Science.gov

Sample records for 1d heat conduction

  1. Heat Capacity of 1D Molecular Chains

    NASA Astrophysics Data System (ADS)

    Bagatskii, M. I.; Barabashko, M. S.; Sumarokov, V. V.; Jeżowski, A.; Stachowiak, P.

    2017-04-01

    The heat capacity of 1D chains of nitrogen and methane molecules (adsorbed in the outer grooves of bundles of closed-cap single-walled carbon nanotubes) has been studied in the temperature ranges 2-40 and 2-60 K, respectively. The temperature dependence of the heat capacity of 1D chains of nitrogen molecules below 3 K is close to a linear. It was found that the rotational heat capacity of methane molecules is a significant part of the total heat capacity of the chains throughout the whole investigated temperature range, whereas in the case of nitrogen, the librations are significant only above 15 K. The dependence of the heat capacity for methane below 10 K indicates the presence of a Schottky anomaly caused by the tunneling between the lowest energy levels of the CH4 molecule rotational spectra. Characteristic features observed in the temperature dependence of the heat capacity of 1D methane crystals are also discussed.

  2. Nonlinear electrical conductivity in a 1D granular medium

    NASA Astrophysics Data System (ADS)

    Falcon, E.; Castaing, B.; Creyssels, M.

    2004-04-01

    We report on observations of the electrical transport within a chain of metallic beads (slightly oxidized) under an applied stress. A transition from an insulating to a conductive state is observed as the applied current is increased. The voltage-current ( U- I) characteristics are nonlinear and hysteretic, and saturate to a low voltage per contact (0.4 V). Our 1D experiment allows us to understand phenomena (such as the “Branly effect”) related to this conduction transition by focusing on the nature of the contacts instead of the structure of the granular network. We show that this transition comes from an electro-thermal coupling in the vicinity of the microcontacts between each bead - the current flowing through these contact points generates their local heating which leads to an increase of their contact areas, and thus enhances their conduction. This current-induced temperature rise (up to 1050 ^{circ}C) results in the microsoldering of the contact points (even for voltages as low as 0.4 V). Based on this self-regulated temperature mechanism, an analytical expression for the nonlinear U- I back trajectory is derived, and is found to be in very good agreement with the experiments. In addition, we can determine the microcontact temperature with no adjustable parameters. Finally, the stress dependence of the resistance is found to be strongly non-hertzian due to the presence of the surface films. This dependence cannot be usually distinguished from the one due to the disorder of the granular contact network in 2D or 3D experiments.

  3. Heat conduction in conducting polyaniline nanofibers

    NASA Astrophysics Data System (ADS)

    Nath, Chandrani; Kumar, A.; Syu, K.-Z.; Kuo, Y.-K.

    2013-09-01

    Thermal conductivity and specific heat of conducting polyaniline nanofibers are measured to identify the nature of heat carrying modes combined with their inhomogeneous structure. The low temperature thermal conductivity results reveal crystalline nature while the high temperature data confirm the amorphous nature of the material suggesting heterogeneous model for conducting polyaniline. Extended acoustic phonons dominate the low temperature (<100 K) heat conduction, while localized optical phonons hopping, assisted by the extended acoustic modes, account for the high temperature (>100 K) heat conduction.

  4. Conducting the Heat

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Heat conduction plays an important role in the efficiency and life span of electronic components. To keep electronic components running efficiently and at a proper temperature, thermal management systems transfer heat generated from the components to thermal surfaces such as heat sinks, heat pipes, radiators, or heat spreaders. Thermal surfaces absorb the heat from the electrical components and dissipate it into the environment, preventing overheating. To ensure the best contact between electrical components and thermal surfaces, thermal interface materials are applied. In addition to having high conductivity, ideal thermal interface materials should be compliant to conform to the components, increasing the surface contact. While many different types of interface materials exist for varying purposes, Energy Science Laboratories, Inc. (ESLI), of San Diego, California, proposed using carbon velvets as thermal interface materials for general aerospace and electronics applications. NASA s Johnson Space Center granted ESLI a Small Business Innovation Research (SBIR) contract to develop thermal interface materials that are lightweight and compliant, and demonstrate high thermal conductance even for nonflat surfaces. Through Phase II SBIR work, ESLI created Vel-Therm for the commercial market. Vel-Therm is a soft, carbon fiber velvet consisting of numerous high thermal conductivity carbon fibers anchored in a thin layer of adhesive. The velvets are fabricated by precision cutting continuous carbon fiber tows and electrostatically flocking the fibers into uncured adhesive, using proprietary techniques.

  5. Conduction heat transfer solutions

    SciTech Connect

    VanSant, J.H.

    1983-08-01

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs.

  6. Conduction heat transfer solutions

    SciTech Connect

    VanSant, James H.

    1980-03-01

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross-referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions. Problem solutions are given in the form of equations, graphs, and tables of data, all of which are also identified by problem case numbers and source references.

  7. Inverse heat conduction problems

    NASA Astrophysics Data System (ADS)

    Orlande, Helcio Rangel Barreto

    We present the solution of the following inverse problems: (1) Inverse Problem of Estimating Interface Conductance Between Periodically Contacting Surfaces; (2) Inverse Problem of Estimating Interface Conductance During Solidification via Conjugate Gradient Method; (3) Determination of the Reaction Function in a Reaction-Diffusion Parabolic Problem; and (4) Simultaneous Estimation of Thermal Diffusivity and Relaxation Time with Hyperbolic Heat Conduction Model. Also, we present the solution of a direct problem entitled: Transient Thermal Constriction Resistance in a Finite Heat Flux Tube. The Conjugate Gradient Method with Adjoint Equation was used in chapters 1-3. The more general function estimation approach was treated in these chapters. In chapter 1, we solve the inverse problem of estimating the timewise variation of the interface conductance between periodically contacting solids, under quasi-steady-state conditions. The present method is found to be more accurate than the B-Spline approach for situations involving small periods, which are the most difficult on which to perform the inverse analysis. In chapter 2, we estimate the timewise variation of the interface conductance between casting and mold during the solidification of aluminum. The experimental apparatus used in this study is described. In chapter 3, we present the estimation of the reaction function in a one dimensional parabolic problem. A comparison of the present function estimation approach with the parameter estimation technique, wing B-Splines to approximate the reaction function, revealed that the use of function estimation reduces the computer time requirements. In chapter 4 we present a finite difference solution for the transient constriction resistance in a cylinder of finite length with a circular contact surface. A numerical grid generation scheme was used to concentrate grid points in the regions of high temperature gradients in order to reduce discretization errors. In chapter 6, we

  8. Variable conductance heat pipe technology

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Edwards, D. K.; Anderson, W. T.

    1973-01-01

    Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.

  9. Rearrangement of 1D Conducting Nanomaterials towards Highly Electrically Conducting Nanocomposite Fibres for Electronic Textiles

    NASA Astrophysics Data System (ADS)

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-03-01

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 105 S m-1) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors.

  10. Rearrangement of 1D conducting nanomaterials towards highly electrically conducting nanocomposite fibres for electronic textiles.

    PubMed

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-03-20

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 10(5) S m(-1)) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors.

  11. Rearrangement of 1D Conducting Nanomaterials towards Highly Electrically Conducting Nanocomposite Fibres for Electronic Textiles

    PubMed Central

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-01-01

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 105 S m−1) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors. PMID:25792333

  12. Heat conduction in three dimensions

    NASA Technical Reports Server (NTRS)

    Danza, T. M.; Fesler, L. W.; Mongan, R. D.

    1980-01-01

    Multidimensional heat conduction program computes transient temperature history and steady state temperatures of complex body geometries in three dimensions. Emphasis is placed on type of problems associated with Space Shuttle thermal protection system, but program could be used in thermal analysis of most three dimensional systems.

  13. Localized self-heating in large arrays of 1D nanostructures.

    PubMed

    Monereo, O; Illera, S; Varea, A; Schmidt, M; Sauerwald, T; Schütze, A; Cirera, A; Prades, J D

    2016-03-07

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called "hot-spots". On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.

  14. Realizing 1-D conducting channel between oppositely gated regions in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Lee, Janghee; Watanabe, Kenji; Taniguchi, Takashi; Lee, Hu-Jong

    The band gap of bilayer graphene (BLG) can be tuned by applying an external electric field perpendicular to the plane of a BLG sheet. If direction of the electric fields in two adjacent regions in BLG are opposite, one-dimensional (1-D) conducting channel emerges at the boundary between two regions with chiral nature. In this presentation, we introduce a method for fabricating two pairs of split-gates attached to BLG, which is sandwiched between two atomically clean hexagonal boron nitride (h-BN) single crystals and thus allows ballistic transport of carriers at least within the device size. Current-voltage characteristics show a large transport gap, which is comparable to the results obtained from optical measurements and numerical calculations. Opening the band gap in two adjacent regions of the BLG flake by oppositely gated electric fields, we observed metallic behavior in transport characteristics along the boundary between the two regions although the resistance of two gapped regions are a few hundreds of k Ω. These results indicate that a 1-D conducting channel formed between the two regions where the induced band gaps were inverted to each other. The formation of this 1-D conducting channel mimics the topological edge conducting channels emerging at the boundary of a two-dimensional topological insulator and may be utilized for applying BLG to valleytronics

  15. Variable-Conductance Heat Pipes

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.

    1986-01-01

    In response to need to accurately and efficiently predict performance of variable-conductance heat pipes (VCHP's) incorporated in spacecraft thermalcontrol systems, computer code VCHPDA developed to interact with thermal analyzer programs such as SINDA (Systems Improved Numerical Differencing Analyzer). Calculates length of gas-blocked region and vapor temperature in active portion. Advantages of VCHPDA over prior programs improved accuracy, unconditional stability, and increased efficiency of solution resulting from novel approach and use of state-of-the-art numerical techniques for solving VCHP mathematical model. Code valuable tool in design and evaluation of advanced thermal-control systems using variable-conductance heat pipes. Written in FORTRAN IV for use on CDC 600 computers.

  16. Localized self-heating in large arrays of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Monereo, O.; Illera, S.; Varea, A.; Schmidt, M.; Sauerwald, T.; Schütze, A.; Cirera, A.; Prades, J. D.

    2016-02-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called ``hot-spots''. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal

  17. Johnson-Nyquist Noise Coupling Formulation of Near-Field Heat Transfer for 1D Conductors

    NASA Astrophysics Data System (ADS)

    Prunnila, Mika; Laakso, Sampo; Gunnarsson, David

    Near-field heat transfer has been formulated using different levels of theoretical sophistication and complexity ranging from fluctuational electrodynamics to quasi-static Coulomb interaction description. Our goal is to find a simple description for the near-field heat transfer between coupled 1D electron systems (conductors). We will show that by considering distributed Johnson-Nyquist voltage sources, arising from the dissipative part of the electron systems' response, a compact fundamental formula for the near-field heat transfer can be found. We will describe the details of the derivation and discuss the regime of validity of our approach. Several special cases will be considered and experimental configurations will be discussed. The presented analysis is especially suitable for closely spaced graphene ribbons and nanowires. We will also show that by including inductive responses, which are necessary at high frequencies, speed of light emerges in the heat flow formula, thereby showing the link between fundamental physical quantities/constants and near-field heat transfer in coupled 1D systems. Our formulation also provides the possibility to use different boundary conditions for the physical system and this enables design of near-field heat transfer circuits.

  18. 1-D Heat Transfer in Multilayer Materials Using a Finite Volume Approach

    DTIC Science & Technology

    2014-01-01

    AEROSPACE REPORT NO. TR-2014-01128 1-D Heat Transfer in Multilayer Materials Using a Finite Volume Approach January 1, 2014 Marcus A...unlimited. The cost to prepare this document: $395 This report was submitted by The Aerospace Corporation, El Segundo...project officer for the Development Planning (XR) program. This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the

  19. A 1-D radiative conductive model to study the SOIR/VEx thermal profiles

    NASA Astrophysics Data System (ADS)

    Mahieux, Arnaud; Erwin, Justin T.; Chamberlain, Sarah; Robert, Séverine; Carine Vandaele, Ann; Wilquet, Valérie; Thomas, Ian; Yelle, Roger V.; Bertaux, Jean-Loup

    2015-04-01

    SOIR is an infrared spectrometer on board Venus Express that probes the Venus terminator region since 2006. The measurements are taken on the morning and evening sides of the terminator, covering all latitudes from the North Pole to the South Pole. Its wavelength range - 2.2 to 4.3 μm - allows a detailed chemical inventory of the Venus atmosphere [1-5], such as CO2, CO, H2O, HCl, HF, SO2 and aerosols. CO2 is detected from 70 km up to 165 km, CO from 70 km to 140 km, and the minor species typically below 110 km down to 70 km. Number density profiles of these species are computed from the measured spectra. Temperature profiles are obtained while computing the spectral inversion of the CO2 spectra combined with the hydrostatic law [6]. These temperature measurements show a striking permanent temperature minimum (at 125 km) and a weaker temperature maximum (over 100-115 km). The time variability of the CO2 density profiles spans over two orders of magnitude, and a clear trend is seen with latitude. The temperature variations are also important, of the order of 35 K for a given pressure level, but the latitude variation are small. Miss-RT, a 1D radiative transfer model has been developed to reproduce the SOIR terminator profiles, derived from the Mars thermosphere code presented in [7]. This model has been expanded to better account for the CO2, CO, and O non-LTE radiative heating and cooling processes which have to be considered in the dense atmosphere of Venus. Radiative cooling by minor species detected by SOIR (e.g. HCl, SO2, and H2O) are found to be small in comparison to the 15 μm CO2 cooling. Aerosol cooling in the 60-90km altitude range may be important to the thermal balance. There is a good agreement between the 1D model temperature profile and the mean SOIR temperature profile. Further we can suggest parameters that can be adjusted to improve the agreement between the model and measurements. The remaining differences can be attributed to the atmosphere

  20. Modeling Classical Heat Conduction in FLAG

    SciTech Connect

    Ramsey, Scott D.; Hendon, Raymond Cori

    2015-01-12

    The Los Alamos National Laboratory FLAG code contains both electron and ion heat conduction modules; these have been constructed to be directly relevant to user application problems. However, formal code verification of these modules requires quantitative comparison to exact solutions of the underlying mathematical models. A wide variety of exact solutions to the classical heat conduction equation are available for this purpose. This report summarizes efforts involving the representation of the classical heat conduction equation as following from the large electron-ion coupling limit of the electron and ion 3T temperature equations, subject to electron and ion conduction processes. In FLAG, this limiting behavior is quantitatively verified using a simple exact solution of the classical heat conduction equation. For this test problem, both heat conduction modules produce nearly identical spatial electron and ion temperature profiles that converge at slightly less than 2nd order to the corresponding exact solution.

