sertoli cell only syndrome, CD1d expression was strong in the Sertoli and Leydig cells. This preliminary study displayed testicular infertility-related changes in CD1d expression. The ultrastructural changes associated with with normal and abnormal spermatogenesis are open for further investigations.

  7. Computer Code for Nanostructure Simulation

    NASA Technical Reports Server (NTRS)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  8. Shape-Controlled Synthesis of ZnS Nanostructures: A Simple and Rapid Method for One-Dimensional Materials by Plasma

    PubMed Central

    2009-01-01

    In this paper, ZnS one-dimensional (1D) nanostructures including tetrapods, nanorods, nanobelts, and nanoslices were selectively synthesized by using RF thermal plasma in a wall-free way. The feeding rate and the cooling flow rate were the critical experimental parameters for defining the morphology of the final products. The detailed structures of synthesized ZnS nanostructures were studied through transmission electron microscope, X-ray diffraction, and high-resolution transmission electron microscope. A collision-controlled growth mechanism was proposed to explain the growth process that occurred exclusively in the gas current by a flowing way, and the whole process was completed in several seconds. In conclusion, the present synthetic route provides a facile way to synthesize ZnS and other hexagonal-structured 1D nanostructures in a rapid and scalable way. PMID:20596458

  9. Ultrasensitive detection of amifostine and alkaline phosphatase based on the growth of CdS quantum dots.

    PubMed

    Na, Weidan; Liu, Siyu; Liu, Xiaotong; Su, Xingguang

    2015-11-01

    In this study, we reported a simple and sensitive fluorescence nanosensor for rapid detection of amifostine and alkaline phosphatase (ALP). The novel nanosensor was based on the fluorescence "turn on-off" of CdS quantum dots (QDs). Firstly, Cd(2+) cation could react with S(2-) anion to generate fluorescent CdS QDs in the presence of amifostine. The fluorescence (FL) intensity of amifostine-capped CdS QDs (Amifostine-CdS QDs) was increased with the increasing amounts of amifostine, and could be used for amifostine detection. However, amifostine could be converted to 2-(3-aminopropylamino) ethanethiol (WR1065) in the presence of ALP based on the dephosphorylation of ALP. Under the optimum conditions, the affinity of WR1065 to CdS QDs was weaker than that of amifostine. Therefore the new generation of WR1065-CdS QDs would reduce the FL intensity with the increase of ALP concentration, and the fluorescence of CdS QDs was turn off. The metabolic process of amifostine in the presence of alkaline phosphatase could be also studied via the change of FL intensity of CdS QDs. The present method was cost-effective, convenient, and does not require any complicated synthetic procedures.

  10. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  11. Fabrication and characterization of one dimensional zinc oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Cheng, Chun

    In this thesis, one dimensional (1D) ZnO nanostructures with controlled morphologies, defects and alignment have been fabricated by a simple vapor transfer method. The crystal structures, interfaces, growth mechanisms and optical properties of ZnO nanostructures have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Great efforts have been devoted to the patterned growth and assembly of ZnO nanostructures as well as the stability of ZnO nanowires (NWs). Using carbonized photoresists, a simple and very effective method has been developed for fabricating and patterning high-quality ZnO NW arrays. ZnO NWs from this method show excellent alignment, crystal quality, and optical properties that are independent of the substrates. The carbonized photoresists provide perfect nucleation sites for the growth of aligned ZnO NWs and also perfectly connect to the NWs to form ideal electrodes. This approach is further extended to realize large area growth of different forms of ZnO NW arrays (e.g., the horizontal growth and multilayered ZnO NW arrays) on other kinds of carbon-based materials. In addition, the as-synthesized vertically aligned ZnO NW arrays show a low weighted reflectance (Rw) and can be used as antireflection coatings. Moreover, non c-axis growth of 1D ZnO nanostructures (e.g., nanochains, nanobrushes and nanobelts) and defect related 1D ZnO nanostructures (e.g., Y-shaped twinned nanobelts and hierarchical nanostructures decorated by flowers induced by screw dislocations) is also present. Using direct oxidization of pure Zn at high temperatures in air, uniformed ZnO NWs and tetrapods have been fabricated. The spatially-resolved PL study on these two kinds of nanostructures suggests that the defects leading to the green luminescence (GL) should originate from the structural changes along the legs of the tetrapods. Surface defects in these ZnO nanostructures play an unimportant

  12. Exercise increases TBC1D1 phosphorylation in human skeletal muscle

    PubMed Central

    Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders

    2011-01-01

    Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS

  13. Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor

    SciTech Connect

    Liang, Yan; Tan, Jiawei; Wang, Jiexin; Chen, Jianfeng; Sun, Baochang; Shao, Lei

    2014-12-15

    Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.

  14. Fabrication of zein nanostructure

    NASA Astrophysics Data System (ADS)

    Luecha, Jarupat

    resins. The soft lithography technique was mainly used to fabricate micro and nanostructures on zein films. Zein material well-replicated small structures with the smallest size at sub micrometer scale that resulted in interesting photonic properties. The bonding method was also developed for assembling portable zein microfluidic devices with small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design with no leakage. Aside from the fabrication technique development, several potential applications of this environmentally friendly microfluidic device were investigated. The concentration gradient manipulation of Rhodamine B solution in zein-glass microfluidic devices was demonstrated. The diffusion of small molecules such as fluorescent dye into the wall of the zein microfluidic channels was observed. However, with this formulation, zein microfluidic devices were not suitable for cell culture applications. This pioneer study covered a wide spectrum of the implementation of the two nanotechnology approaches to advance zein biomaterial which provided proof of fundamental concepts as well as presenting some limitations. The findings in this study can lead to several innovative research opportunities of advanced zein biomaterials with broad applications. The information from the study of zein nanocomposite structure allows the packaging industry to develop the low cost biodegradable materials with physical property improvement. The information from the study of the zein microfluidic devices allows agro-industry to develop the nanotechnology-enabled microfluidic sensors fabricated entirely from biodegradable polymer for on-site disease or contaminant detection in the fields of food and agriculture.

  15. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.

    PubMed

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.

  16. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model

    PubMed Central

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125

  17. Electronic-to-vibrational energy transfer efficiency in the O/1 D/-N2 and O/1 D/-CO systems

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1974-01-01

    With the aid of a molecular resonance fluorescence technique, which utilizes optical pumping from the v = 1 level of the ground state of CO by A 1 Pi-X 1 Sigma radiation, a study is made of the efficiency of E-V transfer from O(1 D) to CO. O(1 D) is generated at a known rate by O2 photodissociation at 1470 A in an intermittent mode, and the small modulation of the fluorescent signal associated with CO (v = 1) above the normal thermal background is interpreted in terms of E-V transfer efficiency. The CO (v = 1) lifetime in this system is determined mainly by resonance trapping of the IR fundamental band, and is found to be up to ten times longer than the natural radiative lifetime. For CO, (40 plus or minus 8)% of the O(1 D) energy is converted into vibrational energy. By observing the effect of N2 on the CO (v = 1) fluorescent intensity and lifetime, it is possible to obtain the E-V transfer efficiency for the system O(1 D)-N2 relative to that for O(1 D)-CO. The results indicate that the efficiency for N2 is (83 plus or minus 10)% of that for CO.

  18. Mapping of the serotonin 5-HT{sub 1D{alpha}} autoreceptor gene (HTR1D) on chromosome 1 using a silent polymorphism in the coding region

    SciTech Connect

    Ozaki, N.; Lappalainen, J.; Linnoila, M.

    1995-04-24

    Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.

  19. Modulation of electronic properties with external fields in silicene-based nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Geng; Zhao, Yin-Chang; Zheng, Rui; Ni, Jun; Wu, Yan-Ning

    2015-08-01

    This work reviews our recent works about the density functional theory (DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional (2D) silicene-based nonostructures, the magnetic moment of Fe-doped silicene shows a sharp jump at a threshold electric field, which indicates a good switching effect, implying potential applications as a magnetoelectric (ME) diode. With the electric field, the good controllability and sharp switching of the magnetism may offer a potential applications in the ME devices. For the one-dimensional (1D) nanostructures, the silicene nanoribbons with sawtooth edges (SSiNRs) are more stable than the zigzag silicene nanoribbons (ZSiNRs) and show spin-semiconducting features. Under external electric field or uniaxial compressive strain, the gapless spin-semiconductors are gained, which is significant in designing qubits for quantum computing in spintronics. The superlattice structures of silicene-based armchair nanoribbons (ASiSLs) is another example for 1D silicene nanostructures. The band structures of ASiSLs can be modulated by the size and strain of the superlattices. With the stain increased, the related energy gaps of ASiSLs will change, which are significantly different with that of the constituent nanoribbons. The results suggest potential applications in designing quantum wells. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374175 and 11174171).

  20. A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures

    PubMed Central

    Sang, Liwen; Liao, Meiyong; Sumiya, Masatomo

    2013-01-01

    Ultraviolet (UV) photodetectors have drawn extensive attention owing to their applications in industrial, environmental and even biological fields. Compared to UV-enhanced Si photodetectors, a new generation of wide bandgap semiconductors, such as (Al, In) GaN, diamond, and SiC, have the advantages of high responsivity, high thermal stability, robust radiation hardness and high response speed. On the other hand, one-dimensional (1D) nanostructure semiconductors with a wide bandgap, such as β-Ga2O3, GaN, ZnO, or other metal-oxide nanostructures, also show their potential for high-efficiency UV photodetection. In some cases such as flame detection, high-temperature thermally stable detectors with high performance are required. This article provides a comprehensive review on the state-of-the-art research activities in the UV photodetection field, including not only semiconductor thin films, but also 1D nanostructured materials, which are attracting more and more attention in the detection field. A special focus is given on the thermal stability of the developed devices, which is one of the key characteristics for the real applications. PMID:23945739

  1. Catalytic Effects of Cr on Nitridation of Silicon and Formation of One-dimensional Silicon Nitride Nanostructure

    NASA Astrophysics Data System (ADS)

    Liang, Feng; Lu, Lilin; Tian, Liang; Li, Faliang; Zhang, Haijun; Zhang, Shaowei

    2016-08-01

    The catalytic effects of chromium (Cr) on the direct nitridation of silicon (Si) and morphology of nitridation product were investigated. Cr dramatically improved the conversation of Si to silicon nitride (Si3N4). The complete conversion was achieved at 1350 °C upon addition of 1.25 wt% Cr. This temperature was much lower than that required in the case without using a catalyst. Meanwhile, Cr played an important role in the in-situ growth of one-dimensional (1-D) α-Si3N4 nanostructures. α-Si3N4 nanowires and nanobelts became the primary product phases when 5 wt% Cr was used as the catalyst. The growth processes of the 1-D α-Si3N4 nanostructures were governed by the vapor-solid mechanism. First-principle calculations suggest that electrons can be transferred from Cr atoms to N atoms, facilitating the Si nitridation.

