Science.gov

Sample records for 1d double chain

  1. Nanoscale stabilization of zintl compounds: 1D ionic Li-P double helix confined inside a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexander S.; Kar, Tapas; Boldyrev, Alexander I.

    2016-02-01

    One-dimensional (1D) ionic nanowires are extremely rare materials due to the difficulty in stabilizing 1D chains of ions under ambient conditions. We demonstrate here a theoretical prediction of a novel hybrid material, a nanotube encapsulated 1D ionic lithium monophosphide (LiP) chain, featuring a unique double-helix structure, which is very unusual in inorganic chemistry. This nanocomposite has been investigated with density functional theory, including molecular dynamics simulations and electronic structure calculations. We find that the formation of the LiP double-helical nanowire is facilitated by strong interactions between LiP and CNTs resulting in a charge transfer. This work suggests that nanostructured confinement may be used to stabilize other polyphosphide 1D chains, thus opening new ways to study the chemistry of zintl compounds at the nanoscale.One-dimensional (1D) ionic nanowires are extremely rare materials due to the difficulty in stabilizing 1D chains of ions under ambient conditions. We demonstrate here a theoretical prediction of a novel hybrid material, a nanotube encapsulated 1D ionic lithium monophosphide (LiP) chain, featuring a unique double-helix structure, which is very unusual in inorganic chemistry. This nanocomposite has been investigated with density functional theory, including molecular dynamics simulations and electronic structure calculations. We find that the formation of the LiP double-helical nanowire is facilitated by strong interactions between LiP and CNTs resulting in a charge transfer. This work suggests that nanostructured confinement may be used to stabilize other polyphosphide 1D chains, thus opening new ways to study the chemistry of zintl compounds at the nanoscale. Electronic supplementary information (ESI) available: Additional DOS, band structures, and Bader charges for LiP@SWCNTs. See DOI: 10.1039/c5nr07713c

  2. The Eigenstate Thermalization Hypothesis in 1D Anyon Chains

    NASA Astrophysics Data System (ADS)

    Burnell, Fiona; Chandran, Anushya; Schulz, Marc

    For ergodic systems with Hilbert spaces satisfying a local product structure, the eigenstate thermalization hypothesis (ETH) is relatively well-established. Using exact diagonalization studies, we investigate whether quantum spin chains based on SU(2)_k anyon theories, which do not admit a Hilbert space with an exactly local product structure, also satisfy ETH, and which observables exhibit this behaviour.

  3. Double resonant processes in 1D nonlinear periodic media

    NASA Astrophysics Data System (ADS)

    Kuzmiak, Vladimir; Konotop, Vladimir

    2001-03-01

    We consider one-dimensional periodic structure consisting of alternating layers fabricated from the materials possessing \\chi^(2) nonlinearity and assume that the filling fraction and the dielectric permittivities of the slabs are chosen in such a way that resonant contions for the generation for the second and third harmonic are satisfied simultaneously. The possibility of such process is demonstrated in the structure consisting of the alternating slabs of AlGaAs and InSb. The wave evolution is described in terms of envelope function approach. By taking account three resonant waves one obtains a system of coupled-mode differential equations. One of the solutions which is of special importance is that of having a constant amplitude and the first and third harmonic having zero amplitude. We analyze the stability of the solutions and show that the use of the double resonance allows one to obtain difference generation. A particular example of such a process is fractional conversion ω arrow (2/3)ω which takes place with the participation of the mode with the frequency ω/3.

  4. Cooperative microexcitations in 2+1D chain-bundle dusty plasma liquids

    SciTech Connect

    Io, C.-W.; Chan, C.-L.; Lin I

    2010-05-15

    Through direct visualization at the discrete level, the microexcitations in cold 2+1D dusty plasma liquids formed by negatively charged dusts suspended in low pressure gaseous discharges were experimentally investigated, in which the downward ion flow wake field induces strong vertical coupling and chain bundle structure. It is found that the horizontal structure and motion are similar to those of the two-dimensional liquid. Different types of basic cooperative chain excitations: straight vertical chains with small amplitude jittering, chain tilting-restraightening, bundle twisting-restraightening, and chain breaking-reconnection, are observed. The region with good (poor) horizontal structural order prefers the straight (tilted or broken) chains with little (large) titling and tilting rate.

  5. Cooperative microexcitations in 2+1D chain-bundle dusty plasma liquids

    NASA Astrophysics Data System (ADS)

    Io, Chong-Wai; Chan, Chia-Ling; I, Lin

    2010-05-01

    Through direct visualization at the discrete level, the microexcitations in cold 2+1D dusty plasma liquids formed by negatively charged dusts suspended in low pressure gaseous discharges were experimentally investigated, in which the downward ion flow wake field induces strong vertical coupling and chain bundle structure. It is found that the horizontal structure and motion are similar to those of the two-dimensional liquid. Different types of basic cooperative chain excitations: straight vertical chains with small amplitude jittering, chain tilting-restraightening, bundle twisting-restraightening, and chain breaking-reconnection, are observed. The region with good (poor) horizontal structural order prefers the straight (tilted or broken) chains with little (large) titling and tilting rate.

  6. Propagation of excitation in long 1D chains: Transition from regular quantum dynamics to stochastic dynamics

    SciTech Connect

    Benderskii, V. A.; Kats, E. I.

    2013-01-15

    The quantum dynamics problem for a 1D chain consisting of 2N + 1 sites (N Much-Greater-Than 1) with the interaction of nearest neighbors and an impurity site at the middle differing in energy and in coupling constant from the sites of the remaining chain is solved analytically. The initial excitation of the impurity is accompanied by the propagation of excitation over the chain sites and with the emergence of Loschmidt echo (partial restoration of the impurity site population) in the recurrence cycles with a period proportional to N. The echo consists of the main (most intense) component modulated by damped oscillations. The intensity of oscillations increases with increasing cycle number and matrix element C of the interaction of the impurity site n = 0 with sites n = {+-}1 (0 < C {<=} 1; for the remaining neighboring sites, the matrix element is equal to unity). Mixing of the components of echo from neighboring cycles induces a transition from the regular to stochastic evolution. In the regular evolution region, the wave packet propagates over the chain at a nearly constant group velocity, embracing a number of sites varying periodically with time. In the stochastic regime, the excitation is distributed over a number of sites close to 2N, with the populations varying irregularly with time. The model explains qualitatively the experimental data on ballistic propagation of the vibrational energy in linear chains of CH{sub 2} fragments and predicts the possibility of a nondissipative energy transfer between reaction centers associated with such chains.

  7. Formation of Water Chains on CaO(001): What Drives the 1D Growth?

    PubMed

    Zhao, Xunhua; Shao, Xiang; Fujimori, Yuichi; Bhattacharya, Saswata; Ghiringhelli, Luca M; Freund, Hans-Joachim; Sterrer, Martin; Nilius, Niklas; Levchenko, Sergey V

    2015-04-01

    Formation of partly dissociated water chains is observed on CaO(001) films upon water exposure at 300 K. While morphology and orientation of the 1D assemblies are revealed from scanning tunneling microscopy, their atomic structure is identified with infrared absorption spectroscopy combined with density functional theory calculations. The latter exploit an ab initio genetic algorithm linked to atomistic thermodynamics to determine low-energy H2O configurations on the oxide surface. The development of 1D structures on the C4v symmetric CaO(001) is triggered by symmetry-broken water tetramers and a favorable balance between adsorbate-adsorbate versus adsorbate-surface interactions at the constraint of the CaO lattice parameter.

  8. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    SciTech Connect

    Sabtaji, Agung E-mail: agung.sabtaji@bmkg.go.id; Nugraha, Andri Dian

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.

  9. Vibron properties in quasi 1D molecular structures: the case of two parallel unshifted macromolecuar chains

    NASA Astrophysics Data System (ADS)

    Čevizović, D.; Petković, S.; Galović, S.; Reshetnyak, A.; Chizhov, A.

    2016-01-01

    We study the hopping mechanism of the vibron excitation transport in the system of two parallel unshifted 1D macromolecuar chains in the framework of non-adiabatic polaron theory. We suppose that the vibron interaction with thermal oscillations of the macromolecular structural elements will result in vibron self-trapping and the formation of the partial dressed vibron state. We also suppose that quasiparticle motion takes place via a sequence of random sitejumps, in each of which the quasiparticle can migrate either to the first neighbor site of the macromolecular chain. With use of the modified Holstein polaron model, we calculate the vibron effective mass in dependence of the basic system parameters and temperature. Special attention is paid to the influence of interchain coupling on vibron dressing. We find that for certain values of the system parameters the quasiparticle mass abruptly changes.

  10. TCTEX1D4 Interactome in Human Testis: Unraveling the Function of Dynein Light Chain in Spermatozoa

    PubMed Central

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; da Cruz e Silva, Edgar

    2014-01-01

    Abstract Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function. PMID:24606217

  11. TCTEX1D4 interactome in human testis: unraveling the function of dynein light chain in spermatozoa.

    PubMed

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; Cruz e Silva, Edgar da; Fardilha, Margarida

    2014-04-01

    Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function.

  12. Markov Chain Monte Carlo Sampling Methods for 1D Seismic and EM Data Inversion

    2008-09-22

    This software provides several Markov chain Monte Carlo sampling methods for the Bayesian model developed for inverting 1D marine seismic and controlled source electromagnetic (CSEM) data. The current software can be used for individual inversion of seismic AVO and CSEM data and for joint inversion of both seismic and EM data sets. The structure of the software is very general and flexible, and it allows users to incorporate their own forward simulation codes and rockmore » physics model codes easily into this software. Although the softwae was developed using C and C++ computer languages, the user-supplied codes can be written in C, C++, or various versions of Fortran languages. The software provides clear interfaces for users to plug in their own codes. The output of this software is in the format that the R free software CODA can directly read to build MCMC objects.« less

  13. 1D zigzag chain and 0D monomer Cd(II)/Zn(II) compounds based on flexible phenylenediacetic ligand: Synthesis, crystal structures and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Ren, Yixia; Li, Dongsheng; Fu, Feng; Qi, Guangcai; Wang, Yaoyu

    2008-12-01

    Three novel Cd(II)/Zn(II) compounds, [Cd 2(poda) 2(phen) 3(H 2O)] n· nEtOH·3 nH 2O (1), [Zn(poda) 2(bpy)(H 2O)] n(2) and [Zn(Hpoda) 2(bpy)] (3) (H 2poda = 1,2-phenylenediacetic acid, phen = 1,10-phenanthroline, bpy = 2,2'-bipyridyl), have been synthesized and characterized by IR, TG, fluorescent spectrum and single-crystal X-ray diffraction techniques. In 1, poda 2- anions link the adjacent Cd(II) centers to generate a 1D zigzag chain. Furthermore, an unprecedented four-footed "8-shaped" mixed water-ethanol (H 2O) 6(C 2H 5OH) 2 cluster connects four double chains based on 1D zigzag chain into 3D supramolecular architecture. By bis(chelate-monodentate) fashion of poda 2- ligand, compound 2 exhibits 1D zigzag chains, which forming a dense zipper-like 2D structure via strong π-π stacking interactions. Differed from 1 and 2, compound 3 has a mononuclear motif, and displays a 3D 6-connected α-Po net hydrogen-bonded topology. The structure-related solid-state fluorescence spectra of compounds 1 and 2 have been determined.

  14. Measurement-induced disturbance and thermal negativity in 1D optical lattice chain

    SciTech Connect

    Guo, Jin-Liang; Lin-Wang; Long, Gui-Lu

    2013-03-15

    We study the measurement-induced disturbance (MID) in a 1D optical lattice chain with nonlinear coupling. Special attention is paid to the difference between the thermal entanglement and MID when considering the influences of the linear coupling constant, nonlinear coupling constant and external magnetic field. It is shown that MID is more robust than thermal entanglement against temperature T and external magnetic field B, and MID may reveal more properties about quantum correlations of the system, which can be seen from the point of view that MID can be nonzero when there is no thermal entanglement and MID can detect the critical point of quantum phase transition at finite temperature. - Highlights: Black-Right-Pointing-Pointer The nonlinear coupling constant can strengthen the quantum correlation. Black-Right-Pointing-Pointer MID is more robust than entanglement against temperature and magnetic field. Black-Right-Pointing-Pointer MID exhibits more information about quantum correlation than entanglement. Black-Right-Pointing-Pointer MID can detect the critical point of quantum phase transition at finite temperature.

  15. Quantum Creep and Quantum-Creep Transitions in 1D Sine-Gordon Chains.

    PubMed

    Krajewski, Florian R; Müser, Martin H

    2004-01-23

    Discrete sine-Gordon (SG) chains are studied with path-integral molecular dynamics. Chains commensurate with the substrate show the transition from pinning to quantum creep at bead masses slightly larger than in the continuous SG model. Within the creep regime, a field-driven transition from creep to complete depinning is identified. The effects of disorder on the chain's dynamics depend on the potential's roughness exponent H. For example, quantum fluctuations are generally too small to depin the chain if H=1/2, while an H=0 chain can be pinned or unpinned depending on the bead masses. Thermal fluctuations always depin the chain. PMID:14753858

  16. The Relationship Between the Sloshing and Breathing Frequencies in a 1D Vertically Aligned Dust Particle Chain

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Qiao, Ke; Sabo, Hannah; Matthews, Lorin; Hyde, Truell

    2013-10-01

    When confined in a glass box placed on the lower powered electrode of a GEC rf reference cell, dust particles immersed in plasma can form vertically aligned 1D chains. Both the formation and subsequent structural changes within this vertically aligned dust chain are controlled by the rf power, since the rf power effects the ionization rate in the cell, the screening parameter and the charge on the dust particles. In this study, oscillations of a 1D vertically aligned dust particle chain are employed to investigate the dust charge and screening length through measurement of the resonance frequency. It will be shown that the relationship between the sloshing and breathing frequencies indicates that the ion streaming effect plays an important role in vertical oscillations and must be included in any structural analysis of the system.

  17. From 1D chain to 3D network: A theoretical study on TiO{sub 2} low dimensional structures

    SciTech Connect

    Guo, Ling-ju; He, Tao; Zeng, Zhi

    2015-06-14

    We have performed a systematic study on a series of low dimensional TiO{sub 2} nanostructures under density functional theory methods. The geometries, stabilities, growth mechanism, and electronic structures of 1D chain, 2D ring, 2D ring array, and 3D network of TiO{sub 2} nanostructures are analyzed. Based on the Ti{sub 2}O{sub 4} building unit, a series of 1D TiO{sub 2} nano chains and rings can be built. Furthermore, 2D ring array and 3D network nanostructures can be constructed from 1D chains and rings. Among non-periodic TiO{sub 2} chain and ring structures, one series of ring structures is found to be more stable. The geometry model of the 2D ring arrays and 3D network structures in this work has provided a theoretical understanding on the structure information in experiments. Based on these semiconductive low dimensional structures, moreover, it can help to understand and design new hierarchical TiO{sub 2} nanostructure in the future.

  18. Topological defect formation in 1D and 2D spin chains realized by network of optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Hamerly, Ryan; Inaba, Kensuke; Inagaki, Takahiro; Takesue, Hiroki; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-09-01

    A network of optical parametric oscillators (OPOs) is used to simulate classical Ising and XY spin chains. The collective nonlinear dynamics of this network, driven by quantum noise rather than thermal fluctuations, seeks out the Ising/XY ground state as the system transitions from below to above the lasing threshold. We study the behavior of this “Ising machine” for three canonical problems: a 1D ferromagnetic spin chain, a 2D square lattice and problems where next-nearest-neighbor couplings give rise to frustration. If the pump turn-on time is finite, topological defects form (domain walls for the Ising model, winding number and vortices for XY) and their density can be predicted from a numerical model involving a linear “growth stage” and a nonlinear “saturation stage”. These predictions are compared against recent data for a 10,000-spin 1D Ising machine.

  19. Single molecule magnet behavior observed in a 1-D dysprosium chain with quasi-D5h symmetry.

    PubMed

    Huang, Xing-Cai; Zhang, Ming; Wu, Dayu; Shao, Dong; Zhao, Xin-Hua; Huang, Wei; Wang, Xin-Yi

    2015-12-28

    Two one-dimensional (1-D) chain complexes with pentagonal bipyramidal Dy(III) centers have been synthesized and magnetically characterized. Field-induced single molecule magnet behavior has been revealed in both compounds, which is still rarely reported in a lanthanide compound with a pentagonal bipyramidal coordination geometry. Their crystal field parameters and orientations of the magnetic easy axes were obtained from the simulation of the magnetic data and the electrostatic model calculation. PMID:26593051

  20. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    NASA Astrophysics Data System (ADS)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  1. Weakly nonlinear localization for a 1-D FPU chain with clustering zones

    NASA Astrophysics Data System (ADS)

    Martínez-Farías, F.; Panayotaros, P.; Olvera, A.

    2014-12-01

    We study weakly nonlinear spatially localized solutions of a Fermi-Pasta-Ulam model describing a unidimensional chain of particles interacting with a number of neighbors that can vary from site to site. The interaction potential contains quadratic and quartic terms, and is derived from a nonlinear elastic network model proposed by Juanico et al. [1]. The FPU model can be also derived for arbitrary dimensions, under a small angular displacement assumption. The variable interaction range is a consequence of the spatial inhomogeneity in the equilibrium particle distribution. We here study some simple one-dimensional examples with only a few, well defined agglomeration regions. These agglomerations are seen to lead to spatially localized linear modes and gaps in the linear spectrum, which in turn imply a normal form that has spatially localized periodic orbits.

  2. Characterizing gapped phases of a 1D spin chain with on-site and spatial symmetries

    NASA Astrophysics Data System (ADS)

    West, Colin; Prakash, Abhishodh; Wei, Tzu-Chieh

    We investigate the phase diagram of a spin-1 chain whose Hamiltonian is invariant under translation, lattice inversion and a global A4 symmetry in the spin degrees of freedom. The classification scheme by Chen, Gu, and Wen allows us to enumerate all possible phases under the given symmetry. Then, we determine which of these phases actually occur in the two-parameter Hamiltonian. Using numerical methods proposed by Pollmann and Turner (2012) we determine the characteristic projective parameters for the Symmetry Protected Topological (SPT) phases. In addition, we present a method for determining the projective commutation parameter in these phases. The resulting phase diagram is rich and contains at least nine different SPT phases. This work was supported in part by the National Science Foundation.

  3. The role of solitons in charge and energy transfer in 1D molecular chains

    NASA Astrophysics Data System (ADS)

    Ivić , Zoran

    1998-03-01

    The idea that polarons and solitons could play the crucial role in the transport processes in biological structures, has been critically reexamined on the basis of the general theory of self-trapping phenomena. The criteria which enable one to determine conditions for the existence and stability of polarons and solitons and to determine their character, in dependence of the values of the basic physical parameters of the system, were formulated. Validity of the so-called Davydov's soliton model was discussed on the basis of these criteria. It was found that the original Davydov's proposal, based upon the idea of the soliton creation due to the single excitation (particle, vibron, etc.) self-trapping, cannot explain the intramolecular energy transfer in α-helix and acetanilide. However, Davydov theory is flexible enough to describe the single electron transfer in some systems (α-helix and acetanilide for example). In the many-particle systems, dressing effect, due to the quantum nature of phonons, may cause the creation of the bound states of the several excitons in the molecular chain. The possibility of creation of the soliton states of this type is discussed for the simple Fröhlich's one-dimensional model. The regions of the system parameter space where different mechanisms dominate the behaviour of such entities are characterized.

  4. Structural variation from heterometallic cluster-based 1D chain to heterometallic tetranuclear cluster: Syntheses, structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Hua; Zhao, Ru-Xia; Li, He-Ping; Ge, Cheng-Min; Li, Gui; Huang, Qiu-Ping; Zou, Hua-Hong

    2014-08-01

    Using the solvothermal method, we present the comparative preparation of {[Co3Na(dmaep)3(ehbd)(N3)3]·DMF}n (1) and [Co2Na2(hmbd)4(N3)2(DMF)2] (2), where Hehbd is 3-ethoxy-2-hydroxy-benzaldehyde, Hhmbd is 3-methoxy-2-hydroxy-benzaldehyde, and Hdmaep is 2-dimethylaminomethyl-6-ethoxy-phenol, which was synthesized by an in-situ reaction. Complexes 1 and 2 were characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. Complex 1 is a novel heterometallic cluster-based 1-D chain and 2 is a heterometallic tetranuclear cluster. The {Co3IINa} and {Co2IINa2} cores display dominant ferromagnetic interaction from the nature of the binding modes through μ1,1,1-N3- (end-on, EO).

  5. Structural variation from heterometallic cluster-based 1D chain to heterometallic tetranuclear cluster: Syntheses, structures and magnetic properties

    SciTech Connect

    Zhang, Shu-Hua; Zhao, Ru-Xia; Li, He-Ping; Ge, Cheng-Min; Li, Gui; Huang, Qiu-Ping; Zou, Hua-Hong

    2014-08-15

    Using the solvothermal method, we present the comparative preparation of ([Co{sub 3}Na(dmaep){sub 3}(ehbd)(N{sub 3}){sub 3}]·DMF){sub n} (1) and [Co{sub 2}Na{sub 2}(hmbd){sub 4}(N{sub 3}){sub 2}(DMF){sub 2}] (2), where Hehbd is 3-ethoxy-2-hydroxy-benzaldehyde, Hhmbd is 3-methoxy-2-hydroxy-benzaldehyde, and Hdmaep is 2-dimethylaminomethyl-6-ethoxy-phenol, which was synthesized by an in-situ reaction. Complexes 1 and 2 were characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. Complex 1 is a novel heterometallic cluster-based 1-D chain and 2 is a heterometallic tetranuclear cluster. The (Co{sub 3}{sup II}Na) and (Co{sub 2}{sup II}Na{sub 2}) cores display dominant ferromagnetic interaction from the nature of the binding modes through μ{sub 1,1,1}-N{sub 3}{sup –} (end-on, EO). - Graphical abstract: Two novel cobalt complexes have been prepared. Compound 1 consists of tetranuclear (Co{sub 3}{sup II}Na) units, which further formed a 1-D chain. Compound 2 is heterometallic tetranuclear cluster. Two complexes display dominant ferromagnetic interaction. - Highlights: • Two new heterometallic complexes have been synthesized by solvothermal method. • The stereospecific blockade of the ligands in the synthesis system seems to be the most important synthetic parameter. • The magnetism studies show that 1 and 2 exhibit ferromagnetic interactions. • Complex 1 shows slowing down of magnetization and not blocking of magnetization.

  6. New Mononuclear Cu(II) Complexes and 1D Chains with 4-Amino-4H-1,2,4-triazole

    PubMed Central

    Dîrtu, Marinela M.; Boland, Yves; Gillard, Damien; Tinant, Bernard; Robeyns, Koen; Safin, Damir A.; Devlin, Eamonn; Sanakis, Yiannis; Garcia, Yann

    2013-01-01

    The crystal structures of two mononuclear Cu(II) NH2trz complexes [Cu(NH2trz)4(H2O)](AsF6)2 (I) and [Cu(NH2trz)4(H2O)](PF6)2 (II) as well as two coordination polymers [Cu(μ2-NH2trz)2Cl]Cl·H2O (III) and [Cu(μ2-NH2trz)2Cl] (SiF6)0.5·1.5H2O (IV) are presented. Cationic 1D chains with bridging bis-monodentate μ2-coordinated NH2trz and bridging μ2-coordinated chloride ligands are present in III and IV. In these coordination polymers, the Cu(II) ions are strongly antiferromagnetically coupled with J = −128.4 cm−1 for III and J = −143 cm−1 for IV (H = −J∑SiSi+1), due to the nature of the bridges between spin centers. Inter-chain interactions present in the crystal structures were taken into consideration, as well as g factors, which were determined experimentally, for the quantitative modeling of their magnetic properties. PMID:24300095

  7. Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis.

    PubMed

    Jin, Yi; Chen, Mo; Penning, Trevor M

    2014-08-15

    Human AKR1D1 (steroid 5β-reductase/aldo-keto reductase 1D1) catalyses the stereospecific reduction of double bonds in Δ4-3-oxosteroids, a unique reaction that introduces a 90° bend at the A/B ring fusion to yield 5β-dihydrosteroids. AKR1D1 is the only enzyme capable of steroid 5β-reduction in humans and plays critical physiological roles. In steroid hormone metabolism, AKR1D1 serves mainly to inactivate the major classes of steroid hormones. AKR1D1 also catalyses key steps of the biosynthetic pathway of bile acids, which regulate lipid emulsification and cholesterol homoeostasis. Interestingly, AKR1D1 displayed a 20-fold variation in the kcat values, with steroid hormone substrates (e.g. aldosterone, testosterone and cortisone) having significantly higher kcat values than steroids with longer side chains (e.g. 7α-hydroxycholestenone, a bile acid precursor). Transient kinetic analysis revealed striking variations up to two orders of magnitude in the rate of the chemistry step (kchem), which resulted in different rate determining steps for the fast and slow substrates. By contrast, similar Kd values were observed for representative fast and slow substrates, suggesting similar rates of release for different steroid products. The release of NADP+ was shown to control the overall turnover for fast substrates, but not for slow substrates. Despite having high kchem values with steroid hormones, the kinetic control of AKR1D1 is consistent with the enzyme catalysing the slowest step in the catabolic sequence of steroid hormone transformation in the liver. The inherent slowness of the conversion of the bile acid precursor by AKR1D1 is also indicative of a regulatory role in bile acid synthesis.

  8. New way to produce dense double-antikaonic dibaryon system, &#x1D43E;̄&#x1D43E;̄NN, through Λ(1405)-doorway sticking in p + p collisions

    PubMed Central

    YAMAZAKI, Toshimitsu; AKAISHI, Yoshinori; HASSANVAND, Maryam

    2011-01-01

    A recent successful observation of a dense and deeply bound &#x1D43E;̄ nuclear system, K−pp, in the p + p → K+ + K−pp reaction in a DISTO experiment indicates that the double-&#x1D43E;̄ dibaryon, K−K−pp, which was predicted to be a dense nuclear system, can also be formed in p + p collisions. We find theoretically that the K−-K− repulsion plays no significant role in reducing the density and binding energy of K−K−pp and that, when two Λ(1405) resonances are produced simultaneously in a short-range p + p collision, they act as doorways to copious formation of K−K−pp, if and only if K−K−pp is a dense object, as predicted. PMID:21670568

  9. Structural and electromagnetic properties of double C chains decorated zigzag silicene nanoribbon

    NASA Astrophysics Data System (ADS)

    Song, Yu-Ling; Zhang, Jian-Min; Lu, Dao-Bang; Xu, Ke-Wei

    2014-02-01

    Using the first-principles calculation, we investigate the structural and electromagnetic properties of the zigzag edge Si nanoribbons (ZSiNRs) decorated with double C chains. The results show that double C chains decorated ZSiNRs are always metallic independent of the ribbon width. The defect states contributed from double C chains are composed of two degenerated bands across the Fermi level. The perfect ZSiNR has a FM ground state, while double C chains decorated one have an AFM ground state. The C chains are always close to straight ones thereby resulting in a transverse contraction near the C chains and thus the ribbon width. The C-Si bond displays an ionic binding feature and the C-H bond is a typical covalent one because of the electronegativity and the bound force difference between H, C and Si atoms.

  10. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    SciTech Connect

    Xin Lingyun; Liu Guangzhen; Wang Liya

    2011-06-15

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H{sub 2}PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H{sub 2}O)]{sub n}(1), [Zn(PHDA)(BPP)]{sub n}(2), and [Cu{sub 2}(PHDA){sub 2}(BPP)]{sub n}(3) (H{sub 2}PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D{yields}2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4{sup 8}6{sup 6}8 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state. - Graphical Abstract: We show diverse supramolecular frameworks based on the same ligands (PHDA and BPP) and different metal acetate salts including 1D double-stranded chain, 2D {yields} 2D twofold interpenetrated layer, and 3D self-penetration networks. Highlights: > Three metal(II = 2 /* ROMAN ) coordination polymers were synthesized using H{sub 2}PHDA and BPP. > The diversity of structures show a remarked sensitivity to metal(II) center. > Complexes show the enhancement of fluorescence compared to that of free ligand.

  11. Supramolecular open-framework based on 1-D iron phosphate-diphosphate chains assembled through hydrogen bonding

    SciTech Connect

    Salvado, Miguel A.; Pertierra, Pilar; Trobajo, Camino; Garcia, Jose R.

    2008-05-15

    Fe(H{sub 2}PO{sub 4})(H{sub 2}P{sub 2}O{sub 7}).C{sub 5}H{sub 5}N, a new iron(III) phosphate with an open-framework has been synthesized hydrothermally using pyridine as organic template. The crystal structure was solved ab initio using conventional powder X-ray diffraction data. The unit cell is orthorhombic, a=9.5075(2), b=10.1079(1), c=13.3195(2) A, space group P2{sub 1}2{sub 1}2{sub 1}, Z=4. The structure consists of FeO{sub 6} octahedra joined by H{sub 2}PO{sub 4} and H{sub 2}P{sub 2}O{sub 7} groups forming linear chains interconnected by hydrogen bonding to give rise to a supramolecular framework enclosing tunnels in which the pyridine molecules reside. - Graphical abstract: The low temperature hydrothermal synthesis offers many possibilities in the preparation of new materials with mixed octahedral-tetrahedral open-frameworks. Fe(H{sub 2}PO{sub 4})(H{sub 2}P{sub 2}O{sub 7}).C{sub 5}H{sub 5}N is constituted by linear chains of FeO{sub 6} octahedra joined through of both dihydrogenphosphate and dihydrogendiphosphate bridges, interconnected by hydrogen bonds, originating channels where the pyridine molecules are located.

  12. Synthesis and characterization of a 1D chain-like Cu{sub 6} substituted sandwich-type phosphotungstate with pendant dinuclear Cu–azido complexes

    SciTech Connect

    Li, Yan-Ying; Zhao, Jun-Wei; Wei, Qi; Yang, Bai-Feng; Yang, Guo-Yu

    2014-02-15

    A novel Cu–azido complex modified hexa-Cu{sup II} substituted sandwich-type phosphotungstate [Cu(en){sub 2}]([Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}])·6H{sub 2}O (1) (en=ethylene-diamine) has been prepared under hydrothermal conditions and structurally characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. 1 displays a beautiful 1-D chain architecture constructed from sandwich-type [Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}]{sup 2−} units and [Cu(en){sub 2}]{sup 2+} linkers. To our knowledge, 1 represents the first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes. - Graphical abstract: The first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes has been prepared and characterized. Display Omitted - Highlights: • Hexa-copper-substituted phosphotungstate. • Cu–azido complexes modified hexa-Cu{sup II} substituted sandwich-type polyoxometalate. • 1-D chain architecture built by hexa-copper-substituted polyoxotungstate units.

  13. Stable double helical iodine chains inside single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yao, Zhen; Liu, Chun-Jian; Lv, Hang; Liu, Bing-Bing

    2016-08-01

    The helicity of stable double helical iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic interaction energy. Our results present clear images of stable double helical structures inside SWCNTs. The optimum helical radius and helical angle increase and decrease with increasing diameter, respectively. The tube's diameter plays a leading role in the helicity of encapsulated structures, while the tube's chirality may induce different metastable structures. This study indicates that the observed double helical iodine chains in experiments are not necessarily the optimum structures, but may also be metastable structures.

  14. Multi-dimensional transition-metal coordination polymers of 4,4'-bipyridine-N,N'-dioxide: 1D chains and 2D sheets.

    PubMed

    Jia, Junhua; Blake, Alexander J; Champness, Neil R; Hubberstey, Peter; Wilson, Claire; Schröder, Martin

    2008-10-01

    Reaction of 4,4'-bipyridine -N, N' -dioxide (L) with a variety of transition-metal salts in MeOH affords a range of coordination polymer products. For the complexes [FeCl 3(mu-L)] infinity, 1, and ([Cu(L) 2(OHMe) 2(mu-L)].2PF 6. n(solv)) infinity, 2, 1D chain structures are observed, whereas ([Mn(mu-L) 3].2ClO 4) infinity, 3, and ([Cu(mu-L) 3].2BF 4) infinity, 4, both show 2D sheet architectures incorporating an unusual 3 (6)- hxl topology. The more common 4 (4)- sql topology is observed in [Cd(ONO 2) 2(mu-L) 2] infinity, 5, ([Cu(OHMe) 2(mu-L) 2].2ZrF 5) infinity, 6, ([Cu(L) 2(mu-L) 2].2EF 6) infinity ( 7 E = P; 8 E = Sb), and ([Et 4N][Cu(OHMe) 0.5(mu-L) 2(mu-FSiF 4F) 0.5].2SbF 6. n(solv)) infinity, 9. In 6, the [ZrF 5] (-) anion, formed in situ from [ZrF 6] (2-), forms 1D anionic chains ([ZrF 5] (-)) infinity of vertex-linked octahedra, and these chains thread through a pair of inclined polycatenated ([Cu(OHMe) 2(mu-L) 2] (2+)) infinity 4 (4)- sql grids to give a rare example of a triply intertwined coordination polymer. 9 also shows a 3D matrix structure with 4 (4)- sql sheets of stoichiometry ([Cu(L) 2] (2+)) infinity coordinatively linked by bridging [SiF 6] (2-) anions to give a structure of 5-c 4 (4).6 (6)- sqp topology. The mononuclear [Cu(L) 6].2BF 4 ( 10) and [Cd(L) 6].2NO 3 ( 11) and binuclear complexes [(Cu(L)(OH 2)) 2(mu-L) 2)].2SiF 6. n(solv), 12, are also reported. The majority of the coordination polymers are free of solvent and are nonporous. Thermal treatment of materials that do contain solvent results in structural disintegration of the complex structures giving no permanent porosity.

  15. Unique microporous NbO-type CoII/ZnII MOFs from double helical chains: Sorption and luminescent properties

    NASA Astrophysics Data System (ADS)

    Dong, Wen-Wen; Xia, Liang; Peng, Zhen; Zhao, Jun; Wu, Ya-Pan; Zhang, Jian; Li, Dong-Sheng

    2016-06-01

    Under solvothermal conditions, the reactions of CoII/ZnII ions with bent ligand 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) afford two compounds {[M(4-pzpt)2] guest}n (guest=H2O, M=CoII (1), ZnII (2)). Both compounds are the thermally and hydrolytically robust 4-connected 3D NbO framework, which formed by double helical chains to give rise to 1D hollow nanochannel with uncoordinated nitrogens completely exposed on the pore surface. Compound 1 exhibits improved N2, CO2 and H2 uptake capacities, while compound 2 displays the strong luminescent emission with obvious red shift.

  16. Synthesis, structure and characterization of 4,4‧-bipyridine directed isolated cluster and 1D chain of iron sulfates

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Fu, Yunlong; Zhang, Yu

    2008-03-01

    Two 4,4'-bipyridine directed iron sulfates have been synthesized and characterized by single-crystal X-ray diffraction, infrared spectrum, powder X-ray diffraction, CHN elemental analysis, thermal gravimetric analysis and magnetic analysis. [C 10N 2H 10] 2[Fe 4O 2(SO 4) 6(H 2O) 4]·6H 2O, I, and [C 10N 2H 10][Fe(SO 4) 2(OH)]·H 2O, II, both crystallize in triclinic space group P (No. 2). Crystal data: for I, a = 9.2064(8) Å, b = 11.5548(11) Å, c = 11.8130(11) Å, α = 117.3070(10)°, β = 94.650(2)°, γ = 96.493(2)°, V = 1096.79(17) Å 3, Z = 1; for II, a = 7.0382(9) Å, b = 9.0625(12) Å, c = 11.8903(16) Å, α = 100.145(3)°, β = 98.701(2)°, γ = 91.047(3)°, V = 737.17(17) Å 3, Z = 2. Compound I exhibits a rare discrete sulfated tetra-nuclear iron oxo cluster with a butterfly-type arrangement, and II possesses 1D tancoite-type chains. Magnetic properties analysis of I reveals a transformation from ferromagnetism to antiferromagnetism at about 14 K.

  17. o-, m-, and p-Pyridyl isomer effects on construction of 1D loop-and-chains: Silver(I) coordination polymers with Y-type tridentate ligands

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Gyun; Cho, Yoonjung; Lee, Haeri; Lee, Young-A.; Jung, Ok-Sang

    2016-10-01

    Self-assembly of silver(I) hexafluorophosphate with unique Y-type tridentate ligands (2,6-bis[(2-picolinoyloxy-5-methylphenyl)methyl]-p-tolylpicolinate (o-L), 2-nicotinoyloxy- (m-L), and 2-isonicotinoyloxy- (p-L)) produces single crystals consisting of 1D loop-and-chain coordination polymers of [Ag(o-L)](PF6)·Me2CO·CHCl3, [Ag(m-L)](PF6)·Me2CO, and [Ag3(p-L)2](PF6)3·2H2O·2C2H5OH·4CH2Cl2 with quite different trigonal prismatic, trigonal, and linear silver(I) coordination geometry, respectively. Coordinating ability of the three ligands for AgPF6 is in the order of p-L > o-L > m-L. The solvate molecules of [Ag(o-L)](PF6)·Me2CO·CHCl3 can be removed, and be replaced reversibly in the order of acetone ≫ chloroform ≈ dichloromethane ≫ benzene, without destruction of its skeleton.

  18. Hybrid Fluorinated and Hydrogenated Double-Chain Surfactants for Handling Membrane Proteins.

    PubMed

    Legrand, Fréderic; Breyton, Cécile; Guillet, Pierre; Ebel, Christine; Durand, Grégory

    2016-01-15

    Two hybrid fluorinated double-chain surfactants with a diglucosylated polar head were synthesized. The apolar domain consists of a perfluorohexyl main chain and a butyl hydrogenated branch as a side chain. They were found to self-assemble into small micelles at low critical micellar concentrations, demonstrating that the short branch increases the overall hydrophobicity while keeping the length of the apolar domain short. They were both able to keep the membrane protein bacteriorhodopsin stable, one of them for at least 3 months.

  19. A variational solution to the hypernetted chain equations applied to the electrical double layer

    SciTech Connect

    Feller, S.E.; McQuarrie, D.A.

    1992-04-16

    A variational method for the solution to the hypernetted chain/mean spherical approximation equations applied to the electrical double layer is presented and demonstrated with calculations in the restricted primitive model for electrolytes near a charged planar surface. This variational method is also compared with the modified Gouy-Chapman theory. 20 refs., 7 figs.

  20. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    PubMed

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  1. Theory for the force-stretched double-stranded chain molecule

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Dai, Luru; Ou-Yang, Zhong-can

    2003-10-01

    We modify and extend the recently developed statistical mechanical theory of chain molecules having noncovalent double-stranded conformations, as in RNA or single-stranded DNA, and β sheets in protein, to the force-stretched case as in a typical single-molecule experiment. The conformations of double-stranded regions of the molecules are calculated based on polymer graph-theoretic approach [S.-J. Chen and K. A. Dill, J. Chem. Phys. 109, 4602 (1998)], while the unpaired single-stranded regions are treated as self-avoiding walks. Two classes of conformations—the hairpin conformations and RNA secondary structures—are explored. For the hairpin conformations, all possible end-to-end distances corresponding to the different types of double-stranded regions are enumerated exactly. For the RNA secondary structures, a recursive formula incorporating the secondary structure and end-to-end distribution has been derived. The sequence dependence and excluded volume interaction are taken into account explicitly. Using the extended theory, we investigate the extension-force and force-extension curves, distribution of the extensions at fixed forces, and reentering phenomenon, respectively. We find that the mechanical behaviors of homogeneous chains of hairpin conformations and secondary structures are quite different: the unfolding of the hairpin case is two state, while the unfolding of the latter is one state. In addition, a reentering transition is observed in hairpin conformations.

  2. A Monte Carlo Study of Knots in Long Double-Stranded DNA Chains

    PubMed Central

    Rieger, Florian C.; Virnau, Peter

    2016-01-01

    We determine knotting probabilities and typical sizes of knots in double-stranded DNA for chains of up to half a million base pairs with computer simulations of a coarse-grained bead-stick model: Single trefoil knots and composite knots which include at least one trefoil as a prime factor are shown to be common in DNA chains exceeding 250,000 base pairs, assuming physiologically relevant salt conditions. The analysis is motivated by the emergence of DNA nanopore sequencing technology, as knots are a potential cause of erroneous nucleotide reads in nanopore sequencing devices and may severely limit read lengths in the foreseeable future. Even though our coarse-grained model is only based on experimental knotting probabilities of short DNA strands, it reproduces the correct persistence length of DNA. This indicates that knots are not only a fine gauge for structural properties, but a promising tool for the design of polymer models. PMID:27631891

  3. A Monte Carlo Study of Knots in Long Double-Stranded DNA Chains.

    PubMed

    Rieger, Florian C; Virnau, Peter

    2016-09-01

    We determine knotting probabilities and typical sizes of knots in double-stranded DNA for chains of up to half a million base pairs with computer simulations of a coarse-grained bead-stick model: Single trefoil knots and composite knots which include at least one trefoil as a prime factor are shown to be common in DNA chains exceeding 250,000 base pairs, assuming physiologically relevant salt conditions. The analysis is motivated by the emergence of DNA nanopore sequencing technology, as knots are a potential cause of erroneous nucleotide reads in nanopore sequencing devices and may severely limit read lengths in the foreseeable future. Even though our coarse-grained model is only based on experimental knotting probabilities of short DNA strands, it reproduces the correct persistence length of DNA. This indicates that knots are not only a fine gauge for structural properties, but a promising tool for the design of polymer models. PMID:27631891

  4. A ratio chain-type exponential estimator for finite population mean using double sampling.

    PubMed

    Khan, Mursala

    2016-01-01

    In this article, we have proposed a ratio chain-type exponential estimator for finite population mean of the study variable under double sampling scheme using auxiliary variables. The large sample properties of the suggested strategy are derived up to first order, of approximation, and its competence conditions are carried out under which the suggested estimator is performed better than the other existing estimators discussed in the literature. An empirical study shows that the suggested strategy is more efficient than the other relevant competing estimators under two phase sampling scheme.

  5. Field and dilution effects on the magnetic relaxation behaviours of a 1D dysprosium(iii)-carboxylate chain built from chiral ligands.

    PubMed

    Han, Tian; Leng, Ji-Dong; Ding, You-Song; Wang, Yanyan; Zheng, Zhiping; Zheng, Yan-Zhen

    2015-08-14

    A one-dimensional dysprosium(iii)-carboxylate chain in which the Dy(III) ions sit in a pseudo D(2d)-symmetry environment is synthesized and shows different slow magnetic relaxation behaviours depending on the field and dilution effects. Besides, the chiral ligand introduces the additional functions of the Cotton effect and polarization for this compound. PMID:26159885

  6. Electrical Conductivity and Strong Luminescence in Copper Iodide Double Chains with Isonicotinato Derivatives.

    PubMed

    Hassanein, Khaled; Conesa-Egea, Javier; Delgado, Salome; Castillo, Oscar; Benmansour, Samia; Martínez, José I; Abellán, Gonzalo; Gómez-García, Carlos J; Zamora, Félix; Amo-Ochoa, Pilar

    2015-11-23

    Direct reactions between CuI and isonicotinic acid (HIN) or the corresponding esters, ethyl isonicotinate (EtIN) or methyl isonicotinate (MeIN), give rise to the formation of the coordination polymers [CuI(L)]n with L=EtIN (1), MeIN (2) and HIN (3). Polymers 1-3 show similar structures based on a CuI double chain in which ethyl-, methyl isonicotinate or isonicotinic acid are coordinated as terminal ligands. Albeit, their supramolecular architecture differs considerably, affecting the distances and angles of the central CuI double chains and thereby their physical properties. Hence, the photoluminescence shows remarkable differences; 1 and 2 show a strong yellow emission, whereas 3 displays a weak emission; and 1 and 2 are semiconductors with moderate room temperature conductivities, whereas 3 has increased electrical conductivity up to 3×10(-3)  S cm(-1) . Additionally, 1 and 2 present an irreversible transition to a highly conducting phase with a conductivity almost 4 orders of magnitude higher and a quasi-metallic behaviour. Thermogravimetric analysis (TGA) coupled to a mass spectrometer and magnetic measurements point to a partial thermally induced oxidation of the carboxylate groups of the ligands with Cu(I) to Cu(0) reduction. DFT calculations have been carried out to rationalise these observations. PMID:26439771

  7. Electrical Conductivity and Strong Luminescence in Copper Iodide Double Chains with Isonicotinato Derivatives.

    PubMed

    Hassanein, Khaled; Conesa-Egea, Javier; Delgado, Salome; Castillo, Oscar; Benmansour, Samia; Martínez, José I; Abellán, Gonzalo; Gómez-García, Carlos J; Zamora, Félix; Amo-Ochoa, Pilar

    2015-11-23

    Direct reactions between CuI and isonicotinic acid (HIN) or the corresponding esters, ethyl isonicotinate (EtIN) or methyl isonicotinate (MeIN), give rise to the formation of the coordination polymers [CuI(L)]n with L=EtIN (1), MeIN (2) and HIN (3). Polymers 1-3 show similar structures based on a CuI double chain in which ethyl-, methyl isonicotinate or isonicotinic acid are coordinated as terminal ligands. Albeit, their supramolecular architecture differs considerably, affecting the distances and angles of the central CuI double chains and thereby their physical properties. Hence, the photoluminescence shows remarkable differences; 1 and 2 show a strong yellow emission, whereas 3 displays a weak emission; and 1 and 2 are semiconductors with moderate room temperature conductivities, whereas 3 has increased electrical conductivity up to 3×10(-3)  S cm(-1) . Additionally, 1 and 2 present an irreversible transition to a highly conducting phase with a conductivity almost 4 orders of magnitude higher and a quasi-metallic behaviour. Thermogravimetric analysis (TGA) coupled to a mass spectrometer and magnetic measurements point to a partial thermally induced oxidation of the carboxylate groups of the ligands with Cu(I) to Cu(0) reduction. DFT calculations have been carried out to rationalise these observations.

  8. Secondary structures of short peptide chains in the gas phase: Double resonance spectroscopy of protected dipeptides

    NASA Astrophysics Data System (ADS)

    Chin, Wutharath; Dognon, Jean-Pierre; Canuel, Clélia; Piuzzi, François; Dimicoli, Iliana; Mons, Michel; Compagnon, Isabelle; von Helden, Gert; Meijer, Gerard

    2005-02-01

    The conformational structure of short peptide chains in the gas phase is studied by laser spectroscopy of a series of protected dipeptides, Ac-Xxx-Phe-NH2, Xxx=Gly, Ala, and Val. The combination of laser desorption with supersonic expansion enables us to vaporize the peptide molecules and cool them internally; IR/UV double resonance spectroscopy in comparison to density functional theory calculations on Ac-Gly-Phe-NH2 permits us to identify and characterize the conformers populated in the supersonic expansion. Two main conformations, corresponding to secondary structures of proteins, are found to compete in the present experiments. One is composed of a doubly γ-fold corresponding to the 27 ribbon structure. Topologically, this motif is very close to a β-strand backbone conformation. The second conformation observed is the β-turn, responsible for the chain reversal in proteins. It is characterized by a relatively weak hydrogen bond linking remote NH and CO groups of the molecule and leading to a ten-membered ring. The present gas phase experiment illustrates the intrinsic folding properties of the peptide chain and the robustness of the β-turn structure, even in the absence of a solvent. The β-turn population is found to vary significantly with the residues within the sequence; the Ac-Val-Phe-NH2 peptide, with its two bulky side chains, exhibits the largest β-turn population. This suggests that the intrinsic stabilities of the 27 ribbon and the β-turn are very similar and that weakly polar interactions occurring between side chains can be a decisive factor capable of controlling the secondary structure.

  9. Construction of monomers and chains assembled by 3d/4f metals and 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine

    SciTech Connect

    Yang, Juan; Hu, Rui-Xiang; Zhang, Man-Bo

    2012-12-15

    A series of transition metal and lanthanide complexes of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine (HL, 1), namely [M(L){sub 2}]{center_dot}5H{sub 2}O (M=Ni, 2; Co, 3), [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O (4) and [Ln(L){sub 3}]{sub n} (Ln=Nd, 5; Gd, 6; Er, 7) were hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Isomorphic compounds 2 and 3 are mononuclear molecules with two ligand chelating to the metal centers via tridentate terpyridyl, while compound 4 adopts 1D chain-like structure, in which five-coordinate zinc centers are surrounded by three ligands. Compounds 5-7 also display 1D chain-like structure, but the nine-coordinate lanthanide centers bonded by four ligands. Luminescent property indicates that compound 4 exhibits photoluminescence in the solid state at room temperature. - Graphical abstract: Six complexes of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine were synthesized via assembly with transition metal and lanthanide ions, respectively. Among them, [Ni(L){sub 2}]{center_dot}5H{sub 2}O and [Co(L){sub 2}]{center_dot}5H{sub 2}O are monomers, while [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O and [Ln(L){sub 3}]{sub n} display chain-like structures. Highlights: Black-Right-Pointing-Pointer Compounds of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine were synthesized. Black-Right-Pointing-Pointer [Ni(L){sub 2}]{center_dot}5H{sub 2}O and [Co(L){sub 2}]{center_dot}5H{sub 2}O are monomers. Black-Right-Pointing-Pointer [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O and [Ln(L){sub 3}]{sub n} display chain-like structures.

  10. Theory for the conformational changes of double-stranded chain molecules

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Jie; Dill, Ken A.

    1998-09-01

    We develop statistical mechanical theory to predict the thermodynamic properties of chain molecules having noncovalent double-stranded conformations, as in RNA molecules and β-sheets in proteins. Sequence dependence and excluded volume interactions are explicitly taken into account. We classify conformations by their polymer graphs and enumerate all the conformations corresponding to each graph by a recently developed matrix method [S-J. Chen and K. A. Dill, J. Chem. Phys. 103, 5802 (1995)]. All such graphs are summed by a recursive method. Tests against exact computer enumeration for short chains on a 2D lattice show that the density of states and partition function are given quite accurately. So far, we have explored two classes of conformations; hairpins, which model small β-sheets, and RNA secondary structures. The main folding transition is predicted to be quite different for these two conformational classes: the hairpin transition is two-state while the RNA secondary structure transition is one-state for homopolymeric chains.

  11. A three-dimensional statistical mechanical model of folding double-stranded chain molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbing; Chen, Shi-Jie

    2001-05-01

    Based on a graphical representation of intrachain contacts, we have developed a new three-dimensional model for the statistical mechanics of double-stranded chain molecules. The theory has been tested and validated for the cubic lattice chain conformations. The statistical mechanical model can be applied to the equilibrium folding thermodynamics of a large class of chain molecules, including protein β-hairpin conformations and RNA secondary structures. The application of a previously developed two-dimensional model to RNA secondary structure folding thermodynamics generally overestimates the breadth of the melting curves [S-J. Chen and K. A. Dill, Proc. Natl. Acad. Sci. U.S.A. 97, 646 (2000)], suggesting an underestimation for the sharpness of the conformational transitions. In this work, we show that the new three-dimensional model gives much sharper melting curves than the two-dimensional model. We believe that the new three-dimensional model may give much improved predictions for the thermodynamic properties of RNA conformational changes than the previous two-dimensional model.

  12. Investigation of the adsorption of polymer chains on amine-functionalized double-walled carbon nanotubes.

    PubMed

    Ansari, R; Ajori, S; Rouhi, S

    2015-12-01

    Molecular dynamics (MD) simulations were used to study the adsorption of different polymer chains on functionalized double-walled carbon nanotubes (DWCNTs). The nanotubes were functionalized with two different amines: NH2 (a small amine) and CH2-NH2 (a large amine). Considering three different polymer chains, all with the same number of atoms, the effect of polymer type on the polymer-nanotube interaction was studied. In general, it was found that covalent functionalization considerably improved the polymer-DWCNT interaction. By comparing the results obtained with different polymer chains, it was observed that, unlike polyethylene and polyketone, poly(styrene sulfonate) only weakly interacts with the functionalized DWCNTs. Accordingly, the smallest radius of gyration was obtained with adsorbed poly(styrene sulfonate). It was also observed that the DWCNTs functionalized with the large amine presented more stable interactions with polyketone and poly(styrene sulfonate) than with polyethylene, whereas the DWCNTs functionalized with the small amine showed better interfacial noncovalent bonding with polyethylene.

  13. Spin crossover and solvate effects in 1D Fe{sup II} chain compounds containig Bis(dipyridylamine)-linked triazine ligands.

    SciTech Connect

    Ross, , T. M.; Moubaraki, B.; Turner, D. R.; Halder, G. J.; Chastanet, G.; Neville, S. M.; Cashion, J. D.; Letard, J. F.; Batten, S. R.; Murray, K. S.

    2011-03-01

    A series of 1D polymeric FeII spin crossover (SCO) compounds of type trans-[FeII(NCX)2(L)] Solvent has been synthesised {l_brace}L = DPPyT = 1-[4,6-bis(dipyridin-2-ylamino)-1,3,5-triazin-2-yl]pyridin-4(1H)-one for 1-4{r_brace}; NCX = NCS- for 1 and 2, NCSe- for 3 and 4; Solvent = 2.5CH2Cl2 for 1, 2CHCl3 {center_dot} 0.5CH3OH for 2 and 4, CH2Cl2 for 3; L = DPT (6-phenoxy-N2,N2,N4,N4-tetra-2-pyridinyl-1,3,5-triazine-2,4-diamine) for 5; NCX = NCS- for 5; Solvent = 2CH3OH {center_dot} H2O for 5; L = DQT {l_brace}4-[4,6-bis(dipyridin-2-ylamino)-1,3,5-triazin-2-yloxy]phenol{r_brace} for 6-8; NCX- = NCS- for 6; Solvent = 2CH2Cl2 for 6; NCX- = NCSe- for 7; Solvent = CH2Cl2 {center_dot} CH2ClCH2Cl for 7; NCX- = NCSe- for 8; Solvent = 1.5CH2Cl2 {center_dot} 0.5CH3OH for 8. Two mononuclear complexes, trans-[FeII(NCS)2(DPT)2] {center_dot} 2CH3OH (9) and trans-[FeII(NCSe)2(DPT)2] {center_dot} 2CH3OH (10), contained the L ligand in a terminal bidentate coordination mode. As well as variations made in the NCX- ligands, variations were also made in substituent groups on the s-triazine 'core' of L to investigate their intermolecular/supramolecular role in crystal packing and, thus, their influence on SCO properties. All the complexes crystallised as solvates, and the influence of the latter on the magnetism and spin transitions was explored. A wide range of physical methods was employed, as a function of temperature, viz. crystallography, PXRD (synchrotron), susceptibilities, LIESST and Moessbauer effect, in order to probe magnetostructural correlations in these 1D families. New examples of half-crossovers, with ordered -LS-HS-LS-HS- intrachain states existing below T1/2, have been observed and comparisons made to related one- or two-step systems. All the observed transitions are gradual and non-hysteretic, and brief comments are made in relation to recent theoretical models for cooperativity, developed elsewhere.

  14. Three new 2-D metal-organic frameworks containing 1-D metal chains bridged by N-benzesulfonyl-glutamic acid: Syntheses, crystal structures and properties

    SciTech Connect

    Ma Lufang; Huo Xiankuan; Wang Liya Wang Jiange; Fan Yaoting

    2007-05-15

    To explore the possibility of obtaining the metal-organic frameworks (MOFs) bearing the bsgluH{sub 2} ligand, two new Cd(II) and one Cu(II) coordination polymers, [Cd(bsglu)(bipy)] {sub n} (1), [Cd(bsglu).(H{sub 2}O)] {sub n} (2) and {l_brace}[Cu{sub 2}(bsglu){sub 2}(bipy){sub 2}].4H{sub 2}O{r_brace} {sub n} (3) (bsglu=N-benzesulfonyl-glutamic acid bianion, bipy=2,2'-bipyridine) were synthesized and characterized by IR, elemental analysis and X-ray diffraction analysis. Compounds 1 and 3 exhibit one-dimensional coordination chains, which are further connected to form two-dimensional supramolecular networks through {pi}-{pi} aromatic stacking interactions in a novel zipper-like way. Compound 2 presents a two-dimensional layer structure. To the best of our knowledge, 2 is the first two-dimensional complex formed from transition metal and bsgluH{sub 2} ligand. Interestingly, the bsglu anion exhibits remarkable versatile coordination modes in these complexes. Fluorescent analyses show that 1 exhibits photoluminescence in the solid state. Magnetic measurements for 3 revealed that the Cu(II) chain exhibit a weak antiferromagnetic behavior with a J value of -0.606 cm{sup -1}. - Graphical abstract: Three new complexes, [Cd(bsglu)(bipy)] {sub n} (1), [Cd(bsglu).(H{sub 2}O)] {sub n} (2) and {l_brace}[Cu{sub 2}(bsglu){sub 2}(bipy){sub 2}].4H{sub 2}O{r_brace} {sub n} (3), constructed from Cd(II) or Cu(II) salt with N-benzesulfonyl-glutamic acid were synthesized and characterized. Compounds 1 and 3 exhibit one-dimensional chains which are further connected to form two-dimensional supramolecular networks through {pi}-{pi} aromatic stacking interactions in a novel zipper-like way. Compound 2 presents a two-dimensional layer structure. Luminescence of 1 and magnetic properties of 3 are also investigated.

  15. Contact process on generalized Fibonacci chains: infinite-modulation criticality and double-log periodic oscillations.

    PubMed

    Barghathi, Hatem; Nozadze, David; Vojta, Thomas

    2014-01-01

    We study the nonequilibrium phase transition of the contact process with aperiodic transition rates using a real-space renormalization group as well as Monte Carlo simulations. The transition rates are modulated according to the generalized Fibonacci sequences defined by the inflation rules A → ABk and B → A. For k=1 and 2, the aperiodic fluctuations are irrelevant, and the nonequilibrium transition is in the clean directed percolation universality class. For k≥3, the aperiodic fluctuations are relevant. We develop a complete theory of the resulting unconventional "infinite-modulation" critical point, which is characterized by activated dynamical scaling. Moreover, observables such as the survival probability and the size of the active cloud display pronounced double-log periodic oscillations in time which reflect the discrete scale invariance of the aperiodic chains. We illustrate our theory by extensive numerical results, and we discuss relations to phase transitions in other quasiperiodic systems. PMID:24580177

  16. Topological Constraints on Chain-Folding Structure of Semicrystalline Polymer as Studied by 13C-13C Double Quantum NMR

    NASA Astrophysics Data System (ADS)

    Hong, Youlee; Miyoshi, Toshikazu

    Chain-folding process is a prominent feature of long polymer chains during crystallization. Over the last half century, much effort has been paid to reveal the chain trajectory. Even though various chain-folding models as well as theories of crystallization at molecule levels have been proposed, they could be not reconciled due to the limited experimental evidences. Recent development of double quantum NMR with selective isotope labeling identified the chain-trajectory of 13C labeled isotactic poly(1-butene). The systematic experiments covered a wide range of parameters, i.e. kinetics, concentration, and molecular weight (Mw) . It was demonstrated that i) adjacent re-entry site was invariant as a function of crystallization temperature (Tc) , concentration, andMw, ii) long-range order of adjacent re-entry sequence is independence of kinetics at a given concentration while it decreased with increasing the polymer concentration at a given Tc due to the increased interruption between the chains, and iii) high Mw chains led to the multilayer folded structures in single crystals, but the melt state induced the identical short adjacent sequences of long and short polymer over a wide range of Tc due to the entanglements. The behaviors indicated that the topological restriction plays significant roles in the chain-folding process rather than the kinetics. The proposed framework to control the chain-folding structure presents a new perspective into the chain organization by either the intra- or inter-chain interaction. National Science Foundation Grants DMR-1105829 and 1408855.

  17. Dynamics and supramolecular organization of the 1D spin transition polymeric chain compound [Fe(NH2trz)3](NO3)2. Muon spin relaxation.

    PubMed

    Garcia, Yann; Campbell, Stewart J; Lord, James S; Boland, Yves; Ksenofontov, Vadim; Gütlich, Philipp

    2007-09-27

    The thermal spin transition that occurs in the polymeric chain compound [Fe(NH(2)trz)3](NO3)2 above room temperature has been investigated by zero-field muon spin relaxation (microSR) over the temperature range approximately 8-402 K. The depolarization curves are best described by a Lorentzian and a Gaussian line that represent fast and slow components, respectively. The spin transition is associated with a hysteresis loop of width DeltaT = 34 K (T1/2 upward arrow = 346 K and T1/2 downward arrow = 312 K) that has been delineated by the temperature variation of the initial asymmetry parameter, in good agreement with previously published magnetic measurements. Zero-field and applied field (20-2000 Oe) microSR measurements show the presence of diamagnetic muon species and paramagnetic muonium radical species (A = 753 +/- 77 MHz) over the entire temperature range. Fast dynamics have been revealed in the high-spin state of [Fe(NH(2)trz)3](NO3)2 with the presence of a Gaussian relaxation mode that is mostly due to the dipolar interaction with static nuclear moments. This situation, where the muonium radicals are totally decoupled and not able to sense paramagnetic fluctuations, implies that the high-spin dynamics fall outside the muon time scale. Insights to the origin of the cooperative effects associated with the spin transition of [Fe(NH(2)trz)3](NO3)2 through muon implantation are presented.

  18. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t–J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t–J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  19. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t-J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  20. The synthesis and structure of a chiral 1D aluminophosphate chain compound: d-Co(en) 3[AlP 2O 8]·6.5H 2O

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Li, Jiyang; Yu, Jihong; Wang, Yu; Pan, Qinhe; Xu, Ruren

    2005-06-01

    A new chiral one-dimensional (1D) aluminophosphate chain compound [ d-Co(en) 3][AlP 2O 8]·6.5H 2O (designated AlPO-CJ22) has been hydrothermally synthesized by using the optically pure d-Co(en) 3I 3 complex as the template. Single-crystal structural analysis reveals that its structure is built up from alternating connection of AlO 4 and PO 2(=O 2) tetrahedra to form corner-shared Al 2P 2 four-membered ring (4-MR) chains. The d-Co(en) 33+ complex cations extended along the 2 1 screw axis interact with the inorganic chains through hydrogen-bonds of N⋯O atoms in a helical fashion. Optical rotation measurement shows that AlPO-CJ22 is chiral as with d-Co(en) 33+ complex cations. Crystal data: orthorhombic, I2 12 12 1, a=8.5573(8) Å, b=22.613(2) Å, c=22.605(2) Å, Z=8, R1=0.067, wR2=0.1291, and Flack parameter: -0.02(3). CCDC number: 254179.