  1. Heat conduction fronts in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Soker, Noam

    1994-01-01

    We present arguments which suggest that many of the x-ray, some optical, and some UV observations of planetary nebulae, can be explained by the presence of heat conduction fronts. The heat flows from the hot bubble formed by the shocked fast wind to the cool shell and halo. Heat conduction fronts are likely to account for emission of x rays from plasma at lower temperature than the expected temperature of the hot bubble. In the presence of magnetic fields, only a small fraction of the fast wind luminosity emerges as radiation. Heat conduction fronts can naturally produce some unusual line flux ratios, which are observed in some planetary nebulae. Heat conduction fronts may heat the halo and cause some material at the inner surface of the shell to expand slower than the rest of the shell. In the presence of an asymmetrical magnetic field, this flow, the x-ray intensity, and the emission lines, may acquire asymmetrical structure as well.

  2. Cryogenic regenerator including sarancarbon heat conduction matrix

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)

    1989-01-01

    A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.

  3. Information filtering via biased heat conduction.

    PubMed

    Liu, Jian-Guo; Zhou, Tao; Guo, Qiang

    2011-09-01

    The process of heat conduction has recently found application in personalized recommendation [Zhou et al., Proc. Natl. Acad. Sci. USA 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.

  4. Information filtering via biased heat conduction

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Zhou, Tao; Guo, Qiang

    2011-09-01

    The process of heat conduction has recently found application in personalized recommendation [Zhou , Proc. Natl. Acad. Sci. USA PNASA60027-842410.1073/pnas.1000488107107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.

  5. Asymmetric Heat Conduction in Nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Hu, Bambi

    2008-12-01

    Heat conduction is an old yet important problem. Since Fourier introduced the law bearing his name two hundred years ago, a first-principle derivation of this law from statistical mechanics is still lacking. Worse still, the validity of this law in low dimensions, and the necessary and sufficient conditions for its validity are still far from clear. In this talk I'll give a review of recent works done on this subject. I'll also report our latest work on asymmetric heat conduction in nonlinear systems. The study of heat condution is not only of theoretical interest but also of practical interest. The study of electric conduction has led to the invention of such important electric devices such as electric diodes and transistors. The study of heat conduction may also lead to the invention of thermal diodes and transistors in the future. Note from Publisher: This article contains the abstract only.

  6. Heat conduction controlled combustion for scramjet applications

    NASA Technical Reports Server (NTRS)

    Ferri, A.; Agnone, A. M.

    1974-01-01

    The use of heat conduction flame generated in a premixed supersonic stream is discussed. It is shown that the flame is controlled initially by heat conduction and then by chemical reaction. Such a flame is shorter than the diffusion type of flame and therefore it requires a much shorter burner. The mixing is obtained by injecting the hydrogen in the inlet. Then the inlet can be cooled by film cooling.

  7. Specific heat and thermal conductivity of nanomaterials

    NASA Astrophysics Data System (ADS)

    Bhatt, Sandhya; Kumar, Raghuvesh; Kumar, Munish

    2017-01-01

    A model is proposed to study the size and shape effects on specific heat and thermal conductivity of nanomaterials. The formulation developed for specific heat is based on the basic concept of cohesive energy and melting temperature. The specific heat of Ag and Au nanoparticles is reported and the effect of size and shape has been studied. We observed that specific heat increases with the reduction of particle size having maximum shape effect for spherical nanoparticle. To provide a more critical test, we extended our model to study the thermal conductivity and used it for the study of Si, diamond, Cu, Ni, Ar, ZrO2, BaTiO3 and SrTiO3 nanomaterials. A significant reduction is found in the thermal conductivity for nanomaterials by decreasing the size. The model predictions are consistent with the available experimental and simulation results. This demonstrates the suitability of the model proposed in this paper.

  8. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    SciTech Connect

    Zylstra, A; Barnard, J J; More, R M

    2010-03-19

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of state (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 to 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  9. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    SciTech Connect

    Zylstra, A. B.; Barnard, J. J.; More, R. M.

    2009-12-23

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  10. 3D imaging of soil apparent electrical conductivity from VERIS data using a 1D spatially constrained inversion algorithm

    NASA Astrophysics Data System (ADS)

    Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando

    2016-04-01

    Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.

  11. Study of proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature.

    PubMed

    Sanda, Suresh; Biswas, Soumava; Konar, Sanjit

    2015-02-16

    We report the proton conduction properties of a 2D flexible MOF and a 1D coordination polymer having the molecular formulas {[Zn(C10H2O8)0.5(C10S2N2H8)]·5H2O]}n (1) and {[Zn(C10H2O8)0.5(C10S2N2H8)]·2H2O]}n (2), respectively. Compounds 1 and 2 show high conductivity values of 2.55 × 10(-7) and 4.39 × 10(-4) S cm(-1) at 80 °C and 95% RH. The conductivity value of compound 1 is in the range of those for previously reported flexible MOFs, and compound 2 shows the highest proton conductivity among the carboxylate-based 1D CPs. The dimensionality and the internal hydrogen bonding connectivity play a vital role in the resultant conductivity. Variable-temperature experiments of both compounds at high humidity reveal that the conductivity values increase with increasing temperature, whereas the variable humidity studies signify the influence of relative humidity on high-temperature proton conductivity. The time-dependent measurements for both compounds demonstrate their ability to retain conductivity up to 10 h.

  12. Uncertainty in 1D heat-flow analysis to estimate groundwater discharge to a stream.

    PubMed

    Ferguson, Grant; Bense, Victor

    2011-01-01

    Temperature measurements have been used by a variety of researchers to gain insight into groundwater discharge patterns. However, much of this research has reduced the problem to heat and fluid flow in one dimension for ease of analysis. This approach is seemingly at odds with the goal of determining spatial variability in specific discharge, which implies that the temperature field will vary in more than one dimension. However, it is unclear how important the resulting discrepancies are in the context of determining groundwater discharge to surface water bodies. In this study, the importance of these variations is examined by testing two popular one-dimensional analytical solutions with stochastic models of heat and fluid flow in a two-dimensional porous medium. For cases with low degrees of heterogeneity in hydraulic conductivity, acceptable results are possible for specific discharges between 10(-7) and 10(-5) m/s. However, conduction into areas with specific discharges less than 10(-7) m/s from adjacent areas can lead to significant errors. In some of these cases, the one-dimensional solutions produced estimates of specific discharge of nearly 10(-6) m/s. This phenomenon is more likely in situations with greater degrees of heterogeneity.

  13. Strong correlation in 1D oxygen-ion conduction of apatite-type lanthanum silicate

    NASA Astrophysics Data System (ADS)

    Imaizumi, Kouta; Toyoura, Kazuaki; Nakamura, Atsutomo; Matsunaga, Katsuyuki

    2015-09-01

    Oxygen-ion conduction in apatite-type lanthanum silicate, La9.33+0.67x (SiO4)6O2+x (x = 1), has theoretically been analyzed in a first-principles manner followed by the nudged elastic band method and the kinetic Monte Carlo method. Unlike the conventional cooperative interstitialcy mechanism along the single O4 columns, diffusing interstitial oxygen ions are frequently blocked by adjacent interstitial oxygen ions (Oint ions), leading to the strongly-correlated diffusivity and conductivity of oxygen ions in the case of chemical compositions with large x values. The getting-out mechanism from the O4 column is of importance in the long-range conduction, which temporarily transfers a part of Oint ions out of the columns to relax the blocking effect. The getting-out mechanism plays a key role also in the conduction perpendicular to the c axis (in the ab plane).

  14. Measurement of heat conduction through stacked screens.

    PubMed

    Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  15. Measurement of heat conduction through stacked screens

    NASA Technical Reports Server (NTRS)

    Lewis, M. A.; Kuriyama, T.; Kuriyama, F.; Radebaugh, R.

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  16. Density of states and extent of wave function: two crucial factors for small polaron hopping conductivity in 1D

    NASA Astrophysics Data System (ADS)

    Dimakogianni, M.; Simserides, C.; Triberis, G. P.

    2013-07-01

    We introduce a theoretical model to scrutinize the conductivity of small polarons in 1D disordered systems, focusing on two crucial - as will be demonstrated - factors: the density of states and the spatial extent of the electronic wave function. The investigation is performed for any temperature up to 300 K and under electric field of arbitrary strength up to the polaron dissociation limit. To accomplish this task, we combine analytical work with numerical calculations.

  17. Nonstationary Heat Conduction in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Singh, Amit K.

    Understanding heat at the atomistic level is an interesting exercises. It is fascinating to note how the vibration of atoms result into thermodynamic concept of heat. This thesis aims to bring insights into different constitutive laws of heat conduction. We also develop a framework in which the interaction of thermostats to the system can be studied and a well known Kapitza effect can be reduced. The thesis also explores stochastic and continuum methods to model the latent heat release in the first order transition of ideal silicon surfaces into dimers. We divide the thesis into three works which are connected to each other: 1. Fourier's law leads to a diffusive model of heat transfer in which a thermal signal propagates infinitely fast and the only material parameter is the thermal conductivity. In micro- and nano-scale systems, non-Fourier effects involving coupled diffusion and wavelike propagation of heat can become important. An extension of Fourier's law to account for such effects leads to a Jeffreys-type model for heat transfer with two relaxation times. In this thesis, we first propose a new Thermal Parameter Identification (TPI) method for obtaining the Jeffreys-type thermal parameters from molecular dynamics simulations. The TPI method makes use of a nonlinear regression-based approach for obtaining the coefficients in analytical expressions for cosine and sine-weighted averages of temperature and heat flux over the length of the system. The method is applied to argon nanobeams over a range of temperature and system sizes. The results for thermal conductivity are found to be in good agreement with standard Green-Kubo and direct method calculations. The TPI method is more efficient for systems with high diffusivity and has the advantage, that unlike the direct method, it is free from the influence of thermostats. In addition, the method provides the thermal relaxation times for argon. Using the determined parameters, the Jeffreys-type model is able to

  18. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  19. XCHEM-1D: A Heat Transfer/Chemical Kinetics Computer Program for multilayered reactive materials

    SciTech Connect

    Gross, R.J.; Baer, M.R.; Hobbs, M.L.

    1993-10-01

    An eXplosive CHEMical kinetics code, XCHEM, has been developed to solve the reactive diffusion equations associated with thermal ignition of energetic materials. This method-of-lines code uses stiff numerical methods and adaptive meshing to resolve relevant combustion physics. Solution accuracy is maintained between multilayered materials consisting of blends of reactive components and/or inert materials. Phase change and variable properties are included in one-dimensional slab, cylindrical and spherical geometries. Temperature-dependent thermal properties have been incorporated and the modification of thermal conductivities to include decomposition effects are estimated using solid/gas volume fractions determined by species fractions. Gas transport properties, including high pressure corrections, have also been included. Time varying temperature, heat flux, convective and thermal radiation boundary conditions, and layer to layer contact resistances have also been implemented.

  20. Large variable conductance heat pipe. Transverse header

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    The characteristics of gas-loaded, variable conductance heat pipes (VCHP) are discussed. The difficulties involved in developing a large VCHP header are analyzed. The construction of the large capacity VCHP is described. A research project to eliminate some of the problems involved in large capacity VCHP operation is explained.

  1. Effects of anisotropic heat conduction on solidification

    NASA Technical Reports Server (NTRS)

    Weaver, J. A.; Viskanta, R.

    1989-01-01

    Two-dimensional solidification influenced by anisotropic heat conduction has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effects of the Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k(yy)/k(yx). The nonlinearity of the interface is influenced by the solidification rate, aspect ratio, and k(yy/k(yx).

  2. Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons

    SciTech Connect

    Gopar, Víctor A.

    2014-01-14

    Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studied phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.

  3. The strengthening effect of 1D carbon materials on magnetorheological plastomers: mechanical properties and conductivity

    NASA Astrophysics Data System (ADS)

    Xu, Jiaqi; Xuan, Shouhu; Pang, Haoming; Gong, Xinglong

    2017-03-01

    This work reported novel multifunctional carbon filler-doped magnetorheological plastomers (CMRPs) and their magnetic–mechanical–conductive coupling properties. Here, the one-dimensional carbon fillers, such as carbon micro-fibers (CFs), carbon nanotubes (CNTs) and their mixtures (CFs and CNTs) were dispersed into the matrix for the final product. It was found that the CMRPs with 7.5 wt% CFs and 0.5 wt% CNTs had an excellent magnetorheological (MR) effect (2200%) and magnetic field dependent electrical property. Specifically, the resistance was reduced by two orders of magnitude with the magnetic field increasing from 0 to 900 mT. Moreover, the relationship between resistance and strain was also discovered. The resistance increased by three orders of magnitude due to the amplitude of oscillation, which was 10% in the absence of the magnetic field, while the resistance would decrease by three orders of magnitude under a 900 mT magnetic field. The variation range of the resistance increased with the increasing oscillation amplitude, and the period of the resistance was half of the period of the strain. To conclude, the possible mechanism for the multifunctional properties was discussed.

  4. Finite-element technique applied to heat conduction in solids with temperature dependent thermal conductivity

    NASA Technical Reports Server (NTRS)

    Aguirre-Ramirez, G.; Oden, J. T.

    1969-01-01

    Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH

  5. Design of plasmonic near-field transducers in heat-assisted magnetic recording: 1D Fourier approach

    NASA Astrophysics Data System (ADS)

    Gan, C. H.; Fernandez-Garcia, R.; Hardy, M. J.; Neira, A.; Bance, S.; Gubbins, M. A.

    2016-09-01

    Heat-assisted magnetic recording (HAMR) is a potential enabling technology for ultrahigh density data storage systems. In HAMR, a near-field transducer (NFT) delivers a subdiffraction heat spot to record bits of data on a high-anisotropy magnetic media. We developed an intuitive 1D Fourier model that expedites the analysis and design of the NFT. Among other strengths, the simple model predicts rather surprisingly and in agreement with 3D simulations, that for metallic nanoresonators the longitudinal component of the electric field dominates the heat transfer to the media. The proposed Fourier model serves well as a platform to study electromagnetic behavior such as field confinement and heat spot generation of 3D NFT designs.

  6. Microscale Heat Conduction Models and Doppler Feedback

    SciTech Connect

    Hawari, Ayman I.; Ougouag, Abderrafi

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.

  7. Parallelized solvers for heat conduction formulations

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Kwang, Abel

    1991-01-01

    Based on multilevel partitioning, this paper develops a structural parallelizable solution methodology that enables a significant reduction in computational effort and memory requirements for very large scale linear and nonlinear steady and transient thermal (heat conduction) models. Due to the generality of the formulation of the scheme, both finite element and finite difference simulations can be treated. Diverse model topologies can thus be handled, including both simply and multiply connected (branched/perforated) geometries. To verify the methodology, analytical and numerical benchmark trends are verified in both sequential and parallel computer environments.