  2. Neodymium 1D systems: targeting new sources for field-induced slow magnetization relaxation.

    PubMed

    Jassal, Amanpreet Kaur; Aliaga-Alcalde, Núria; Corbella, Montserrat; Aravena, Daniel; Ruiz, Eliseo; Hundal, Geeta

    2015-09-28

    Two non-isostructural homometallic 1D neodymium species displaying field-induced slow magnetization relaxations are presented together with theoretical studies. It is established that both systems are better described as organized 1D single molecule magnets (SMMs). Studies show great potential of Nd(III) ions to provide homometallic chains with slow magnetic relaxation.

  3. Correlating Nanostructures with Function: Structural Colors on the Wings of a Malaysian Bee

    NASA Astrophysics Data System (ADS)

    Matin, T. R.; Leong, M. K.; Majlis, B. Y.; Gebeshuber, I. C.

    2010-10-01

    Structural colours refer to colours generated by nanostructures, with the characteristic dimension of the structures on the wavelength of the visible light (i.e., some hundreds of nanometers). Examples for structural colours are the colours of CDs and DVDs, the colours of soap bubbles or oil films on water (thin films), or the colours of certain butterfly wings (e.g., photonic crystals). Recently, we located a Malaysian bee with iridescent structural coloration on its wings. The generation of the colouration is still unknown, and there is no respective scientific literature available. This study presents the first AFM experiments related to the structural coloration of the carpenter bee wing. First attempts to investigate the nanostructures of the wing were performed with non-contact atomic force microscopy (AFM, Park Systems XE-100), using a Silicon nitride cantilever with a spring constant of 40 N/m and a resonance frequency of 300.000 kHz. The AFM scans reveal three layers with structures with a diameter of several hundreds of nanometres. This, rules out thin films as the structures yielding the coloration. Future research and correlation of various structures with function in this bee wings will shed light on the contribution of these structures visible in the first AFM scans to the colouration. Structural colours produced by nature inspire novel approaches in man-made colours, via biomimetics (i.e., knowledge transfer from biology to technology).

  4. Templated Synthesis of Silver(I) and Copper(II) Nanostructures: Solid State Reactions and Applications

    NASA Astrophysics Data System (ADS)

    Bourret, Gilles R.

    2011-12-01

    This Thesis presents the synthesis of novel 1D, 2D, and 3D Ag(I) and Cu(II) nanostructures and their use as sacrificial templates to make functional nanomaterials. New soft template methods were developed for the synthesis of AgCN and Cu(OH)2 nanostructures. Polymeric organic nanotubes were successfully used to synthesize AgCN nanowires, while the precipitation of Cu(OH)2 nanofibers was templated in water microdroplets. Both methods benefit from the versatility of soft templates and allows for a control of both the size and the morphology of the nanostructures produced. The conversion of these precursors into metallic and semi-conductive nanomaterials was achieved via chemical and electrochemical reduction, and thermolysis. Chemical reduction of the AgCN nanowires leads to the fabrication of conductive arrays on nylon filter substrates, while the thermolysis of the Cu(OH)2 spherical assemblies yields photoresponsive semi-conductive porous CuO spheres. The electrochemical reduction of the native Ag(I) and Cu(II) one-dimensional nanostructures was investigated in aqueous solution at gold/glass/gold junctions. The solid-solid conversion involved in the electrochemical reduction process was studied via cyclic voltammetry, chronoamperometry, and electronic microscopy. The strong influence of the reduction potential on the nanomaterials produced allowed for the fabrication of a range of Ag(0) nanostructures, including nanoparticles, nanoprisms, nanofibers and porous networks. Electrochemical reduction of Au/M2+/Au junctions leads to the formation of an excellent electrical contact between the two gold electrodes. This technique was expanded to include ionically-conductive Ag2S nanowires which form metallic/ionic-conductor heterojunctions. Keywords: nanostructure, nanowire, template, emulsion, electrochemistry, silver, cyanide, copper, oxide, heterojunction, sacrificial template.

  5. Surfactant free most probable TiO2 nanostructures via hydrothermal and its dye sensitized solar cell properties

    PubMed Central

    Mali, Sawanta S.; Kim, Hyungjin; Shim, Chang Su; Patil, Pramod S.; Kim, Jin Hyeok; Hong, Chang Kook

    2013-01-01

    Tailoring the nano-morphology and nano-architecture of titanium dioxide (TiO2) is the most important task in the third generation solar cells (Dye sensitized solar cells/Quantum dot sensitized solar cells) (DSSCs/QDSSCs). In this article we present complete study of surfactant free synthesis of TiO2 nanostructures by a simple and promising hydrothermal route. The plethora of nanostructures like nanoparticles clusters, 1D tetragonal nanorods, 3D dendrites containing nanorods having <30 nm diameter and 3D hollow urchin like have been synthesized. These nanostructures possess effective large surface area and thus useful in DSSCs. In the present work, 7.16% power conversion efficiency has been demonstrated for 3D dendritic hollow urchin like morphology. Our synthetic strategy provides an effective solution for surfactant free synthesis of efficient TiO2 nanoarchitectures. PMID:24141599

  6. Characterization of the fraction components using 1D TOCSY and 1D ROESY experiments. Four new spirostane saponins from Agave brittoniana Trel. spp. Brachypus.

    PubMed

    Macías, Francisco A; Guerra, José O; Simonet, Ana M; Nogueiras, Clara M

    2007-07-01

    A careful NMR analysis, especially 1D TOCSY and 1D ROESY, of two refined saponin fractions allowed us to determine the structures of four new saponins from a polar extract of the Agave brittoniana Trel. spp. Brachypus leaves. A full assignment of the 1H and 13C spectral data for these new saponins, agabrittonosides A-D (1-4), and one previously known saponin, karatavioside A (5) is reported. Their structures were established using a combination of 1D and 2D (1H, 1H-COSY, TOCSY, ROESY, g-HSQC, g-HMBC and g-HSQC-TOCSY) NMR techniques and ESI-MS. Moreover, the work represents a new approach to structural elucidation of saponins in refined fractions by NMR investigations.

  7. Decays B(s)→a1(b1)D(s), a1(b1)D(s)* in the perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qing

    2013-04-01

    Within the framework of the perturbative QCD approach, we study the branching ratios of the two-body charmed decays B(s)→a1(b1)D(s), a1(b1)D(s)*, which, including Cabibbo-Kobayashi-Maskawa, allowed and suppressed decays. Our calculations are consistent with the currently available data and the experimental upper limits. Certainly, many of these predicted channels have not been measured by experiments and can be confronted with the future experimental data. We also discuss the polarization factions of the decays B(s)→a1(b1)D(s)*, some of which are sensitive to the distinct Gegenbauer moments of the wave functions and the decay constants of mesons a1 and b1.

  8. Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young's interference experiment revisited.

    PubMed

    Sun, Liaoxin; Ren, Ming-Liang; Liu, Wenjing; Agarwal, Ritesh

    2014-11-12

    Semiconductor nanostructures such as nanowires and nanoribbons functioning as Fabry-Pérot (F-P)-type optical cavities and nanolasers have attracted great interest not only for their potential use in nanophotonic systems but also to understand the physics of light-matter interactions at the nanoscale. Due to their nanoscale dimensions, new techniques need to be continuously developed to characterize the nature of highly confined optical modes. Furthermore, the inadequacy of typical far-field photoluminescence experiments for characterizing the nanoscale cavity modes such as parity and order has precluded efforts to obtain precise information that is required to fully understand these cavities. Here, we utilize a modified Young's interference method based on angle-resolved microphotoluminescence spectral technique to directly reveal the parity of F-P cavity modes in CdS nanostructures functioning as waveguides and nanolasers. From these analyses, the mode order can be straightforwardly obtained with the help of numerical simulations. Moreover, we show that the Young's technique is a general technique applicable to any F-P type cavities in nanoribbons, nanowires, or other photonic and plasmonic nanostructures.

  9. Chemiluminescent lateral-flow immunoassays by using in-situ synthesis of CdS NW photosensor.

    PubMed

    An, Byoung-Gi; Kim, Hong-Rae; Kang, Min-Jung; Park, Jae-Gwan; Chang, Young Wook; Pyun, Jae-Chul

    2016-07-13

    A hypersensitive CdS nanowire (NW) photosensor was fabricated by an in-situ synthesis process that involved the direct synthesis of CdS NWs on an interdigitated electrode (IDE). Analysis of the photoresponse properties showed that the newly synthesized photosensor had enhanced sensitivity and a highly reproducible photoresponse compared to photosensors prepared from CdS NW suspensions. The NW photosensor was applied to measure the chemiluminescence of luminol, and the sensitivity was compared to a commercial photosensing system. Finally, the feasibility of the CdS NW photosensor for the application to the medical diagnosis of the human hepatitis B surface antigen (hHBsAg) was demonstrated using a lateral-flow immunoassay with a chemiluminescent signal band. PMID:27237842

  10. Structural and optical properties of Ni-doped CdS thin films prepared by chemical bath deposition method

    SciTech Connect

    Premarani, R.; Saravanakumar, S. Chandramohan, R.; Mahalingam, T.

    2015-06-24

    The structural and optical behavior of undoped Cadmiun Sulphide (CdS) and Ni-doped CdS thinfilms prepared by Chemical Bath Deposition (CBD) technique is reported. The crystallite sizes of the thinfilms have been characterized by X-ray diffraction pattern (XRD). The particle sizes increase with the increase of Ni content in the CdS thinfilms. Scanning Electron Microscope (SEM) results indicated that CdS thinfilms is made up of aggregate of spherical-like particles. The composition was estimated by Energy Dispersive Analysis of X-ray (EDX) and reported. Spectroscopic studies revealed considerable improvement in transmission and the band gap of the films changes with addition of Ni dopant that is associated with variation in crystallite sizes in the nano regime.

  11. Chemical synthesis of CdS onto TiO2 nanorods for quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Pawar, Sachin A.; Patil, Dipali S.; Lokhande, Abhishek C.; Gang, Myeng Gil; Shin, Jae Cheol; Patil, Pramod S.; Kim, Jin Hyeok

    2016-08-01

    A quantum dot sensitized solar cell (QDSSC) is fabricated using hydrothermally grown TiO2 nanorods and successive ionic layer adsorption and reaction (SILAR) deposited CdS. Surface morphology of the TiO2 films coated with different SILAR cycles of CdS is examined by Scanning Electron Microscopy which revealed aggregated CdS QDs coverage grow on increasing onto the TiO2 nanorods with respect to cycle number. Under AM 1.5G illumination, we found the TiO2/CdS QDSSC photoelectrode shows a power conversion efficiency of 1.75%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 4.04 mA/cm2 which is higher than that of a bare TiO2 nanorods array.