  1. High-throughput double quantitative competitive polymerase chain reaction for determination of genetically modified organisms.

    PubMed

    Mavropoulou, Anastasia K; Koraki, Theodora; Ioannou, Penelope C; Christopoulos, Theodore K

    2005-08-01

    Quantitative competitive polymerase chain reaction (PCR), especially the double competitive PCR methods (DC-PCR), have evolved as reliable approaches to quantification of genetically modified organisms (GMO) in food. However, DC-PCR is a low-throughput method because it requires titration of each sample with various amounts of a competitive internal standard, a protocol that involves several PCRs per sample followed by electrophoresis and densitometry. To address this drawback, we have developed a new method for GMO quantification, namely, a high-throughput double quantitative competitive PCR (HT-DCPCR). In HT-DCPCR, electrophoresis and densitometry are replaced by a rapid, microtiter well-based bioluminometric hybridization assay and there is no need for titration of each sample. The determination of GM soya was chosen as a model. We have constructed internal standards (DNA competitors) both for the 35S promoter sequence and for a plant-specific reference gene (lectin). The competitors have identical size and share the same primer binding sites with the target sequences but differ in a 24-bp internal segment. Each target sequence (35S and lectin) is coamplified with a constant amount (1000 copies) of the respective competitor. The four amplified fragments are hybridized with specific probes and captured on a universal solid phase to achieve simplicity and high throughput. The hybrids are determined by using streptavidin conjugated to the photoprotein aequorin. The ratio of the luminescence values obtained for the target and the competitor is linearly related to the starting amount of target DNA. The limit of quantification for the 35S promoter is 24 copies. The proposed method was evaluated by determining the GMO content of soybean powder certified reference materials. Also HT-DCPCR was compared to real-time PCR in a variety of real samples.

  2. Double bond stereochemistry influences the susceptibility of short-chain isoprenoids and polyprenols to decomposition by thermo-oxidation.

    PubMed

    Molińska, Ewa; Klimczak, Urszula; Komaszyło, Joanna; Derewiaka, Dorota; Obiedziński, Mieczysław; Kania, Magdalena; Danikiewicz, Witold; Swiezewska, Ewa

    2015-04-01

    Isoprenoid alcohols are common constituents of living cells. They are usually assigned a role in the adaptation of the cell to environmental stimuli, and this process might give rise to their oxidation by reactive oxygen species. Moreover, cellular isoprenoids may also undergo various chemical modifications resulting from the physico-chemical treatment of the tissues, e.g., heating during food processing. Susceptibility of isoprenoid alcohols to heat treatment has not been studied in detail so far. In this study, isoprenoid alcohols differing in the number of isoprene units and geometry of the double bonds, β-citronellol, geraniol, nerol, farnesol, solanesol and Pren-9, were subjected to thermo-oxidation at 80 °C. Thermo-oxidation resulted in the decomposition of the tested short-chain isoprenoids as well as medium-chain polyprenols with simultaneous formation of oxidized derivatives, such as hydroperoxides, monoepoxides, diepoxides and aldehydes, and possible formation of oligomeric derivatives. Oxidation products were monitored by GC-FID, GC-MS, ESI-MS and spectrophotometric methods. Interestingly, nerol, a short-chain isoprenoid with a double bond in the cis (Z) configuration, was more oxidatively stable than its trans (E) isomer, geraniol. However, the opposite effect was observed for medium-chain polyprenols, since Pren-9 (di-trans-poly-cis-prenol) was more susceptible to thermo-oxidation than its all-trans isomer, solanesol. Taken together, these results experimentally confirm that both short- and long-chain polyisoprenoid alcohols are prone to thermo-oxidation.

  3. A comparative study on the binding of single and double chain surfactant-cobalt(III) complexes with bovine serum albumin.

    PubMed

    Vignesh, G; Sugumar, K; Arunachalam, S; Vignesh, S; Arthur James, R

    2013-09-01

    The comparative binding effect of single and double aliphatic chain containing surfactant-cobalt(III) complexes cis-[Co(bpy)2(DA)2](ClO4)3·2H2O (1), cis-[Co(bpy)2(DA)Cl](ClO4)2·2H2O (2), cis-[Co(phen)2(CA)2](ClO4)3·2H2O (3), and cis-[Co(phen)2(CA)Cl](ClO4)2·2H2O (4) with bovine serum albumin (BSA) under physiological condition was analyzed by steady state, time resolved fluorescence, synchronous, three-dimensional fluorescence, UV-Visible absorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of BSA through a static mechanism. The binding constants (Kb) and the number of binding sites were calculated and binding constant values are found in the range of 10(4)-10(5) M(-1). The results indicate that compared to single chain complex, double chain surfactant-cobalt(III) complex interacts strongly with BSA. Also the sign of thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicate that all the complexes interact with BSA through hydrophobic force. The binding distance (r) between complexes and BSA was calculated using Förster non-radiation energy transfer theory and found to be less than 7 nm. The results of synchronous, three dimensional fluorescence and circular dichroism spectroscopic methods indicate that the double chain surfactant-cobalt(III) complexes changed the conformation of the protein considerably than the respective single chain surfactant-cobalt(III) complexes. Antimicrobial studies of the complexes showed good activities against pathogenic microorganisms.

  4. A comparative study on the binding of single and double chain surfactant-cobalt(III) complexes with bovine serum albumin.

    PubMed

    Vignesh, G; Sugumar, K; Arunachalam, S; Vignesh, S; Arthur James, R

    2013-09-01

    The comparative binding effect of single and double aliphatic chain containing surfactant-cobalt(III) complexes cis-[Co(bpy)2(DA)2](ClO4)3·2H2O (1), cis-[Co(bpy)2(DA)Cl](ClO4)2·2H2O (2), cis-[Co(phen)2(CA)2](ClO4)3·2H2O (3), and cis-[Co(phen)2(CA)Cl](ClO4)2·2H2O (4) with bovine serum albumin (BSA) under physiological condition was analyzed by steady state, time resolved fluorescence, synchronous, three-dimensional fluorescence, UV-Visible absorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of BSA through a static mechanism. The binding constants (Kb) and the number of binding sites were calculated and binding constant values are found in the range of 10(4)-10(5) M(-1). The results indicate that compared to single chain complex, double chain surfactant-cobalt(III) complex interacts strongly with BSA. Also the sign of thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicate that all the complexes interact with BSA through hydrophobic force. The binding distance (r) between complexes and BSA was calculated using Förster non-radiation energy transfer theory and found to be less than 7 nm. The results of synchronous, three dimensional fluorescence and circular dichroism spectroscopic methods indicate that the double chain surfactant-cobalt(III) complexes changed the conformation of the protein considerably than the respective single chain surfactant-cobalt(III) complexes. Antimicrobial studies of the complexes showed good activities against pathogenic microorganisms. PMID:23747382

  5. A novel picoliter droplet array for parallel real-time polymerase chain reaction based on double-inkjet printing.

    PubMed

    Sun, Yingnan; Zhou, Xiaoguang; Yu, Yude

    2014-09-21

    We developed and characterized a novel picoliter droplet-in-oil array generated by a double-inkjet printing method on a uniform hydrophobic silicon chip specifically designed for quantitative polymerase chain reaction (qPCR) analysis. Double-inkjet printing was proposed to efficiently address the evaporation issues of picoliter droplets during array generation on a planar substrate without the assistance of a humidifier or glycerol. The method utilizes piezoelectric inkjet printing equipment to precisely eject a reagent droplet into an oil droplet, which had first been dispensed on a hydrophobic and oleophobic substrate. No evaporation, random movement, or cross-contamination was observed during array fabrication and thermal cycling. We demonstrated the feasibility and effectiveness of this novel double-inkjet method for real-time PCR analysis. This method can readily produce multivolume droplet-in-oil arrays with volume variations ranging from picoliters to nanoliters. This feature would be useful for simultaneous multivolume PCR experiments aimed at wide and tunable dynamic ranges. These double-inkjet-based picoliter droplet arrays may have potential for multiplexed applications that require isolated containers for single-cell cultures, single molecular enzymatic assays, or digital PCR and provide an alternative option for generating droplet arrays on planar substrates without chemical patterning. PMID:25070461

  6. A novel picoliter droplet array for parallel real-time polymerase chain reaction based on double-inkjet printing.

    PubMed

    Sun, Yingnan; Zhou, Xiaoguang; Yu, Yude

    2014-09-21

    We developed and characterized a novel picoliter droplet-in-oil array generated by a double-inkjet printing method on a uniform hydrophobic silicon chip specifically designed for quantitative polymerase chain reaction (qPCR) analysis. Double-inkjet printing was proposed to efficiently address the evaporation issues of picoliter droplets during array generation on a planar substrate without the assistance of a humidifier or glycerol. The method utilizes piezoelectric inkjet printing equipment to precisely eject a reagent droplet into an oil droplet, which had first been dispensed on a hydrophobic and oleophobic substrate. No evaporation, random movement, or cross-contamination was observed during array fabrication and thermal cycling. We demonstrated the feasibility and effectiveness of this novel double-inkjet method for real-time PCR analysis. This method can readily produce multivolume droplet-in-oil arrays with volume variations ranging from picoliters to nanoliters. This feature would be useful for simultaneous multivolume PCR experiments aimed at wide and tunable dynamic ranges. These double-inkjet-based picoliter droplet arrays may have potential for multiplexed applications that require isolated containers for single-cell cultures, single molecular enzymatic assays, or digital PCR and provide an alternative option for generating droplet arrays on planar substrates without chemical patterning.

  7. Two novel CPs with double helical chains based rigid tripodal ligands: Syntheses, crystal structures, magnetic susceptibility and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Hou, Xiang-Yang; Zhai, Quan-Guo; Hu, Man-Cheng

    2016-11-01

    Two three-dimensional coordination polymers (CPs), namely [Cd(bpydb)- (H2bpydb)]n·0.5nH2O (1), and [Cu2(bpydb)2]n (2) (2,6-di-p-carboxyphenyl-4,4'- bipyridine1 = H2bpydb), containing a novel double-helical chains, which have been solvothermal synthesized, characterized, and structure determination. CPs 1-2 reveal the new (3,5)-net and (3,6)-net alb topology, respectively. The fluorescence properties of CPs 1-2 were investigated, and magnetic susceptibility measurements indicate that compound 1 has dominating antiferromagnetic couplings between metal ions.

  8. Amphiphilic sugar phosphates with single or double perfluoroalkylated hydrophobic chains for use in oxygen and drug delivery systems.

    PubMed

    Guillod, F; Greiner, J; Milius, A; Riess, J G

    1994-01-01

    New anionic amphiphiles with a phosphate ester junction between the fluorophilic-lipophilic tail and the sugar-based hydrophilic head were synthesized and evaluated. The single hydrophobic chain surfactants 1 a, b and 2a allowed the preparation of stable and fine highly concentrated emulsions of perfluorodecalin or perfluoroocytl bromide, either when used alone or in conjunction with egg yolk phospholipids (EYP). Surfactants 3d, 5d, 6d and 6e, with two hydrophobic chains, one fluorinated the other not, gave liposomal structures, and displayed encapsulation properties for carboxyfluorescein. The phosphodiesters tested cause no significant inhibition of the growth and viability of Namalva cell cultures (0.1-1 g/L range). Single chain phosphodiesters manifest no detectable hemolytic activity (at 100 g/L for 1a) whereas double chain compounds do moderately (ca 20% hemolysis at 20 g/L). The maximum tolerated dose compatible with the survival of all of a series of 10 intravenously injected mice is in 130 mg/kg body weight range. PMID:7849933

  9. A chain is no stronger than its weakest link: double decay analysis of phylogenetic hypotheses.

    PubMed

    Wilkinson, M; Thorley, J L; Upchurch, P

    2000-12-01

    In decay analyses the support for a particular split in most-parsimonious trees is its decay index, that is, the extra steps required of the shortest trees that do not include the split. By focusing solely on the support for splits, traditional decay analysis may provide an incomplete and potentially misleading summary of the support for phylogenetic relationships common to the most-parsimonious tree or trees. Here, we introduce double decay analysis, a new approach to assessing support for phylogenetic relationships. Double decay analysis is the determination of the decay indices of all n-taxon statements/partitions common to the most-parsimonious tree. The results of double decay analyses are presented in a partition table, but various approaches to graphical representation of the results, including the use of reduced consensus support trees, are also discussed. Double decay analysis provides a more comprehensive summary and facilitates a better understanding of the strengths and weaknesses of complex phylogenetic hypotheses than does traditional decay analysis. The limitations of traditional decay analyses and the utility of double decay analyses are illustrated with both contrived data and real data for sauropod dinosaurs.

  10. Position dependence of the particle density in a double-chain section of a linear network in a totally asymmetric simple exclusion process

    NASA Astrophysics Data System (ADS)

    Pesheva, N. C.; Brankov, J. G.

    2013-06-01

    We report here results on the study of the totally asymmetric simple exclusion process, defined on an open network, consisting of head and tail simple-chain segments with a double-chain section inserted in between. Results of numerical simulations for relatively short chains reveal an interesting feature of the network. When the current through the system takes its maximum value, a simple translation of the double-chain section forward or backward along the network leads to a sharp change in the shape of the density profiles in the parallel chains, thus affecting the total number of particles in that part of the network. In the symmetric case of equal injection and ejection rates α=β>1/2 and equal lengths of the head and tail sections, the density profiles in the two parallel chains are almost linear, characteristic of the coexistence line (shock phase). Upon moving the section forward (backward), their shape changes to the one typical for the high- (low-) density phases of a simple chain. The total bulk density of particles in a section with a large number of parallel chains is evaluated too. The observed effect might have interesting implications for the traffic flow control as well as for biological transport processes in living cells. An explanation of this phenomenon is offered in terms of a finite-size dependence of the effective injection and ejection rates at the ends of the double-chain section.

  11. The MESA polarimetry chain and the status of its double scattering polarimeter

    SciTech Connect

    Aulenbacher, K.; Bartolomé, P. Aguar; Molitor, M.; Tioukine, V.

    2013-11-07

    We plan to have two independent polarimetry systems at MESA based on totally different physical processes. A first one tries to minimize the systematic uncertainties in double polarized Mo/ller scattering, which is to be achieved by stored hydrogen atoms in an atomic trap (Hydro-Mo/ller-Polarimeter). The other one relies on the equality of polarizing and analyzing power which allows to measure the effective analyzing power of a polarimeter with very high accuracy. Since the status of Hydro-Mo/ller is presented in a separate paper we concentrate on the double scattering polarimeter in this article.

  12. The MESA polarimetry chain and the status of its double scattering polarimeter

    NASA Astrophysics Data System (ADS)

    Aulenbacher, K.; Bartolomé, P. Aguar; Molitor, M.; Tioukine, V.

    2013-11-01

    We plan to have two independent polarimetry systems at MESA based on totally different physical processes. A first one tries to minimize the systematic uncertainties in double polarized Mo/ller scattering, which is to be achieved by stored hydrogen atoms in an atomic trap (Hydro-Mo/ller-Polarimeter). The other one relies on the equality of polarizing and analyzing power which allows to measure the effective analyzing power of a polarimeter with very high accuracy. Since the status of Hydro-Mo/ller is presented in a separate paper we concentrate on the double scattering polarimeter in this article.

  13. Novel electronic structures of self-organized 1D surface nanostructures

    NASA Astrophysics Data System (ADS)

    Yeom, Han Woong

    2002-03-01

    Recently we have searched for the exotic physical properties of the nanostructures formed on semiconductor surfaces by STM and photoelectron spectroscopy [1]. The major objects have been the 1D chains of metal adsorbates on Si or SiC surfaces. It now seems obvious that such (sub)nanometer-scale atomic chains possess significant technological implications for the future device technology. Furthermore those systems provide very attractive and unprecedented opportunity to study exotic physical properties of 1D electronic systems in detail, such as Peierls instability, charge density wave (CDW), electron correlation, non-Fermi liquid behavior, and interplay of defects with 1D excitations (1D solitons, 1D domain walls and etc). The present talk focuses on the recent experimental and theoretical studies for the novel electronic properties of the 1D atomic chain systems on the Si(111) surface such as Si(111)4x1-In [2], Si(111)5x2-Au [3], Si(557)5x2-Au [4], and Si(111)3x2-Ba(or Ca) [5]. These systems have well defined one dimensional electronic bands, which exhibit intriguing properties challenging our present understanding. The major points of debates right now are the origin of the periodicity-doubling phase transition of Si(111)4x1-In in relation to 1D CDW [2], the nature of the band gap (or pseudo gap) of Si(111)5x2-Au (also related to 1D CDW idea) [3], the Si(111)3x2-Ba (or Ca) surface (1D Mott-Hubbard system ?) [5], and the nature of the band dispersion of the Si(557)5x2-Au surface (any Luttinger liquid behavior ?) [4]. Some new aspects of these systems are introduced such as the doping dependence of the 1D CDW system and the transport measurements across the 1D CDW transition. References [1] For a recent review, see H. W. Yeom, J. Electron Spectro. and Rel. Phenom., 114-116, 283 (2001). [2] H.W. Yeom et al., Phys. Rev. Lett. 82, 4898 (1999); C. Kumpf et al, Phys. Rev. Lett. 85, 4916 (2001); H.W. Yeom et al., submitted; G. Le Lay et al., submitted; J.-H. Cho et al

  14. Double Tryptophan Exciton Probe to Gauge Proximal Side Chains in Proteins- Augmentation at Low Temperature

    PubMed Central

    Gasymov, Oktay K.; Abduragimov, Adil R.; Glasgow, Ben J.

    2015-01-01

    The circular dichroic (CD) exciton couplet between tryptophans and/or tyrosines offers the potential to probe distances within 10Å in proteins. The exciton effect has been used with native chromophores in critical positions in a few proteins. Here, site-directed mutagenesis created double tryptophan probes for key sites of a protein (tear lipocalin). For tear lipocalin the crystal and solution structures are concordant in both apo- and holo-forms. Double tryptophan substitutions were performed at sites that could probe conformation and were likely within 10 Å. Far-UV CD spectra of double Trp mutants were performed with controls that had non-interacting substituted tryptophans. Low temperature (77K) was tested for augmentation of the exciton signal. Exciton coupling appeared with tryptophan substitutions at positions within loop A-B (28 and 31, 33), between loop A-B (28) and strand G (103 and 105), as well as between the strands B (35) and C (56). The CD exciton couplet signals were amplified 3–5 fold at 77K. The results were concordant with close distances in crystal and solution structures. The exciton couplets had functional significance and correctly assigned the holo-conformation. The methodology creates an effective probe to identify proximal amino acids in a variety of motifs. PMID:25693116

  15. Topology of mRNA chain in isolated eukaryotic double-row polyribosomes.

    PubMed

    Afonina, Zh A; Myasnikov, A G; Khabibullina, N F; Belorusova, A Yu; Menetret, J-F; Vasiliev, V D; Klaholz, B P; Shirokov, V A; Spirin, A S

    2013-05-01

    In the process of protein synthesis, the translating ribosomes of eukaryotic cells form polyribosomes that are found to be multiplex functional complexes possessing elements of ordered spatial organization. As revealed by a number of electron microscopy studies, the predominant visible configurations of the eukaryotic polyribosomes are circles (circular polyribosomes) and two-stranded formations (so-called double-row polyribosomes). The "long" (i.e. heavy loaded) polyribosomes are usually represented by double-row structures, which can be interpreted as either topologically circular ("collapsed rings"), or topologically linear (zigzags or helices). In the present work we have analyzed the mRNA path within the eukaryotic polyribosomes, isolated from a wheat germ cell-free translation system, by integrating two approaches: the visualization of mRNA ends in polyribosomes by marking them with gold nanoparticles (3'-end) and initiating 40S subunits (5'-end), as well as by the cryoelectron tomography. Examination of the location of the mRNA markers in polyribosomes and mutual orientation of ribosomes in them has shown that the double-row polyribosomes of the same sample can have both circular and linear arrangements of their mRNA.

  16. Biological and surface-active properties of double-chain cationic amino acid-based surfactants.

    PubMed

    Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy

    2014-08-01

    Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.

  17. First Principles Study of Nuclear Quadrupole Interactions in Single and Double Chain DNA and Solid Nucleobases

    NASA Astrophysics Data System (ADS)

    Das, T. P.; Pink, R. H.; Badu, S. R.; Dubey, Archana; Scheicher, R. H.; Saha, H. P.; Chow, Lee; Huang, M. B.

    2009-03-01

    Nuclear Quadrupole Interactions (NQI) of ^17O, ^14N and ^2H nuclei have been studied for free nucleobases and nucleobases in single strand and double strand DNA and in solid state. Our first-principles investigations were carried out using the Gaussian 2003 set of programs to implement the Hartree-Fock procedure combined with many-body effects included using many-body perturbation theory. As expected for NQI in general, many-body effects are found to be small. Results will be presented for the quadrupole coupling constants (e^2qQ) and asymmetry parameters (η) for the nucleobases in the various environments. Trends in e^2qQ and η in the different environments will be discussed. In the case of the solid nucleobases, comparisons will be made with available experimental data [1] for ^17O nuclei.[3pt] [1] Gang Wu et al., J. Am. Chem. Soc. 124, 1768 (2002)

  18. Incomplete lipid chain freezing of sonicated vesicular dispersions of double-tailed ionic surfactants.

    PubMed

    Saveyn, Pieter; Van der Meeren, Paul; Cocquyt, Jan; Drakenberg, Torbjörn; Olofsson, Gerd; Olsson, Ulf

    2007-10-01

    Lipid freezing in dilute sonicated vesicular dispersions was studied using differential scanning calorimetry (DSC) and 1H NMR. For charged, anionic, or cationic lipids, approximately half of the lipids remain in a fluid state when cooled 20 degrees C below the main chain melting temperature. With a zwitterionic phospholipid, on the other hand, essentially no supercooling of the liquid state was observed. The observations are analyzed in terms of the nucleation and growth of flat solid domains in originally fluid spherical vesicles. As the solid domains grow, the remaining fluid domain is deformed, resulting in a curvature stress. Depending on the vesicle size and the bilayer bending rigidity, the solid domain growth may terminate as the gain in cohesive free energy is balanced by the curvature stress of the remaining fluid domain. It is argued that high bending rigidities are required for having a significant supercooling, which is why it is only observed for charged lipids. PMID:17850103

  19. Synthesis and characterization of side-chain cholesterol derivatives based on double bond

    NASA Astrophysics Data System (ADS)

    Yu, Yun-Long; Bai, Jun-Wei; Zhang, Jun-Hua

    2012-07-01

    After steps of esterification, epoxidation and ring-opening, a series of novel monomers of 5-hydroxyl-6-methacryloyloxy-3-alkylate, CnCOOCh (n = 1, 2, 3, 4, 5) were synthesized. After that, the corresponding polymers (PnCOOCh, n = 1, 2, 3, 4, 5) were obtained by free radical polymerization. The molecular structure, composition and thermal behaviors of monomers and polymers were confirmed by 1H NMR, FTIR, single crystal diffractometer, GPC, DSC and TGA. The results indicate that although their molecular weights are not high, all the polymers have high glass transition (Tg) and degradation temperature. In addition, Tg gradually decreases with increasing of alkyl chain lengths, and the degradation temperature increases with the increase of carbon number.

  20. Strong correlations, frozen-phonons and double-well potential in the Cu O chains of YBa2Cu3O7- δ: An exact diagonalization approach

    NASA Astrophysics Data System (ADS)

    Koval, S.; Greco, A.

    1994-04-01

    We studied the infrared and Raman modes in the Cu  O chain of the system YBa3O7- δ by means of a Peierls-Hubbard model. We performed an exact Lanczos-diagonalization on a [ Cu2  O6] cluster (2-cells in the chain including two pex-oxygen ions per unit cell). In contrast to previous calculations, we found that the electronic correlations combined with dynamical phonons are not crucial for the existence of double-well potential in the system. We also discuss the importance of the coupling between the planes and the chains as well as the magnitude of the electron-phonon coupling.

  1. Clinical and Pharmacotherapeutic Relevance of the Double-Chain Domain of the Angiotensin II Type 1 Receptor Blocker Olmesartan

    PubMed Central

    Kiya, Yoshihiro; Miura, Shin-ichiro; Fujino, Masahiro; Imaizumi, Satoshi; Karnik, Sadashiva S.; Saku, Keijiro

    2014-01-01

    We previously reported that the angiotensin II type 1 (AT1) receptor blocker (ARB) olmesartan has two important interactions to evoke inverse agonism (IA). We refer to these interactions as the “double-chain domain (DCD).” Since the clinical pharmacotherapeutic relevance of olmesartan is still unclear, we examined these effects in rats and humans. We analyzed the effects at an advanced stage of renal insufficiency in Dahl salt-sensitive hypertensive rats (Study 1). Rats were fed a high-salt diet from age 9 weeks and arbitrarily assigned to three treatment regimens at age 16 to 21 weeks: olmesartan (2 mg/kg/day) with DCD, a compound related to olmesartan without DCD (6 mg/kg/day, R-239470) or placebo. We also compared the depressor effects of olmesartan to those of other ARBs in patients with essential hypertension (Study 2). Thirty essential hypertensive outpatients who had been receiving ARBs other than olmesartan were recruited for this study. Our protocol was approved by the hospital ethics committee and informed consent was obtained from all patients 12 weeks prior to switching from ARBs other than olmesartan to olmesartan. In Study 1, olmesartan induced a more prominent suppression of the ratio of urinary protein excretion to creatinine at age 21 weeks without lowering blood pressure among the three groups. In Study 2, the depressor effect of olmesartan was significantly stronger than those of other ARBs, which do not contain the DCD. These additive effects by olmesartan may be due to DCD. PMID:20374187

  2. Heterobimetallic lanthanide-gold coordination polymers: structure and emissive properties of isomorphous [(n)Bu4N]2[Ln(NO3)4Au(CN)2] 1-D chains.

    PubMed

    Roberts, Ryan J; Li, Xiaobo; Lacey, Tye F; Pan, Zhong; Patterson, Howard H; Leznoff, Daniel B

    2012-06-21

    A new series of lanthanide-containing dicyanoaurate coordination polymers, [(n)Bu(4)N](2)[Ln(NO(3))(4)Au(CN)(2)] (Ln = Nd, Eu, Gd or Tb), were synthesized and structurally characterized. They form an isomorphous series, crystallizing in the space group I2(1)2(1)2(1). The structure is composed of a one dimensional zigzag of Ln-N-C-Au-C-N-Ln chains with no intra- or inter-chain aurophilic interactions. The series is related to and can be described as a reduced dimensionality analogue of the previously studied Ln[Au(CN)(2)](3)·3H(2)O. Unlike the Ln[Au(CN)(2)](3)·3H(2)O series, there is no efficient energy transfer between dicyanoaurate and the lanthanide metal centers in the complexes and they essentially act as two separate emissive chromophores.

  3. Chain-Folding Structures of a Semi-crystalline Polymer in Bulk and Single Crystals Elucidated by 13C-13C Double Quantum NMR

    NASA Astrophysics Data System (ADS)

    Hong, You-Lee; Miyoshi, Toshikazu

    2014-03-01

    Semi-crystalline polymers are crystallized as folded chains in thin lamellae of ca. 5-20 nm from random coils in the melt and solution states. However, understanding of detailed chain-folding structure and crystallization mechanism are still challenging issue due to various experimental limitations. We recently developed a new strategy using 13C-13C double-quantum (DQ) NMR with selectively 13C isotope labeled isotactic poly(1-butene) form I to investigate chain-trajectory in solution and melt grown crystals at various Tcs. This new method can determine the re-entrance sites, the successive folding number (n) , and the fractions (F) of chain-folding in a wide Tc range. In melt grown crystals at Tc = 95 °C, a comparison of experimental and simulated DQ efficiency determined that the polymer chains alternatively change chain-folding directions and the stems tightly pack via intramolecular interactions, and the fraction (F) of adjacent re-entry structure ranges from 70% at n = 4 to 100% at mixed structures of n = 1 and 2. Furthermore, DQ efficiency is independent of Tc in bulk crystals. This means chain-folding do not change in a wide Tcs. DMR-1105829.

  4. Synthesis, crystal structure and properties of two 1D nano-chain coordination polymers constructed by lanthanide with pyridine-3,4-dicarboxylic acid and 1,10-phenanthroline

    SciTech Connect

    Song Huihua Li Yajuan; Song You; Han Zhangang; Yang Fang

    2008-05-15

    The hydrothermal reactions of LnCl{sub 3}.6H{sub 2}O (Ln=Eu, Tb), pyridine-3,4-dicarboxylic acid (3,4-pydaH{sub 2}), 1,10-phenthroline (phen) and NaOH in aqueous medium yield two metal-organic hybrid materials, [Eu{sub 2}(3,4-pyda){sub 3}(phen)(H{sub 2}O).H{sub 2}O]{sub n} (1) and [Tb{sub 2}(3,4-pyda){sub 3}(phen)(H{sub 2}O).H{sub 2}O]{sub n} (2), respectively. Both compounds have similar topology structure containing one-dimensional nano-chain, which is further assembled into a three-dimensional supramolecular network via {pi}-{pi} stacking interactions and hydrogen bonds. To the best of our knowledge, they represent the first example of nano-chain coordination polymers constructed by 3,4-pydaH{sub 2} and chelate heterocylic ligand. Interestingly, the 3,4-pyda anion exhibits three kinds of coordination modes in these complexes. The coordination modes of 3,4-pyda in complexes 1 and 2 have not been observed in other coordination polymers containing 3,4-pyda ligands. Compounds 1 and 2 exhibit strong fluorescent emission bands in the solid state at room temperature. Their magnetic analyses show that they exhibit different magnetic interactions. - Graphical abstract: Two novel lanthanide coordination polymers [M{sub 2}(pydc){sub 3}(phen)(H{sub 2}O).H{sub 2}O]{sub n} (M=Eu(1) and Tb(2), pydc=pyridine-3,4-dicarboxylate, phen=1,10-phenthroline) have been synthesized and characterized. Both compounds reveal a one-dimensional nano-chain, which is further assembled into a three-dimensional supramolecular network via {pi}-{pi} stacking interactions and hydrogen bonds. Their luminescent and magnetic properties have been investigated.

  5. Cu sbnd Al sbnd Fe layered double hydroxides with CO32- and anionic surfactants with different alkyl chains in the interlayer

    NASA Astrophysics Data System (ADS)

    Trujillano, Raquel; Holgado, María Jesús; González, José Luis; Rives, Vicente

    2005-08-01

    Layered double hydroxides (LDHs), with the hydrotalcite-like structure containing Cu(II), Al(III) and Fe(III) in the layers, and different alkyl sulfonates in the interlayer, have been prepared and characterized by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Pure crystalline phases have been obtained in all cases. Upon heating, combustion of the organic chain takes place at lower temperature than the corresponding sodium salts.

  6. On the Importance of Noncovalent Carbon-Bonding Interactions in the Stabilization of a 1D Co(II) Polymeric Chain as a Precursor of a Novel 2D Coordination Polymer.

    PubMed

    Pal, Pampi; Konar, Saugata; Lama, Prem; Das, Kinsuk; Bauzá, Antonio; Frontera, Antonio; Mukhopadhyay, Subrata

    2016-07-14

    A new cobalt(II) coordination polymer 2 with μ1,5 dicyanamide (dca) and a bidentate ligand 3,5-dimethyl-1-(2'-pyridyl)pyrazole (pypz) is prepared in a stepwise manner using the newly synthesized one-dimensional linear Co(II) coordination polymer 1 as a precursor. The structural and thermal characterizations elucidate that the more stable complex 2 shows a two-dimensional layer structural feature. Here, Co(II) atoms with μ1,5 dicyanamido bridges are linked by the ligand pypz forming a macrocyclic chain that runs along the crystallographic 'c' axis having 'sql' (Shubnikov notation) net topology with a 4-connected uninodal node having point symbol {4(4).6(2)}. The remarkable noncovalent carbon-bonding contacts detected in the X-ray structure of compound 1 are analyzed and characterized by density functional theory calculations and the analysis of electron charge density (atoms in molecules). PMID:27295490

  7. A pure inorganic 1D chain based on {Mo8O28} clusters and Mn(II) ions: [Mn(H2O)2Mo8O28 ] n 6 n -

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofen; Yan, Yonghong; Wu, Lizhou; Yu, Chengxin; Dong, Xinbo; Hu, Huaiming; Xue, Ganglin

    2016-01-01

    A new pure inorganic polymer, (NH4)6n[Mn(H2O)2Mo8O28)]n(H2O)2n(1), has been synthesized and characterized by elemental analyses, IR spectrum, UV-vis absorption spectra, TG-DSC and electrochemical studies. In 1, [Mo8O28]8- anions act as tetradentate ligands and are alternately linked by Mn(H2O)2 2 + ions into a one-dimensional chain structure. It is interesting that 1 represents the first example of pure inorganic-inorganic hybrid based on octamolybdate and transition metal ions. Moreover, it was indicated that 1 had definite catalytic activities on the probe reaction of benzyl alcohol oxidation to benzaldehyde with H2O2.

  8. On the Importance of Noncovalent Carbon-Bonding Interactions in the Stabilization of a 1D Co(II) Polymeric Chain as a Precursor of a Novel 2D Coordination Polymer.

    PubMed

    Pal, Pampi; Konar, Saugata; Lama, Prem; Das, Kinsuk; Bauzá, Antonio; Frontera, Antonio; Mukhopadhyay, Subrata

    2016-07-14

    A new cobalt(II) coordination polymer 2 with μ1,5 dicyanamide (dca) and a bidentate ligand 3,5-dimethyl-1-(2'-pyridyl)pyrazole (pypz) is prepared in a stepwise manner using the newly synthesized one-dimensional linear Co(II) coordination polymer 1 as a precursor. The structural and thermal characterizations elucidate that the more stable complex 2 shows a two-dimensional layer structural feature. Here, Co(II) atoms with μ1,5 dicyanamido bridges are linked by the ligand pypz forming a macrocyclic chain that runs along the crystallographic 'c' axis having 'sql' (Shubnikov notation) net topology with a 4-connected uninodal node having point symbol {4(4).6(2)}. The remarkable noncovalent carbon-bonding contacts detected in the X-ray structure of compound 1 are analyzed and characterized by density functional theory calculations and the analysis of electron charge density (atoms in molecules).

  9. Hydrothermal synthesis and characterization of the first 1-D indiumphosphate chain In{sub 2}(HPO{sub 4}){sub 2}(H{sub 2}PO{sub 4}){sub 2}F{sub 2}.C{sub 4}N{sub 2}H{sub 12}, a precursor for high dimensional structures

    SciTech Connect

    Chen Chao; Yi Zhuo; Bi Minghui; Liu Yunling; Wang Chunyu; Liu Li; Zhao Zan; Pang Wenqin . E-mail: wqpang@mail.jlu.edu.cn

    2006-05-15

    The first one-dimensional (1-D) indiumphosphate chain, In{sub 2}(HPO{sub 4}){sub 2}(H{sub 2}PO{sub 4}){sub 2}F{sub 2}.C{sub 4}N{sub 2}H{sub 12} (1), has been hydrothermally prepared using piperazine (PIP) as a template. The structure consists of infinite chains of trans,trans-corners-sharing InO{sub 4}F{sub 2} octahedra with the adjacent octahedra being bridged by tetrahedral PO{sub 3}(OH) and PO{sub 2}(OH){sub 2} units, which are H-bonded with amine groups of the organic cations. Interestingly, this macroanionic chain InP{sub 2}O{sub 8}H{sub 3}F{sup -} is similar to that found in the mineral tancoite-like chains and has potential to further set up higher-dimensional networks. On heating 1 in the presence of additional phosphoric acid at 180 deg. C under hydrothermal condition, compound 2, In{sub 2}(OH)(H{sub 2}O)(PO{sub 4}){sub 2}.H{sub 3}O.H{sub 2}O, possessed a 3-D structure building from the repetition of a secondary building unit is obtained. When 1 is heated with additional PIP, an unknown phase, compound 3 is formed. Finally, on treatment with another amine, such as diethylenetriamine or 1,4-diaminobutane, at 180 deg. C, 1, as a precursor, can convert into a previously known 3-D framework structure with 16-membered ring compound 4. Compounds 1 and 2 are determined by single-crystal X-ray diffraction. Furthermore, 1 is characterized by X-ray powder diffraction, IR spectroscopy, inductively coupled plasma analysis, thermogravimetric analysis and differential thermal analysis.

  10. Sympathetic cooling of a mass-mismatched two-ion chain in a double-well trap potential

    SciTech Connect

    Hasegawa, Taro

    2011-05-15

    Sympathetic cooling of two-ion system, in which one is laser-cooled and the other is sympathetically cooled and their masses are mismatched, in a linear rf trap with a double-well potential is proposed. The double-well potential consists of two wells, and there is one ion in each well. The axial frequencies of the two wells and the spatial interval between them are experimentally controllable. By theoretical analysis, the normal modes of the small oscillations around the equilibrium are derived, and a measure of the sympathetic cooling rate is obtained. As a result, it is found that the sympathetic cooling rate is fast when the frequency of the axial motion of the sympathetically cooled ion is close to that of the laser-cooled ion. In the double-well potential, the sympathetic cooling rate of the ion species whose mass is much heavier or lighter than that of the laser-cooled ion can be fast. The sympathetic cooling rate of C{sub 60}{sup +} by the laser-cooled Ba{sup +} in the double-well potential is estimated to be about 80 times faster than in the conventional setup. The double-well potential may be made by the microfabricated electrode configuration or by the optical dipole force trap.

  11. Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.

    PubMed

    Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich

    2016-04-01

    High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. PMID:26902182

  12. Investigation of double bond conversion, mechanical properties, and antibacterial activity of dental resins with different alkyl chain length quaternary ammonium methacrylate monomers (QAM).

    PubMed

    He, Jingwei; Söderling, Eva; Vallittu, Pekka K; Lassila, Lippo V J

    2013-01-01

    In order to endow dental resin with antibacterial activity, a series of antibacterial quaternary ammonium methacrylate monomers (QAM) with different substituted alkyl chain length (from 10 to 18) were incorporated into commonly used 2,2-bis[4-(2'-hydroxy-3'-methacryloyloxy-propoxy)-phenyl]propane (Bis-GMA)/triethyleneglycol dimethacrylate (TEGDMA) (50 wt/50 wt) dental resin as immobilized antibacterial agents. Double bond conversion (DC), flexural strength (FS) and modulus (FM), and young and mature biofilms inhibition effectiveness of prepared dental resins were studied and Bis-GMA/TEGDMA without QAM was used as reference. Results showed that there was no significant difference on DC, FS, and FM between copolymer with and without 5 wt% QAM. Substituted alkyl chain length of QAM had no influence on DC, FS, and FM of copolymer, but had influence on antibacterial activity of copolymer. Antibacterial activity of copolymer increased with increasing of substituted alkyl chain length of QAM, and the sequence followed as 5%C10 < 5%C11 ≈ 5%C12 < 5%C16 ≈ 5%C18. Copolymers containing C18 and C16 had the best inhibition effectiveness on both young biofilm and mature biofilm, copolymers containing C12 and C11 only had inhibition effectiveness on young biofilm and copolymer containing C10 had none inhibition effectiveness on neither young biofilm nor mature biofilm.

  13. Double path integral method for obtaining the mobility of the one-dimensional charge transport in molecular chain.

    PubMed

    Yoo-Kong, Sikarin; Liewrian, Watchara

    2015-12-01

    We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in a one-dimensional molecular chain. Our technique is based on the Feynman's path integral approach. Analytical expressions for the frequency-dependent mobility and effective mass of the carrier are obtained as functions of electron-phonon coupling. The result exhibits the crossover from a nearly free particle to a heavily trapped particle. We find that the mobility depends on temperature and decreases exponentially with increasing temperature at low temperature. It exhibits large polaronic-like behaviour in the case of weak electron-phonon coupling. These results agree with the phase transition (A.S. Mishchenko et al., Phys. Rev. Lett. 114, 146401 (2015)) of transport phenomena related to polaron motion in the molecular chain. PMID:26701710

  14. Calreticulin Controls the Rate of Assembly of CD1d Molecules in the Endoplasmic Reticulum*

    PubMed Central

    Zhu, Yajuan; Zhang, Wei; Veerapen, Natacha; Besra, Gurdyal; Cresswell, Peter

    2010-01-01

    CD1d is an MHC class I-like molecule comprised of a transmembrane glycoprotein (heavy chain) associated with β2-microglobulin (β2m) that presents lipid antigens to NKT cells. Initial folding of the heavy chain involves its glycan-dependent association with calreticulin (CRT), calnexin (CNX), and the thiol oxidoreductase ERp57, and is followed by assembly with β2m to form the heterodimer. Here we show that in CRT-deficient cells CD1d heavy chains convert to β2m-associated dimers at an accelerated rate, indicating faster folding of the heavy chain, while the rate of intracellular transport after assembly is unaffected. Unlike the situation with MHC class I molecules, antigen presentation by CD1d is not impaired in the absence of CRT. Instead, there are elevated levels of stable and functional CD1d on the surface of CRT-deficient cells. Association of the heavy chains with the ER chaperones Grp94 and Bip is observed in the absence of CRT, and these may replace CRT in mediating CD1d folding and assembly. ER retention of free CD1d heavy chains is impaired in CRT-deficient cells, allowing their escape and subsequent expression on the plasma membrane. However, these free heavy chains are rapidly internalized and degraded in lysosomes, indicating that β2m association is required for the exceptional resistance of CD1d to lysosomal degradation that is normally observed. PMID:20861015

  15. Theoretical in-Solution Conformational/Tautomeric Analyses for Chain Systems with Conjugated Double Bonds Involving Nitrogen(s)

    PubMed Central

    Nagy, Peter I.

    2015-01-01

    Conformational/tautomeric transformations for X=CH–CH=Y structures (X = CH2, O, NH and Y = NH) have been studied in the gas phase, in dichloromethane and in aqueous solutions. The paper is a continuation of a former study where s-cis/s-trans conformational equilibria were predicted for analogues. The s-trans conformation is preferred for the present molecules in the gas phase on the basis of its lowest internal free energy as calculated at the B97D/aug-cc-pvqz and CCSD(T)CBS (coupled-cluster singles and doubles with non-iterative triples extrapolated to the complete basis set) levels. Transition state barriers are of 29–36 kJ/mol for rotations about the central C–C bonds. In solution, an s-trans form is still favored on the basis of its considerably lower internal free energy compared with the s-cis forms as calculated by IEF-PCM (integral-equation formalism of the polarizable continuum dielectric solvent model) at the theoretical levels indicated. A tetrahydrate model in the supermolecule/continuum approach helped explore the 2solute-solvent hydrogen bond pattern. The calculated transition state barrier for rotation about the C–C bond decreased to 27 kJ/mol for the tetrahydrate. Considering explicit solvent models, relative solvation free energies were calculated by means of the free energy perturbation method through Monte Carlo simulations. These calculated values differ remarkably from those by the PCM approach in aqueous solution, nonetheless the same prevalent conformation was predicted by the two methods. Aqueous solution structure-characteristics were determined by Monte Carlo. Equilibration of conformers/tautomers through water-assisted double proton-relay is discussed. This mechanism is not viable, however, in non-protic solvents where the calculated potential of mean force curve does not predict remarkable solute dimerization and subsequent favorable orientation. PMID:25984602

  16. One-dimensional topological chains with Majorana fermions in two-dimensional nontopological optical lattices

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Qu, Chunlei; Zhang, Chuanwei

    2016-06-01

    The recent experimental realization of one-dimensional (1D) equal Rashba-Dresselhaus spin-orbit coupling (ERD-SOC) for cold atoms provides a disorder-free and highly controllable platform for the implementation and observation of Majorana fermions (MFs), analogous to the broadly studied solid-state nanowire-superconductor heterostructures. However, the corresponding 1D chains of cold atoms possess strong quantum fluctuation, which may destroy the superfluids and MFs. In this paper, we show that such 1D topological chains with MFs may be on demand generated in a two- or three-dimensional nontopological optical lattice with 1D ERD-SOC by modifying local potentials on target locations using experimentally already implemented atomic gas microscopes or patterned (e.g., double- or triple-well) optical lattices. All ingredients in our scheme have been experimentally realized, and the combination of them may pave the way for the experimental observation of MFs in a clean system.

  17. Infrared radiative decay dynamics from the γ 1u (3P2), H 1u (3P1), and 1u (1D2) ion-pair states of I2 observed by a perturbation facilitated optical-optical double resonance technique

    NASA Astrophysics Data System (ADS)

    Hoshino, Shoma; Araki, Mitsunori; Nakano, Yukio; Ishiwata, Takashi; Tsukiyama, Koichi

    2016-01-01

    We report the spectroscopic and temporal analyses on the amplified spontaneous emission (ASE) from the single rovibrational levels of the Ω = 1u ion-pair series, γ 1u (3P2), H 1u (3P1), and 1u (1D2), of I2 by using a perturbation facilitated optical-optical double resonance technique through the c 1 Π g ˜ B 3 Π ( 0u + ) hyperfine mixed valence state as the intermediate state. The ASE detected in the infrared region was assigned to the parallel transitions from the Ω = 1u ion-pair states down to the nearby Ω = 1g ion-pair states. The subsequent ultraviolet (UV) fluorescence from the Ω = 1g states was also observed and the relative vibrational populations in the Ω = 1g states were derived through the Franck-Condon simulation of the intensity pattern of the vibrational progression. In the temporal profiles of the UV fluorescence, an obvious delay in the onset of the fluorescence was recognized after the excitation laser pulse. These results revealed that ASE is a dominant energy relaxation process between the Ω = 1u and 1g ion-pair states of I2. Finally, the lifetimes of the relevant ion-pair states were evaluated by temporal analyses of the UV fluorescence. The propensity was found which was the longer lifetime in the upper level of the ASE transitions tends to give intense ASE.

  18. Four 1-D metal-organic polymers self-assembled from semi-flexible benzimidazole-based ligand: Syntheses, structures and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Zhou, Chun-lin; Wang, Shi-min; Liu, Sai-nan; Yu, Tian-tian; Li, Rui-ying; Xu, Hong; Liu, Zhong-yi; Sun, Huan; Cheng, Jia-jia; Li, Jin-peng; Hou, Hong-wei; Chang, Jun-biao

    2016-08-01

    Four one-dimensional (1-D) metal-organic polymers based on methylene-bis(1,1‧-benzimidazole)(mbbz), namely, {[Hg(mbbz)(SCN)2]·1/3H2O}n (1), [Co(mbbz)(Cl)2]n (2), {[Co(mbbz)(SO4)]·CH3OH}n (3) and {[Zn(mbbz)(SO4)]·CH3OH}n (4) have been successfully synthesized and structurally characterized. Single-crystal X-ray diffraction reveals that polymers 1 and 2 exhibit interesting 1-D double helical chain structures, while polymers 3 and 4 are 1-D double chain structures due to the bridging effect of mbbz ligands and sulfate anions. These polymers containing the mbbz-based ligand have a high degree of dependence on the corresponding counter anions. Furthermore, the fluorescence properties of the four polymers were also investigated in the solid state, showing the fluorescence signal changes in comparing with that of free ligand mbbz.

  19. Neodymium 1D systems: targeting new sources for field-induced slow magnetization relaxation.

    PubMed

    Jassal, Amanpreet Kaur; Aliaga-Alcalde, Núria; Corbella, Montserrat; Aravena, Daniel; Ruiz, Eliseo; Hundal, Geeta

    2015-09-28

    Two non-isostructural homometallic 1D neodymium species displaying field-induced slow magnetization relaxations are presented together with theoretical studies. It is established that both systems are better described as organized 1D single molecule magnets (SMMs). Studies show great potential of Nd(III) ions to provide homometallic chains with slow magnetic relaxation.

  20. The d{sup 10} metal-sulfosalicylate complexes: Herring-bone, ladder and double-stranded chain frameworks with green luminescences

    SciTech Connect

    Yan Chunfeng; Jiang Feilong; Chen Lian; Feng Rui; Yang Ming; Hong Maochun

    2009-11-15

    Assembly of 5-sulfosalicylic acid (H{sub 3}L) and d{sup 10} transition metal ions (Cd{sup II}, Ag{sup I}) with the neutral N-donor ligands produces five new complexes: [Cd{sub 2}(HL){sub 2}(4,4'-bipy){sub 3}]{sub n}.2nH{sub 2}O (1), {l_brace}[Cd{sub 2}(mu{sub 2}-HCO{sub 2}){sub 2}(4,4'-bipy){sub 2}(H{sub 2}O){sub 4}][Cd(HL){sub 2}(4,4'-bipy)(H{sub 2}O){sub 2}]{r_brace}{sub n} (2), {l_brace}[Cd(4,4'-bipy)(H{sub 2}O){sub 4}][HL].H{sub 2}O{r_brace}{sub n} (3), [Cd(HL)(dpp){sub 2}(H{sub 2}O)]{sub n}.4nH{sub 2}O (4), {l_brace}[Ag(4,4'-bipy)][Hhbs]{r_brace}{sub n} (5) (4,4'-bipy=4,4'-bipyridine, dpp=1,3-di(pyridin-4-yl)propane, H{sub 2}hbs=4-hydroxybenzenesulfonic acid, the decarboxylation product of H{sub 3}L). Complex 1 adopts a 5-connected 3D bilayer topology. Complex 2 has the herring-bone and ladder chain, which are extended to a 3D network via hydrogen bonding. In 3-4 complexes, 3 is a 3D supermolecular structure formed by polymeric chains and 2D network of HL{sup 2-}, while 4 gives the double-stranded chains. In 5, ladder arrays are stacked with the 2D networks of Hhbs{sup -} anions in an -ABAB- sequence. Complexes 1-4 display green luminescences in solid state at room temperature, while emission spectra of 3 and 4 show obvious blue-shifts at low temperature. - Graphical abstract: Reactions of 5-sulfosalicylic acid (H{sub 3}L) and d{sup 10} metal ions (Cd{sup II}, Ag{sup I}) produce five new complexes. Complexes 1-4 all display green luminescences at room temperature.

  1. Hydrothermal synthesis, crystal structure and properties of a novel chain coordination polymer constructed by tetrafunctional phosphonate anions and cobalt ions

    SciTech Connect

    Guan, Lei; Wang, Ying

    2015-08-15

    A novel cobalt phosphonate, [Co(HL)(H{sub 2}O){sub 3}]{sub n} (1) (L=N(CH{sub 2}PO{sub 3}H){sub 3}{sup 3−}) has been synthesized by hydrothermal reaction at 150 °C and structurally characterized by X-ray diffraction, infrared spectroscopy, elemental and thermogravimetric analysis. Complex 1 features a 1D chain structure with double-channel built from CoO{sub 6} octahedra bridged together by the phosphonate groups. Each cobalt ion is octahedrally coordinated by three phosphonate oxygen atoms and three water molecules. The coordinated water molecules can form the hydrogen bonds with the phosphonate oxygen atoms to link the 1D chains, building a 2D layered structure, further resulting in a 3D network. The luminescence spectrum indicates an emission maximum at 435 nm. The magnetic susceptibility curve exhibits a dominant antiferromagnetic behavior with a weakly ferromagnetic component at low temperatures. - Graphical abstract: The connectivity between cobalt ions and the ligands results in a chain structure with a 1D double-channel structure, which is constructed by A-type subrings and B-type subrings. - Highlights: • The tetrafunctional phosphonate ligand was used as the ligand. • A novel chain structure can be formed by A-type rings and B-type rings. • Two types of rings can form a 1D double-channel structure, along the c-axis.

  2. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation

    SciTech Connect

    Kong, Chen; Lange, Jeffrey J.; Samovski, Dmitri; Su, Xiong; Liu, Jialiu; Sundaresan, Sinju; Stahl, Philip D.

    2013-05-03

    Highlights: •Hominoid-specific oncogene TBC1D3 is targeted to plasma membrane by palmitoylation. •TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. •TBC1D3 palmitoylation governs growth factors-induced TBC1D3 degradation. •Post-translational modifications may regulate oncogenic properties of TBC1D3. -- Abstract: Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.

  3. Nonlocal Order Parameters for the 1D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-01

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point Uc=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at Uc. The behavior of the parity correlators is captured by an effective free spinless fermion model.

  4. Anion-Directed Copper(II) Metallocages, Coordination Chain, and Complex Double Salt: Structures, Magnetic Properties, EPR Spectra, and Density Functional Study.

    PubMed

    Wu, Jing-Yun; Zhong, Ming-Shiou; Chiang, Ming-Hsi; Bhattacharya, Dibyendu; Lee, Yen-Wei; Lai, Long-Li

    2016-05-17

    A series of Cu(II) metallo-assemblies showing anion-directed structural variations, including five metallocages [(G(n-) )⊂{Cu2 (Hdpma)4 }]((8-n)+) (A(-) )8-n (G(n-) =NO3 (-) , ClO4 (-) , SiF6 (2-) , BF4 (-) , SO4 (2-) ; A(-) =NO3 (-) , ClO4 (-) , BF4 (-) , CH3 SO4 (-) ; Hdpma=bis(3-pyridylmethyl)ammonium cation), a complex double salt, namely, (H3 dpma)4 (CuCl4 )5 Cl2 , and a coordination chain, namely, [Cu2 (dpma)(OAc)4 ], are reported. The influence of the anion can be explained by its coordinating ability, the affinity of which for the Cu(II) center interferes significantly with metallocage formation, and its shape, which offers host-guest recognition ability to engage in weak metal-anion coordination and hydrogen bonding to the organic ligand, which are responsible for metallocage templation. EPR studies of these metallocages in the powder phase at room temperature and 77 K showed a trend of the g values (g|| >2.10>g⊥ >2.00) indicating a dx2-y2 -based ground state with square-pyramidal geometry for the Cu(II) centers. The magnetism of these metallocages can be interpreted as the result of a combination of relatively small magnetic coupling integrals and a substantial contribution of temperature-independent paramagnetism (TIP). The weak magnetic interaction is corroborated by the results of DFT calculations and the EPR spectra. Availability of the low-lying state for spin population was confirmed by a magnetization study, which revealed a magnetic moment approaching 2Nβ, which would explain the presence of the larger TIP term. PMID:27080422

  5. Anion-Directed Copper(II) Metallocages, Coordination Chain, and Complex Double Salt: Structures, Magnetic Properties, EPR Spectra, and Density Functional Study.

    PubMed

    Wu, Jing-Yun; Zhong, Ming-Shiou; Chiang, Ming-Hsi; Bhattacharya, Dibyendu; Lee, Yen-Wei; Lai, Long-Li

    2016-05-17

    A series of Cu(II) metallo-assemblies showing anion-directed structural variations, including five metallocages [(G(n-) )⊂{Cu2 (Hdpma)4 }]((8-n)+) (A(-) )8-n (G(n-) =NO3 (-) , ClO4 (-) , SiF6 (2-) , BF4 (-) , SO4 (2-) ; A(-) =NO3 (-) , ClO4 (-) , BF4 (-) , CH3 SO4 (-) ; Hdpma=bis(3-pyridylmethyl)ammonium cation), a complex double salt, namely, (H3 dpma)4 (CuCl4 )5 Cl2 , and a coordination chain, namely, [Cu2 (dpma)(OAc)4 ], are reported. The influence of the anion can be explained by its coordinating ability, the affinity of which for the Cu(II) center interferes significantly with metallocage formation, and its shape, which offers host-guest recognition ability to engage in weak metal-anion coordination and hydrogen bonding to the organic ligand, which are responsible for metallocage templation. EPR studies of these metallocages in the powder phase at room temperature and 77 K showed a trend of the g values (g|| >2.10>g⊥ >2.00) indicating a dx2-y2 -based ground state with square-pyramidal geometry for the Cu(II) centers. The magnetism of these metallocages can be interpreted as the result of a combination of relatively small magnetic coupling integrals and a substantial contribution of temperature-independent paramagnetism (TIP). The weak magnetic interaction is corroborated by the results of DFT calculations and the EPR spectra. Availability of the low-lying state for spin population was confirmed by a magnetization study, which revealed a magnetic moment approaching 2Nβ, which would explain the presence of the larger TIP term.

  6. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.

    PubMed

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.

  7. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model

    PubMed Central

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125

  8. Upstream Design and 1D-CAE

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroyuki

    Recently, engineering design environment of Japan is changing variously. Manufacturing companies are being challenged to design and bring out products that meet the diverse demands of customers and are competitive against those produced by rising countries(1). In order to keep and strengthen the competitiveness of Japanese companies, it is necessary to create new added values as well as conventional ones. It is well known that design at the early stages has a great influence on the final design solution. Therefore, design support tools for the upstream design is necessary for creating new added values. We have established a research society for 1D-CAE (1 Dimensional Computer Aided Engineering)(2), which is a general term for idea, methodology and tools applicable for the upstream design support, and discuss the concept and definition of 1D-CAE. This paper reports our discussion about 1D-CAE.

  9. Influence of spacer moiety and length of end chain for the phase stability in complementary, double hydrogen bonded liquid crystals, MA:nOBAs

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, A. V. N.; Chalapathi, P. V.; Srinivasulu, M.; Muniprasad, M.; Potukuchi, D. M.

    2015-01-01

    Supra molecular liquid crystals formed by the Hydrogen Bonding interaction between a non-mesogenic aliphatic dicarboxylic acid viz., COOHsbnd CH2sbnd COOH (Malonic Acid, MA); and mesogenic aromatic, N-(p-n-alkoxy benzoic)Acids, (i.e., nOBAs) for n = 3, 4, 5, 7, 8, 9, 10, 11 and 12, labeled as nOBA:COOHsbnd [CH2]msbnd COOH:nOBAs, abbreviated as MA:nOBAs are reported. 1H NMR and 13C NMR studies confirm the formation of HBLC complexes. Infrared (IR) studies confirm the complementary, double, alternative type of HB. Polarized Optical Microscopy (POM) and Differential Scanning Calorimetry (DSC) studies infer N, SmC, SmX, SmCRE, SmF, SmG LC phase variance. SmX phase exhibiting finger print texture grows in MA:nOBAs for n = 10, 11 and 12 by the interruption of SmC phase with decreasing temperature. Re-Entrant SmC (SmCRE) grows by the cooling of SmX. I-N, N-C, X-CRE, C-G, CRE-F, F-G and G-Solid transitions exhibit first order nature. C-X is found to be second order nature in n = 10 and 11. C-X in n = 12 and X-CRE and CRE-F transitions are found to be weak first order nature. Influence of lengths of end chain (n) and spacer (m) for the overall LC phase [ΔT]LC; tilted phase [ΔT]Tilt; SmC phase [ΔT]C and SmX phase [ΔT]X stabilities is discussed in the wake of data on other HBLCs with similar molecular structure. Prevalence of SmX phase in MA:nOBAs with m = 1 infers repulsive interaction between the π-electronic cloud of aromatic boards of nOBAs. Model molecule predicts a twisted configuration of π-cloud around the molecular long axis. Finger print texture of SmX validates the model.

  10. Structure and Catalytic Mechanism of Human Steroid 5-Reductase (AKR1D1)

    SciTech Connect

    Costanzo, L.; Drury, J; Christianson, D; Penning, T

    2009-01-01

    Human steroid 5{beta}-reductase (aldo-keto reductase (AKR) 1D1) catalyzes reduction of {Delta}{sup 4}-ene double bonds in steroid hormones and bile acid precursors. We have reported the structures of an AKR1D1-NADP{sup +} binary complex, and AKR1D1-NADP{sup +}-cortisone, AKR1D1-NADP{sup +}-progesterone and AKR1D1-NADP{sup +}-testosterone ternary complexes at high resolutions. Recently, structures of AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone complexes showed that the product is bound unproductively. Two quite different mechanisms of steroid double bond reduction have since been proposed. However, site-directed mutagenesis supports only one mechanism. In this mechanism, the 4-pro-R hydride is transferred from the re-face of the nicotinamide ring to C5 of the steroid substrate. E120, a unique substitution in the AKR catalytic tetrad, permits a deeper penetration of the steroid substrate into the active site to promote optimal reactant positioning. It participates with Y58 to create a 'superacidic' oxyanion hole for polarization of the C3 ketone. A role for K87 in the proton relay proposed using the AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone structure is not supported.

  11. DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS

    SciTech Connect

    L.R. Eisler

    1995-02-02

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.

  12. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport.