  8. Information filtering via weighted heat conduction algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Guo, Qiang; Zhang, Yi-Cheng

    2011-06-01

    In this paper, by taking into account effects of the user and object correlations on a heat conduction (HC) algorithm, a weighted heat conduction (WHC) algorithm is presented. We argue that the edge weight of the user-object bipartite network should be embedded into the HC algorithm to measure the object similarity. The numerical results indicate that both the accuracy and diversity could be improved greatly compared with the standard HC algorithm and the optimal values reached simultaneously. On the Movielens and Netflix datasets, the algorithmic accuracy, measured by the average ranking score, can be improved by 39.7% and 56.1% in the optimal case, respectively, and the diversity could reach 0.9587 and 0.9317 when the recommendation list equals to 5. Further statistical analysis indicates that, in the optimal case, the distributions of the edge weight are changed to the Poisson form, which may be the reason why HC algorithm performance could be improved. This work highlights the effect of edge weight on a personalized recommendation study, which maybe an important factor affecting personalized recommendation performance.

  9. Flow Structure Determined Enhancing and Inhibiting Convective Heat Transfers in Quasi 1D Magnetic Fluid

    NASA Astrophysics Data System (ADS)

    Luo, Weili; Huang, Jun; Liu, Tianshu

    2016-11-01

    We have found previously that the convective flow in magnetic fluid responds to applied magnetic fields differently, depending on the relative direction of the gradient of temperature to that of the field. In this work we report the velocity profiles from these flows obtained from optical flow method. The peculiar magnetic driving force as well as the special configurations give rise to unique flow patterns, distinctly depends on the specific relative orientation of the temperature to that of field. The streamline plots indicate formation of local or global flow structures that explain the different effects of field on the heat transfer in the sample. For one configuration, the magneto-thermo convection causing the "heat" to be localized, stopping the equilibration process in the system. We will discuss the different responses to the applied magnetic fields for two different sample configurations in terms of relative orientation of the temperature and field gradients.

  10. Stochastic Heat Equation Limit of a (2 + 1)d Growth Model

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Corwin, Ivan; Toninelli, Fabio Lucio

    2017-03-01

    We determine a {q to 1} limit of the two-dimensional q-Whittaker driven particle system on the torus studied previously in Corwin and Toninelli (Electron. Commun. Probab. 21(44):1-12, 2016). This has an interpretation as a (2 + 1)-dimensional stochastic interface growth model, which is believed to belong to the so-called anisotropic Kardar-Parisi-Zhang (KPZ) class. This limit falls into a general class of two-dimensional systems of driven linear SDEs which have stationary measures on gradients. Taking the number of particles to infinity we demonstrate Gaussian free field type fluctuations for the stationary measure. Considering the temporal evolution of the stationary measure, we determine that along characteristics, correlations are asymptotically given by those of the (2 + 1)-dimensional additive stochastic heat equation. This confirms (for this model) the prediction that the non-linearity for the anisotropic KPZ equation in (2 + 1)-dimension is irrelevant.

  11. Compact laser through improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1975-01-01

    A 16-joule-pulse laser has been developed in which a boron nitride heat-conductor enclosure is used to remove heat from the elements. Enclosure is smaller and lighter than systems in which cooling fluids are used.

  12. Radiative heating of interstellar grains falling toward the solar nebula: 1-D diffusion calculations.

    PubMed

    Simonelli, D P; Pollack, J B; McKay, C P

    1997-02-01

    As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in

  13. LPMLE3: A novel 1-D approach to study water flow in streambeds using heat as a tracer

    NASA Astrophysics Data System (ADS)

    Schneidewind, U.; van Berkel, M.; Anibas, C.; Vandersteen, G.; Schmidt, C.; Joris, I.; Seuntjens, P.; Batelaan, O.; Zwart, H. J.

    2016-08-01

    We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it does not assume a semi-infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature-time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature-time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum-likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1-D methods.

  14. Extended Development of Variable Conductance Heat Pipes

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Edwards, D. K.; Luedke, E. E.

    1978-01-01

    A high-capacity vapor-modulated heat pipe was designed and tested. In 1977, a program was undertaken to use the aforementioned heat pipe to study protection from freezing-point failure, increase control sensitivity, and transient behavior under a wide range of operating conditions in order to determine the full performance potential of the heat pipe. A new concept, based on the vapor-induced-dry-out principle, was developed for passive feedback temperature control as a heat pipe diode. This report documents this work and describes: (1) the experimental and theoretical investigation of the performance of the vapor-modulated heat pipe; and (2) the design, fabrication and test of the heat pipe diode.

  15. Some observations on the historical development of conduction heat transfer

    NASA Astrophysics Data System (ADS)

    Cheng, Kwo Chang

    An attempt is made to obtain historical perspectives on the development of the mathematical theory of heat conduction considering Newton's law of cooling (1701) and its close connection with Fourier's work from 1807 to 1822 resulting in his epoch-making treatise on "The Analytical Theory of Heat". Fourier was the principal architect of the heat conduction theory. Fourier's work established a new methodology for the formulation and solution of physical problems, based on partial differential equations and marked a major turning point in the history of physics. The developments in the periods 1822 to 1900 and 1900 to 1950 are also briefly reviewed as are the classical (analytical) and numerical methods of solution for heat conduction problems. The analogy in heat, momentum, and mass transfer for transport phenomena is discussed. A list of recent conduction heat transfer books is presented to show the scope of recent developments. Some observations on conduction heat transfer are noted.

  16. Communications technology satellite - A variable conductance heat pipe application

    NASA Technical Reports Server (NTRS)

    Mock, P. R.; Marcus, B. D.; Edelman, E. A.

    1974-01-01

    A variable-conductance heat pipe system (VCHPS) has been designed to provide thermal control for a transmitter experiment package (TEP) to be flown on the Communications Technology Satellite. The VCHPS provides for heat rejection during TEP operation and minimizes the heat leak during power down operations. The VCHPS described features a unique method of aiding priming of arterial heat pipes and a novel approach to balancing heat pipe loads by staggering their control ranges.

  17. Meshless method for solving coupled radiative and conductive heat transfer in refractive index medium

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-An; Sadat, Hamou; Tan, Jian-Yu

    2016-01-01

    A diffuse approximation meshless method (DAM) is employed as a means of solving the coupled radiative and conductive heat transfer problems in semi-transparent refractive index media contained in 1D and 2D geometries. The meshless approach for radiative transfer is based on the discrete ordinates equation. Cases of combined conduction- radiation are presented, including plane parallel slab, square enclosure, and semicircular enclosure with an inner circle. The influence of the refractive index on the temperature distributions and heat fluxes is investigated. Results obtained using the proposed meshless method are compared with those reported in the literature to demonstrate the flexibility and accuracy of the method.

  18. Superfluid heat conduction and the cooling of magnetized neutron stars

    SciTech Connect

    Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi; Aguilera, Deborah N

    2008-01-01

    We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superftuid neutron matter, called superfiuid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field B {approx}> 10{sup 13} C. At density p {approx_equal} 10{sup 12}--10{sup 14} g/cm{sup 3} the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity at when temperature {approx_equal} 10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction show observationally discernible differences.

  19. Theory and design of variable conductance heat pipes

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.

    1972-01-01

    A comprehensive review and analysis of all aspects of heat pipe technology pertinent to the design of self-controlled, variable conductance devices for spacecraft thermal control is presented. Subjects considered include hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, materials compatibility and variable conductance control techniques. The report includes a selected bibliography of pertinent literature, analytical formulations of various models and theories describing variable conductance heat pipe behavior, and the results of numerous experiments on the steady state and transient performance of gas controlled variable conductance heat pipes. Also included is a discussion of VCHP design techniques.

  20. Finite Volume Algorithms for Heat Conduction

    DTIC Science & Technology

    2010-05-01

    2010. TABLE OF CONTENTS Section Page 1.0 INTRODUCTION ...4 1.0 INTRODUCTION The transfer of heat has been of great interest within the engineering and scientific communities for...31 REFERENCES 1. Shames, Irving, Introduction to Solid Mechanics, Prentice Hall, Englewood Cliffs, N.J., 1975, pp.69-71

  1. Anisotropy of heat conduction in Mo/Si multilayers

    SciTech Connect

    Medvedev, V. V.; Yakshin, A. E.; Kruijs, R. W. E. van de; Bijkerk, F.; Yang, J.; Schmidt, A. J.; Zoethout, E.

    2015-08-28

    This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.

  2. Heat conduction errors and time lag in cryogenic thermometer installations

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1973-01-01

    Installation practices are recommended that will increase rate of heat exchange between the thermometric sensing element and the cryogenic fluid and that will reduce the rate of undesired heat transfer to higher-temperature objects. Formulas and numerical data are given that help to estimate the magnitude of heat-conduction errors and of time lag in response.

  3. Efficient Reformulation of HOTFGM: Heat Conduction with Variable Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Zhong, Yi; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)

    2002-01-01

    Functionally graded materials (FGMs) have become one of the major research topics in the mechanics of materials community during the past fifteen years. FGMs are heterogeneous materials, characterized by spatially variable microstructure, and thus spatially variable macroscopic properties, introduced to enhance material or structural performance. The spatially variable material properties make FGMs challenging to analyze. The review of the various techniques employed to analyze the thermodynamical response of FGMs reveals two distinct and fundamentally different computational strategies, called uncoupled macromechanical and coupled micromechanical approaches by some investigators. The uncoupled macromechanical approaches ignore the effect of microstructural gradation by employing specific spatial variations of material properties, which are either assumed or obtained by local homogenization, thereby resulting in erroneous results under certain circumstances. In contrast, the coupled approaches explicitly account for the micro-macrostructural interaction, albeit at a significantly higher computational cost. The higher-order theory for functionally graded materials (HOTFGM) developed by Aboudi et al. is representative of the coupled approach. However, despite its demonstrated utility in applications where micro-macrostructural coupling effects are important, the theory's full potential is yet to be realized because the original formulation of HOTFGM is computationally intensive. This, in turn, limits the size of problems that can be solved due to the large number of equations required to mimic realistic material microstructures. Therefore, a basis for an efficient reformulation of HOTFGM, referred to as user-friendly formulation, is developed herein, and subsequently employed in the construction of the efficient reformulation using the local/global conductivity matrix approach. In order to extend HOTFGM's range of applicability, spatially variable thermal

  4. Heat Conduction with Freezing or Thawing

    DTIC Science & Technology

    1986-01-01

    with permafrost and seasonally frozen ground, thermal storage systems for solar energy, the freezing of food or biological mater- ial, and the...solar latent heat methods, and preservation of food . 1.1 THE NATURE OF THE THERMODYNAMIC SYSTEM Before any equations or physical laws are discussed...fluids or other solids. An important example Is a soil system consisting of a mineral skeleton whose voids may contain air, water, water A - vapor, ice

  5. Loss-of-Function of hNav1.5 by ZASP1-D117N Associated with Intraventricular Conduction Disturbances in Left Ventricular Noncompaction

    PubMed Central

    Xi, Yutao; Ai, Tomohiko; De Lange, Enno; Li, Zhaohui; Wu, Geru; Brunelli, Luca; Kyle, W. Buck; Turker, Isik; Cheng, Jie; Ackerman, Michael J.; Kimura, Akinori; Weiss, James N.; Qu, Zhilin; Kim, Jeffrey J.; Faulkner, Georgine; Vatta, Matteo

    2013-01-01

    Background Defects of cytoarchitectural proteins can cause left ventricular noncompaction (LVNC), which is often associated with conduction system diseases. We have previously identified a p.D117N mutation in the LDB3-encoding Z-band Alternatively Spliced PDZ motif gene (ZASP) in a patient with LVNC and conduction disturbances. We sought to investigate a role of p.D117N mutation in the LBD3 NM_001080114.1 isoform (ZASP1-D117N) in the regulation of cardiac sodium channel (Nav1.5) that plays an important role in the cardiac conduction system. Methods and Results Effects of ZASP1-wt and ZASP1-D117N on Nav1.5 were studied in HEK-293 cells and neonatal rat cardiomyocytes (NRCMs). Patch-clamp study demonstrated that ZASP1-D117N significantly attenuated INa by 27% in HEK-293 cells and by 32% in NRCMs. In addition, ZASP1-D117N rightward shifted the voltage-dependent activation and inactivation in both systems. In silico simulation using Luo-Rudy phase 1 model demonstrated that altered Nav1.5 function can reduce cardiac conduction velocity by 28% compared to the control. Pull-down assays showed that both wt and ZASP1-D117N can complex with Nav1.5 and telethonin/T-Cap, which required intact PDZ domains. Immunohistochemical staining in NRCMs demonstrates that ZASP1-D117N did not significantly disturb the Z-line structure. Disruption of cytoskeletal networks with ML-7 and cytochalasin D abolished the effects of ZASP1-D117N on the Nav1.5. Conclusions ZASP1 can form protein complex with telethonin/T-Cap and Nav1.5. The LVNC-specific ZASP1 mutation can cause loss-of-function of Nav1.5 without significant alteration of the cytoskeletal protein complex. Our study suggests that electrical remodeling can occur in LVNC subject due to a direct effect of mutant ZASP on Nav1.5. PMID:22929165

  6. Quantum-limited heat conduction over macroscopic distances.

    PubMed

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E; Mäkelä, Miika K; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses1, 2, such as the quantum computer3-6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8-10. However, the short distance between the heat-exchanging bodies in the previous experiments11-14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15-17 which provides a basis for the superconducting quantum computer18-21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26.

  7. Quantum-limited heat conduction over macroscopic distances

    NASA Astrophysics Data System (ADS)

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.

  8. Quantum-limited heat conduction over macroscopic distances

    PubMed Central

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-01-01

    The emerging quantum technological apparatuses1, 2, such as the quantum computer3–6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8–10. However, the short distance between the heat-exchanging bodies in the previous experiments11–14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15–17 which provides a basis for the superconducting quantum computer18–21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26. PMID:27239219

  9. Radiative heat conduction and the magnetorotational instability

    NASA Astrophysics Data System (ADS)

    Araya-Góchez, Rafael A.; Vishniac, Ethan T.

    2004-12-01

    A photon or a neutrino gas, semicontained by a non-diffusive particle species through scattering, comprises a rather peculiar magnetohydrodynamic fluid where the magnetic field is truly frozen only to the comoving volume associated with the mass density. Although radiative diffusion precludes a formal adiabatic treatment of compressive perturbations, we cast the energy equation in quasi-adiabatic form by assuming a negligible rate of energy exchange among species on the time-scale of the perturbation. This leads to a simplified dispersion relation for toroidal, non-axisymmetric magnetorotational modes when the accretion disc has comparable stress contributions from diffusive and non-diffusive components. The properties of the modes of fastest growth are shown to depend strongly on the compressibility of the mode, with a reduction in growth rate consistent with the results of Blaes & Socrates for axisymmetric modes. A clumpy disc structure is anticipated on the basis of the polarization properties of the fastest-growing modes. This analysis is accurate in the near-hole region of locally cooled, hyper-accreting flows if the electron gas becomes moderately degenerate such that non-conductive, thermalizing processes with associated electron-positron release (i.e. neutrino annihilation and neutrino absorption on to nuclei) are effectively blocked by high occupation of the Fermi levels.

  10. Thermal conductivity of backfill materials for inground heat exchangers

    SciTech Connect

    Shadley, J.T.; Den Braven, K.R.