  12. Synthesis of CdS nanorod arrays and their applications in flexible piezo-driven active H2S sensors.

    PubMed

    Wang, Penglei; Deng, Ping; Nie, Yuxin; Zhao, Yayu; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-02-21

    A flexible piezo-driven active H2S sensor has been fabricated from CdS nanorod arrays. By coupling the piezoelectric and gas sensing properties of CdS nanorods, the piezoelectric output generated by CdS nanorod arrays acts not only as a power source, but also as a response signal to H2S. Under externally applied compressive force, the piezoelectric output of CdS nanorod arrays is very sensitive to H2S. Upon exposure to 600 ppm H2S, the piezoelectric output of the device decreased from 0.32 V (in air) to 0.12 V. Such a flexible device can be driven by the tiny mechanical energy in our living environment, such as human finger pinching. Our research can stimulate a research trend on designing new material systems and device structures for high-performance piezo-driven active gas sensors.

  13. Synthesis of CdS nanorod arrays and their applications in flexible piezo-driven active H2S sensors

    NASA Astrophysics Data System (ADS)

    Wang, Penglei; Deng, Ping; Nie, Yuxin; Zhao, Yayu; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-02-01

    A flexible piezo-driven active H2S sensor has been fabricated from CdS nanorod arrays. By coupling the piezoelectric and gas sensing properties of CdS nanorods, the piezoelectric output generated by CdS nanorod arrays acts not only as a power source, but also as a response signal to H2S. Under externally applied compressive force, the piezoelectric output of CdS nanorod arrays is very sensitive to H2S. Upon exposure to 600 ppm H2S, the piezoelectric output of the device decreased from 0.32 V (in air) to 0.12 V. Such a flexible device can be driven by the tiny mechanical energy in our living environment, such as human finger pinching. Our research can stimulate a research trend on designing new material systems and device structures for high-performance piezo-driven active gas sensors.

  14. TBC1D1 reduces palmitate oxidation by inhibiting β-HAD activity in skeletal muscle.

    PubMed

    Maher, A C; McFarlan, J; Lally, J; Snook, L A; Bonen, A

    2014-11-01

    In skeletal muscle the Rab-GTPase-activating protein TBC1D1 has been implicated in the regulation of fatty acid oxidation by an unknown mechanism. We determined whether TBC1D1 altered fatty acid utilization via changes in protein-mediated fatty acid transport and/or selected enzymes regulating mitochondrial fatty acid oxidation. We also determined the effects of TBC1D1 on glucose transport and oxidation. Electrotransfection of mouse soleus muscles with TBC1D1 cDNA increased TBC1D1 protein after 2 wk (P<0.05), without altering its paralog AS160. TBC1D1 overexpression decreased basal palmitate oxidation (-22%) while blunting 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated palmitate oxidation (-18%). There was a tendency to increase fatty acid esterification (+10 nmol·g(-1)·60 min(-1), P=0.07), which reflected the reduction in fatty acid oxidation (-12 nmol·g(-1)·60 min(-1)). Concomitantly, basal (+21%) and AICAR-stimulated glucose oxidation (+8%) were increased in TBC1D1-transfected muscles relative to their respective controls (P<0.05), independent of changes in GLUT4 and glucose transport. The reductions in TBC1D1-mediated fatty acid oxidation could not be attributed to changes in the transporter FAT/CD36, muscle mitochondrial content, CPT1 expression or the expression and phosphorylation of AS160, acetyl-CoA carboxylase, or AMPK. However, TBC1D1 overexpression reduced β-HAD enzyme activity (-18%, P<0.05). In conclusion, TBC1D1-mediated reduction of muscle fatty acid oxidation appears to occur via inhibition of β-HAD activity.

  15. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  16. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  17. Facile synthesis of bioconjugated fluorescent CdS nanoparticles of tunable light emission

    NASA Astrophysics Data System (ADS)

    Kalasad, M. N.; Rabinal, M. K.; Mulimani, B. G.

    2010-08-01

    Bioconjugated CdS nanoparticles capped with L-cysteine molecules are prepared by an aqueous route. A new source of sulfur that is a complex of hydrazine hydrate-sulfur is used to develop the aqueous synthesis of these nanoparticles. The change in volume ratio of sulfur and cadmium ions with a fixed molarity of capping molecules, as prepared colloids exhibits different colours. These nanoparticles are characterized by optical absorption, photoluminescence, FTIR, x-ray diffraction and transmission electron microscopic measurements. It is observed that the present technique yields nanoparticles that are spherical in shape whose size ranges from 1.7 to 3.39 nm (estimated from optical absorption). The resulting colloids are highly stable (for more than a few months) and exhibit high quantum yield for fluorescence (close to 34%). This demonstrates that the present route of synthesis is simple and easily scalable to prepare highly fluorescent and biologically important nanoparticles of CdS.

  18. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.

    PubMed

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-07-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices.

  19. Preparation, characterization and application of Nano CdS doped with alum composite electrolyte

    NASA Astrophysics Data System (ADS)

    Singh, Pramod K.; Kumar, Pawan; Seth, Tanay; Rhee, Hee-Woo; Bhattacharya, B.

    2012-09-01

    A new composite electrolyte has been developed for electrochemical application and studied in details. The system contains Alum doped with nanosize cadmium sulphide (CdS) particles in the desire ratio. The structural studies were carried out by using X-ray diffraction (XRD) as well as infrared spectroscopy (IR) which affirms the composite nature of the system. The electrical properties, including ion transport studies and complex impedance spectra confirm the ionic nature of sample as well as enhancement in ionic conductivity by CdS doping. The temperature dependence measurement confirms the Arrhenius nature of sample, which is commonly observed in the ionic composite system. The dielectric constant varies with temperature, and this data is used to calculate the number of charge carrier (n/no) contributing to conductivity and fits well with emf variation. A cell was fabricated by sandwiching the composite between graphite and stainless steel electrodes, which shows an emf of 7 mV.

  20. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.

    PubMed

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-07-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices. PMID:27419234

  1. Dielectric and Thermal Properties of Transformer Oil Modified by Semiconductive CdS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Abd-Elhady, Amr M.; Ibrahim, Mohamed E.; Taha, T. A.; Izzularab, Mohamed A.

    2016-07-01

    In this paper, modified transformer oil semiconductor quantum dots (QDs) are presented. Cadmium sulfide (CdS) quantum dots of radius 4.5 nm with a hexagonal crystal structure are added to transformer oil to improve its dielectric and thermal properties. CdS QDs modified oil is prepared considering different filler loading levels. Alternating current breakdown voltages of the transformer oil samples before and after the modification are measured based on American Society for Testing and Materials D1816 standard. The relative permittivity and dissipation factor are measured for all samples. Also, thermal properties of the oil samples are experimentally evaluated according to the temperature change measurement considering heating and cooling processes. The results show significant improvements in dielectric and thermal properties of the modified transformer oil, as well as an increase in the breakdown strength by about 81% in comparison to the base transformer oil.

  2. Solid-state semiconductor optical cryocooler based on CdS nanobelts.

    PubMed

    Li, Dehui; Zhang, Jun; Wang, Xinjiang; Huang, Baoling; Xiong, Qihua

    2014-08-13

    We demonstrate the laser cooling of silicon-on-insulator (SOI) substrate using CdS nanobelts. The local temperature change of the SOI substrate exactly beneath the CdS nanobelts is deduced from the ratio of the Stokes and anti-Stokes Raman intensities from the Si layer on the top of the SOI substrate. We have achieved a 30 and 20 K net cooling starting from 290 K under a 3.8 mW 514 nm and a 4.4 mW 532 nm pumping, respectively. In contrast, a laser heating effect has been observed pumped by 502 and 488 nm lasers. Theoretical analysis based on the general static heat conduction module in the Ansys program package is conducted, which agrees well with the experimental results. Our investigations demonstrate the laser cooling capability of an external thermal load, suggesting the applications of II-VI semiconductors in all-solid-state optical cryocoolers.

  3. Fabrication of CdS nanowires with increasing anionic precursor by SILAR method

    NASA Astrophysics Data System (ADS)

    Dariani, R. S.; Salehi, F.

    2016-05-01

    CdS nanowires were fabricated on glass substrate at room temperature by SILAR method with cadmium nitrate cationic and sodium sulfide anionic precursors. The deposition were done at different S:Cd concentration ratios of 1:1, 3:1, 5:1, and 7:1. Nanowires growth procedure was studied in the mentioned concentrations. The number of immersion cycles was kept constant at 15 cycles. EDX analysis showed that in all stoichiometric ratios, S/Cd composition ratio remains at about unity. Our results indicated that S:Cd concentration ratio of 7:1 had the longest nanowires with hexagonal structure. The main objective of this paper was to produce CdS nanowires with increasing concentration of sulfur.

  4. Synthesis and characterization of chemically deposited CdS thin films without toxic precursors.

    NASA Astrophysics Data System (ADS)

    Fernández-Pérez, A.; Sandoval-Paz, M. G.

    2016-05-01

    Al doped and undoped CdS thin films (CdS:Al) were deposited on glass, copper and bronze substrates by chemical bath deposition technique in an ammonia-free cadmium-sodium citrate system. The structural and optical properties of the CdS films were determined by X-ray diffraction (XRD), scanning electron microscope (SEM), and simultaneous transmission- reflection spectroscopy. It was found that the properties of the films depend on the amount of Al in the growth solutions and deposition time. The increase in Al content in the reaction solution led to a smaller crystallite size and higher energy band gap that varies in the range 2.42 eV - 2.59 eV depending on the Al content.

  5. Dielectric and Thermal Properties of Transformer Oil Modified by Semiconductive CdS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Abd-Elhady, Amr M.; Ibrahim, Mohamed E.; Taha, T. A.; Izzularab, Mohamed A.

    2016-10-01

    In this paper, modified transformer oil semiconductor quantum dots (QDs) are presented. Cadmium sulfide (CdS) quantum dots of radius 4.5 nm with a hexagonal crystal structure are added to transformer oil to improve its dielectric and thermal properties. CdS QDs modified oil is prepared considering different filler loading levels. Alternating current breakdown voltages of the transformer oil samples before and after the modification are measured based on American Society for Testing and Materials D1816 standard. The relative permittivity and dissipation factor are measured for all samples. Also, thermal properties of the oil samples are experimentally evaluated according to the temperature change measurement considering heating and cooling processes. The results show significant improvements in dielectric and thermal properties of the modified transformer oil, as well as an increase in the breakdown strength by about 81% in comparison to the base transformer oil.