    PubMed

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R; Mans, Dorus A; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E C; Yap, Zhi Min; Letteboer, Stef J F; Taylor, S Paige; Herridge, Warren; Johnson, Colin A; Scambler, Peter J; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M; Beales, Philip L; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M; Witman, George B

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  13. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    PubMed Central

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R.; Mans, Dorus A.; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E. C.; Yap, Zhi Min; Letteboer, Stef J. F.; Taylor, S. Paige; Herridge, Warren; Johnson, Colin A.; Scambler, Peter J.; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M.; Beales, Philip L.; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M.; Witman, George B.; Al-Turki, Saeed; Anderson, Carl; Anney, Richard; Antony, Dinu; Asimit, Jennifer; Ayub, Mohammad; Barrett, Jeff; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Boustred, Chris; Breen, Gerome; Brion, Marie-Jo; Brown, Andrew; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Daly, Allan; Danecek, Petr; Smith, George Davey; Day-Williams, Aaron; Day, Ian; Durbin, Richard; Edkins, Sarah; Ellis, Peter; Evans, David; Farooqi, I. Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David; Flicek, Paul; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Gallagher, Louise; Gaunt, Tom; Geschwind, Daniel; Greenwood, Celia; Grozeva, Detelina; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Huang, Jie; Humphries, Steve E.; Hurles, Matt; Hysi, Pirro; Jackson, David; Jamshidi, Yalda; Jewell, David; Chris, Joyce; Kaye, Jane; Keane, Thomas; Kemp, John; Kennedy, Karen; Kent, Alastair; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lee, Irene; Li, Rui; Li, Yingrui; Ryan, Liu; Lönnqvist, Jouko; Lopes, Margarida; MacArthur, Daniel G.; Massimo, Mangino; Marchini, Jonathan; Maslen, John; McCarthy, Shane; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Min, Josine; Moayyeri, Alireza; Morris, James; Muddyman, Dawn; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael; O'Rahilly, Stephen; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Perry, John; Pietilainen, Olli; Plagnol, Vincent; Quail, Michael A.; Quaye, Lydia; Raymond, Lucy; Rehnström, Karola; Brent Richards, J.; Ring, Sue; Ritchie, Graham R S; Savage, David B.; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Shihab, Hashem; Shin, So-Youn; Skuse, David; Small, Kerrin; Smee, Carol; Soler, Artigas María; Soranzo, Nicole; Southam, Lorraine; Spector, Tim; St Pourcain, Beate; St. Clair, David; Stalker, Jim; Surdulescu, Gabriela; Suvisaari, Jaana; Tachmazidou, Ioanna; Tian, Jing; Timpson, Nic; Tobin, Martin; Valdes, Ana; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Wain, Louise; Walter, Klaudia; Wang, Jun; Ward, Kirsten; Wheeler, Ellie; Whittall, Ros; Williams, Hywel; Williamson, Kathy; Wilson, Scott G.; Wong, Kim; Whyte, Tamieka; ChangJiang, Xu; Zeggini, Eleftheria; Zhang, Feng; Zheng, Hou-Feng

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  14. One-dimensional Magnus-type platinum double salts

    PubMed Central

    Hendon, Christopher H.; Walsh, Aron; Akiyama, Norinobu; Konno, Yosuke; Kajiwara, Takashi; Ito, Tasuku; Kitagawa, Hiroshi; Sakai, Ken

    2016-01-01

    Interest in platinum-chain complexes arose from their unusual oxidation states and physical properties. Despite their compositional diversity, isolation of crystalline chains has remained challenging. Here we report a simple crystallization technique that yields a series of dimer-based 1D platinum chains. The colour of the Pt2+ compounds can be switched between yellow, orange and blue. Spontaneous oxidation in air is used to form black Pt2.33+ needles. The loss of one electron per double salt results in a metallic state, as supported by quantum chemical calculations, and displays conductivity of 11 S cm−1 at room temperature. This behaviour may open up a new avenue for controllable platinum chemistry. PMID:27320502

  15. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  16. Synthesis, structural characterization, and solid-state NMR spectroscopy of [Ga(phen)(H{sub 1.5}PO{sub 4}){sub 2}].H{sub 2}O and [Ga(phen)(HPO{sub 4})(H{sub 2}PO{sub 4})].1.5H{sub 2}O (phen=1, 10-phenanthroline), two organic-inorganic hybrid compounds with 1-D chain structures

    SciTech Connect

    Chang, W.-J.; Chang, P.-C.; Kao, H.-M.; Lii, K.-H. . E-mail: liikh@cc.ncu.edu.tw

    2005-12-15

    Two new organic-inorganic hybrid compounds, [Ga(phen)(H{sub 1.5}PO{sub 4}){sub 2}].H{sub 2}O (1) and [Ga(phen)(HPO{sub 4})(H{sub 2}PO{sub 4})].1.5H{sub 2}O (2) (phen=1,10-phenanthroline), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and solid-state NMR spectroscopy. Their structures consist of 1-D chains of strictly alternating GaO{sub 4}N{sub 2} octahedra and phosphate tetrahedra. The phen ligands in both compounds bind in a bidentate fashion to the gallium atoms and the 1-D structures extend into 3-D supramolecular arrays via {pi}-{pi} stacking interactions of phen ligands and hydrogen bonds. {sup 2}H MAS NMR spectroscopy was applied to study the deuterated sample of 1 which contains very short hydrogen bonds with an O-O distance of 2.406(2) A. Crystal data for 1: monoclinic, space group C2/c (No. 15), a=11.077(1) A, b=21.496(2) A, c=7.9989(7) A, {beta}=127.211(2){sup o}, and Z=4. The crystal symmetry is the same for 2 as for 1 except a=27.555(2) A, b=6.3501(5) A, c=21.327(2) A, {beta}=122.498(1){sup o}, and Z=8.

  17. MAGNETIC EXCITATIONS AND DOUBLE GAP IN THE S=1/2 LINEAR CHAIN QUANTUM ANTIFERROMAGNET BaCu{sub 2}Si{sub 2}O{sub 7}

    SciTech Connect

    RAYMOND,S.; ZHELUDEV,A.; MASUDA,T.; KAKURAI,K.; RESSOUCHE,E.; WILDES,A.

    2000-03-16

    The magnetic excitation spectrum of the ideal S=1/2 1-dimensional quantum antiferromagnet (AF), contains no single-mode contributions, and, in fact, can be described as a 2-particle continuum of spinons. Chain-MF theory predicts that a weakly coupled chains system becomes ordered at low temperatures. In the ordered state a sharp magnon excitation is present. The continuum persists, but is separated from the magnon branch by an appreciable energy gap. On the other hand, if weakly coupled chains are described through the 1/S expansion of the conventional Holstein-Primakov spin wave theory, one finds a longitudinal 2-magnon continuum and a transverse 3-magnon continuum that start immediately above the spin wave energy.

  18. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  19. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells

    PubMed Central

    Fischer, Karsten; Scotet, Emmanuel; Niemeyer, Marcus; Koebernick, Heidrun; Zerrahn, Jens; Maillet, Sophie; Hurwitz, Robert; Kursar, Mischo; Bonneville, Marc; Kaufmann, Stefan H. E.; Schaible, Ulrich E.

    2004-01-01

    A group of T cells recognizes glycolipids presented by molecules of the CD1 family. The CD1d-restricted natural killer T cells (NKT cells) are primarily considered to be self-reactive. By employing CD1d-binding and T cell assays, the following structural parameters for presentation by CD1d were defined for a number of mycobacterial and mammalian lipids: two acyl chains facilitated binding, and a polar head group was essential for T cell recognition. Of the mycobacterial lipids tested, only a phosphatidylinositol mannoside (PIM) fulfilled the requirements for CD1d binding and NKT cell stimulation. This PIM activated human and murine NKT cells via CD1d, thereby triggering antigen-specific IFN-γ production and cell-mediated cytotoxicity, and PIM-loaded CD1d tetramers identified a subpopulation of murine and human NKT cells. This phospholipid, therefore, represents a mycobacterial antigen recognized by T cells in the context of CD1d. PMID:15243159

  20. DNA charge transport: Moving beyond 1D

    NASA Astrophysics Data System (ADS)

    Zhang, Yuqi; Zhang, William B.; Liu, Chaoren; Zhang, Peng; Balaeff, Alexander; Beratan, David N.

    2016-10-01

    Charge transport across novel DNA junctions has been studied for several decades. From early attempts to move charge across DNA double crossover junctions to recent studies on DNA three-way junctions and G4 motifs, it is becoming clear that efficient cross-junction charge migration requires strong base-to-base electronic coupling at the junction, facilitated by favorable pi-stacking. We review recent progress toward the goal of manipulating and controlling charge transport through DNA junctions.

  1. 1D fast coded aperture camera.

    PubMed

    Haw, Magnus; Bellan, Paul

    2015-04-01

    A fast (100 MHz) 1D coded aperture visible light camera has been developed as a prototype for imaging plasma experiments in the EUV/X-ray bands. The system uses printed patterns on transparency sheets as the masked aperture and an 80 channel photodiode array (9 V reverse bias) as the detector. In the low signal limit, the system has demonstrated 40-fold increase in throughput and a signal-to-noise gain of ≈7 over that of a pinhole camera of equivalent parameters. In its present iteration, the camera can only image visible light; however, the only modifications needed to make the system EUV/X-ray sensitive are to acquire appropriate EUV/X-ray photodiodes and to machine a metal masked aperture. PMID:25933861

  2. 1D fast coded aperture camera.

    PubMed

    Haw, Magnus; Bellan, Paul

    2015-04-01

    A fast (100 MHz) 1D coded aperture visible light camera has been developed as a prototype for imaging plasma experiments in the EUV/X-ray bands. The system uses printed patterns on transparency sheets as the masked aperture and an 80 channel photodiode array (9 V reverse bias) as the detector. In the low signal limit, the system has demonstrated 40-fold increase in throughput and a signal-to-noise gain of ≈7 over that of a pinhole camera of equivalent parameters. In its present iteration, the camera can only image visible light; however, the only modifications needed to make the system EUV/X-ray sensitive are to acquire appropriate EUV/X-ray photodiodes and to machine a metal masked aperture.

  3. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  4. Synthesis, crystal structures, magnetic and luminescent properties of unique 1D p-ferrocenylbenzoate-bridged lanthanide complexes

    SciTech Connect

    Yan, P.F.; Zhang, F.M.; Li, G.M.; Zhang, J.W.; Sun, W.B.; Suda, M.; Einaga, Y.

    2009-07-15

    Treatments of p-ferrocenylbenzoate [p-NaOOCH{sub 4}C{sub 6}Fc, Fc=(eta{sup 5}-C{sub 5}H{sub 5})Fe(eta{sup 5}-C{sub 5}H{sub 4})] with Ln(NO{sub 3}){sub 3}.nH{sub 2}O afford seven p-ferrocenylbenzoate lanthanide complexes {l_brace}[Ln(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} [Ln=Ce (1), Pr (2), Sm (3), Eu (4), Gd (5), Tb (6) and Dy (7)]. X-ray crystallographic analysis reveals that the isomorphous complexes {l_brace}[Ce(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} (1) and {l_brace}[Pr(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} (2) form a unique 1D double-bridged infinite chain structure bridged by mu{sub 2}-OOCH{sub 4}C{sub 6}Fc groups. Each Ln(III) ion adopts a dodecahedron coordination environment with eight coordinated oxygen atoms from two terminal monodentate coordinated FcC{sub 6}H{sub 4}COO{sup -} units, two terminal monodentate coordinated H{sub 2}O molecules and four mu{sub 2}-{sup -}OOCH{sub 4}C{sub 6}Fc units. The luminescent spectra reveal that only 4 and 6 exhibit characteristic emissions of lanthanide ions, Eu(III) and Tb(III) ions, respectively. The variable-temperature magnetic properties of 5 and 7 suggest that a ferromagnetic coupling between spin carriers may exist in 5. - Graphical abstract: Seven p-ferrocenylbenzoate lanthanide coordination polymers were synthesized. Given is the perspective view of a unique 1D double-bridged infinite chain structure of 1, excitation and emission spectra of 6 and plots of chi{sub m}T vs. T and chi{sub m}{sup -1} vs. T of 5.

  5. Design, Synthesis, and Functional Activity of Labeled CD1d Glycolipid Agonists

    PubMed Central

    2013-01-01

    Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR−α-GalCer–CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR–glycolipid–CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for

  6. Double Gene Targeting Multiplex Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Assay Discriminates Beef, Buffalo, and Pork Substitution in Frankfurter Products.

    PubMed

    Hossain, M A Motalib; Ali, Md Eaqub; Abd Hamid, Sharifah Bee; Asing; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Zaidul, I S M

    2016-08-17

    Beef, buffalo, and pork adulteration in the food chain is an emerging and sensitive issue. Current molecular techniques to authenticate these species depend on polymerase chain reaction (PCR) assays involving long and single targets which break down under natural decomposition and/or processing treatments. This novel multiplex polymerase chain reaction-restriction fragment length polymorphism assay targeted two different gene sites for each of the bovine, buffalo, and porcine materials. This authentication ensured better security, first through a complementation approach because it is highly unlikely that both sites will be missing under compromised states, and second through molecular fingerprints. Mitochondrial cytochrome b and ND5 genes were targeted, and all targets (73, 90, 106, 120, 138, and 146 bp) were stable under extreme boiling and autoclaving treatments. Target specificity and authenticity were ensured through cross-amplification reaction and restriction digestion of PCR products with AluI, EciI, FatI, and CviKI-1 enzymes. A survey of Malaysian frankfurter products revealed rampant substitution of beef with buffalo but purity in porcine materials.

  7. Double Gene Targeting Multiplex Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Assay Discriminates Beef, Buffalo, and Pork Substitution in Frankfurter Products.

    PubMed

    Hossain, M A Motalib; Ali, Md Eaqub; Abd Hamid, Sharifah Bee; Asing; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Zaidul, I S M

    2016-08-17

    Beef, buffalo, and pork adulteration in the food chain is an emerging and sensitive issue. Current molecular techniques to authenticate these species depend on polymerase chain reaction (PCR) assays involving long and single targets which break down under natural decomposition and/or processing treatments. This novel multiplex polymerase chain reaction-restriction fragment length polymorphism assay targeted two different gene sites for each of the bovine, buffalo, and porcine materials. This authentication ensured better security, first through a complementation approach because it is highly unlikely that both sites will be missing under compromised states, and second through molecular fingerprints. Mitochondrial cytochrome b and ND5 genes were targeted, and all targets (73, 90, 106, 120, 138, and 146 bp) were stable under extreme boiling and autoclaving treatments. Target specificity and authenticity were ensured through cross-amplification reaction and restriction digestion of PCR products with AluI, EciI, FatI, and CviKI-1 enzymes. A survey of Malaysian frankfurter products revealed rampant substitution of beef with buffalo but purity in porcine materials. PMID:27501408

  8. Synthesis and characterization of 1D iron(II) spin crossover coordination polymers with hysteresis.

    PubMed

    Bauer, Wolfgang; Lochenie, Charles; Weber, Birgit

    2014-02-01

    Purposeful ligand design was used for the synthesis of eight new 1D iron(II) spin crossover coordination polymers aiming for cooperative spin transitions with hysteresis. The results from magnetic measurements and X-ray structure analysis show that the combination of rigid linkers and a hydrogen bond network between the 1D chains is a promising tool to reach this goal. Five of the eight new samples show a cooperative spin transition with hysteresis with up to 43 K wide hysteresis loops.

  9. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells.

    PubMed

    Sriram, Venkataraman; Du, Wenjun; Gervay-Hague, Jacquelyn; Brutkiewicz, Randy R

    2005-06-01

    The current consensus on characterization of NKT cells is based on their reactivity to the synthetic glycolipid, alpha-galactosylceramide (alpha-GalCer) in a CD1d-dependent manner. Because of the limited availability of alpha-GalCer, there is a constant search for CD1d-presented ligands that activate NKT cells. The alpha-anomericity of the carbohydrate is considered to be an important requisite for the CD1d-specific activation of NKT cells. The gram-negative, lipopolysaccharide-free bacterium Sphingomonas paucimobilis is known to contain glycosphingolipids (GSL) with alpha-anomeric sugars attached to the lipid chain. Here, we report that GSL extracted from this bacterium are able to stimulate NKT cells in a CD1d-specific manner. In addition, soluble CD1d-Ig dimers loaded with this lipid extract specifically bind to NKT cells (but not conventional T cells). Further studies on the S. paucimobilis GSL could potentially lead to other natural sources of CD1d-specific ligands useful for NKT cell analyses and aimed at identifying novel therapies for a variety of disease states.

  10. Kinetics and mechanism of electron transfer reaction of single and double chain surfactant cobalt(III) complex by Fe2+ ions in liposome (dipalmitoylphosphotidylcholine) vesicles: effects of phase transition

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi

    2015-05-01

    In this study, we report the kinetics of reduction reactions of single and double chain surfactant cobalt(III) complexes of octahedral geometry, cis-[Co(en)2(4AMP)(DA)](ClO4)3 and cis-[Co(dmp)2(C12H25NH2)2](ClO4)3 (en = ethylenediamine, dmp = 1,3-diaminopropane, 4AMP = 4-aminopropane, C12H25NH2 = dodecylamine) by Fe2+ ion in dipalmitoylphosphotidylcholine (DPPC) vesicles at different temperatures under pseudo first-order conditions. The kinetics of these reactions is followed by spectrophotometry method. The reactions are found to be second order and the electron transfer is postulated as outer sphere. The remarkable findings in the present investigation are that, below the phase transition temperature of DPPC, the rate decreases with an increase in the concentration of DPPC, while above the phase transition temperature the rate increases with an increase in the concentration of DPPC. The main driving force for this phenomenon is considered to be the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes. Besides, comparing the values of rate constants of these outer-sphere electron transfer reactions in the absence and in the presence of DPPC, the rate constant values in the presence of DPPC are always found to be greater than in the absence of DPPC. This is ascribed to the double hydrophobic fatty acid chain in the DPPC that gives the molecule an overall tubular shape due to the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes more suitable for vesicle aggregation which facilitates lower activation energy, and consequently higher rate is observed in the presence of DPPC. The activation parameters (ΔS# and ΔH#) of the reactions at different temperatures have been calculated which corroborate the kinetics of the reaction.

  11. 1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure

    NASA Astrophysics Data System (ADS)

    Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume

    We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.

  12. Copper(II) coordination chain complex with the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole ligand and an asymmetric μ2-1,1-azido double-bridged: Synthesis, crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Laachir, Abdelhakim; Guesmi, Salaheddine; Saadi, Mohamed; El Ammari, Lahcen; Mentré, Olivier; Vezin, Hervé; Colis, Silviu; Bentiss, Fouad

    2016-11-01

    A new asymmetric μ2-1,1-azido double bridged cooper (II), with 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (L), has been synthesized and characterized using single crystal X-ray diffraction, FT-IR, UV-Visible spectroscopic and magnetic measurements. The asymmetric unit of the title compound contains half molecule of formula, C12H8CuN10S, which crystallizes in the triclinic system, space group P 1 bar , with a = 6.5916 (4)Å, b = 10.6905 (7) Å, c = 11.5037 (7) Å, α = 106.508 (3)°, β = 105.538 (3)°, γ = 90.233 (4)°, V = 745.99 (8) Å3 and Z = 2. The structure consists of two [CuN5] prismatic polyhedra linked together by edge-sharing to build up a [Cu2N8] dimer arranged in chain. The connectivity along the chain is performed by Nsbnd N edge sharing between dimers. In the crystal, the molecules are linked together by Csbnd H⋯N hydrogen bonds and by π---π interactions between parallel pyridyl rings of neighboring molecules. The interpretation of FT-IR and UV-Vis spectra is consistent with the crystal structure determined by X-ray diffraction. The magnetic properties of the complex confirm the picture of an alternated … Cu-J1-Cu ….J2 … Cu-J1-Cu … magnetic chains. We found in the dimers weak antiferromagnetic exchange interactions J1/k = -5.9 (1) k and between them J2/k = -2.3 k.

  13. Simulations of Edge Effect in 1D Spin Crossover Compounds by Atom-Phonon Coupling Model

    NASA Astrophysics Data System (ADS)

    Linares, J.; Chiruta, D.; Jureschi, C. M.; Alayli, Y.; Turcu, C. O.; Dahoo, P. R.

    2016-08-01

    We used the atom-phonon coupling model to explain and illustrate the behaviour of a linear nano-chain of molecules. The analysis of the system's behaviour was performed using Free Energy method, and by applying Monte Carlo Metropolis (MCM) method which take into account the phonon contribution. In particular we tested both the MCM algorithm and the dynamic-matrix method and we expose how the thermal behaviour of a 1D spin crossover system varies as a function of different factors. Furthermore we blocked the edge atoms of the chain in its high spin state to study the effect on the system's behaviour.

  14. A novel real-time reverse transcription-polymerase chain reaction assay with partially double-stranded linear DNA probe for sensitive detection of hepatitis C viral RNA.

    PubMed

    Liu, Tianfu; Wan, Zhenzhou; Liu, Jia; Zhang, Lingyi; Zhou, Yanheng; Lan, Ke; Hu, Yihong; Zhang, Chiyu

    2016-10-01

    The detection and quantification of HCV RNA is very helpful for the management and treatment of HCV related diseases. Detection of low HCV viral load is a great challenge in HCV RNA detection. Here, we developed a novel real-time RT-PCR assay with partially double-stranded linear DNA probe which can detect all HCV genotypes and improve the detection performance. The novel assay has a wide linear dynamic range of HCV RNA quantification (1×10(2)-1×10(11)IU/ml) and a limit of detection of 78IU/ml. The assay exhibits an excellent reproducibility with 2.52% and 1.33% coefficients of variations, for inter- and intra-assays, respectively. To evaluate the viability of the assay, a comparison with a commercial HCV RNA detection kit was performed using 106 serum samples. The lineared correlation coefficient between the novel assay and the commercial HCV RNA detection kit was 0.940. Meanwhile, the deviation between the two methods was tolerable. Therefore, the novel real-time RT-PCR assay was applicable for laboratory diagnosis and monitoring of HCV infection. PMID:27451264

  15. Structure and binding kinetics of three different human CD1d-alpha-galactosylceramide-specific T cell receptors.

    PubMed

    Gadola, Stephan D; Koch, Michael; Marles-Wright, Jon; Lissin, Nikolai M; Shepherd, Dawn; Matulis, Gediminas; Harlos, Karl; Villiger, Peter M; Stuart, David I; Jakobsen, Bent K; Cerundolo, Vincenzo; Jones, E Yvonne

    2006-03-20

    Invariant human TCR Valpha24-Jalpha18+/Vbeta11+ NKT cells (iNKT) are restricted by CD1d-alpha-glycosylceramides. We analyzed crystal structures and binding characteristics for an iNKT TCR plus two CD1d-alpha-GalCer-specific Vbeta11+ TCRs that use different TCR Valpha chains. The results were similar to those previously reported for MHC-peptide-specific TCRs, illustrating the versatility of the TCR platform. Docking TCR and CD1d-alpha-GalCer structures provided plausible insights into their interaction. The model supports a diagonal orientation of TCR on CD1d and suggests that complementarity determining region (CDR)3alpha, CDR3beta, and CDR1beta interact with ligands presented by CD1d, whereas CDR2beta binds to the CD1d alpha1 helix. This docking provides an explanation for the dominant usage of Vbeta11 and Vbeta8.2 chains by human and mouse iNKT cells, respectively, for recognition of CD1d-alpha-GalCer.

  16. Binding of a double-chain surfactant-cobalt(III) complex to CT DNA: effect of β-cyclodextrin in the medium.

    PubMed

    Nagaraj, Karuppiah; Arunachalam, Sankaralingam

    2013-11-01

    The interaction of cis-[Co(phen)2(HA)2](ClO4)3, a cationic surfactant complex (phen=1,10-phenanthroline, HA=hexadecylamine), with calf thymus DNA has been studied by UV-vis absorption, fluorescence spectroscopy, cyclic voltammetry, circular dichroism, and viscosity measurements. The spectroscopic studies together with cyclic voltammetry and viscosity experiments support that the surfactant-cobalt(III) complex binds to calf thymus DNA (CT DNA) by intercalation through the aliphatic chain present in the complex into the base pairs of DNA. The presence of phenanthroline ligand with larger π-frame work may also enhance intercalation. Besides the effect of binding of surfactant cobalt(III) complex to DNA in presence of β-cyclodextrin has also studied. In presence of β-cyclodextrin the binding occurs through surface and (or) groove binding. The complex was investigated as one of the potential selective anticancer prodrugs. The complex was tested also in vitro on human monolayer tumor cell lines: HepG2 (human hepatocellular liver carcinoma). PMID:24041997

  17. Integrated ternary artificial nacre via synergistic toughening of reduced graphene oxide/double-walled carbon nanotubes/poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Gong, Shanshan; Wu, Mengxi; Jiang, Lei; Cheng, Qunfeng

    2016-07-01

    The synergistic toughening effect of building blocks and interface interaction exists in natural materials, such as nacre. Herein, inspired by one-dimensional (1D) nanofibrillar chitin and two-dimensional (2D) calcium carbonate platelets of natural nacre, we have fabricated integrated strong and tough ternary bio-inspired nanocomposites (artificial nacre) successfully via the synergistic effect of 2D reduced graphene oxide (rGO) nanosheets and 1D double-walled carbon nanotubes (DWNTs) and hydrogen bonding cross-linking with polyvinyl alcohol (PVA) matrix. Moreover, the crack mechanics model with crack deflection by 2D rGO nanosheets and crack bridging by 1D DWNTs and PVA chains induces resultant artificial nacre exhibiting excellent fatigue-resistance performance. These outstanding characteristics enable the ternary bioinspired nanocomposites have many promising potential applications, for instance, aerospace, flexible electronics devices and so forth. This synergistic toughening strategy also provides an effective way to assemble robust graphene-based nanocomposites.

  18. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study

    PubMed Central

    2012-01-01

    Background It is well documented that exercise-induced muscle damage (EIMD) decreases muscle function and causes soreness and discomfort. Branched-chain amino acid (BCAA) supplementation has been shown to increase protein synthesis and decrease muscle protein breakdown, however, the effects of BCAAs on recovery from damaging resistance training are unclear. Therefore, the aim of this study was to examine the effects of a BCAA supplementation on markers of muscle damage elicited via a sport specific bout of damaging exercise in trained volunteers. Methods Twelve males (mean ± SD age, 23 ± 2 y; stature, 178.3 ± 3.6 cm and body mass, 79.6 ± 8.4 kg) were randomly assigned to a supplement (n = 6) or placebo (n = 6) group. The damaging exercise consisted of 100 consecutive drop-jumps. Creatine kinase (CK), maximal voluntary contraction (MVC), muscle soreness (DOMS), vertical jump (VJ), thigh circumference (TC) and calf circumference (CC) were measured as markers of muscle damage. All variables were measured immediately before the damaging exercise and at 24, 48, 72 and 96 h post-exercise. Results A significant time effect was seen for all variables. There were significant group effects showing a reduction in CK efflux and muscle soreness in the BCAA group compared to the placebo (P<0.05). Furthermore, the recovery of MVC was greater in the BCAA group (P<0.05). The VJ, TC and CC were not different between groups. Conclusion The present study has shown that BCAA administered before and following damaging resistance exercise reduces indices of muscle damage and accelerates recovery in resistance-trained males. It seems likely that BCAA provided greater bioavailablity of substrate to improve protein synthesis and thereby the extent of secondary muscle damage associated with strenuous resistance exercise. Clinical Trial Registration Number: NCT01529281. PMID:22569039

  19. Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta.

    PubMed Central

    Weinshank, R L; Zgombick, J M; Macchi, M J; Branchek, T A; Hartig, P R

    1992-01-01

    The serotonin 1D (5-HT1D) receptor is a pharmacologically defined binding site and functional receptor site. Observed variations in the properties of 5-HT1D receptors in different tissues have led to the speculation that multiple receptor proteins with slightly different properties may exist. We report here the cloning, deduced amino acid sequences, pharmacological properties, and second-messenger coupling of a pair of human 5-HT1D receptor genes, which we have designated 5-HT1D alpha and 5-HT1D beta due to their strong similarities in sequence, pharmacological properties, and second-messenger coupling. Both genes are free of introns in their coding regions, are expressed in the human cerebral cortex, and can couple to inhibition of adenylate cyclase activity. The pharmacological binding properties of these two human receptors are very similar, and match closely the pharmacological properties of human, bovine, and guinea pig 5-HT1D sites. Both receptors exhibit high-affinity binding of sumatriptan, a new anti-migraine medication, and thus are candidates for the pharmacological site of action of this drug. Images PMID:1565658

  20. Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

    PubMed Central

    Jaeken, Jan W; De Baerdemacker, Stijn; Lejaeghere, Kurt; Van Speybroeck, Veronique

    2014-01-01

    Summary The geometric and electronic structure of the MIL-47(V) metal-organic framework (MOF) is investigated by using ab initio density functional theory (DFT) calculations. Special focus is placed on the relation between the spin configuration and the properties of the MOF. The ground state is found to be antiferromagnetic, with an equilibrium volume of 1554.70 Å3. The transition pressure of the pressure-induced large-pore-to-narrow-pore phase transition is calculated to be 82 MPa and 124 MPa for systems with ferromagnetic and antiferromagnetic chains, respectively. For a mixed system, the transition pressure is found to be a weighted average of the ferromagnetic and antiferromagnetic transition pressures. Mapping DFT energies onto a simple-spin Hamiltonian shows both the intra- and inter-chain coupling to be antiferromagnetic, with the latter coupling constant being two orders of magnitude smaller than the former, suggesting the MIL-47(V) to present quasi-1D behavior. The electronic structure of the different spin configurations is investigated and it shows that the band gap position varies strongly with the spin configuration. The valence and conduction bands show a clear V d-character. In addition, these bands are flat in directions orthogonal to VO6 chains, while showing dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials. PMID:25383285

  1. Ribbon aromaticity in double-chain planar B(n)H2(2-) and Li2B(n)H2 nanoribbon clusters up to n = 22: lithiated boron dihydride analogues of polyenes.

    PubMed

    Bai, Hui; Chen, Qiang; Miao, Chang-Qing; Mu, Yue-Wen; Wu, Yan-Bo; Lu, Hai-Gang; Zhai, Hua-Jin; Li, Si-Dian

    2013-11-21

    We report an extensive density-functional theory and coupled-cluster CCSD(T) study on boron dihydride dianion clusters BnH2(2-) (n = 6-22) and their dilithiated Li2BnH2(0/-) salt complexes. Double-chain (DC) planar nanoribbon structures are confirmed as the global minima for the BnH2(2-) (n = 6-22) clusters. Charging proves to be an effective mechanism to stabilize and extend the DC planar nanostructures, capable of producing elongated boron nanoribbons with variable lengths between 4.3-17.0 Å. For the dilithiated salts, the DC planar nanoribbons are lowest in energy up to Li2B14H2 and represent true minima for all Li2BnH2(0/-) (n = 6-22) species. These boron nanostructures may be viewed as molecular zippers, in which two atomically-thin molecular wires are zipped together via delocalized bonds. Bonding analysis reveals the nature of π plus σ double conjugation in the lithiated DC nanoribbon Li2BnH2(0/-) (n up to 22) model clusters, which exhibit a 4n pattern in adiabatic detachment energies, ionization potentials, and second-order differences in total energies. Band structure analysis of the infinite DC boron nanoribbon structure also reveals that both π and σ electrons participate in electric conduction, much different from the monolayer boron α-sheet in which only π electrons act as carriers. A concept of "ribbon aromaticity" is proposed for this quasi-one-dimensional system, where regular π versus σ alternation of the delocalized electron clouds along the nanoribbons results in enhanced stability for a series of "magic" nanoribbon clusters. The total number of delocalized π and σ electrons for ribbon aromaticity collectively conforms to the (4n + 2) Hückel rule. Ribbon aromaticity appears to be a general concept in other nanoribbon systems as well.

  2. Tctex1d2 associates with short-rib polydactyly syndrome proteins and is required for ciliogenesis

    PubMed Central

    Gholkar, Ankur A.; Senese, Silvia; Lo, Yu-Chen; Capri, Joseph; Deardorff, William J; Dharmarajan, Harish; Contreras, Ely; Hodara, Emmanuelle; Whitelegge, Julian P; Jackson, Peter K; Torres, Jorge Z

    2015-01-01

    Short-rib polydactyly syndromes (SRPS) arise from mutations in genes involved in retrograde intraflagellar transport (IFT) and basal body homeostasis, which are critical for cilia assembly and function. Recently, mutations in WDR34 or WDR60 (candidate dynein intermediate chains) were identified in SRPS. We have identified and characterized Tctex1d2, which associates with Wdr34, Wdr60 and other dynein complex 1 and 2 subunits. Tctex1d2 and Wdr60 localize to the base of the cilium and their depletion causes defects in ciliogenesis. We propose that Tctex1d2 is a novel dynein light chain important for trafficking to the cilium and potentially retrograde IFT and is a new molecular link to understanding SRPS pathology. PMID:25830415

  3. Tctex1d2 associates with short-rib polydactyly syndrome proteins and is required for ciliogenesis.

    PubMed

    Gholkar, Ankur A; Senese, Silvia; Lo, Yu-Chen; Capri, Joseph; Deardorff, William J; Dharmarajan, Harish; Contreras, Ely; Hodara, Emmanuelle; Whitelegge, Julian P; Jackson, Peter K; Torres, Jorge Z

    2015-01-01

    Short-rib polydactyly syndromes (SRPS) arise from mutations in genes involved in retrograde intraflagellar transport (IFT) and basal body homeostasis, which are critical for cilia assembly and function. Recently, mutations in WDR34 or WDR60 (candidate dynein intermediate chains) were identified in SRPS. We have identified and characterized Tctex1d2, which associates with Wdr34, Wdr60 and other dynein complex 1 and 2 subunits. Tctex1d2 and Wdr60 localize to the base of the cilium and their depletion causes defects in ciliogenesis. We propose that Tctex1d2 is a novel dynein light chain important for trafficking to the cilium and potentially retrograde IFT and is a new molecular link to understanding SRPS pathology.

  4. A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects.

    PubMed

    Costabile, Adele; Kolida, Sofia; Klinder, Annett; Gietl, Eva; Bäuerlein, Michael; Frohberg, Claus; Landschütze, Volker; Gibson, Glenn R

    2010-10-01

    There is growing interest in the use of inulins as substrates for the selective growth of beneficial gut bacteria such as bifidobacteria and lactobacilli because recent studies have established that their prebiotic effect is linked to several health benefits. In the present study, the impact of a very-long-chain inulin (VLCI), derived from globe artichoke (Cynara scolymus), on the human intestinal microbiota compared with maltodextrin was determined. A double-blind, cross-over study was carried out in thirty-two healthy adults who were randomised into two groups and consumed 10 g/d of either VLCI or maltodextrin, for two 3-week study periods, separated by a 3-week washout period. Numbers of faecal bifidobacteria and lactobacilli were significantly higher upon VLCI ingestion compared with the placebo. Additionally, levels of Atopobium group significantly increased, while Bacteroides-Prevotella numbers were significantly reduced. No significant changes in faecal SCFA concentrations were observed. There were no adverse gastrointestinal symptoms apart from a significant increase in mild and moderate bloating upon VLCI ingestion. These observations were also confirmed by in vitro gas production measurements. In conclusion, daily consumption of VLCI extracted from globe artichoke exerted a pronounced prebiotic effect on the human faecal microbiota composition and was well tolerated by all volunteers.

  5. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  6. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.

    PubMed

    Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio

    2015-04-15

    The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure. PMID:25822757

  7. Endoplasmic Reticulum Glycoprotein Quality Control Regulates CD1d Assembly and CD1d-mediated Antigen Presentation*

    PubMed Central

    Kunte, Amit; Zhang, Wei; Paduraru, Crina; Veerapen, Natacha; Cox, Liam R.; Besra, Gurdyal S.; Cresswell, Peter

    2013-01-01

    The non-classical major histocompatibility complex (MHC) homologue CD1d presents lipid antigens to innate-like lymphocytes called natural-killer T (NKT) cells. These cells, by virtue of their broad cytokine repertoire, shape innate and adaptive immune responses. Here, we have assessed the role of endoplasmic reticulum glycoprotein quality control in CD1d assembly and function, specifically the role of a key component of the quality control machinery, the enzyme UDP glucose glycoprotein glucosyltransferase (UGT1). We observe that in UGT1-deficient cells, CD1d associates prematurely with β2-microglobulin (β2m) and is able to rapidly exit the endoplasmic reticulum. At least some of these CD1d-β2m heterodimers are shorter-lived and can be rescued by provision of a defined exogenous antigen, α-galactosylceramide. Importantly, we show that in UGT1-deficient cells the CD1d-β2m heterodimers have altered antigenicity despite the fact that their cell surface levels are unchanged. We propose that UGT1 serves as a quality control checkpoint during CD1d assembly and further suggest that UGT1-mediated quality control can shape the lipid repertoire of newly synthesized CD1d. The quality control process may play a role in ensuring stability of exported CD1d-β2m complexes, in facilitating presentation of low abundance high affinity antigens, or in preventing deleterious responses to self lipids. PMID:23615906

  8. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    SciTech Connect

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  9. D1/D5 dopamine receptors modulate spatial memory formation.

    PubMed

    da Silva, Weber C N; Köhler, Cristiano C; Radiske, Andressa; Cammarota, Martín

    2012-02-01

    We investigated the effect of the intra-CA1 administration of the D1/D5 receptor antagonist SCH23390 and the D1/D5 receptor agonist SKF38393 on spatial memory in the water maze. When given immediately, but not 3h after training, SCH23390 hindered long-term spatial memory formation without affecting non-spatial memory or the normal functionality of the hippocampus. On the contrary, post-training infusion of SKF38393 enhanced retention and facilitated the spontaneous recovery of the original spatial preference after reversal learning. Our findings demonstrate that hippocampal D1/D5 receptors play an essential role in spatial memory processing.

  10. Effect of low transverse magnetic field on the confinement strength in a quasi-1D wire

    SciTech Connect

    Kumar, Sanjeev; Thomas, K. J.; Smith, L. W.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Griffiths, J.; Pepper, M.

    2013-12-04

    Transport measurements in a quasi-one dimensional (1D) quantum wire are reported in the presence of low transverse magnetic field. Differential conductance shows weak quantised plateaus when the 2D electrons are squeezed electrostatically. Application of a small transverse magnetic field (0.2T) enhances the overall degree of quantisation due to the formation of magneto-electric subbands. The results show the role of magnetic field to fine tune the confinement strength in low density wires when interaction gives rise to double row formation.

  11. Synthesis, crystal structures and magnetic properties of mer-cyanideiron(III)-based 1D heterobimetallic cyanide-bridged chiral coordination polymers.

    PubMed

    Zhang, Daopeng; Zhuo, Shuping; Zhang, Hongyan; Wang, Ping; Jiang, Jianzhuang

    2015-03-14

    Two pairs of cyanide-bridged Fe(III)–Mn(III)/Cu(II) chiral enantiomer coordination polymers {[Mn(S,S/R,R-Salcy)(CH3OH)2]{[Mn(S,S/R,R-Salcy)][Fe(bbp)(CN)3]}}2n (1,2) (bbp = bis(2-benzimidazolyl)pyridine dianion) and {[Cu(S,S/R,R-Chxn)2]2[Fe2(tbbp)(CN)6]}n (3,4) (tbbp = tetra(3-benzimidazolyl)-4,4′-bipyridine tetraanion) have been successfully prepared by employing mer-tricyanometallate [PPh4]2[Fe(bbp)(CN)3] or the newly bimetallic mer-cyanideiron(III) precursor K4[Fe2(tbbp)(CN)6] as building blocks and with chiral manganese(III)/copper(II) compounds as assemble segments. The four complexes have been characterized by elemental analysis, IR spectroscopy, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra. Single X-ray diffraction reveals that complexes 1 and 2 possess a single anionic chain structure consisting of the asymmetric chiral {[Mn(S,S/R,R-Salcy)][Fe(bbp)(CN)3]}2(2−) unit with free [Mn(S,S/R,R-Salcy)](+) as balanced cations. The cyanide-bridged Fe(III)–Cu(II) complexes 3 and 4 can be structurally characterized as neutral ladder-like double chains composed of the alternating cyanide-bridged Fe–Cu units. Our investigation of magnetic susceptibilities reveals the antiferromagnetic coupling between the cyanide-bridged Fe(III) and Mn(III)/Cu(II) ions for complexes 1–4. These results have been further confirmed by theoretical simulation through numerical matrix diagonalization techniques using a Fortran program or a uniform chain model, leading to the coupling constants J = −7.36 cm(−1), D = −1.52 cm(−1) (1) and J = −4.35 cm(−1) (3), respectively. PMID:25661782

  12. A human serotonin 1D receptor variant (5HT1D beta) encoded by an intronless gene on chromosome 6.

    PubMed Central

    Demchyshyn, L; Sunahara, R K; Miller, K; Teitler, M; Hoffman, B J; Kennedy, J L; Seeman, P; Van Tol, H H; Niznik, H B

    1992-01-01

    An intronless gene encoding a serotonin receptor (5HT1D beta) has been cloned and functionally expressed in mammalian fibroblast cultures. Based on the deduced amino acid sequence, the gene encodes a 390-amino acid protein displaying considerable homology, within putative transmembrane domains (approximately 75% identity) to the canine and human 5HT1D receptors. Membranes prepared from CHO cells stably expressing the receptor bound [3H]serotonin with high affinity (Kd 4 nM) and displayed a pharmacological profile consistent, but not identical, with that of the characterized serotonin 5HT1D receptor. Most notably, metergoline and serotonergic piperazine derivatives, as a group, display 3- to 8-fold lower affinity for the 5HT1D beta receptor than for the 5HT1D receptor, whereas both receptors display similar affinities for tryptamine derivatives, including the antimigraine drug sumatriptan. Northern blot analysis revealed an mRNA of approximately 5.5 kilobases expressed in human and monkey frontal cortex, medulla, striatum, hippocampus and amygdala but not in cerebellum, olfactory tubercle, and pituitary. The 5HT1D beta gene maps to human chromosome 6. The existence of multiple neuronal 5HT1D-like receptors may help account for some of the complexities associated with [3H]serotonin binding patterns in native membranes. Images PMID:1351684

  13. 60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND MAIN COOLANT PUMP LOOKING NORTHEAST (LOCATION OOO) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  14. 1D Nanostructures: Controlled Fabrication and Energy Applications

    SciTech Connect

    Hu, Michael Z.

    2013-01-01

    Jian Wei, Xuchun Song, Chunli Yang, and Michael Z. Hu, 1D Nanostructures: Controlled Fabrication and Energy Applications, Journal of Nanomaterials, published special issue (http://www.hindawi.com/journals/jnm/si/197254/) (2013).

  15. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room

  16. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room

  17. TBC1D24 genotype–phenotype correlation

    PubMed Central

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  18. Falling chains

    NASA Astrophysics Data System (ADS)

    Wong, Chun Wa; Yasui, Kosuke

    2006-06-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.

  19. Controlling Orientational Order in 1-D Assemblies of Multivalent Triangular Prisms.

    PubMed

    Kohlstedt, Kevin L; Olvera de la Cruz, Monica; Schatz, George C

    2013-01-01

    Multivalent nanostructures are becoming an increasingly important player in the self-assembly of supramolecular lattices. Understanding the role that shape plays in the coordination of the assemblies is crucial for the functional response of the material. We develop a simple design rule for the assembly of multivalent Au triangular nanoprisms into 1-D ordered arrays based on both the length of the valent DNA and the aspect ratio of the prism. Using MD simulations, we describe an order parameter that captures the short-range order of the assembly controlled by the design parameters. The order parameter shows that even short chains (N = 4) of prisms have a high degree of orientational order that transitions to no orientational order when the DNA length is similar to the prism length. Unlike isotropic polyvalent assemblies, we find that the highly oriented chains of prisms lose orientational order in discrete steps during melting as the prisms in the arrays dissociate.

  20. Double space with double line

    SciTech Connect

    Cheltsov, I A

    2004-10-31

    For a singular double cover of P{sup 3} ramified in a sextic with double line, its birational maps into Fano 3-folds with canonical singularities, elliptic fibrations, and fibrations on surfaces of Kodaira dimension zero are described.

  1. Double space with double line

    NASA Astrophysics Data System (ADS)

    Cheltsov, I. A.

    2004-10-01

    For a singular double cover of \\mathbb P^3 ramified in a sextic with double line, its birational maps into Fano 3-folds with canonical singularities, elliptic fibrations, and fibrations on surfaces of Kodaira dimension zero are described.

  2. E-beam to complement optical lithography for 1D layouts

    NASA Astrophysics Data System (ADS)

    Lam, David K.; Liu, Enden D.; Smayling, Michael C.; Prescop, Ted

    2011-04-01

    The semiconductor industry is moving to highly regular designs, or 1D gridded layouts, to enable scaling to advanced nodes, as well as improve process latitude, chip size and chip energy consumption. The fabrication of highly regular ICs is straightforward. Poly and metal layers are arranged into 1D layouts. These 1D layouts facilitate a two-step patterning approach: a line-creation step, followed by a line-cutting step, to form the desired IC pattern (See Figure 1). The first step, line creation, can be accomplished with a variety of lithography techniques including 193nm immersion (193i) and Self-Aligned Double Patterning (SADP). It appears feasible to create unidirectional parallel lines to at least 11 nm half-pitch, with two applications of SADP for pitch division by four. Potentially, this step can also be accomplished with interference lithography or directed self assembly in the future. The second step, line cutting, requires an extremely high-resolution lithography technique. At advanced nodes, the only options appear to be the costly quadruple patterning with 193i, or EUV or E-Beam Lithography (EBL). This paper focuses on the requirements for a lithography system for "line cutting", using EBL to complement Optical. EBL is the most cost-effective option for line cutting at advanced nodes for HVM.

  3. Reversible interconversion of a divalent vanadium bronze between δ and β quasi-1D structures.

    PubMed

    Marley, Peter M; Banerjee, Sarbajit

    2012-05-01

    Charge fluctuations along the quasi-1D frameworks of M(x)V(2)O(5) bronzes have evinced much recent interest owing to the manifestation of colossal metal-insulator transitions and superconductivity. Depending upon the nature of the intercalating cation (M), distinctive geometries of the V(2)O(5) framework are accessible. Herein, we demonstrate an unprecedented reversible transformation between double-layered (δ) and tunnel (β) quasi-1D geometries for nanowires of a divalent vanadium bronze, Ca(x)V(2)O(5) (x ≈ 0.23), upon annealing-induced dehydration and hydrothermally induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge-ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the δ → β conversion and the facile diffusion of water molecules within the tunnel geometries for the β → δ reversion.

  4. [Double teeth].

    PubMed

    Schuurs, A H B; van Loveren, C

    2002-04-01

    Double teeth are not really rare, but it is still enigmatic why and how they develop. Based upon the clinical, morphological and anatomical appearance and the number of teeth in mouths with double teeth, the double teeth are labelled as products of 'fusion' and 'clefting', but the criteria to attach such etiological names are lacking. It is assumed that heredity is involved in the development of double teeth. Therefore it is attempted to explain why only one of a homozygotic twin had a double tooth. PMID:11982209

  5. Dimensional phase transition from 1D behavior to a 3D Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Pelster, Axel; Morath, Denis; Straßel, Dominik; Eggert, Sebastian

    The emergence of new properties from low-dimensional building blocks is a universal theme in different areas in physics. The investigation of transitions between isolated and coupled low-dimensional systems promises to reveal new phenomena and exotic phases. Interacting 1D bosons, which are coupled in a two-dimensional array, are maybe the most fundamental example of a system which illustrates the concept of a dimensional phase transition. However, recent experiments using ultracold gases have shown a surprising discrepancy between theory and experiment and it is far from obvious if the power laws from the underlying 1D theory can predict the transition temperature and order parameter correctly for all interaction strengths. Using a combination of large-scale Quantum Monte-Carlo simulations and chain mean-field calculations, we show that the behavior of the ordering temperature as a function of inter-chain coupling strength does not follow a universal powerlaw, but also depends strongly on the filling

  6. 1D self-assembly of chemisorbed thymine on Cu(110) driven by dispersion forces

    NASA Astrophysics Data System (ADS)

    Temprano, I.; Thomas, G.; Haq, S.; Dyer, M. S.; Latter, E. G.; Darling, G. R.; Uvdal, P.; Raval, R.

    2015-03-01

    Adsorption of thymine on a defined Cu(110) surface was studied using reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and scanning tunnelling microscopy (STM). In addition, density functional theory (DFT) calculations were undertaken in order to further understand the energetics of adsorption and self-assembly. The combination of RAIRS, TPD, and DFT results indicates that an upright, three-point-bonded adsorption configuration is adopted by the deprotonated thymine at room temperature. DFT calculations show that the upright configuration adopted by individual molecules arises as a direct result of strong O-Cu and N-Cu bonds between the molecule and the surface. STM data reveal that this upright thymine motif self-assembles into 1D chains, which are surprisingly oriented along the open-packed [001] direction of the metal surface and orthogonal to the alignment of the functional groups that are normally implicated in H-bonding interactions. DFT modelling of this system reveals that the molecular organisation is actually driven by dispersion interactions, which cause a slight tilt of the molecule and provide the major driving force for assembly into dimers and 1D chains. The relative orientations and distances of neighbouring molecules are amenable for π-π stacking, suggesting that this is an important contributor in the self-assembly process.

  7. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-01

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof.

  8. The GIRAFFE Archive: 1D and 3D Spectra

    NASA Astrophysics Data System (ADS)

    Royer, F.; Jégouzo, I.; Tajahmady, F.; Normand, J.; Chilingarian, I.

    2013-10-01

    The GIRAFFE Archive (http://giraffe-archive.obspm.fr) contains the reduced spectra observed with the intermediate and high resolution multi-fiber spectrograph installed at VLT/UT2 (ESO). In its multi-object configuration and the different integral field unit configurations, GIRAFFE produces 1D spectra and 3D spectra. We present here the status of the archive and the different functionalities to select and download both 1D and 3D data products, as well as the present content. The two collections are available in the VO: the 1D spectra (summed in the case of integral field observations) and the 3D field observations. These latter products can be explored using the VO Paris Euro3D Client (http://voplus.obspm.fr/ chil/Euro3D).

  9. PC-1D installation manual and user's guide

    SciTech Connect

    Basore, P.A.

    1991-05-01

    PC-1D is a software package for personal computers that uses finite-element analysis to solve the fully-coupled two-carrier semiconductor transport equations in one dimension. This program is particularly useful for analyzing the performance of optoelectronic devices such as solar cells, but can be applied to any bipolar device whose carrier flows are primarily one-dimensional. This User's Guide provides the information necessary to install PC-1D, define a problem for solution, solve the problem, and examine the results. Example problems are presented which illustrate these steps. The physical models and numerical methods utilized are presented in detail. This document supports version 3.1 of PC-1D, which incorporates faster numerical algorithms with better convergence properties than previous versions of the program. 51 refs., 17 figs., 5 tabs.

  10. Pitch-based pattern splitting for 1D layout

    NASA Astrophysics Data System (ADS)

    Nakayama, Ryo; Ishii, Hiroyuki; Mikami, Koji; Tsujita, Koichiro; Yaegashi, Hidetami; Oyama, Kenichi; Smayling, Michael C.; Axelrad, Valery

    2015-07-01

    The pattern splitting algorithm for 1D Gridded-Design-Rules layout (1D layout) for sub-10 nm node logic devices is shown. It is performed with integer linear programming (ILP) based on the conflict graph created from a grid map for each designated pitch. The relation between the number of times for patterning and the minimum pitch is shown systematically with a sample pattern of contact layer for each node. From the result, the number of times for patterning for 1D layout is fewer than that for conventional 2D layout. Moreover, an experimental result including SMO and total integrated process with hole repair technique is presented with the sample pattern of contact layer whose pattern density is relatively high among critical layers (fin, gate, local interconnect, contact, and metal).

  11. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures.

    PubMed

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-16

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof. PMID:27634531

  12. Flexible Photodetectors Based on 1D Inorganic Nanostructures

    PubMed Central

    Lou, Zheng

    2015-01-01

    Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404

  13. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    SciTech Connect

    KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  14. Observation of Dynamical Fermionization in 1D Bose Gases

    NASA Astrophysics Data System (ADS)

    Malvania, Neel; Xia, Lin; Xu, Wei; Wilson, Joshua M.; Zundel, Laura A.; Rigol, Marcos; Weiss, David S.

    2016-05-01

    The momentum distribution of a harmonically trapped 1D Bose gases in the Tonks-Girardeau limit is expected to undergo dynamical fermionization. That is, after the harmonic trap is suddenly turned off, the momentum distribution steadily transforms into that of an ideal Fermi gas in the same initial trap. We measure 1D momentum distributions at variable times after such a quench, and observe the predicted dynamical fermionization. In addition to working in the strong coupling limit, we also perform the experiment with intermediate coupling, where theoretical calculations are more challenging.

  15. Dimensional phase transition from an array of 1D Luttinger liquids to a 3D Bose-Einstein condensate.

    PubMed

    Vogler, Andreas; Labouvie, Ralf; Barontini, Giovanni; Eggert, Sebastian; Guarrera, Vera; Ott, Herwig

    2014-11-21

    We study the thermodynamic properties of a 2D array of coupled one-dimensional Bose gases. The system is realized with ultracold bosonic atoms loaded in the potential tubes of a two-dimensional optical lattice. For negligible coupling strength, each tube is an independent weakly interacting 1D Bose gas featuring Tomonaga Luttinger liquid behavior. By decreasing the lattice depth, we increase the coupling strength between the 1D gases and allow for the phase transition into a 3D condensate. We extract the phase diagram for such a system and compare our results with theoretical predictions. Because of the high effective mass across the periodic potential and the increased 1D interaction strength, the phase transition is shifted to large positive values of the chemical potential. Our results are prototypical to a variety of low-dimensional systems, where the coupling between the subsystems is realized in a higher spatial dimension such as coupled spin chains in magnetic insulators.

  16. Reversible supra-channel effects: 3D kagome structure and catalysis via a molecular array of 1D coordination polymers.

    PubMed

    Lee, Haeri; Noh, Tae Hwan; Jung, Ok-Sang

    2013-10-14

    Self-assembly of CuX2 (X(-) = ClO4(-) and BF4(-)) with 2,3-bis(nicotinoyloxy)naphthalene yields a 1D loop-chain skeleton. The loop-chains form an ensemble constituting a unique 3D kagome-type structure with both hexagonal and trigonal supra-channels. The unprecedented supra-channel effects on the catalytic oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylbenzoquinone were investigated.

  17. Non-cooperative Brownian donkeys: A solvable 1D model

    NASA Astrophysics Data System (ADS)

    Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.

    2003-12-01

    A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.

  18. 1D design style implications for mask making and CEBL

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.

    2013-09-01

    At advanced nodes, CMOS logic is being designed in a highly regular design style because of the resolution limitations of optical lithography equipment. Logic and memory layouts using 1D Gridded Design Rules (GDR) have been demonstrated to nodes beyond 12nm.[1-4] Smaller nodes will require the same regular layout style but with multiple patterning for critical layers. One of the significant advantages of 1D GDR is the ease of splitting layouts into lines and cuts. A lines and cuts approach has been used to achieve good pattern fidelity and process margin to below 12nm.[4] Line scaling with excellent line-edge roughness (LER) has been demonstrated with self-aligned spacer processing.[5] This change in design style has important implications for mask making: • The complexity of the masks will be greatly reduced from what would be required for 2D designs with very complex OPC or inverse lithography corrections. • The number of masks will initially increase, as for conventional multiple patterning. But in the case of 1D design, there are future options for mask count reduction. • The line masks will remain simple, with little or no OPC, at pitches (1x) above 80nm. This provides an excellent opportunity for continual improvement of line CD and LER. The line pattern will be processed through a self-aligned pitch division sequence to divide pitch by 2 or by 4. • The cut masks can be done with "simple OPC" as demonstrated to beyond 12nm.[6] Multiple simple cut masks may be required at advanced nodes. "Coloring" has been demonstrated to below 12nm for two colors and to 8nm for three colors. • Cut/hole masks will eventually be replaced by e-beam direct write using complementary e-beam lithography (CEBL).[7-11] This transition is gated by the availability of multiple column e-beam systems with throughput adequate for high- volume manufacturing. A brief description of 1D and 2D design styles will be presented, followed by examples of 1D layouts. Mask complexity for 1

  19. ℤ3 parafermionic chain emerging from Yang-Baxter equation.

    PubMed

    Yu, Li-Wei; Ge, Mo-Lin

    2016-01-01

    We construct the 1D ℤ3 parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the ℤ3 parafermionic chain possesses both triple degenerate ground states and non-trivial topological winding number. Hence, the ℤ3 parafermionic model is a direct generalization of 1D ℤ2 Kitaev model. Both the ℤ2 and ℤ3 model can be obtained from Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we define a new 3-body Hamiltonian H123 based on Yang-Baxter equation. Different from the Majorana doubling, the H123 holds triple degeneracy at each of energy levels. The triple degeneracy is protected by two symmetry operators of the system, ω-parity P [formula in text] and emergent parafermionic operator Γ, which are the generalizations of parity PM and emergent Majorana operator in Lee-Wilczek model, respectively. Both the ℤ3 parafermionic model and H123 can be viewed as SU(3) models in color space. In comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the generalization of Majorana models resultant from Yang-Baxter equation. PMID:26902999

  20. ℤ3 parafermionic chain emerging from Yang-Baxter equation

    NASA Astrophysics Data System (ADS)

    Yu, Li-Wei; Ge, Mo-Lin

    2016-02-01

    We construct the 1D parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the parafermionic chain possesses both triple degenerate ground states and non-trivial topological winding number. Hence, the parafermionic model is a direct generalization of 1D Kitaev model. Both the and model can be obtained from Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we define a new 3-body Hamiltonian based on Yang-Baxter equation. Different from the Majorana doubling, the holds triple degeneracy at each of energy levels. The triple degeneracy is protected by two symmetry operators of the system, ω-parity P and emergent parafermionic operator Γ, which are the generalizations of parity PM and emergent Majorana operator in Lee-Wilczek model, respectively. Both the parafermionic model and can be viewed as SU(3) models in color space. In comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the generalization of Majorana models resultant from Yang-Baxter equation.

  1. ℤ3 parafermionic chain emerging from Yang-Baxter equation

    PubMed Central

    Yu, Li-Wei; Ge, Mo-Lin

    2016-01-01

    We construct the 1D parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the parafermionic chain possesses both triple degenerate ground states and non-trivial topological winding number. Hence, the parafermionic model is a direct generalization of 1D Kitaev model. Both the and model can be obtained from Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we define a new 3-body Hamiltonian based on Yang-Baxter equation. Different from the Majorana doubling, the holds triple degeneracy at each of energy levels. The triple degeneracy is protected by two symmetry operators of the system, ω-parity P and emergent parafermionic operator Γ, which are the generalizations of parity PM and emergent Majorana operator in Lee-Wilczek model, respectively. Both the parafermionic model and can be viewed as SU(3) models in color space. In comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the generalization of Majorana models resultant from Yang-Baxter equation. PMID:26902999

  2. Magnetic tetrastability in a spin chain

    NASA Astrophysics Data System (ADS)

    Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude

    2016-08-01

    Bistability in magnetism is extensively used, in particular for information storage. Here an alternative approach using tetrastable magnetic domains in one-dimensional (1D) spin systems is presented. Using numerical and analytical calculations, we show that a spin chain with a canting angle of π/4 possesses four energy-equivalent states. We discuss the static properties of this canted 1D system such as the profile and the energy of the domain walls as they govern the dynamics of the magnetization. The realization of this π/4 canted spin chain could enable the encoding of the information on four bits, which is a potential alternative toward the increase of storage density.

  3. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization.

    PubMed

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2015-03-01

    This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259

  4. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    PubMed Central

    Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.

    2013-01-01

    Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093

  5. 1D coordination polymers with polychalcogenides as linkers between metal atoms

    SciTech Connect

    Kysliak, Oleksandr; Beck, Johannes

    2013-07-15

    The reactions of zinc metal with elemental selenium and selenium/sulfur mixtures in liquid ammonia or methylamine under solvothermal conditions in closed glass ampoules at 50 °C lead within some days specifically to [Zn(NH{sub 3}){sub 2}Se{sub 4}]{sub n} (1), [Zn(MeNH{sub 2}){sub 2}Se{sub 4}]{sub n} (2), [Zn(NH{sub 3}){sub 2}Se{sub 2.23}S{sub 1.77}]{sub n} (3). From MnCl{sub 2}, Rb{sub 2}Se and excess Se in n-butylamine [Mn({sup n}BuNH{sub 2}){sub 4}Se{sub 6}]{sub n} (4) is obtained after prolonged reaction time at ambient temperature. The compounds are sensitive towards air and loss of NH{sub 3} or the amine ligands. The crystal structures were determined by single crystal diffraction at low temperatures. As a common structural feature, all compounds represent 1D coordination polymers with polychalcogenide chains as linkers between the metal atoms and consist of infinite [M–Ch{sub m}–]{sub n} chains (M=Zn, Mn; Ch{sub m}=Se{sub 4}, (S/Se){sub 4}, Se{sub 6}). The Zn central atoms in 1–3 have tetrahedral coordination with two amine ligands, the Mn atoms in 4 have octahedral coordination with four amine ligands and cis position of the two Se atoms. Raman spectra of 1–3 show the stretching mode vibrations of the Ch{sub 4} groups. The observation of S–S, S–Se, and Se–Se vibration bands in the spectrum of 3 indicates the presence of mixed S/Se polyanions. An optical band gap of 1.86(5) eV was determined for 2 by diffuse reflectance spectroscopy. - Graphical abstract: The reaction of Zn and Se in liquid methylamine yields dark red [Zn(NH{sub 2}CH{sub 3})Se{sub 4}], a 1D coordination polymer consisting of helical Zn–Se{sub 4}–Zn– chains. - Highlights: • A series of 1D coordination polymers consisting of metal amine complexes concatenated by polychalcogenide ions is presented. • Syntheses were performed as solvothermal reactions in liquid ammonia, liquid methylamine and n-butylamine. • Crystal structures are dominated by helices [M–Ch{sub m

  6. 1-D Numerical Analysis of ABCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Holden, Richard

    1999-01-01

    ABCC engine combines air breathing and rocket engine into a single engine to increase the specific impulse over an entire flight trajectory. Except for the heat source, the basic operation of the ABCC is similar to the basic operation of the RBCC engine. The ABCC is intended to have a higher specific impulse than the RBCC for single stage Earth to orbit vehicle. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in ABCC propulsion system. The objective of the present research was to develop a transient 1-D numerical model using conservation of mass, linear momentum, and energy equations that could be used to predict flow behavior throughout a generic ABCC engine following a flight path. At specific points during the development of the 1-D numerical model a myriad of tests were performed to prove the program produced consistent, realistic numbers that follow compressible flow theory for various inlet conditions.

  7. Phase diagram of a bulk 1d lattice Coulomb gas

    NASA Astrophysics Data System (ADS)

    Démery, V.; Monsarrat, R.; Dean, D. S.; Podgornik, R.

    2016-01-01

    The exact solution, via transfer matrix, of the simple one-dimensional lattice Coulomb gas (1d LCG) model can reproduce peculiar features of ionic liquid capacitors, such as overscreening, layering, and camel- and bell-shaped capacitance curves. Using the same transfer matrix method, we now compute the bulk properties of the 1d LCG in the constant voltage ensemble. We unveil a phase diagram with rich structure exhibiting low-density disordered and high-density ordered phases, separated by a first-order phase transition at low temperature; the solid state at full packing can be ordered or not, depending on the temperature. This phase diagram, which is strikingly similar to its three-dimensional counterpart, also sheds light on the behaviour of the confined system.

  8. 1D Josephson quantum interference grids: diffraction patterns and dynamics

    NASA Astrophysics Data System (ADS)

    Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2016-02-01

    We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.