    1995-11-01

    The thermal conductivity of the material immediately surrounding the heat exchangers in a vertical borehole directly affects the performance and costs of a ground-coupled heat pump (GCHP) system by regulating the flow of energy to or from the ground. Many properties of the backfill material such as moisture content, composition, specific heat and density influence the thermal conductivity. The thermal conductivities of a wide variety of pure backfill materials and mixtures were measured. All the materials examined were compared with a standard bentonite backfill. Saturated natural sandy soil was the backfill material with the highest thermal conductivity. One attractive mixture consists of a pure silica sand, acrylic latex, and graphite. This mixture forms a solid backfill around the heat exchanger. Yet, the attractiveness of any backfill material combination remains very location and application dependent, varying with the native soils at the site, and the mode in which the GCHP is to be used.

  11. Kohlrausch Heat Conductivity Apparatus for Intermediate or Advanced Laboratory

    ERIC Educational Resources Information Center

    Jensen, H. G.

    1970-01-01

    Describes student experiment in measuring heat conductivity according to Kohlrausch's method. Theory, apparatus design, and experimental procedure is outlined. Results for copper are consistent to within 2 percent. (LC)

  12. Development of steady-state electrical-heating fluorescence-sensing (SEF) technique for thermal characterization of one dimensional (1D) structures by employing graphene quantum dots (GQDs) as temperature sensors

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Li, Changzheng; Yue, Yanan; Xie, Danmei; Xue, Meixin; Hu, Niansu

    2016-11-01

    A fluorescence signal has been demonstrated as an effective implement for micro/nanoscale temperature measurement which can be realized by either direct fluorescence excitation from materials or by employing nanoparticles as sensors. In this work, a steady-state electrical-heating fluorescence-sensing (SEF) technique is developed for the thermal characterization of one-dimensional (1D) materials. In this method, the sample is suspended between two electrodes and applied with steady-state Joule heating. The temperature response of the sample is monitored by collecting a simultaneous fluorescence signal from the sample itself or nanoparticles uniformly attached on it. According to the 1D heat conduction model, a linear temperature dependence of heating powers is obtained, thus the thermal conductivity of the sample can be readily determined. In this work, a standard platinum wire is selected to measure its thermal conductivity to validate this technique. Graphene quantum dots (GQDs) are employed as the fluorescence agent for temperature sensing. Parallel measurement by using the transient electro-thermal (TET) technique demonstrates that a small dose of GQDs has negligible influence on the intrinsic thermal property of platinum wire. This SEF technique can be applied in two ways: for samples with a fluorescence excitation capability, this method can be implemented directly; for others with weak or no fluorescence excitation, a very small portion of nanoparticles with excellent fluorescence excitation can be used for temperature probing and thermophysical property measurement.

  13. Fourier analysis of conductive heat transfer for glazed roofing materials

    NASA Astrophysics Data System (ADS)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-01

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  14. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  15. Quantal Heating of Conducting Electrons with Discrete Spectrum

    SciTech Connect

    Vitkalov, S. A.; Bykov, A. A.

    2011-12-23

    Usually heating of conducting electrons by dc electric field results in an increase of electron temperature. In this paper we show that the dc heating of 2D electrons, placed in quantized magnetic fields, results in a peculiar electron distribution, which has the same broadening or an effective 'temperature' as the unbiased electron system. The quantal heating, however, violates strongly the Ohm's Law. In the conducting system with discrete electron spectrum the quantal heating results in spectacular decrease of electron resistance and transition of the electrons into a state with zero differential resistance (ZDR). Finally the heating leads to apparent dc driven metal-insulator transition, which correlates with the transition into the ZDR state. The correlation is very unexpected and is not understood.

  16. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    SciTech Connect

    Johnson, Matthew ); Weyant, J.; Garner, S. ); Occhionero, M. )

    2010-01-07

    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.

  17. An Experiment in Heat Conduction Using Hollow Cylinders

    ERIC Educational Resources Information Center

    Ortuno, M.; Marquez, A.; Gallego, S.; Neipp, C.; Belendez, A.

    2011-01-01

    An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is…

  18. Anomalous Heat Conduction in One-Dimensional Quantum Fermi-Pasta-Ulam Lattice: Semiquantal Approach

    NASA Astrophysics Data System (ADS)

    Tao Hu,; Yi Tang,

    2010-06-01

    We investigate the mechanism of heat conduction in one-dimensional (1D) quantum FPU chain with quantum fluctuation in the framework of semiquantal molecular dynamics. In the semiquantal many-body simulations, a Hartree-type many-body wave function is adopted for a whole chain and a single-particle state of a particle is represented by a trial wave function with Jackiw-Kerman (JK) form. With the help of the Dirac’s time-dependent variational principle (TDVP), a set of equations of the variational parameters contained in the JK wave packet is obtained, and it describes the quantum dynamics of the nonlinear lattices approximately. These equations not only prove highly efficient in recovering dynamics of classical heat conduction, but also allow exploring the case with quantum mechanical characteristics. As a consequence, we find the thermal conductivity diverges with system size as well as in the classical version when considering quantum fluctuation. Furthermore, in three different temperature regions it is observed that the enhancement of the quantum fluctuation increases the heat flux through the 1D quantum FPU chain.

  19. Variable Conductance Heat Pipe Performance after Extended Periods of Freezing

    NASA Astrophysics Data System (ADS)

    Ellis, Michael C.; Anderson, William G.

    2009-03-01

    Radiators operating in lunar or Martian environments must be designed to reject the maximum heat load at the maximum sink temperature, while maintaining acceptable temperatures at lower powers or sink temperatures. Variable Conductance Heat Pipe (VCHP) radiators can passively adjust to these changing conditions. Due to the presence of non-condensable gas (NCG) within each VCHP, the active condensing section adjusts with changes in either thermal load or sink temperature. In a Constant Conductance Heat Pipe (CCHP) without NCG, it is possible for all of the water to freeze in the condenser, by either sublimation or vaporization. With a dry evaporator, startup is difficult or impossible. Several previous studies have shown that adding NCG suppresses evaporator dryout when the condenser is frozen. These tests have been for relatively short durations, with relatively short condensers. This paper describes freeze/thaw experiments involving a VCHP with similar dimensions to the current reactor and cavity cooling radiator heat pipe designs.

  20. Phonon Heat Conduction In Nanostructures: Ballistic, Coherent, Localized, Hydrodynamic, and Divergent Modes

    NASA Astrophysics Data System (ADS)

    Chen, Gang

    In this talk, we will discuss different modes of heat conduction in nanostructures. Ballistic transport happens when phonon mean free path is longer than the characteristic size of the structure. We will discuss how we compute phonon mean free path distributions based on first-principles and measure the distributions with optical pump-probe techniques by exploring ballistic phonon transport processes. In superlattice structures, ballistic phonon transport across the whole thickness of the superlattices implies phase coherence. We observed this coherent transport in GaAs/AlAs superlattices with fixed periodic thickness and varying number of periods. Simulations show that although high frequency phonons are scattering by roughness, remaining long wavelength phonons maintain their phase and traverse the superlattices ballistically. Accessing the coherent heat conduction regime opens a new venue for phonon engineering. We show further that phonon heat conduction localization happens in GaAs/AlAs superlattice by placing ErAs nanodots at interfaces. This heat-conduction localization phenomenon is confirmed by nonequilibrium atomic Green's function simulation. These ballistic and localization effects can be exploited to improve thermoelectric energy conversion materials via reducing their thermal conductivity. In another opposite, we will discuss phonon hydrodynamic transport mode in graphene via first-principle simulations. In this mode, phonons drift with an average velocity under a temperature gradient, similar to fluid flow in a pipe. Conditions for observing such phonon hydrodynamic modes will be discussed. Finally, we will talk about the one-dimensional nature of heat conduction in polymer chains. Such 1D nature can lead to divergent thermal conductivity. Inspired by simulation, we have experimentally demonstrated high thermal conductivity in ultra-drawn polyethylene nanofibers and sheets. Work supported by DOE Office of Basic Energy Sciences under Award Number: DE

  1. Inverse heat conduction problem in a phase change memory device

    NASA Astrophysics Data System (ADS)

    Battaglia, Jean-Luc; De, Indrayush; Sousa, Véronique

    2017-01-01

    An invers heat conduction problem is solved considering the thermal investigation of a phase change memory device using the scanning thermal microscopy. The heat transfer model rests on system identification for the probe thermal impedance and on a finite element method for the device thermal impedance. Unknown parameters in the model are then identified using a nonlinear least square algorithm that minimizes the quadratic gap between the measured probe temperature and the simulated one.

  2. Methodology for comparison of inverse heat conduction methods

    NASA Astrophysics Data System (ADS)

    Raynaud, M.; Beck, J. V.

    1988-02-01

    The inverse heat conduction problem involves the calculation of the surface heat flux from transient measured temperatures inside solids. The deviation of the estimated heat flux from the true heat flux due to stabilization procedures is called the deterministic bias. This paper defines two test problems that show the tradeoff between deterministic bias and sensitivity to measurement errors of inverse methods. For a linear problem, with the statistical assumptions of additive and uncorrelated errors having constant variance and zero mean, the second test case gives the standard deviation of the estimated heat flux. A methodology for the quantitative comparison of deterministic bias and standard deviation of inverse methods is proposed. Four numerical inverse methods are compared.

  3. Thermally conductive cementitious grout for geothermal heat pump systems

    DOEpatents

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  4. Heat conduction in one-dimensional aperiodic quantum Ising chains.

    PubMed

    Li, Wenjuan; Tong, Peiqing

    2011-03-01

    The heat conductivity of nonperiodic quantum Ising chains whose ends are connected with heat baths at different temperatures are studied numerically by solving the Lindblad master equation. The chains are subjected to a uniform transverse field h, while the exchange coupling J{m} between the nearest-neighbor spins takes the two values J{A} and J{B} arranged in Fibonacci, generalized Fibonacci, Thue-Morse, and period-doubling sequences. We calculate the energy-density profile and energy current of the resulting nonequilibrium steady states to study the heat-conducting behavior of finite but large systems. Although these nonperiodic quantum Ising chains are integrable, it is clearly found that energy gradients exist in all chains and the energy currents appear to scale as the system size ~N{α}. By increasing the ratio of couplings, the exponent α can be modulated from α > -1 to α < -1 corresponding to the nontrivial transition from the abnormal heat transport to the heat insulator. The influences of the temperature gradient and the magnetic field to heat conduction have also been discussed.

  5. Computer Program For Variable-Conductance Heat Pipes

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.

    1992-01-01

    VCHPDA provides accurate mathematical models of transient as well as steady-state performance of variable-conductance heat pipes over wide range of operating conditions. Applies to heat pipes with either cold, wicked or hot, nonwicked gas reservoirs and uses ideal-gas law and "flat-front" (negligible vapor diffusion) gas theory. Calculates length of gas-blocked region and temperature of vapor in active portion of heat pipe by solving set of nonlinear equations for conservation of energy and mass. Written in FORTRAN 77.

  6. Application of genetic algorithms in nonlinear heat conduction problems.

    PubMed

    Kadri, Muhammad Bilal; Khan, Waqar A

    2014-01-01

    Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry.

  7. Neutrino Heat Conduction and Inhomogeneities in the Early Universe

    NASA Technical Reports Server (NTRS)

    Heckler, A.; Hogan, C. J.

    1993-01-01

    Constraints on parameters of inhomogeneous nucteosynthesis, namely, the overdensity and size of baryon lumps, are found by calculatig the blackbody neutrino heat conduction into the lumps, which tends to inflate them away. The scale size for efficient heat conduction is determined by the mean free path lambda of the neutrino, and so we compute lambda in our case of a high-temperature plasma with low chemical potential, and find a general result that many-body effects are unimportant, simplifying the calculation. We find that in the region of interest for nucleosynthesis, neutrino inflation is important for overdensities greater than 10(exp 4).

  8. Test of the Additivity Principle for Current Fluctuations in a Model of Heat Conduction

    NASA Astrophysics Data System (ADS)

    Hurtado, Pablo I.; Garrido, Pedro L.

    2009-06-01

    The additivity principle allows to compute the current distribution in many one-dimensional (1D) nonequilibrium systems. Using simulations, we confirm this conjecture in the 1D Kipnis-Marchioro-Presutti model of heat conduction for a wide current interval. The current distribution shows both Gaussian and non-Gaussian regimes, and obeys the Gallavotti-Cohen fluctuation theorem. We verify the existence of a well-defined temperature profile associated to a given current fluctuation. This profile is independent of the sign of the current, and this symmetry extends to higher-order profiles and spatial correlations. We also show that finite-time joint fluctuations of the current and the profile are described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  9. Test of the additivity principle for current fluctuations in a model of heat conduction.

    PubMed

    Hurtado, Pablo I; Garrido, Pedro L

    2009-06-26

    The additivity principle allows to compute the current distribution in many one-dimensional (1D) nonequilibrium systems. Using simulations, we confirm this conjecture in the 1D Kipnis-Marchioro-Presutti model of heat conduction for a wide current interval. The current distribution shows both Gaussian and non-Gaussian regimes, and obeys the Gallavotti-Cohen fluctuation theorem. We verify the existence of a well-defined temperature profile associated to a given current fluctuation. This profile is independent of the sign of the current, and this symmetry extends to higher-order profiles and spatial correlations. We also show that finite-time joint fluctuations of the current and the profile are described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  10. Analytical evaluation of thermal conductance and heat capacities of one-dimensional material systems

    SciTech Connect

    Saygi, Salih

    2014-02-15

    We theoretically predict some thermal properties versus temperature dependence of one dimensional (1D) material nanowire systems. A known method is used to provide an efficient and reliable analytical procedure for wide temperature range. Predicted formulas are expressed in terms of Bloch-Grüneisen functions and Debye functions. Computing results has proved that the expressions are in excellent agreement with the results reported in the literature even if it is in very low dimension limits of nanowire systems. Therefore the calculation method is a fully predictive approach to calculate thermal conductivity and heat capacities of nanowire material systems.

  11. Minimizing RF heating of conducting wires in MRI.

    PubMed

    Yeung, Christopher J; Karmarkar, Parag; McVeigh, Elliot R

    2007-11-01

    Performing interventions using long conducting wires in MRI introduces the risk of focal RF heating at the wire tip. Comprehensive EM simulations are combined with carefully measured experimental data to show that method-of-moments EM field modeling coupled with heat transfer modeling can adequately predict RF heating with wires partially inserted into the patient-mimicking phantom. The effects of total wire length, inserted length, wire position in the phantom, phantom position in the scanner, and phantom size are examined. Increasing phantom size can shift a wire's length of maximum tip heating from about a half wave toward a quarter wave. In any event, with wires parallel to the scanner bore, wire tip heating is minimized by keeping the patient and wires as close as possible to the central axis of the scanner bore. At 1.5T, heating is minimized if bare wires are shorter than 0.6 m or between approximately 2.4 m and approximately 3.0 m. Heating is further minimized if wire insertion into phantoms equivalent to most aqueous soft tissues is less than 13 cm or greater than 40 cm (longer for fatty tissues, bone, and lung). The methods demonstrated can be used to estimate the absolute amount of heating in order to set RF power safety thresholds.