  6. CdS: Characterization and recent advances in CdTe solar cell performance

    SciTech Connect

    Ferekides, C.; Marinskiy, D.; Morel, D.L.

    1997-12-31

    Cadmium sulfide (CdS) films deposited by chemical bath deposition (CBD) have been used for the fabrication of high efficiency CdTe and CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} thin film solar cells. An attractive alternative deposition technology with manufacturing advantages over the CBD is the close spaced sublimation (CSS). In this work CdTe/CdS solar cells prepared entirely by the CSS process exhibited 15.0% efficiencies under global AM1.5 conditions as verified at the National Renewable Energy Laboratory. This paper reports on studies carried out on as deposited and heat treated CSS CdS films and all CSS CdTe/CdS solar cells using photoluminescence, x-ray diffraction, and I-V-T measurements.

  7. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films

    PubMed Central

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-01-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d33) up to 33 pm·V−1 was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices. PMID:27419234

  8. Continuous-wave Cr{sup 2+}:CdS laser

    SciTech Connect

    Kozlovskii, Vladimir I; Korostelin, Yurii V; Landman, Aleksandr I; Podmar'kov, Yu P; Skasyrsky, Yan K; Frolov, M P

    2010-01-31

    Continuous-wave lasing is obtained for the first time in a Cr{sup 2+}:CdS crystal pumped by a thulium fibre laser at 1908 nm. The output power of the laser at 2534 nm achieved 0.81 W with the slope efficiency with respect to the absorbed pump power equal to 52.3%. The parameters of Cr{sup 2+}:CdS and Cr{sup 2+}:CdSe lasers are compared. A Cr{sup 2+}:CdSe crystal generated 1.7 W of cw radiation at 2638 nm with the slope efficiency with respect to the absorbed power equal to 53.4%. (lasers)

  9. Nanostructured materials for water desalination.

    PubMed

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  10. Topology optimization of piezoelectric nanostructures

    NASA Astrophysics Data System (ADS)

    Nanthakumar, S. S.; Lahmer, Tom; Zhuang, Xiaoying; Park, Harold S.; Rabczuk, Timon

    2016-09-01

    We present an extended finite element formulation for piezoelectric nanobeams and nanoplates that is coupled with topology optimization to study the energy harvesting potential of piezoelectric nanostructures. The finite element model for the nanoplates is based on the Kirchoff plate model, with a linear through the thickness distribution of electric potential. Based on the topology optimization, the largest enhancements in energy harvesting are found for closed circuit boundary conditions, though significant gains are also found for open circuit boundary conditions. Most interestingly, our results demonstrate the competition between surface elasticity, which reduces the energy conversion efficiency, and surface piezoelectricity, which enhances the energy conversion efficiency, in governing the energy harvesting potential of piezoelectric nanostructures.

  11. Raman Studies of Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Jorio, Ado; Souza Filho, Antonio G.

    2016-07-01

    This article reviews recent advances on the use of Raman spectroscopy to study and characterize carbon nanostructures. It starts with a brief survey of Raman spectroscopy of graphene and carbon nanotubes, followed by recent developments in the field. Various novel topics, including Stokes–anti-Stokes correlation, tip-enhanced Raman spectroscopy in two dimensions, phonon coherence, and high-pressure and shielding effects, are presented. Some consequences for other fields—quantum optics, near-field electromagnetism, archeology, materials and soil sciences—are discussed. The review ends with a discussion of new perspectives on Raman spectroscopy of carbon nanostructures, including how this technique can contribute to the development of biotechnological applications and nanotoxicology.

  12. Nanostructured materials for water desalination

    NASA Astrophysics Data System (ADS)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  13. Raman Studies of Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Jorio, Ado; Souza Filho, Antonio G.

    2016-07-01

    This article reviews recent advances on the use of Raman spectroscopy to study and characterize carbon nanostructures. It starts with a brief survey of Raman spectroscopy of graphene and carbon nanotubes, followed by recent developments in the field. Various novel topics, including Stokes-anti-Stokes correlation, tip-enhanced Raman spectroscopy in two dimensions, phonon coherence, and high-pressure and shielding effects, are presented. Some consequences for other fields—quantum optics, near-field electromagnetism, archeology, materials and soil sciences—are discussed. The review ends with a discussion of new perspectives on Raman spectroscopy of carbon nanostructures, including how this technique can contribute to the development of biotechnological applications and nanotoxicology.

  14. Coherent acoustic phonons in nanostructures

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.

    2008-02-01

    Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.

  15. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    SciTech Connect

    Murphy, M. W.; Yiu, Y. M. Sham, T. K.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  16. Thermoelectric effects in graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Dollfus, Philippe; Nguyen, Viet Hung; Saint-Martin, Jérôme

    2015-04-01

    The thermoelectric properties of graphene and graphene nanostructures have recently attracted significant attention from the physics and engineering communities. In fundamental physics, the analysis of Seebeck and Nernst effects is very useful in elucidating some details of the electronic band structure of graphene that cannot be probed by conductance measurements alone, due in particular to the ambipolar nature of this gapless material. For applications in thermoelectric energy conversion, graphene has two major disadvantages. It is gapless, which leads to a small Seebeck coefficient due to the opposite contributions of electrons and holes, and it is an excellent thermal conductor. The thermoelectric figure of merit ZT of a two-dimensional (2D) graphene sheet is thus very limited. However, many works have demonstrated recently that appropriate nanostructuring and bandgap engineering of graphene can concomitantly strongly reduce the lattice thermal conductance and enhance the Seebeck coefficient without dramatically degrading the electronic conductance. Hence, in various graphene nanostructures, ZT has been predicted to be high enough to make them attractive for energy conversion. In this article, we review the main results obtained experimentally and theoretically on the thermoelectric properties of graphene and its nanostructures, emphasizing the physical effects that govern these properties. Beyond pure graphene structures, we discuss also the thermoelectric properties of some hybrid graphene structures, as graphane, layered carbon allotropes such as graphynes and graphdiynes, and graphene/hexagonal boron nitride heterostructures which offer new opportunities. Finally, we briefly review the recent activities on other atomically thin 2D semiconductors with finite bandgap, i.e. dichalcogenides and phosphorene, which have attracted great attention for various kinds of applications, including thermoelectrics.

  17. Thermoelectric effects in graphene nanostructures.

    PubMed

    Dollfus, Philippe; Hung Nguyen, Viet; Saint-Martin, Jérôme

    2015-04-10

    The thermoelectric properties of graphene and graphene nanostructures have recently attracted significant attention from the physics and engineering communities. In fundamental physics, the analysis of Seebeck and Nernst effects is very useful in elucidating some details of the electronic band structure of graphene that cannot be probed by conductance measurements alone, due in particular to the ambipolar nature of this gapless material. For applications in thermoelectric energy conversion, graphene has two major disadvantages. It is gapless, which leads to a small Seebeck coefficient due to the opposite contributions of electrons and holes, and it is an excellent thermal conductor. The thermoelectric figure of merit ZT of a two-dimensional (2D) graphene sheet is thus very limited. However, many works have demonstrated recently that appropriate nanostructuring and bandgap engineering of graphene can concomitantly strongly reduce the lattice thermal conductance and enhance the Seebeck coefficient without dramatically degrading the electronic conductance. Hence, in various graphene nanostructures, ZT has been predicted to be high enough to make them attractive for energy conversion. In this article, we review the main results obtained experimentally and theoretically on the thermoelectric properties of graphene and its nanostructures, emphasizing the physical effects that govern these properties. Beyond pure graphene structures, we discuss also the thermoelectric properties of some hybrid graphene structures, as graphane, layered carbon allotropes such as graphynes and graphdiynes, and graphene/hexagonal boron nitride heterostructures which offer new opportunities. Finally, we briefly review the recent activities on other atomically thin 2D semiconductors with finite bandgap, i.e. dichalcogenides and phosphorene, which have attracted great attention for various kinds of applications, including thermoelectrics.

  18. Insulating oxide surfaces and nanostructures

    NASA Astrophysics Data System (ADS)

    Goniakowski, Jacek; Noguera, Claudine

    2016-03-01

    This contribution describes some peculiarities of the science of oxide surfaces and nanostructures and proposes a simple conceptual scheme to understand their electronic structure, in the spirit of Jacques Friedel's work. Major results on the effects of non-stoichiometry and polarity are presented, for both semi-infinite surfaces and ultra-thin films, and promising lines of research for the near future are sketched. xml:lang="fr"

  19. Nanostructural engineering of organic aerogels

    SciTech Connect

    Pekala, R.W.; Alviso, C.T.; Lu, X.; Caps, R.; Frocle, J.

    1995-03-01

    Aerogels are a special class of open-cell foams with an ultrafine cell/pore size (<50 nm), high surface area (400-1100 M{sup 2}/g), and a solid matrix composed of interconnected colloidal-like particles or fibers with characteristic diameters of 10 nm. This paper examines the correlation between nanostructure and thermal conductivity in a series of resorcinol-formaldehyde (RF) aerogels prepared under different synthetic conditions.

  20. Easy Preparation and Photoelectrochemical Properties of CdS Nanoparticle/Graphene Nanosheet Nanocomposites Using Supercritical Carbon Dioxide.

    PubMed

    Yan, Shancheng; Xu, Xin; Jiang, Chao; Pan, Lijia; Shi, Yi; Hu, Dong; Cao, Zhenglin

    2016-03-01

    Graphene nanosheets (GNSs) were modified with CdS nanoparticles (NPs) using supercritical CO2 (SC CO2), which has gas-like diffusivity, low viscosity, and near-zero surface tension. The resulting CdS NP/GNS nanocomposites were characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. Distinct morphologies of CdS NP/GNS nanocomposites decorated on the GNS surface were obtained at different SC CO2 pressures, temperatures, and durations and in different sources. Results showed that the sources and SC CO2 significantly influenced the aggregation or assembly behavior of the CdS NP/GNS nanocomposites on the GNSs. The formation mechanism of the distinct nanohybrid structures was studied by Raman mapping. A difference was noted between the Raman spectra of pristine graphene nanosheets and CdS NP/GNS nanocomposites. This result can be ascribed to the CdS NPs anchored onto the GNS defects and to the improved quality of the GNSs under SC CO2. The photo-current densities of CdS NP/GNS nanocomposites were at least three times higher than that of the pristine CdS NPs at the same applied voltage for photoelectrochemical water splitting. The findings suggested that highly efficient graphene-supported NP photoelectrocatalysts can be fabricated by the supercritical fluid method and that graphene can serve as a favorable photoelectrocatalytic carrier, with promising potential applications in environmental and energy fields. Keywords: Graphene Nanosheets, Cadmium Sulfide, Raman Spectroscopy, Photoelectrochemical.