  9. Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir

    NASA Astrophysics Data System (ADS)

    Lauer, J. Wesley; Viparelli, Enrica; Piégay, Hervé

    2016-07-01

    Bed material transported in geomorphically active gravel bed rivers often has a local source at nearby eroding banks and ends up sequestered in bars not far downstream. However, most 1-D numerical models for gravel transport assume that gravel originates from and deposits on the channel bed. In this paper, we present a 1-D framework for simulating morphodynamic evolution of bed elevation and size distribution in a gravel-bed river that actively exchanges sediment with its floodplain, which is represented as an off-channel sediment reservoir. The model is based on the idea that sediment enters the channel at eroding banks whose elevation depends on total floodplain sediment storage and on the average elevation of the floodplain relative to the channel bed. Lateral erosion of these banks occurs at a specified rate that can represent either net channel migration or channel widening. Transfer of material out of the channel depends on a typical bar thickness and a specified lateral exchange rate due either to net channel migration or narrowing. The model is implemented using an object oriented framework that allows users to explore relationships between bank supply, bed structure, and lateral change rates. It is applied to a ∼50-km reach of the Ain River, France, that experienced significant reduction in sediment supply due to dam construction during the 20th century. Results are strongly sensitive to lateral exchange rates, showing that in this reach, the supply of sand and gravel at eroding banks and the sequestration of gravel in point bars can have strong influence on overall reach-scale sediment budgets.

  10. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  11. Constructing 3D interaction maps from 1D epigenomes

    PubMed Central

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W.; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter–promoter, promoter–enhancer and enhancer–enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  12. Constructing 3D interaction maps from 1D epigenomes.

    PubMed

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter-promoter, promoter-enhancer and enhancer-enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  13. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  14. A novel CMOS digital pixel sensor for 1D barcode scanning

    NASA Astrophysics Data System (ADS)

    Yan, Mei; DeGeronimo, Gianluigi; O'Connor, Paul; Carlson, Bradley S.

    2004-06-01

    A 1-D CMOS digital pixel image sensor system architecture is presented. Each pixel contains a photodiode, a low-power charge-sensitive amplifier, low noise sample/hold circuit, an 8-bit single-slope ADC, a 12-bit shift register and timing & control logic. The pixel is laid out on a 4μm pitch to enable a cost efficient implementation of high-resolution pixel arrays. Fixed pattern noise (FPN) is reduced by a charge-sensitive feedback amplifier, and the reset noise is cancelled by correlated double sampling read out. A prototype chip containing 512 pixels has been fabricated in the TSMC .25um logic process. A 40μV/e- conversion gain is measured with 100 e- rms read noise.

  15. Molecular characterization of zebrafish Oatp1d1 (Slco1d1), a novel organic anion-transporting polypeptide.

    PubMed

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2013-11-22

    The organic anion-transporting polypeptide (OATP/Oatp) superfamily includes a group of polyspecific transporters that mediate transport of large amphipathic, mostly anionic molecules across cell membranes of eukaryotes. OATPs/Oatps are involved in the disposition and elimination of numerous physiological and foreign compounds. However, in non-mammalian species, the functional properties of Oatps remain unknown. We aimed to elucidate the role of Oatp1d1 in zebrafish to gain insights into the functional and structural evolution of the OATP1/Oatp1 superfamily. We show that diversification of the OATP1/Oatp1 family occurs after the emergence of jawed fish and that the OATP1A/Oatp1a and OATP1B/Oatp1b subfamilies appeared at the root of tetrapods. The Oatp1d subfamily emerged in teleosts and is absent in tetrapods. The zebrafish Oatp1d1 is similar to mammalian OATP1A/Oatp1a and OATP1B/Oatp1b members, with the main physiological role in transport and balance of steroid hormones. Oatp1d1 activity is dependent upon pH gradient, which could indicate bicarbonate exchange as a mode of transport. Our analysis of evolutionary conservation and structural properties revealed that (i) His-79 in intracellular loop 3 is conserved within OATP1/Oatp1 family and is crucial for the transport activity; (ii) N-glycosylation impacts membrane targeting and is conserved within the OATP1/Oatp1 family with Asn-122, Asn-133, Asn-499, and Asn-512 residues involved; (iii) the evolutionarily conserved cholesterol recognition interaction amino acid consensus motif is important for membrane localization; and (iv) Oatp1d1 is present in dimeric and possibly oligomeric form in the cell membrane. In conclusion, we describe the first detailed characterization of a new Oatp transporter in zebrafish, offering important insights into the functional evolution of the OATP1/Oatp1 family and the physiological role of Oatp1d1.

  16. Polychalcogenophosphate flux synthesis of 1D-KInP 2Se 6 and 1D and 3D-NaCrP 2S 6

    NASA Astrophysics Data System (ADS)

    Coste, Servane; Kopnin, Evgeni; Evain, Michel; Jobic, Stéphane; Brec, Raymond; Chondroudis, Konstantinos; Kanatzidis, Mercouri G.

    2002-04-01

    Three new chalcogenophosphates, 1D-KInP 2Se 6 ( I), 1D-NaCrP 2S 6 ( II) and 3D-NaCrP 2S 6 ( III), have been synthesized and their structure determined from single crystal diffraction analysis. ( I) and ( II) crystallize in the monoclinic system (space group P2 1/n, No. 14) with cell parameters a=7.5112(11), b=6.4861(5), c=22.789(2) Å and β=98.912(16)° ( V=1096.9(2) Å 3), Z=4 and R/ Rw( F2)=0.0234/0.0387 (for 900 observed reflections and 92 refined parameters) for ( I) and a=7.0279(5), b=5.8797(2), c=21.2578(14) Å and β=92.110(3)° ( V=877.82(9) Å 3), Z=4 and R/ Rw( F2)=0.0572/0.1151 (for 1455 observed reflections and 92 refined parameters) for ( II). Both materials exhibit 1/ ∞[MP 2Q 6] - chains built upon [MQ 6] octahedra (M=In, Cr; Q=Se, S) sharing edges to define 1/ ∞[MQ 4] 5- zigzag fibers which are capped by tetradentate ethane-like [P 2Q 6] groups. ( III) crystallizes in the orthorhombic system (space group Fdd2, No. 43) with cell parameters a=10.9742(7), b=7.9828(6), c=20.8590(19) Å ( V=1827.3(4) Å 3), Z=8 and R/ Rw=0.0184/0.0378 (for 967 observed reflections and 47 refined parameters), and displays a three-dimensional framework arrangement. Its structure is similar to that of TiP 2S 6 where titanium atoms are substituted for the chromium, the sodium atoms being inserted in the empty tunnels to ensure the charge balance. The exfoliation properties of 1D-NaCrP 2S 6 in polar solvents are reported.

  17. Revisiting the Anderson Model with Power-Law Correlated Disorder in 1D and 2D

    NASA Astrophysics Data System (ADS)

    Petersen, Greg; Sandler, Nancy

    2011-03-01

    The dimensionality of a disordered system directly affects the critical energy where a localization/delocalization transition occurs. In non-interacting systems with uncorrelated disorder, it is widely known that all states in one-dimension are localized. However, for some correlations there exist transition energies similar to mobility edges or small subsets of extended states that are robust against disorder. In this talk, we will present results on the diffusion of a wavepacket in a power-law correlated random potential of the form < V (r) V (0) > =1/(a + r)α . We also report results for the participation ratio Pr =1/N 2 < |ai |4 > . Preliminary results for 1D chains support the existence of a mobility edge near the band center. Square and graphene lattices will also be discussed. This work has been supported by the NSF-PIRE mwn/ciam and NSF Grant DMR-0710581.

  18. Universal low-energy physics in 1D strongly repulsive multi-component Fermi gases

    NASA Astrophysics Data System (ADS)

    Jiang, Yuzhu; He, Peng; Guan, Xi-Wen

    2016-04-01

    It has been shown (Yang and You 2011 Chin. Phys. Lett. 28 020503) that at zero temperature the ground state of the one-dimensional (1D) w-component Fermi gas coincides with that of the spinless Bose gas in the limit ω \\to ∞ . This behavior was experimentally evidenced through quasi-1D tightly trapping ultracold 173Yb atoms in a recent paper (Pagano et al 2014 Nat. Phys. 10 198). However, understanding of low-temperature behavior of Fermi gases with a repulsive interaction requires spin-charge separated conformal field theories of an effective Tomonaga-Luttinger liquid and an antiferromagnetic SU(w) Heisenberg spin chain. Here we analytically derive universal thermodynamics of 1D strongly repulsive fermionic gases with SU(w) symmetry via the Yang-Yang thermodynamic Bethe ansatz method. The analytical free energy and magnetic properties of the systems at low temperature in a weak magnetic field are obtained through the Wiener-Hopf method. In particular, the free energy essentially manifests the spin-charge separated conformal field theories for high-symmetry systems with arbitrary repulsive interaction strength. We also find that the sound velocity of the Fermi gases in the large w limit coincides with that for the spinless Bose gas, whereas the spin velocity vanishes quickly as w becomes large. This indicates strong suppression of the Fermi exclusion statistics by the commutativity feature among the w-component fermions with different spin states in the Tomonaga-Luttinger liquid phase. Moreover, the equations of state and critical behavior of physical quantities at finite temperature are analytically derived in terms of the polylogarithm functions in the quantum critical region.

  19. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  20. Non-linearity in Bayesian 1-D magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dettmer, Jan; Tong, Xiaozhong

    2011-05-01

    This paper applies a Bayesian approach to examine non-linearity for the 1-D magnetotelluric (MT) inverse problem. In a Bayesian formulation the posterior probability density (PPD), which combines data and prior information, is interpreted in terms of parameter estimates and uncertainties, which requires optimizing and integrating the PPD. Much work on 1-D MT inversion has been based on (approximate) linearized solutions, but more recently fully non-linear (numerical) approaches have been applied. This paper directly compares results of linearized and non-linear uncertainty estimation for 1-D MT inversion; to do so, advanced methods for both approaches are applied. In the non-linear formulation used here, numerical optimization is carried out using an adaptive-hybrid algorithm. Numerical integration applies Metropolis-Hastings sampling, rotated to a principal-component parameter space for efficient sampling of correlated parameters, and employing non-unity sampling temperatures to ensure global sampling. Since appropriate model parametrizations are generally not known a priori, both under- and overparametrized approaches are considered. For underparametrization, the Bayesian information criterion is applied to determine the number of layers consistent with the resolving power of the data. For overparametrization, prior information is included which favours simple structure in a manner similar to regularized inversion. The data variance and/or trade-off parameter regulating data and prior information are treated in several ways, including applying fixed optimal estimates (an empirical Bayesian approach) or including them as hyperparameters in the sampling (hierarchical Bayesian). The latter approach has the benefit of accounting for the uncertainty in the hyperparameters in estimating model parameter uncertainties. Non-linear and linearized inversion results are compared for synthetic test cases and for the measured COPROD1 MT data by considering marginal probability

  1. Viscous behavior in a quasi-1D fractal cluster glass.

    PubMed

    Etzkorn, S J; Hibbs, Wendy; Miller, Joel S; Epstein, A J

    2002-11-11

    The spin glass transition of a quasi-1D organic-based magnet ([MnTPP][TCNE]) is explored using both ac and dc measurements. A scaling analysis of the ac susceptibility shows a spin glass transition near 4 K, with a viscous decay of the thermoremanent magnetization recorded above 4 K. We propose an extension to a fractal cluster model of spin glasses that determines the dimension of the spin clusters (D) ranging from approximately 0.8 to over 1.5 as the glass transition is approached. Long-range dipolar interactions are suggested as the origin of this low value for the apparent lower critical dimension.

  2. Practical variational tomography for critical 1D systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong Yeon; Landon-Cardinal, Olivier

    2015-03-01

    We further investigate a recently introduced efficient quantum state reconstruction procedure targeted to states well-approximated by the multi-scale entanglement renormalization ansatz (MERA). First, we introduce an improved optimization scheme that can be easily generalized for MERA states with larger bond dimension. Second, we provide a detailed analysis of the error propagation and quantify how it affects the distance between the experimental state and the reconstructed state. Third, we explain how to bound this distance using local data, providing an efficient scalable certification method. Fourth, we examine the performance of MERA tomography on the ground states of several 1D critical models.

  3. Structural stability of a 1D compressible viscoelastic fluid model

    NASA Astrophysics Data System (ADS)

    Huo, Xiaokai; Yong, Wen-An

    2016-07-01

    This paper is concerned with a compressible viscoelastic fluid model proposed by Öttinger. Although the model has a convex entropy, the Hessian matrix of the entropy does not symmetrize the system of first-order partial differential equations due to the non-conservative terms in the constitutive equation. We show that the corresponding 1D model is symmetrizable hyperbolic and dissipative and satisfies the Kawashima condition. Based on these, we prove the global existence of smooth solutions near equilibrium and justify the compatibility of the model with the Navier-Stokes equations.

  4. Deconvolution/identification techniques for 1-D transient signals

    SciTech Connect

    Goodman, D.M.

    1990-10-01

    This paper discusses a variety of nonparametric deconvolution and identification techniques that we have developed for application to 1-D transient signal problems. These methods are time-domain techniques that use direct methods for matrix inversion. Therefore, they are not appropriate for large data'' problems. These techniques involve various regularization methods and permit the use of certain kinds of a priori information in estimating the unknown. These techniques have been implemented in a package using standard FORTRAN that should make the package readily transportable to most computers. This paper is also meant to be an instruction manual for the package. 25 refs., 17 figs., 1 tab.

  5. Coherent thermal conductance of 1-D photonic crystals

    NASA Astrophysics Data System (ADS)

    Tschikin, Maria; Ben-Abdallah, Philippe; Biehs, Svend-Age

    2012-10-01

    We present an exact calculation of coherent thermal conductance in 1-D multilayer photonic crystals using the S-matrix method. In particular, we study the thermal conductance in a bilayer structure of Si/vacuum or Al2O3/vacuum slabs by means of the exact radiative heat flux expression. Based on the results obtained for the Al2O3/vacuum structure we show by comparison with previous works that the material losses and (localized) surface modes supported by the inner layers play a fundamental role and cannot be omitted in the definition of thermal conductance. Our results could have significant implications in the conception of efficient thermal barriers.

  6. Synthesis, crystal structure, and properties of a 1-D terbium-substituted monolacunary Keggin-type polyoxotungstate.

    PubMed

    Ma, Pengtao; Si, Yanan; Wan, Rong; Zhang, Shaowei; Wang, Jingping; Niu, Jingyang

    2015-03-01

    A new 1-D linear chainlike terbium-substituted polyoxometalate [Tb(H2O)2(α-PW11O39)](4-) (1) has been synthesized in aqueous solution and characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray powder diffraction (XRPD), IR spectrum, thermal analysis, electrospray ionization mass spectrometry (ESI-MS), and X-ray single-crystal diffraction. X-ray structural analysis reveals that 1 displays a 1-D linear chain containing [Tb(H2O)2(α-PW11O39)](4-) moieties. The Tb(III) cation incorporated into the monolacunary Keggin-type [α-PW11O39](7-) unit resides in a distorted monocapped triangular prismatic geometry and acts as a linker to join two adjacent [α-PW11O39](7-) units to form a 1-D chain structure. Solid-state photoluminescent property of 1 has been investigated at room temperature and the photoluminescent emission mainly results from the synergistic effect of the Tb(III) cation and the Na7[α-PW11O39] precursor. The ESI-MS spectrum of 1 confirms that the polyanion [Tb(H2O)(HPW11O39)](3-) is stable in aqueous solution.

  7. Differential Recognition of CD1d-[alpha]-Galactosyl Ceramide by the V[beta]8.2 and V[beta]7 Semi-invariant NKT T Cell Receptors

    SciTech Connect

    Pellicci, Daniel G.; Patel, Onisha; Kjer-Nielsen, Lars; Pang, Siew Siew; Sullivan, Lucy C.; Kyparissoudis, Konstantinos; Brooks, Andrew G.; Reid, Hugh H.; Gras, Stephanie; Lucet, Isabelle S.; Koh, Ruide; Smyth, Mark J.; Mallevaey, Thierry; Matsuda, Jennifer L.; Gapin, Laurent; McCluskey, James; Godfrey, Dale I.; Rossjohn, Jamie; PMCI-A; Monash; UCHSC; Melbourne

    2009-09-02

    The semi-invariant natural killer T cell receptor (NKT TCR) recognizes CD1d-lipid antigens. Although the TCR{alpha} chain is typically invariant, the {beta} chain expression is more diverse, where three V{beta} chains are commonly expressed in mice. We report the structures of V{alpha}14-V{beta}8.2 and V{alpha}14-V{beta}7 NKT TCRs in complex with CD1d-{alpha}-galactosylceramide ({alpha}-GalCer) and the 2.5 {angstrom} structure of the human NKT TCR-CD1d-{alpha}-GalCer complex. Both V{beta}8.2 and V{beta}7 NKT TCRs and the human NKT TCR ligated CD1d-{alpha}-GalCer in a similar manner, highlighting the evolutionarily conserved interaction. However, differences within the V{beta} domains of the V{beta}8.2 and V{beta}7 NKT TCR-CD1d complexes resulted in altered TCR{beta}-CD1d-mediated contacts and modulated recognition mediated by the invariant {alpha} chain. Mutagenesis studies revealed the differing contributions of V{beta}8.2 and V{beta}7 residues within the CDR2{beta} loop in mediating contacts with CD1d. Collectively we provide a structural basis for the differential NKT TCR V{beta} usage in NKT cells.

  8. Fast Optimal Load Balancing Algorithms for 1D Partitioning

    SciTech Connect

    Pinar, Ali; Aykanat, Cevdet

    2002-12-09

    One-dimensional decomposition of nonuniform workload arrays for optimal load balancing is investigated. The problem has been studied in the literature as ''chains-on-chains partitioning'' problem. Despite extensive research efforts, heuristics are still used in parallel computing community with the ''hope'' of good decompositions and the ''myth'' of exact algorithms being hard to implement and not runtime efficient. The main objective of this paper is to show that using exact algorithms instead of heuristics yields significant load balance improvements with negligible increase in preprocessing time. We provide detailed pseudocodes of our algorithms so that our results can be easily reproduced. We start with a review of literature on chains-on-chains partitioning problem. We propose improvements on these algorithms as well as efficient implementation tips. We also introduce novel algorithms, which are asymptotically and runtime efficient. We experimented with data sets from two different applications: Sparse matrix computations and Direct volume rendering. Experiments showed that the proposed algorithms are 100 times faster than a single sparse-matrix vector multiplication for 64-way decompositions on average. Experiments also verify that load balance can be significantly improved by using exact algorithms instead of heuristics. These two findings show that exact algorithms with efficient implementations discussed in this paper can effectively replace heuristics.

  9. PmTBC1D20, a Rab GTPase-activating protein from the black tiger shrimp, Penaeus monodon, is involved in white spot syndrome virus infection.

    PubMed

    Yingvilasprasert, Wanchart; Supungul, Premruethai; Tassanakajon, Anchalee

    2014-02-01

    TBC (TRE2/BUB2/CDC16) domain proteins contain an ≈ 200-amino-acid motif and function as Rab GTPase-activating proteins that are required for regulating the activity of Rab proteins, and so, in turn, endocytic membrane trafficking in cells. TBC domain family member 20 (TBC1D20) has recently been reported to mediate Hepatitis C virus replication. Herein, PmTBC1D20 identified from the black tiger shrimp, Penaeus monodon, was characterized and evaluated for its role in white spot syndrome virus (WSSV) infection. The full-length cDNA sequence of PmTBC1D20 contains 2003 bp with a predicted 1443 bp open reading frame encoding a deduced 480 amino acid protein. Its transcript levels were significantly up-regulated at 24 and 48 h by ≈ 2.3- and 2.1-fold, respectively, after systemic infection with WSSV. In addition, depletion of PmTBC1D20 transcript in shrimps by double stranded RNA interference led to a decrease in the level of transcripts of three WSSV genes (VP28, ie1 and wsv477). This suggests the importance of PmTBC1D20 in WSSV infection. This is the first report of TBC1D20 in a crustacean and reveals the possible mechanism used by WSSV to modulate the activity of the host protein, PmTBC1D20, for its benefit in viral trafficking and replication.

  10. A simple quasi-1D model of Fibonacci anyons

    NASA Astrophysics Data System (ADS)

    Aasen, David; Mong, Roger; Clarke, David; Alicea, Jason; Fendley, Paul

    2015-03-01

    There exists various ways of understanding the topological properties of Ising anyons--from simple free-fermion toy models to formal topological quantum field theory. For other types of anyons simple toy models rarely exist; their properties have to be obtained using formal self-consistency relations. We explore a family of gapped 1D local bosonic models that in a certain limit become trivial to solve and provide an intuitive picture for Fibonacci anyons. One can interpret this model as a quasi-1D wire that forms the building block of a 2D topological phase with Fibonacci anyons. With this interpretation all topological properties of the Fibonacci anyons become manifest including ground state degeneracy and braid relations. We conjecture that the structure of the model is protected by an emergent symmetry analogous to fermion parity. 1) NSF Grant DMR-1341822 2) Institute for Quantum Information and Matter, an NSF physics frontier center with support from the Moore Foundation. 3) NSERC-PGSD.

  11. A 1D analysis of two high order MOC methods

    SciTech Connect

    Everson, M. S.; Forget, B.

    2012-07-01

    The work presented here provides two different methods for evaluating angular fluxes along long characteristics. One is based off a projection of the 1D transport equation onto a complete set of Legendre polynomials, while the other uses the 1D integral transport equation to evaluate the angular flux values at specific points along each track passing through a cell. The Moment Long Characteristic (M-LC) method is shown to provide 2(P+1) spatial convergence and significant gains in accuracy with the addition of only a few spatial degrees of freedom. The M-LC method, though, is shown to be ill-conditioned at very high order and for optically thin geometries. The Point Long Characteristic (P-LC) method, while less accurate, significantly improves stability to problems with optically thin cells. The P-LC method is also more flexible, allowing for extra angular flux evaluations along a given track to give a more accurate representation of the shape along each track. This is at the expense of increasing the degrees of freedom of the system, though, and requires an increase in memory storage. This work concludes that both may be used simultaneously within the same geometry to provide the best mix of accuracy and stability possible. (authors)

  12. Engineered atom-light interactions in 1D photonic crystals

    NASA Astrophysics Data System (ADS)

    Martin, Michael J.; Hung, Chen-Lung; Yu, Su-Peng; Goban, Akihisa; Muniz, Juan A.; Hood, Jonathan D.; Norte, Richard; McClung, Andrew C.; Meenehan, Sean M.; Cohen, Justin D.; Lee, Jae Hoon; Peng, Lucas; Painter, Oskar; Kimble, H. Jeff

    2014-05-01

    Nano- and microscale optical systems offer efficient and scalable quantum interfaces through enhanced atom-field coupling in both resonators and continuous waveguides. Beyond these conventional topologies, new opportunities emerge from the integration of ultracold atomic systems with nanoscale photonic crystals. One-dimensional photonic crystal waveguides can be engineered for both stable trapping configurations and strong atom-photon interactions, enabling novel cavity QED and quantum many-body systems, as well as distributed quantum networks. We present the experimental realization of such a nanophotonic quantum interface based on a nanoscale photonic crystal waveguide, demonstrating a fractional waveguide coupling of Γ1 D /Γ' of 0 . 32 +/- 0 . 08 , where Γ1 D (Γ') is the atomic emission rate into the guided (all other) mode(s). We also discuss progress towards intra-waveguide trapping of ultracold Cs. This work was supported by the IQIM, an NSF Physics Frontiers Center with support from the Moore Foundation, the DARPA ORCHID program, the AFOSR QuMPASS MURI, the DoD NSSEFF program, NSF, and the Kavli Nanoscience Institute (KNI) at Caltech.

  13. Reactions of HO2 with carbon monoxide and nitric oxide and of O/1 D/ with water.

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1973-01-01

    Investigation of the reactions of the hydroperoxyl radical with carbon monoxide and nitric oxide in a static system, and reexamination of the reaction of O(1 D) with water. The HO2 radicals were generated by the photolysis of N2O at 2139 A in the presence of excess H2O or H2 and smaller amounts of CO and O2. The O(1 D) atoms produced from the photolysis of N2O react with H2O or with H2 to give OH radicals in the case of H2O or OH radicals and H atoms in the case of H2. With H2O, two OH radicals are produced for each O(1 D) removed at low pressures, but the OH yield drops as the pressure is raised. This drop is attributed to an insertion reaction which removes from 10 to 30% of the O(1 D) atoms at about 650 torr of H2O at 200 F. The OH radicals generated can react with either CO or H2 to produce H atoms, which then add to O2 to produce HO2. In the absence of NO, the HO2 radicals could react by two routes, while with NO present NO2 is produced in a long chain process.

  14. Mouse and Human CD1d-Self-Lipid Complexes Are Recognized Differently by Murine Invariant Natural Killer T Cell Receptors

    PubMed Central

    Guo, Tingxi; Chamoto, Kenji; Nakatsugawa, Munehide; Ochi, Toshiki; Yamashita, Yuki; Anczurowski, Mark; Butler, Marcus O.; Hirano, Naoto

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize self-lipids presented by CD1d through characteristic TCRs, which mainly consist of the invariant Vα14-Jα18 TCRα chain and Vβ8.2, 7 or 2 TCRβ chains with hypervariable CDR3β sequences in mice. The iNKT cell-CD1d axis is conserved between humans and mice, and human CD1d reactivity of murine iNKT cells have been described. However, the detailed differences between the recognition of human and mouse CD1d bound to various self-lipids by mouse iNKT TCRs are largely unknown. In this study, we generated a de novo murine iNKT TCR repertoire with a wider range of autoreactivity compared with that of naturally occurring peripheral iNKT TCRs. Vβ8.2 mouse iNKT TCRs capable of recognizing the human CD1d-self-lipid tetramer were identified, although such clones were not detectable in the Vβ7 or Vβ2 iNKT TCR repertoire. In line with previously reports, clonotypic Vβ8.2 iNKT TCRs with unique CDR3β loops did not discriminate among lipids presented by mouse CD1d. Unexpectedly, however, these iNKT TCRs showed greater ligand selectivity toward human CD1d presenting the same lipids. Our findings demonstrated that the recognition of mouse and human CD1d-self-lipid complexes by murine iNKT TCRs is not conserved, thereby further elucidating the differences between cognate and cross-species reactivity of self-antigens by mouse iNKT TCRs. PMID:27213277

  15. Single-Layered Hybrid Materials Based on 1D Associated Metalorganic Nanoribbons for Controlled Release of Pheromones.

    PubMed

    Moreno, José María; Navarro, Ismael; Díaz, Urbano; Primo, Jaime; Corma, Avelino

    2016-09-01

    A new family of stable layered organic-inorganic materials has been prepared, in one-step solvothermal process. They are based on an ordered nickel cluster-type nanoribbons separated from each other by specific alkyl (heptyl- or dodecyl-) arylic mono-carboxylate moieties acting as molecular spacers, perpendicular to the 1D inorganic chains. These organic spacers contain hydrocarbon tails with different length which control the separation level between inorganic 1D sub-units, inhibiting the 3D growth of conventional DUT-8-type metal-organic frameworks (MOFs). The lamellar nature of the materials formed was studied and confirmed by different characterization techniques, showing the structural location of individual organic and inorganic building units. They have been successfully used as a long-lasting biodegradable and water-proof materials for controlled release of chemicals, such as pheromones for sustainable treatment of insect plagues. PMID:27444798

  16. Chain Gang

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 August 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a chain of clustered and battered craters. These were formed by secondary impact. That is, somewhere to the south (beyond the bottom of this image), a large impact crater formed. When this occurred, material ejected from the crater was thrown tens to hundreds of kilometers away. This material then impacted the martian surface, forming clusters and chains of smaller craters.

    Location near: 15.8oN, 35.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Spring

  17. Axion string dynamics I: 2+1D

    NASA Astrophysics Data System (ADS)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-01

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  18. 1D-transport properties of single superconducting lead nanowires

    NASA Astrophysics Data System (ADS)

    Michotte, S.; Mátéfi-Tempfli, S.; Piraux, L.

    2003-09-01

    We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ∼40 nm and a very large aspect ratio (∼500). The diameter of the nanowire is small enough to ensure a 1D superconducting regime in a wide temperature range below Tc. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied DC current (or voltage). The current induced breakdowns in the V- I characteristics may be explained by the formation of phase slip centers. Moreover, DC voltage driven measurements reveal the existence of a new S-shape behavior near the formation of these phase slip centers.

  19. Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    2014-12-01

    One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al. (2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy can be broken in many cases using the relatively crude 2-D parallax information that is often available for microlensing events. I also develop an explicit formula for the region of parameter space where it is more difficult to break this degeneracy. Although no mass/distance measurements have yet been made using this technique, it is likely to become quite common over the next decade.

  20. Quadratic Finite Element Method for 1D Deterministic Transport

    SciTech Connect

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  1. Effective theory of black holes in the 1/D expansion

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-06-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this `black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/ D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for `black droplets', i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

  2. Connected components of irreducible maps and 1D quantum phases

    NASA Astrophysics Data System (ADS)

    Szehr, Oleg; Wolf, Michael M.

    2016-08-01

    We investigate elementary topological properties of sets of completely positive (CP) maps that arise in quantum Perron-Frobenius theory. We prove that the set of primitive CP maps of fixed Kraus rank is path-connected and we provide a complete classification of the connected components of irreducible CP maps at given Kraus rank and fixed peripheral spectrum in terms of a multiplicity index. These findings are then applied to analyse 1D quantum phases by studying equivalence classes of translational invariant matrix product states that correspond to the connected components of the respective CP maps. Our results extend the previously obtained picture in that they do not require blocking of physical sites, they lead to analytic paths, and they allow us to decompose into ergodic components and to study the breaking of translational symmetry.

  3. Glycolipid antigen processing for presentation by CD1d molecules.

    PubMed

    Prigozy, T I; Naidenko, O; Qasba, P; Elewaut, D; Brossay, L; Khurana, A; Natori, T; Koezuka, Y; Kulkarni, A; Kronenberg, M

    2001-01-26

    The requirement for processing glycolipid antigens in T cell recognition was examined with mouse CD1d-mediated responses to glycosphingolipids (GSLs). Although some disaccharide GSL antigens can be recognized without processing, the responses to three other antigens, including the disaccharide GSL Gal(alpha1-->2)GalCer (Gal, galactose; GalCer, galactosylceramide), required removal of the terminal sugars to permit interaction with the T cell receptor. A lysosomal enzyme, alpha-galactosidase A, was responsible for the processing of Gal(alpha1-->2)GalCer to generate the antigenic monosaccharide epitope. These data demonstrate a carbohydrate antigen processing system analogous to that used for peptides and an ability of T cells to recognize processed fragments of complex glycolipids.

  4. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  5. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  6. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle

    PubMed Central

    Cartee, Gregory D.

    2014-01-01

    This review focuses on two paralogue Rab GTPase activating proteins known as TBC1D1 Tre-2/BUB2/cdc 1 domain family (TBC1D) 1 and TBC1D4 (also called Akt Substrate of 160 kDa, AS160) and their roles in controlling skeletal muscle glucose transport in response to the independent and combined effects of insulin and exercise. Convincing evidence implicates Akt2-dependent TBC1D4 phosphorylation on T642 as a key part of the mechanism for insulin-stimulated glucose uptake by skeletal muscle. TBC1D1 phosphorylation on several insulin-responsive sites (including T596, a site corresponding to T642 in TBC1D4) does not appear to be essential for in vivo insulin-stimulated glucose uptake by skeletal muscle. In vivo exercise or ex vivo contraction of muscle result in greater TBC1D1 phosphorylation on S237 that is likely to be secondary to increased AMP-activated protein kinase activity and potentially important for contraction-stimulated glucose uptake. Several studies that evaluated both normal and insulin-resistant skeletal muscle stimulated with a physiological insulin concentration after a single exercise session found that greater post-exercise insulin-stimulated glucose uptake was accompanied by greater TBC1D4 phosphorylation on several sites. In contrast, enhanced post-exercise insulin sensitivity was not accompanied by greater insulin-stimulated TBC1D1 phosphorylation. The mechanism for greater TBC1D4 phosphorylation in insulin-stimulated muscles after acute exercise is uncertain, and a causal link between enhanced TBC1D4 phosphorylation and increased post-exercise insulin sensitivity has yet to be established. In summary, TBC1D1 and TBC1D4 have important, but distinct roles in regulating muscle glucose transport in response to insulin and exercise. PMID:25280670

  7. Magnetic Relaxation and Coercivity of Finite-size Single Chain Magnets

    NASA Astrophysics Data System (ADS)

    Gredig, Thomas; Byrne, Matthew; Vindigni, Alessandro

    2015-03-01

    The magnetic coercivity of hysteresis loops for iron phthalocyanine thin films depends on the iron chain length and the measurement sweep speed below 5 K. The average one-dimensional (1D) iron chain length in samples is controlled during deposition. These 1D iron chains can be tuned over one order of magnitude with the shortest chain having 100 elements. We show that the coercivity strongly increases with the average length of the iron chains, which self-assemble parallel to the substrate surface. Magnetic relaxation and sweep speed data suggest spin dynamics play an important role. Implementing Glauber dynamics with a finite-sized 1D Ising model provides qualitative agreement with experimental data. This suggests that iron phthalocyanine thin films act as single chain magnets and provide a solid test system for tunable finite-sized magnetic chains. This research has been supported with the NSF-DMR 0847552 grant.

  8. Evaluation of the Transport of Natural Radioactive Materials in Large Lysimeters Using Hydrus-1D

    NASA Astrophysics Data System (ADS)

    Pontedeiro, E.; Cipriani, M.; van Genuchten, M.; Simunek, J.

    2007-12-01

    The mining industry in Brazil often uses raw materials that contain relatively high concentrations of naturally occurring radioactive materials (referred to as NORM). Ores of relatively low grade typically are used to produce refined metals of high purity (e.g., Nb, Ta, Sn, and Au) using pyrometallurgic processes. The final waste is a slag rich in natural radioactive contaminants (the U and Th decay series), which are then usually deposited in industrial landfills. To study the long-term fate and transport of radionuclides leached from the NORM wastes, several large (3 m deep) lysimeters were constructed at the Pocos de Caldas Laboratory of the Brazilian Nuclear Energy Commision (CNEN). The lysimeters were packed with surface soils and slags from one of the mining sites in South East Brazil. Main purpose of our lysimeter experiments was to follow the dissolution and transport of radionuclides from the slags under natural climatic conditions. Leaching rates and radionuclide concentrations of the effluent were observed during a three-year time period. A variety of physical and chemical properties of the soils and slags (including laboratory batch equilibrium sorption values) were also determined. The data were analyzed using several computer software packages, including the STANMOD code for analytical modeling of decay chain transport during steady flow, the HYDRUS-1D code for variably-saturated flow and the transport of multiple solutes, and the HP1 code for a more comprehensive analysis of the geochemistry involved. In this presentation we describe the experimental setup and provide preliminary results of the theoretical analyses, especially those using HYDRUS-1D.

  9. 1-D and 2-D Probabilistic Inversions of Fault Zone Guided Waves

    NASA Astrophysics Data System (ADS)

    Gulley, A.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.

    2015-12-01

    Fault Zone Guided Waves (FZGWs) are seismic coda that are trapped by the low velocity damage zone of faults. Inversions of these phases can be carried out using their measured dispersion and a Bayesian probability approach. This method utilises a Markov chain Monte Carlo which allows uncertainties and trade-offs to be quantified. Accordingly we have developed a scheme that estimates the dispersion curve and amplitude response variability from a FZGW record. This method allows the computation of both the point estimates and the covariance of the dispersion curve. The subsequent estimation of fault zone parameters is then based on a Gaussian model for the dispersion curve. We then show that inversions using FZGW dispersion data can only resolve fault zone velocity contrast and fault zone width - it leaves densities, absolute country rock velocities and the earthquake location unresolved. We show that they do however significantly affect the estimated fault zone velocities and widths. As these parameters cannot be resolved, we allow for their effects on the estimates of fault zone width and velocity contrast by using the Bayesian approximation error method. We show that using this method reduces computational time from days to minutes and the associated loss of accuracy is insignificant compared to carrying out the inversion on all parameters. We have extended our scheme to 2-D using 1-D slices. The Bayesian approximation error methodology is further employed to provide a 'correction term' with uncertainty for the 1-D slice approximation. We investigate these features with both synthetic data and FZGW data from the Alpine Fault of New Zealand.

  10. Polymerase chain reaction

    SciTech Connect

    Arnhelm, N. ); Levenson, C.H. )

    1990-10-01

    This paper discusses the polymerase chain reaction (PCR) an in-vitro method of amplifying DNA sequences. Beginning with DNA of any origin- bacterial, viral, plant, or animal- PCR can increase the amount of a DNA sequence hundreds of millions to billions of times. The procedure can amplify a targeted sequence even when it makes up less than one part in a million of the total initial sample. PCR is an enzymatic process that is carried out in discrete cycles of amplification, each of which can double the amount of target DNA in the sample. Thus, n cycles can produce 2{sup n} times as much target as was present to begin with. This paper discusses how PCR has had an impact on molecular biology, human genetics, infectious and genetic disease diagnosis, forensic science, and evolutionary biology.

  11. 1D X-ray Beam Compressing Monochromators

    SciTech Connect

    Korytar, D.; Dobrocka, E.; Konopka, P.; Zaprazny, Z.; Ferrari, C.; Mikulik, P.; Vagovic, P.; Ac, V.; Erko, A.; Abrosimov, N.

    2010-04-06

    A total beam compression of 5 and 10 corresponding to the asymmetry angles of 9 deg. and 12 deg. is achieved with V-5 and V-10 monochromators, respectively, in standard single crystal pure germanium (220) X-ray beam compressing (V-shaped) monochromators for CuKalpha{sub 1} radiation. A higher 1D compression of X-ray beam is possible using larger angles of asymmetry, however it is achieved at the expense of the total intensity, which is decreased due to the refraction effect. To increase the monochromator intensity, several ways are considered both theoretically and experimentally. Linearly graded germanium rich Ge{sub x}Si{sub (1-x)} single crystal was used to prepare a V-21 single crystal monochromator with 15 deg. asymmetry angles (compression factor of 21). Its temperature gradient version is discussed for CuKalpha{sub 1} radiation. X-ray diffraction measurements on the graded GeSi monochromator showed more than 3-times higher intensity at the output compared with that of a pure Ge monochromator.

  12. 1-D Numerical Analysis of RBCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1998-01-01

    An RBCC engine combines air breathing and rocket engines into a single engine to increase the specific impulse over an entire flight trajectory. Considerable research pertaining to RBCC propulsion was performed during the 1960's and these engines were revisited recently as a candidate propulsion system for either a single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO) launch vehicle. There are a variety of RBCC configurations that had been evaluated and new designs are currently under development. However, the basic configuration of all RBCC systems is built around the ejector scramjet engine originally developed for the hypersonic airplane. In this configuration, a rocket engine plays as an ejector in the air-augmented initial acceleration mode, as a fuel injector in scramjet mode and the rocket in all rocket mode for orbital insertion. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in RBCC propulsion systems. The objective of the present research was to develop a transient 1-D numerical model that could be used to predict flow behavior throughout a generic RBCC engine following a flight path.

  13. Dynamic decoupling in the presence of 1D random walk

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Arnab; Chakraborty, Ipsita; Bhattacharyya, Rangeet

    2016-05-01

    In the recent past, many dynamic decoupling sequences have been proposed for the suppression of decoherence of spins connected to thermal baths of various natures. Dynamic decoupling schemes for suppressing decoherence due to Gaussian diffusion have also been developed. In this work, we study the relative performances of dynamic decoupling schemes in the presence of a non-stationary Gaussian noise such as a 1D random walk. Frequency domain analysis is not suitable to determine the performances of various dynamic decoupling schemes in suppressing decoherence due to such a process. Thus, in this work, we follow a time domain calculation to arrive at the following conclusions: in the presence of such a noise, we show that (i) the traditional Carr–Purcell–Meiboom–Gill (CPMG) sequence outperforms Uhrig’s dynamic decoupling scheme, (ii) CPMG remains the optimal sequence for suppression of decoherence due to random walk in the presence of an external field gradient. Later, the theoretical predictions are experimentally verified by using nuclear magnetic resonance spectroscopy on spin 1/2 particles diffusing in a liquid medium.

  14. Control and imaging of O(1D2) precession

    NASA Astrophysics Data System (ADS)

    Wu, Shiou-Min; Radenovic, Dragana Č.; van der Zande, Wim J.; Groenenboom, Gerrit C.; Parker, David H.; Vallance, Claire; Zare, Richard N.

    2011-01-01

    Larmor precession of a quantum mechanical angular momentum vector about an applied magnetic field forms the basis for a range of magnetic resonance techniques, including nuclear magnetic resonance spectroscopy and magnetic resonance imaging. We have used a polarized laser pump-probe scheme with velocity-map imaging detection to visualize, for the first time, the precessional motion of a quantum mechanical angular momentum vector. Photodissociation of O2 at 157 nm provides a clean source of fast-moving O(1D2) atoms, with their electronic angular momentum vector strongly aligned perpendicular to the recoil direction. In the presence of an external magnetic field, the distribution of atomic angular momenta precesses about the field direction, and polarization-sensitive images of the atomic scattering distribution recorded as a function of field strength yield ‘time-lapse-photography’ style movies of the precessional motion. We present movies recorded in various experimental geometries, and discuss potential consequences and applications in atmospheric chemistry and reaction dynamics.

  15. Absolute rate constant determinations for the deactivation of O/1D/ by time resolved decay of O/1D/ yields O/3P/ emission

    NASA Technical Reports Server (NTRS)

    Davidson, J. A.; Sadowski, C. M.; Schiff, H. I.; Howard, C. J.; Schmeltekopf, A. L.; Jennings, D. A.; Streit, G. E.

    1976-01-01

    Absolute rate constants for the deactivation of O(1D) atoms by some atmospheric gases have been determined by observing the time-resolved emission of O(1D) at 630 nm. O(1D) atoms were produced by the dissociation of ozone via repetitive laser pulses at 266 nm. Absolute rate constants for the relaxation of O(1D) at 298 K are reported for N2, O2, CO2, O3, H2, D2, CH4, HCl, NH3, H2O, N2O, and Ne. The results obtained are compared with previous relative and absolute measurements reported in the literature.

  16. The 5-HT1D receptor agonist zolmitriptan for neuroleptic-induced akathisia: an open label preliminary study.

    PubMed

    Gross-Isseroff, Ruth; Magen, Ayelet; Shiloh, Roni; Hermesh, Haggai; Weizman, Abraham

    2005-01-01

    Neuroleptic-induced akathisia (NIA) is a common, sometimes incapacitating, adverse side-effect of antipsychotic drugs (APDs). Several non-selective post-synaptic 5-HT2 blockers have shown a beneficial antiakathisic effect. We hypothesized that selective stimulation of the presynaptic 5-HT1D serotonergic inhibitory autoreceptor could also be beneficial in NIA. The study group included eight schizophrenia inpatients with acute or chronic NIA who were treated with unchanged doses of APDs. Participants received, in an open-labelled design, 7.5 mg/day of zolmitriptan (selective 5-HT1D agonist) for 3 consecutive days. Positive and Negative Syndrome Scale and Barnes akathisia scale (BAS) scores were monitored before and at the end of the study. BAS score decreased by 5.25 points following zolmitriptan administration (9.0+/-2.27 to 3.75+/-2.55, t=6.1, d.f.=7, P=0.0005). In one case, the BAS score dropped from a 3-year score >or=9 points (while relatively non-responsive to numerous antiakathisic agents) to 4 points at endpoint. In conclusion, zolmitriptan appears to exert significant and rapid beneficial antiakathisic effect, even in chronic and resistant NIA. Larger, long-term, double-blind, placebo- and comparator- (e.g. propranolol) controlled studies are required to substantiate the efficacy, safety and tolerability of zolmitriptan, as well as the role of serotonergic neurotransmission in NIA.

  17. Configuration space method for calculating binding energies of exciton complexes in quasi-1D/2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor

    A configuration space method, pioneered by Landau and Herring in studies of molecular binding and magnetism, is developed to obtain universal asymptotic relations for lowest energy exciton complexes (trion, biexciton) in confined semiconductor nanostructures such as nanowires and nanotubes, as well as coupled quantum wells. Trions are shown to be more stable (have greater binding energy) than biexcitons in strongly confined quasi-1D structures with small reduced electron-hole masses. Biexcitons are more stable in less confined quasi-1D structures with large reduced electron-hole masses. The theory predicts a crossover behavior, whereby trions become less stable than biexcitons as the transverse size of the quasi-1D nanostructure increases, which might be observed on semiconducting carbon nanotubes of increasing diameters. This method is also efficient in calculating binding energies for trion-type electron-hole complexes formed by indirect excitons in double coupled quantum wells, quasi-2D nanostructures that show new interesting electroabsorption/refraction phenomena. Supported by DOE-DE-SC0007117.

  18. TBC1D14 sets the TRAPP for ATG9

    PubMed Central

    Lamb, Christopher A.; Tooze, Sharon A.

    2016-01-01

    Abstract Amino acid withdrawal induces the formation of autophagosomes, which results in dozens of these large double-membrane vesicles appearing in the starved cell within 10–15 min, and the initiation of autophagy. This vesicle-mediated response clearly requires an adequate supply of membrane and a tight molecular regulation creating a substantial challenge for the cell in terms of vesicle trafficking pathways. Several membrane sources, which contribute to autophagosome initiation and formation, have been identified including the ER, Golgi, plasma membrane, mitochondria and recycling endosomes. How contributions from these organelles are regulated is an intensive area of study. Members of several families of membrane traffic regulators, including small GTPases, such as RAB proteins, and their regulators, SNARE proteins and BAR domain-containing proteins, have recently been shown to support autophagosome formation. PMID:27171758

  19. Tests for intact and collapsed magnetofossil chains

    NASA Astrophysics Data System (ADS)

    Egli, R.

    2012-04-01

    In recent years, new techniques for the detection of magnetofossils have been proposed, based on their unique first-order reversal curves (FORC) and ferromagnetic resonance (FMR) signatures. These signatures are related to the non-interacting (FORC) and strongly uniaxial anisotropy (FMR) of isolated chains of magnetic particles. However, little is known about the fate of these signatures in sediments where magnetosome chains collapsed during early diagenetic processes. Due to the impossibility of observing the particle arrangement in-situ, the structure of collapsed chains can only be inferred from TEM images of magnetic extracts and from first-principles consideration on the mechanical stability of magnetosome chains once the biological material around them is dissolved. The magnetic properties of double chains, produced by some strains of cocci, are also not known. According to these considerations, four main magnetofossil structures were taken into consideration: (1) isolated, linear chains, (2) double, half-staggered chains, where the gaps of one chain face the magnetosomes in the other chain, (3) double chains with side-to-side magnetosomes, which might result from a "jackknife" type of collapse of a single, long chain, and (4) zig-zag collapsed chains of elongated crystals, where the magnetosome long axes are perpendicular to the chain axis. The collapsed structures might be relevant in sediments where magnetofossils carry a significant part of the remanent magnetization, because chain collapse tends to cancel the original natural remanent magnetization. Detailed models for the hysteretic and anhysteretic properties of structures (1-4) have been calculated by taking realistic distributions of magnetosome size, elongation, and spacing into account, as inferred from a number of published TEM observations. Model calculations took a total of >2 years continuous running time on two computers in an effort to obtain realistic results, which are shown here for the

  20. Double aortic arch

    MedlinePlus

    Aortic arch anomaly; Double arch; Congenital heart defect - double aortic arch; Birth defect heart - double aortic arch ... aorta is a single arch that leaves the heart and moves leftward. In double aortic arch, some ...

  1. Evaluation of safety and pharmacokinetics of sodium 2,2 dimethylbutyrate, a novel short chain fatty acid derivative, in a phase 1, double-blind, placebo-controlled, single-dose, and repeat-dose studies in healthy volunteers.

    PubMed

    Perrine, Susan P; Wargin, William A; Boosalis, Michael S; Wallis, Wayne J; Case, Sally; Keefer, Jeffrey R; Faller, Douglas V; Welch, William C; Berenson, Ronald J

    2011-08-01

    Pharmacologic induction of fetal globin synthesis is an accepted therapeutic strategy for treatment of the beta hemoglobinopathies and thalassemias, as even small increases in hemoglobin F (HbF) levels reduce clinical severity in sickle cell disease (SCD) and reduce anemia in beta thalassemia. Prior generation short chain fatty acid therapeutics, arginine butyrate (AB), and phenylbutyrate, increased fetal and total hemoglobin levels in patients, but were limited by high doses or intravenous (IV) infusion. A fetal globin-inducing therapeutic with convenient oral dosing would be an advance for these classic molecular diseases. Healthy adult human subjects were treated with a novel short chain fatty acids (SCFA) derivative, sodium 2,2 dimethylbutyrate (SDMB), or placebo, with 1 of 4 single dose levels (2, 5, 10, and 20 mg/kg) or daily doses (5, 10, or 15 mg/kg) over 14 days, and monitored for adverse clinical and laboratory events, drug levels, reticulocytes, and HbF assays. SDMB was well-tolerated with no clinically significant adverse events related to study medication. The terminal half-life ranged from 9 to 15 hours. Increases in mean absolute reticulocytes were observed at all dose levels in the 14-day study. The favorable pharmacokinetics (PK) profiles and safety findings indicate that SDMB warrants further investigation for treatment of anemic subjects with beta hemoglobinopathies.

  2. Structure-based design of novel Chlamydomonas reinhardtii D1-D2 photosynthetic proteins for herbicide monitoring

    PubMed Central

    Rea, Giuseppina; Polticelli, Fabio; Antonacci, Amina; Scognamiglio, Viviana; Katiyar, Prashant; Kulkarni, Sudhir A; Johanningmeier, Udo; Giardi, Maria Teresa

    2009-01-01

    The D1-D2 heterodimer in the reaction center core of phototrophs binds the redox plastoquinone cofactors, QA and QB, the terminal acceptors of the photosynthetic electron transfer chain in the photosystem II (PSII). This complex is the target of the herbicide atrazine, an environmental pollutant competitive inhibitor of QB binding, and consequently it represents an excellent biomediator to develop biosensors for pollutant monitoring in ecosystems. In this context, we have undertaken a study of the Chlamydomonas reinhardtii D1-D2 proteins aimed at designing site directed mutants with increased affinity for atrazine. The three-dimensional structure of the D1 and D2 proteins from C. reinhardtii has been homology modeled using the crystal structure of the highly homologous Thermosynechococcus elongatus proteins as templates. Mutants of D1 and D2 were then generated in silico and the atrazine binding affinity of the mutant proteins has been calculated to predict mutations able to increase PSII affinity for atrazine. The computational approach has been validated through comparison with available experimental data and production and characterization of one of the predicted mutants. The latter analyses indicated an increase of one order of magnitude of the mutant sensitivity and affinity for atrazine as compared to the control strain. Finally, D1-D2 heterodimer mutants were designed and selected which, according to our model, increase atrazine binding affinity by up to 20 kcal/mol, representing useful starting points for the development of high affinity biosensors for atrazine. PMID:19693932

  3. Insulin-induced tyrosine dephosphorylation of paxillin and focal adhesion kinase requires active phosphotyrosine phosphatase 1D.

    PubMed Central

    Ouwens, D M; Mikkers, H M; van der Zon, G C; Stein-Gerlach, M; Ullrich, A; Maassen, J A

    1996-01-01

    Insulin stimulation of fibroblasts rapidly induces the tyrosine dephosphorylation of proteins of 68 kDa and 125 kDa, in addition to the tyrosine phosphorylation of the insulin receptor beta-chain, insulin receptor substrates 1 and 2, and Shc. Using specific antibodies, the 68 kDa and 125 kDa proteins were identified as paxillin and focal adhesion kinase (pp125FAK) respectively. We have examined whether dephosphorylation of paxillin and pp125FAK requires interaction of the cells with the extracellular matrix. For this, cells were grown on poly(L-lysine) plates, and the tyrosine phosphorylation of pp125FAK and paxillin was increased by addition of lysophosphatidic acid. Under these conditions, insulin still induced the complete dephosphorylation of pp125FAK and paxillin, indicating that this process can occur independently of the interaction of integrins with extracellular matrix proteins. We also studied whether dephosphorylation of pp125FAK and paxillin results from the action of a phosphotyrosine phosphatase. It was found that phenylarsine oxide, a phosphotyrosine phosphatase inhibitor, prevented the insulin-induced dephosphorylation of pp125FAK and paxillin. Furthermore, this insulin-induced dephosphorylation was also impaired in cells expressing a dominant-negative mutant of phosphotyrosine phosphatase 1D (PTP 1D). Thus we have identified paxillin as a target for dephosphorylation by insulin. In addition, we have obtained evidence that the insulin-mediated dephosphorylation of paxillin and pp125FAK requires active PTP 1D. PMID:8809054

  4. Evidence against dopamine D1/D2 receptor heteromers

    PubMed Central

    Frederick, Aliya L.; Yano, Hideaki; Trifilieff, Pierre; Vishwasrao, Harshad D.; Biezonski, Dominik; Mészáros, József; Sibley, David R.; Kellendonk, Christoph; Sonntag, Kai C.; Graham, Devon L.; Colbran, Roger J.; Stanwood, Gregg D.; Javitch, Jonathan A.

    2014-01-01

    Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies. PMID:25560761

  5. Dynamical functions of a 1D correlated quantum liquid

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Bozi, D.; Penc, K.

    2008-10-01

    The dynamical correlation functions in one-dimensional electronic systems show power-law behaviour at low energies and momenta close to integer multiples of the charge and spin Fermi momenta. These systems are usually referred to as Tomonaga-Luttinger liquids. However, near well defined lines of the (k,ω) plane the power-law behaviour extends beyond the low-energy cases mentioned above, and also appears at higher energies, leading to singular features in the photoemission spectra and other dynamical correlation functions. The general spectral-function expressions derived in this paper were used in recent theoretical studies of the finite-energy singular features in photoemission of the organic compound tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) metallic phase. They are based on a so-called pseudofermion dynamical theory (PDT), which allows us to systematically enumerate and describe the excitations in the Hubbard model starting from the Bethe ansatz, as well as to calculate the charge and spin object phase shifts appearing as exponents of the power laws. In particular, we concentrate on the spin-density m\\rightarrow 0 limit and on effects in the vicinity of the singular border lines, as well as close to half filling. Our studies take into account spectral contributions from types of microscopic processes that do not occur for finite values of the spin density. In addition, the specific processes involved in the spectral features of TTF-TCNQ are studied. Our results are useful for the further understanding of the unusual spectral properties observed in low-dimensional organic metals and also provide expressions for the one- and two-atom spectral functions of a correlated quantum system of ultracold fermionic atoms in a 1D optical lattice with on-site two-atom repulsion.

  6. New approach for designing single-chain magnets: organization of chains via hydrogen bonding between nucleobases.

    PubMed

    Zhang, Wei-Xiong; Shiga, Takuya; Miyasaka, Hitoshi; Yamashita, Masahiro

    2012-04-25

    Two one-dimensional (1D) manganese complexes, [Mn(2)(naphtmen)(2)(L)](ClO(4))·2Et(2)O·2MeOH·H(2)O (1) and [Mn(2)(naphtmen)(2)(HL)](ClO(4))(2)·MeOH (2), were synthesized by using a bridging ligand with a nucleobase moiety, 6-amino-9-β-carboxyethylpurine, and a salen-type manganese(III) dinuclear complex, [Mn(2)(naphtmen)(2)(H(2)O)(2)](ClO(4))(2) (naphtmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(naphthylideneiminato) dianion). In 1 and 2, the carboxylate-bridged Mn(III) dinuclear units are alternately linked by two kinds of weak Mn···O interactions into 1D chains. As a result, canted antiferromagnetic and ferromagnetic interactions are alternately present along the chains, leading to a 1D chain with non-cancellation of anisotropic spins. Since the chains connected via H-bonds between nucleobase moieties are magnetically isolated, both 1 and 2 act as single-chain magnets (SCMs). More importantly, this result shows the smaller canting angles hinder long-range ordering in favor of SCM dynamics.

  7. SCCRO3 (DCUN1D3) Antagonizes the Neddylation and Oncogenic Activity of SCCRO (DCUN1D1)*

    PubMed Central

    Huang, Guochang; Stock, Cameron; Bommeljé, Claire C.; Weeda, Víola B.; Shah, Kushyup; Bains, Sarina; Buss, Elizabeth; Shaha, Manish; Rechler, Willi; Ramanathan, Suresh Y.; Singh, Bhuvanesh

    2014-01-01

    The activity of cullin-RING type ubiquitination E3 ligases is regulated by neddylation, a process analogous to ubiquitination that culminates in covalent attachment of the ubiquitin-like protein Nedd8 to cullins. As a component of the E3 for neddylation, SCCRO/DCUN1D1 plays a key regulatory role in neddylation and, consequently, cullin-RING ligase activity. The essential contribution of SCCRO to neddylation is to promote nuclear translocation of the cullin-ROC1 complex. The presence of a myristoyl sequence in SCCRO3, one of four SCCRO paralogues present in humans that localizes to the membrane, raises questions about its function in neddylation. We found that although SCCRO3 binds to CAND1, cullins, and ROC1, it does not efficiently bind to Ubc12, promote cullin neddylation, or conform to the reaction processivity paradigms, suggesting that SCCRO3 does not have E3 activity. Expression of SCCRO3 inhibits SCCRO-promoted neddylation by sequestering cullins to the membrane, thereby blocking its nuclear translocation. Moreover, SCCRO3 inhibits SCCRO transforming activity. The inhibitory effects of SCCRO3 on SCCRO-promoted neddylation and transformation require both an intact myristoyl sequence and PONY domain, confirming that membrane localization and binding to cullins are required for in vivo functions. Taken together, our findings suggest that SCCRO3 functions as a tumor suppressor by antagonizing the neddylation activity of SCCRO. PMID:25349211

  8. Correlation between inter-spin interaction and molecular dynamics of organic radicals in organic 1D nanochannels

    SciTech Connect

    Kobayashi, Hirokazu

    2015-12-31

    One-dimensional (1D) molecular chains of 4-substituted-2,2,6,6-tetramethyl-1-piperidinyloxyl (4-X-TEMPO) radicals were constructed in the crystalline 1D nanochannels of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) used as a template. The ESR spectra of CLPOT inclusion compounds (ICs) using 4-X-TEMPO were examined on the basis of spectral simulation using EasySpin program package for simulating and fitting ESR spectra. The ESR spectra of [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC were isotropic in the total range of temperatures. The peak-to-peak line width (ΔB{sub pp}) became monotonically narrower from 2.8 to 1.3 mT with increase in temperature in the range of 4.2–298 K. The effect of the rotational diffusion motion of TEMPO radicals in the CLPOT nanochannels for the inter-spin interaction of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC was found to be smaller than the case of [(TPP){sub 2}−(TEMPO){sub 1.0}] IC (TPP = tris(o-phenylenedioxy)cyclotriphosphazene) reported in our previous study. The ΔB{sub pp} of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC in the whole range of temperatures was much narrower than the estimation to be based on the Van Vleck’s formula for the second moment of the rigid lattice model where the electron spin can be considered as fixed; 11 mT of Gaussian line-width component. This suggests the possibility of exchange narrowing in the 1D organic-radical chains of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC. On the other hand, the ESR spectra of [(CLPOT){sub 2}-(MeO-TEMPO){sub 0.41}] IC (MeO-TEMPO = 4-methoxy-TEMPO) were reproduced by a superposition of major broad isotropic adsorption line and minor temperature-dependent modulated triplet component. This suggests that the IC has the part of 1D organic-radical chains and MeO-TEMPO molecules isolated in the CLPOT nanochannels.

  9. Correlation between inter-spin interaction and molecular dynamics of organic radicals in organic 1D nanochannels

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hirokazu

    2015-12-01

    One-dimensional (1D) molecular chains of 4-substituted-2,2,6,6-tetramethyl-1-piperidinyloxyl (4-X-TEMPO) radicals were constructed in the crystalline 1D nanochannels of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) used as a template. The ESR spectra of CLPOT inclusion compounds (ICs) using 4-X-TEMPO were examined on the basis of spectral simulation using EasySpin program package for simulating and fitting ESR spectra. The ESR spectra of [(CLPOT)2-(TEMPO)1.0] IC were isotropic in the total range of temperatures. The peak-to-peak line width (ΔBpp) became monotonically narrower from 2.8 to 1.3 mT with increase in temperature in the range of 4.2-298 K. The effect of the rotational diffusion motion of TEMPO radicals in the CLPOT nanochannels for the inter-spin interaction of the [(CLPOT)2-(TEMPO)1.0] IC was found to be smaller than the case of [(TPP)2-(TEMPO)1.0] IC (TPP = tris(o-phenylenedioxy)cyclotriphosphazene) reported in our previous study. The ΔBpp of the [(CLPOT)2-(TEMPO)1.0] IC in the whole range of temperatures was much narrower than the estimation to be based on the Van Vleck's formula for the second moment of the rigid lattice model where the electron spin can be considered as fixed; 11 mT of Gaussian line-width component. This suggests the possibility of exchange narrowing in the 1D organic-radical chains of the [(CLPOT)2-(TEMPO)1.0] IC. On the other hand, the ESR spectra of [(CLPOT)2-(MeO-TEMPO)0.41] IC (MeO-TEMPO = 4-methoxy-TEMPO) were reproduced by a superposition of major broad isotropic adsorption line and minor temperature-dependent modulated triplet component. This suggests that the IC has the part of 1D organic-radical chains and MeO-TEMPO molecules isolated in the CLPOT nanochannels.

  10. Synthesis, characterization and comparison of polyaniline 1D-structure controlled by poly(L-lactide) and poly(D-lactide)

    NASA Astrophysics Data System (ADS)

    Gu, Zhou-Jie; Shen, Qing

    2016-01-01

    1D-structural polyaniline (PANI) was controllably synthesized by utilizing the poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) as controllers. FESEM images showed that the morphology of 1D-structural PANI controlled by PDLA likes a joint obviously unlike PLLA controlled vertebra structure reported previously. To set the ratio of ANI/PLLA (ml/g) at 0.45/0.135, 0.45/0.270 and 0.45/0.540, the formed PANI 1D structure was changed in the cross-section as four round leaves, four non-round leaves and four sharp leaves, respectively. FTIR and XRD analysis indicated that the PLLA and PDLA both were doped in PANI chains while the PLLA was strongly in the electrons delocalization than that of the PDLA due probably to the L-type stronger in crystal polymorphism than that of the D-type.

  11. 1-D Tremor Streaks: Implications for a Streak Source Model

    NASA Astrophysics Data System (ADS)

    Houston, H.; Ghosh, A.; Vidale, J. E.