  12. Influence of heat bath on the heat conductivity in disordered anharmonic chain

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Yi, L.; Liu, F.; Xu, B.

    2006-11-01

    We study heat conduction in a one-dimensional disordered anharmonic chain with arbitrary heat bath by using extended Ford, Kac and Mazur (FKM) formulation, which satisfy the fluctuation-dissipation theorem. A simple formal expression for the heat conductivity κ is obtained, from which the asymptotic system-size (N) dependence is extracted. It shows κ˜Nα. As a special case we give the expression that κ˜N1/2 for free boundaries, and κ˜ N-1/2 for fixed boundaries, from which we can get the conclusion that the momentum conservation is a key factor of the anomalous heat conduction. Comparing with different ∇T, the heat conductivity shows large difference between the linear system and the nonlinear system.

  13. Non-conductive heat transfer associated with frozen soils

    NASA Astrophysics Data System (ADS)

    Kane, Douglas L.; Hinkel, Kenneth M.; Goering, Douglas J.; Hinzman, Larry D.; Outcalt, Samuel I.

    2001-06-01

    The assertion that pure conductive heat transfer always dominates in cold climates is at odds with decades of research in soil physics which clearly demonstrate that non-conductive heat transfer by water and water vapor are significant, and frequently are for specific periods the dominant modes of heat transfer near the ground surface. The thermal regime at the surface represents the effective boundary condition for deeper thermal regimes. Also, surface soils are going to respond more quickly to any climatic fluctuations; this is important to us because most facets of our lives are tied to earth's surface. To accurately determine the surface thermal regime (for example, the detection of climate change), it is important to consider all potential forms of heat transfer. Gradients that have the potential to alter the thermal regime besides temperature include pore water pressure, gravitational, density, vapor pressure and chemical. The importance of several non-conductive heat transport mechanisms near the ground surface is examined. Infiltration into seasonally frozen soils and freezing (release of latent heat) of water is one mechanism for the acceleration of warming in surficial soils in the spring. Free convection due to buoyancy-induced motion of fluids does not appear to be an important heat-transfer mechanism; estimates of the Rayleigh number (the ratio of buoyancy to viscous forces) are generally around 2, which is too low for effective heat transfer. The Peclet number (ratio of convective to conductive heat transfer) is on the order of 0.25 for snowmelt infiltration and up to 2.5 for rainfall infiltration for porous organic soils. In mineral soils, both vertical and horizontal advection of heat can be neglected (Peclet number is approximately 0.001) except for snowmelt infiltration into open thermal contraction cracks. The migration of water in response to temperature or chemical gradients from unfrozen soil depths to the freezing front, and the

  14. Structure of fast shocks in the presence of heat conduction

    NASA Astrophysics Data System (ADS)

    Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.

    2007-12-01

    There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity Vd in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K0, the ratio of upstream plasma pressure to magnetic pressure β1, Alfvén Mach number MA1, and the angle θ1 between shock normal and magnetic field. It is found that as the upstream shock parameters K0, β1, and MA1 increase or θ1 decreases, the width of foreshock Ld increases. The present results can be applied to fast shocks in the solar corona, solar wind, and magnetosphere, in which the heat conduction effects are important.

  15. Structure of fast shocks in the presence of heat conduction

    SciTech Connect

    Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.

    2007-12-15

    There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity V{sub d} in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K{sub 0}, the ratio of upstream plasma pressure to magnetic pressure {beta}{sub 1}, Alfven Mach number M{sub A1}, and the angle {theta}{sub 1} between shock normal and magnetic field. It is found that as the upstream shock parameters K{sub 0}, {beta}{sub 1}, and M{sub A1} increase or {theta}{sub 1} decreases, the width of foreshock L{sub d} increases. The present results can be applied to fast shocks in the solar corona, solar wind

  16. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    NASA Astrophysics Data System (ADS)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  17. Heat conduction in partial vacuum. Final technical progress report

    SciTech Connect

    Thomas, J R

    1980-09-01

    Methods developed for computing conduction heat losses from evacuated solar collectors are reported. Results of such calculations are given, including the minimum vacuum necessary to effectively eliminate conduction. Experiments performed at Owens-Illinois, Inc. to assess helium penetration rates into evacuated collectors are analyzed, and estimates are given as to the likely penetration rate of atmospheric helium. Conclusions are drawn as to the probable effect of helium penetration on the lifetimes of evacuated solar collectors.

  18. Simultaneous specific heat and thermal conductivity measurement of individual nanostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Jianlin; Wingert, Matthew C.; Moon, Jaeyun; Chen, Renkun

    2016-08-01

    Fundamental phonon transport properties in semiconductor nanostructures are important for their applications in energy conversion and storage, such as thermoelectrics and photovoltaics. Thermal conductivity measurements of semiconductor nanostructures have been extensively pursued and have enhanced our understanding of phonon transport physics. Specific heat of individual nanostructures, despite being an important thermophysical parameter that reflects the thermodynamics of solids, has remained difficult to characterize. Prior measurements were limited to ensembles of nanostructures in which coupling and sample inhomogeneity could play a role. Herein we report the first simultaneous specific heat and thermal conductivity measurements of individual rod-like nanostructures such as nanowires and nanofibers. This technique is demonstrated by measuring the specific heat and thermal conductivity of single ˜600-700 nm diameter Nylon-11 nanofibers (NFs). The results show that the thermal conductivity of the NF is increased by 50% over the bulk value, while the specific heat of the NFs exhibits bulk-like behavior. We find that the thermal diffusivity obtained from the measurement, which is related to the phonon mean free path (MFP), decreases with temperature, indicating that the intrinsic phonon Umklapp scattering plays a role in the NFs. This platform can also be applied to one- and two- dimensional semiconductor nanostructures to probe size effects on the phonon spectra and other transport physics.

  19. Variable conductance heat pipes from the laboratory to space

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. P.

    1973-01-01

    Heat pipes were developed which can be used as (1) a variable conductance link between a heat source and sink which provides temperature stability; (2) a feedback control mechanism that acts to directly maintain the source at a constant temperature; (3) or as a thermal diode that allows heat to be transferred in one direction only. To establish flight level confidence in these basic control techniques, the Ames Heat Pipe Experiment (AHPE) was launched in August 1972 and the Advanced Thermal Control Flight Experiment (ATFE) is scheduled for launch in May 1973. The major efforts of the technology development, initial flight results of the AHPE, and ground test data of the ATFE are discussed.

  20. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  1. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.

    PubMed

    Mortazavi, Bohayra; Pereira, Luiz Felipe C; Jiang, Jin-Wu; Rabczuk, Timon

    2015-08-19

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.

  2. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    PubMed Central

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  3. Heat Conduction Analysis in a Tissue Phantom Calculated by FDTD and HCE Method

    SciTech Connect

    Endoh, Nobuyuki; Tsuchiya, Takenobu; Saito, Yoshikazu; Ishizeki, Takahiro

    2005-03-28

    In order to study hyperthermia in tissue, it is important to predict accurately the heat distribution. This paper describes a preliminary study of the comparison between simulation and experiment for heat conduction in a simple tissue phantom. Since it is well known that the heat increase in tissue depends on the sound intensity and the absorption coefficient, the sound pressure distribution is calculated using a Finite Difference Time Domain (FDTD) method. The thermal diffusion profile in tissue generated by the energy of the sound pulse is also simulated using the Heat Conduction Equation (HCE) method. The calculation area is 100 x 40 [mm]. The simple tissue phantom is made of agar, water and graphite. The phantom whose attenuation coefficient is 1.1 dB/cm/MHz is placed in a temperature controlled water bath. This is kept at 37 deg. [C] while sound pulses of 1 MHz are emitted over 10 minutes. Temperatures at six points on the acoustic axis are measured in the phantom. The calculation and experiment results are compared to confirm the accuracy of the proposed method. As a result, the calculation results show the validity of the combined FDTD-HCE method for thermal conduction analysis.

  4. Validating a 0D predator-prey model for LH Transition with its 1D-2D supersets: effects of heating and fueling on Hysteresis and transition dynamics

    NASA Astrophysics Data System (ADS)

    Malkov, Mikhail; Diamond, Patrick; Miki, Kazuhiro

    2013-10-01

    The LH transition crucially depends on the heat and particle deposition, transport and electric field shear suppression. Despite the inhomogeneity of these phenomena, a popular 0D predator-prey model seems to capture the essential transition dynamics, including the limit cycle pre-H-mode oscillations (or I-mode). However, its predictions regarding hysteresis are inconclusive. This is understandable at least because of the known deep fuel lowering of the transition threshold. The readily available fueling devices are the edge neutral penetration and an internal deposition via the supersonic molecular beam injection (SMBI). This suggests a minimal extension of the 0D model by using bi-modal particle distributions. To formulate this extension accurately, a step-by-step comparison with a 1D treatment is required. Fortunately a suitable 1D numerical model has been recently developed specifically for the LH transition studies. In this work, we use the 1D model for the following purposes. First, we explore fueling effects as occurring both by edge neutral penetration, and internal deposition (SMBI) at a finite depth within the separatrix. Second, as the 0D model responds positively to the oscillating heating power, we include a periodic repetitive SMBI firing. Supported by the US DoE.

  5. Conductive sublayer of turbulent heat transfer for heating of water in a circular tube

    NASA Astrophysics Data System (ADS)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2017-03-01

    The steady-state and transient turbulent heat transfer coefficients in circular platinum (Pt) test tubes (inner diameters: 3 and 6 mm; heated lengths: 66.5 and 100 mm and 69.6 mm, respectively) were systematically measured using an experimental water loop for a wide range of flow velocities, inlet liquid temperatures, Prandtl numbers, inlet pressures, and exponentially increasing heat inputs (Q 0 exp(t/τ), τ: exponential period). The Reynolds-averaged Navier-Stokes equations and the k-ɛ turbulence model for unsteady turbulent heat transfer in circular test sections were numerically solved for heating of water with heated sections of diameter 3 and 6 mm and length 67 and 100 mm and 70 mm, respectively, by using computational fluid dynamics code under the same conditions as those in the experiment and with temperature-dependent thermophysical fluid properties. The thickness of the conductive sublayer, δ CSL,st and δ CSL [=(Δr) out /2], and the nondimensional thickness of the conductive sublayer, (y {/CSL,st +}) TEM [=(f F /2)0.5 ρ l u δ CSL,st /μ l ] and (y {/CSL +}) TEM [=(f F /2)0.5 ρ l u δ CSL /μ l ], for steady-state and transient turbulent heat transfer at various heated length-to-inner diameter ratios, inlet liquid temperatures, and exponential periods were measured on the basis of the numerical solutions. The correlations of the thickness of the conductive sublayer, δ CSL,st , and nondimensional thickness of the conductive sublayer, (y {/CSL,st +}) TEM , for steady-state turbulent heat transfer and those of the thickness of the conductive sublayer, δ CSL , and nondimensional thickness of the conductive sublayer, (y {/CSL +}) TEM , for transient turbulent heat transfer in a circular tube were derived.

  6. High temperature electrically conducting ceramic heating element and control system

    NASA Technical Reports Server (NTRS)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  7. Heat, Light, and Videotapes: Experiments in Heat Conduction Using Liquid Crystal Film.

    ERIC Educational Resources Information Center

    Bacon, Michael E.; And Others

    1995-01-01

    Presents a range of experiments in heat conduction suitable for upper-level undergraduate laboratories that make use of heat sensitive liquid crystal film to measure temperature contours. Includes experiments mathematically described by Laplace's equation, experiments theoretically described by Poisson's equation, and experiments that involve…

  8. Conjugate conductive, convective, and radiative heat transfer in rocket engines

    SciTech Connect

    Naraghi, M.H.N.; DeLise, J.C.

    1995-12-31

    A comprehensive conductive, convective and radiative model for thermal analysis of rocket thrust chambers and nozzles is presented. In this model, the rocket thrust chamber and nozzle are subdivided into a number of stations along the longitudinal direction. At each station a finite element scheme is used to evaluate wall temperature distribution. The hot-gas-side convective heat transport is evaluated by numerically solving the compressible boundary layer equations and the radiative fluxes are evaluated by implementing an exchange factor scheme. The convective heat flux in the cooling channel is modeled based on the existing closed form correlations for rocket cooling channels. The conductive, convective and radiative processes are conjugated through an iterative procedure. The hot-gas-side heat transfer coefficients evaluated based on this model are compared to the experimental results reported in the literature. The computed convective heat transfer coefficients agree very well with experimental data for most of the engine except the throat where a discrepancy of approximately 20% exists. The model is applied to a typical regeneratively cooled rocket engine and the resulting wall temperature and heat flux distribution are presented.

  9. Heating of foods in space-vehicle environments. [by conductive heat transfer

    NASA Technical Reports Server (NTRS)

    Bannerot, R. B.; Cox, J. E.; Chen, C. K.; Heidelbaugh, N. D.

    1973-01-01

    In extended space missions, foods will be heated to enhance the psychological as well as the physiological well-being of the crew. In the low-gravity space environment natural convection is essentially absent so that the heat transfer within the food is by conduction alone. To prevent boiling in reduced pressure environments the maximum temperature of the heating system is severely limited. The Skylab food-heating system utilizes a tray with receptables for the food containers. The walls of the receptacles are lined with thermally controlled, electrical-resistance, blanket-type heating elements. A finite difference model is employed to perform parametric studies on the food-heating system. The effects on heating time of the (1) thermophysical properties of the food, (2) heater power level, (3) initial food temperatures, (4) container geometry, and (5) heater control temperature are presented graphically. The optimal heater power level and container geometry are determined.

  10. Observation of quantum-limited heat conduction over macroscopic distances

    NASA Astrophysics Data System (ADS)

    Mottonen, Mikko; Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell; Makela, Miika; Tanttu, Tuomo

    The emerging quantum technological devices, such as the quantum computer, call for extreme performance in thermal engineering at the nanoscale. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. We present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a meter. We achieved this striking improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus it seems that quantum-limited heat conduction has no fundamental restriction in its distance. This work lays the foundation for the integration of normal-metal components into superconducting transmission lines, and hence provides an important tool for circuit quantum electrodynamics, the basis of the emerging superconducting quantum computer. In particular, our results may lead to remote cooling of nanoelectronic devices with the help of a far-away in-situ-tunable heat sink. European Research Council (ERC) is acknowledged for funding under the Grant No. 278117 (SINGLEOUT).

  11. Estimating interfacial thermal conductivity in metamaterials through heat flux mapping

    SciTech Connect

    Canbazoglu, Fatih M.; Vemuri, Krishna P.; Bandaru, Prabhakar R.