  1. Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible-Light Photoelectrochemical Hydrogen Evolution.

    PubMed

    Zheng, Xue-Li; Song, Ji-Peng; Ling, Tao; Hu, Zhen Peng; Yin, Peng-Fei; Davey, Kenneth; Du, Xi-Wen; Qiao, Shi-Zhang

    2016-06-01

    Strongly coupled Nafion molecules and ordered porous CdS networks are fabricated for visible-light photoelectrochemical (PEC) hydrogen evolution. The Nafion layer coating shifts the band position of CdS upward and accelerates charge transfer in the photoelectrode/electrolyte interface. It is highly expected that the strong coupling effect between organic and inorganic materials will provide new routes to advance PEC water splitting. PMID:27038367

  2. Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible-Light Photoelectrochemical Hydrogen Evolution.

    PubMed

    Zheng, Xue-Li; Song, Ji-Peng; Ling, Tao; Hu, Zhen Peng; Yin, Peng-Fei; Davey, Kenneth; Du, Xi-Wen; Qiao, Shi-Zhang

    2016-06-01

    Strongly coupled Nafion molecules and ordered porous CdS networks are fabricated for visible-light photoelectrochemical (PEC) hydrogen evolution. The Nafion layer coating shifts the band position of CdS upward and accelerates charge transfer in the photoelectrode/electrolyte interface. It is highly expected that the strong coupling effect between organic and inorganic materials will provide new routes to advance PEC water splitting.

  3. Free exciton emission in forward-biased CdS MIS diodes

    NASA Astrophysics Data System (ADS)

    Fan, X. W.; Woods, J.

    1981-07-01

    The radiative decay of free excitons with the emission of 0, 1, or 2LO phonons has been observed in electroluminescence in Cds MIS diodes operated in forward bias at temperatures in the range 40 - 77K. The line shapes and temperature dependence of the ILO and 2LO phonon assisted replicas are discussed in terms of the distribution of kinetic energy of the excitons with an effective temperature equal to that of the lattice.

  4. Light-stimulated carrier dynamics of CuInS2/CdS heterotetrapod nanocrystals.

    PubMed

    Sakamoto, Masanori; Inoue, Koki; Okano, Makoto; Saruyama, Masaki; Kim, Sungwon; So, Yeong-Gi; Kimoto, Koji; Kanemitsu, Yoshihiko; Teranishi, Toshiharu

    2016-05-14

    We synthesized a heterotetrapod composed of a chalcopyrite(ch)-CuInS2 core and wurtzite(w)-CdS arms and elucidated its optical properties and light-stimulated carrier dynamics using fs-laser flash photolysis. The CuInS2/CdS heterotetrapod possessed quasi-type II band alignment, which caused much longer-lived charge separation than that in the isolated CuInS2 nanocrystal. PMID:27118533

  5. Computerized Design Synthesis (CDS), A database-driven multidisciplinary design tool

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Bolukbasi, A. O.

    1989-01-01

    The Computerized Design Synthesis (CDS) system under development at McDonnell Douglas Helicopter Company (MDHC) is targeted to make revolutionary improvements in both response time and resource efficiency in the conceptual and preliminary design of rotorcraft systems. It makes the accumulated design database and supporting technology analysis results readily available to designers and analysts of technology, systems, and production, and makes powerful design synthesis software available in a user friendly format.

  6. Rise kinetics of light-induced modulation of absorption for a CdS crystal

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Conway, E. J.

    1976-01-01

    An experimental study has been made of the rise kinetics for changes in optical absorption in a single crystal of CdS which was bulk excited by pulsed laser light. The experimental data were compared to calculations from a simple model involving a bimolecular process. Experimental and calculated values agreed to within the experimental error and confirmed that light-induced modulation of absorption is a bimolecular process.

  7. Application of smart nanostructures in medicine.

    PubMed

    He, Jingjing; Qi, Xiaoxue; Miao, Yuqing; Wu, Hai-Long; He, Nongyue; Zhu, Jun-Jie

    2010-09-01

    Smart nanostructures are sensitive to various environmental or biological parameters. They offer great potential for numerous biomedical applications such as monitoring, diagnoses, repair and treatment of human biological systems. The present work introduces smart nanostructures for biomedical applications. In addition to drug delivery, which has been extensively reported and reviewed, increasing interest has been observed in using smart nanostructures to develop various novel techniques of sensing, imaging, tissue engineering, biofabrication, nanodevices and nanorobots for the improvement of healthcare.

  8. Photoinduced magnetic force between nanostructures

    NASA Astrophysics Data System (ADS)

    Guclu, Caner; Tamma, Venkata Ananth; Wickramasinghe, Hemantha Kumar; Capolino, Filippo

    2015-12-01

    Photoinduced magnetic force between nanostructures, at optical frequencies, is investigated theoretically. Till now optical magnetic effects were not used in scanning probe microscopy because of the vanishing natural magnetism with increasing frequency. On the other hand, artificial magnetism in engineered nanostructures led to the development of measurable optical magnetism. Here two examples of nanoprobes that are able to generate strong magnetic dipolar fields at optical frequency are investigated: first, an ideal magnetically polarizable nanosphere and then a circular cluster of silver nanospheres that has a looplike collective plasmonic resonance equivalent to a magnetic dipole. Magnetic forces are evaluated based on nanostructure polarizabilities, i.e., induced magnetic dipoles, and magnetic-near field evaluations. As an initial assessment on the possibility of a magnetic nanoprobe to detect magnetic forces, we consider two identical magnetically polarizable nanoprobes and observe magnetic forces on the order of piconewtons, thereby bringing it within detection limits of conventional atomic force microscopes at ambient pressure and temperature. The detection of magnetic force is a promising method in studying optical magnetic transitions that can be the basis of innovative spectroscopy applications.

  9. Optical properties of chiral nanostructures

    NASA Astrophysics Data System (ADS)

    Cecilia, Noguez; Román-Velázquez, Carlos E.; Garzón, Ignacio L.

    2004-03-01

    We present a computational model to study the optical properties chiral nanostructures[1] . In this work the nanostructures of interest are composed by N atoms, where each one is represented by a polarizable point dipole located at theposition of the atom. We assume that the dipole located is characterized by a polarizability. The nanostructure is excited by a circularly polarized incident wave, such that, each dipole is subject to a total electric field due to: (i) the incident radiation field, plus (ii) the radiation field resulting from all of the other induced dipoles. Once we solve the complex-linear equations, the dipole moment on each atom in the cluster can be determined and we can find the extinction cross section of the whole nanoparticle. Circular dichroism (CD) spectra of chiral bare and thiol-passivated gold nanoclusters have been calculated within the dipole approximation. The calculated CD spectra show features that allow us to distinguish between clusters with different indexes of chirality. The main factor responsible of the differences in the CD lineshapes is the distribution of interatomic distances that characterize the chiral cluster geometry. These results provide theoretical support for the quantification of chirality and its measurement, using the CD lineshapes of chiral metal nanoclusters. [1] C. E. Roman-Velazquez, et al., J. of Phys. Chem. B (Letter) 107, 12035 (2003) This work has been partly supported by DGAPA-UNAM grants No. IN104201 and IN104402, and by CONACyT grant 36651-E.

  10. Physical electrochemistry of nanostructured devices.

    PubMed

    Bisquert, Juan

    2008-01-01

    This Perspective reviews recent developments in experimental techniques and conceptual methods applied to the electrochemical properties of metal-oxide semiconductor nanostructures and organic conductors, such as those used in dye-sensitized solar cells, high-energy batteries, sensors, and electrochromic devices. The aim is to provide a broad view of the interpretation of electrochemical and optoelectrical measurements for semiconductor nanostructures (sintered colloidal particles, nanorods, arrays of quantum dots, etc.) deposited or grown on a conducting substrate. The Fermi level displacement by potentiostatic control causes a broad change of physical properties such as the hopping conductivity, that can be investigated over a very large variation of electron density. In contrast to traditional electrochemistry, we emphasize that in nanostructured devices we must deal with systems that depart heavily from the ideal, Maxwell-Boltzmann statistics, due to broad distributions of states (energy disorder) and interactions of charge carriers, therefore the electrochemical analysis must be aided by thermodynamics and statistical mechanics. We discuss in detail the most characteristic densities of states, the chemical capacitance, and the transport properties, specially the chemical diffusion coefficient, mobility, and generalized Einstein relation.

  11. Chitosan in nanostructured thin films.

    PubMed

    Pavinatto, Felippe J; Caseli, Luciano; Oliveira, Osvaldo N

    2010-08-01

    This review paper brings an overview of the use of chitosans in nanostructured films produced with the Langmuir-Blodgett (LB) or the electrostatic layer-by-layer (LbL) techniques, with emphasis on their possible applications. From a survey in the literature one may identify three main types of study with chitosan in nanostructured films. First, the interaction between chitosans and phospholipid Langmuir monolayers has been investigated for probing the mechanisms of chitosan action in their biological applications, with the monolayers serving as cell membrane models. In the second type, chitosan serves as a matrix for immobilization of biomolecules in LB as well as in LbL films, for which chitosan is suitable to help preserve the bioactivity of such biomolecules for long periods of time even in dry, solid films. An important application of these chitosan-containing films is in sensing and biosensing. The third type of study involves exploiting the mechanical and biocompatibility properties of chitosan in producing films with enhanced properties, for example, for tissue engineering. It is emphasized that chitosans have been proven excellent building blocks to produce films with controlled molecular architecture, allowing for synergy between distinct materials. We also discuss the prospects of the field, following a critical review of the latest developments in nanostructured chitosan films. PMID:20590156

  12. Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells.

    PubMed

    Da, Yun; Xuan, Yimin

    2013-11-01

    Nanostructured light trapping is a promising way to improve the efficiency in thin-film solar cells recently. In this work, both the optical and electrical properties of thin-film solar cells with 1D periodic grating structure are investigated by using photoelectric coupling model. It is found that surface recombination plays a key role in determining the performance of nanostructured thin-film solar cells. Once the recombination effect is considered, the higher optical absorption does not mean the higher conversion efficiency as most existing publications claimed. Both the surface recombination velocity and geometric parameters of structure have great impact on the efficiency of thin-film solar cells. Our simulation results indicate that nanostructured light trapping will not only improve optical absorption but also boost the surface recombination simultaneously. Therefore, we must get the tradeoffs between optical absorption and surface recombination to obtain the maximum conversion efficiency. Our work makes it clear that both the optical absorption and electrical recombination response should be taken into account simultaneously in designing the nanostructured thin-film solar cells.