    2009-12-01

    Recent observations of non-volcanic tremor in Cascadia and Japan show “streaks” of tremor moving up and down dip in a convergence-parallel direction at “driving velocities” (i.e., 30 to 120 km/hr). Streak lengths of 30 to 40 km are occasionally observed. We explore the implications of these observations for a source model and spectrum of tremor. Key elements involve the extreme geometry and slow “rupture velocity” implied by the streaks. The source spectrum of tremor and other ETS seismic radiation exhibits a spectral falloff roughly as the inverse of frequency (1/f) in contrast to that of earthquakes, which follow a spectral falloff of 1/f squared above a corner frequency. Nevertheless, several observations suggest that the deformation that generates tremor is shear slip in the plate convergence direction. A fundamental question, then, has been what slip source could produce such an observed 1/f falloff over a wide frequency range. We propose a kinematic model, consistent with the 1-D geometry of the tremor streaks, in which fault displacement and width are strongly limited and rupture growth occurs only along fault length, which is oriented in a convergence-parallel direction (up or down dip). This is a version of the well-known Haskell model in which the durations of the two boxcars are very different. A 1/f spectral falloff holds between the corner frequencies associated with the two durations. Thus, the frequency range of the observed 1/f spectral falloff of tremor provides constraints on the durations of the boxcars. Further constraints involve the maximum likely displacement in an ETS event, the rupture velocities of the streaks, and the moment release rate. The narrow streak geometry implies fairly high strain and stress drops, in contrast to the low overall stress drops inferred from tidal modulation of tremor and the low strain across the entire ETS region. The observation of tremor streaks migrating at 10's of km/hour, in conjunction with the

  12. Human CD1d knock-in mouse model demonstrates potent antitumor potential of human CD1d-restricted invariant natural killer T cells

    PubMed Central

    Wen, Xiangshu; Rao, Ping; Carreño, Leandro J.; Kim, Seil; Lawrenczyk, Agnieszka; Porcelli, Steven A.; Cresswell, Peter; Yuan, Weiming

    2013-01-01

    Despite a high degree of conservation, subtle but important differences exist between the CD1d antigen presentation pathways of humans and mice. These differences may account for the minimal success of natural killer T (NKT) cell-based antitumor therapies in human clinical trials, which contrast strongly with the powerful antitumor effects in conventional mouse models. To develop an accurate model for in vivo human CD1d (hCD1d) antigen presentation, we have generated a hCD1d knock-in (hCD1d-KI) mouse. In these mice, hCD1d is expressed in a native tissue distribution pattern and supports NKT cell development. Reduced numbers of invariant NKT (iNKT) cells were observed, but at an abundance comparable to that in most normal humans. These iNKT cells predominantly expressed mouse Vβ8, the homolog of human Vβ11, and phenotypically resembled human iNKT cells in their reduced expression of CD4. Importantly, iNKT cells in hCD1d knock-in mice exert a potent antitumor function in a melanoma challenge model. Our results show that replacement of mCD1d by hCD1d can select a population of functional iNKT cells closely resembling human iNKT cells. These hCD1d knock-in mice will allow more accurate in vivo modeling of human iNKT cell responses and will facilitate the preclinical assessment of iNKT cell-targeted antitumor therapies. PMID:23382238

  13. Assembly of 1D, 2D and 3D lanthanum(iii) coordination polymers with perchlorinated benzenedicarboxylates: positional isomeric effect, structural transformation and ring-opening polymerisation of glycolide.

    PubMed

    Chen, Sheng-Chun; Dai, An-Qi; Huang, Kun-Lin; Zhang, Zhi-Hui; Cui, Ai-Jun; He, Ming-Yang; Chen, Qun

    2016-02-28

    Utilizing a series of positional isomers of tetrachlorinated benzenedicarboxylic acid ligands, seven La(iii)-based coordination polymers were solvothermally synthesized and structurally characterized. Their structural dimensionalities varying from 1D double chains, to the 2D 3,4,5-connected network, to 3D 6-connected pcu topological nets are only governed by the positions of carboxyl groups on the tetrachlorinated benzene ring. A comprehensive analysis and comparison reveals that the size of the carbonyl solvent molecules (DMF, DEF, DMA, and NMP) can affect the coordination geometries around the La(iii) ions, the coordination modes of carboxylate groups, the packing arrangements, and the void volumes of the overall crystal lattices. One as-synthesized framework further shows an unprecedented structural transformation from a 3D 6-connected network to a 3D 4,5-connected net through the dissolution and reformation pathway in water, suggesting that these easily hydrolyzed lanthanide complexes may serve as precursors to produce new high-dimensional frameworks. The bulk solvent-free melt polymerisation of glycolide utilizing these La(iii) complexes as initiators has been reported herein for the first time. All complexes were found to promote the polymerization of glycolide over a temperature range of 200 to 220 °C, producing poly(glycolic acid) (PGA) with a molecular weight up to 93,280. Under the same experimental conditions, the different catalytic activities for these complexes may result from their structural discrepancy.

  14. Assembly of 1D, 2D and 3D lanthanum(iii) coordination polymers with perchlorinated benzenedicarboxylates: positional isomeric effect, structural transformation and ring-opening polymerisation of glycolide.

    PubMed

    Chen, Sheng-Chun; Dai, An-Qi; Huang, Kun-Lin; Zhang, Zhi-Hui; Cui, Ai-Jun; He, Ming-Yang; Chen, Qun

    2016-02-28

    Utilizing a series of positional isomers of tetrachlorinated benzenedicarboxylic acid ligands, seven La(iii)-based coordination polymers were solvothermally synthesized and structurally characterized. Their structural dimensionalities varying from 1D double chains, to the 2D 3,4,5-connected network, to 3D 6-connected pcu topological nets are only governed by the positions of carboxyl groups on the tetrachlorinated benzene ring. A comprehensive analysis and comparison reveals that the size of the carbonyl solvent molecules (DMF, DEF, DMA, and NMP) can affect the coordination geometries around the La(iii) ions, the coordination modes of carboxylate groups, the packing arrangements, and the void volumes of the overall crystal lattices. One as-synthesized framework further shows an unprecedented structural transformation from a 3D 6-connected network to a 3D 4,5-connected net through the dissolution and reformation pathway in water, suggesting that these easily hydrolyzed lanthanide complexes may serve as precursors to produce new high-dimensional frameworks. The bulk solvent-free melt polymerisation of glycolide utilizing these La(iii) complexes as initiators has been reported herein for the first time. All complexes were found to promote the polymerization of glycolide over a temperature range of 200 to 220 °C, producing poly(glycolic acid) (PGA) with a molecular weight up to 93,280. Under the same experimental conditions, the different catalytic activities for these complexes may result from their structural discrepancy. PMID:26811117

  15. Triheptanoin for glucose transporter type I deficiency (G1D): Modulation of human ictogenesis, cerebral metabolic rate and cognitive indices by a food supplement

    PubMed Central

    Pascual, Juan M.; Liu, Peiying; Mao, Deng; Kelly, Dorothy; Hernandez, Ana; Sheng, Min; Good, Levi B.; Ma, Qian; Marin-Valencia, Isaac; Zhang, Xuchen; Park, Jason Y.; Hynan, Linda S.; Stavinoha, Peter; Roe, Charles R.; Lu, Hanzhang

    2015-01-01

    Objective G1D is commonly associated with electrographic spike-wave and - less-noticeably – with absence seizures. The G1D syndrome has long been attributed to energy (i.e., ATP-synthetic) failure, as have experimental, toxic-rodent epilepsies to impaired brain metabolism and tricarboxylic acid (TCA) cycle intermediate depletion. Indeed, a (seldom-acknowledged) function of glucose and other substrates is the generation of brain TCAs via carbon-donor reactions collectively named anaplerosis. However, TCAs are preserved in murine G1D. This renders inferences about energy failure premature and suggests a different hypothesis, also grounded on our findings, that consumption of alternate TCA precursors is stimulated, potentially detracting from other functions. Second, common ketogenic diets can ameliorate G1D seizures, but lead to a therapeutically-counterintuitive reduction in blood glucose available to the brain, and they can prove ineffective in 1/3 of cases. While developing G1D treatments, all of this motivated us to: a) uphold (rather than attenuate) the residual brain glucose flux that all G1D patients possess; and b) stimulate the TCA cycle, including anaplerosis. Therefore, we tested the medium-chain triglyceride triheptanoin, a widely-used medical food supplement that can fulfill both of these metabolic roles. The rationale is that ketone bodies derived from ketogenic diets are not anaplerotic, in contrast with triheptanoin metabolites, as we have shown in the G1D mouse brain. Design We supplemented the regular diet of a case series of G1D patients with food-grade triheptanoin. First we confirmed that, despite their frequent electroencephalographic (EEG) presence as spike-waves, most seizures are rarely visible, such that perceptions by patients or others are inadequate for treatment evaluation. Thus, we used EEG, quantitative neuropsychological, blood analytical, and MRI cerebral metabolic rate measurements as main outcomes. Setting Academic and

  16. Proteasome-mediated degradation antagonizes critical levels of the apoptosis-inducing C1D protein

    PubMed Central

    Rothbarth, Karsten; Stammer, Hermann; Werner, Dieter

    2002-01-01

    The C1D gene is expressed in a broad spectrum of mammalian cells and tissues but its product induces apoptotic cell death when exceeding a critical level. Critical levels are achieved in a fraction of cells by transient transfection with EGFP-tagged C1D expression constructs. However, transfected cells expressing sub-critical levels of C1D(EGFP) escape apoptotic cell death by activation of a proteasome-mediated rescue mechanism. Inhibition of the proteasome-dependent degradation of the C1D(EGFP) protein results in a parallel increase of the intracellular C1D level and in the fraction of apoptotic cells. PMID:12379155

  17. Anion-dependent construction of a series of fluorescent coordination polymers based on 1D zinc∩4,4‧-bis(imidazol-1-yl)-biphenyl substrates

    NASA Astrophysics Data System (ADS)

    Zou, Kang-Yu; Zou, Qian; Han, Tong; Liu, Yi-Chen; Wang, Jun-Jie; Zhang, Xue; Li, Zuo-Xi

    2016-03-01

    In this work, the rod-like ligand 4,4‧-bis(imidazol-1-yl)-biphenyl (bibp) has been utilized as a building block to carry out counterion effects on the structural diversities of coordination polymers. A series of new zinc complexes, [Zn(trans-bibp)Cl2]∞ (1), [Zn(trans-bibp)Br2]∞ (2), {[Zn(cis-bibp)(Ac)2]·(H2O)}∞ (3), [Zn(trans-bibp)SO4]∞ (4), {[Zn2(cis-bibp)2(ipa)2]·(H2O)}∞ (5, H2ipa=isophthalic acid) and {[Zn(trans-bibp)(cis-bibp)]·(ClO4)2(CHCl3)2(CH3OH)}∞ (6) have been successfully synthesized. Complexes 1 and 2 are iso-structural, which show a 1D W-type chain [Zn(trans-bibp)]∞. Complex 3 exhibits a 2D wave-like layer formed by the hydrogen bond among the 1D linear chain [Zn(cis-bibp)]∞. Complex 4 displays a 2D fish-bone lattice, which is generated from connecting the 1D W-type chain [Zn(trans-bibp)]∞ by the μ2-SO42- . Complex 5 presents an interesting 2D-3D 65·8 architecture, including two 1D chains [Zn(ipa)]∞ and [Zn(cis-bibp)]∞. Complex 6 demonstrates a 2D wave-like layer [Zn(trans-bibp)(cis-bibp)]∞. The structural diversities among 1-6 have been carefully discussed, and the role of counterion in the self-assembly of coordination polymer have also been well documented from the coordination affinity and bridging mode. Furthermore, the solid-state fluorescence properties of 1-6 at room temperature have been studied.

  18. Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice.

    PubMed

    Yoon, KiJung; Lewallen, Sam; Kinkhabwala, Amina A; Tank, David W; Fiete, Ila R

    2016-03-01

    Grid cells, defined by their striking periodic spatial responses in open 2D arenas, appear to respond differently on 1D tracks: the multiple response fields are not periodically arranged, peak amplitudes vary across fields, and the mean spacing between fields is larger than in 2D environments. We ask whether such 1D responses are consistent with the system's 2D dynamics. Combining analytical and numerical methods, we show that the 1D responses of grid cells with stable 1D fields are consistent with a linear slice through a 2D triangular lattice. Further, the 1D responses of comodular cells are well described by parallel slices, and the offsets in the starting points of the 1D slices can predict the measured 2D relative spatial phase between the cells. From these results, we conclude that the 2D dynamics of these cells is preserved in 1D, suggesting a common computation during both types of navigation behavior. PMID:26898777

  19. Evaluation of Safety and Pharmacokinetics of Sodium 2,2 Dimethylbutyrate, a Novel Short Chain Fatty Acid Derivative, in a Phase 1, Double-Blind, Placebo-Controlled, Single- and Repeat-Dose Studies in Healthy Volunteers

    PubMed Central

    Perrine, Susan P.; Wargin, William A.; Boosalis, Michael S.; Wallis, Wayne J.; Case, Sally; Keefer, Jeffrey R.; Faller, Douglas V.; Welch, William C.; Berenson, Ronald J.

    2013-01-01

    Pharmacologic induction of fetal globin synthesis is an accepted therapeutic strategy for treatment of the beta hemoglobinopathies and thalassemias, as even small increases in hemoglobin F (HbF) levels reduce clinical severity in sickle cell disease and reduce anemia in beta thalassemia. Prior generation short chain fatty acid therapeutics, arginine butyrate and phenylbutyrate, increased fetal and total hemoglobin levels in patients, but were limited by high doses or intravenous infusion. A fetal globin-inducing therapeutic with convenient oral dosing would be an advance for these classic molecular diseases. Healthy adult human subjects were treated with a novel SCFA derivative, sodium 2,2 dimethylbutyrate (SDMB), or placebo, with one of four single dose levels (2, 5, 10 and 20 mg/kg) or daily doses (5, 10, or 15 mg/kg) over 14 days, and monitored for adverse clinical and laboratory events, drug levels, reticulocytes, and HbF assays. SDMB was well-tolerated with no clinically significant adverse events related to study medication. The terminal half-life ranged from 9–15 hours. Increases in mean absolute reticulocytes were observed at all dose levels in the 14-day study. The favorable PK profiles and safety findings indicate that SDMB warrants further investigation for treatment of anemic subjects with beta hemoglobinopathies. PMID:21422239

  20. Structure-function analysis of a lupus anti-DNA autoantibody: central role of the heavy chain complementarity-determining region 3 Arg in binding of double- and single-stranded DNA.

    PubMed

    Li, Z; Schettino, E W; Padlan, E A; Ikematsu, H; Casali, P

    2000-07-01

    To determine the contribution of the somatic point mutations and that of the complementarity-determining region (CDR)3 Arg to DNA binding, we engineered the germline V(H) and V(kappa) gene revertant and site-mutagenized the CDR3 Arg residues of the mutated and "antigen-selected" mAb 412.67. This anti-DNA autoantibody was derived from B-1 cells of a lupus patient and bore two H-CDR3 Arg, Arg105 and Arg107, encoded by N segment additions, and one kappa-CDR3 Arg, Arg97, resulting from a point mutation (Kasaian et al. 1994. J. Immunol. 152: 3137-3151; Kasaian et al. 1995. Ann. N.Y Acad. Sci. 764: 410-423). The germ-line revertant bound double-stranded (ds) DNA and single-stranded (ss) DNA as effectively as its wild-type counterpart (relative avidity: 6.4x10(-7) and 9.9x10(-9) vs. 6.7x10(-7) and 9.1 x10(-9) g/microl), raising the possibility that an antigen other than DNA was responsible for the selection of the mAb 412.67 V(H) and V(kappa) point mutations. H-CDR3 Arg105 and Arg107 were both required for dsDNA binding, but either Arg105 or Arg107 was sufficient for ssDNA binding. The central role of Arg105 and Arg107 in DNA binding reflected their solvent-exposed orientation at the apex of the H-CDR3 main loop. Consistent with its inward orientation afar from the antigen-binding surface, the kappa-CDR3 Arg97 played no role in either dsDNA or ssDNA binding.

  1. Established a new double antibodies sandwich enzyme-linked immunosorbent assay for detecting Bacillus thuringiensis (Bt) Cry1Ab toxin based single-chain variable fragments from a naïve mouse phage displayed library.

    PubMed

    Zhang, Xiao; Xu, Chongxin; Zhang, Cunzheng; Liu, Yuan; Xie, Yajing; Liu, Xianjin

    2014-04-01

    ScFvs are composed of the variable regions of the heavy and light chains via a short linker that maintain the specific antigen binding abilities of antibodies. In this study, we constructed a naïve mouse phage displayed library to generate scFvs against Cry1Ab toxin. After affinity panning, positive phage-scFvs were isolated, sequenced and characterized by ELISA. The best binding ability scFv-G9 was expressed and purified. SDS-PAGE indicated that the relative molecular mass of scFv was estimated at 28 kDa. The purified scFv-G9 was used to develop a new DAS-ELISA for detecting Cry1Ab toxin, within minimum detection limit of 0.008 μg mL(-1), a working range 0.018-6.23 μg mL(-1), and the linear curve displayed an acceptable correlation coefficient of 0.98. The cross-reactivity showed that scFv-G9 had strongly binding ability to Cry1Ac toxin, but not to Cry1B, Cry1C and Cry1F toxin. The average recoveries of Cry1Ab toxin from spiked leaf and rice samples were in the range 92.1-94.8%, and 91.6-98.6%, respectively, with a coefficient of variation (C.V) less than 5.0%. These results showed promising applications of scfv-G9 for detecting Cry1Ab toxin with new DAS-ELISA.

  2. Seeing Double

    NASA Astrophysics Data System (ADS)

    Pesic, Peter

    2003-10-01

    The separateness and connection of individuals is perhaps the central question of human life: What, exactly, is my individuality? To what degree is it unique? To what degree can it be shared, and how? To the many philosophical and literary speculations about these topics over time, modern science has added the curious twist of quantum theory, which requires that the elementary particles of which everything consists have no individuality at all. All aspects of chemistry depend on this lack of individuality, as do many branches of physics. From where, then, does our individuality come? In Seeing Double, Peter Pesic invites readers to explore this intriguing set of questions. He draws on literary and historical examples that open the mind (from Homer to Martin Guerre to Kafka), philosophical analyses that have helped to make our thinking and speech more precise, and scientific work that has enabled us to characterize the phenomena of nature. Though he does not try to be all-inclusive, Pesic presents a broad range of ideas, building toward a specific point of view: that the crux of modern quantum theory is its clash with our ordinary concept of individuality. This represents a departure from the usual understanding of quantum theory. Pesic argues that what is bizarre about quantum theory becomes more intelligible as we reconsider what we mean by individuality and identity in ordinary experience. In turn, quantum identity opens a new perspective on us. Peter Pesic is a Tutor and Musician-in-Residence at St. John's College, Santa Fe, New Mexico. He has a Ph.D. in physics from Stanford University.

  3. Double inflation

    SciTech Connect

    Silk, J.; Turner, M.S.

    1986-04-01

    The Zel'dovich spectrum of adiabatic density perturbations is a generic prediction of inflation. There is increasing evidence that when the spectrum is normalized by observational data on small scales, there is not enough power on large scales to account for the observed large-scale structure in the Universe. Decoupling the spectrum on large and small scales could solve this problem. As a means of decoupling the large and small scales we propose double inflation (i.e., two episodes of inflation). In this scenario the spectrum on large scales is determined by the first episode of inflation and those on small scales by a second episode of inflation. We present three models for such a scenario. By nearly saturating the large angular-scale cosmic microwave anisotropy bound, we can easily account for the observed large-scale structure. We take the perturbations on small scales to be very large, deltarho/rho approx. = 0.1 to 0.01, which results in the production of primordial black holes (PBHs), early formation of structure, reionization of the Universe, and a rich array of astrophysical events. The ..cap omega..-problem is also addressed by our scenario. Allowing the density perturbations produced by the second episode of inflation to be large also lessens the fine-tuning required in the scalar potential and makes reheating much easier. We briefly speculate on the possibility that the second episode of inflation proceeds through the nucleation of bubbles, which today manifest themselves as empty bubbles whose surfaces are covered with galaxies. 37 refs., 1 fig.

  4. Acidosis reduces the function and expression of α1D-adrenoceptor in superior mesenteric artery of Capra hircus

    PubMed Central

    Mohanty, Ipsita; Suklabaidya, Sujit; Parija, Subas Chandra

    2016-01-01

    Objective: The objective of this study was to characterize the α1-adrenoceptor (α1-AR) subtypes and evaluate the effect of acidosis on α1-AR function and expression in goat superior mesenteric artery (GSMA). Materials and Methods: GSMA rings were mounted in a thermostatically controlled (37.0°C ± 0.5°C) organ bath containing 20 ml of modified Krebs-Henseleit solution, maintained at pHo of 7.4, 6.8, 6.0, 5.5, 5.0, and 4.5. Noradrenaline (NA)- and phenylephrine (PE)-induced contractile response was elicited in the absence or presence of endothelium and prazosin at pHo of 7.4, 6.0, and 5.0. The responses were recorded isometrically by an automatic organ bath connected to PowerLab and analyzed using Labchart 7.1.3 software. Expression of α1D-AR was compared at physiological and acidic pHo using reverse transcription-polymerase chain reaction (RT-PCR). Results: NA- and PE-induced contractile responses were attenuated proportionately with a decrease in extracellular pH (pHo), i.e. 7.4 → 6.8 → 6.0 → 5.5 → 5.0 → 4.5. Endothelium denudation increased the contractile response at both normal and acidic pHo. Prazosin (1 nM, 10 nM, and 0.1 μM) inhibited the NA- and PE-induced contractile response at pHo 7.4 and the blocking effect of prazosin was potentiated at pHo of 6.0 and 5.0. RT-PCR analysis for α1D-AR in GSMA showed that the mRNA expression of α1D-AR was decreased under acidic pHo as compared to physiological pHo. Conclusion: (i) Adrenergic receptor mediates vasoconstriction in GSMA under normal physiological pHo, and α1D is the possible subtype involved in this event (ii) acidosis attenuates the vasocontractile response due to reduced function and expression of α1D-AR and also increased the release of endothelial-relaxing factors. PMID:27756951

  5. Expression of CD1d protein in human testis showing normal and abnormal spermatogenesis.

    PubMed

    Adly, Mohamed A; Abdelwahed Hussein, Mahmoud-Rezk

    2011-05-01

    CD1d is a member of CD1 family of transmembrane glycoproteins, which represent antigen-presenting molecules. Immunofluorescent staining methods were utilized to examine expression pattern of CD1d in human testicular specimens. In testis showing normal spermatogenesis, a strong CD1d cytoplasmic expression was seen the Sertoli cells, spermatogonia, and Leydig cells. A moderate expression was observed in the spermatocytes. In testes showing maturation arrest, CD1d expression was strong in the Sertoli cells and weak in spermatogonia and spermatocytes compared to testis with normal spermatogenesis. In Sertoli cell only syndrome, CD1d expression was strong in the Sertoli and Leydig cells. This preliminary study displayed testicular infertility-related changes in CD1d expression. The ultrastructural changes associated with with normal and abnormal spermatogenesis are open for further investigations.

  6. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  7. Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.

    PubMed

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting.

  8. Exercise increases TBC1D1 phosphorylation in human skeletal muscle

    PubMed Central

    Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders

    2011-01-01

    Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS

  9. Giant Fluctuations of Local Magnetoresistance of Organic Spin Valves and the Non-Hermitian 1D Anderson Model

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Nemirovsky, D.; Kagalovsky, V.; Raikh, M. E.

    2014-06-01

    Motivated by recent experiments, where the tunnel magnetoresitance (TMR) of a spin valve was measured locally, we theoretically study the distribution of TMR along the surface of magnetized electrodes. We show that, even in the absence of interfacial effects (like hybridization due to donor and acceptor molecules), this distribution is very broad, and the portion of area with negative TMR is appreciable even if on average the TMR is positive. The origin of the local sign reversal is quantum interference of subsequent spin-rotation amplitudes in the course of incoherent transport of carriers between the source and the drain. We find the distribution of local TMR exactly by drawing upon formal similarity between evolution of spinors in time and of the reflection coefficient along a 1D chain in the Anderson model. The results obtained are confirmed by the numerical simulations.

  10. Giant fluctuations of local magnetoresistance of organic spin valves and the non-Hermitian 1D Anderson model.

    PubMed

    Roundy, R C; Nemirovsky, D; Kagalovsky, V; Raikh, M E

    2014-06-01

    Motivated by recent experiments, where the tunnel magnetoresitance (TMR) of a spin valve was measured locally, we theoretically study the distribution of TMR along the surface of magnetized electrodes. We show that, even in the absence of interfacial effects (like hybridization due to donor and acceptor molecules), this distribution is very broad, and the portion of area with negative TMR is appreciable even if on average the TMR is positive. The origin of the local sign reversal is quantum interference of subsequent spin-rotation amplitudes in the course of incoherent transport of carriers between the source and the drain. We find the distribution of local TMR exactly by drawing upon formal similarity between evolution of spinors in time and of the reflection coefficient along a 1D chain in the Anderson model. The results obtained are confirmed by the numerical simulations. PMID:24949781

  11. Magnetic chains on a triplet superconductor.

    PubMed

    Sacramento, P D

    2015-11-11

    The topological state of a two-dimensional triplet superconductor may be changed by an appropriate addition of magnetic impurities. A ferromagnetic magnetic chain at the surface of a superconductor with spin-orbit coupling may eliminate the edge states of a finite system giving rise to localized zero modes at the edges of the chain. The coexistence/competition between the two types of zero modes is considered. The reduction of the system to an effective 1d system gives partial information on the topological properties but the study of the two sets of zero modes requires a two-dimensional treatment. Increasing the impurity density from a magnetic chain to magnetic islands leads to a finite Chern number. At half-filling small concentrations are enough to induce chiral modes.

  12. Morin reverses neuropathological and cognitive impairments in APPswe/PS1dE9 mice by targeting multiple pathogenic mechanisms.

    PubMed

    Du, Ying; Qu, Jie; Zhang, Wei; Bai, Miao; Zhou, Qiong; Zhang, Zhuo; Li, Zhuyi; Miao, Jianting

    2016-09-01

    Alzheimer's disease (AD) is the most common form of dementia worldwide, characterized by progressive cognitive impairment and multiple distinct neuropathological features. Currently, there are no available therapies to delay or block the disease progression. Thus, the disease-modifying therapies are urgent for this devastating disorder by simultaneously targeting multiple distinct pathological processes. Morin, a natural bioflavonoid, have been shown to be strongly neuroprotective in vitro and in vivo. In this study, we first investigated the disease-modifying effects of chronic morin administration on the neuropathological and cognitive impairments in APPswe/PS1dE9 double transgenic mice. Our results showed that chronic morin administration prevented spatial learning and memory deficits in the APPswe/PS1dE9 mice. Morin treatment in the APPswe/PS1dE9 mice markedly reduced cerebral Aβ production and Aβ plaque burden via promoting non-amyloidogenic APP processing pathway by increasing ADAM10 expression, inhibiting amyloidogenic APP processing pathway by decreased BACE1 and PS1 expression, and facilitating Aβ degradation by enhancing Aβ-degrading enzyme expression. In addition, we also found that morin treatment in the APPswe/PS1dE9 mice markedly decreased tau hyperphosphorylation via its inhibitory effect on CDK5 signal pathway. Furthermore, morin treatment in the APPswe/PS1dE9 mice markedly reduced the activated glial cells and increased the expression of synaptic markers. Collectively, our findings demonstrate that chronic morin treatment restores cognitive functions and reverses multiple distinct neuropathological AD-like hallmarks in the APPswe/PS1dE9 mice. This study provides novel insights into the neuroprotective actions and neurobiological mechanisms of morin against AD, suggesting that morin is a potently promising disease-modifying agent for treatment of AD.

  13. Crystallization, Crystal Orientation and Morphology of Poly(ethylene oxide) under 1D Defect-Free Nanoscale Confinement

    NASA Astrophysics Data System (ADS)

    Hsiao, Ming-Siao; Zheng, Joseph X.; van Horn, Ryan M.; Quirk, Roderic P.; Thomas, Edwin L.; Lotz, Bernard; Cheng, Stephen Z. D.

    2009-03-01

    One-dimensional (1-D) defect-free nanoscale confinement is created by growing single crystals of PS-b-PEO block copolymers in dilute solution. Those defect-free, 1-D confined lamellae having different PEO layer thicknesses in PS-b-PEO lamellar single crystals (or crystal mats) were used to study the polymer recrystallization and crystal orientation evolution as a function of recrystallization temperature (Trx) because the Tg^PS is larger than Tm^PEO in the PS-b-PEO single crystal. The results are summarized as follows. First, by the combination of electron diffraction and known PEO crystallography, the crystallization of PEO only takes place at Trx<-5^oC. Meanwhile a unique tilted PEO orientation is formed at Trx >-5^oC after self-seeding. The origin of the formation of tilted chains in the PEO crystal will be addressed. Second, from the analysis of 2D WAXD patterns of crystal mats, it is shown that the change in PEO c-axis orientation from homogeneous at low Trx to homeotropic at higher Trx transitions sharply, within 1^oC. The mechanism inducing this dramatic change in crystal orientation will be investigated in detail.

  14. Electronic-to-vibrational energy transfer efficiency in the O/1 D/-N2 and O/1 D/-CO systems

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1974-01-01

    With the aid of a molecular resonance fluorescence technique, which utilizes optical pumping from the v = 1 level of the ground state of CO by A 1 Pi-X 1 Sigma radiation, a study is made of the efficiency of E-V transfer from O(1 D) to CO. O(1 D) is generated at a known rate by O2 photodissociation at 1470 A in an intermittent mode, and the small modulation of the fluorescent signal associated with CO (v = 1) above the normal thermal background is interpreted in terms of E-V transfer efficiency. The CO (v = 1) lifetime in this system is determined mainly by resonance trapping of the IR fundamental band, and is found to be up to ten times longer than the natural radiative lifetime. For CO, (40 plus or minus 8)% of the O(1 D) energy is converted into vibrational energy. By observing the effect of N2 on the CO (v = 1) fluorescent intensity and lifetime, it is possible to obtain the E-V transfer efficiency for the system O(1 D)-N2 relative to that for O(1 D)-CO. The results indicate that the efficiency for N2 is (83 plus or minus 10)% of that for CO.

  15. Mapping of the serotonin 5-HT{sub 1D{alpha}} autoreceptor gene (HTR1D) on chromosome 1 using a silent polymorphism in the coding region

    SciTech Connect

    Ozaki, N.; Lappalainen, J.; Linnoila, M.

    1995-04-24

    Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.

  16. A Precision Variable, Double Prism Attenuator for CO(2) Lasers.

    PubMed

    Oseki, T; Saito, S

    1971-01-01

    A precision, double prism attenuator for CO(2) lasers, calibrated by its gap capacitance, was constructed to evaluate its possible use as a standard for attenuation measurements. It was found that the accuracy was about 0.1 dB with a dynamic range of about 40 dB.

  17. Syntheses, crystal structures and properties of two 1-D cadmium(II) coordination polymers based on 1,1'-(1,3-propanediyl)bis-1H-benzimidazole

    SciTech Connect

    Yang Huaixia; Meng Xiangru; Liu Yun; Hou Hongwei Fan Yaoting; Shen Xiaoqing

    2008-09-15

    The combination of framework-builders 1,1'-(1,3-propanediyl)bis-1H-benzimidazole (pbbm), Cd(II) ion and framework-regulator ClO{sub 4}{sup -} or SO{sub 4}{sup 2-} provides two new coordination polymers [Cd(pbbm){sub 2}(ClO{sub 4}){sub 2}]{sub n}(1) and {l_brace}[Cd(pbbm)SO{sub 4}(H{sub 2}O){sub 2}].CH{sub 3}OH{r_brace}{sub n}(2). Both of them display 1-D chain framework, but their detailed structures are clearly different from each other. 1 displays a 1-D ribbon of rings framework, 2 features an interesting infinite 1-D looped chain structure composed of two kinds of rings, the smaller 8-membered ring and the larger 20-membered ring. The antimicrobial activities of the two polymers were tested by the agar diffusion method and the results indicated that they exhibited antimicrobial activities against bacterial strands. The measurement of the non-isothermal kinetics of the thermal decomposition of 2 reveals that there are at least three steps that occur in its decomposition process. - Graphical abstract: Two new Cd(II)-containing complexes have been synthesized and characterized by single-crystal X-ray diffraction. The antimicrobial activity and the non-isothermal kinetics of the thermal decomposition of the polymers were also investigated. Display Omitted.

  18. Characterization of the fraction components using 1D TOCSY and 1D ROESY experiments. Four new spirostane saponins from Agave brittoniana Trel. spp. Brachypus.

    PubMed

    Macías, Francisco A; Guerra, José O; Simonet, Ana M; Nogueiras, Clara M

    2007-07-01

    A careful NMR analysis, especially 1D TOCSY and 1D ROESY, of two refined saponin fractions allowed us to determine the structures of four new saponins from a polar extract of the Agave brittoniana Trel. spp. Brachypus leaves. A full assignment of the 1H and 13C spectral data for these new saponins, agabrittonosides A-D (1-4), and one previously known saponin, karatavioside A (5) is reported. Their structures were established using a combination of 1D and 2D (1H, 1H-COSY, TOCSY, ROESY, g-HSQC, g-HMBC and g-HSQC-TOCSY) NMR techniques and ESI-MS. Moreover, the work represents a new approach to structural elucidation of saponins in refined fractions by NMR investigations.

  19. Decays B(s)→a1(b1)D(s), a1(b1)D(s)* in the perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qing

    2013-04-01

    Within the framework of the perturbative QCD approach, we study the branching ratios of the two-body charmed decays B(s)→a1(b1)D(s), a1(b1)D(s)*, which, including Cabibbo-Kobayashi-Maskawa, allowed and suppressed decays. Our calculations are consistent with the currently available data and the experimental upper limits. Certainly, many of these predicted channels have not been measured by experiments and can be confronted with the future experimental data. We also discuss the polarization factions of the decays B(s)→a1(b1)D(s)*, some of which are sensitive to the distinct Gegenbauer moments of the wave functions and the decay constants of mesons a1 and b1.

  20. Origin of chains of Au-PbS Nano-Dumbbells in space

    PubMed Central

    Mondal, Chandana; Khan, Ali Hossain; Das, Bidisa; Acharya, Somobrata; Sengupta, Surajit

    2013-01-01

    Self-assembled, one-dimensional (1D) nanomaterials are amenable building blocks for bottom-up nanofabrication processes. A current shortcoming in the self-assembly of 1D nanomaterials in solution phase is the need for specific linkers or templates under very precise conditions to achieve a handful of systems. Here we report on the origin of a novel self-assembly of 1D dumbbells consisting of Au tipped PbS nanorods into stable chains in solution without any linkers or templates. A realistic multi-particle model suggests that the mesophase comprises 1D dumbbells arrayed in chains formed by anisotropic van der Waals type interactions. We demonstrate an alternative recognition mechanism for directing the assembly of the 1D dumbbells, based on effective interaction between the neighboring dumbbells consisting of Au tips with complementary crystallographic facets that guides the entire assembly in space. PMID:24018991

  1. TBC1D1 reduces palmitate oxidation by inhibiting β-HAD activity in skeletal muscle.

    PubMed

    Maher, A C; McFarlan, J; Lally, J; Snook, L A; Bonen, A

    2014-11-01

    In skeletal muscle the Rab-GTPase-activating protein TBC1D1 has been implicated in the regulation of fatty acid oxidation by an unknown mechanism. We determined whether TBC1D1 altered fatty acid utilization via changes in protein-mediated fatty acid transport and/or selected enzymes regulating mitochondrial fatty acid oxidation. We also determined the effects of TBC1D1 on glucose transport and oxidation. Electrotransfection of mouse soleus muscles with TBC1D1 cDNA increased TBC1D1 protein after 2 wk (P<0.05), without altering its paralog AS160. TBC1D1 overexpression decreased basal palmitate oxidation (-22%) while blunting 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated palmitate oxidation (-18%). There was a tendency to increase fatty acid esterification (+10 nmol·g(-1)·60 min(-1), P=0.07), which reflected the reduction in fatty acid oxidation (-12 nmol·g(-1)·60 min(-1)). Concomitantly, basal (+21%) and AICAR-stimulated glucose oxidation (+8%) were increased in TBC1D1-transfected muscles relative to their respective controls (P<0.05), independent of changes in GLUT4 and glucose transport. The reductions in TBC1D1-mediated fatty acid oxidation could not be attributed to changes in the transporter FAT/CD36, muscle mitochondrial content, CPT1 expression or the expression and phosphorylation of AS160, acetyl-CoA carboxylase, or AMPK. However, TBC1D1 overexpression reduced β-HAD enzyme activity (-18%, P<0.05). In conclusion, TBC1D1-mediated reduction of muscle fatty acid oxidation appears to occur via inhibition of β-HAD activity.

  2. Role of the D1-D2 Linker of Human VCP/p97 in the Asymmetry and ATPase Activity of the D1-domain

    PubMed Central

    Tang, Wai Kwan; Xia, Di

    2016-01-01

    Human AAA+ protein p97 consists of an N-domain and two tandem ATPase domains D1 and D2, which are connected by the N-D1 and the D1-D2 linkers. Inclusion of the D1-D2 linker, a 22-amino acid peptide, at the end of p97 N-D1 truncate has been shown to activate ATP hydrolysis of its D1-domain, although the mechanism of activation remains unclear. Here, we identify the N-terminal half of this linker, highly conserved from human to fungi, is essential for the ATPase activation. By analyzing available crystal structures, we observed that the D1-D2 linker is capable of inducing asymmetry in subunit association into a p97 hexamer. This observation is reinforced by two new crystal structures, determined in the present work. The effect of D1-D2 linker on the ATPase activity of the D1-domain is correlated to the side-chain conformation of residue R359, a trans-acting arginine-finger residue essential for ATP hydrolysis of the D1-domain. The activation in D1-domain ATPase activity by breaking perfect six-fold symmetry implies functional importance of asymmetric association of p97 subunits, the extent of which can be determined quantitatively by the metric Asymmetric Index. PMID:26818443

  3. Laser amplifier chain

    DOEpatents

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  4. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  5. Isostructural 1D coordination polymers of Zn(II), Cd(II) and Cu(II) with phenylpropynoic acid and DABCO as organic linkers

    NASA Astrophysics Data System (ADS)

    Saravanakumar, Rajendran; Varghese, Babu; Sankararaman, Sethuraman

    2014-11-01

    Using phenylpropynoic acid (PPA) and 1,4-diazabicyclo[2.2.2]octane (DABCO) as organic spacers, isostructural coordination polymers of Zn(II), Cd(II) and Cu(II) were synthesized by solvothermal method and structurally characterized using single crystal XRD, powder XRD, 13C CP-MAS NMR spectroscopy. Single crystal XRD data revealed four PPA units coordinating with two metal ions forming a paddle wheel secondary building unit (SBU). The paddle wheel units are connected through coordination of DABCO nitrogen to the metal centers from the axial positions leading to the formation of the 1D coordination polymers along the c axis. Intermolecular π stacking and Csbnd H…π interactions between the adjacent polymer chains convert the 1D coordination polymer into an interesting 3D network with the Csbnd H…π bonds running along the crystallographic a and b axes. Thermal and nitrogen adsorption studies of these coordination polymers are reported.

  6. Design and synthesis of new 1D and 2D R-isophthalic acid-based coordination polymers (R = hydrogen or bromine).

    PubMed

    Zhang, Ren; Gong, Qihan; Emge, Thomas J; Banerjee, Debasis; Li, Jing

    2013-01-01

    Three new R-isophthalic acid-based (R = H or Br) coordination polymers have been designed and synthesized. By changing the N-containing ligand in the system, we are able to tune the dimensionality of coordination polymers from one-dimension (1D) to two-dimensions (2D) with the same basic building unit. Also, different metal ions can be incorporated into the same structures. Compound 1 [Cu(bipa)(py)2]·0.5(H2O) (H2bipa = 5-bromoisophthalic acid; py = pyridine) and compound 2 [Co(bipa)(py)2] are 1D chain structures. Compound 3 [Cu8(ipa)8(bpe)8]·2(bpe)·4(H2O) (bpe=1,2-bis(4-pyridyl)ethane) is a 2D layered structure.

  7. Syntheses, crystal structures and luminescent properties of two new 1D d {sup 1} coordination polymers constructed from 2,2'-bibenzimidazole and 1,4-benzenedicarboxylate

    SciTech Connect

    Wen Lili; Li Yizhi; Dang Dongbin; Tian Zhengfang; Ni Zhaoping; Meng Qingjin . E-mail: mengqj@nju.edu.cn

    2005-11-15

    Two novel interesting d {sup 1} metal coordination polymers, [Zn(H{sub 2}bibzim)(BDC)] {sub n} (1) and [Cd(H{sub 2}bibzim)(BDC)] {sub n} (2) [H{sub 2}bibzim=2,2'-bibenzimidazole, BDC=1,4-benzenedicarboxylate] have been synthesized under solvothermal conditions and structurally characterized. Both 1 and 2 are constructed from infinite neutral zigzag-like one-dimensional (1D) chains. The {pi}-{pi} interactions and interchain hydrogen-bonding interactions further extend the 1D arrangement to generate a 3D supramolecular architecture for 1 and 2. Both complexes have high thermal stability and display strong blue fluorescent emissions in the solid state upon photo-excitation at 365 nm at room temperature. They are the first two examples that 2,2'-bibenzimidazole has been introduced into the d {sup 1} coordination polymeric framework.

  8. Unusual Transformation from a Solvent-Stabilized 1D Coordination Polymer to a Metal-Organic Framework (MOF)-Like Cross-Linked 3D Coordination Polymer.

    PubMed

    Lee, Seung-Chul; Choi, Eun-Young; Lee, Sang-Beom; Kim, Sang-Wook; Kwon, O-Pil

    2015-10-26

    An unusual 1D-to-3D transformation of a coordination polymer based on organic linkers containing highly polar push-pull π-conjugated side chains is reported. The coordination polymers are synthesized from zinc nitrate and an organic linker, namely, 2,5-bis{4-[1-(4-nitrophenyl)pyrrolidin-2-yl]butoxy}terephthalic acid, which possesses highly polar (4-nitrophenyl)pyrrolidine groups, with high dipole moments of about 7 D. The coordination polymers exhibit an unusual transformation from a soluble, solvent-stabilized 1D coordination polymer into an insoluble, metal-organic framework (MOF)-like 3D coordination polymer. The coordination polymer exhibits good film-forming ability, and the MOF-like films are insoluble in conventional organic solvents.

  9. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic.

    PubMed

    Lamb, Christopher A; Nühlen, Stefanie; Judith, Delphine; Frith, David; Snijders, Ambrosius P; Behrends, Christian; Tooze, Sharon A

    2016-02-01

    Macroautophagy requires membrane trafficking and remodelling to form the autophagosome and deliver its contents to lysosomes for degradation. We have previously identified the TBC domain-containing protein, TBC1D14, as a negative regulator of autophagy that controls delivery of membranes from RAB11-positive recycling endosomes to forming autophagosomes. In this study, we identify the TRAPP complex, a multi-subunit tethering complex and GEF for RAB1, as an interactor of TBC1D14. TBC1D14 binds to the TRAPP complex via an N-terminal 103 amino acid region, and overexpression of this region inhibits both autophagy and secretory traffic. TRAPPC8, the mammalian orthologue of a yeast autophagy-specific TRAPP subunit, forms part of a mammalian TRAPPIII-like complex and both this complex and TBC1D14 are needed for RAB1 activation. TRAPPC8 modulates autophagy and secretory trafficking and is required for TBC1D14 to bind TRAPPIII. Importantly, TBC1D14 and TRAPPIII regulate ATG9 trafficking independently of ULK1. We propose a model whereby TBC1D14 and TRAPPIII regulate a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy. PMID:26711178

  10. Role and regulation of CD1d in normal and pathological B cells

    PubMed Central

    Chaudhry, Mohammed S.; Karadimitris, Anastasios

    2015-01-01

    CD1d is a non-polymorphic, MHC class I-like molecule, which presents phosphoand glycosphingo-lipid antigens to a subset of CD1d-restricted T cells called invariant NKT (iNKT) cells. This CD1d-iNKT cell axis regulates nearly all aspects of both the innate and adaptive immune response. Expression of CD1d on B cells is suggestive of the ability of these cells to present antigen to and form cognate interactions with iNKT cells. Herein we summarise key evidence regarding the role and regulation of CD1d in normal B cells and in humoral immunity. We then extend the discussion to B cell disorders, with emphasis on autoimmune disease, viral infection and neoplastic transformation of B lineage cells, where CD1d expression can be altered as a mechanism of immune evasion, and can have both diagnostic and prognostic importance. Finally we highlight current and future therapeutic strategies that aim to target the CD1d-iNKT axis in B cells. PMID:25381357

  11. The FC-1D: The profitable alternative Flying Circus Commercial Aviation Group

    NASA Technical Reports Server (NTRS)

    Meza, Victor J.; Alvarez, Jaime; Harrington, Brook; Lujan, Michael A.; Mitlyng, David; Saroughian, Andy; Silva, Alex; Teale, Tim

    1994-01-01

    The FC-1D was designed as an advanced solution for a low cost commercial transport meeting or exceeding all of the 1993/1994 AIAA/Lockheed request for proposal requirements. The driving philosophy behind the design of the FC-1D was the reduction of airline direct operating costs. Every effort was made during the design process to have the customer in mind. The Flying Circus Commercial Aviation Group targeted reductions in drag, fuel consumption, manufacturing costs, and maintenance costs. Flying Circus emphasized cost reduction throughout the entire design program. Drag reduction was achieved by implementation of the aft nacelle wing configuration to reduce cruise drag and increase cruise speeds. To reduce induced drag, rather than increasing the wing span of the FC-1D, spiroids were included in the efficient wing design. Profile and friction drag are reduced by using riblets in place of paint around the fuselage and empennage of the FC-1D. Choosing a single aisle configuration enabled the Flying Circus to optimize the fuselage diameter. Thus, reducing fuselage drag while gaining high structural efficiency. To further reduce fuel consumption a weight reduction program was conducted through the use of composite materials. An additional quality of the FC-1D is its design for low cost manufacturing and assembly. As a result of this design attribute, the FC-1D will have fewer parts which reduces weight as well as maintenance and assembly costs. The FC-1D is affordable and effective, the apex of commercial transport design.

  12. Crystal Structure of Human Liver delta {4}-3-Ketosteroid 5 beta-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo,L.; Drury, J.; Penning, T.; Christianson, D.

    2008-01-01

    AKR1D1 (steroid 5{beta}-reductase) reduces all 4-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an a,{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a 4-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90 bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human 4-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP+ at 1.79- and 1.35- Angstroms resolution (HEPES bound in the active site), NADP+ and cortisone at 1.90- Angstroms resolution, NADP+ and progesterone at 2.03- Angstroms resolution, and NADP+ and testosterone at 1.62- Angstroms resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP+. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr58 and Glu120. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  13. Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.

    PubMed

    Ekama, G A; Marais, P

    2004-01-01

    The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  14. Instability and charge density wave of metallic quantum chains on a silicon surface

    SciTech Connect

    Yeom, H.W.; Takeda, S.; Rotenberg, E.; Matsuda, I.; Horikoshi, K.; Schaefer, J.; Lee, C.M.; Kevan, S.D.; Ohta, T.; Nagao, T.; Hasegawa, S.

    1999-06-14

    Self-assembled indium linear chains on the Si(111) surface are found to exhibit instability of the metallic phase and 1D charge density wave (CDW). The room-temperature metallic phase of these chains undergoes a temperature-induced, reversible transition into a semiconducting phase. The 1D CDW along the chains is observed directly in real space by scanning tunneling microscopy at low temperature. The Fermi contours of the metallic phase measured by angle-resolved photoemission exhibit a perfect nesting predicting precisely the CDW periodicity.

  15. Instability and Charge Density Wave of Metallic Quantum Chains on a Silicon Surface

    SciTech Connect

    Takeda, S.; Rotenberg, E.; Matsuda, I.; Horikoshi, K.; Schäfer, J.; Lee, C. M.; Kevan, S. D.; Ohta, T.; Nagao, T.; Hasegawa, S.

    1999-06-14

    Self-assembled indium linear chains on the Si(111) surface are found to exhibit instability of the metallic phase and 1D charge density wave (CDW). The room-temperature metallic phase of these chains undergoes a temperature-induced, reversible transition into a semiconducting phase. The 1D CDW along the chains is observed directly in real space by scanning tunneling microscopy at low temperature. The Fermi contours of the metallic phase measured by angle-resolved photoemission exhibit a perfect nesting predicting precisely the CDW periodicity.

  16. Engineering molecular chains in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chamberlain, Thomas W.; Pfeiffer, Rudolf; Howells, Jonathan; Peterlik, Herwig; Kuzmany, Hans; Kräutler, Bernhard; da Ros, Tatiana; Melle-Franco, Manuel; Zerbetto, Francesco; Milić, Dragana; Khlobystov, Andrei N.

    2012-11-01

    A range of mono- and bis-functionalised fullerenes have been synthesised and inserted into single-walled carbon nanotubes. The effect of the size and shape of the functional groups of the fullerenes on the resultant 1D arrays formed within the nanotubes was investigated by high resolution transmission electron microscopy and X-ray diffraction. The addition of non-planar, sterically bulky chains to the fullerene cage results in highly ordered 1D structures in which the fullerenes are evenly spaced along the internal nanotube cavity. Theoretical calculations reveal that the functional groups interact with neighbouring fullerene cages to space the fullerenes evenly within the confines of the nanotube. The addition of two functional groups to opposite sides of the fullerene cages results in a further increase in the separation of the fullerene cages within the nanotubes at the cost of lower nanotube filling rates.A range of mono- and bis-functionalised fullerenes have been synthesised and inserted into single-walled carbon nanotubes. The effect of the size and shape of the functional groups of the fullerenes on the resultant 1D arrays formed within the nanotubes was investigated by high resolution transmission electron microscopy and X-ray diffraction. The addition of non-planar, sterically bulky chains to the fullerene cage results in highly ordered 1D structures in which the fullerenes are evenly spaced along the internal nanotube cavity. Theoretical calculations reveal that the functional groups interact with neighbouring fullerene cages to space the fullerenes evenly within the confines of the nanotube. The addition of two functional groups to opposite sides of the fullerene cages results in a further increase in the separation of the fullerene cages within the nanotubes at the cost of lower nanotube filling rates. Electronic supplementary information (ESI) available: HRTEM images of 4@SWNT, space filling models of 1-6@SWNT structures and crystal packing

  17. Encapsulated discrete octameric water cluster, 1D water tape, and 3D water aggregate network in diverse MOFs based on bisimidazolium ligands

    NASA Astrophysics Data System (ADS)

    Shi, Ruo-Bing; Pi, Min; Jiang, Shuang-Shuang; Wang, Yuan-Yuan; Jin, Chuan-Ming

    2014-08-01

    Four new metal-organic frameworks, [Zn(2-mBIM)2(SO3CF3)2·(H2O)4] (1), [Zn(BMIE)(1,4-BDC)]·(H2O)3 (2), [Cd(BIM)2(OH)(H2O)2(PF6)]·(H2O)4 (3), and [Cd(PA-BIM)2 (ClO4)2]·11.33H2O (4) (2-mBIM = bis(2-methylimidazol-1-yl)methane, BMIE = 1,2-bis[1-(2-methylimidazole)-diethoxy]ethane, BIM = bis(imidazol-1-yl)methane, and PA-BIM = 1,1-bis [(2-phenylazo)imidazol-1-yl]methane) have been prepared and structurally characterized. Complex 1 exhibits an infinite 1D cationic beaded-chain structure, which encapsulated discrete octameric water clusters that are comprised of a chair-like hexameric water cluster with two extra water molecules dangling on two diagonal vertices of the chair. Complex 2 forms a 1D infinite zigzag metal-organic chain structure with a 1D T4(0)A(4) water tape. Complexes 3 show a 2D grid-like sheet structure with the 1D water tape T4(0)A(0)2(0) motif. Complex 4 is a porous 3D MOF with tetrahedron-coordinated Cd(II) centers and trans-conformation PA-BIM ligands. These holes are occupied by a fascinating three-dimensional water clathrate network, which consists of cage-shaped structural tetradecameric water cluster (H2O)14 units and six independent bridged water molecules. The results suggest that the bisimidazolium ligands and anions play crucial roles in the formation of the different host structures and different guest water aggregations. Additionally, the thermal stabilities and photoluminescence spectra of the complexes have been discussed.

  18. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    DOE PAGES

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  19. Comet Halley O(1D) and H2O production rates

    NASA Technical Reports Server (NTRS)

    Magee-Sauer, K.; Scherb, F.; Roesler, F. L.; Harlander, J.

    1990-01-01

    Ground-based dual-etalon Fabry-Perot spectrometer observations have been made of Comet Halley's forbidden O I 6300 A emission. The 0.2 A resolution of the spectral scans was sufficient to resolve the O I forbidden line emissions from both nearby cometary NH2 and telluric emissions. On the basis of these measurements, the production rate Q of O(1D) was determined; it is then found, by taking into account the photodissociation of H2O and OH as sources of O(1D), that the ratio of H2O/O(1D) production rates is of the order of 6.

  20. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.

    PubMed

    Zhu, Y; Appenzeller, J

    2015-12-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  1. Two water-bridged cobalt(II) chains with isomeric naphthoate spacers: from metamagnetic to single-chain magnetic behaviour.

    PubMed

    Liu, Zhong-Yi; Xia, Yan-Fei; Jiao, Jiao; Yang, En-Cui; Zhao, Xiao-Jun

    2015-12-14

    The crystal structures and magnetic behaviours of two water-bridged one-dimensional (1D) cobalt(II) chains with different isomeric naphthoate (na(-)) terminals, [Co(H2O)3(2-na)2]n (1) and {[Co(H2O)3(1-na)2]·2H2O}n (2), were reported to investigate the effect of interchain distance on their magnetic properties. Complex 1 with trans-2-na(-) blocks and dense interchain separation exhibits a metamagnetic transition from antiferromagnetic ordering to a saturated paramagnetic phase. By contrast, complex 2 possessing cis-arranged 1-na(-) spacers and good interchain isolation shows unusual single-chain magnetic behavior under a zero dc field. Thus, completely different interchain packing by isomeric naphthoate ligands governs the ratio of intra- to inter-chain magnetic interactions and further results in different magnetic phenomena, which provide significant magnetostructural information on 1D magnetic systems. PMID:26514974

  2. [Fundamental study of memory impairment and non-cognitive behavioral alterations in APPswe/PS1dE9 mice].

    PubMed

    Taniuchi, Nobuhiko; Niidome, Tetsuhiro; Sugimoto, Hachiro

    2015-01-01

    In addition to cognitive decline, Alzheimer's disease patients also exhibit non-cognitive symptoms commonly referred to as behavioral and psychological symptoms of dementia, or BPSD. These symptoms have a serious impact on the quality of life of these patients, as well as that of their caregivers, but there are currently no effective therapies. The amyloid β-peptide (Aβ) is suspected to play a central role in the cascade leading to Alzheimer's disease, but the precise mechanisms are still incompletely known. To assess the influence of Aβ pathology on cognitive and non-cognitive behaviors, we examined locomotor activity, motor coordination, and spatial memory in male and female APPswePS1dE9 mice (Alzheimer's disease model, double transgenic mice expressing an amyloid precursor protein with Swedish mutation and a presenilin-1 with deletion of exon 9) at 5 months of age, when the mice had subtle Aβ deposits, and again at 9 months of age, when the mice had numerous Aβ deposits. Compared to wild-type mice, the male and female APPswe/PS1dE9 mice showed normal motor coordination in the rotarod test at both 5 and 9 months. In the Morris water maze test, male and female APPswe/PS1dE9 mice showed impaired spatial memory at 9 months; however, no such deficits were found at 5 months. In a locomotor activity test, male APPswe/PS1dE9 mice exhibited locomotor hyperactivity at 9 months, while females exhibited locomotor hyperactivity at both 5 and 9 months compared to the control mice. Together, these results indicate that APPswe/PS1dE9 mice developed spatial memory impairment and BPSD-like behavioral alterations resulting from Aβ accumulation.

  3. [Fundamental study of memory impairment and non-cognitive behavioral alterations in APPswe/PS1dE9 mice].

    PubMed

    Taniuchi, Nobuhiko; Niidome, Tetsuhiro; Sugimoto, Hachiro

    2015-01-01

    In addition to cognitive decline, Alzheimer's disease patients also exhibit non-cognitive symptoms commonly referred to as behavioral and psychological symptoms of dementia, or BPSD. These symptoms have a serious impact on the quality of life of these patients, as well as that of their caregivers, but there are currently no effective therapies. The amyloid β-peptide (Aβ) is suspected to play a central role in the cascade leading to Alzheimer's disease, but the precise mechanisms are still incompletely known. To assess the influence of Aβ pathology on cognitive and non-cognitive behaviors, we examined locomotor activity, motor coordination, and spatial memory in male and female APPswePS1dE9 mice (Alzheimer's disease model, double transgenic mice expressing an amyloid precursor protein with Swedish mutation and a presenilin-1 with deletion of exon 9) at 5 months of age, when the mice had subtle Aβ deposits, and again at 9 months of age, when the mice had numerous Aβ deposits. Compared to wild-type mice, the male and female APPswe/PS1dE9 mice showed normal motor coordination in the rotarod test at both 5 and 9 months. In the Morris water maze test, male and female APPswe/PS1dE9 mice showed impaired spatial memory at 9 months; however, no such deficits were found at 5 months. In a locomotor activity test, male APPswe/PS1dE9 mice exhibited locomotor hyperactivity at 9 months, while females exhibited locomotor hyperactivity at both 5 and 9 months compared to the control mice. Together, these results indicate that APPswe/PS1dE9 mice developed spatial memory impairment and BPSD-like behavioral alterations resulting from Aβ accumulation. PMID:25747232

  4. A double-double/double-single computation package

    2004-12-01

    The DDFUNIDSFUN software permits a new or existing Fortran-90 program to utilize double-double precision (approx. 31 digits) or double-single precision (approx. 14 digits) arithmetic. Double-double precision is required by a rapidly expandirtg body of scientific computations in physics and mathematics, for which the conventional 64-bit IEEE computer arithmetic (about 16 decimal digit accuracy) is not sufficient. Double-single precision permits users of systems that do not have hardware 64-bit IEEE arithmetic (such as some game systems)more » to perform arithmetic at a precision nearly as high as that of systems that do. Both packages run significantly faster Than using multiple precision or arbitrary precision software for this purpose. The package includes an extensive set of low-level routines to perform high-precision arithmetic, including routines to calculate various algebraic and transcendental functions, such as square roots, sin, ccc, exp, log and others. In addition, the package includes high-level translation facilities, so that Fortran programs can utilize these facilities by making only a few changes to conventional Fortran programs. In most cases, the only changes that are required are to change the type statements of variables that one wishes to be treated as multiple precision, plus a few other minor changes. The DDFUN package is similar in functionality to the double-double part of the GD package, which was previously written at LBNL. However, the DDFUN package is written exclusively in Fortran-90, thus avoidIng difficulties that some users experience when using GD, which includes both Fortran-90 and C++ code.« less

  5. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple.

    PubMed

    Kuryavyi, V; Majumdar, A; Shallop, A; Chernichenko, N; Skripkin, E; Jones, R; Patel, D J

    2001-06-29

    The architecture of G-G-G-G tetrad-aligned DNA quadruplexes in monovalent cation solution is dependent on the directionality of the four strands, which in turn are defined by loop connectivities and the guanine syn/anti distribution along individual strands and within individual G-G-G-G tetrads. The smallest unimolecular G-quadruplex belongs to the d(G2NnG2NnG2NnG2) family, which has the potential to form two stacked G-tetrads linked by Nn loop connectivities. Previous studies have focused on the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), where Nn was T2 for the first and third connecting loops and TGT for the middle connecting loop. This DNA aptamer in K(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(anti)-G(syn)-G(anti) tetrads, adjacent strands which are antiparallel to each other and edge-wise connecting T2, TGT and T2 loops. We now report on the NMR-based solution structure of the d(G2T4G2CAG2GT4G2T) sequence, which differs from the thrombin-binding DNA aptamer sequence in having longer first (T4) and third (GT4) loops and a shorter (CA) middle loop. This d(G2T4G2CAG2GT4G2T) sequence in Na(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads, adjacent strands which have one parallel and one antiparallel neighbors and distinct non-edge-wise loop connectivities. Specifically, the longer first (T4) and third (GT4) loops are of the diagonal type while the shorter middle loop is of the double chain reversal type. In addition, the pair of stacked G-G-G-G tetrads are flanked on one side by a G-(T-T) triad and on the other side by a T-T-T triple. The distinct differences in strand directionalities, loop connectivities and syn/anti distribution within G-G-G-G tetrads between the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2) quadruplex reported previously, and the d(G2T4G2CAG2GT4G2T) quadruplex reported here, reinforces the polymorphic nature of higher

  6. Pseudo 1-D Micro/Nanofluidic Device for Exact Electrokinetic Responses.

    PubMed

    Kim, Junsuk; Kim, Ho-Young; Lee, Hyomin; Kim, Sung Jae

    2016-06-28

    Conventionally, a 1-D micro/nanofluidic device, whose nanochannel bridged two microchannels, was widely chosen in the fundamental electrokinetic studies; however, the configuration had intrinsic limitations of the time-consuming and labor intensive tasks of filling and flushing the microchannel due to the high fluidic resistance of the nanochannel bridge. In this work, a pseudo 1-D micro/nanofluidic device incorporating air valves at each microchannel was proposed for mitigating these limitations. High Laplace pressure formed at liquid/air interface inside the microchannels played as a virtual valve only when the electrokinetic operations were conducted. The identical electrokinetic behaviors of the propagation of ion concentration polarization layer and current-voltage responses were obtained in comparison with the conventional 1-D micro/nanofluidic device by both experiments and numerical simulations. Therefore, the suggested pseudo 1-D micro/nanofluidic device owned not only experimental conveniences but also exact electrokinetic responses. PMID:27248856

  7. Quantum and semi-classical transport in RTDs using NEMO 1-D

    NASA Technical Reports Server (NTRS)

    Klimeck, G.; Stout, P.; Bowen, R. C.