    2015-04-06

    The variability of the thickness as well as the thermal conductivity of interfaces in composites may significantly influence thermal transport characteristics and the notion of a metamaterial as an effective medium. The consequent modulations of the heat flux passage are analytically and experimentally examined through a non-contact methodology using radiative imaging, on a model anisotropic thermal metamaterial. It was indicated that a lower Al layer/silver interfacial epoxy ratio of ∼25 compared to that of a Al layer/alumina interfacial epoxy (of ∼39) contributes to a smaller deviation of the heat flux bending angle.

  12. A multilevel method for conductive-radiative heat transfer

    SciTech Connect

    Banoczi, J.M.; Kelley, C.T.

    1996-12-31

    We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.

  13. Large deviations in stochastic heat-conduction processes provide a gradient-flow structure for heat conduction

    SciTech Connect

    Peletier, Mark A.; Redig, Frank; Vafayi, Kiamars

    2014-09-01

    We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter m (BEP(m)), a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti (KMP) process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP(m) and the KMP, and a nonlinear heat equation for the Generalized Brownian Energy Process with parameter a (GBEP(a)). We prove the hydrodynamic limit rigorously for the BEP(m), and give a formal derivation for the GBEP(a). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form -log ρ; they involve dissipation or mobility terms of order ρ² for the linear heat equation, and a nonlinear function of ρ for the nonlinear heat equation.

  14. Revealing the complex conduction heat transfer mechanism of nanofluids

    NASA Astrophysics Data System (ADS)

    Sergis, A.; Hardalupas, Y.

    2015-06-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects

  15. Revealing the complex conduction heat transfer mechanism of nanofluids.

    PubMed

    Sergis, A; Hardalupas, Y

    2015-12-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects.

  16. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

    NASA Technical Reports Server (NTRS)

    Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

    1988-01-01

    A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

  17. Increasing Boiling Heat Transfer using Low Conductivity Materials

    PubMed Central

    Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew

    2015-01-01

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches. PMID:26281890

  18. Increasing Boiling Heat Transfer using Low Conductivity Materials.

    PubMed

    Rahman, Md Mahamudur; Pollack, Jordan; McCarthy, Matthew

    2015-08-18

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches.

  19. Numerical simulation of hyperbolic heat conduction with convection boundary conditions and pulse heating effects

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.

  20. Heat conduction nanocalorimeter for pl-scale single cell measurements

    NASA Astrophysics Data System (ADS)

    Johannessen, E. A.; Weaver, J. M. R.; Cobbold, P. H.; Cooper, J. M.

    2002-03-01

    An ultrasensitive nanocalorimeter for use with pl-scale biological samples using silicon microfabrication technology has been developed in which a 720 pl reaction vessel, a calibration heater, and a thermoelectric transducer of 125 μK sensitivity were integrated into a single multilayer thin-film configuration. The resolution of the system ranged from 10 to 25 nW depending on the heat capacity, conductance and power density of the samples studied. The device has been used in heat conduction measurements of the energy released from the enzyme catalyzed hydrolysis of hydrogen peroxide using purified catalase, and for the determination of the catalase activity within a single mouse hepatocyte. The nanocalorimeter has the potential for integration in a high-density array format, where the change in temperature from ultralow volume cellular assays could be used as a generic analytical tool for high throughput screening of bioactive compounds.

  1. Interpretation of MSL REMS data using 1D coupled heat and water vapor transport model of Mars subsurface

    NASA Astrophysics Data System (ADS)

    Gloesener, Elodie; Karatekin, Özgür; Dehant, Véronique

    2016-04-01

    MSL Rover Environmental Monitoring Station (REMS) performed high-resolution measurements of temperature and relative humidity during more than one Martian year. In this work, a 1D subsurface model is used to study water vapor exchange between the atmosphere and the subsurface at Gale crater using REMS data. The thermal model used includes several layers of varying thickness with depth and properties that can be changed to correspond to those of Martian rocks at locations studied. It also includes the transport of water vapor through porous Martian regolith and the different phases considered are vapor, ice and adsorbed H2O. The total mass flux is given by the sum of diffusive and advective transport. The role of an adsorbing regolith on water transfer as well as the range of parameters with significant effect on water transport in Martian conditions are investigated. In addition, kinetics of the adsorption process is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere.

  2. Fourier's heat conduction equation: History, influence, and connections

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    1999-02-01

    The equation describing the conduction of heat in solids has, over the past two centuries, proved to be a powerful tool for analyzing the dynamic motion of heat as well as for solving an enormous array of diffusion-type problems in physical sciences, biological sciences, earth sciences, and social sciences. This equation was formulated at the beginning of the nineteenth century by one of the most gifted scholars of modern science, Joseph Fourier of France. A study of the historical context in which Fourier made his remarkable contribution and the subsequent impact his work has had on the development of modern science is as fascinating as it is educational. This paper is an attempt to present a picture of how certain ideas initially led to Fourier's development of the heat equation and how, subsequently, Fourier's work directly influenced and inspired others to use the heat diffusion model to describe other dynamic physical systems. Conversely, others concerned with the study of random processes found that the equations governing such random processes reduced, in the limit, to Fourier's equation of heat diffusion. In the process of developing the flow of ideas, the paper also presents, to the extent possible, an account of the history and personalities involved.

  3. Heat conduction in diatomic chains with correlated disorder

    NASA Astrophysics Data System (ADS)

    Savin, Alexander V.; Zolotarevskiy, Vadim; Gendelman, Oleg V.

    2017-01-01

    The paper considers heat transport in diatomic one-dimensional lattices, containing equal amounts of particles with different masses. Ordering of the particles in the chain is governed by single correlation parameter - the probability for two neighboring particles to have the same mass. As this parameter grows from zero to unity, the structure of the chain varies from regular staggering chain to completely random configuration, and then - to very long clusters of particles with equal masses. Therefore, this correlation parameter allows a control of typical cluster size in the chain. In order to explore different regimes of the heat transport, two interatomic potentials are considered. The first one is an infinite potential wall, corresponding to instantaneous elastic collisions between the neighboring particles. In homogeneous chains such interaction leads to an anomalous heat transport. The other one is classical Lennard-Jones interatomic potential, which leads to a normal heat transport. The simulations demonstrate that the correlated disorder of the particle arrangement does not change the convergence properties of the heat conduction coefficient, but essentially modifies its value. For the collision potential, one observes essential growth of the coefficient for fixed chain length as the limit of large homogeneous clusters is approached. The thermal transport in these models remains superdiffusive. In the Lennard-Jones chain the effect of correlation appears to be not monotonous in the limit of low temperatures. This behavior stems from the competition between formation of long clusters mentioned above, and Anderson localization close to the staggering ordered state.

  4. Micro to Nano Scale Heat Conduction in Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Maldovan, Martin

    2011-03-01

    Understanding and controlling heat transfer in solids is very important for increasing the efficiency of thermoelectric materials such as skutterudites, clatharates, superlattices, nanowires, and quantum dots. Although the mechanisms governing the thermal conductivity have been understood for years, a comprehensive theoretical method to calculate heat transfer, particularly at small scales, has not been available. This is mainly due to the complexity of anharmonic processes and phonon boundary scattering. We present a comprehensive theoretical model to calculate the thermal conductivity of thermoelectric materials at small length scales. The approach involves an exact calculation of the reduction of the phonon mean free paths due to boundary scattering and removes the need to solve the Boltzmann equation or to use adjustable terms as in the Callaway or Holland models. The analysis is based on the kinetic theory of transport processes and considers general expressions for dispersion relations, phonon mean free paths, and surface specularity parameters. The results show an excellent agreement with experiments for thin films, nanowires, and superlattices over a wide range of temperature and across multiple length scales. The theoretical approach can further be applied to a wide variety of problems involving the conduction of heat in micro/nanostructured thermoelectrics. This research was funded by the MIT Energy Initiative.

  5. Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations

    NASA Astrophysics Data System (ADS)

    Vermeersch, Bjorn; Carrete, Jesús; Mingo, Natalio; Shakouri, Ali

    2015-02-01

    Semiconductor alloys exhibit a strong dependence of effective thermal conductivity on measurement frequency. So far this quasiballistic behavior has only been interpreted phenomenologically, providing limited insight into the underlying thermal transport dynamics. Here, we show that quasiballistic heat conduction in semiconductor alloys is governed by Lévy superdiffusion. By solving the Boltzmann transport equation (BTE) with ab initio phonon dispersions and scattering rates, we reveal a transport regime with fractal space dimension 1 <α <2 and superlinear time evolution of mean-square energy displacement σ2(t ) ˜tβ(1 <β <2 ) . The characteristic exponents are directly interconnected with the order n of the dominant phonon scattering mechanism τ ˜ω-n(n >3 ) and cumulative conductivity spectra κΣ(τ ;Λ ) ˜(τ;Λ ) γ resolved for relaxation times or mean free paths through the simple relations α =3 -β =1 +3 /n =2 -γ . The quasiballistic transport inside alloys is no longer governed by Brownian motion, but instead is dominated by Lévy dynamics. This has important implications for the interpretation of thermoreflectance (TR) measurements with modified Fourier theory. Experimental α values for InGaAs and SiGe, determined through TR analysis with a novel Lévy heat formalism, match ab initio BTE predictions within a few percent. Our findings lead to a deeper and more accurate quantitative understanding of the physics of nanoscale heat-flow experiments.

  6. Influence of flow rate and heating power in effective thermal conductivity applied in borehole heat exchangers

    NASA Astrophysics Data System (ADS)

    Śliwa, T.; Sapińska-Śliwa, A.; Wiśniowski, R.; Piechówka, Z.; Krzemień, M.; Pycha, D.; Jaszczur, M.

    2016-09-01

    In borehole heat exchanging systems one of the most important parameters necessary to estimate its efficiency is the effective thermal conductivity. One of the methods for determining it is thermal response test. Such a test may be performed with respect to various parameters. The most important ones include flow rate and heating power. The article summarizes the results of TRT research in Palecznica village, Poland which was performed in boreholes located there in the already operating installation. It presents the established methodology. Also, there is an attempt to determine the relation between the mentioned parameters and the effective thermal conductivity. The research indicates the dependence of the conductivity with the test parameters.

  7. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance.

    PubMed

    Schmidt, Aaron J; Chen, Xiaoyuan; Chen, Gang

    2008-11-01

    The relationship between pulse accumulation and radial heat conduction in pump-probe transient thermoreflectance (TTR) is explored. The results illustrate how pulse accumulation allows TTR to probe two thermal length scales simultaneously. In addition, the conditions under which radial transport effects are important are described. An analytical solution for anisotropic heat flow in layered structures is given, and a method for measuring both cross-plane and in-plane thermal conductivities of thermally anisotropic thin films is described. As verification, the technique is used to extract the cross-plane and in-plane thermal conductivities of highly ordered pyrolytic graphite. Results are found to be in good agreement with literature values.

  8. Calibrated Heat Flow Model for Determining the Heat Conduction Losses in Laser Cutting of CFRP

    NASA Astrophysics Data System (ADS)

    Mucha, P.; Weber, R.; Speker, N.; Berger, P.; Sommer, B.; Graf, T.

    Laser machining has great potential regarding automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts, due to the nearly force and tool-wear free processing at high process speeds. The high vaporization temperatures and the large heat conductivity of the carbon fibers lead to a large heat transport into the sample. This causes the formation of a heat-affected zone and a decrease of the process speed. In the present paper,an analytical heat flow model was adapted in order to understand and investigate the heat conduction losses. Thermal sensors were embedded in samples at different distances from the kerf to fit the calculated to the measured temperatures. Heat conduction losses of up to 30% of the laser power were determined. Furthermore, the energy not absorbed by the sample, the energy for sublimating the composite material in the kerf, the energy for the formation of the HAZ, and the residual heat in the sample are compared in an energy balance.

  9. Heat Conduction in Heterogeneous Media and Volumetric Heating of Oil Shales by Electromagnetic Methods.

    NASA Astrophysics Data System (ADS)

    Baker-Jarvis, James Roger

    The problem of volumetric heating of oil shales by electromagnetic methods is studied theoretically. This study includes both a detailed examination of heat conduction in composite media, and the development of a numerical model to describe the heating process. The effects of layering on heat conduction in oil shale materials is studied theoretically. A new solution to a heat conduction equation in heterogenous materials is developed which includes both the effects of inclusions and contact resistance. The solution is presented in terms of the associated Green function and numerical results are displayed. In addition, a new solution to the heat conduction equation is presented for materials which consist of constituents whose thermal properties vary in a discontinuous manner. This solution is also presented in terms of a Green function and an iteration technique is developed to solve the related eigenfunction problem. Numerical results are exhibited for heat flow in layered materials. A two dimensional numerical model which describes electromagnetic heating of oil shales is developed. The model includes equations for temperature, pressure, saturations, chemical reactions, mass conservation, and source terms. The gases are all assumed to form one bulk species and the oil is assumed to remain in liquid form. The chemical reactions include pyrolysis of kerogen and char, release of bound water, coking, and decomposition of carbonates. Porosity and permeability are dynamic functions of the organic materials. Calibration of the model is accomplished by comparison of the model results with experimental data obtained by IITRI. Nonlinear relationships for viscosity, thermal properties, and source terms are used as inputs to the model. A finite difference approximation to the differential equations is derived and solved using Newton's iteration technique. For the cases studied the solutions are quite stable. Numerical results are included and a preliminary study of the

  10. Multiscale Modeling of Heat Conduction in Carbon Nanotube Aerogels

    NASA Astrophysics Data System (ADS)

    Gong, Feng; Papavassiliou, Dimitrios; Duong, Hai

    Carbon nanotube (CNT) aerogels have attracted a lot of interest due to their ultrahigh strength/weight and surface area/weight ratios. They are promising advanced materials used in energy storage systems, hydrogen storage media and weight-conscious devices such as satellites, because of their ultralight and highly porous quality. CNT aerogels can have excellent electrical conductivity and mechanical strength. However, the thermal conductivity of CNT aerogels are as low as 0.01-0.1 W/mK, which is five orders of magnitude lower than that of CNT (2000-5000 W/mK). To investigate the mechanisms for the low thermal conductivity of CNT aerogels, multiscale models are built in this study. Molecular dynamic (MD) simulations are first carried out to investigate the heat transfer between CNT and different gases (e.g. nitrogen and hydrogen), and the thermal conductance at CNT-CNT interface. The interfacial thermal resistances of CNT-gas and CNT-CNT are estimated from the MD simulations. Mesoscopic modeling of CNT aerogels are then built using an off-lattice Monte Carlo (MC) simulations to replicate the realistic CNT aerogels. The interfacial thermal resistances estimated from MD simulations are used as inputs in the MC models to predict the thermal conductivity of CNT aerogels. The volume fractions and the complex morphologies of CNTs are also quantified to study their effects on the thermal conductivity of CNT aerogels. The quantitative findings may help researchers to obtain the CNT aerogels with expected thermal conductivity.

  11. Thermal conductivity measurements of proton-heated warm dense matter

    NASA Astrophysics Data System (ADS)

    McKelvey, A.; Fernandez-Panella, A.; Hua, R.; Kim, J.; King, J.; Sio, H.; McGuffey, C.; Kemp, G. E.; Freeman, R. R.; Beg, F. N.; Shepherd, R.; Ping, Y.