  13. Shape-dependent magnetic properties of Co nanostructure arrays synthesized by pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Shirato, N.; Sherrill, S.; Gangopadhyay, A. K.; Kalyanaraman, R.

    2016-06-01

    One dimensional (1D) magnetic nanowires show unique magnetic behaviors, such as large coercivity and high remanence, in comparison to the bulk and thin film materials. Here, planar arrays of Co nanowires, nanorods and nanoparticles were fabricated from thin Co films by a nanosecond pulsed laser interference irradiation technique. Magnetic force microscopy (MFM) and surface magneto-optic Kerr effect (SMOKE) techniques were used to study the individual and average magnetic properties of the nanostructures. Magnetic domain orientation was found to depend on the in-plane aspect ratio of the nanostructure. The magnetic orientation was out-of-plane for in-plane aspect ratio ranging from 1 to 1.4 and transitioned to an in-plane orientation for aspect ratios greater than 1.4 (such as in nanorods and nanowires). Our results also showed that polycrystalline Co nanowires showed much higher coercivity and remanence as compared to bulk and thin film materials, as well as shapes with smaller aspect ratio. This result was attributed mainly to the shape anisotropy. This study demonstrated that nanosecond pulsed laser synthesis is capable of fabricating various nanostructures in a simple, robust and rapid manner and SMOKE is a reliable technique to rapidly characterize such magnetic nanostructures.

  14. White light emitting Ho{sup 3+}-doped CdS nanocrystal ingrained glass nanocomposites

    SciTech Connect

    Dey, Chirantan; Karmakar, Basudeb; Goswami, Madhumita

    2015-02-23

    We report the generation of white light from Ho{sup 3+} ion doped CdS nanocrystal ingrained borosilicate glass nanocomposites prepared by the conventional melt-quench method. Near visible 405 nm diode laser excited white light emission is produced by tuning the blue emission from the Ho{sup 3+} ions, green band edge, and orange-red surface-state emissions of the nanocrystalline CdS, which are further controlled by the size of the nanocrystals. The absorption and emission spectra evidenced the excitation of Ho{sup 3+} ions by absorption of photons emitted by the CdS nanocrystals. The high color rendering index (CRI = 84–89) and befitting chromaticity coordinates (x = 0.308–0.309, y = 0.326–0.338) of white light emission, near visible harmless excitation wavelength (405 nm), and high absorbance values at excitation wavelength point out that these glass nanocomposites may serve as a prominent candidate for resin free high power white light emitting diodes.

  15. Super-hydrophilic characteristic of thermochemically prepared CdS nanocrystals

    NASA Astrophysics Data System (ADS)

    Marandi, M.; Taghavinia, N.; Babaei, A.

    2014-04-01

    CdS nanocrystals were thermochemically (thermally activated) synthesized thorough the reaction between CdSO4 and Na2S2O3 in an aqueous solution. Thioglycolic Acid (TGA) was used as the capping agent and catalyst of the reaction. The method was based on heat activated dissociation of Na2S2O3 and controllable release of S and free electrons in the solution. CdS NCs were formed by heating the sample solution at 96 °C for 1 h. The results of optical spectroscopy and transmission electron microscopy demonstrated round shape NCs with sizes about 3.0 nm. The nanocrystals were also luminescent and represented a broad emission with a peak located at 515 nm and FWHM of 160 nm. Several samples were prepared and introduced to different solvents i.e ethanol plus water, methanol plus water, acetone plus water and pure water to investigate the nanocrystals dispersion. The results demonstrated that the NCs could not be well re-dispersed in 10 mL ethanol, methanol or acetone plus extra water. Nevertheless they revealed a super hydrophilic property and perfectly re-dispersed in small volume of pure water without any need to ultrasonication. They are also quite stable in water for long times without any agglomerations. Finally we deliver a model based on zeta potential measurements to justify the observation and address the super hydrophilic property of the thermochemically prepared CdS NCs.

  16. The EUV spectrum of the Sun: SOHO CDS NIS irradiances from 1998 until 2010

    NASA Astrophysics Data System (ADS)

    Del Zanna, G.; Andretta, V.

    2011-04-01

    We present extreme-ultraviolet (EUV) irradiances of the Sun taken during the 1998-2010 period from the Solar and Heliospheric Observatory (SoHO) Coronal Diagnostic Spectrometer (CDS) Normal Incidence Spectrograph (NIS). They were obtained from NIS full-Sun radiance observations, and represent the first set of EUV spectral observations spanning a solar cycle. We compare the CDS line irradiances with those obtained from rocket measurements, one that flew in May 1997 and one in April 2008, together with the Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) Solar EUV Experiment (SEE) EUV Grating Spectrograph (EGS) and various historical records. Excellent agreement (to within a relative 20%) is found in most cases, with a few notable exceptions. Lines formed in the transition region show very small changes with the solar cycle, with the exception of the helium lines. The irradiances of lines formed around 1 MK already change during the cycle by a factor ~5; for hotter lines (2.5 MK) the variability reaches factors of the order of 40. For lines formed around 1-3 MK, and to a less extent, the helium lines, we find a good linear correlation between CDS irradiances and the 10.7 cm radio flux, although each line has a different coefficient. No correlation is found for the transition-region lines. Significant discrepancies between the observed irradiances and those modelled is found. This confirms the importance in obtaining EUV spectral measurements of the solar irradiance.

  17. Data Centers in the era of electronic publishing : the role of the CDS

    NASA Astrophysics Data System (ADS)

    Genova, F.; Bonnarel, F.; Bartlett, J. G.; Dubois, P.; Egret, D.; Fernique, P.; Jasniewicz, G.; Lesteven, S.; Monier, R.; Ochsenbein, F.; Wenger, M.

    The Centre de Donnees astronomiques de Strasbourg (CDS) has dealt with bibliographic information for many years. References of publications, published observational data related to objects, data tables, nomenclature, have been homogenized and organized into information retrieval systems : SIMBAD, the reference database for the identification and bibliography of astronomical objects, the catalogue service and the VizieR catalogue Browser, for data tables, the Dictionary of Nomenclature of Astronomical objects, which is now maintained by the CDS. Evolution in recent years has brought the data centers closer from the publishing process. General standards for astronomy, for the description of references and of data tables, have been proposed and implemented. Data tables from papers are now directly published in electronic form, and distributed on-line by the Data Centers. The emergence of fully electronic publication pave the way to innovative new services, linking the journals to other sources of informations (data bases, tables, then data archives), and making use of new methods for information retrieval. This also has an effect on the publishing process, with the possibility to implement new checks, and the necessity to implement anchors to other kinds of information (objects names, positions, etc...). The CDS will bring some of the key features in the evolution towards a fully linked astronomy information system, in close collaboration with the journal editors, the ADS, the other data centers, and the data providers.

  18. Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix

    SciTech Connect

    Pattabi, Manjunatha . E-mail: manjupattabi@yahoo.com; Saraswathi Amma, B.; Manzoor, K.

    2007-05-03

    Photoluminescence properties of polyvinyl pyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles embedded in polyvinyl alcohol matrix (PVA) are reported. The PVP-CdS nanoparticles are prepared by non-aqueous method wherein cadmium nitrate is used as the cadmium source and hydrogen sulphide as the sulphur source. The synthesized nanoparticles are dispersed in polyvinyl alcohol (PVA) matrix and cast as self-standing flexible (PVP-CdS)-PVA films. The nanocomposites are characterized by optical absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. XRD and TEM studies show the formation of cubic CdS particles with average size {approx}3-5 nm. Thermal studies, carried out to observe the changes in PVA matrix due to the incorporation of PVP-CdS nanoparticles show strong interaction between the polymer matrix and nanoparticles. The photoluminescence emission spectra of the nanocomposites show two peaks, at 502 and 636 nm, which are attributed to the band edge and surface defects respectively, of CdS nanoparticles. Effective surface capping with optimum concentration of polyvinyl pyrrolidone leads to the quenching of surface defect-related emission.

  19. Experiment on digital CDS with 33-M pixel 120-fps super hi-vision image sensor

    NASA Astrophysics Data System (ADS)

    Yonai, J.; Yasue, T.; Kitamura, K.; Hayashida, T.; Watabe, T.; Shimamoto, H.; Kawahito, S.

    2014-03-01

    We have developed a CMOS image sensor with 33 million pixels and 120 frames per second (fps) for Super Hi-Vision (SHV:8K version of UHDTV). There is a way to reduce the fixed pattern noise (FPN) caused in CMOS image sensors by using digital correlated double sampling (digital CDS), but digital CDS methods need high-speed analog-to-digital conversion and are not applicable to conventional UHDTV image sensors due to their speed limit. Our image sensor, on the other hand, has a very fast analog-to-digital converter (ADC) using "two-stage cyclic ADC" architecture that is capable of being driven at 120-fps, which is double the normal frame rate for TV. In this experiment, we performed experimental digital CDS using the high-frame rate UHDTV image sensor. By reading the same row twice at 120-fps and subtracting dark pixel signals from accumulated pixel signals, we obtained a 60-fps equivalent video signal with digital noise reduction. The results showed that the VFPN was effectively reduced from 24.25 e-rms to 0.43 e-rms.

  20. High Performance Analysis of CDS Delta-Sigma ADC in 45-Nanometer Regime

    NASA Astrophysics Data System (ADS)

    Bhargava, Bhanupriya; Sharma, Pradeep Kumar; Akashe, Shyam

    2014-03-01

    In this paper, a correlated double sampling (CDS) technique is proposed in the design of a delta sigma analog-to-digital converter (ADC). These CDS techniques are very effective for the compensation of the nonidealities in switched-capacitor (SC) circuits, such as charge injection, clock feed-through, operational amplifier (op-amp) input-referred offset and finite op-amp gain. An improved compensation scheme is proposed to attain continuous compensation of clock feed-through and offset in SC integrators. Both high-speed and low-power operation is achieved without compromising the accuracy requirement. Also this CDS delta sigma ADC is the most promising circuit for analog to digital converter because this circuit reduces noise due to drift and low frequency noise such as flicker noise and offset voltage and also boosts the gain performance of the amplifier. Further, the simulation results of this circuit are verified on using a "cadence virtuoso tool" using spectre at 45 nm technology with supply voltage 0.7 V.

  1. Photoluminescence and electrical properties of polyvinyl alcohol films doped with CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Z. I.; Hosni, H. M.; Saleh, H. H.; Ghazy, O. A.