    2003-01-01

    NEMO 1-D has been developed primarily for the simulation of resonant tunneling diodes, and quantitative and predictive agreements with experimental high performance, high current density devices have been achieved in the past.

  8. The Cambridge Double Star Atlas

    NASA Astrophysics Data System (ADS)

    MacEvoy, Bruce; Tirion, Wil

    2015-12-01

    Preface; What are double stars?; The binary orbit; Double star dynamics; Stellar mass and the binary life cycle; The double star population; Detecting double stars; Double star catalogs; Telescope optics; Preparing to observe; Helpful accessories; Viewing challenges; Next steps; Appendices: target list; Useful formulas; Double star orbits; Double star catalogs; The Greek alphabet.

  9. Double outlet right ventricle

    MedlinePlus

    ... medlineplus.gov/ency/article/007328.htm Double outlet right ventricle To use the sharing features on this page, please enable JavaScript. Double outlet right ventricle (DORV) is a heart disease that is ...

  10. Actinometric measurement of j(O3-O(1D)) using a luminol detector

    NASA Technical Reports Server (NTRS)

    Bairai, Solomon T.; Stedman, Donald H.

    1992-01-01

    The photolysis frequency of ozone to singlet D oxygen atoms has been measured by means of a chemical actinometer using a luminol based detector. The instrument measures j(O3-O(1D)) with a precision of 10 percent. The data collected in winter and spring of 1991 is in agreement with model predictions and previously measured values. Data from a global solar radiometer can be used to estimate the effects of local cloudiness on j(O3-O(1D)).

  11. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    SciTech Connect

    Marinkovic, Bojan A.; Fredholm, Yann C.; Morgado, Edisson

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  12. Coherent Synchrotron Radiation and Space Charge for a 1-D Bunch on an Arbitrary Planar Orbit

    SciTech Connect

    Warnock, R.L.; /SLAC

    2008-01-08

    Realistic modeling of coherent synchrotron radiation (CSR) and the space charge force in single-pass systems and rings usually requires at least a two-dimensional (2-D) description of the charge/current density of the bunch. Since that leads to costly computations, one often resorts to a 1-D model of the bunch for first explorations. This paper provides several improvements to previous 1-D theories, eliminating unnecessary approximations and physical restrictions.

  13. NR1D1 ameliorates Mycobacterium tuberculosis clearance through regulation of autophagy

    PubMed Central

    Chandra, Vemika; Bhagyaraj, Ella; Nanduri, Ravikanth; Ahuja, Nancy; Gupta, Pawan

    2015-01-01

    NR1D1 (nuclear receptor subfamily 1, group D, member 1), an adopted orphan nuclear receptor, is widely known to orchestrate the expression of genes involved in various biological processes such as adipogenesis, skeletal muscle differentiation, and lipid and glucose metabolism. Emerging evidence suggests that various members of the nuclear receptor superfamily perform a decisive role in the modulation of autophagy. Recently, NR1D1 has been implicated in augmenting the antimycobacterial properties of macrophages and providing protection against Mycobacterium tuberculosis infection by downregulating the expression of the IL10 gene in human macrophages. This antiinfective property of NR1D1 suggests the need for an improved understanding of its role in other host-associated antimycobacterial pathways. The results presented here demonstrate that in human macrophages either ectopic expression of NR1D1 or treatment with its agonist, GSK4112, enhanced the number of acidic vacuoles as well as the level of MAP1LC3-II, a signature molecule for determination of autophagy progression, in a concentration- and time-dependent manner. Conversely, a decrease in NR1D1 in knockdown cells resulted in the reduced expression of lysosomal-associated membrane protein 1, LAMP1, commensurate with a decrease in the level of transcription factor EB, TFEB. This is indicative of that NR1D1 may have a regulatory role in lysosome biogenesis. NR1D1 being a repressor, its positive regulation on LAMP1 and TFEB is suggestive of an indirect byzantine mechanism of action. Its role in the modulation of autophagy and lysosome biogenesis together with its ability to repress IL10 gene expression supports the theory that NR1D1 has a pivotal antimycobacterial function in human macrophages. PMID:26390081

  14. Chromosome doubling method

    DOEpatents

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  15. PPM1D controls nucleolar formation by up-regulating phosphorylation of nucleophosmin.

    PubMed

    Kozakai, Yuuki; Kamada, Rui; Furuta, Junya; Kiyota, Yuhei; Chuman, Yoshiro; Sakaguchi, Kazuyasu

    2016-01-01

    An increase of nucleolar number and size has made nucleoli essential markers for cytology and tumour development. However, the underlying basis for their structural integrity and abundance remains unclear. Protein phosphatase PPM1D was found to be up-regulated in different carcinomas including breast cancers. Here, we demonstrate for the first time that PPM1D regulates nucleolar formation via inducing an increased phosphorylation of the nucleolar protein NPM. We show that PPM1D overexpression induces an increase in the nucleolar number regardless of p53 status. We also demonstrated that specific sequential phosphorylation of NPM is important for nucleolar formation and that PPM1D is a novel upstream regulator of this phosphorylation pathway. These results enhance our understanding of the molecular mechanisms that govern nucleoli formation by demonstrating that PPM1D regulates nucleolar formation by regulating NPM phosphorylation status through a novel signalling pathway, PPM1D-CDC25C-CDK1-PLK1. PMID:27619510

  16. Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR

    PubMed Central

    Vizoso, Miguel; Ferreira, Humberto J; Lopez-Serra, Paula; Javier Carmona, F; Martínez-Cardús, Anna; Girotti, Maria Romina; Villanueva, Alberto; Guil, Sonia; Moutinho, Catia; Liz, Julia; Portela, Anna; Heyn, Holger; Moran, Sebastian; Vidal, August; Martinez-Iniesta, Maria; Manzano, Jose L; Fernandez-Figueras, Maria Teresa; Elez, Elena; Muñoz-Couselo, Eva; Botella-Estrada, Rafael; Berrocal, Alfonso; Pontén, Fredrik; van den Oord, Joost; Gallagher, William M; Frederick, Dennie T; Flaherty, Keith T; McDermott, Ultan; Lorigan, Paul; Marais, Richard; Esteller, Manel

    2016-01-01

    Metastasis is responsible for most cancer-related deaths, and, among common tumor types, melanoma is one with great potential to metastasize. Here we study the contribution of epigenetic changes to the dissemination process by analyzing the changes that occur at the DNA methylation level between primary cancer cells and metastases. We found a hypomethylation event that reactivates a cryptic transcript of the Rab GTPase activating protein TBC1D16 (TBC1D16-47 kDa; referred to hereafter as TBC1D16-47KD) to be a characteristic feature of the metastatic cascade. This short isoform of TBC1D16 exacerbates melanoma growth and metastasis both in vitro and in vivo. By combining immunoprecipitation and mass spectrometry, we identified RAB5C as a new TBC1D16 target and showed that it regulates EGFR in melanoma cells. We also found that epigenetic reactivation of TBC1D16-47KD is associated with poor clinical outcome in melanoma, while conferring greater sensitivity to BRAF and MEK inhibitors. PMID:26030178

  17. PPM1D controls nucleolar formation by up-regulating phosphorylation of nucleophosmin

    PubMed Central

    Kozakai, Yuuki; Kamada, Rui; Furuta, Junya; Kiyota, Yuhei; Chuman, Yoshiro; Sakaguchi, Kazuyasu

    2016-01-01

    An increase of nucleolar number and size has made nucleoli essential markers for cytology and tumour development. However, the underlying basis for their structural integrity and abundance remains unclear. Protein phosphatase PPM1D was found to be up-regulated in different carcinomas including breast cancers. Here, we demonstrate for the first time that PPM1D regulates nucleolar formation via inducing an increased phosphorylation of the nucleolar protein NPM. We show that PPM1D overexpression induces an increase in the nucleolar number regardless of p53 status. We also demonstrated that specific sequential phosphorylation of NPM is important for nucleolar formation and that PPM1D is a novel upstream regulator of this phosphorylation pathway. These results enhance our understanding of the molecular mechanisms that govern nucleoli formation by demonstrating that PPM1D regulates nucleolar formation by regulating NPM phosphorylation status through a novel signalling pathway, PPM1D-CDC25C-CDK1-PLK1. PMID:27619510

  18. The Role of O(1D) in the Oxidation of Si(100)

    SciTech Connect

    Kaspar, Tiffany C. ); Tuan, Allan C. ); Tonkyn, Russell G. ); Hess, Wayne P. ); Rogers, Jr., J. W.; Ono, Yoshi

    2003-03-20

    Oxidation of silicon with neutral atomic oxygen species generated in a rare gas plasma has recently been shown to produce high-quality thin oxides. It has been speculated that atomic oxygen in the first excited state, O(1D), is a dominant reactive species in the oxidation mechanism. In this study, we investigate the role of O(1D) in silicon oxidation in the absence of other oxidizing species. The O(1D) is generated by laser-induced photodissociation of N2O at 193 nm. We find that, at 400?C, O(1D) is effective in the initial stages of oxidation, but the oxide growth rate falls dramatically past 1.5 nm. Oxide films thicker than 2 nm were unachievable regardless of oxidation time or N2O partial pressure (0.5-90 mTorr), indicating O(1D) cannot be a dominant reactive species in thicker oxidation mechanisms. We suggest that quenching of O(1D) to O(3P) (ground state) during diffusion through thicker oxides results in drastically slower oxidation kinetics. In contrast, oxidation with a vacuum ultraviolet (VUV) excimer lamp operating at 172 nm resulted in oxide thicknesses up to 4 nm. Thus, other species produced in plasmas and excimer lamps, such as molecular and atomic ions, photons, and free and conduction band electrons, play a dominant role in the rapid oxidation mechanism of thicker oxides (> 2 nm).

  19. Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR.

    PubMed

    Vizoso, Miguel; Ferreira, Humberto J; Lopez-Serra, Paula; Carmona, F Javier; Martínez-Cardús, Anna; Girotti, Maria Romina; Villanueva, Alberto; Guil, Sonia; Moutinho, Catia; Liz, Julia; Portela, Anna; Heyn, Holger; Moran, Sebastian; Vidal, August; Martinez-Iniesta, Maria; Manzano, Jose L; Fernandez-Figueras, Maria Teresa; Elez, Elena; Muñoz-Couselo, Eva; Botella-Estrada, Rafael; Berrocal, Alfonso; Pontén, Fredrik; Oord, Joost van den; Gallagher, William M; Frederick, Dennie T; Flaherty, Keith T; McDermott, Ultan; Lorigan, Paul; Marais, Richard; Esteller, Manel

    2015-07-01

    Metastasis is responsible for most cancer-related deaths, and, among common tumor types, melanoma is one with great potential to metastasize. Here we study the contribution of epigenetic changes to the dissemination process by analyzing the changes that occur at the DNA methylation level between primary cancer cells and metastases. We found a hypomethylation event that reactivates a cryptic transcript of the Rab GTPase activating protein TBC1D16 (TBC1D16-47 kDa; referred to hereafter as TBC1D16-47KD) to be a characteristic feature of the metastatic cascade. This short isoform of TBC1D16 exacerbates melanoma growth and metastasis both in vitro and in vivo. By combining immunoprecipitation and mass spectrometry, we identified RAB5C as a new TBC1D16 target and showed that it regulates EGFR in melanoma cells. We also found that epigenetic reactivation of TBC1D16-47KD is associated with poor clinical outcome in melanoma, while conferring greater sensitivity to BRAF and MEK inhibitors.

  20. Calibration of a 1D Crustal Velocity and Q Model for Ground Motion Simulations in Central and Eastern US

    NASA Astrophysics Data System (ADS)

    Graves, R. W.

    2012-12-01

    I have performed low frequency (f < 1 Hz) ground motion simulations for the 2008 Mw 5.23 Mt. Carmel, Illinois and 2011 Mw 5.74 Mineral, Virginia earthquakes to calibrate a rock-site 1D crustal velocity and Q structure model for central and eastern US (CEUS). For each earthquake, the observed ground motions were simulated at sites extending out to about 900 km from the epicenter. Sites within the Mississippi embayment are not included in the modeling. The initial 1D velocity model was developed by averaging profiles extracted from the CUS V1.3 3D velocity model (Ramirez-Guzman et al, 2012) at each of the recording sites, with the surface shear wave velocity set at 2200 m/s. The Mt. Carmel earthquake is represented as a point double couple (strike=25, dip=90, rake=-175) at a depth of 14 km and a slip-rate function having a Brune corner frequency of 0.89 Hz (Hartzell and Mendoza, 2011). The Mineral earthquake is represented as a point double couple (strike=26, dip=55, rake=108) at a depth of 6 km and a slip-rate function having a corner frequency of 0.50 Hz. Full waveform Green's functions were computed using the FK method of Zhu and Rivera (2002). The initial model does well at reproducing the median level of observed response spectral acceleration (Sa) for most sites out to 300 km at periods of 2 to 5 sec, including the observed flattening in distance attenuation between 70 and 150 km. However, this model under predicts the motions beyond about 400 km distance. Increasing Q in the mid- and lower crust from the original value of 700 to 5000 removes this under prediction of the larger distance motions. Modified Mercalli Intensity (MMI) estimates have been computed from the simulations using the ground motion-intensity conversion equations of Atkinson and Kaka (2007; AK2007) and Dangkua and Cramer (2011; DC2011-ENA) for comparison against the observed "Did You Feel It" intensity estimates. Given the bandwidth limitations of the simulations, I use the conversion

  1. Assessing 1D Atmospheric Solar Radiative Transfer Models: Interpretation and Handling of Unresolved Clouds.

    NASA Astrophysics Data System (ADS)

    Barker, H. W.; Stephens, G. L.; Partain, P. T.; Bergman, J. W.; Bonnel, B.; Campana, K.; Clothiaux, E. E.; Clough, S.; Cusack, S.; Delamere, J.; Edwards, J.; Evans, K. F.; Fouquart, Y.; Freidenreich, S.; Galin, V.; Hou, Y.; Kato, S.; Li, J.;  Mlawer, E.;  Morcrette, J.-J.;  O'Hirok, W.;  Räisänen, P.;  Ramaswamy, V.;  Ritter, B.;  Rozanov, E.;  Schlesinger, M.;  Shibata, K.;  Sporyshev, P.;  Sun, Z.;  Wendisch, M.;  Wood, N.;  Yang, F.

    2003-08-01

    The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. Answers are sought to the following questions: (i) How well do 1D solar codes interpret and handle columns of information pertaining to partly cloudy atmospheres? (ii) Regardless of the adequacy of their assumptions about unresolved clouds, do 1D solar codes perform as intended?One clear-sky and two plane-parallel, homogeneous (PPH) overcast cloud cases serve to elucidate 1D model differences due to varying treatments of gaseous transmittances, cloud optical properties, and basic radiative transfer. The remaining four cases involve 3D distributions of cloud water and water vapor as simulated by cloud-resolving models. Results for 25 1D codes, which included two line-by-line (LBL) models (clear and overcast only) and four 3D Monte Carlo (MC) photon transport algorithms, were submitted by 22 groups. Benchmark, domain-averaged irradiance profiles were computed by the MC codes. For the clear and overcast cases, all MC estimates of top-of-atmosphere albedo, atmospheric absorptance, and surface absorptance agree with one of the LBL codes to within ±2%. Most 1D codes underestimate atmospheric absorptance by typically 15-25 W m-2 at overhead sun for the standard tropical atmosphere regardless of clouds.Depending on assumptions about unresolved clouds, the 1D codes were partitioned into four genres: (i) horizontal variability, (ii) exact overlap of PPH clouds, (iii) maximum/random overlap of PPH clouds, and (iv) random overlap of PPH clouds. A single MC code was used to establish conditional benchmarks applicable to each genre, and all MC codes were used to establish the full 3D benchmarks. There is a tendency for 1D codes to cluster near their respective conditional benchmarks, though intragenre variances typically exceed those for

  2. Magnetic relaxation of 1D coordination polymers (X)₂[Mn(acacen)Fe(CN)₆], X = Ph₄P⁺, Et₄N⁺.

    PubMed

    Rams, Michał; Peresypkina, Eugenia V; Mironov, Vladimir S; Wernsdorfer, Wolfgang; Vostrikova, Kira E

    2014-10-01

    Substitution of the organic cation X in the 1D polymer, (X)2[Mn(acacen)Fe(CN)6], leads to an essential change in magnetic behavior. Due to the presence of more voluminous Ph4P(+) cations, the polyanion has a more geometrically distorted chain skeleton and, as a consequence, enhanced single chain magnet (SCM) characteristics compared to those for Et4N(+). The Arrhenius relaxation energy barriers, the exchange interaction constant and the zero-field splitting anisotropy of Mn(III) are determined from the analysis of magnetic measurements. The discussion is supported with ligand field calculations for [Fe(CN)6](3-) that unveils the significant anisotropy of Fe magnetic moments.

  3. Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas C.; Robbins, Mark O.

    Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  4. Kondo effect at low electron density and high particle-hole asymmetry in 1D, 2D, and 3D

    NASA Astrophysics Data System (ADS)

    Žitko, Rok; Horvat, Alen

    2016-09-01

    Using the perturbative scaling equations and the numerical renormalization group, we study the characteristic energy scales in the Kondo impurity problem as a function of the exchange coupling constant J and the conduction-band electron density. We discuss the relation between the energy gain (impurity binding energy) Δ E and the Kondo temperature TK. We find that the two are proportional only for large values of J , whereas in the weak-coupling limit the energy gain is quadratic in J , while the Kondo temperature is exponentially small. The exact relation between the two quantities depends on the detailed form of the density of states of the band. In the limit of low electron density the Kondo screening is affected by the strong particle-hole asymmetry due to the presence of the band-edge van Hove singularities. We consider the cases of one- (1D), two- (2D), and three-dimensional (3D) tight-binding lattices (linear chain, square lattice, cubic lattice) with inverse-square-root, step-function, and square-root onsets of the density of states that are characteristic of the respective dimensionalities. We always find two different regimes depending on whether TK is higher or lower than μ , the chemical potential measured from the bottom of the band. For 2D and 3D, we find a sigmoidal crossover between the large-J and small-J asymptotics in Δ E and a clear separation between Δ E and TK for TK<μ . For 1D, there is, in addition, a sizable intermediate-J regime where the Kondo temperature is quadratic in J due to the diverging density of states at the band edge. Furthermore, we find that in 1D the particle-hole asymmetry leads to a large decrease of TK compared to the standard result obtained by approximating the density of states to be constant (flat-band approximation), while in 3D the opposite is the case; this is due to the nontrivial interplay of the exchange and potential scattering renormalization in the presence of particle-hole asymmetry. The 2D square

  5. Benchmarks and models for 1-D radiation transport in stochastic participating media

    SciTech Connect

    Miller, D S

    2000-08-21

    Benchmark calculations for radiation transport coupled to a material temperature equation in a 1-D slab and 1-D spherical geometry binary random media are presented. The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but only approximately Markov statistics in the 1-D sphere. The material chunk sizes are described by Poisson distribution functions. The material opacities are first taken to be constant and then allowed to vary as a strong function of material temperature. Benchmark values and variances for time evolution of the ensemble average of material temperature energy density and radiation transmission are computed via a Monte Carlo type method. These benchmarks are used as a basis for comparison with three other approximate methods of solution. One of these approximate methods is simple atomic mix. The second approximate model is an adaptation of what is commonly called the Levermore-Pomraning model and which is referred to here as the standard model. It is shown that recasting the temperature coupling as a type of effective scattering can be useful in formulating the third approximate model, an adaptation of a model due to Su and Pomraning which attempts to account for the effects of scattering in a stochastic context. This last adaptation shows consistent improvement over both the atomic mix and standard models when used in the 1-D slab geometry but shows limited improvement in the 1-D spherical geometry. Benchmark values are also computed for radiation transmission from the 1-D sphere without material heating present. This is to evaluate the performance of the standard model on this geometry--something which has never been done before. All of the various tests demonstrate the importance of stochastic structure on the solution. Also demonstrated are the range of usefulness and limitations of a simple atomic mix formulation.

  6. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells.

    PubMed

    Lawson, Victoria

    2012-09-01

    CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)-antigen-CD1d complex show how docking between CD1d-antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand-CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR-self-antigen-CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity.

  7. Crater chains on Mercury

    NASA Astrophysics Data System (ADS)

    Shevchenko, V.; Skobeleva, T.

    After discovery of disruption comet Shoemaker-Levy 9 into fragment train before it's collision with Jupiter there was proposed that linear crater chains on the large satellites of Jupiter and on the Moon are impact scars of past tidally disrupted comets.It's known that radar images have revealed the possible presence of water ice deposits in polar regions of Mercury. Impacts by a few large comets seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury because they have a larger volatile content that others external sources, for example, asteroid. A number of crater chains on the surface of Mercury are most likely the impact tracks of "fragment trains" of comets tidally disrupted by Sun or by Mercury and are not secondary craters. Mariner 10 image set (the three Mariner 10 flybys in 1974-1975) was used to recognize the crater chains these did not associate with secondary crater ejecta from observed impact structures. As example, it can be shown such crater chain located near crater Imhotep and crater Ibsen (The Kuiper Quadrangle of Mercury). Resolution of the Mariner 10 image is about 0.54 km/pixel. The crater chain is about 50 km long. It was found a similar crater chain inside large crater Sophocles (The Tolstoj Quadrangle of Mercury). The image resolution is about 1.46 km/pixel. The chain about 50 km long is located in northen part of the crater. Image resolution limits possibility to examine the form of craters strongly. It seems the craters in chains have roughly flat floor and smooth form. Most chain craters are approximately circular. It was examined many images from the Mariner 10 set and there were identified a total 15 crater chains and were unable to link any of these directly to any specific large crater associated with ejecta deposits. Chain craters are remarkably aligned. All distinguished crater chains are superposed on preexisting formations. A total of 127 craters were identified in the 15 recognized

  8. Synthesis and structures of ligand-dominated one-dimensional silver(I)-bis(pyridylmethyl)amine coordination chains

    NASA Astrophysics Data System (ADS)

    Lin, Hung-Jui; Liu, Yu-Chiao; Tseng, Yu-Jui; Wu, Jing-Yun

    2016-10-01

    Reactants slow diffusion of Ag(I) salts with 3,4‧-bis(pyridylmethyl)amine (3,4‧-bpma), an unsymmetric bis-pyridyl ligand equipped with a non-innocent amine backbone, afforded polymeric coordination adducts 1-5 having a general formula {[Ag(3,4‧-bpma)(solv)]X}n (solv = H2O, CH3OH, and none; X= CF3CO2-, BF4-, ClO4-, CF3SO3-, and SbF6-). Single-crystal X-ray diffraction (SCXRD) analyses reveal that colorless crystals of Ag(I) coordination polymers (CPs) 1-5 have very similar one-dimensional (1D) non-flat chain structures, which are preferentially depicted as a "zipper-like" rather than a ladder-like or a double-stranded chain topologies. The 3,4‧-bpma ligand in these Ag(I) CPs displays a μ3-bridging mode with a gauche-trans (1,4, and 5) and a trans-trans (2 and 3) conformations. Noteworthy, anions do not show strong influence on structural modulation of Ag(I) CPs in the solid state, but really affect CP conformations and packing fashions, indicative of a ligand-dominated assembly process for such a Ag(I)-3,4‧-bpma system. Thermal stabilities and solid-state photoluminescence properties of crystalline materials 1-5 were investigated.

  9. Rounding errors may be beneficial for simulations of atmospheric flow: results from the forced 1D Burgers equation

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; Dolaptchiev, Stamen I.

    2015-08-01

    Inexact hardware can reduce computational cost, due to a reduced energy demand and an increase in performance, and can therefore allow higher-resolution simulations of the atmosphere within the same budget for computation. We investigate the use of emulated inexact hardware for a model of the randomly forced 1D Burgers equation with stochastic sub-grid-scale parametrisation. Results show that numerical precision can be reduced to only 12 bits in the significand of floating-point numbers—instead of 52 bits for double precision—with no serious degradation in results for all diagnostics considered. Simulations that use inexact hardware on a grid with higher spatial resolution show results that are significantly better compared to simulations in double precision on a coarser grid at similar estimated computing cost. In the second half of the paper, we compare the forcing due to rounding errors to the stochastic forcing of the stochastic parametrisation scheme that is used to represent sub-grid-scale variability in the standard model setup. We argue that stochastic forcings of stochastic parametrisation schemes can provide a first guess for the upper limit of the magnitude of rounding errors of inexact hardware that can be tolerated by model simulations and suggest that rounding errors can be hidden in the distribution of the stochastic forcing. We present an idealised model setup that replaces the expensive stochastic forcing of the stochastic parametrisation scheme with an engineered rounding error forcing and provides results of similar quality. The engineered rounding error forcing can be used to create a forecast ensemble of similar spread compared to an ensemble based on the stochastic forcing. We conclude that rounding errors are not necessarily degrading the quality of model simulations. Instead, they can be beneficial for the representation of sub-grid-scale variability.

  10. The influence of interchain coupling on intramolecular oscillation mobility in coupled macromolecular chains: The case of coplanar parallel chains

    NASA Astrophysics Data System (ADS)

    Čevizović, D.; Petković, S.; Galović, S.; Chizhov, A.; Reshetnyak, A.

    2015-10-01

    We enlarge our results from the study of the hopping mechanism of the oscillation excitation transport in 1D model of one biologica-likel macromolecular chain to the case of a system composed from two 1D parallel macromolecular chains with consideration of the properties of intramolecular oscillation excitations. We suppose, that due to the exciton interaction with thermal oscillation (generated by mechanical phonon subsystem) of structural elements (consisting of the peptide group) of the chains, the exciton becomes by self trapped and forms the polaron state. We suggest a model which generalizes the modified Holstein polaron model to the case of two macromolecular chains and find that because of the interchain coupling, the exciton energy band is splitted into two subbands. The hopping process of exciton migration along the macromolecular chains is studied in dependence of system parameters and temperature. We pay an special attention to the temperature range (near T = 300 K) in which living cells operate. It is found that for the certain values of the system parameters there exists the abrupt change of the exciton migration nature from practically free (light) exciton motion to an immobile (heavy, dressed by phonon cloud) quasiparticle We discuss an application of the obtained results to the exciton transport both within deoxyribonucleic acid molecule and in the 2D polymer films organized from such macromolecular chains.

  11. Neutral-Type One-Dimensional Mixed-Valence Halogen-Bridged Platinum Chain Complexes with Large Charge-Transfer Band Gaps.

    PubMed

    Otake, Ken-ichi; Otsubo, Kazuya; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2016-03-01

    One-dimensional (1D) electronic systems have attracted significant attention for a long time because of their various physical properties. Among 1D electronic systems, 1D halogen-bridged mixed-valence transition-metal complexes (the so-called MX chains) have been thoroughly studied owing to designable structures and electronic states. Here, we report the syntheses, structures, and electronic properties of three kinds of novel neutral MX-chain complexes. The crystal structures consist of 1D chains of Pt-X repeating units with (1R,2R)-(-)-diaminocychlohexane and CN(-) in-plane ligands. Because of the absence of a counteranion, the neutral MX chains have short interchain distances, so that strong interchain electronic interaction is expected. Resonance Raman spectra and diffuse-reflectance UV-vis spectra indicate that their electronic states are mixed-valence states (charge-density-wave state: Pt(2+)···X-Pt(4+)-X···Pt(2+)···X-Pt(4+)-X···). In addition, the relationship between the intervalence charge-transfer (IVCT) band gap and the degree of distortion of the 1D chain shows that the neutral MX chains have a larger IVCT band gap than that of cationic MX-chain complexes. These results provide new insight into the physical and electronic properties of 1D chain compounds. PMID:26901774

  12. Designing Heterogeneous 1D Nanostructure Arrays Based on AAO Templates for Energy Applications.

    PubMed

    Wen, Liaoyong; Wang, Zhijie; Mi, Yan; Xu, Rui; Yu, Shu-Hong; Lei, Yong

    2015-07-01

    In order to fulfill the multiple requirements for energy production, storage, and utilization in the future, the conventional planar configuration of current energy conversion/storage devices has to be reformed, since technological evolution has promoted the efficiency of the corresponding devices to be close to the theoretical values. One promising strategy is to construct multifunctional 1D nanostructure arrays to replace their planar counterparts for device fabrication, ascribing to the significant superiorities of such 1D nanostructure arrays. In the last three decades, technologies based on anodic aluminium oxide (AAO) templates have turned out to be valuable meaning for the realization of 1D nanostructures and have attracted tremendous interest. In this review, recent progress in energy-related devices equipped with heterogeneous 1D nanostructure arrays that fabricated through the assistance of AAO templates is highlighted. Particular emphasis is given on how to develop efficient devices via optimizing the componential and morphological parameters of the 1D nanostructure arrays. Finally, aspects relevant to the further improvement of device performance are discussed.

  13. Crystal orbital studies on the 1D silic-diyne nanoribbons and nanotubes.

    PubMed

    Zhu, Ying; Bai, Hongcun; Huang, Yuanhe

    2016-02-01

    This work presents crystal orbital studies on novel one-dimensional (1D) nanoscale materials derived from a Si-diyne sheet, based on the density functional theory. The two-dimensional (2D) Si-diyne layer is observed to be carbo-merized silicene, with a similar structure to graphdiyne. The 2D Si-diyne and its 1D ribbons and tubes, of different size and chirality, have been addressed systematically. The low dimensional Si-diyne materials studied exhibit relatively high stability, according to phonon-frequency calculations and molecular dynamics simulations. With comparable diameters, the Si-diyne tubes have lower strain energies than silicene and silicon carbide nanotubes. The Si-diyne layer and its 1D derivatives are all semiconductors, regardless of the size and chirality of the strips and tubes. In addition, the band gaps of the 1D Si-diyne nanoribbons and nanotubes with different chirality, always monotonically decrease as their sizes increases. A quantitative relationship between the band gap and the size of the ribbons and tubes was obtained. The mobility of charge carriers for the 1D Si-diyne structures was also investigated. It was found that both hole and electron mobility of the ribbons and tubes exhibit linear increase with increasing size. The electrons have greater mobility than the holes for each strip and tube. In addition, the mechanical properties of the Si-diyne nanostructures were also investigated by calculation of the Young's modulus and the Poisson's ratio. PMID:26744378

  14. VES/TEM 1D joint inversion by using Controlled Random Search (CRS) algorithm

    NASA Astrophysics Data System (ADS)

    Bortolozo, Cassiano Antonio; Porsani, Jorge Luís; Santos, Fernando Acácio Monteiro dos; Almeida, Emerson Rodrigo

    2015-01-01

    Electrical (DC) and Transient Electromagnetic (TEM) soundings are used in a great number of environmental, hydrological, and mining exploration studies. Usually, data interpretation is accomplished by individual 1D models resulting often in ambiguous models. This fact can be explained by the way as the two different methodologies sample the medium beneath surface. Vertical Electrical Sounding (VES) is good in marking resistive structures, while Transient Electromagnetic sounding (TEM) is very sensitive to conductive structures. Another difference is VES is better to detect shallow structures, while TEM soundings can reach deeper layers. A Matlab program for 1D joint inversion of VES and TEM soundings was developed aiming at exploring the best of both methods. The program uses CRS - Controlled Random Search - algorithm for both single and 1D joint inversions. Usually inversion programs use Marquadt type algorithms but for electrical and electromagnetic methods, these algorithms may find a local minimum or not converge. Initially, the algorithm was tested with synthetic data, and then it was used to invert experimental data from two places in Paraná sedimentary basin (Bebedouro and Pirassununga cities), both located in São Paulo State, Brazil. Geoelectric model obtained from VES and TEM data 1D joint inversion is similar to the real geological condition, and ambiguities were minimized. Results with synthetic and real data show that 1D VES/TEM joint inversion better recovers simulated models and shows a great potential in geological studies, especially in hydrogeological studies.

  15. A Mathematical Model of T1D Acceleration and Delay by Viral Infection.

    PubMed

    Moore, James R; Adler, Fred

    2016-03-01

    Type 1 diabetes (T1D) is often triggered by a viral infection, but the T1D prevalence is rising among populations that have a lower exposure to viral infection. In an animal model of T1D, the NOD mouse, viral infection at different ages may either accelerate or delay disease depending on the age of infection and the type of virus. Viral infection may affect the progression of T1D via multiple mechanisms: triggering inflammation, bystander activation of self-reactive T-cells, inducing a competitive immune response, or inducing a regulatory immune response. In this paper, we create mathematical models of the interaction of viral infection with T1D progression, incorporating each of these four mechanisms. Our goal is to understand how each viral mechanism interacts with the age of infection. The model predicts that each viral mechanism has a unique pattern of interaction with disease progression. Viral inflammation always accelerates disease, but the effect decreases with age of infection. Bystander activation has little effect at younger ages and actually decreases incidence at later ages while accelerating disease in mice that do get the disease. A competitive immune response to infection can decrease incidence at young ages and increase it at older ages, with the effect decreasing over time. Finally, an induced Treg response decreases incidence at any age of infection, but the effect decreases with age. Some of these patterns resemble those seen experimentally. PMID:27030351

  16. Interaction of a single mode field cavity with the 1D XY model: Energy spectrum

    NASA Astrophysics Data System (ADS)

    Tonchev, H.; Donkov, A. A.; Chamati, H.

    2016-02-01

    In this work we use the fundamental in quantum optics Jaynes-Cummings model to study the response of spin 1/2chain to a single mode of a laser light falling on one of the spins, a focused interaction model between the light and the spin chain. For the spin-spin interaction along the chain we use the XY model. We report here the exact analytical results, obtained with the help of a computer algebra system, for the energy spectrum in this model for chains of up to 4 spins with nearest neighbors interactions, either for open or cyclic chain configurations. Varying the sign and magnitude of the spin exchange coupling relative to the light-spin interaction we have investigated both cases of ferromagnetic or antiferromagnetic spin chains.

  17. Chain entanglements. I. Theory

    NASA Astrophysics Data System (ADS)

    Fixman, Marshall

    1988-09-01

    A model of concentrated polymer solution dynamics is described. The forces in a linear generalized Langevin equation for the motion of a probe chain are derived on the assumption that all relaxation of the forces is due to motion of the surrounding matrix. Vicinal chain displacements are classified as viscoelastic deformation, reptation, and minor residual fluctuations. The latter provide a torsional relaxation of the primitive path that minimizes the significance of transverse forces on the probe chain. All displacements of vicinal segments are assumed proportional to the forces that they exert on the probe chain. In response to an external force, the displacement of the probe chain relative to a laboratory frame is increased by viscoelastic deformation of the matrix, but reptative diffusion relative to the deforming matrix is slowed down. The net effect on translational diffusion is negligible if the probe and vicinal chains have the same chain length N, but the friction constant for reptative motion is increased by a factor N1-xs. xs=1/2 if Gaussian conformational statistics applies during the disengagement process, while xs =0.6 if excluded volume statistics applies. The translational friction constant is βp ˜N2, as in reptation theory, but the viscosity is η˜N4-xs . The persistence of entanglements during the translational diffusion of the probe chain across many radii of gyration is rationalized pictorially in terms of correlated reptative motion of the probe and vicinal chains.

  18. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    PubMed Central

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  19. Measurement of tropospheric 300 nm solar ultraviolet flux for determination of O/1D/ photoproduction rate

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hanser, F. A.

    1978-01-01

    The tropospheric importance of the OH radical, and the reaction scheme that leads to its formation, are now being widely investigated. Ozone photolysis at wavelengths no greater than 318 nm produces O(1D), a small fraction of which then reacts with water vapor to yield OH. Although experimental data are available for the O(1D) quantum yield, as well as the O3 absorption cross section, all previous tropospheric photochemical models have had to use theoretical calculations to determine the UV flux. Discussed in this paper are aircraft spectral measurements of the solar UV flux at two altitudes - 2 and 6 km. These results have been compared with three theoretical approaches. The measured experimental fluxes have been combined here with recent quantum yield data to calculate the O(1D) photoproduction rate for various albedo values. This rate is larger than that used in models by about a factor of 2 for reasonable values of assumed albedo.

  20. A comparison of 1D and 2D LSTM architectures for the recognition of handwritten Arabic

    NASA Astrophysics Data System (ADS)

    Yousefi, Mohammad Reza; Soheili, Mohammad Reza; Breuel, Thomas M.; Stricker, Didier

    2015-01-01

    In this paper, we present an Arabic handwriting recognition method based on recurrent neural network. We use the Long Short Term Memory (LSTM) architecture, that have proven successful in different printed and handwritten OCR tasks. Applications of LSTM for handwriting recognition employ the two-dimensional architecture to deal with the variations in both vertical and horizontal axis. However, we show that using a simple pre-processing step that normalizes the position and baseline of letters, we can make use of 1D LSTM, which is faster in learning and convergence, and yet achieve superior performance. In a series of experiments on IFN/ENIT database for Arabic handwriting recognition, we demonstrate that our proposed pipeline can outperform 2D LSTM networks. Furthermore, we provide comparisons with 1D LSTM networks trained with manually crafted features to show that the automatically learned features in a globally trained 1D LSTM network with our normalization step can even outperform such systems.

  1. Collective mode damping and viscosity in a 1D unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Punk, M.; Zwerger, W.

    2006-08-01

    We calculate the damping of the Bogoliubov Anderson mode in a one-dimensional (1D) two-component attractive Fermi gas for arbitrary coupling strength within a quantum hydrodynamic approach. Using the Bethe-ansatz solution of the 1D BCS-BEC crossover problem, we derive analytic results for the viscosity covering the full range from a Luther Emery liquid of weakly bound pairs to a Lieb Liniger gas of strongly bound bosonic dimers. At the unitarity point, the system is a Tonks Girardeau gas with a universal constant αζ = 0.38 in the viscosity ζ = αζplanck n for T = 0. For the trapped case, we calculate the Q-factor of the breathing mode and show that the damping provides a sensitive measure of temperature in 1D Fermi gases.

  2. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kuo, Shou-Yi; Lin, Hsin-I.

    2014-02-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol-gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol-gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices.

  3. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays.

    PubMed

    Kuo, Shou-Yi; Lin, Hsin-I

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol-gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol-gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  4. TBC1D24 mutation causes autosomal-dominant nonsyndromic hearing loss.

    PubMed

    Azaiez, Hela; Booth, Kevin T; Bu, Fengxiao; Huygen, Patrick; Shibata, Seiji B; Shearer, A Eliot; Kolbe, Diana; Meyer, Nicole; Black-Ziegelbein, E Ann; Smith, Richard J H

    2014-07-01

    Hereditary hearing loss is extremely heterogeneous. Over 70 genes have been identified to date, and with the advent of massively parallel sequencing, the pace of novel gene discovery has accelerated. In a family segregating progressive autosomal-dominant nonsyndromic hearing loss (NSHL), we used OtoSCOPE® to exclude mutations in known deafness genes and then performed segregation mapping and whole-exome sequencing to identify a unique variant, p.Ser178Leu, in TBC1D24 that segregates with the hearing loss phenotype. TBC1D24 encodes a GTPase-activating protein expressed in the cochlea. Ser178 is highly conserved across vertebrates and its change is predicted to be damaging. Other variants in TBC1D24 have been associated with a panoply of clinical symptoms including autosomal recessive NSHL, syndromic hearing impairment associated with onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS syndrome), and a wide range of epileptic disorders. PMID:24729539

  5. ISUAL side-way observations of the OI(1D) night airglows

    NASA Astrophysics Data System (ADS)

    Chiang, C.; Chang, T.; Lin, C.; Rajesh, P.; Liu, J.; Chen, A. B.; Su, H.; Hsu, R.

    2008-12-01

    Recently, ISUAL/FORMOSAT-2 Satellite has devoted more observation time to investigate the OI(1D) nightglow from the sideway, which provides the first comprehensive survey of 630.0nm emission in the pre- midnight sector at F layer. It is found that the OI(1D) nightglow enhancement exhibited remarkable seasonal variations. In this study, we want to highlight the following three points. First, semiannual anomaly and winter anomaly existed in the form of the brightening emission in the region of equatorial anomaly. Second, the data indicates that the tidally enhanced regions show significant longitudinal variability. Third, the latitudinal variability of OI(1D) nightglow can be contributed to both the Equatorial Ionization Anomaly (EIA) effect and the upward propagation tides.

  6. S-duality constraints on 1D patterns associated with fractional quantum Hall states.

    PubMed

    Seidel, Alexander

    2010-07-01

    Using the modular invariance of the torus, constraints on the 1D patterns are derived that are associated with various fractional quantum Hall ground states, e.g., through the thin torus limit. In the simplest case, these constraints enforce the well-known odd-denominator rule, which is seen to be a necessary property of all 1D patterns associated to quantum Hall states with minimum torus degeneracy. However, the same constraints also have implications for the non-Abelian states possible within this framework. In simple cases, including the ν=1 Moore-Read state and the ν=3/2 level 3 Read-Rezayi state, the filling factor and the torus degeneracy uniquely specify the possible patterns, and thus all physical properties that are encoded in them. It is also shown that some states, such as the "strong p-wave pairing state," cannot in principle be described through 1D patterns.

  7. Scattering of waves by impurities in precompressed granular chains.

    PubMed

    Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu

    2016-05-01

    We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities. PMID:27300897

  8. Scattering of waves by impurities in precompressed granular chains

    NASA Astrophysics Data System (ADS)

    Martínez, Alejandro J.; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P. G.; Porter, Mason A.; Yang, Jinkyu

    2016-05-01

    We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k →±π ), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance—enabling full transmission at a particular frequency—in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.

  9. Targeted disruption of CD1d prevents NKT cell development in pigs

    PubMed Central

    Yang, Guan; Artiaga, Bianca L.; Hackmann, Timothy J.; Samuel, Melissa S.; Walters, Eric M; Salek-Ardakani, Shahram; Driver, John P.

    2016-01-01

    Studies in mice genetically lacking natural killer T (NKT) cells show that these lymphocytes make important contributions to both innate and adaptive immune responses. However, the usefulness of murine models to study human NKT cells is limited by the many differences between mice and humans, including that their NKT cell frequencies, subsets and distribution are dissimilar. A more suitable model may be swine that share many metabolic, physiological and growth characteristics with humans and are also similar for NKT cells. Thus, we analyzed genetically modified pigs made deficient for CD1d that is required for the development of Type I invariant NKT (iNKT) cells that express a semi-invariant T cell receptor (TCR) and Type II NKT cells that use variable TCRs. Peripheral blood analyzed by flow cytometry and interferon-γ (IFNγ) enzyme-linked immuno spot (ELISPOT) assays demonstrated that CD1d-knockout pigs completely lack iNKT cells while other leukocyte populations remain intact. CD1d and NKT cells have been shown to be involved in shaping the composition of the commensal microbiota in mice. Therefore, we also compared the fecal microbiota profile between pigs expressing and lacking NKT cells. However, no differences were found between pigs lacking or expressing CD1d. Our results are the first to show that knocking-out CD1d prevents the development of iNKT cells in a non-rodent species. CD1d-deficient pigs should offer a useful model to more accurately determine the contribution of NKT cells for human immune responses. They also have potential for understanding how NKT cells impact the health of commercial swine. PMID:25930071

  10. Characterisation and improvement of j(O1D) filter radiometers

    NASA Astrophysics Data System (ADS)

    Bohn, Birger; Heard, Dwayne E.; Mihalopoulos, Nikolaos; Plass-Dülmer, Christian; Schmitt, Rainer; Whalley, Lisa K.

    2016-07-01

    Atmospheric O3 → O(1D) photolysis frequencies j(O1D) are crucial parameters for atmospheric photochemistry because of their importance for primary OH formation. Filter radiometers have been used for many years for in situ field measurements of j(O1D). Typically the relationship between the output of the instruments and j(O1D) is non-linear because of changes in the shape of the solar spectrum dependent on solar zenith angles and total ozone columns. These non-linearities can be compensated for by a correction method based on laboratory measurements of the spectral sensitivity of the filter radiometer and simulated solar actinic flux density spectra. Although this correction is routinely applied, the results of a previous field comparison study of several filter radiometers revealed that some corrections were inadequate. In this work the spectral characterisations of seven instruments were revised, and the correction procedures were updated and harmonised considering recent recommendations of absorption cross sections and quantum yields of the photolysis process O3 → O(1D). Previous inconsistencies were largely removed using these procedures. In addition, optical interference filters were replaced to improve the spectral properties of the instruments. Successive determinations of spectral sensitivities and field comparisons of the modified instruments with a spectroradiometer reference confirmed the improved performance. Overall, filter radiometers remain a low-maintenance alternative of spectroradiometers for accurate measurements of j(O1D) provided their spectral properties are known and potential drifts in sensitivities are monitored by regular calibrations with standard lamps or reference instruments.

  11. Double-Shell Capsule Implosions at NOVA and OMEGA

    NASA Astrophysics Data System (ADS)

    Watt, R. G.; Barnes, Cris W.; Chrien, Robert E.; Delamater, Norman D.; Duke, Joseph R.; Elliott, Norman E.; Gobby, Peter L.; Gomez, Veronica M.; Moore, Joyce E.; Pollak, Gregory D.; Varnum, William S.; Colvin, Jeffrey D.; Lerche, Richard A.; Phillips, Thomas W.

    1998-11-01

    Recent calculations indicate that double shell targets may provide an alternative, non-cryogenic path to ignition on NIF. Experiments have been conducted at the NOVA and OMEGA lasers to study indirectly driven double shell implosions. Double shell implosions in cylindrical hohlraums on NOVA show yields in the range of 1-2% of clean 1D calculations. NOVA implosions may be dominated by the inherent m = 5 beam pattern on either end of the cylindrical hohraum, and have significant time dependent drive asymmetry. Implosions at the OMEGA facility were done in the tethrahedral holhraum geometry which provides improved time dependent symmetry. Primary diagnostics in these implosions are the neutron diagnostics available at both facilities. NOVA shots used DD, while the OMEGA shots used both DD and DT to maximize the available information from the implosions. Individual implosion data and comparison to simulations will be shown for NOVA and OMEGA double shell implosions.

  12. 1D coordination polymers formed by tetranuclear lead(II) building blocks with carboxylate ligands: In situ isomerization of itaconic acid

    SciTech Connect

    Rana, Abhinandan; Jana, Swapan Kumar; Datta, Sayanti; Butcher, Raymond J.; Zangrando, Ennio; Dalai, Sudipta

    2013-11-15

    The synthesis of two new lead(II) coordination polymers, [Pb{sub 2}(mpic){sub 4}(H{sub 2}O)]·0.5H{sub 2}O (1) and [Pb{sub 2}(phen){sub 2}(cit)(mes)]·2H{sub 2}O (2) has been reported, where mpic=3-methyl picolinate, phen=o-phenanthroline, H{sub 2}cit=citraconic acid, H{sub 2}mes mesaconic acid. X-ray single crystal diffraction analyses showed that the complexes comprise topologically different 1D polymeric chains stabilized by weak interactions and both containing tetranuclear Pb{sub 4} units connected by carboxylate groups. In compound 1 3-methylpicolinic acid is formed in situ from 3-methyl piconitrile, and mesaconate and citraconate anions were surprisingly formed from itaconic acid during the synthesis of 2. The photoluminescence and thermal properties of the complexes have been studied. - Graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by X-ray analysis. The luminescence and thermal properties have been studied. Display Omitted - Highlights: • Both the complexes, made up of different ligands, forms topologycally different 1D polymeric chains containing Pb{sub 4} clusters. • The final structures are stabilized by weak interactions (H-bond, π∙∙∙π stacking). • In complex 1, the 3-methylpicolinic acid is generated in situ from 3-methyl piconitrile. • Mesaconate and citraconate anions are surprisingly formed in situ from itaconic acid during the synthesis of complex 2, indicating an exceptional transformation.

  13. Quench dynamics of 1D spin-imbalanced Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Yin, Xiao; Radzihovsky, Leo

    We study a non-equilibrium dynamics of a 1D spin-imbalanced Fermi-Hubbard model following a quantum quench of on-site interaction, using bosonization and exact analysis. By focusing on the evolution of singlet-, triplet-, density and magnetization correlation functions, we find that the evolution and the final state display a strong dependence on the initial state. Thus, we demonstrate that such quantum quench may be used as a new approach to identify and probe the 1D gapless analogue of the elusive FFLO state. Supported by NSF through DMR-1001240 and by Simons Investigator award from Simons.

  14. Opto-digital image encryption by using Baker mapping and 1-D fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Li, She; Liu, Wei; Liu, Shutian

    2013-03-01

    We present an optical encryption method based on the Baker mapping in one-dimensional fractional Fourier transform (1D FrFT) domains. A thin cylinder lens is controlled by computer for implementing 1D FrFT at horizontal direction or vertical direction. The Baker mapping is introduced to scramble the amplitude distribution of complex function. The amplitude and phase of the output of encryption system are regarded as encrypted image and key. Numerical simulation has been performed for testing the validity of this encryption scheme.

  15. 50 CFR Table 1d to Part 660... - At-Sea Whiting Fishery Annual Set-Asides, 2013

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false At-Sea Whiting Fishery Annual Set-Asides, 2013 1d Table 1d to Part 660, Subpart C Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Pt. 660, Subpt. C, Table 1d...

  16. 50 CFR Table 1d to Part 660... - At-Sea Whiting Fishery Annual Set-Asides, 2013

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false At-Sea Whiting Fishery Annual Set-Asides, 2013 1d Table 1d to Part 660, Subpart C Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Pt. 660, Subpt. C, Table 1d...

  17. Scale up tools in reactive extrusion and compounding processes. Could 1D-computer modeling be helpful?

    NASA Astrophysics Data System (ADS)

    Pradel, J.-L.; David, C.; Quinebèche, S.; Blondel, P.

    2014-05-01

    Industrial scale-up (or scale down) in Compounding and Reactive Extrusion processes is one of the most critical R&D challenges. Indeed, most of High Performances Polymers are obtained within a reactive compounding involving chemistry: free radical grafting, in situ compatibilization, rheology control... but also side reactions: oxidation, branching, chain scission... As described by basic Arrhenius and kinetics laws, the competition between all chemical reactions depends on residence time distribution and temperature. Then, to ensure the best possible scale up methodology, we need tools to match thermal history of the formulation along the screws from a lab scale twin screw extruder to an industrial one. This paper proposes a comparison between standard scale-up laws and the use of Computer modeling Software such as Ludovic® applied and compared to experimental data. Scaling data from a compounding line to another one, applying general rules (for example at constant specific mechanical energy), shows differences between experimental and computed data, and error depends on the screw speed range. For more accurate prediction, 1D-Computer Modeling could be used to optimize the process conditions to ensure the best scale-up product, especially in temperature sensitive reactive extrusion processes. When the product temperature along the screws is the key, Ludovic® software could help to compute the temperature profile along the screws and extrapolate conditions, even screw profile, on industrial extruders.

  18. Spin exchange interaction in quasi-1D Cu-phthalocyanine crystalline thin film measured by Magnetic Circular Dichroism (MCD) spectroscopy

    NASA Astrophysics Data System (ADS)

    Pan, Zhenwen; Rawat, Naveen; Lamarche, Cody; Tokumoto, Takahisa; Wetherby, Anthony; Waterman, Rory; Headrick, Randy; McGill, Steve; Furis, Madalina

    2012-02-01

    Highly-oriented Cu-phthalocyanine (PC) pen-written crystalline thin films can be viewed as quasi-1D spin 1/2 magnetic chains. In order to reveal the nature of spin exchange between localized S=1/2 Cu spins, MCD spectroscopy was performed on films with millimeter-sized grains fabricated from a soluble CuPc derivative in magnetic fields up to 10 Tesla at temperatures ranging from 0.4 K to 77K. At T<2K and B<4T the MCD associated with transitions between Q-band π electron states exhibits a non-linear temperature-dependent Brillouin-like increase with magnetic field. For B>4T the MCD evolves linearly with magnetic field, as expected from diamagnetic carbon-based systems. Theoretical modelingootnotetextW. Wu et. al.,PRB 84,024427(2011) of electronic structure and exchange interactions in this system predicts an indirect exchange mechanism mediated by delocalized ligand states. Our MCD measurements identified the states responsible for this exchange.

  19. Time-Resolved Quantum Dynamics of Double Ionization in Strong Laser Fields

    SciTech Connect

    Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub; Eckhardt, Bruno

    2007-05-18

    Quantum calculations of a (1+1)-dimensional model for double ionization in strong laser fields are used to trace the time evolution from the ground state through ionization and rescattering to the two-electron escape. The subspace of symmetric escape, a prime characteristic of nonsequential double ionization, remains accessible by a judicious choice of 1D coordinates for the electrons. The time-resolved ionization fluxes show the onset of single and double ionization, the sequence of events during the pulse, and the influences of pulse duration and reveal the relative importance of sequential and nonsequential double ionization, even when ionization takes place during the same field cycle.

  20. Observing Double Stars

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  1. Epitaxial 1D electron transport layers for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-09-01

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport

  2. Double layer -- a particle accelerator in the magnetosphere

    SciTech Connect

    Fu, Xiangrong

    2015-07-16

    Slides present the material under the following topics: Introduction (What is a double layer (DL)? Why is it important? Key unsolved problems); Theory -- time-independent solutions of 1D Vlasov--Poisson system; Particle-in-cell simulations (Current-driven DLs); and Electron acceleration by DL (Betatron acceleration). Key problems include the generation mechanism, stability, and electron acceleration. In summary, recent observations by Van Allen Probes show large number of DLs in the outer radiation belt, associated with enhanced flux of relativistic electrons. Simulations show that ion acoustic double layers can be generated by field-aligned currents. Thermal electrons can gain energy via betatron acceleration in a dipole magnetic field.

  3. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  4. Critical Chain Exercises

    ERIC Educational Resources Information Center

    Doyle, John Kevin

    2010-01-01

    Critical Chains project management focuses on holding buffers at the project level vs. task level, and managing buffers as a project resource. A number of studies have shown that Critical Chain project management can significantly improve organizational schedule fidelity (i.e., improve the proportion of projects delivered on time) and reduce…

  5. 1D-TlInSe2: Band Structure, Dielectric Function and Nanorods

    NASA Astrophysics Data System (ADS)

    Mamedov, Nazim; Wakita, Kazuki; Akita, Seiji; Nakayama, Yoshikazu

    2005-01-01

    Linear combination of atomic orbitals (LCAO) analysis of the electronic band states has been completed for one-dimensional (1D) TlInSe2 having rod-like ground state shape of bulky crystal. The total scenario of the occurrence of the band states from the atomic states has been established. According to this scenario, in dipole approximation the optical transitions at band gap (point T of Brillouin zone) are either entirely forbidden or allowed for T2-T10 transitions in e\\perpc configuration provided that either initial or terminate state has T2 symmetry and both are Se-like. As a whole, the obtained results on the electronic spectrum, including dielectric function, are applicable to all obtained 1D-TlInSe2 nanorods which were as thin as 30--50 nm in cross-section, and apparently preserved tetragonal crystal structure of bulky material. The thermal instabilities developing already in bulky samples of 1D-TlInSe2 are considered to be an ultimate source of the nanoparticles emerging in plenty during nanorods preparation. The nanoplates of a chemically similar but 2D material, TlInS2, are demonstrated for comparison to show the absence of nanoparticles in that case. A possibility of nanoparticle preparation using laser excited coherent phonon trains in the nanorods of 1D-TlInSe2 is figured out.

  6. A South American Prehistoric Mitogenome: Context, Continuity, and the Origin of Haplogroup C1d

    PubMed Central

    Sans, Mónica; Figueiro, Gonzalo; Hughes, Cris E.; Lindo, John; Hidalgo, Pedro C.; Malhi, Ripan S.

    2015-01-01

    Based on mitochondrial DNA (mtDNA), it has been estimated that at least 15 founder haplogroups peopled the Americas. Subhaplogroup C1d3 was defined based on the mitogenome of a living individual from Uruguay that carried a lineage previously identified in hypervariable region I sequences from ancient and modern Uruguayan individuals. When complete mitogenomes were studied, additional substitutions were found in the coding region of the mitochondrial genome. Using a complete ancient mitogenome and three modern mitogenomes, we aim to clarify the ancestral state of subhaplogroup C1d3 and to better understand the peopling of the region of the Río de la Plata basin, as well as of the builders of the mounds from which the ancient individuals were recovered. The ancient mitogenome, belonging to a female dated to 1,610±46 years before present, was identical to the mitogenome of one of the modern individuals. All individuals share the mutations defining subhaplogroup C1d3. We estimated an age of 8,974 (5,748–12,261) years for the most recent common ancestor of C1d3, in agreement with the initial peopling of the geographic region. No individuals belonging to the defined lineage were found outside of Uruguay, which raises questions regarding the mobility of the prehistoric inhabitants of the country. Moreover, the present study shows the continuity of Native lineages over at least 6,000 years. PMID:26509686

  7. Combustion synthesis as a novel method for production of 1-D SiC nanostructures.

    PubMed

    Huczko, Andrzej; Bystrzejewski, Michał; Lange, Hubert; Fabianowska, Agnieszka; Cudziło, Stanisław; Panas, Andrzej; Szala, Mateusz

    2005-09-01

    1-D nanostructures of cubic phase silicon carbide (beta-SiC) were efficiently produced by combustion synthesis of mixtures containing Si-containing compounds and halocarbons in a calorimetric bomb. The influence of the operating parameters on 1-D SiC formation yield was studied. The heat release, the heating rate, and the chamber pressure increase were monitored during the process. The composition and structural features of the products were characterized by elemental analysis, X-ray diffraction, differential thermal analysis/ thermogravimetric technique, Raman spectroscopy, scanning and transmission electron microscopy, and energy-dispersive X-ray spectrometry. This self-induced growth process can produce SiC nanofibers and nanotubes ca. 20-100 nm in diameter with the aspect ratio higher than 1000. Bulk scale Raman studies showed the product to be comprised of mostly cubic polytype of SiC and that finite size effects are present. We believe that the nucleation mechanism involving radical gaseous species is responsible for 1-D nanostructures growth. The present study has enlarged the family of nanofibers and nanotubes available and offers a possible, new general route to 1-D crystalline materials. PMID:16853065

  8. Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving.

    PubMed

    Pauli, Guido F; Niemitz, Matthias; Bisson, Jonathan; Lodewyk, Michael W; Soldi, Cristian; Shaw, Jared T; Tantillo, Dean J; Saya, Jordy M; Vos, Klaas; Kleinnijenhuis, Roel A; Hiemstra, Henk; Chen, Shao-Nong; McAlpine, James B; Lankin, David C; Friesen, J Brent

    2016-02-01

    The revision of the structure of the sesquiterpene aquatolide from a bicyclo[2.2.0]hexane to a bicyclo[2.1.1]hexane structure using compelling NMR data, X-ray crystallography, and the recent confirmation via full synthesis exemplify that the achievement of "structural correctness" depends on the completeness of the experimental evidence. Archived FIDs and newly acquired aquatolide spectra demonstrate that archiving and rigorous interpretation of 1D (1)H NMR data may enhance the reproducibility of (bio)chemical research and curb the growing trend of structural misassignments. Despite being the most accessible NMR experiment, 1D (1)H spectra encode a wealth of information about bonds and molecular geometry that may be fully mined by (1)H iterative full spin analysis (HiFSA). Fully characterized 1D (1)H spectra are unideterminant for a given structure. The corresponding FIDs may be readily submitted with publications and collected in databases. Proton NMR spectra are indispensable for structural characterization even in conjunction with 2D data. Quantum interaction and linkage tables (QuILTs) are introduced for a more intuitive visualization of 1D J-coupling relationships, NOESY correlations, and heteronuclear experiments. Overall, this study represents a significant contribution to best practices in NMR-based structural analysis and dereplication. PMID:26812443

  9. Energy transformation of plasmonic photocatalytic oxidation on 1D quantum well of platinum thin film

    NASA Astrophysics Data System (ADS)

    Huang, Hung Ji; Liu, Bo-Heng

    2015-12-01

    The energy transformation of vertical incident light into energy for a chemical reaction is demonstrated in the endothermic oxidation of ammonium ions in a spinning disk reactor. The plasmonic enhancement on photocatalytic reaction demonstrated the generation of quantum hot charge on 1D quantum well of platinum thin film.

  10. α(1D)-Adrenergic receptors constitutive activity and reduced expression at the plasma membrane.

    PubMed

    García-Sáinz, J Adolfo; Romero-Ávila, M Teresa; Medina, Luz Del Carmen

    2010-01-01

    Adrenergic receptors are a heterogeneous family of the G protein-coupled receptors that mediate the actions of adrenaline and noradrenaline. Adrenergic receptors comprise three subfamilies (α(1), α(2), and β, with three members each) and the α(1D)-adrenergic receptor is one of the members of the α(1) subfamily with some interesting traits. The α(1D)-adrenergic receptor is difficult to express, seems predominantly located intracellularly, and exhibits constitutive activity. In this chapter, we will describe in detail the conditions and procedures used to determine changes in intracellular free calcium concentration which has been instrumental to define the constitutive activity of these receptors. Taking advantage of the fact that truncation of the first 79 amino acids of α(1D)-adrenergic receptors markedly increased their membrane expression, we were able to show that constitutive activity is present in receptors truncated at the amino and carboxyl termini, which indicates that such domains are dispensable for this action. Constitutive activity could be observed in cells expressing either the rat or human α(1D)-adrenergic receptor orthologs. Such constitutive activity has been observed in native rat arteries and we will discuss the possible functional implications that it might have in the regulation of blood pressure.

  11. Quasi 1-D Study of Pulse Detonation Rocket Engine Blowdown Gasdynamics and Performance

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2002-01-01

    Pulse detonation rocket engines (PDREs) offer potential performance improvements over conventional designs, but represent a challenging modeling task. A quasi 1-D, finite-rate chemistry CFD model for a PDRE is described and implemented. A parametric study of the effect of blowdown pressure ratio on the performance of several different PDRE nozzle configurations is reported.