    2015-06-01

    Accurate knowledge of conductivity characteristics in the strongly coupled plasma regime is extremely important for ICF processes such as the onset of hydrodynamic instabilities, thermonuclear burn propagation waves, shell mixing, and efficient x-ray conversion of indirect drive schemes. Recently, an experiment was performed on the Titan laser platform at the Jupiter Laser Facility to measure the thermal conductivity of proton-heated warm dense matter. In the experiment, proton beams generated via target normal sheath acceleration were used to heat bi-layer targets with high-Z front layers and lower-Z back layers. The stopping power of a material is approximately proportional to Z2 so a sharp temperature gradient is established between the two materials. The subsequent thermal conduction from the higher-Z material to the lower-Z was measured with time resolved streaked optical pyrometry (SOP) and Fourier domain interferometry (FDI) of the rear surface. Results will be used to compare predictions from the thermal conduction equation and the Wiedemann-Franz Law in the warm dense matter regime. Data from the time resolved diagnostics for Au/Al and Au/C Targets of 20-200 nm thickness will be presented.

  12. Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D-2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes.

    PubMed

    Kim, Taehoon; Park, Junyong; Sohn, Jongmoo; Cho, Donghwi; Jeon, Seokwoo

    2016-04-26

    Here we propose a concept of conductive dry adhesives (CDA) combining a gecko-inspired hierarchical structure and an elastomeric carbon nanocomposite. To complement the poor electrical percolation of 1D carbon nanotube (CNT) networks in an elastomeric matrix at a low filler content (∼1 wt %), a higher dimensional carbon material (i.e., carbon black, nanographite, and graphene nanopowder) is added into the mixture as an aid filler. The co-doped graphene and CNT in the composite show the lowest volume resistance (∼100 ohm·cm) at an optimized filler ratio (1:9, total filler content: 1 wt %) through a synergetic effect in electrical percolation. With an optimized conductive elastomer, gecko-inspired high-aspect-ratio (>3) microstructures over a large area (∼4 in.(2)) are successfully replicated from intaglio-patterned molds without collapse. The resultant CDA pad shows a high normal adhesion force (∼1.3 N/cm(2)) even on rough human skin and an excellent cycling property for repeatable use over 30 times without degradation of adhesion force, which cannot be achieved by commercial wet adhesives. The body-attachable CDA can be used as a metal-free, all-in-one component for measuring biosignals under daily activity conditions (i.e., underwater, movements) because of its superior conformality and water-repellent characteristic.

  13. Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids

    PubMed Central

    Nandasiri, Manjula I.; Liu, Jian; McGrail, B. Peter; Jenks, Jeromy; Schaef, Herbert T.; Shutthanandan, Vaithiyalingam; Nie, Zimin; Martin, Paul F.; Nune, Satish K.

    2016-01-01

    Metal-organic heat carriers (MOHCs) are recently developed nanofluids containing metal-organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nanoMIL-101(Cr) and the properties depended on the amount of GO added. MIL-101(Cr)/GO in methanol exhibited a significant increase in the thermal conductivity (by approximately 50%) relative to that of the intrinsic nanoMIL-101(Cr) in methanol. The thermal conductivity of the base fluid (methanol) was increased by about 20%. The increase in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to GO functionalization is explained using a classical Maxwell model. PMID:27302196

  14. Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Dou, Nicholas G.; Minnich, Austin J.

    2016-01-01

    Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials.

  15. Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids

    NASA Astrophysics Data System (ADS)

    Nandasiri, Manjula I.; Liu, Jian; McGrail, B. Peter; Jenks, Jeromy; Schaef, Herbert T.; Shutthanandan, Vaithiyalingam; Nie, Zimin; Martin, Paul F.; Nune, Satish K.

    2016-06-01

    Metal-organic heat carriers (MOHCs) are recently developed nanofluids containing metal-organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nanoMIL-101(Cr) and the properties depended on the amount of GO added. MIL-101(Cr)/GO in methanol exhibited a significant increase in the thermal conductivity (by approximately 50%) relative to that of the intrinsic nanoMIL-101(Cr) in methanol. The thermal conductivity of the base fluid (methanol) was increased by about 20%. The increase in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to GO functionalization is explained using a classical Maxwell model.

  16. Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids.

    PubMed

    Nandasiri, Manjula I; Liu, Jian; McGrail, B Peter; Jenks, Jeromy; Schaef, Herbert T; Shutthanandan, Vaithiyalingam; Nie, Zimin; Martin, Paul F; Nune, Satish K

    2016-06-15

    Metal-organic heat carriers (MOHCs) are recently developed nanofluids containing metal-organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nanoMIL-101(Cr) and the properties depended on the amount of GO added. MIL-101(Cr)/GO in methanol exhibited a significant increase in the thermal conductivity (by approximately 50%) relative to that of the intrinsic nanoMIL-101(Cr) in methanol. The thermal conductivity of the base fluid (methanol) was increased by about 20%. The increase in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to GO functionalization is explained using a classical Maxwell model.

  17. Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation

    SciTech Connect

    Dou, Nicholas G.; Minnich, Austin J.

    2016-01-04

    Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials.

  18. Fabrication and test of a variable conductance heat pipe

    NASA Technical Reports Server (NTRS)

    Lehtinen, A. M.

    1978-01-01

    A variable conductance heat pipe (VCHP) with feedback control was fabricated with a reservoir-condenser volume ratio of 10 and an axially grooved action section. Tests of the heat transport capability were greater than or equal to the analytical predictions for the no gas case. When gas was added, the pipe performance degraded by 18% at zero tilt as was expected. The placement of the reservoir heater and the test fixture cooling fins are believed to have caused a superheated vapor condition in the reservoir. Erroneously high reservoir temperature indications resulted from this condition. The observed temperature gradients in the reservoir lend support to this theory. The net result was higher than predicted reservoir temperatures. Also, significant increases in minimum heat load resulted for controller set point temperatures higher than 0 C. At 30 C, control within the tolerance band was maintained, but high reservoir heater power was required. Analyses showed that control is not possible for reasonably low reservoir heater power. This is supported by the observation of a significant reservoir heat leak through the condenser.

  19. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  20. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP turns on with a delta T of 30 C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator delta T was roughly 70 C, due to distillation of the NaK in the evaporator.

  1. Magnetogasdynamic shock waves in a nonideal gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Nath, B.

    2012-09-01

    The purpose of this study is to obtain a self-similar solution of the problem of propagation of a magnetogasdynamic shock wave in a nonideal gas with heat conduction and radiation heat flux in the presence of a spatially decreasing azimuthal magnetic field strength. The initial density of the medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law, and the radiation is considered to be of a diffusion type for an optically thick gray gas model. The thermal conductivity and absorption coefficients are assumed to vary with temperature and density. The shock is assumed to be driven by a piston moving with a variable velocity. Similarity solutions are obtained, and the effects of variation of the gas nonidealness parameter and Alfven-Mach number on the flow field behind the shock are investigated.

  2. Extremes of heat conduction-Pushing the boundaries of the thermal conductivity of materials

    SciTech Connect

    Cahill, DG

    2012-09-12

    Thermal conductivity is a familiar property of materials: silver conducts heat well, and plastic does not. In recent years, an interdisciplinary group of materials scientists, engineers, physicists, and chemists have succeeded in pushing back long-established limits in the thermal conductivity of materials. Carbon nanotubes and graphene are at the high end of the thermal conductivity spectrum due to their high sound velocities and relative lack of processes that scatter phonons. Unfortunately, the superlative thermal properties of carbon nanotubes have not found immediate application in composites or interface materials because of difficulties in making good thermal contact with the nanotubes. At the low end of the thermal conductivity spectrum, solids that combine order and disorder in the random stacking of two-dimensional crystalline sheets, so-called "disordered layered crystals," show a thermal conductivity that is only a factor of 2 larger than air. The cause of this low thermal conductivity may be explained by the large anisotropy in elastic constants that suppresses the density of phonon modes that propagate along the soft direction. Low-dimensional quantum magnets demonstrate that electrons and phonons are not the only significant carriers of heat. Near room temperature, the spin thermal conductivity of spin-ladders is comparable to the electronic thermal conductivities of metals. Our measurements of nanoscale thermal transport properties employ a variety of ultrafast optical pump-probe metrology tools that we have developed over the past several years. We are currently working to extend these techniques to high pressures (60 GPa), high magnetic fields (5 T), and high temperatures (1000 K).

  3. Variable conductance heat pipe technology. [research project resulting in heat pipe experiment on OAO-3 satellite

    NASA Technical Reports Server (NTRS)

    Anderson, W. T.; Edwards, D. K.; Eninger, J. E.; Marcus, B. D.

    1974-01-01

    A research and development program in variable conductance heat pipe technology is reported. The project involved: (1) theoretical and/or experimental studies in hydrostatics, (2) hydrodynamics, (3) heat transfer into and out of the pipe, (4) fluid selection, and (5) materials compatibility. The development, fabrication, and test of the space hardware resulted in a successful flight of the heat pipe experiment on the OAO-3 satellite. A summary of the program is provided and a guide to the location of publications on the project is included.

  4. Heat Conduction in Ceramic Coatings: Relationship Between Microstructure and Effective Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Kachanov, Mark

    1998-01-01

    Analysis of the effective thermal conductivity of ceramic coatings and its relation to the microstructure continued. Results (obtained in Task 1) for the three-dimensional problem of heat conduction in a solid containing an inclusion (or, in particular, cavity - thermal insulator) of the ellipsoidal shape, were further advanced in the following two directions: (1) closed form expressions of H tensor have been derived for special cases of ellipsoidal cavity geometry: spheroid, crack-like spheroidal cavity and needle shaped spheroidal cavity; (2) these results for one cavity have been incorporated to construct heat energy potential for a solid with many spheroidal cavities (in the approximation of non-interacting defects). This problem constitutes a basic building block for further analyses.

  5. Scanning thermal microscopy with heat conductive nanowire probes.

    PubMed

    Timofeeva, Maria; Bolshakov, Alexey; Tovee, Peter D; Zeze, Dagou A; Dubrovskii, Vladimir G; Kolosov, Oleg V

    2016-03-01

    Scanning thermal microscopy (SThM), which enables measurement of thermal transport and temperature distribution in devices and materials with nanoscale resolution is rapidly becoming a key approach in resolving heat dissipation problems in modern processors and assisting development of new thermoelectric materials. In SThM, the self-heating thermal sensor contacts the sample allowing studying of the temperature distribution and heat transport in nanoscaled materials and devices. The main factors that limit the resolution and sensitivities of SThM measurements are the low efficiency of thermal coupling and the lateral dimensions of the probed area of the surface studied. The thermal conductivity of the sample plays a key role in the sensitivity of SThM measurements. During the SThM measurements of the areas with higher thermal conductivity the heat flux via SThM probe is increased compared to the areas with lower thermal conductivity. For optimal SThM measurements of interfaces between low and high thermal conductivity materials, well defined nanoscale probes with high thermal conductivity at the probe apex are required to achieve a higher quality of the probe-sample thermal contact while preserving the lateral resolution of the system. In this paper, we consider a SThM approach that can help address these complex problems by using high thermal conductivity nanowires (NW) attached to a tip apex. We propose analytical models of such NW-SThM probes and analyse the influence of the contact resistance between the SThM probe and the sample studied. The latter becomes particularly important when both tip and sample surface have high thermal conductivities. These models were complemented by finite element analysis simulations and experimental tests using prototype probe where a multiwall carbon nanotube (MWCNT) is exploited as an excellent example of a high thermal conductivity NW. These results elucidate critical relationships between the performance of the SThM probe on

  6. Hybrid fluid/kinetic model for parallel heat conduction

    SciTech Connect

    Callen, J.D.; Hegna, C.C.; Held, E.D.

    1998-12-31

    It is argued that in order to use fluid-like equations to model low frequency ({omega} < {nu}) phenomena such as neoclassical tearing modes in low collisionality ({nu} < {omega}{sub b}) tokamak plasmas, a Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid moment closure relations. Further, parallel heat conduction in a long collision mean free path regime can be described through a combination of a reduced phase space Chapman-Enskog-like approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.

  7. Hierarchical Parallelism in Finite Difference Analysis of Heat Conduction

    NASA Technical Reports Server (NTRS)

    Padovan, Joseph; Krishna, Lala; Gute, Douglas

    1997-01-01

    Based on the concept of hierarchical parallelism, this research effort resulted in highly efficient parallel solution strategies for very large scale heat conduction problems. Overall, the method of hierarchical parallelism involves the partitioning of thermal models into several substructured levels wherein an optimal balance into various associated bandwidths is achieved. The details are described in this report. Overall, the report is organized into two parts. Part 1 describes the parallel modelling methodology and associated multilevel direct, iterative and mixed solution schemes. Part 2 establishes both the formal and computational properties of the scheme.

  8. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.

  9. Heat conduction and phonon localization in disordered harmonic crystals

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Chaudhuri, A.; Roy, D.; Dhar, A.; Lebowitz, J. L.; Spohn, H.

    2010-05-01

    We investigate the steady-state heat current in two- and three-dimensional isotopically disordered harmonic lattices. Using localization theory as well as kinetic theory we estimate the system size dependence of the current. These estimates are compared with numerical results obtained using an exact formula for the current given in terms of a phonon transmission function, as well as by direct nonequilibrium simulations. We find that heat conduction by high frequency modes is suppressed by localization while low frequency modes are strongly affected by boundary conditions. Our heuristic arguments show that Fourier's law is valid in a three-dimensional disordered solid except for special boundary conditions. We also study the pinned case relevant to localization in quantum systems and often used as a model system to study the validity of Fourier's law. Here we provide the first numerical verification of Fourier's law in three dimensions. In the two-dimensional pinned case we find that localization of phonon modes leads to a heat insulator.

  10. Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids

    SciTech Connect

    Nandasiri, Manjula I.; Liu, Jian; McGrail, B. Peter; Jenks, Jeromy WJ; Schaef, Herbert T.; Shutthanandan, V.; Nie, Zimin; Martin, Paul F.; Nune, Satish K.

    2016-06-15

    Metal organic heat carriers (MOHCs) are recently developed nanofluids containing metal organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. MOHCs utilize the MOF properties to improve the thermo-physical properties of base fluids. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC containing MIL-101(Cr)/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nano MIL-101(Cr) and the properties depend on the amount of GO added. Powder X-ray diffraction (PXRD) confirmed the preserved crystallinity of MIL-101(Cr) in all nanocomposites with the absence of any unreacted GO. Scanning electron microscopy images confirmed the presence of near spherical MIL-101(Cr) nanoparticles in the range of 40-80 nm in diameter. MOHC nanofluids containing MIL-101(Cr)/GO in methanol exhibited significant enhancement in the thermal conductivity (by approxi-mately 50%) relative to that of the intrinsic nano MIL-101(Cr) in methanol. The thermal conductivity of base fluid (methanol) was enhanced by about 20 %. The enhancement in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to graphene oxide functionalization is explained using a classical Maxwell model.