    2016-05-01

    In situ preparation of polyvinyl alcohol (PVA) films doped with cadmium sulfide (CdS) nanoparticles was conducted by gamma radiation. The films were characterized in terms of photoluminescence and electrical conductivity. The photoluminescence results indicated the existence of two emission peaks around 470 and 530 nm, which are due to electron-hole recombination of CdS nanoparticles and surface trapped emission due to the PVA capping, respectively. DC electrical conductivity ( σ DC) measurement in the temperature range from 303 up to 373 K reveals an increase in its value with increasing both Cd2+ ion molar concentration and irradiation dose. AC electrical conductivity ( σ AC) measurement over the same temperature range at an applied field frequency of 10, 100, 500 and 1000 kHz shows an increase behavior with increasing temperature, frequency, Cd2+ ion molar concentration and irradiation dose. Dielectric constant ( ɛ 1) exhibits an increase with temperature, whereas it shows reduced values with increasing frequency, Cd2+ ion molar concentration and irradiation dose. Also, the dielectric loss tangent (tan δ) follows an increasing trend with increasing temperature, Cd2+ ion molar concentration and irradiation dose while it has an opposite trend with increasing frequency. The CdS/PVA nanocomposite films behavior could be explained on the basis of formation of charge-transfer complexes (CTCs) by the CdS nanoparticles doped into the PVA matrix and the role of radiation in enhancing the charge carrier mobility of such CTCs.

  2. Modeling the band gap of CdS quantum well structures

    NASA Astrophysics Data System (ADS)

    Harris, R. A.; Terblans, J. J.

    2016-10-01

    Within the framework of the effective mass approximation, an excited electron is studied in a cadmium sulfide (CdS) quantum well with varying well widths. The envelope function approximation is employed involving a three parameter variational calculation wherein one of these parameters is the distance between the electron and the hole. The relative change in the electron's energy (relative to its energy when it is in the valence band; in the hole) is investigated as a function of the electron-hole distance. Results from numerical calculations are presented and the non-linear behavior of different sized CdS quantum wells are discussed. Comparisons between experimentally measured CdS band gap energies (as a function of well-width) and the simulation data are made. A good agreement between the current model and experimental data exists. Density functional theory (DFT) calculations are done on crystallites of extremely small sizes to compare the current model's bandgap energies to DFT-predicted bandgap values at these extremes.

  3. Synthesis of Compositionally Defined Single-Crystalline Eu 3+ -Activated Molybdate–Tungstate Solid-Solution Composite Nanowires and Observation of Charge Transfer in a Novel Class of 1D CaMoO 4 –CaWO 4 :Eu 3+ –0D CdS/CdSe QD Nanoscale Heterostructures

    DOE PAGES

    Han, Jinkyu; McBean, Coray; Wang, Lei; Jaye, Cherno; Liu, Haiqing; Fischer, Daniel A.; Wong, Stanislaus S.

    2015-02-10

    As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu³⁺-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW₁₋xMoxO₄ (0 ≤ ‘x’ ≤ 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) solid solution composite nanowires increase with increasing Mo component (‘x’). We note a clear dependence of luminescence output upon nanowire chemical composition withmore » our 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) evincing the highest photoluminescence (PL) output at ‘x’ = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (‘x’ = 0.8) – 0D QD composite nanoscale heterostructures. Our results show that CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW₁₋xMoxO₄: Eu³⁺ nanowires. The observed PL quenching is especially pronounced in CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) – 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu³⁺ activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We propose that

  4. Synthesis of Compositionally Defined Single-Crystalline Eu 3+ -Activated Molybdate–Tungstate Solid-Solution Composite Nanowires and Observation of Charge Transfer in a Novel Class of 1D CaMoO 4 –CaWO 4 :Eu 3+ –0D CdS/CdSe QD Nanoscale Heterostructures

    SciTech Connect

    Han, Jinkyu; McBean, Coray; Wang, Lei; Jaye, Cherno; Liu, Haiqing; Fischer, Daniel A.; Wong, Stanislaus S.

    2015-02-10

    As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu³⁺-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW₁₋xMoxO₄ (0 ≤ ‘x’ ≤ 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) solid solution composite nanowires increase with increasing Mo component (‘x’). We note a clear dependence of luminescence output upon nanowire chemical composition with our 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) evincing the highest photoluminescence (PL) output at ‘x’ = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (‘x’ = 0.8) – 0D QD composite nanoscale heterostructures. Our results show that CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW₁₋xMoxO₄: Eu³⁺ nanowires. The observed PL quenching is especially pronounced in CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) – 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu³⁺ activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our

  5. The Fate of Polyol-Made ZnO and CdS Nanoparticles in Seine River Water (Paris, France).

    PubMed

    da Rocha, Alice; Sivry, Yann; Gelabert, Alexandre; Beji, Zyed; Benedetti, Marc F; Menguy, Nicolas; Brayner, Roberta

    2015-05-01

    This study aims to characterize nanoparticles with different compositions and structures as well as seeing their evolutions over time in a natural environment such as Seine river water (Paris, France). Face centered cubic (fcc) and hexagonal (hcp) CdS as well as hexagonal (hcp) ZnO nanoparticles were synthesized by the Polyol method. CdS nanoparticles (i) cfc structure: are agglomerated, present 100 nm length with heterogeneous diameter and 10 m2 g(-1) specific surface area (S(g)) from Brunauer Emett and Teller (BET) measurements; (ii) hcp structure: 20 nm and S(g) = 67 m2 g(-1). ZnO hcp nanoparticles presents 50 nm length and 15 nm diameter and S(g) = 54 m2 g(-1). These results are in agreement with X-ray diffraction (XRD), and small angle X-ray scattering (SAXs). After 48 h interaction with Seine river water, cryo-TEM analysis showed that ZnO nanoparticles form spherical agglomerates with 300 nm diameter; CdS nanoparticles (fcc) are agglomerated presenting large diameters (> 500 nm); and CdS nanoparticles (hcp) are not agglomerated and present the same characteristics of the starting material. After 168h of contact with Seine river water, CdS (fcc) presents only 14% of dissolution, CdS (hcp) presents both 60% dissolution and 30% reprecipitation in a cadmium carbonate form and finally almost 90% of ZnO nanoparticles are dissolved.

  6. Synthesis of pore-variable mesoporous CdS and evaluation of its photocatalytic activity in degrading methylene blue

    SciTech Connect

    Zhang, Wei-Min; Jiang, Yao-Quan; Cao, Xiao-Yan; Chen, Meng; Ge, Dong-Lai; Sun, Zhong-Xi

    2013-10-15

    Graphical abstract: - Highlights: • Self-templated synthesis of tubular CdS. • Cadmium complexes of aliphatic acids sustain the network of mesoporous structures. • Aliphatic acids affect the phase composition and particle size. • Pore size and volume vary with aliphatic acids having different hydrocarbonyl. - Abstract: In this study, mesoporous CdS polycrystallites have been synthesized using aliphatic acids of hexanoic acid, octanoic acid, and oleic acid as coordinating and capping agents, respectively. The fibrous Cd–fatty acid salts act as a template to form the tubular CdS. The organic species are found to be necessary for maintaining the network of mesoporous CdS. The characterization results indicate that the shorter carbon chain length in aliphatic acids favors the wurtzite phase and particle size growth the specific surface area, pore diameter and pore volume show a monotonic raise with increasing carbon chain. The photocatalytic activities of mesoporous CdS tubes exhibit much higher efficiency than those of nanosized CdS powders in decolorizing methylene blue under simulated visible light.

  7. Effect of high-temperature treatment in air ambience on the surface composition and structure of CdS

    NASA Astrophysics Data System (ADS)

    Zhensheng, Jin; Qinglin, Li; Chanjuan, Xi; Zhicheng, Jian; Zhengshi, Chen

    1988-06-01

    The surface composition and structure of both raw CdS and high temperature treated CdS were investigated by means of XPS and AES. The results show that the oxidation of CdS has a transition temperature (~400°C). Above this temperature CdSO 4 would be formed on the surface of CdS. The surface oxide CdO reacts with H 2O easily in air to form Cd(OH) 2. There exists a multilayer which consists of different compositions on the treated CdS surface. The outermost layer is rich in CdSO 4, which is readily washed away by acidic water. Thus, we concluded that in the processes of high temperature air treatment and acidic water washing, a Cd(OH) 2-CdO-CdS composite layer is formed on the CdS surface. The effect of this composite layer on the activity of metal loaded catalyst in photocatalytic dehydrogenation of alcohol is currently being studied in our laboratory.

  8. Growth of CdS thin films on indium coated glass substrates via chemical bath deposition and subsequent air annealing

    NASA Astrophysics Data System (ADS)

    Ghosh, Biswajit; Kumar, Kamlesh; Singh, Balwant Kr; Banerjee, Pushan; Das, Subrata

    2014-11-01

    In the present work attempts were made to synthesize indium doped CdS films by fabricating In/CdS bilayers using CBD-CdS on vacuum evaporated In thin films and subsequent air annealing. 135 nm CdS films were grown onto 20 nm and 35 nm indium coated glass substrate employing chemical bath deposition technique. The In/CdS bilayers thus formed were subjected to heat treatment at the temperatures between 200 and 400 °C for 4 min in the muffle furnace to facilitate indium to diffuse into the CdS films. XRD pattern ascertained no noticeable shift in lattice constant implying grain boundary metal segregation, while secondary ion mass spectrometry indicated the diffusion profile of indium into CdS matrices. Mass spectrometry results showed that substantial diffusion of indium had been taken place within CdS at 400 °C. Dark and photocurrent with different illumination time were measured to ascertain the photosensitivity of pure and composite CdS films.