  12. Recent developments in testing techniques for elastic mechanical properties of 1-D nanomaterials.

    PubMed

    Wang, Weidong; Li, Shuai; Zhang, Hongti; Lu, Yang

    2015-01-01

    One-dimensional (1-D) nanomaterials exhibit great potentials in their applications to functional materials, nano-devices and systems owing to their excellent properties. In the past decade, considerable studies have been done, with new patents being developed, on these 1-D building blocks for for their mechanical properties, especially elastic properties, which provide a solid foundation for the design of nanoelectromechanical systems (NEMS) and predictions of reliability and longevity for their devices. This paper reviews some of the recent investigations on techniques as well as patents available for the quantitative characterization of the elastic behaviors of various 1-D nanomaterials, with particular focus on on-chip testing system. The review begins with an overview of major testing methods for 1-D nanostructures' elastic properties, including nanoindentation testing, AFM (atomic force microscopy) testing, in situ SEM (scanning electron microscopy) testing, in situ TEM (transmission electron microscopy) testing and the testing system on the basis of MEMS (micro-electro-mechanical systems) technology, followed by advantages and challenges of each testing approach. This review also focuses on the MEMS-based testing apparatus, which can be actuated and measured inside SEM and TEM with ease, allowing users to highly magnify the continuous images of the specimen while measuring load electronically and independently. The combination of on-chip technologies and the in situ electron microscopy is expected to be a potential testing technique for nanomechanics. Finally, details are presented on the key challenges and possible solutions in the implementation of the testing techniques referred above.

  13. Millimeter and Submillimeter Studies of O(^1D) Insertion Reactions to Form Molecules of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Hays, Brian; Wehres, Nadine; Deprince, Bridget Alligood; Roy, Althea A. M.; Laas, Jacob; Widicus Weaver, Susanna L.

    2015-06-01

    While both the number of detected interstellar molecules and their chemical complexity continue to increase, understanding of the processes leading to their formation is lacking. Our research group combines laboratory spectroscopy, observational astronomy, and astrochemical modeling for an interdisciplinary examination of the chemistry of star and planet formation. This talk will focus on our laboratory studies of O(^1D) insertion reactions with organic molecules to produce molecules of astrophysical interest. By employing these reactions in a supersonic expansion, we are able to produce interstellar organic reaction intermediates that are unstable under terrestrial conditions; we then probe the products using millimeter and submillimeter spectroscopy. We benchmarked this setup using the well-studied O(^1D) + methane reaction to form methanol. After optimizing methanol production, we moved on to study the O(^1D) + ethylene reaction to form vinyl alcohol (CH_2CHOH), and the O(^1D) + methyl amine reaction to form aminomethanol (NH_2CH_2OH). Vinyl alcohol measurements have now been extended up to 450 GHz, and the associated spectral analysis is complete. A possible detection of aminomethanol has also been made, and continued spectral studies and analysis are underway. We will present the results from these experiments and discuss future applications of these molecular and spectroscopic techniques.

  14. Build up An Operational Flood Simulation from Existing 1D Channel Flow Works

    NASA Astrophysics Data System (ADS)

    Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Lien, Ho-Cheng; Shen, Jhih-Cyuan; Chung, Ming-Ko

    2016-04-01

    Several 2D flood simulations will be developed for urban area in recent years in Taiwan. Original ideas focus on the static flood maps produced by the 2D flood simulation with respect to design events, which could be useful no matter for planning or disaster awareness. However, an extra bonus is expected to see if we can reuse the 2D flood simulation framework for operational use or not. Such a project goal inspire us to setup a standard operation procedure before any progress from existing 1D channel flow works. 3 key issues are taken into account in the SOP: 1. High Resolution Terrain: A 1m resolution digital terrain model (DTM) is considered as a reference. The Channels and structures should be setup in 1D channel flow works if we can identify under such high resolution. One should examine the existing 1D channel flow works consistent with the DTM or not. 2. Meteo Stations Referenced: Real time precipitation would be send to referenced location in RR models during an operational forecast. Existing 1D channels flow works are usually specifically for design events which are not necessarily equipped with such references. 3. Time Consuming: A full scale 2D flood simulation needs a lot of computation resources. A solution should be derived within practical time limits. Under the above consideration, some impacts and procedures will be analyzed and developed to setup the SOP for further model modification.

  15. Plasma as a tool for growth of 1D and 2D nanomaterials and their conversions

    NASA Astrophysics Data System (ADS)

    Cvelbar, Uros

    2015-09-01

    The growth of 1D and 2D nanostructures in low pressure oxygen plasma is presented with the special stress on metal-oxide nanowires and their deterministic growth mechanisms. Since the resulting nanostructures not always have required properties for applications their modifications are required. Therefore their conversions into different oxides or sulphites/nitrides are required with either molecules, atoms, electrons or photons.

  16. Observing the 1D-3D Crossover in a Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Fry, Jacob A.; Olsen, Ben A.; Hulet, Randall G.

    2016-05-01

    Trapped two-component Fermi gases phase separate into superfluid and normal phases when their spin populations are imbalanced. In 3D, a balanced superfluid core is surrounded by shells of partially polarized and normal phases, while in 1D, the balanced superfluid occupies the low density wings. We explored the crossover from 3D to 1D using a two-spin component ultracold atomic gas of 6 Li prepared in the lowest two hyperfine sublevels, where the interactions are tuned by a Feshbach resonance. The atoms are confined to 1D tubes where the tunneling rate t between tubes is varied by changing the depth of a 2D optical lattice. We observe the transition from 1D to 3D-like phase separation by varying t and interaction strength which changes the pair binding energy ɛB. We find a universal scaling of the dimensional crossover with t /ɛB , in agreement with previous theory. The crossover region is believed to be the most promising to find the exotic FFLO superfluid phase. Supported by the NSF and the Welch Foundation.

  17. Behavioral Responses in Animal Model of Congenital Muscular Dystrophy 1D.

    PubMed

    Comim, Clarissa M; Schactae, Aryadnne L; Soares, Jaime A; Ventura, Letícia; Freiberger, Viviane; Mina, Francielle; Dominguini, Diogo; Vainzof, Mariz; Quevedo, João

    2016-01-01

    Congenital muscular dystrophies 1D (CMD1D) present a mutation on the LARGE gene and are characterized by an abnormal glycosylation of α-dystroglycan (α-DG), strongly implicated as having a causative role in the development of central nervous system abnormalities such as cognitive impairment seen in patients. However, in the animal model of CMD1D, the brain involvement remains unclear. Therefore, the objective of this study is to evaluate the cognitive involvement in the Large(myd) mice. To this aim, we used adult homozygous, heterozygous, and wild-type mice. The mice underwent six behavioral tasks: habituation to an open field, step-down inhibitory avoidance, continuous multiple trials step-down inhibitory avoidance task, object recognition, elevated plus-maze, and forced swimming test. It was observed that Large(myd) individuals presented deficits on the habituation to the open field, step down inhibitory avoidance, continuous multiple-trials step-down inhibitory avoidance, object recognition, and forced swimming. This study shows the first evidence that abnormal glycosylation of α-DG may be affecting memory storage and restoring process in an animal model of CMD1D.

  18. Formation of 1D adsorbed water structures on CaO(001)

    NASA Astrophysics Data System (ADS)

    Zhao, Xunhua; Bhattacharya, Saswata; Ghiringhelli, Luca M.; Levchenko, Sergey V.; Scheffler, Matthias

    2015-03-01

    Understanding the interaction of water with oxide surfaces is of fundamental importance for basic and engineering sciences. Recently, a spontaneous formation of one-dimensional (1D) adsorbed water structures have been observed on CaO(001). Interestingly, at other alkaline earth metal oxides, in particular MgO(001) and SrO(001), such structures have not been found experimentally. We calculate the relative stability of adsorbed water structures on the three oxides using density-functional theory combined with the ab initio atomistic thermodynamics. Low-energy structures at different coverages are obtained with a first-principles genetic algorithm. Finite-temperature vibrational spectra are calculated using ab initio molecular dynamics. We find a range of (T, p) conditions where 1D structures are thermodynamically stable on CaO(001). The orientation and vibrational spectra of the 1D structures are in agreement with the experiments. The formation of the 1D structures is found to be actuated by a symmetry breaking in the adsorbed water tetramer, as well as by a balance between water-water and water-substrate interactions, determined by the lattice constant of the oxide.

  19. CD1d-restricted peripheral T cell lymphoma in mice and humans.

    PubMed

    Bachy, Emmanuel; Urb, Mirjam; Chandra, Shilpi; Robinot, Rémy; Bricard, Gabriel; de Bernard, Simon; Traverse-Glehen, Alexandra; Gazzo, Sophie; Blond, Olivier; Khurana, Archana; Baseggio, Lucile; Heavican, Tayla; Ffrench, Martine; Crispatzu, Giuliano; Mondière, Paul; Schrader, Alexandra; Taillardet, Morgan; Thaunat, Olivier; Martin, Nadine; Dalle, Stéphane; Le Garff-Tavernier, Magali; Salles, Gilles; Lachuer, Joel; Hermine, Olivier; Asnafi, Vahid; Roussel, Mikael; Lamy, Thierry; Herling, Marco; Iqbal, Javeed; Buffat, Laurent; Marche, Patrice N; Gaulard, Philippe; Kronenberg, Mitchell; Defrance, Thierry; Genestier, Laurent

    2016-05-01

    Peripheral T cell lymphomas (PTCLs) are a heterogeneous entity of neoplasms with poor prognosis, lack of effective therapies, and a largely unknown pathophysiology. Identifying the mechanism of lymphomagenesis and cell-of-origin from which PTCLs arise is crucial for the development of efficient treatment strategies. In addition to the well-described thymic lymphomas, we found that p53-deficient mice also developed mature PTCLs that did not originate from conventional T cells but from CD1d-restricted NKT cells. PTCLs showed phenotypic features of activated NKT cells, such as PD-1 up-regulation and loss of NK1.1 expression. Injections of heat-killed Streptococcus pneumonia, known to express glycolipid antigens activating NKT cells, increased the incidence of these PTCLs, whereas Escherichia coli injection did not. Gene expression profile analyses indicated a significant down-regulation of genes in the TCR signaling pathway in PTCL, a common feature of chronically activated T cells. Targeting TCR signaling pathway in lymphoma cells, either with cyclosporine A or anti-CD1d blocking antibody, prolonged mice survival. Importantly, we identified human CD1d-restricted lymphoma cells within Vδ1 TCR-expressing PTCL. These results define a new subtype of PTCL and pave the way for the development of blocking anti-CD1d antibody for therapeutic purposes in humans. PMID:27069116

  20. Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving

    PubMed Central

    2016-01-01

    The revision of the structure of the sesquiterpene aquatolide from a bicyclo[2.2.0]hexane to a bicyclo[2.1.1]hexane structure using compelling NMR data, X-ray crystallography, and the recent confirmation via full synthesis exemplify that the achievement of “structural correctness” depends on the completeness of the experimental evidence. Archived FIDs and newly acquired aquatolide spectra demonstrate that archiving and rigorous interpretation of 1D 1H NMR data may enhance the reproducibility of (bio)chemical research and curb the growing trend of structural misassignments. Despite being the most accessible NMR experiment, 1D 1H spectra encode a wealth of information about bonds and molecular geometry that may be fully mined by 1H iterative full spin analysis (HiFSA). Fully characterized 1D 1H spectra are unideterminant for a given structure. The corresponding FIDs may be readily submitted with publications and collected in databases. Proton NMR spectra are indispensable for structural characterization even in conjunction with 2D data. Quantum interaction and linkage tables (QuILTs) are introduced for a more intuitive visualization of 1D J-coupling relationships, NOESY correlations, and heteronuclear experiments. Overall, this study represents a significant contribution to best practices in NMR-based structural analysis and dereplication. PMID:26812443

  1. A South American Prehistoric Mitogenome: Context, Continuity, and the Origin of Haplogroup C1d.

    PubMed

    Sans, Mónica; Figueiro, Gonzalo; Hughes, Cris E; Lindo, John; Hidalgo, Pedro C; Malhi, Ripan S

    2015-01-01

    Based on mitochondrial DNA (mtDNA), it has been estimated that at least 15 founder haplogroups peopled the Americas. Subhaplogroup C1d3 was defined based on the mitogenome of a living individual from Uruguay that carried a lineage previously identified in hypervariable region I sequences from ancient and modern Uruguayan individuals. When complete mitogenomes were studied, additional substitutions were found in the coding region of the mitochondrial genome. Using a complete ancient mitogenome and three modern mitogenomes, we aim to clarify the ancestral state of subhaplogroup C1d3 and to better understand the peopling of the region of the Río de la Plata basin, as well as of the builders of the mounds from which the ancient individuals were recovered. The ancient mitogenome, belonging to a female dated to 1,610±46 years before present, was identical to the mitogenome of one of the modern individuals. All individuals share the mutations defining subhaplogroup C1d3. We estimated an age of 8,974 (5,748-12,261) years for the most recent common ancestor of C1d3, in agreement with the initial peopling of the geographic region. No individuals belonging to the defined lineage were found outside of Uruguay, which raises questions regarding the mobility of the prehistoric inhabitants of the country. Moreover, the present study shows the continuity of Native lineages over at least 6,000 years. PMID:26509686

  2. The Double Absorbing Boundary method

    NASA Astrophysics Data System (ADS)

    Hagstrom, Thomas; Givoli, Dan; Rabinovich, Daniel; Bielak, Jacobo

    2014-02-01

    A new approach is devised for solving wave problems in unbounded domains. It has common features to each of two types of existing techniques: local high-order Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML). However, it is different from both and enjoys relative advantages with respect to both. The new method, called the Double Absorbing Boundary (DAB) method, is based on truncating the unbounded domain to produce a finite computational domain Ω, and on applying a local high-order ABC on two parallel artificial boundaries, which are a small distance apart, and thus form a thin non-reflecting layer. Auxiliary variables are defined on the two boundaries and inside the layer bounded by them, and participate in the numerical scheme. The DAB method is first introduced in general terms, using the 2D scalar time-dependent wave equation as a model. Then it is applied to the 1D Klein-Gordon equation, using finite difference discretization in space and time, and to the 2D wave equation in a wave guide, using finite element discretization in space and dissipative time stepping. The computational aspects of the method are discussed, and numerical experiments demonstrate its performance.

  3. Cardiovascular characterization of pyrrolo[2,1-d][1,5]benzothiazepine derivatives binding selectively to the peripheral-type benzodiazepine receptor (PBR): from dual PBR affinity and calcium antagonist activity to novel and selective calcium entry blockers.

    PubMed

    Campiani, G; Fiorini, I; De Filippis, M P; Ciani, S M; Garofalo, A; Nacci, V; Giorgi, G; Sega, A; Botta, M; Chiarini, A; Budriesi, R; Bruni, G; Romeo, M R; Manzoni, C; Mennini, T

    1996-07-19

    The synthesis and cardiovascular characterization of a series of novel pyrrolo[2,1-d][1,5]-benzothiazepine derivatives (54-68) are described. Selective peripheral-type benzodiazepine receptor (PBR) ligands, such as PK 11195 and Ro 5-4864, have recently been found to possess low but significant inhibitory activity of L-type calcium channels, and this property is implicated in the cardiovascular effects observed with these compounds. In functional studies both PK 11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxa mide) and Ro 5-4864 (4'-chlorodiazepam) did not display selectivity between cardiac and vascular tissue. Therefore, several 7-(acyloxy)-6-arylpyrrolo[2,1-d][1,5]benzothiazepines, potent and selective peripheral-type benzodiazepine receptor ligands recently developed by us (3, 7-20), were subjected to calcium channel receptor binding assay. Some of these compounds showed an unexpected potency in displacing the binding of [3H]nitrendipine from L-type calcium channels, much higher than that reported for PK 11195 and Ro 5-4864 and equal to or higher than that of reference calcium antagonists such as verapamil and (+)-cis-diltiazem. Specifically, in rat cortex homogenate, our prototypic PBR ligand 7-acetoxy-6-(p-methoxyphenyl)pyrrolo[2,1-d][1,5]benzothiazepine (3) showed an IC50 equal to 0.13 nM for inhibition of [3H]nitrendipine binding. Furthermore, in functional studies this compound displayed a clear-cut selectivity for cardiac over vascular tissue. Comparison of calcium antagonist activity on guinea pig aorta strips with the negative inotropic activity, determined by using isolated guinea pig left atria, revealed that 3 displayed higher selectivity than the reference (+)-cis-diltiazem. Thus, the pyrrolobenzothiazepine 3 might represent a new tool for characterizing the relationship between the PBR and cardiac function. Furthermore, we have also investigated the structural dependence of binding to PBR and L-type calcium channels, and

  4. A new EEG measure using the 1D cluster variation method

    NASA Astrophysics Data System (ADS)

    Maren, Alianna J.; Szu, Harold H.

    2015-05-01

    A new information measure, drawing on the 1-D Cluster Variation Method (CVM), describes local pattern distributions (nearest-neighbor and next-nearest neighbor) in a binary 1-D vector in terms of a single interaction enthalpy parameter h for the specific case where the fractions of elements in each of two states are the same (x1=x2=0.5). An example application of this method would be for EEG interpretation in Brain-Computer Interfaces (BCIs), especially in the frontier of invariant biometrics based on distinctive and invariant individual responses to stimuli containing an image of a person with whom there is a strong affiliative response (e.g., to a person's grandmother). This measure is obtained by mapping EEG observed configuration variables (z1, z2, z3 for next-nearest neighbor triplets) to h using the analytic function giving h in terms of these variables at equilibrium. This mapping results in a small phase space region of resulting h values, which characterizes local pattern distributions in the source data. The 1-D vector with equal fractions of units in each of the two states can be obtained using the method for transforming natural images into a binarized equi-probability ensemble (Saremi & Sejnowski, 2014; Stephens et al., 2013). An intrinsically 2-D data configuration can be mapped to 1-D using the 1-D Peano-Hilbert space-filling curve, which has demonstrated a 20 dB lower baseline using the method compared with other approaches (cf. SPIE ICA etc. by Hsu & Szu, 2014). This CVM-based method has multiple potential applications; one near-term one is optimizing classification of the EEG signals from a COTS 1-D BCI baseball hat. This can result in a convenient 3-D lab-tethered EEG, configured in a 1-D CVM equiprobable binary vector, and potentially useful for Smartphone wireless display. Longer-range applications include interpreting neural assembly activations via high-density implanted soft, cellular-scale electrodes.

  5. Experimental use of TRMM precipitation radar observations in 1D+4D-Var assimilation

    NASA Astrophysics Data System (ADS)

    Benedetti, Angela; Lopez, Philippe; Bauer, Peter; Moreau, Emmanuel

    2005-07-01

    This paper presents a new application of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) observations for indirect assimilation into the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The PR reflectivities are first processed using a one-dimensional variational (1D-Var) method to adjust model temperature and specific humidity. The retrieved Total Column Water Vapour (TCWV) is then assimilated into the operational four-dimensional variational (4D-Var) system. The applicability of the 1D+4D-Var approach to the radar observations is discussed in detail.Several case studies were run to assess the feasibility and the effectiveness of assimilating PR reflectivities with a 1D-Var approach. Results show good behaviour of the 1D-Var system in terms of convergence and stability. Its performance in terms of retrieved TCWV is comparable to that of other 1D-Vars which make use of TRMM Microwave Imager (TMI) observations. When the 1D-Var TCWV pseudo-observations are input into the 4D-Var system, a positive impact is shown in the analysis and the subsequent forecasts, both on moisture-related fields and also on winds and surface pressure. The quality of the forecast is verified using track observations for the tropical cyclones. The track forecasts from the experiments which include 1D-Var TCWV are generally closer to the observed track than a control run. Despite their much smaller spatial coverage than TMI observations, it is found that the PR data have a comparable impact, provided the satellite samples a meaningful portion of the storm, possibly its centre. This is possibly due to the fact that TCWV increments from PR and from TMI brightness temperature have similar magnitudes.These results show that active sensor data can provide indirect yet useful information on the moisture field and that this information can effectively be assimilated to improve the analysis and the forecast of tropical disturbances. Although this is a sub

  6. Blocking of CD1d Decreases Trypanosoma cruzi-Induced Activation of CD4-CD8- T Cells and Modulates the Inflammatory Response in Patients With Chagas Heart Disease.

    PubMed

    Passos, Lívia Silva Araújo; Villani, Fernanda Nobre Amaral; Magalhães, Luísa Mourão Dias; Gollob, Kenneth J; Antonelli, Lis Ribeiro do Vale; Nunes, Maria Carmo Pereira; Dutra, Walderez Ornelas

    2016-09-15

    The control of inflammatory responses to prevent the deadly cardiac pathology in human Chagas disease is a desirable and currently unattained goal. Double-negative (DN) T cells are important sources of inflammatory and antiinflammatory cytokines in patients with Chagas heart disease and those with the indeterminate clinical form of Chagas disease, respectively. Given the importance of DN T cells in immunoregulatory processes and their potential as targets for controlling inflammation-induced pathology, we studied the involvement of CD1 molecules in the activation and functional profile of Trypanosoma cruzi-specific DN T cells. We observed that parasite stimulation significantly increased the expression of CD1a, CD1b, CD1c, and CD1d by CD14(+) cells from patients with Chagas disease. Importantly, among the analyzed molecules, only CD1d expression showed an association with the activation of DN T cells, as well as with worse ventricular function in patients with Chagas disease. Blocking of CD1d-mediated antigen presentation led to a clear reduction of DN T-cell activation and a decrease in the expression of interferon γ (IFN-γ) by DN T cells. Thus, our results showed that antigen presentation via CD1d is associated with activation of DN T cells in Chagas disease and that CD1d blocking leads to downregulation of IFN-γ by DN T cells from patients with Chagas heart disease, which may be a potential target for preventing progression of inflammation-mediated dilated cardiomyopathy.

  7. Ascites Specific Inhibition of CD1d-Mediated Activation of NKT cells

    PubMed Central

    Webb, Tonya J.; Giuntoli, Robert L.; Rogers, Ophelia; Schneck, Jonathan; Oelke, Mathias

    2009-01-01

    Purpose Natural killer T (NKT) cells recognize lipid antigen presented by CD1 molecules. NKT cells can both directly, through cytotoxicity, and indirectly, through activation of other effector cells, mediate anti-tumor immunity. However, it has been shown that tumor associated lipids are frequently shed into the tumor microenvironment, which can mediate immunosuppressive activity. Given that ovarian cancer associated ascites has been reported to have increased levels of gangliosides, we examined the effect of tumor associated and other ascites on CD1d-mediated antigen presentation to NKT cells. Experimental Design To investigate the effects of ascites on NKT cell activation, we pretreated CD1d-expressing cells with the ascites and measured their ability to stimulate cytokine production in NKT cells. To determine whether antigen processing or editing was necessary, CD1d-Ig-based artificial Antigen Presenting Cells (aAPC) were also incubated with ascites. In addition, to examine specificity, we analyzed whether ascites fluid could influence the activation of classical CD8+ T cells. Results Pretreatment of CD1d-expressing cells with ascites from the majority of patients inhibited the cells’ ability to stimulate/activate NKT cells in a dose-dependent manner. Ascites treatment also partially blocked the ability of α-GalCer loaded CD1d-Ig-based artificial Antigen Presenting Cells (aAPC) to activate NKT cells. In addition, our data demonstrate that treatment with ascites does not inhibit HLA-A2 mediated activation of classical CD8+ T cells. Conclusions Together, these data suggest that ovarian and other cancers may have developed immune evasion mechanisms specifically targeting the CD1/NKT cell system. PMID:19047090

  8. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates.

    PubMed

    Stoeck, T; Przybos, E; Dunthorn, M

    2014-05-01

    Ciliates are a major evolutionary lineage within the alveolates, which are distributed in nearly all habitats on our planet and are an essential component for ecosystem function, processes and stability. Accurate identification of these unicellular eukaryotes through, for example, microscopy or mating type reactions is reserved to few specialists. To satisfy the demand for a DNA barcode for ciliates, which meets the standard criteria for DNA barcodes defined by the Consortium for the Barcode of Life (CBOL), we here evaluated the D1-D2 region of the ribosomal DNA large subunit (LSU-rDNA). Primer universality for the phylum Ciliophora was tested in silico with available database sequences as well as in the laboratory with 73 ciliate species, which represented nine of 12 ciliate classes. Primers tested in this study were successful for all tested classes. To test the ability of the D1-D2 region to resolve conspecific and congeneric sequence divergence, 63 Paramecium strains were sampled from 24 mating species. The average conspecific D1-D2 variation was 0.18%, whereas congeneric sequence divergence averaged 4.83%. In pairwise genetic distance analyses, we identified a D1-D2 sequence divergence of <0.6% as an ideal threshold to discriminate Paramecium species. Using this definition, only 3.8% of all conspecific and 3.9% of all congeneric sequence comparisons had the potential of false assignments. Neighbour-joining analyses inferred monophyly for all taxa but for two Paramecium octaurelia strains. Here, we present a protocol for easy DNA amplification of single cells and voucher deposition. In conclusion, the presented data pinpoint the D1-D2 region as an excellent candidate for an official CBOL barcode for ciliated protists.

  9. What causes the large extensions of red supergiant atmospheres?. Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres

    NASA Astrophysics Data System (ADS)

    Arroyo-Torres, B.; Wittkowski, M.; Chiavassa, A.; Scholz, M.; Freytag, B.; Marcaide, J. M.; Hauschildt, P. H.; Wood, P. R.; Abellan, F. J.

    2015-03-01

    Aims: This research has two main goals. First, we present the atmospheric structure and the fundamental parameters of three red supergiants (RSGs), increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. Methods: We carried out spectro-interferometric observations of the RSGs V602 Car, HD 95687, and HD 183589 in the near-infrared K-band (1.92-2.47 μm) with the VLTI/AMBER instrument at medium spectral resolution (R ~ 1500). To categorize and comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3D convection, and new 1D self-excited pulsation models of RSGs. Results: Our near-infrared flux spectra of V602 Car, HD 95687, and HD 183589 are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict the large observed extensions of molecular layers, most remarkably in the CO bands. Likewise, the 3D convection models and the 1D pulsation models with typical parameters of RSGs lead to compact atmospheric structures as well, which are similar to the structure of the hydrostatic PHOENIX models. They can also not explain the observed decreases in the visibilities and thus the large atmospheric molecular extensions. The full sample of our RSGs indicates increasing observed atmospheric extensions with increasing luminosity and decreasing surface gravity, and no correlation with effective temperature or variability amplitude. Conclusions: The location of our RSG sources in the Hertzsprung-Russell diagram is confirmed to be consistent with the red limits of recent evolutionary tracks

  10. Multidimensional period doubling structures.

    PubMed

    Lee, Jeong Yup; Flom, Dvir; Ben-Abraham, Shelomo I

    2016-05-01

    This paper develops the formalism necessary to generalize the period doubling sequence to arbitrary dimension by straightforward extension of the substitution and recursion rules. It is shown that the period doubling structures of arbitrary dimension are pure point diffractive. The symmetries of the structures are pointed out. PMID:27126116

  11. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice.

    PubMed

    Hargett, Stefan R; Walker, Natalie N; Hussain, Syed S; Hoehn, Kyle L; Keller, Susanna R

    2015-08-01

    Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1(-/-)) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1(-/-) mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1(-/-) mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1(-/-) mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1(-/-) mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1(-/-) mice and between male Tbc1d1(-/-) mice in different studies due to variations in body composition and nutrient handling.

  12. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice.

    PubMed

    Hargett, Stefan R; Walker, Natalie N; Hussain, Syed S; Hoehn, Kyle L; Keller, Susanna R

    2015-08-01

    Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1(-/-)) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1(-/-) mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1(-/-) mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1(-/-) mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1(-/-) mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1(-/-) mice and between male Tbc1d1(-/-) mice in different studies due to variations in body composition and nutrient handling. PMID:26015432

  13. Visuo-spatial learning and memory deficits on the Barnes maze in the 16-month-old APPswe/PS1dE9 mouse model of Alzheimer's disease.

    PubMed

    O'Leary, Timothy P; Brown, Richard E

    2009-07-19

    The APPswe/PS1dE9 mouse is a double transgenic model of Alzheimer's disease, which harbors mutant mouse/human amyloid precursor protein (Swedish K594N/M595L) and presenilin-1 genes (PS1-dE9). These mice develop beta-amyloid plaques and exhibit visuo-spatial learning and memory impairment in the Morris water maze (MWM) at 8-12 and 16-18 months of age. To extend these findings, we tested visuo-spatial learning and memory of male and female APPswe/PS1dE9 mice at 16 months of age on the Barnes maze. APPswe/PS1dE9 mice showed impaired acquisition learning using measures of latency, distance traveled, errors and hole deviation scores, and were less likely to use the spatial search strategy to locate the escape hole than wild-type mice. APPswe/PS1dE9 mice also showed a deficit in memory in probe tests on the Barnes maze relative to wild-type mice. Learning and memory deficits, however, were not found during reversal training and reversal probe tests. Sex differences were observed, as male APPswe/PS1dE9 mice had smaller reversal effects than male wild-type mice, but females of each genotype did not differ. Overall, these results replicate previous findings using the MWM, and indicate that APPswe/PS1dE9 mice have impaired visuo-spatial learning and memory at 16 months of age. PMID:19428625

  14. Three new branched chain equations of state based on Wertheim's perturbation theory

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.; Chapman, Walter G.

    2013-05-01

    In this work, we present three new branched chain equations of state (EOS) based on Wertheim's perturbation theory. The first represents a slightly approximate general branched chain solution of Wertheim's second order perturbation theory (TPT2) for athermal hard chains, and the second represents the extension of first order perturbation theory with a dimer reference fluid (TPT1-D) to branched athermal hard chain molecules. Each athermal branched chain EOS was shown to give improved results over their linear counterparts when compared to simulation data for branched chain molecules with the branched TPT1-D EOS being the most accurate. Further, it is shown that the branched TPT1-D EOS can be extended to a Lennard-Jones dimer reference system to obtain an equation of state for branched Lennard-Jones chains. The theory is shown to accurately predict the change in phase diagram and vapor pressure which results from branching as compared to experimental data for n-octane and corresponding branched isomers.

  15. Chain-reaction crash in traffic flow controlled by taillights

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2015-02-01

    We study the chain-reaction crash (multiple-vehicle collision) in low-visibility condition on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle. The first crash may induce more collisions. We investigate whether or not the first collision induces the chain-reaction crash, numerically and analytically. The dynamic transitions occur from no collisions through a single collision, double collisions and triple collisions, to multiple collisions with decreasing the headway. Also, we find that the dynamic transition occurs from the finite chain reaction to the infinite chain reaction when the headway is less than the critical value. We derive, analytically, the transition points and the region maps for the chain-reaction crash in traffic flow controlled by taillights.

  16. Modeling of impurity spectroscopy in the divertor and SOL of DIII-D using the 1D multifluid model NEWT1D

    SciTech Connect

    West, W.P.; Evans, T.E.; Brooks, N.H.

    1996-10-01

    NEWT1D, a one dimensional multifluid model of the scrape-off layer and divertor plasma, has been used to model the plasma including the distribution of carbon ionization states in the SOL and divertor of ELMing H-mode at two injected power levels in DIII-D. Comparison of the code predictions to the measured divertor and scrape-off layer (SOL) plasma density and temperature shows good agreement. Comparison of the predicted line emissions to the spectroscopic data suggests that physically sputtered carbon from the strike point is not transported up the flux tube; a distributed source of carbon a few centimeters up the flux tube is required to achieve reasonable agreement.

  17. Crystal Structure of Human Liver [delta][superscript 4]-3-Ketosteroid 5[beta]-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo, Luigi; Drury, Jason E.; Penning, Trevor M.; Christianson, David W.

    2008-07-15

    AKR1D1 (steroid 5{beta}-reductase) reduces all {Delta}{sup 4}-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an {alpha}{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a {Delta}{sup 4}-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90{sup o} bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human {Delta}{sup 4}-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP{sup +} at 1.79- and 1.35-{angstrom} resolution (HEPES bound in the active site), NADP{sup +} and cortisone at 1.90-{angstrom} resolution, NADP{sup +} and progesterone at 2.03-{angstrom} resolution, and NADP{sup +} and testosterone at 1.62-{angstrom} resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP{sup +}. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr{sup 58} and Glu{sup 120}. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  18. Colochiroside E, an Unusual Non-holostane Triterpene Sulfated Trioside from the Sea Cucumber Colochirus robustus and Evidence of the Impossibility of a 7(8)-Double Bond Migration in Lanostane Derivatives having an 18(16)-Lactone.

    PubMed

    Silchenko, Alexandra S; Kalinovsky, Anatoly I; Avilov, Sergey A; Andryjaschenko, Pelageya V; Dmitrenok, Pavel S; Yurchenko, Ekaterina A; Dolmatov, Igor Yu; Dautov, Salim Sh; Stonik, Valentin A; Kalinin, Vladimir I

    2016-06-01

    The unusual non-holostane triterpene glycoside, colochiroside E (1) was isolated from the sea cucumber Colochirus robustus (Cucumariidae, Dendrochirotida). The structure of 1 was established by analysis of 1D, 2D NMR and HRESI MS data. Colochiroside E (1) belongs to a rare group of glycosylated 9β-H-lanosta-18(16)-lactones and has an unprecedented sulfated trisaccharide carbohydrate chain consisting of two glucose and one xylose units. In contrast with (9β-H)-7(8)-unsaturated holostane glycosides, the 7(8)-double bond in the having (9β-H)-configuration aglycone of colochiroside E is not capable of migration into the 8(9)- and then into the 9(11)-position on treatment with HCl. The formation of a chlorine derivative of 1 was observed under these conditions. PMID:27534106

  19. Colochiroside E, an Unusual Non-holostane Triterpene Sulfated Trioside from the Sea Cucumber Colochirus robustus and Evidence of the Impossibility of a 7(8)-Double Bond Migration in Lanostane Derivatives having an 18(16)-Lactone.

    PubMed

    Silchenko, Alexandra S; Kalinovsky, Anatoly I; Avilov, Sergey A; Andryjaschenko, Pelageya V; Dmitrenok, Pavel S; Yurchenko, Ekaterina A; Dolmatov, Igor Yu; Dautov, Salim Sh; Stonik, Valentin A; Kalinin, Vladimir I

    2016-06-01

    The unusual non-holostane triterpene glycoside, colochiroside E (1) was isolated from the sea cucumber Colochirus robustus (Cucumariidae, Dendrochirotida). The structure of 1 was established by analysis of 1D, 2D NMR and HRESI MS data. Colochiroside E (1) belongs to a rare group of glycosylated 9β-H-lanosta-18(16)-lactones and has an unprecedented sulfated trisaccharide carbohydrate chain consisting of two glucose and one xylose units. In contrast with (9β-H)-7(8)-unsaturated holostane glycosides, the 7(8)-double bond in the having (9β-H)-configuration aglycone of colochiroside E is not capable of migration into the 8(9)- and then into the 9(11)-position on treatment with HCl. The formation of a chlorine derivative of 1 was observed under these conditions.

  20. O(1D) kinetic study of key ozone depleting substances and greenhouse gases.

    PubMed

    Baasandorj, Munkhbayar; Fleming, Eric L; Jackman, Charles H; Burkholder, James B

    2013-03-28

    A key stratospheric loss process for ozone depleting substances (ODSs) and greenhouse gases (GHGs) is reaction with the O((1)D) atom. In this study, rate coefficients, k, for the O((1)D) atom reaction were measured for the following key halocarbons: chlorofluorocarbons (CFCs) CFCl3 (CFC-11), CF2Cl2 (CFC-12), CFCl2CF2Cl (CFC-113), CF2ClCF2Cl (CFC-114), CF3CF2Cl (CFC-115); hydrochlorofluorocarbons (HCFCs) CHF2Cl (HCFC-22), CH3CClF2 (HCFC-142b); and hydrofluorocarbons (HFCs) CHF3 (HFC-23), CHF2CF3 (HFC-125), CH3CF3 (HFC-143a), and CF3CHFCF3 (HFC-227ea). Total rate coefficients, kT, corresponding to the loss of the O((1)D) atom, were measured over the temperature range 217-373 K using a competitive reactive technique. kT values for the CFC and HCFC reactions were >1 × 10(-10) cm(3) molecule(-1) s(-1), except for CFC-115, and the rate coefficients for the HFCs were in the range (0.095-0.72) × 10(-10) cm(3) molecule(-1) s(-1). Rate coefficients for the CFC-12, CFC-114, CFC-115, HFC-23, HFC-125, HFC-143a, and HFC-227ea reactions were observed to have a weak negative temperature dependence, E/R ≈ -25 K. Reactive rate coefficients, kR, corresponding to the loss of the halocarbon, were measured for CFC-11, CFC-115, HCFC-22, HCFC-142b, HFC-23, HFC-125, HFC-143a, and HFC-227ea using a relative rate technique. The reactive branching ratio obtained was dependent on the composition of the halocarbon and the trend in O((1)D) reactivity with the extent of hydrogen and chlorine substitution is discussed. The present results are critically compared with previously reported kinetic data and the discrepancies are discussed. 2D atmospheric model calculations were used to evaluate the local and global annually averaged atmospheric lifetimes of the halocarbons and the contribution of O((1)D) chemistry to their atmospheric loss. The O((1)D) reaction was found to be a major global loss process for CFC-114 and CFC-115 and a secondary global loss process for the other molecules included

  1. Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    Adatom chains, precise structures artificially created on an atomically regulated surface, are the smallest possible candidates for future nanoelectronics. Since all the devices are created by combining adatom chains precisely prepared with atomic precision, device characteristics are predictable, and free from deviations due to accidental structural defects. In this atomic dimension, however, an analogy to the current semiconductor devices may not work. For example, Si structures are not always semiconducting. Adatom states do not always localize at the substrate surface when adatoms form chemical bonds to the substrate atoms. Transport properties are often determined for the entire system of the chain and electrodes, and not for chains only. These fundamental issues are discussed, which will be useful for future device considerations.

  2. New mooring chain designs

    SciTech Connect

    Canada, L.; Vicinay, J.; Sanz, A.; Lopez, E.

    1996-12-31

    The present work introduces the readers to the developments the high technology offshore chain industry has carried out in recent years, in an effort to offer products that meet the needs of petroleum exploration and production. In this manner the industry can continue to regard chain as a fundamental element in its moorings system, whether for projects with a 25 year life, or projects at depths of over 1,000 meters, or in such severe environments as those faced in the Sub-Arctic. Data are presented on Studless Chain and VGW or Variable Geometry and Weight chain. These will allow engineers designers to forget the needs for chains to be circumscribed to rigid guidelines of geometry or dimensions. Instead they can design mooring systems specific for the particular situations they face. No longer shall chain have to meet geometric standardization derived from the middle of the 19th century while meeting the requirements of the 2nd half of the 20th century.

  3. A 1D model for the description of mixing-controlled reacting diesel sprays

    SciTech Connect

    Desantesa, J.M.; Pastor, J.V.; Garcia-Oliver, J.M.; Pastor, J.M.

    2009-01-15

    The paper reports an investigation on the transient evolution of diesel flames in terms of fuel-air mixing, spray penetration and combustion rate. A one-dimensional (1D) spray model, which was previously validated for inert diesel sprays, is extended to reacting conditions. The main assumptions of the model are the mixing-controlled hypothesis and the validity of self-similarity for conservative properties. Validation is achieved by comparing model predictions with both CFD gas jet simulations and experimental diesel spray measurements. The 1D model provides valuable insight into the evolution of the flow within the spray (momentum and mass fluxes, tip penetration, etc.) when shifting from inert to reacting conditions. Results show that the transient diesel flame evolution is mainly governed by two combustion-induced effects, namely the reduction in local density and the increase in flame radial width. (author)

  4. Static sign language recognition using 1D descriptors and neural networks

    NASA Astrophysics Data System (ADS)

    Solís, José F.; Toxqui, Carina; Padilla, Alfonso; Santiago, César

    2012-10-01

    A frame work for static sign language recognition using descriptors which represents 2D images in 1D data and artificial neural networks is presented in this work. The 1D descriptors were computed by two methods, first one consists in a correlation rotational operator.1 and second is based on contour analysis of hand shape. One of the main problems in sign language recognition is segmentation; most of papers report a special color in gloves or background for hand shape analysis. In order to avoid the use of gloves or special clothing, a thermal imaging camera was used to capture images. Static signs were picked up from 1 to 9 digits of American Sign Language, a multilayer perceptron reached 100% recognition with cross-validation.

  5. Lipid and glycolipid antigens of CD1d-restricted natural killer T cells

    PubMed Central

    Venkataswamy, Manjunatha M.; Porcelli, Steven A.

    2009-01-01

    In spite of their relatively limited antigen receptor repertoire, CD1d-restricted NKT cells recognize a surprisingly diverse range of lipid and glycolipid antigens. Recent studies of natural and synthetic CD1d presented antigens provide an increasingly detailed picture of how the specific structural features of these lipids and glycolipids influence their ability to be presented to NKT cells and stimulate their diverse immunologic functions. Particularly for synthetic analogues of α-galactosylceramides which have been the focus of intense recent investigation, it is becoming clear that the design of glycolipid antigens with the ability to precisely control the specific immunologic activities of NKT cells is likely to be feasible. The emerging details of the mechanisms underlying the structure-activity relationship of NKT cell antigens will assist greatly in the design and production of immunomodulatory agents for the precise manipulation of NKT cells and the many other components of the immune system that they influence. PMID:19945296

  6. 1D Scaling with Ablation for K-Shell Radiation from Stainless Steel Wire Arrays

    SciTech Connect

    Giuliani, J. L.; Thornhill, J. W.; Dasgupta, A.; Davis, J.; Clark, R. W.; Jones, B.; Cuneo, M.; Coverdale, C. A.; Deeney, C.

    2009-01-21

    A 1D Lagrangian magnetohydrodynamic z-pinch simulation code is extended to include wire ablation. The plasma transport coefficients are calibrated to reproduce the K-shell yields measured on the Z generator for three stainless steel arrays of diameter 55 mm and masses ranging from 1.8 to 2.7 mg. The resulting 1D scaling model is applied to a larger SS array (65 mm and 2.5 mg) on the refurbished Z machine. Simulation results predict a maximum K-shell yield of 77 kJ for an 82 kV charging voltage. This maximum drops to 42 kJ at 75 kV charging. Neglecting the ablation precursor leads to a {approx}10% change in the calculated yield.

  7. Slice imaging of nitric acid photodissociation: The O({sup 1}D) + HONO channel

    SciTech Connect

    Herath, Nuradhika; Everhart, Stephanie C.; Suits, Arthur G.; Vasyuntinskii, Oleg S.

    2011-01-21

    We report an imaging study of nitric acid (HNO{sub 3}) photodissociation near 204 nm with detection of O({sup 1}D), one of the major decomposition products in this region. The images show structure reflecting the vibrational distribution of the HONO coproduct and significant angular anisotropy that varies with recoil speed. The images also show substantial alignment of the O({sup 1}D) orbital, which is analyzed using an approximate treatment that reveals that the polarization is dominated by incoherent, high order contributions. The results offer additional insight into the dynamics of the dissociation of nitric acid through the S{sub 3} (2 {sup 1}A{sup '}) excited state, resolving an inconsistency in previously reported angular distributions, and pointing the way to future studies of the angular momentum polarization.

  8. Evaluated rate constants for selected HCFC's and HFC's with OH and O((sup)1D)

    NASA Technical Reports Server (NTRS)

    Hampson, Robert F.; Kurylo, Michael J.; Sander, Stanley P.

    1990-01-01

    The chemistry of HCFC's and HFC's in the troposphere is controlled by reactions with OH in which a hydrogen atom is abstracted from the halocarbon to form water and a halo-alkyl radical. The halo-alkyl radical subsequently reacts with molecular oxygen to form a peroxy radical. The reactions of HCFC's and HFC's with O(exp1D) atoms are unimportant in the troposphere, but may be important in producing active chlorine of OH in the stratosphere. Here, the rate constants for the reactions of OH and O(exp1D) with many HFC's and HCFC's are evaluated. Recommendations are given for the five HCFC's and three HFC's specified by AFEAS as primary alternatives as well as for all other isomers of C1 and C2 HCFC's and HFC's where rate data exist. In addition, recommendations are included for CH3CCl3, CH2Cl2, and CH4.

  9. Analytical investigations of the magnetotelluric directionality estimation in 1-D anisotropic layered media

    NASA Astrophysics Data System (ADS)

    Okazaki, T.; Oshiman, N.; Yoshimura, R.

    2016-11-01

    Inferring geoelectric dimensionality (1D, 2D or 3D) and directionality (strike directions) from the impedance tensor is a basic procedure in magnetotelluric data processing. Given that electrical anisotropy is increasingly recognized in observations, it is valuable to understand the imprint of anisotropy in these analyses. In this paper, we analytically investigate the estimation of strike directions based on rotational invariants in 1D anisotropic layered media. We first show that if anisotropy axes are identical in all anisotropic layers, the estimated strike coincides with that direction. We then derive an analytical formula of the strike angle at long periods for general anisotropic layers with an isotropic basement. This formula shows a clear physical interpretation that the strike angle points where the conductance integrated along depth takes a maximum value.

  10. Bifurcations of families of 1D-tori in 4D symplectic maps.

    PubMed

    Onken, Franziska; Lange, Steffen; Ketzmerick, Roland; Bäcker, Arnd

    2016-06-01

    The regular structures of a generic 4d symplectic map with a mixed phase space are organized by one-parameter families of elliptic 1d-tori. Such families show prominent bends, gaps, and new branches. We explain these features in terms of bifurcations of the families when crossing a resonance. For these bifurcations, no external parameter has to be varied. Instead, the longitudinal frequency, which varies along the family, plays the role of the bifurcation parameter. As an example, we study two coupled standard maps by visualizing the elliptic and hyperbolic 1d-tori in a 3d phase-space slice, local 2d projections, and frequency space. The observed bifurcations are consistent with the analytical predictions previously obtained for quasi-periodically forced oscillators. Moreover, the new families emerging from such a bifurcation form the skeleton of the corresponding resonance channel.

  11. Localized self-heating in large arrays of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Monereo, O.; Illera, S.; Varea, A.; Schmidt, M.; Sauerwald, T.; Schütze, A.; Cirera, A.; Prades, J. D.

    2016-02-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called ``hot-spots''. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal

  12. Channel specific rate constants for reactions of O(1D) with HCl and HBr

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Wells, J. R.; Ravishankara, A. R.

    1986-01-01

    The absolute rate coefficients and product yields for reactions of O(1D) with HCl(1) and HBr(2) at 287 K are presently determined by means of the time-resolved resonance fluorescence detection of O(3P) and H(2S) in conjunction with pulsed laser photolysis of O3/HX/He mixtures. Total rate coefficients for O(1D) removal are found to be, in units of 10 to the -10th cu cm/molecule per sec, k(1) = 1.50 + or - 0.18 and k(2) 1.48 + or - 0.16; the absolute accuracy of these rate coefficients is estimated to be + or - 20 percent.

  13. Measuring Spin-Charge Separation in a 1D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fry, Jacob A.; Revelle, Melissa C.; Hulet, Randall G.

    2016-05-01

    We present progress on measurement of spin-charge separation in a two-component, strongly interacting, 1D gas of fermionic lithium. A characteristic feature of interacting 1D Fermi gases is that the velocity of a charge excitation propagates faster than a spin excitation. We create an excitation by applying a dipole force at the center of the cloud using a sheet of light. Depending on the detuning of this beam, we can either excite both spin species equally (charge excitation) or preferentially (spin excitation). Once this beam is turned off, the excitations propagate to the edges of the atomic cloud at a velocity determined by coupling strength. A magnetically tuned Feshbach resonance enables us to vary this coupling and map out the velocities of spin and charge excitations. Supported by an ARO MURI Grant, NSF, and The Welch Foundation

  14. The Dmca1D channel mediates Ca(2+) inward currents in Drosophila embryonic muscles.

    PubMed

    Hara, Yusuke; Koganezawa, Masayuki; Yamamoto, Daisuke

    2015-01-01

    We studied, in a genetic model organism, Drosophila melanogaster, the channel mechanisms underlying membrane excitation in the embryonic body wall muscle whose biophysical properties have been poorly characterized. The inward current underlying the action potential was solely mediated by a high-threshold class of voltage-gated Ca(2+) channels, which exhibited slow inactivation, Ca(2+) permeability with saturation at high [Ca(2+)]OUT, and sensitivity to a Ca(2+) channel blocker, Cd(2+). The Ca(2+) current in the embryonic muscle was completely eliminated in Dmca1D mutants, indicating that the Dmca1D-encoded Ca(2+) channel is the major mediator of inward currents in the body wall muscles throughout the embryonic and larval stages. PMID:26004544

  15. Bifurcations of families of 1D-tori in 4D symplectic maps

    NASA Astrophysics Data System (ADS)

    Onken, Franziska; Lange, Steffen; Ketzmerick, Roland; Bäcker, Arnd

    2016-06-01

    The regular structures of a generic 4d symplectic map with a mixed phase space are organized by one-parameter families of elliptic 1d-tori. Such families show prominent bends, gaps, and new branches. We explain these features in terms of bifurcations of the families when crossing a resonance. For these bifurcations, no external parameter has to be varied. Instead, the longitudinal frequency, which varies along the family, plays the role of the bifurcation parameter. As an example, we study two coupled standard maps by visualizing the elliptic and hyperbolic 1d-tori in a 3d phase-space slice, local 2d projections, and frequency space. The observed bifurcations are consistent with the analytical predictions previously obtained for quasi-periodically forced oscillators. Moreover, the new families emerging from such a bifurcation form the skeleton of the corresponding resonance channel.

  16. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    DOEpatents

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  17. The structure and electronic properties of copper iodide 1D nanocrystals within single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kiselev, N. A.; Kumskov, A. S.; Zhigalina, V. G.; Verbitskiy, N. I.; Yashina, L. V.; Chuvilin, A. L.; Vasiliev, A. L.; Eliseev, A. A.

    2013-11-01

    Copper iodide one-dimensional nanocrystals within single walled carbon nanotubes (1D CuI@SWCNTs), i.e. meta-nanotubes [1], were investigated by high resolution electron microscopy (HRTEM). In meta-nanotubes of diameter Dm = 1.3-1.4 nm produced by arc-discharge (AD) method close-packed hexagonal or deformed cubic 1D crystal anion sublattices were observed with cations in octahedral or tetrahedral positions. These two sublattices reversibly transform to one another. In catalysed chemical vapour deposition (CCVD) meta-nanotubes of diameters Dm = 1.5-2.0 nm cubic anion sublattices are formed. For diameters >=2.0 nm three-dimensional (3D) crystallization is observed.

  18. A 1D (radial) Plasma Jet Propagation Study for the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.; Welch, D. R.; Thoma, C.; Golovkin, I.; Macfarlane, J. J.; Case, A.; Messer, S. J.; Witherspoon, F. D.; Cassibry, J. T.; Awe, T. J.; Hsu, S. C.

    2011-10-01

    The Plasma Liner Experiment will explore the formation of imploding spherical ``plasma liners'' that reach peak pressures of 0.1 Mbar upon stagnation. The liners will be formed through the merging of dense, high velocity plasma jets (n ~1017 cm-3, T ~3 eV, v ~50 km/s) in a spherically convergent geometry. The focus of this 1D (radial) study is argon plasma jet evolution during propagation from the rail gun source to the jet merging radius. The study utilizes the Large Scale Plasma (LSP) PIC code with atomic physics included through the use of a non-Local Thermal Equilibrium (NLTE) Equation of State (EOS) table. We will present scenarios for expected 1D (radial) plasma jet evolution, from upon exiting the PLX rail gun to reaching the jet merging radius. The importance of radiation cooling early in the simulation is highlighted. Work supported by US DOE grant DE-FG02-05ER54835.

  19. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer.

    PubMed

    Ruark, Elise; Snape, Katie; Humburg, Peter; Loveday, Chey; Bajrami, Ilirjana; Brough, Rachel; Rodrigues, Daniel Nava; Renwick, Anthony; Seal, Sheila; Ramsay, Emma; Duarte, Silvana Del Vecchio; Rivas, Manuel A; Warren-Perry, Margaret; Zachariou, Anna; Campion-Flora, Adriana; Hanks, Sandra; Murray, Anne; Ansari Pour, Naser; Douglas, Jenny; Gregory, Lorna; Rimmer, Andrew; Walker, Neil M; Yang, Tsun-Po; Adlard, Julian W; Barwell, Julian; Berg, Jonathan; Brady, Angela F; Brewer, Carole; Brice, Glen; Chapman, Cyril; Cook, Jackie; Davidson, Rosemarie; Donaldson, Alan; Douglas, Fiona; Eccles, Diana; Evans, D Gareth; Greenhalgh, Lynn; Henderson, Alex; Izatt, Louise; Kumar, Ajith; Lalloo, Fiona; Miedzybrodzka, Zosia; Morrison, Patrick J; Paterson, Joan; Porteous, Mary; Rogers, Mark T; Shanley, Susan; Walker, Lisa; Gore, Martin; Houlston, Richard; Brown, Matthew A; Caufield, Mark J; Deloukas, Panagiotis; McCarthy, Mark I; Todd, John A; Turnbull, Clare; Reis-Filho, Jorge S; Ashworth, Alan; Antoniou, Antonis C; Lord, Christopher J; Donnelly, Peter; Rahman, Nazneen

    2013-01-17

    Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case-control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10(-5)), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10(-4)) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10(-9)). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification. PMID:23242139

  20. INFIL1D: a quasi-analytical model for simulating one-dimensional, constant flux infiltration

    SciTech Connect

    Simmons, C.S.; McKeon, T.J.

    1984-04-01

    The program INFIL1D is designed to calculate approximate wetting-front advance into an unsaturated, uniformly moist, homogeneous soil profile, under constant surface-flux conditions. The code is based on a quasi-analytical method, which utilizes an assumed invariant functional relationship between reduced (normalized) flux and water content. The code uses general hydraulic property data in tabular form to simulate constant surface-flux infiltration. 10 references, 4 figures.

  1. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer.

    PubMed

    Ruark, Elise; Snape, Katie; Humburg, Peter; Loveday, Chey; Bajrami, Ilirjana; Brough, Rachel; Rodrigues, Daniel Nava; Renwick, Anthony; Seal, Sheila; Ramsay, Emma; Duarte, Silvana Del Vecchio; Rivas, Manuel A; Warren-Perry, Margaret; Zachariou, Anna; Campion-Flora, Adriana; Hanks, Sandra; Murray, Anne; Ansari Pour, Naser; Douglas, Jenny; Gregory, Lorna; Rimmer, Andrew; Walker, Neil M; Yang, Tsun-Po; Adlard, Julian W; Barwell, Julian; Berg, Jonathan; Brady, Angela F; Brewer, Carole; Brice, Glen; Chapman, Cyril; Cook, Jackie; Davidson, Rosemarie; Donaldson, Alan; Douglas, Fiona; Eccles, Diana; Evans, D Gareth; Greenhalgh, Lynn; Henderson, Alex; Izatt, Louise; Kumar, Ajith; Lalloo, Fiona; Miedzybrodzka, Zosia; Morrison, Patrick J; Paterson, Joan; Porteous, Mary; Rogers, Mark T; Shanley, Susan; Walker, Lisa; Gore, Martin; Houlston, Richard; Brown, Matthew A; Caufield, Mark J; Deloukas, Panagiotis; McCarthy, Mark I; Todd, John A; Turnbull, Clare; Reis-Filho, Jorge S; Ashworth, Alan; Antoniou, Antonis C; Lord, Christopher J; Donnelly, Peter; Rahman, Nazneen

    2013-01-17

    Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case-control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10(-5)), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10(-4)) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10(-9)). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.

  2. Development of a hybrid deterministic/stochastic method for 1D nuclear reactor kinetics

    SciTech Connect

    Terlizzi, Stefano; Dulla, Sandra; Ravetto, Piero; Rahnema, Farzad; Zhang, Dingkang

    2015-12-31

    A new method has been implemented for solving the time-dependent neutron transport equation efficiently and accurately. This is accomplished by coupling the hybrid stochastic-deterministic steady-state coarse-mesh radiation transport (COMET) method [1,2] with the new predictor-corrector quasi-static method (PCQM) developed at Politecnico di Torino [3]. In this paper, the coupled method is implemented and tested in 1D slab geometry.

  3. Transfer Matrix Approach to 1d Random Band Matrices: Density of States

    NASA Astrophysics Data System (ADS)

    Shcherbina, Mariya; Shcherbina, Tatyana

    2016-08-01

    We study the special case of n× n 1D Gaussian Hermitian random band matrices, when the covariance of the elements is determined by the matrix J=(-W^2triangle +1)^{-1} . Assuming that n≥ CW log W≫ 1 , we prove that the averaged density of states coincides with the Wigner semicircle law up to the correction of order W^{-1}.

  4. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer

    PubMed Central

    Ruark, Elise; Snape, Katie; Humburg, Peter; Loveday, Chey; Bajrami, Ilirjana; Brough, Rachel; Rodrigues, Daniel Nava; Renwick, Anthony; Seal, Sheila; Ramsay, Emma; Duarte, Silvana Del Vecchio; Rivas, Manuel A.; Warren-Perry, Margaret; Zachariou, Anna; Campion-Flora, Adriana; Hanks, Sandra; Murray, Anne; Pour, Naser Ansari; Douglas, Jenny; Gregory, Lorna; Rimmer, Andrew; Walker, Neil M.; Yang, Tsun-Po; Adlard, Julian W.; Barwell, Julian; Berg, Jonathan; Brady, Angela F.; Brewer, Carole; Brice, Glen; Chapman, Cyril; Cook, Jackie; Davidson, Rosemarie; Donaldson, Alan; Douglas, Fiona; Eccles, Diana; Evans, D. Gareth; Greenhalgh, Lynn; Henderson, Alex; Izatt, Louise; Kumar, Ajith; Lalloo, Fiona; Miedzybrodzka, Zosia; Morrison, Patrick J.; Paterson, Joan; Porteous, Mary; Rogers, Mark T.; Shanley, Susan; Walker, Lisa; Gore, Martin; Houlston, Richard; Brown, Matthew A.; Caufield, Mark J.; Deloukas, Panagiotis; McCarthy, Mark I.; Todd, John A.; Turnbull, Clare; Reis-Filho, Jorge S.; Ashworth, Alan; Antoniou, Antonis C.; Lord, Christopher J.; Donnelly, Peter; Rahman, Nazneen

    2013-01-01

    Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication1. Here, using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focussed on protein truncating variants (PTVs) and a large-scale sequencing case-control replication experiment in 13,642 individuals, we show that rare PTVs in the p53 inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and to ovarian cancer. PPM1D PTV mutations were present in 25/7781 cases vs 1/5861 controls; P=1.12×10−5, which included 18 mutations in 6,912 individuals with breast cancer; P = 2.42×10−4 and 12 mutations in 1,121 individuals with ovarian cancer; P = 3.10×10−9. Notably, all the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370 bp region in the final exon of the gene, C-terminal to the phosphatase catalytic domain. Functional studies demonstrated that the mutations result in enhanced suppression of p53 in response to ionising radiation exposure, suggesting the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function typically associated with this class of variant, but instead likely have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the utility of sequencing in their identification. PMID:23242139

  5. Discontinuous Galerkin finite element method applied to the 1-D spherical neutron transport equation

    SciTech Connect

    Machorro, Eric . E-mail: machorro@amath.washington.edu

    2007-04-10

    Discontinuous Galerkin finite element methods are used to estimate solutions to the non-scattering 1-D spherical neutron transport equation. Various trial and test spaces are compared in the context of a few sample problems whose exact solution is known. Certain trial spaces avoid unphysical behaviors that seem to plague other methods. Comparisons with diamond differencing and simple corner-balancing are presented to highlight these improvements.

  6. Subscale study of engine bellmouth inlet vortices in test cell R1D

    NASA Astrophysics Data System (ADS)

    Reed, James A.; Hiers, Robert S., Jr.

    1995-05-01

    A technology program was conducted in Test Cell R1D concerning bellmouth flow quality. Flow visualization was used to determine the presence of inlet vortices. It was shown that these vortices can be eliminated using a 45-deg conical extension attached to the bellmouth inlet. Design guidelines were developed to assist in determining acceptable cone angles and axial and radial gaps between the conical extension and the bellmouth inlet.

  7. Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: Exact results

    NASA Astrophysics Data System (ADS)

    Fabbri, Alessandro; Balbinot, Roberto; Anderson, Paul R.

    2016-03-01

    A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low-frequency limit.

  8. Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins.

    PubMed

    Liu, Zhong; Shi, Ming-Zhu; Xie, De-Yu

    2014-04-01

    Red pap1-D cells of Arabidopsis thaliana have been cloned from production of anthocyanin pigmentation 1-Dominant (pap1-D) plants. The red cells are metabolically programmed to produce high levels of anthocyanins by a WD40-bHLH-MYB complex that is composed of the TTG1, TT8/GL3 and PAP1 transcription factors. Here, we report that indole 3-acetic acid (IAA), naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) regulate anthocyanin biosynthesis in these red cells. Seven concentrations (0, 0.2, 0.4, 2.2, 9, 18 and 27 μM) were tested for the three auxins. IAA and 2,4-D at 2.2-27 μM reduced anthocyanin levels. NAA at 0-0.2 μM or above 9 μM also decreased anthocyanin levels, but from 0.4 to 9 μM, it increased them. HPLC-ESI-MS analysis identified seven cyanin molecules that were produced in red pap1-D cells, and their levels were affected by auxins. The expression levels of ten genes, including six transcription factors (TTG1, EGL3, MYBL2, TT8, GL3 and PAP1) and four pathway genes (PAL1, CHS, DFR and ANS) involved in anthocyanin biosynthesis were analyzed upon various auxin treatments. The resulting data showed that 2,4-D, NAA and IAA control anthocyanin biosynthesis by regulating the expression of TT8, GL3 and PAP1 as well as genes in the anthocyanin biosynthetic pathway, such as DFR and ANS. In addition, the expression of MYBL2, PAL1 and CHS in red pap1-D and wild-type cells differentially respond to the three auxins. Our data demonstrate that the three auxins regulate anthocyanin biosynthesis in metabolically programmed red cells via altering the expression of transcription factor genes and pathway genes. PMID:24370633

  9. Development of a hybrid deterministic/stochastic method for 1D nuclear reactor kinetics

    NASA Astrophysics Data System (ADS)

    Terlizzi, Stefano; Rahnema, Farzad; Zhang, Dingkang; Dulla, Sandra; Ravetto, Piero

    2015-12-01

    A new method has been implemented for solving the time-dependent neutron transport equation efficiently and accurately. This is accomplished by coupling the hybrid stochastic-deterministic steady-state coarse-mesh radiation transport (COMET) method [1,2] with the new predictor-corrector quasi-static method (PCQM) developed at Politecnico di Torino [3]. In this paper, the coupled method is implemented and tested in 1D slab geometry.