  9. Synthesis of Silver Nanostructures by Multistep Methods

    PubMed Central

    Zhang, Tong; Song, Yuan-Jun; Zhang, Xiao-Yang; Wu, Jing-Yuan

    2014-01-01

    The shape of plasmonic nanostructures such as silver and gold is vital to their physical and chemical properties and potential applications. Recently, preparation of complex nanostructures with rich function by chemical multistep methods is the hotspot of research. In this review we introduce three typical multistep methods to prepare silver nanostructures with well-controlled shapes, including the double reductant method, etching technique and construction of core-shell nanostructures. The growth mechanism of double the reductant method is that different favorable facets of silver nanocrystals are produced in different reductants, which can be used to prepare complex nanostructures such as nanoflags with ultranarrow resonant band bandwidth or some silver nanostructures which are difficult to prepare using other methods. The etching technique can selectively remove nanoparticles to achieve the aim of shape control and is widely used for the synthesis of nanoflowers and hollow nanostructures. Construction of core-shell nanostructures is another tool to control shape and size. The three methods can not only prepare various silver nanostructures with well-controlled shapes, which exhibit unique optical properties, such as strong surface-enhanced Raman scattering (SERS) signal and localized surface plasmon resonance (LSPR) effect, but also have potential application in many areas. PMID:24670722

  10. Thermodynamics and Kinetics of DNA Nanostructure Assembly

    NASA Astrophysics Data System (ADS)

    Nangreave, Jeanette

    2011-12-01

    The unique structural features of deoxyribonucleic acid (DNA) that are of considerable biological interest also make it a valuable engineering material. Perhaps the most useful property of DNA for molecular engineering is its ability to self-assemble into predictable, double helical secondary structures. These interactions are exploited to design a variety of DNA nanostructures, which can be organized into both discrete and periodic structures. This dissertation focuses on studying the dynamic behavior of DNA nanostructure recognition processes. The thermodynamics and kinetics of nanostructure binding are evaluated, with the intention of improving our ability to understand and control their assembly. Presented here are a series of studies toward this goal. First, multi-helical DNA nanostructures were used to investigate how the valency and arrangement of the connections between DNA nanostructures affect super-structure formation. The study revealed that both the number and the relative position of connections play a significant role in the stability of the final assembly. Next, several DNA nanostructures were designed to gain insight into how small changes to the nanostructure scaffolds, intended to vary their conformational flexibility, would affect their association equilibrium. This approach yielded quantitative information about the roles of enthalpy and entropy in the affinity of polyvalent DNA nanostructure interactions, which exhibit an intriguing compensating effect. Finally, a multi-helical DNA nanostructure was used as a model 'chip' for the detection of a single stranded DNA target. The results revealed that the rate constant of hybridization is strongly dominated by a rate-limiting nucleation step.

  11. Processing Nanostructured Sensors Using Microfabrication Techniques

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; VanderWal, Randall L.; Evans, Laura J.; Xu, Jennifer C.

    2010-01-01

    Standard microfabrication techniques can be implemented and scaled to help assemble nanoscale microsensors. Currently nanostructures are often deposited onto materials primarily by adding them to a solution, then applying the solution in a thin film. This results in random placement of the nanostructures with no controlled order, and no way to accurately reproduce the placement. This method changes the means by which microsensors with nanostructures are fabricated. The fundamental advantage to this approach is that it enables standard microfabrication techniques to be applied in the repeated manufacture of nanostructured sensors on a microplatform.

  12. Nanostructures having crystalline and amorphous phases

    DOEpatents

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  13. Anchored nanostructure materials and method of fabrication

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  14. Precise replication of antireflective nanostructures from biotemplates

    NASA Astrophysics Data System (ADS)

    Gao, Hongjun; Liu, Zhongfan; Zhang, Jin; Zhang, Guoming; Xie, Guoyong

    2007-03-01

    The authors report herein a new type of nanonipple structures on the cicada's eye and the direct structural replication of the complex micro- and nanostructures for potential functional emulation. A two-step direct molding process is developed to replicate these natural micro- and nanostructures using epoxy resin with high fidelity, which demonstrates a general way of fabricating functional nanostructures by direct replication of natural biotemplates via a suitable physicochemical process. Measurements of spectral reflectance showed that this kind of replicated nanostructure has remarkable antireflective property, suggestive of its potential applications to optical devices.

  15. Nanostructures created by interfered femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chang, Yun-Ching; Yao, Jimmy; Luo, Claire; Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2011-10-01

    The method by applying the interfered femtosecond laser to create nanostructured copper (Cu) surface has been studied. The nanostructure created by direct laser irradiation is also realized for comparison. Results show that more uniform and finer nanostructures with sphere shape and feature size around 100 nm can be induced by the interfered laser illumination comparing with the direct laser illumination. This offers an alternative fabrication approach that the feature size and the shape of the laser induced metallic nanostructures can be highly controlled, which can extremely improve its performance in related application such as the colorized metal, catalyst, SERS substrate, and etc.

  16. Growth and characterizations of organized nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, Ji Hoon

    The research investigations and progresses in nanotechnology and the efforts to fabricate novel nanostructures are expected to provide new perspectives into the understanding of underlying science and the formation mechanisms of nanostructures and thus providing the potential for the next-generation device applications. The potential impact of the nano-devices to our society could be extremely enormous and thus the fabrication, engineering and designing of new configuration of nanostructures have attracted a tremendous attention from a number of research fields. In Chapter 1, a brief introduction to the growth & characterization of organized nanostructures is given. Chapter 2 discusses about the growth and fabrication effort of localized quantum structures by using Stranski-Krastanov (SK) growth model on shallow patterns (35nm), namely quantum dots, quantum dot chain, quantum wires and the related research. Chapter 3 introduces the growth and characterization of novel nanostructures using Volmer-Weber (V-W) growth model. More specifically, the formation of metal droplets, the fabrication of ring-shaped nanostructures and various configurations of nanostructures using droplet epitaxy are presented. Chapter 4 explains the formation mechanisms and the optical properties of quantum dot molecules (QDMs), a hybrid nanostructure composed of a pair of a metal particle, a semiconductor quantum ring (QR), and various advanced nanostructures. Chapter 5 concludes the dissertation with some concluding remarks.

  17. Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water.

    PubMed

    Chen, Zhang; Liu, Siqi; Yang, Min-Quan; Xu, Yi-Jun

    2013-05-22

    We report the self-assembly of uniform CdS nanospheres/graphene (CdS NSPs/GR) hybrid nanocomposites via electrostatic interaction of positively charged CdS nanospheres (CdS NSPs) with negatively charged graphene oxide (GO), followed by GO reduction via a hydrothermal treatment. During this facile two-step wet chemistry process, reduced graphene oxide (RGO, also called GR) and the intimate interfacial contact between CdS NSPs and the GR sheets are achieved. Importantly, the CdS NSPs/GR nanocomposites exhibit a much higher photocatalytic performance than bare CdS NSPs toward selective reduction of nitro organics to corresponding amino organics under visible light irradiation. The superior photocatalytic performance of the CdS NSPs/GR nanocomposites can be attributed to the intimate interfacial contact between CdS NSPs and the GR sheets, which would maximize the excellent electron conductivity and mobility of GR that in turn markedly contributes to improving the fate and transfer of photogenerated charge carriers from CdS NSPs under visible light irradiation. Moreover, the photocorrosion of CdS and the photodegradation of GR can be efficiently inhibited. The excellent reusability of the CdS NSPs/GR nanocomposites can be attributed to the synergetic effect of the introduction of GR into the matrix of CdS NSPs and the addition of ammonium formate as quencher for photogenerated holes. It is hoped that our current work could promote us to efficiently harness such a simple and efficient self-assembly strategy to synthesize GR-based semiconductor composites with controlled morphology and, more significantly, widen the application of CdS/GR nanocomposite photocatalysts and offer new inroads into exploration and utilization of GR-based semiconductor nanocomposites as visible light photocatalysts for selective organic transformations.

  18. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells

    PubMed Central

    Fischer, Karsten; Scotet, Emmanuel; Niemeyer, Marcus; Koebernick, Heidrun; Zerrahn, Jens; Maillet, Sophie; Hurwitz, Robert; Kursar, Mischo; Bonneville, Marc; Kaufmann, Stefan H. E.; Schaible, Ulrich E.

    2004-01-01

    A group of T cells recognizes glycolipids presented by molecules of the CD1 family. The CD1d-restricted natural killer T cells (NKT cells) are primarily considered to be self-reactive. By employing CD1d-binding and T cell assays, the following structural parameters for presentation by CD1d were defined for a number of mycobacterial and mammalian lipids: two acyl chains facilitated binding, and a polar head group was essential for T cell recognition. Of the mycobacterial lipids tested, only a phosphatidylinositol mannoside (PIM) fulfilled the requirements for CD1d binding and NKT cell stimulation. This PIM activated human and murine NKT cells via CD1d, thereby triggering antigen-specific IFN-γ production and cell-mediated cytotoxicity, and PIM-loaded CD1d tetramers identified a subpopulation of murine and human NKT cells. This phospholipid, therefore, represents a mycobacterial antigen recognized by T cells in the context of CD1d. PMID:15243159

  19. Structure and Catalytic Mechanism of Human Steroid 5-Reductase (AKR1D1)

    SciTech Connect

    Costanzo, L.; Drury, J; Christianson, D; Penning, T

    2009-01-01

    Human steroid 5{beta}-reductase (aldo-keto reductase (AKR) 1D1) catalyzes reduction of {Delta}{sup 4}-ene double bonds in steroid hormones and bile acid precursors. We have reported the structures of an AKR1D1-NADP{sup +} binary complex, and AKR1D1-NADP{sup +}-cortisone, AKR1D1-NADP{sup +}-progesterone and AKR1D1-NADP{sup +}-testosterone ternary complexes at high resolutions. Recently, structures of AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone complexes showed that the product is bound unproductively. Two quite different mechanisms of steroid double bond reduction have since been proposed. However, site-directed mutagenesis supports only one mechanism. In this mechanism, the 4-pro-R hydride is transferred from the re-face of the nicotinamide ring to C5 of the steroid substrate. E120, a unique substitution in the AKR catalytic tetrad, permits a deeper penetration of the steroid substrate into the active site to promote optimal reactant positioning. It participates with Y58 to create a 'superacidic' oxyanion hole for polarization of the C3 ketone. A role for K87 in the proton relay proposed using the AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone structure is not supported.

  20. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic.

    PubMed

    Lamb, Christopher A; Nühlen, Stefanie; Judith, Delphine; Frith, David; Snijders, Ambrosius P; Behrends, Christian; Tooze, Sharon A

    2016-02-01

    Macroautophagy requires membrane trafficking and remodelling to form the autophagosome and deliver its contents to lysosomes for degradation. We have previously identified the TBC domain-containing protein, TBC1D14, as a negative regulator of autophagy that controls delivery of membranes from RAB11-positive recycling endosomes to forming autophagosomes. In this study, we identify the TRAPP complex, a multi-subunit tethering complex and GEF for RAB1, as an interactor of TBC1D14. TBC1D14 binds to the TRAPP complex via an N-terminal 103 amino acid region, and overexpression of this region inhibits both autophagy and secretory traffic. TRAPPC8, the mammalian orthologue of a yeast autophagy-specific TRAPP subunit, forms part of a mammalian TRAPPIII-like complex and both this complex and TBC1D14 are needed for RAB1 activation. TRAPPC8 modulates autophagy and secretory trafficking and is required for TBC1D14 to bind TRAPPIII. Importantly, TBC1D14 and TRAPPIII regulate ATG9 trafficking independently of ULK1. We propose a model whereby TBC1D14 and TRAPPIII regulate a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy. PMID:26711178