  10. A 1D exact treatment of shock waves within spectral methods in plane geometry

    NASA Astrophysics Data System (ADS)

    Bonazzola, Silvano; Marck, Jean-Alain

    1991-12-01

    A high-accuracy numerical technique is presented which employs two moving grids, respectively before and after the shock formation, to solve 1D Euler equations that are coupled with the transport equations for the entropy and the chemical abundances in cases with and without shock formation. Chebychev polynomial series are used to expand quantities on both sides of the matching point, and Rankine-Hugoniot conditions are used to ascertain the shock velocity after shock formation. Illustrative results are presented.

  11. Uranium(VI) coordination polymers with pyromellitate ligand: Unique 1D channel structures and diverse fluorescence

    SciTech Connect

    Zhang, Yingjie; Bhadbhade, Mohan; Karatchevtseva, Inna; Price, Jason R.; Liu, Hao; Zhang, Zhaoming; Kong, Linggen; Čejka, Jiří; Lu, Kim; Lumpkin, Gregory R.

    2015-03-15

    Three new coordination polymers of uranium(VI) with pyromellitic acid (H{sub 4}btca) have been synthesized and structurally characterized. (ED)[(UO{sub 2})(btca)]·(DMSO)·3H{sub 2}O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH{sub 4}){sub 2}[(UO{sub 2}){sub 6}O{sub 2}(OH){sub 6}(btca)]·~6H{sub 2}O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO{sub 2}){sub 2}(H{sub 2}O)(btca)]·4H{sub 2}O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ{sub 5}-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5 Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated. - Graphical abstract: Table of content: three new uranium(VI) coordination polymers with pyromellitic acid (H{sub 4}btca) have been synthesized via room temperature and hydrothermal synthesis methods, and structurally characterized. Two to three dimensional (3D) frameworks are revealed. All 3D frameworks have unique 1D large channels. Their vibrational modes, thermal stabilities and photoluminescence properties have been investigated. - Highlights: • Three new coordination polymers of U(VI) with pyromellitic acid (H{sub 4}btca). • Structures from a 2D layer to 3D frameworks with unique 1D channels. • Unusual µ{sub 5}-(η{sub 1}:η{sub 2}:η{sub 1}:η{sub 2:}η{sub 1}) coordination mode of btca ligand. • Vibrational modes, thermal stabilities and luminescent properties reported.

  12. EXTENSION OF THE 1D FOUR-GROUP ANALYTIC NODAL METHOD TO FULL MULTIGROUP

    SciTech Connect

    B. D. Ganapol; D. W. Nigg

    2008-09-01

    In the mid 80’s, a four-group/two-region, entirely analytical 1D nodal benchmark appeared. It was readily acknowledged that this special case was as far as one could go in terms of group number and still achieve an analytical solution. In this work, we show that by decomposing the solution to the multigroup diffusion equation into homogeneous and particular solutions, extension to any number of groups is a relatively straightforward exercise using the mathematics of linear algebra.

  13. Zero finite-temperature charge stiffness within the half-filled 1D Hubbard model

    SciTech Connect

    Carmelo, J.M.P.; Gu, Shi-Jian; Sacramento, P.D.

    2013-12-15

    Even though the one-dimensional (1D) Hubbard model is solvable by the Bethe ansatz, at half-filling its finite-temperature T>0 transport properties remain poorly understood. In this paper we combine that solution with symmetry to show that within that prominent T=0 1D insulator the charge stiffness D(T) vanishes for T>0 and finite values of the on-site repulsion U in the thermodynamic limit. This result is exact and clarifies a long-standing open problem. It rules out that at half-filling the model is an ideal conductor in the thermodynamic limit. Whether at finite T and U>0 it is an ideal insulator or a normal resistor remains an open question. That at half-filling the charge stiffness is finite at U=0 and vanishes for U>0 is found to result from a general transition from a conductor to an insulator or resistor occurring at U=U{sub c}=0 for all finite temperatures T>0. (At T=0 such a transition is the quantum metal to Mott–Hubbard-insulator transition.) The interplay of the η-spin SU(2) symmetry with the hidden U(1) symmetry beyond SO(4) is found to play a central role in the unusual finite-temperature charge transport properties of the 1D half-filled Hubbard model. -- Highlights: •The charge stiffness of the half-filled 1D Hubbard model is evaluated. •Its value is controlled by the model symmetry operator algebras. •We find that there is no charge ballistic transport at finite temperatures T>0. •The hidden U(1) symmetry controls the U=0 phase transition for T>0.

  14. Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry.

    PubMed

    Araneo, Rodolfo; Lovat, Giampiero; Burghignoli, Paolo; Falconi, Christian

    2012-09-01

    The piezopotential in floating, homogeneous, quasi-1D piezo-semiconductive nanostructures under axial stress is an anti-symmetric (i.e., odd) function of force. Here, after introducing piezo-nano-devices with floating electrodes for maximum piezo-potential, we show that breaking the anti-symmetric nature of the piezopotential-force relation, for instance by using conical nanowires, can lead to better nanogenerators, piezotronic and piezophototronic devices.

  15. Transfer Matrix Approach to 1d Random Band Matrices: Density of States

    NASA Astrophysics Data System (ADS)

    Shcherbina, Mariya; Shcherbina, Tatyana

    2016-09-01

    We study the special case of n× n 1D Gaussian Hermitian random band matrices, when the covariance of the elements is determined by the matrix J=(-W^2triangle +1)^{-1}. Assuming that n≥ CW log W≫ 1, we prove that the averaged density of states coincides with the Wigner semicircle law up to the correction of order W^{-1}.

  16. Testing the SH1D Assumption for Geotechnical Site and Basin Response Using 3D Finite Difference Modeling

    NASA Astrophysics Data System (ADS)

    Rodgers, A. J.; Pitarka, A.

    2015-12-01

    Current state-of-practice of geotechnical site response and soil-structure analyses generally assume a vertically propagating horizontally polarized plane wave is incident on a plane-layered (one-dimensional) soil column. Ground motions representing the wavefield incident to the bedrock base of the soil column are developed from observed and sometimes scaled time-histories or synthesized by various methods. The site-specific ground motion at the surface is then computed from the response of the soil column to the bedrock incident wavefield, possibly including non-linear response of the geotechnical near-surface. This is the so-called SH1D assumption. While this approach is widely used, it ignores important complexities of the incident wavefield. Specifically, the standard approach assumes: 1) the incident wavefield is only composed of vertically propagating body waves; 2) ignores oblique incidence; and 3) neglects the three-component nature of the wavefield that includes surface waves and rotational motions. Surface waves often carry much of the seismic energy and can excite all three components of motion. Therefore, it seems most appropriate to include the most representative characterization of the incident wavefield in site-specific analyses. We are performing parametric studies with three-dimensional (3D) elastic finite difference simulations to compare the near-surface response of sedimentary basins to horizontally polarized planes (arbitrary incident) and point source (double couple) earthquakes. Simulations involve simple, parametric representations of basin geometries and layered material properties of the sedimentary basin and surrounding hard rock. We compare the frequency-dependent site response for different excitations and attempt to quantify the differences between the plane-wave and fully 3D basin response.

  17. Construction and Functions of Cyclodextrin-Based 1D Supramolecular Strands and their Secondary Assemblies.

    PubMed

    Chen, Yong; Liu, Yu

    2015-09-23

    Cyclodextrins (CDs), a class of cyclic oligosaccharides, are water-soluble, nontoxic, and commercial available with a low price, and their well-defined hydrophobic cavity can bind various organic/biological substrates. Through their molecular assembly mediated by organic, inorganic, or polymeric molecules as templates, CDs and their functional derivatives can be assembled to 1D supramolecular strands, wherein the functional groups of the CDs are closely located in a highly ordered manner. This structural feature greatly favors the cooperative effect of numerous functional groups in the supramolecular strand, as well as the interactions of the supramolecular strands with the multiple binding sites of substrates, especially biological substrates. Therefore, CD-based 1D supramolecular strands exhibit many material, biological, and catalytic functions, and these properties can be further improved through their secondary assembly. An overview of recent advances in the development of the construction and functions of CD-based 1D supramolecular strands and their secondary assemblies is given here. It is expected that the representative contributions described can inspire future investigations and lead to discoveries that promote the research of CD-based functional materials. PMID:26270410

  18. Numerical Modeling of Imploding Plasma liners Using the 1D Radiation-Hydrodynamics Code HELIOS

    NASA Astrophysics Data System (ADS)

    Davis, J. S.; Hanna, D. S.; Awe, T. J.; Hsu, S. C.; Stanic, M.; Cassibry, J. T.; Macfarlane, J. J.

    2010-11-01

    The Plasma Liner Experiment (PLX) is attempting to form imploding plasma liners to reach 0.1 Mbar upon stagnation, via 30--60 spherically convergent plasma jets. PLX is partly motivated by the desire to develop a standoff driver for magneto-inertial fusion. The liner density, atomic makeup, and implosion velocity will help determine the maximum pressure that can be achieved. This work focuses on exploring the effects of atomic physics and radiation on the 1D liner implosion and stagnation dynamics. For this reason, we are using Prism Computational Science's 1D Lagrangian rad-hydro code HELIOS, which has both equation of state (EOS) table-lookup and detailed configuration accounting (DCA) atomic physics modeling. By comparing a series of PLX-relevant cases proceeding from ideal gas, to EOS tables, to DCA treatments, we aim to identify how and when atomic physics effects are important for determining the peak achievable stagnation pressures. In addition, we present verification test results as well as brief comparisons to results obtained with RAVEN (1D radiation-MHD) and SPHC (smoothed particle hydrodynamics).

  19. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems.

    PubMed

    Smith, David C; Spencer, Joseph H; Sloan, Jeremy; McDonnell, Liam P; Trewhitt, Harrison; Kashtiban, Reza J; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  20. Dynamics of the reactions of O(1D) with HCl, DCl, and Cl2

    NASA Astrophysics Data System (ADS)

    Matsumi, Yutaka; Tonokura, Kenichi; Kawasaki, Masahiro; Tsuji, Kazuhide; Obi, Kinichi

    1993-05-01

    The reactions O(1D)+HCl→OH+Cl (1a) and OCl+H (1b), O(1D)+DCl→OD+Cl (2a) and OCl+D (2b), and O(1D)+Cl2→OCl+Cl (3) are studied at an average collision energy of 7.6, 7.7, and 8.8 kcal/mol for (1), (2), and (3), respectively. H, D, and Cl atoms are detected by the resonance-enhanced multiphoton ionization technique. The average kinetic energies released to the products are estimated from Doppler profile measurements of the product atoms. The relative yields [OCl+H]/[OH+Cl] and [OCl+D]/[OD+Cl] are directly measured, and a strong isotope effect (H/D) on the relative yields is found. The fine-structure branding ratios [Cl(2P1/2]/[Cl(2P3/2)] of the reaction products are also measured. The results suggest that nonadiabatic couplings take place at the exit channels of the reactions (1a) and (2a), while the reaction (3) is totally adiabatic.

  1. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems

    PubMed Central

    Smith, David C.; Spencer, Joseph H.; Sloan, Jeremy; McDonnell, Liam P.; Trewhitt, Harrison; Kashtiban, Reza J.; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  2. Secure information embedding into 1D biomedical signals based on SPIHT.

    PubMed

    Rubio, Oscar J; Alesanco, Alvaro; García, José

    2013-08-01

    This paper proposes an encoding system for 1D biomedical signals that allows embedding metadata and provides security and privacy. The design is based on the analysis of requirements for secure and efficient storage, transmission and access to medical tests in e-health environment. This approach uses the 1D SPIHT algorithm to compress 1D biomedical signals with clinical quality, metadata embedding in the compressed domain to avoid extra distortion, digital signature to implement security and attribute-level encryption to support Role-Based Access Control. The implementation has been extensively tested using standard electrocardiogram and electroencephalogram databases (MIT-BIH Arrhythmia, MIT-BIH Compression and SCCN-EEG), demonstrating high embedding capacity (e.g. 3 KB in resting ECGs, 200 KB in stress tests, 30 MB in ambulatory ECGs), short delays (2-3.3s in real-time transmission) and compression of the signal (by ≃3 in real-time transmission, by ≃5 in offline operation) despite of the embedding of security elements and metadata to enable e-health services.

  3. NMR 1D-imaging of water infiltration into mesoporous matrices.

    PubMed

    Le Feunteun, Steven; Diat, Olivier; Guillermo, Armel; Poulesquen, Arnaud; Podor, Renaud

    2011-04-01

    It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO(3) (highly soluble) and/or BaSO(4) (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryoporometry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water.

  4. Neutronic analysis of the 1D and 1E banks reflux detection system

    SciTech Connect

    Blanchard, A.

    1999-12-21

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.

  5. Measuring the Speed of Sound in a 1D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fry, Jacob; Revelle, Melissa; Hulet, Randall

    2016-05-01

    We report measurements of the speed of sound in a two-spin component, 1D gas of fermionic lithium. The 1D system is an array of one-dimensional tubes created by a 2D optical lattice. By increasing the lattice depth, the tunneling between tubes is sufficiently small to make each an independent 1D system. To measure the speed of sound, we create a density notch at the center of the atom cloud using a sheet of light tuned far from resonance. The dipole force felt by both spin states will be equivalent, so this notch can be thought of as a charge excitation. Once this beam is turned off, the notch propagates to the edge of the atomic cloud with a velocity that depends on the strength of interatomic interactions. We control interactions using a magnetically tuned Feshbach resonance, allowing us to measure the speed of sound over a wide range of interaction. This method may be used to extract the Luttinger parameter vs. interaction strength. Supported by an ARO MURI Grant, NSF, and The Welch Foundation.

  6. Mechanisms of action of the 5-HT1B/1D receptor agonists.

    PubMed

    Tepper, Stewart J; Rapoport, Alan M; Sheftell, Fred D

    2002-07-01

    Recent studies of the pathophysiology of migraine provide evidence that the headache phase is associated with multiple physiologic actions. These actions include the release of vasoactive neuropeptides by the trigeminovascular system, vasodilation of intracranial extracerebral vessels, and increased nociceptive neurotransmission within the central trigeminocervical complex. The 5-HT(1B/1D) receptor agonists, collectively known as triptans, are a major advance in the treatment of migraine. The beneficial effects of the triptans in patients with migraine are related to their multiple mechanisms of action at sites implicated in the pathophysiology of migraine. These mechanisms are mediated by 5-HT(1B/1D) receptors and include vasoconstriction of painfully dilated cerebral blood vessels, inhibition of the release of vasoactive neuropeptides by trigeminal nerves, and inhibition of nociceptive neurotransmission. The high affinity of the triptans for 5-HT(1B/1D) receptors and their favorable pharmacologic properties contribute to the beneficial effects of these drugs, including rapid onset of action, effective relief of headache and associated symptoms, and low incidence of adverse effects. PMID:12117355

  7. Realizing 1-D conducting channel between oppositely gated regions in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Lee, Janghee; Watanabe, Kenji; Taniguchi, Takashi; Lee, Hu-Jong

    The band gap of bilayer graphene (BLG) can be tuned by applying an external electric field perpendicular to the plane of a BLG sheet. If direction of the electric fields in two adjacent regions in BLG are opposite, one-dimensional (1-D) conducting channel emerges at the boundary between two regions with chiral nature. In this presentation, we introduce a method for fabricating two pairs of split-gates attached to BLG, which is sandwiched between two atomically clean hexagonal boron nitride (h-BN) single crystals and thus allows ballistic transport of carriers at least within the device size. Current-voltage characteristics show a large transport gap, which is comparable to the results obtained from optical measurements and numerical calculations. Opening the band gap in two adjacent regions of the BLG flake by oppositely gated electric fields, we observed metallic behavior in transport characteristics along the boundary between the two regions although the resistance of two gapped regions are a few hundreds of k Ω. These results indicate that a 1-D conducting channel formed between the two regions where the induced band gaps were inverted to each other. The formation of this 1-D conducting channel mimics the topological edge conducting channels emerging at the boundary of a two-dimensional topological insulator and may be utilized for applying BLG to valleytronics

  8. Study of phase transformation and crystal structure for 1D carbon-modified titania ribbons

    SciTech Connect

    Zhou, Lihui Zhang, Fang; Li, Jinxia

    2014-02-15

    One-dimensional hydrogen titanate ribbons were successfully prepared with hydrothermal reaction in a highly basic solution. A series of one-dimensional carbon-modified TiO{sub 2} ribbons were prepared via calcination of the mixture of hydrogen titanate ribbons and sucrose solution under N{sub 2} flow at different temperatures. The phase transformation process of hydrogen titanate ribbons was investigated by in-situ X-ray diffraction at various temperatures. Besides, one-dimensional carbon-modified TiO{sub 2} ribbons calcined at different temperatures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption isotherms, diffuse reflectance ultraviolet–visible spectroscopy, and so on. Carbon-modified TiO{sub 2} ribbons showed one-dimensional ribbon crystal structure and various crystal phases of TiO{sub 2}. After being modified with carbon, a layer of uniform carbon film was coated on the surface of TiO{sub 2} ribbons, which improved their adsorption capacity for methyl orange as a model organic pollutant. One-dimensional carbon-modified TiO{sub 2} ribbons also exhibited enhanced visible-light absorbance with the increase of calcination temperatures. - Highlights: • The synthesis of 1D carbon-modified TiO{sub 2} ribbons. • The phase transformation of 1D carbon-modified TiO{sub 2} ribbons. • 1D carbon-modified TiO{sub 2} exhibites enhanced visible-light absorbance.

  9. Toward a consistent use of overshooting parametrizations in 1D stellar evolution codes

    NASA Astrophysics Data System (ADS)

    Viallet, M.; Meakin, C.; Prat, V.; Arnett, D.

    2015-08-01

    Several parametrizations for overshooting in 1D stellar evolution calculations coexist in the literature. These parametrizations are used somewhat arbitrarily in stellar evolution codes, based on what works best for a given problem or even for the historical reasons related to the development of each code. We point out that these different parametrizations correspond to different physical regimes of overshooting, depending on whether the effects of radiation are dominant, marginal, or negligible. Our analysis is based on previously published theoretical results, as well as on multidimensional hydrodynamical simulations of stellar convection where the interaction between the convective region and a stably stratified region is observed. Although the underlying hydrodynamical processes are the same, the outcome of the overshooting process is profoundly affected by radiative effects. Using a simple picture of the scales involved in the overshooting process, we show how three regimes are obtained, depending on the importance of radiative effects. These three regimes correspond to the different behaviors observed in hydrodynamical simulations so far and to the three types of parametrizations used in 1D codes. We suggest that the existing parametrizations for overshooting should coexist in 1D stellar evolution codes and should be applied consistently at convective boundaries depending on the local physical conditions.

  10. Autoxidation of medium chain length polyhydroxyalkanoate.

    PubMed

    Schmid, Manfred; Ritter, Axel; Grubelnik, Andreas; Zinn, Manfred

    2007-02-01

    Polyhydroxyalkanoates (PHAs) are a class of biopolymers that are currently the subject of intensive research for various applications (packaging, consumer products, medical applications, etc.). It is known from synthetic polymers that all plastic materials show more or less pronounced autoxidation (aging induced by UV radiation, temperature, heavy metal ions, etc.). There is less knowledge as yet regarding the autoxidation behavior of biopolymers. The autoxidative behavior of medium chain length poly[(R)-3-hydroxyalkanoate] (mcl-PHA) was therefore investigated. mcl-PHA (co)polymers with amounts of 0, 10, 50, and 75 mol % of olefinic side chains with terminal double bonds were tempered at 60 degrees C in air for 3 months. After 1, 2, 4, 8, and 12 weeks, samples were removed and analyzed for changes in chemical and physical properties by sol-gel analysis (Soxhlet extraction), size exclusion chromatography (SEC), infrared analysis (IR), and gas chromatography/flame ionization detection (GC/FID). It became apparent that the content of double bonds greatly influences the autoxidation of mcl-PHA. A low amount of unsaturated moiety (0 and 10 mol %) resulted in chain scission, whereas samples with 50 and 75 mol % olefinic side chains showed cross-linking and became insoluble after a few weeks. Kinetic data of oxidation behavior were investigated by performing isothermal DSC experiments at elevated temperatures. The kinetic data combined with the experiment enabled the gelation time to be predicted and the shelf-life of mcl-PHA to be estimated. Because of the detected sensitivity of mcl-PHA regarding autoxidation, it is recommended that these biopolymers should be stored cold (at least -5 degrees C) and in an inert gas atmosphere or stabilized by suitable additives (antioxidants).

  11. Infrared amplified spontaneous emission from the 0 ((3)P0) and 0 ((1)D2) ion-pair states of molecular bromine.

    PubMed

    Hoshino, Shoma; Araki, Mitsunori; Ishiwata, Takashi; Tsukiyama, Koichi

    2016-07-28

    We report the observation of amplified spontaneous emission for the first time from the 0 ((3)P0) and 0 ((1)D2) ion-pair states of Br2 by using an optical-optical double resonance technique through the B (3)Π(0) valence state as the intermediate state. The strong infrared emission propagating along the incident laser radiation is assigned to the parallel ASE transitions from the 0 ion-pair states down to the nearby 0 ion-pair states. The subsequent UV fluorescence from the 0 states to the high vibrational levels of the ground state is also observed. By the Franck-Condon simulation of the cascade UV fluorescence, we determine the vibrational distributions in the 0 states populated by ASE, which are consistent with the intensity distribution in the dispersed infrared ASE spectrum. The lifetimes of the relevant ion-pair states are evaluated by analyzing the temporal profiles of the UV fluorescence. PMID:27410159

  12. Long-chain alkanoic acid esters of lupeol from Dorstenia harmsiana Engl. (Moraceae).

    PubMed

    Poumale, Herve Martial P; Awoussong, Kenzo Patrice; Randrianasolo, Rivoarison; Simo, Christophe Colombe F; Ngadjui, Bonaventure Tchaleu; Shiono, Yoshihito

    2012-01-01

    In addition to lupeol (1a), three long-chain alkanoic acid esters of lupeol, in which two were new, were isolated from the hexane and ethyl acetate twigs extract of Dorstenia harmsiana Engl. (Moraceae). The structures of the new compounds were elucidated on the basis of 1D and 2D NMR experiments. Some isolated compounds were evaluated for their antimicrobial activities. The lupeol and its three long-chain alkanoic acid esters showed antifungal and antibacterial activities.

  13. Anionic synthesis of in-chain and chain-end functionalized polymers

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Sumana

    The objective of this work was to anionically synthesize well-defined polymers having functional groups either at the chain-end or along the polymer chain. General functionalization methods (GFM) were used for synthesizing both kinds of polymers. Chain-end functionalized polymers were synthesized by terminating the anionically synthesized, living polymer chains using chlorodimethylsilane. Hydrosilation reactions were then done between the silyl-hydride groups at the chain-ends and the double bonds of commercially available substituted alkenes. This produced a range of well-defined polymers having the desired functional groups at the chain-ends. In-chain functionalized polymers were synthesized by anionically polymerizing a silylhydride functionalized styrene monomer: (4-vinylphenyl)dimethysilane. Polymerizations were done at room temperature in hydrocarbon solvents to produce well-defined polymers. Functional groups were then introduced into the polymer chains by use of hydrosilation reactions done post-polymerization. The functionalized polymers produced were characterized using SEC, 1H and 13C NMR, FTIR, MALDI TOF mass spectrometry and DSC. The monomer reactivity ratios in the copolymerization of styrene with (4-vinylphenyl)dimethylsilane were also measured. A series of copolymerizaions was done with different molar ratios of styrene(S) and (4-vinylphenyl)dimethylsilane(Si). Three different methods were used to determine the values of the monomer reactivity ratios: Fineman-Ross, Kelen-Tudos and Error-In-Variable (EVM) methods. The average values of the two monomer reactivity ratios obtained were: r Si = 0.16 and rS = 1.74. From these values it was observed that in the copolymerization of styrene with (4-vinylphenyl)dimethylsilane, the second monomer was preferentially incorporated into the copolymer chain. Also, rSirS = 0.27, which shows that the copolymer has a tendency to have an alternating structure. Amino acid-functionalized polymers (biohybrids) were

  14. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  15. Altered expression profile of renal α(1D)-adrenergic receptor in diabetes and its modulation by PPAR agonists.

    PubMed

    Zhao, Xueying; Zhang, Yuanyuan; Leander, Michelle; Li, Lingyun; Wang, Guoshen; Emmett, Nerimiah

    2014-01-01

    Alpha(1D)-adrenergic receptor (α(1D)-AR) plays important roles in regulating physiological and pathological responses mediated by catecholamines, particularly in the cardiovascular and urinary systems. The present study was designed to investigate the expression profile of α(1D)-AR in the diabetic kidneys and its modulation by activation of peroxisome proliferator-activated receptors (PPARs). 12-week-old Zucker lean (ZL) and Zucker diabetic fatty (ZD) rats were treated with fenofibrate or rosiglitazone for 8-10 weeks. Gene microarray, real-time PCR, and confocal immunofluorescence microscopy were performed to assess mRNA and protein expression of α(1D)-AR in rat kidney tissue. Using microarray, we found that α(1D)-AR gene was dramatically upregulated in 22-week-old ZD rats compared to ZL controls. Quantitative PCR analysis verified a 16-fold increase in α(1D)-AR mRNA in renal cortex from ZD animals compared to normal controls. Chronic treatment with fenofibrate or rosiglitazone reduced renal cortical α(1D)-AR gene. Immunofluorescence staining confirmed that α(1D)-AR protein was induced in the glomeruli and tubules of diabetic rats. Moreover, dual immunostaining for α(1D)-AR and kidney injury molecule-1 indicated that α(1D)-AR was expressed in dedifferentiated proximal tubules of diabetic Zucker rats. Taken together, our results show that α(1D)-AR expression is upregulated in the diabetic kidneys. PPAR activation suppressed renal expression of α(1D)-AR in diabetic nephropathy.

  16. Orientation and mechanical response of elastomers containing double networks

    SciTech Connect

    Roland, C.M.; Santangelo, P.G.; Choi, I.S.; Miller J.B.

    1993-12-31

    Orientation is one of the primary means for increasing the modulus and strength of materials comprised of flexible chain polymers. The incorporation of a double network makes the orientation of a flexible chain polymer thermodynamically stable, thus offering the potential for elastomers with improved physical properties. Birefringence and deuterium NMR results will be presented which indicate that the high residual strains obtained via double network formation are accompanied by surprisingly low levels of molecular orientation. It has been found that the presence of a double network amplifies the modulus, strain crystallizability, and, in conjunction with carbon black reinforcement, the electrical conductivity of rubber. Most intriguing is the fact that the modulus increase may not associate with any increased brittleness, as would result from simply increasing the crosslink density. Mechanisms for the modulus enhancement will be proposed and examined.

  17. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies.

    PubMed

    Stojanović, Zoran S; Ignjatović, Nenad; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana; Škapin, Srečo; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

    2016-11-01

    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous

  18. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies.

    PubMed

    Stojanović, Zoran S; Ignjatović, Nenad; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana; Škapin, Srečo; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

    2016-11-01

    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous

  19. HLA class II susceptibility pattern for type 1 diabetes (T1D) in an Iranian population.

    PubMed

    Kiani, J; Hajilooi, M; Furst, D; Rezaei, H; Shahryari-Hesami, S; Kowsarifard, S; Zamani, A; Solgi, G

    2015-08-01

    This study aimed to determine the HLA-DRB1/HLA-DQB1 susceptibility and protection pattern for type 1 diabetes (T1D) in a population from Hamadan, north-west of Iran. A total of 133 patients with T1D were tested for HLA-DRB1 and HLA-DQB1 alleles using PCR-SSP compared to 100 ethnic-matched healthy controls. Alleles and haplotypes frequencies were compared between both groups. The most susceptible alleles for disease were HLA-DRB1*03:01, DRB1*04:02, DQB1*02:01 and DQB1*03:02, and protective alleles were HLA-DRB1*07:01, *11:01, *13:01, *14:01 and DRB1*15 and HLA-DQB1*06:01, *06:02 and *06:03. Haplotype analysis revealed that patients with T1D had higher frequencies of DRB1*03:01-DQB1*02:01 (OR = 4.86, P < 10(-7) ) and DRB1*04:02-DQB1*03:02 (OR = 9.93, P < 10(-7) ) and lower frequencies of DRB1*07:01-DQB1*02:01 (P = 0.0005), DRB1*11:01-DQB1*03:01 (P = 0.001), DRB1*13:01-DQB1*06:03 (P = 0.002) and DRB1*15-DQB1*06:01 (P = 0.001) haplotypes compared to healthy controls. Heterozygote combination of both susceptible haplotypes (DR3/DR4) confers the highest risk for T1D (RR = 18.80, P = 4 × 10(-5) ). Additionally, patients with homozygote diplotype, DR3/DR3 and DR4/DR4, showed a similar risk with less extent to heterozygote combination (P = 0.0004 and P = 0.01, respectively). Our findings not only confirm earlier reports from Iranians but also are in line with Caucasians and partly with Asians and some African patients with T1D. Remarkable differences were the identification of DRB1*04:01-DQB1*03:02, DRB1*07:01-DQB1*03:03 and DRB1*16-DQB1*05:02 as neutral and DRB1*13:01-DQB1*06:03 as the most protective haplotypes in this study.

  20. Regulation of inflorescence branch development in rice through a novel pathway involving the pentatricopeptide repeat protein sped1-D.

    PubMed

    Jiang, Guanghuai; Xiang, Yanghai; Zhao, Jiying; Yin, Dedong; Zhao, Xianfeng; Zhu, Lihuang; Zhai, Wenxue

    2014-08-01

    Panicle type has a direct bearing on rice yield. Here, we characterized a rice clustered-spikelet mutant, sped1-D, with shortened pedicels and/or secondary branches, which exhibits decreased pollen fertility. We cloned sped1-D and found that it encodes a pentatricopeptide repeat protein. We investigated the global expression profiles of wild-type, 9311, and sped1-D plants using Illumina RNA sequencing. The expression of several GID1L2 family members was downregulated in the sped1-D mutant, suggesting that the gibberellin (GA) pathway is involved in the elongation of pedicels and/or secondary branches. When we overexpressed one GID1L2, AK070299, in sped1-D plants, the panicle phenotype was restored to varying degrees. In addition, we analyzed the expression of genes that function in floral meristems and found that RFL and WOX3 were severely downregulated in sped1-D. These results suggest that sped1-D may prompt the shortening of pedicels and secondary branches by blocking the action of GID1L2, RFL, and Wox3. Moreover, overexpression of sped1-D in Arabidopsis resulted in the shortening of pedicels and clusters of siliques, which indicates that the function of sped1-D is highly conserved in monocotyledonous and dicotyledonous plants. Sequence data from this article have been deposited with the miRBase Data Libraries under accession no. MI0003201.

  1. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    SciTech Connect

    Maskaly, Karlene Rosera

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  2. Phasic Triplet Markov Chains.

    PubMed

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data. PMID:26353069

  3. No contractile effect for 5-HT1D and 5-HT1F receptor agonists in human and bovine cerebral arteries: similarity with human coronary artery

    PubMed Central

    Bouchelet, Isabelle; Case, Bruce; Olivier, André; Hamel, Edith

    2000-01-01

    Using subtype-selective 5-HT1 receptor agonists and/or the 5-HT1 receptor antagonist GR127935, we characterized in vitro the 5-HT receptor that mediates the contraction of human and bovine cerebral arteries. Further, we investigated which sumatriptan-sensitive receptors are present in human coronary artery by reverse-transcriptase polymerase chain reaction (RT–PCR). Agonists with affinity at the 5-HT1B receptor, such as sumatriptan, alniditan and/or IS-159, elicited dose-dependent contraction in both human and bovine cerebral arteries. They behaved as full agonists at the sumatriptan-sensitive 5-HT1 receptors in both species. In contrast, PNU-109291 and LY344864, selective agonists at 5-HT1D and 5-HT1F receptors, respectively, were devoid of any significant vasocontractile activity in cerebral arteries, or did not affect the sumatriptan-induced vasocontraction. The rank order of agonist potency was similar in both species and could be summarized as 5-HT=alniditan>sumatriptan=IS-159>>>PNU-109291=LY344864. In bovine cerebral arteries, the 5-HT1 receptor antagonist GR127935 dose-dependently inhibited the vasoconstrictions elicited by both 5-HT and sumatriptan, with respective pA2 values of 8.0 and 8.6. RT–PCR studies in human coronary arteries showed a strong signal for the 5-HT1B receptor while message for the 5-HT1F receptor was weak and less frequently detected. Expression of 5-HT1D receptor mRNA was not detected in any sample. The present results demonstrate that the triptan-induced contraction in brain vessels is mediated exclusively by the 5-HT1B receptor, which is also present in a majority of human coronary arteries. These results suggest that selective 5-HT1D and 5-HT1F receptor agonists might represent new antimigraine drugs devoid of cerebro- and cardiovascular effects. PMID:10711348

  4. The first examples of 1-D organic hybrid lanthanoid thioarsenates based on two [As(V)S4](3-) linkage modes.

    PubMed

    Zhao, Rong-Qing; Liu, Xing; Zhou, Jian; Xiao, Hong-Ping; Zou, Hua-Hong; Fu, Lianshe; Tang, Qiuling; Tan, Xiao-Feng

    2016-04-14

    A series of new 1-D organic hybrid lanthanoid thioarsenates [Ln(dap)2]2(μ-η(1):η(1):η(1):η(1)-AsS4)(μ-η(1):η(1)-As(V)S4)]n {Ln = Ce (Ia), Pr (Ib), Nd (Ic), and Sm (Id); dap = diaminopropane} have been prepared under solvothermal conditions and structurally characterized. Compounds Ia-d contain two [As(V)S4](3-) linkage modes, namely μ-η(1):η(1):η(1):η(1)-As(V)S4 and μ-η(1):η(1)-As(V)S4, which are linked alternately with [Ln(dap)2](3+) groups into 1-D neutral chains [Ln(dap)2]2(μ-η(1):η(1):η(1):η(1)-As(V)S4)(μ-η(1):η(1)-As(V)S4)]n, which represent the first examples of 1-D organic hybrid lanthanoid thioarsenates based on two [As(V)S4](3-) linkage modes. To learn more about the influence of lanthanide contraction on the formation of lanthanoid thioarsenates, five organic hybrid lanthanoid thioarsenates [Ln(dap)3As(V)S4] [Ln = Tb (IIa), Dy (IIb), Ho (IIIc), and Er (IIId)] and [Er(dien)2As(V)S4] (III, dien = diethylenetriamine) are also provided. Both II and III contain neutral lanthanide-centred complexes, where the tetrahedral anion [As(V)S4](3-) acts as a chelating ligand to the complex [Ln(dap)3](3+)/[Er(dien)2](3+) cation. Their optical properties have been characterized by UV-vis spectra, and the density functional theory calculation of Ia has been performed.

  5. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    SciTech Connect

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-15

    Three new 1D to 3D complexes, namely, ([Ni(btec)(Himb){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O){sub n} (1), ([Cd(btec){sub 0.5}(imb)(H{sub 2}O)]·1.5H{sub 2}O){sub n} (2), and ([Zn(btec){sub 0.5}(imb)]·H{sub 2}O){sub n} (3) (H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (5{sup 3}·6{sup 2}·7)(5{sup 2}·6{sup 4}). Complex 3 presents a 3D framework with a point symbol of (4·6{sup 4}·8)(4{sup 2}·6{sup 2}·8{sup 2}). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature. - Graphical abstract: Three new 1D to 3D complexes with different structural and topological motifs have been obtained by modifying the central metal ions. Additionally, their IR, TG analyses and fluorescent properties are also investigated. - Highlights: • Three complexes based on mixed multidentate N- and O-donor ligands. • The complexes are characterized by IR, luminescence and TGA techniques. • Benzenetetracarboxylates display different coordination modes in complexes 1–3. • Changing the metal ions can result in complexes with completely different structures.

  6. Robustness of zero-modes in parafermion chains

    NASA Astrophysics Data System (ADS)

    Jermyn, Adam; Mong, Roger; Alicea, Jason

    2014-03-01

    Several models for 1D topological phases are known to host zero-modes that enable high-fidelity quantum information storage and manipulation. The Majorana fermion chain provides a classic example. Here the system supports Majorana zero-modes that guarantee two-fold degeneracy in the ground state and excited states to within exponential accuracy. Chains of ``parafermions''-which represent generalized Majorana fermions-also support zero-modes, but, curiously, only under much more restricted circumstances as shown recently by Fendley. We shed light on this interesting finding by exploring the properties of ground-states and excited states in parafermion chains using analytic methods as well as DMRG and exact diagonalization of a truncated Hilbert space model. We show that the absence of exact zero-modes admits a simple physical picture in terms of domain-wall dynamics. We would like to acknowledge NSF grant DMR-1341822.

  7. Self-assembly of double helical nanostructures inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lv, Cheng; Xue, Qingzhong; Shan, Meixia; Jing, Nuannuan; Ling, Cuicui; Zhou, Xiaoyan; Jiao, Zhiyong; Xing, Wei; Yan, Zifeng

    2013-05-01

    We use molecular dynamics (MD) simulations to show that a DNA-like double helix of two poly(acetylene) (PA) chains can form inside single-walled carbon nanotubes (SWNTs). The computational results indicate that SWNTs can activate and guide the self-assembly of polymer chains, allowing them to adopt a helical configuration in a SWNT through the combined action of the van der Waals potential well and the π-π stacking interaction between the polymer and the inner surface of SWNTs. Meanwhile both the SWNT size and polymer chain stiffness determine the outcome of the nanostructure. Furthermore, we also found that water clusters encourage the self-assembly of PA helical structures in the tube. This molecular model may lead to a better understanding of the formation of a double helix biological molecule inside SWNTs. Alternatively, it could form the basis of a novel nanoscale material by utilizing the `empty' spaces of SWNTs.We use molecular dynamics (MD) simulations to show that a DNA-like double helix of two poly(acetylene) (PA) chains can form inside single-walled carbon nanotubes (SWNTs). The computational results indicate that SWNTs can activate and guide the self-assembly of polymer chains, allowing them to adopt a helical configuration in a SWNT through the combined action of the van der Waals potential well and the π-π stacking interaction between the polymer and the inner surface of SWNTs. Meanwhile both the SWNT size and polymer chain stiffness determine the outcome of the nanostructure. Furthermore, we also found that water clusters encourage the self-assembly of PA helical structures in the tube. This molecular model may lead to a better understanding of the formation of a double helix biological molecule inside SWNTs. Alternatively, it could form the basis of a novel nanoscale material by utilizing the `empty' spaces of SWNTs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33157h

  8. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    NASA Astrophysics Data System (ADS)

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-01

    Three new 1D to 3D complexes, namely, {[Ni(btec)(Himb)2(H2O)2]·6H2O}n (1), {[Cd(btec)0.5(imb)(H2O)]·1.5H2O}n (2), and {[Zn(btec)0.5(imb)]·H2O}n (3) (H4btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (53·62·7)(52·64). Complex 3 presents a 3D framework with a point symbol of (4·64·8)(42·62·82). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature.

  9. Modulation of metallothionein-III mRNA content and growth rate of rat C6-glial cells by transfection with human 5-HT1D receptor genes.

    PubMed

    Amoureux, M C; Wurch, T; Pauwels, P J

    1995-09-14

    The mRNA content of the brain-specific metallothionein-III (MT-III) protein was measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR) in two transformed glial cell lines: rat C6-glial and human U-373 MG cells. Low levels of MT-III mRNA were detected compared to a high expression of this mRNA in primary cultures of rat astrocytes. C6-glial cell lines stably transfected with a human 5-HT1D alpha or 5-HT1D beta receptor gene showed a decrease (87 to 93%) in basal [3H]thymidine incorporation, whereas their MT-III mRNA content was more than 30-fold increased compared to plasmid transfected C6-glial cells. The inverse proportion between mitogenic activity and MT-III mRNA content suggests that MT-III may act as a growth inhibitory factor in rat C6-glial cells. PMID:7677777

  10. Spatial Data Supply Chains

    NASA Astrophysics Data System (ADS)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.

  11. Chain inflation revisited

    SciTech Connect

    Chialva, Diego; Danielsson, Ulf H E-mail: ulf.danielsson@fysast.uu.se

    2008-10-15

    This paper represents an in-depth treatment of the chain inflation scenario. We fully determine the evolution of the universe in the model, the conditions necessary in order to have a successful inflationary period, and the matching with the observational results regarding the cosmological perturbations. We study in great detail, and in general, the dynamics of the background, as well as the mechanism of generation of the perturbations. We also find an explicit formula for the spectrum of adiabatic perturbations. Our results prove that chain inflation is a viable model for solving the horizon, entropy and flatness problems of standard cosmology and for generating the right amount of adiabatic cosmological perturbations. The results are radically different from those found in previous works on the subject. Finally, we argue that there is a natural way to embed chain inflation into flux compactified string theory. We discuss the details of the implementation and how to fit observations.

  12. Supply-Chain Optimization Template

    NASA Technical Reports Server (NTRS)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  13. Confined acoustic and optical plasmons in double-layered quantum-wire arrays with strong tunneling

    NASA Astrophysics Data System (ADS)

    Dethlefsen, A. F.; Heyn, Ch.; Heitmann, D.; Schüller, C.

    2006-05-01

    We investigate electronic excitations in GaAs-AlxGa1-xAs double-layered quantum wire arrays with strong tunneling coupling by resonant inelastic light scattering. By applying an external electric field, we can change the one-dimensional (1D) electron density and the symmetry of the double quantum-well (DQW) structure at the same time. We identify confined optical 1D intersubband plasmons (COP) and confined acoustic 1D intersubband plasmons (CAP). Due to the tunneling coupling, the energies of the CAP exhibit a minimum for a symmetric DQW potential, whereas the energies of the COP are dominated by the total carrier density, and are nearly insensitive to the symmetry of the potential.

  14. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  15. Synthesis, characterization and crystal structure determination of Mn (II) ion based 1D polymer constructed from 2, 2‧ bipyridyl and azide group, its thermal stability, magnetic properties and Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Mudsainiyan, R. K.; Jassal, Amanpreet Kaur; Chawla, S. K.

    2015-05-01

    The 1-D polymeric complex (I) is having formula [Mn(2,2‧-BP).(N3)2]n, which has been crystallized in distilled water and characterized by elemental analyses, FT-IR spectrum, powder X-ray diffraction analyses and single-crystal diffraction analysis. This polymer possesses 1D helical chains or coils where Mn-azide-Mn forms the base of the coil which is alternatively garlanded by rigid bi-pyridine rings, where coordinates are in anti-fashion. The Mn (II) ions in the repeating units are linked by two end-on azide groups which extend through the two end-to-end azide ligands to the next unit forming a 1-D polymeric chain. The present study suggests that the use of this rigid and neutral building block leads to give better arrangement of the polymeric motif with [010] chains in 2-c uninodal net. During investigation of strong or weak intermolecular interactions, X-ray diffraction analysis and Hirshfeld surface analysis give rise to comparable results but in Hirshfeld surface analysis, two-third times more results of close contacts are obtained. The fingerprint plots demonstrate that these weak non-bonding interactions are important for stabilizing the crystal packing. Magnetic properties of the complex (I) were analyzed on the basis of an alternating ferro- and antiferromagnetic Heisenberg chain of Mn (II) ions. The J-exchange parameters found are J1=64.3 K (45.3 cm-1), and J2=-75.7 K (-53.3 cm-1). Magnetic properties are discussed in comparison with those of other similar molecular magnets of [Mn(L-L)(N3)2]n type.

  16. 1D-3D registration for intra-operative nuclear imaging in radio-guided surgery.

    PubMed

    Vetter, Christoph; Lasser, Tobias; Okur, Asli; Navab, Nassir

    2015-02-01

    3D functional nuclear imaging modalities like SPECT or PET provide valuable information, as small structures can be marked with radioactive tracers to be localized before surgery. This positional information is valuable during surgery as well, for example when locating potentially cancerous lymph nodes in the case of breast cancer. However, the volumetric information provided by pre-operative SPECT scans loses validity quickly due to posture changes and manipulation of the soft tissue during surgery. During the intervention, the surgeon has to rely on the acoustic feedback provided by handheld gamma-detectors in order to localize the marked structures. In this paper, we present a method that allows updating the pre-operative image with a very limited number of tracked readings. A previously acquired 3D functional volume serves as prior knowledge and a limited number of new 1D detector readings is used in order to update the prior knowledge. This update is performed by a 1D-3D registration algorithm that registers the volume to the detector readings. This enables the rapid update of the visual guidance provided to the surgeon during a radio-guided surgery without slowing down the surgical workflow. We evaluate the performance of this approach using Monte-Carlo simulations, phantom experiments and patient data, resulting in a positional error of less than 8 mm which is acceptable for surgery. The 1D-3D registration is also compared to a volumetric reconstruction using the tracked detector measurements without taking prior information into account, and achieves a comparable accuracy with significantly less measurements.

  17. Supersymmetric configurations in the rotating D1-D5 system andpp-waves

    NASA Astrophysics Data System (ADS)

    Maoz, Liat

    Two families of supersymmetric configurations are considered. One is the 1/4 supersymmetric D1--D5 system with angular momentum, and the other is a family of pp-waves of type IIB string theory with some supersymmetry. In the first part of the thesis some configurations of the D1--D5 system are examined which give conical singularities in AdS 3 as their near horizon limit. It is shown that they can be made non-singular by adding angular momentum to the brane system. The smooth asymptotically flat solutions constructed this way are used to obtain global AdS 3 as the near horizon geometry. Using the relation of the D1--D5 system to the oscillating string, a large family of supergravity solutions is constructed which describe BPS excitations on AdS3 x S 3 with angular momentum on S3. These solutions take into account the full back reaction on the metric, and can be viewed as Kaluza-Klein monopole "supertubes", which are completely non-singular geometries. The different chiral primaries of the dual CFT are identified with these different supergravity solutions. This part is adapted from the papers [1], [2]. In its second part, a general class of supersymmetric pp-wave solutions of type IIB string theory is constructed, such that the superstring worldsheet action in light cone gauge is that of an interacting massive field theory. It is shown that when the light cone Lagrangian has (2.2) supersymmetry, one can find backgrounds that lead to arbitrary superpotentials on the worldsheet. Both flat and curved transverse spaces are considered. In particular, the background giving rise to the N = 2 sine Gordon theory on the worldsheet is analyzed. Massive mirror symmetry relates it to the deformed CP1 model (or sausage model) which seems to elude a purely supergravity target space interpretation. These are results which appeared in the paper [3].

  18. Assessment and improvement of the 2D/1D method stability in DeCART

    SciTech Connect

    Stimpson, S.; Young, M.; Collins, B.; Kelley, B.; Downar, T.

    2013-07-01

    As part of ongoing work with Consortium for Advanced Simulation of Light Water Reactors (CASL), the 2D/1D code, DeCART, has demonstrated some of the advantages of the 2D/1D method with respect to realistic, full-core analysis, particularly over explicit 3D transport methods, which generally have higher memory and computation requirements. The 2D/1D method performs 2D-radial transport sweeps coupled with ID-axial diffusion calculations to provide a full 3D simulation. DeCART employs the 2D method of characteristics for the radial sweeps and ID one-node nodal diffusion for the axial sweeps, coupling the two methods with transverse leakages to ensure a more consistent representation of the transport equation. It has been observed that refinement of the axial plane thickness leads to instabilities in the calculation scheme. This work assesses the sources of these instabilities and the approaches to improve them, especially with respect to negative scattering cross sections and the tightness of the 2D-radial/ID-axial coupling schemes. Fourier analyses show that the existing iteration scheme is not unconditionally stable, suggesting a tighter coupling scheme is required. For this reason 3D-CMFD has been implemented, among other developments, to ensure more stable calculation. A matrix of test cases has been used to assess the convergence, with the primary parameter being the axial plane thickness, which has been refined down to 1 cm. These cases demonstrate the issues observed and how the modification improve the stability. However, it is apparent that more work is necessary to ensure unconditional stability. (authors)

  19. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System

    PubMed Central

    2011-01-01

    Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models

  20. Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review

    PubMed Central

    Lin, Kuen-Song; Chowdhury, Sujan

    2010-01-01

    The present work provides a comprehensive overview of the recent progress of research work toward developing new one dimensional (1-D) ceria (CeO2) nanomaterials. The review has been classified into three parts: the preparation procedures with identification of the existing different dimensional ceria nanomaterials, the formation mechanisms, and an analysis of their applications. From literature survey, it is inaugurated that the fundamental structures of the ceria nanomaterials constructively dominate their properties and applications. In addition, this work will also provide a perspective on the future technical trends for the development of different dimensional CeO2 nanomaterials. PMID:20957090

  1. Formation of Molecules near a Feshbach Resonance in a 1D Optical Lattice

    SciTech Connect

    Orso, G.; Pitaevskii, L.P.; Stringari, S.; Wouters, M.

    2005-08-05

    We study the molecular behavior of two atoms interacting near a Feshbach resonance in the presence of a 1D periodic potential. The critical value of the scattering length needed to produce a molecule and the binding energy at resonance are calculated as a function of the intensity of the periodic potential. Because of the nonseparability of the center of mass and relative motion, the binding energy depends on the quasimomentum of the molecule. This has dramatic consequences on the molecular tunneling properties, which become strongly dependent on the scattering length.

  2. Thermodynamic nature of vitrification in a 1D model of a structural glass former

    SciTech Connect

    Semenov, A. N.

    2015-07-28

    We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids.

  3. Hair on non-extremal D1-D5 bound states

    NASA Astrophysics Data System (ADS)

    Roy, Pratik; Srivastava, Yogesh K.; Virmani, Amitabh

    2016-09-01

    We consider a truncation of type IIB supergravity on four-torus where in addition to the Ramond-Ramond 2-form field, the Ramond-Ramond axion ( w) and the NS-NS 2-form field ( B) are also retained. In the ( w, B) sector we construct a linearised perturbation carrying only left moving momentum on two-charge non-extremal D1-D5 geometries of Jejjala, Madden, Ross and Titchener. The perturbation is found to be smooth everywhere and normalisable. It is constructed by matching to leading order solutions of the perturbation equations in the inner and outer regions of the geometry.

  4. Delocalization of Weakly Interacting Bosons in a 1D Quasiperiodic Potential

    NASA Astrophysics Data System (ADS)

    Michal, V. P.; Altshuler, B. L.; Shlyapnikov, G. V.

    2014-07-01

    We consider weakly interacting bosons in a 1D quasiperiodic potential (Aubry-Azbel-Harper model) in the regime where all single-particle states are localized. We show that the interparticle interaction may lead to the many-body delocalization and we obtain the finite-temperature phase diagram. Counterintuitively, in a wide range of parameters the delocalization requires stronger coupling as the temperature increases. This means that the system of bosons can undergo a transition from a fluid to insulator (glass) state under heating.

  5. Analytic solutions for the approximated 1-D Monge-Kantorovich mass transfer problems

    NASA Astrophysics Data System (ADS)

    Lu, Xiaojun; Lv, Xiaofen

    2016-10-01

    This paper mainly investigates the approximation of a global maximizer of the 1-D Monge-Kantorovich mass transfer problem through the approach of nonlinear differential equations with Dirichlet boundary. Using an approximation mechanism, the primal maximization problem can be transformed into a sequence of minimization problems. By applying the canonical duality theory, one is able to derive a sequence of analytic solutions for the minimization problems. In the final analysis, the convergence of the sequence to a global maximizer of the primal Monge-Kantorovich problem will be demonstrated.

  6. Thermodynamic nature of vitrification in a 1D model of a structural glass former.

    PubMed

    Semenov, A N

    2015-07-28

    We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids. PMID:26233148

  7. Monochromatic Neutron Tomography Using 1-D PSD Detector at Low Flux Research Reactor

    SciTech Connect

    Ashari, N. Abidin; Saleh, J. Mohamad; Abdullah, M. Zaid; Mohamed, A. Aziz; Azman, A.; Jamro, R.

    2008-03-17

    This paper describes the monochromatic neutron tomography experiment using the 1-D Position Sensitive Neutron Detector (PSD) located at Nuclear Malaysia TRIGA MARK II Research reactor. Experimental work was performed using monochromatic neutron source from beryllium filter and HOPG crystal monochromator. The principal main aim of this experiment was to test the detector efficiency, image reconstruction algorithm and the usage of 0.5 nm monochromatic neutrons for the neutron tomography setup. Other objective includes gathering important parameters and features to characterize the system.

  8. The 1D Kardar-Parisi-Zhang equation: Height distribution and universality

    NASA Astrophysics Data System (ADS)

    Sasamoto, Tomohiro

    2016-02-01

    The Kardar-Parisi-Zhang (KPZ) equation, which was introduced in 1986 as a model equation to describe the dynamics of an interface motion, has been attracting renewed interest in recent years. In particular, the height distribution of its 1D version was determined exactly for a few special initial conditions. Its relevance in experiments was demonstrated and our understanding of the mathematical structures behind its tractability has deepened considerably. There are also new developments in the applicability of the KPZ universality in wider contexts. This paper is a short introductory review on the basics of the equation and on a few recent topics.

  9. Structural and magnetic properties of Fe1+dTe single crystals

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Yoshikazu; Hamada, Kentaro; Miura, Osuke

    We have grown single crystals of Fe1+dTe by a conventional self-flux method. We obtained plate-like single crystals with dnom ≥ 0.1. The value of the magnetization increased with increasing excess Fe concentration, and a broadening of the antiferromagnetic transition was observed for dnom >1.15. Further, we noted that the antiferromagnetic transition of Fe1.134Te (dnom = 0.15) was clearly suppressed to a lower temperature, which would indicate a possibility of controllability of magnetism by excess Fe concentration.

  10. Scratched-XY Universality and Phase Diagram of Disordered 1D Bosons in Optical Lattice

    NASA Astrophysics Data System (ADS)

    Yao, Zhiyuan; Pollet, Lode; Prokof'ev, Nikolay; Svistunov, Boris

    The superfluid-insulator quantum phase transition in a 1D system with weak links belongs to the so-called scratched-XY universality class, provided the irrenormalizable exponent ζ characterizing the distribution of weak links is smaller than 2 / 3 . With a combination of worm-algorithm Monte Carlo simulations and asymptotically exact analytics, we accurately trace the position of the scratched-XY critical line on the ground-state phase diagram of bosonic Hubbard model at unity filling. In particular, we reveal the location of the tricritical point separating the scratched-XY criticality from the Giamarchi-Schulz one.

  11. Phase-Sensitive Detection of Bragg Scattering at 1D Optical Lattices

    SciTech Connect

    Slama, S.; Cube, C. von; Deh, B.; Ludewig, A.; Zimmermann, C.; Courteille, Ph.W.

    2005-05-20

    We report on the observation of Bragg scattering at 1D atomic lattices. Cold atoms are confined by optical dipole forces at the antinodes of a standing wave generated by the two counterpropagating modes of a laser-driven high-finesse ring cavity. By heterodyning the Bragg-scattered light with a reference beam, we obtain detailed information on phase shifts imparted by the Bragg scattering process. Being deep in the Lamb-Dicke regime, the scattered light is not broadened by the motion of individual atoms.

  12. Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel.

    PubMed

    Del Buffa, Stefano; Rinaldi, Elia; Carretti, Emiliano; Ridi, Francesca; Bonini, Massimo; Baglioni, Piero

    2016-09-01

    The use of injectable materials in minimally invasive surgical procedures could help in facing the bone diseases connected to the ageing of world population. To this aim, materials integrating the rheological properties of biocompatible polymers with the mechanical properties of 1D inorganic nanostructures represent promising scaffolds. Here we describe the preparation of hydrogel composites made of carboxymethyl cellulose (CMC) and halloysite nanotubes (HNT) as injectable materials for the local treatment of bone defects. The rheology and injectability of the materials reflects their structural properties, showing the possibility of successfully injecting the prepared composites over a large range of operative conditions.

  13. Almost ideal 1D water diffusion in imogolite nanotubes evidenced by NMR relaxometry.

    PubMed

    Belorizky, Elie; Fries, Pascal H; Guillermo, Armel; Poncelet, Olivier

    2010-06-21

    The longitudinal proton relaxation rates R(1) of water diffusing inside synthetic aluminium silicate imogolite nanotubes are measured by fast field-cycling NMR for frequencies between 0.02 and 35 MHz at 25, 37 and 50 degrees C. We give analytical expressions of the dominant intermolecular dipolar spin-spin contribution to R(1) and to the transverse relaxation rate R(2). A remarkable variation of R(1) by more than two orders of magnitude is observed and shown to be close to the theoretical law, inversely proportional to the square root of the resonance frequency, which is characteristic of perfect molecular 1D diffusion. The physics of diffusion is discussed.

  14. Pharmacological evidence that 5-HT1D activation induces renal vasodilation by NO pathway in rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-06-01

    5-HT is a powerful vasoconstrictor substance in renal vasculature (mainly by 5-HT₂ activation). Nevertheless, 5-HT is notable for its dual cardiovascular effects, producing both vasodilator and vasoconstrictor actions. This study aimed to investigate whether, behind the predominant serotonergic vasoconstrictor action, THE 5-HT system may exert renal vasodilator actions, and, if so, characterize the 5-HT receptors and possible indirect pathways. Renal perfusion pressure (PP), systemic blood pressure (SBP) and heart rate (HR) measurement in in situ autoperfused rat kidney was determined in phenylephrine infused rats. Intra arterial (i.a.) bolus administration of 5-HT (0.00000125-0.1 μg/kg) decreased renal PP in the presence of a phenylephrine continuous infusion (phenylephrine-infusion group), without modifying SBP or HR. These vasodilator responses were potentiated by 5-HT₂ antagonism (ritanserin, 1 mg/kg i.v.), whereas the responses were abolished by 5-HT₁ /₇ antagonist (methiothepin, 100 μg/kg i.v.) or 5-HT1D antagonist (LY310762, 1 mg/kg i.v.). The i.a. administration (0.00000125 to 0.1 μg/kg) of 5-CT or L-694,247 (5-HT1D agonist) mimicked 5-HT vasodilator effect, while other agonists (1-PBG, α-methyl-5-HT, AS-19 (5-HT₇), 8-OH-DPAT (5-HT1A) or CGS-12066B (5-HT1B)) did not alter baseline haemodynamic variables. L-694,247 vasodilation was abolished by i.v. bolus of antagonists LY310762 (5-HT1D, 1 mg/kg) or L-NAME (nitric oxide, 10 mg/kg), but not by i.v. bolus of indomethacin (cyclooxygenase, 2 mg/kg) or glibenclamide (ATP-dependent K(+) channel, 20 mg/kg). These outcomes suggest that 5-HT1D activation produces a vasodilator effect in the in situ autoperfused kidney of phenylephrine-infusion rats mediated by the NO pathway. PMID:25854421

  15. 2D ESR image reconstruction from 1D projections using the modulated field gradient method

    NASA Astrophysics Data System (ADS)

    Páli, T.; Sass, L.; Horvat, L. I.; Ebert, B.

    A method for the reconstruction of 2D ESR images from 1 D projections which is based on the modulated field gradient method has been explored. The 2D distribution of spin-labeled stearic acid in oriented and unoriented dimyristoyl phosphatidylcholine multilayers on a flat quartz support was determined. Such samples are potentially useful for the determination of lipid lateral diffusion in oriented multilayers by monitoring the spreading of a sharp concentration profile in one or two dimensions. The limitations of the method are discussed and the improvements which are needed for dynamic measurements are outlined.

  16. Exponentially-convergent Monte Carlo for the 1-D transport equation

    SciTech Connect

    Peterson, J. R.; Morel, J. E.; Ragusa, J. C.

    2013-07-01

    We define a new exponentially-convergent Monte Carlo method for solving the one-speed 1-D slab-geometry transport equation. This method is based upon the use of a linear discontinuous finite-element trial space in space and direction to represent the transport solution. A space-direction h-adaptive algorithm is employed to restore exponential convergence after stagnation occurs due to inadequate trial-space resolution. This methods uses jumps in the solution at cell interfaces as an error indicator. Computational results are presented demonstrating the efficacy of the new approach. (authors)

  17. Prediction of car cabin environment by means of 1D and 3D cabin model

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Pokorný, J.; Jícha, M.

    2012-04-01

    Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.

  18. KAM Tori for 1D Nonlinear Wave Equationswith Periodic Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Chierchia, Luigi; You, Jiangong

    In this paper, one-dimensional (1D) nonlinear wave equations with periodic boundary conditions are considered; V is a periodic smooth or analytic function and the nonlinearity f is an analytic function vanishing together with its derivative at u≡0. It is proved that for ``most'' potentials V(x), the above equation admits small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system. The proof is based on an infinite dimensional KAM theorem which allows for multiple normal frequencies.

  19. Monochromatic Neutron Tomography Using 1-D PSD Detector at Low Flux Research Reactor

    NASA Astrophysics Data System (ADS)

    Ashari, N. Abidin; Saleh, J. Mohamad; Abdullah, M. Zaid; Mohamed, A. Aziz; Azman, A.; Jamro, R.

    2008-03-01

    This paper describes the monochromatic neutron tomography experiment using the 1-D Position Sensitive Neutron Detector (PSD) located at Nuclear Malaysia TRIGA MARK II Research reactor. Experimental work was performed using monochromatic neutron source from beryllium filter and HOPG crystal monochromator. The principal main aim of this experiment was to test the detector efficiency, image reconstruction algorithm and the usage of 0.5 nm monochromatic neutrons for the neutron tomography setup. Other objective includes gathering important parameters and features to characterize the system.

  20. Cargo selection by specific kinesin light chain 1 isoforms

    PubMed Central

    Woźniak, Marcin J; Allan, Victoria J

    2006-01-01

    Kinesin-1 drives the movement of diverse cargoes, and it has been proposed that specific kinesin light chain (KLC) isoforms target kinesin-1 to these different structures. Here, we test this hypothesis using two in vitro motility assays, which reconstitute the movement of rough endoplasmic reticulum (RER) and vesicles present in a Golgi membrane fraction. We generated GST-tagged fusion proteins of KLC1B and KLC1D that included the tetratricopeptide repeat domain and the variable C-terminus. We find that preincubation of RER with KLC1B inhibits RER motility, whereas KLC1D does not. In contrast, Golgi fraction vesicle movement is inhibited by KLC1D but not KLC1B reagents. Both RER and vesicle movement is inhibited by preincubation with the GST-tagged C-terminal domain of ubiquitous kinesin heavy chain (uKHC), which binds to the N-terminal domain of uKHC and alters its interaction with microtubules. We propose that although the TRR domains are required for cargo binding, it is the variable C-terminal region of KLCs that are vital for targeting kinesin-1 to different cellular structures. PMID:17093494