  11. A multiple step random walk Monte Carlo method for heat conduction involving distributed heat sources

    NASA Astrophysics Data System (ADS)

    Naraghi, M. H. N.; Chung, B. T. F.

    1982-06-01

    A multiple step fixed random walk Monte Carlo method for solving heat conduction in solids with distributed internal heat sources is developed. In this method, the probability that a walker reaches a point a few steps away is calculated analytically and is stored in the computer. Instead of moving to the immediate neighboring point the walker is allowed to jump several steps further. The present multiple step random walk technique can be applied to both conventional Monte Carlo and the Exodus methods. Numerical results indicate that the present method compares well with finite difference solutions while the computation speed is much faster than that of single step Exodus and conventional Monte Carlo methods.

  12. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-16

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  13. Current fluctuations in a two dimensional model of heat conduction

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Garrido, Pedro L.; Hurtado, Pablo I.

    2011-03-01

    In this work we study numerically and analytically current fluctuations in the two-dimensional Kipnis-Marchioro-Presutti (KMP) model of heat conduction. For that purpose, we use a recently introduced algorithm which allows the direct evaluation of large deviations functions. We compare our results with predictions based on the Hydrodynamic Fluctuation Theory (HFT) of Bertini and coworkers, finding very good agreement in a wide interval of current fluctuations. We also verify the existence of a well-defined temperature profile associated to a given current fluctuation which depends exclusively on the magnitude of the current vector, not on its orientation. This confirms the recently introduced Isometric Fluctuation Relation (IFR), which results from the time-reversibility of the dynamics, and includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by timereversibility on the statistics of nonequilibrium fluctuations.

  14. Efficient linear and nonlinear heat conduction with a quadrilateral element

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.

    1983-01-01

    A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2, and 1 for the normalized stabilization parameter lead to the 5-point, 9-point finite difference, and fully integrated finite element operators, respectively, for rectangular meshes and have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.

  15. Efficient linear and nonlinear heat conduction with a quadrilateral element

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.

    1984-01-01

    A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2 and 1 for the normalized stabilization parameter lead to the 5-point finite difference, 9-point finite difference and fully integrated finite element operators, respectively, for rectangular meshes; numerical experiments reported here show that the three have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.

  16. Application of the boundary element method to transient heat conduction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1991-01-01

    An advanced boundary element method (BEM) is presented for the transient heat conduction analysis of engineering components. The numerical implementation necessarily includes higher-order conforming elements, self-adaptive integration and a multiregion capability. Planar, three-dimensional and axisymmetric analyses are all addressed with a consistent time-domain convolution approach, which completely eliminates the need for volume discretization for most practical analyses. The resulting general purpose algorithm establishes BEM as an attractive alternative to the more familiar finite difference and finite element methods for this class of problems. Several detailed numerical examples are included to emphasize the accuracy, stability and generality of the present BEM. Furthermore, a new efficient treatment is introduced for bodies with embedded holes. This development provides a powerful analytical tool for transient solutions of components, such as casting moulds and turbine blades, which are cumbersome to model when employing the conventional domain-based methods.

  17. Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials

    PubMed Central

    Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T. L.; Qiu, Cheng-Wei

    2015-01-01

    The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond. PMID:25974383

  18. Inverse modeling for heat conduction problem in human abdominal phantom.

    PubMed

    Huang, Ming; Chen, Wenxi

    2011-01-01

    Noninvasive methods for deep body temperature measurement are based on the principle of heat equilibrium between the thermal sensor and the target location theoretically. However, the measurement position is not able to be definitely determined. In this study, a 2-dimensional mathematical model was built based upon some assumptions for the physiological condition of the human abdomen phantom. We evaluated the feasibility in estimating the internal organs temperature distribution from the readings of the temperature sensors arranged on the skin surface. It is a typical inverse heat conduction problem (IHCP), and is usually mathematically ill-posed. In this study, by integrating some physical and physiological a-priori information, we invoked the quasi-linear (QL) method to reconstruct the internal temperature distribution. The solutions of this method were improved by increasing the accuracy of the sensors and adjusting their arrangement on the outer surface, and eventually reached the state of converging at the best state accurately. This study suggests that QL method is able to reconstruct the internal temperature distribution in this phantom and might be worthy of a further study in an anatomical based model.

  19. Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials.

    PubMed

    Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T L; Qiu, Cheng-Wei

    2015-05-14

    The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond.

  20. Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials

    NASA Astrophysics Data System (ADS)

    Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T. L.; Qiu, Cheng-Wei

    2015-05-01

    The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond.

  1. Acoustic properties of pistonphones at low frequencies in the presence of pressure leakage and heat conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; He, Wen; He, Longbiao; Rong, Zuochao

    2015-12-01

    The wide concern on absolute pressure calibration of acoustic transducers at low frequencies prompts the development of the pistonphone method. At low frequencies, the acoustic properties of pistonphones are governed by the pressure leakage and the heat conduction effects. However, the traditional theory for these two effects applies a linear superposition of two independent correction models, which differs somewhat from their coupled effect at low frequencies. In this paper, acoustic properties of pistonphones at low frequencies in full consideration of the pressure leakage and heat conduction effects have been quantitatively studied, and the explicit expression for the generated sound pressure has been derived. With more practical significance, a coupled correction expression for these two effects of pistonphones has been derived. In allusion to two typical pistonphones, the NPL pistonphone and our developed infrasonic pistonphone, comparisons were done for the coupled correction expression and the traditional one, whose results reveal that the traditional one produces maximum insufficient errors of about 0.1 dB above the lower limiting frequencies of two pistonphones, while at lower frequencies, excessive correction errors with an explicit limit of about 3 dB are produced by the traditional expression. The coupled correction expression should be adopted in the absolute pressure calibration of acoustic transducers at low frequencies. Furthermore, it is found that the heat conduction effect takes a limiting deviation of about 3 dB for the pressure amplitude and a small phase difference as frequency decreases, while the pressure leakage effect remarkably drives the pressure amplitude to attenuate and the phase difference tends to be 90° as the frequency decreases. The pressure leakage effect plays a more important role on the low frequency property of pistonphones.

  2. 77 FR 74027 - Certain Integrated Circuit Packages Provided with Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Integrated Circuit Packages Provided with Multiple Heat- Conducting Paths and Products... integrated circuit packages provided with multiple heat-conducting paths and products containing same...

  3. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    SciTech Connect

    Green, M.A.

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  4. Radiation and gas conduction heat transport across a helium dewar multilayer insulation system

    SciTech Connect

    Green, M.A.

    1994-10-10

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulate a 4 K liquid helium cryostat. The method described here permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  5. Second law considerations in Fourier heat conduction of a lattice chain in relation to intermolecular potentials

    NASA Astrophysics Data System (ADS)

    Jesudason, Christopher G.

    2017-01-01

    Two aspects of conductive heat are focused here (i) the nature of conductive heat, defined as that form of energy that is transferred as a result of a temperature difference and (ii) the nature of the intermolecular potentials that induces both thermal energy flow and the temperature profile at the steady state for a 1-D lattice chain. It is found that the standard presuppositions of people like Benofy and Quay (BQ) following Joseph Fourier do not obtain for at least a certain specified regime of intermolecular potential parameters related to harmonic (quadratic) potentials for nearest neighbor interactions. For these harmonic potentials, it appears from the simulation results that steady state solutions exist utilizing non-synthetic thermostats that couple not just the two particles at the extreme ends of the lattice chain, but to a control volume of N particles located at either ends of the chain that does not accord with the unique analytical solutions that obtains for single particle thermostatting at the ends of the lattice with a different thermostatting algorithm that utilizes coupling coefficients. If the method used here is considered a more "realistic" or feasible model of the physical reality, then a re-evaluation of some aspects of the standard theoretical methodology is warranted since the standard model solution profile does not accord with the simulation temperature profile determined here for this related model. We also note that the sinusoidal temperature profile generated suggests that thermal integrated circuits with several thermal P-N junctions may be constructed, opening a way to create more complex thermal transistor circuits. A stationary principle is proposed for regions that violate the Fourier principle Jq.∇T ≤ 0, where Jq is the heat current vector and T the temperature.

  6. SEP BIMOD variable conductance heat pipes acceptance and characterization tests

    NASA Technical Reports Server (NTRS)

    Hemminger, J. A.

    1981-01-01

    A series of six heat pipes, similar in design to those flown on the Comunications Technology Satellite Hermes, for use in a prototype Solar Electric Propulsion BIMOD thrust module are evaluated. The results of acceptance and characterization tests performed on the heat pipe subassemble are reported. The performance of all the heat pipes met, or exceeded, design specifications.

  7. Theory and design of variable conductance heat pipes: Steady state and transient performance

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Fleischman, G. L.; Marcus, B. D.

    1972-01-01

    Heat pipe technology pertinent to the design and application of self-controlled, variable conductance heat pipes for spacecraft thermal control is discussed. Investigations were conducted to: (1) provide additional confidence in existing design tools, (2) to generate new design tools, and (3) to develop superior variable conductance heat pipe designs. A computer program for designing and predicting the performance of the heat pipe systems was developed.

  8. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    NASA Astrophysics Data System (ADS)

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Boehly, T. R.; Collins, G. W.

    2015-09-01

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  9. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    DOE PAGES

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; ...

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  10. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    SciTech Connect

    Ping, Y.; Fernandez-Panella, A.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Collins, G. W.; Sio, H.; Boehly, T. R.

    2015-09-15

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  11. Thermographic validation of a novel, laminate body, analytical heat conduction model

    NASA Astrophysics Data System (ADS)

    Desgrosseilliers, Louis; Groulx, Dominic; White, Mary Anne

    2014-07-01

    The two-region fin model captures the heat spreading behaviour in multilayered composite bodies (i.e., laminates), heated only over a small part of their domains (finite heat source), where there is an inner layer that has a substantial capacity for heat conduction parallel to the heat exchange surface (convection cooling). This resulting heat conduction behaviour improves the overall heat transfer process when compared to heat conduction in homogeneous bodies. Long-term heat storage using supercooling salt hydrate phase change materials, stovetop cookware, and electronics cooling applications could all benefit from this kind of heat-spreading in laminates. Experiments using laminate films reclaimed from post-consumer Tetra Brik cartons were conducted with thin rectangular and circular heaters to confirm the laminate body, steady-state, heat conduction behaviour predicted by the two-region fin model. Medium to high accuracy experimental validation of the two-region fin model was achieved in Cartesian and cylindrical coordinates for forced external convection and natural convection, the latter for Cartesian only. These were conducted using constant heat flux finite heat source temperature profiles that were measured by infrared thermography. This validation is also deemed valid for constant temperature heat sources.

  12. Control of Thermal Conductance of Peltier Device Using Heat Disturbance Observer

    NASA Astrophysics Data System (ADS)

    Morimitsu, Hidetaka; Katsura, Seiichiro

    Presently in the industry, temperature control and heat flow control are conducted for many thermal devices, including the Peltier device, which facilitates heat transfer on the basis of the Peltier effect. Generally, temperature control compensates for the heat flowing from the external environment, while the heat actively flows into the system during heat flow control. Thus, temperature control and heat flow control differ from each other. However, there have been no detailed discussions on a thermal control process in which the thermal conductance of control ranges between 0 and ∞. This paper focuses on the thermal conductance of control and the construction of a thermal conductance control system for a Peltier device using a heat disturbance observer. When using the thermal conductance controller, the thermal conductance of control is altered, and the system becomes thermally compliant with the external environment. This paper also shows the experimental results that confirm the validity of the proposed control system.

  13. DOS-HEATING6: A general conduction code with nuclear heat generation derived from DOT-IV transport calculations

    SciTech Connect

    Williams, M.L.; Yuecel, A.; Nadkarny, S.

    1988-05-01

    The HEATING6 heat conduction code is modified to (a) read the multigroup particle fluxes from a two-dimensional DOT-IV neutron- photon transport calculation, (b) interpolate the fluxes from the DOT-IV variable (optional) mesh to the HEATING6 control volume mesh, and (c) fold the interpolated fluxes with kerma factors to obtain a nuclear heating source for the heat conduction equation. The modified HEATING6 is placed as a module in the ORNL discrete ordinates system (DOS), and has been renamed DOS-HEATING6. DOS-HEATING6 provides the capability for determining temperature distributions due to nuclear heating in complex, multi-dimensional systems. All of the original capabilities of HEATING6 are retained for the nuclear heating calculation; e.g., generalized boundary conditions (convective, radiative, finned, fixed temperature or heat flux), temperature and space dependent thermal properties, steady-state or transient analysis, general geometry description, etc. The numerical techniques used in the code are reviewed and the user input instructions and JCL to perform DOS-HEATING6 calculations are presented. Finally a sample problem involving coupled DOT-IV and DOS-HEATING6 calculations of a complex space-reactor configurations described, and the input and output of the calculations are listed. 10 refs., 11 figs., 6 tabs.

  14. Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity

    SciTech Connect

    Chen, Lin; Li, Zhen; Guo, Zeng-Yuan

    2009-07-15

    In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m{sup 2} K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension. (author)

  15. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.

    PubMed

    Lee, Jun Yong; Jung, Sung-No; Kwon, Ho

    2015-01-01

    To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns.

  16. Analytical model of solutions of (2+1)-D heat convection equations in a shape memory alloy device immersed in a blood vessel

    NASA Astrophysics Data System (ADS)

    Maher Abourabia, Aly; Hassan, Kawsar Mohammad; Abo-Elghar, Eman Mohammad

    2015-02-01

    We investigate a bio-system composed of a shape memory alloy (SMA) immersed and subjected to heat convection in a blood vessel, affected by heart beats that create a wave motion of long wavelength. The tackled model in (2+1)-D is based on the continuity and momentum equations for the fluid phase, besides; the state of the SMA are described via previous works in the form of statistical distributions of energy for both Martensite and Austenite phases. The solution based on the reductive perturbation technique gives a thermal diffusion-like equation as a key for expressing the temperature and velocity components of the blood. In terms of two cases concerning the difference between the wave numbers in the perpendicular directions, it is found that the system's temperature increases nonlinearly from a minimum initial temperature 293 K (20 °C) up to a maximum value about 316.68 K (43.68 °C), then tends to decrease along the blood flow (anisotropy of K and L) direction. In both cases it is observed that the SMA acquires most of this temperature raising not the blood because of its conventional biological limits (37-40 °C). The range of the heart beats wave numbers characteristic for each person plays an important role in realizing phase changes in the anisotropic case leading to the formation of the hysteresis loops Martensite-Austenite-Martensite or vice versa, according to the energy variation. The entropy generation σ is investigated for the system (Blood + SMA), it predicts that along the flow direction the system gains energy convectively up to a maximum value, then reverses his tendency to gradually loosing energy passing by the equilibrium state, then the system looses energy to the surroundings by the same amount which was gained beforehand. The loss diminishes but stops before arriving to equilibrium again. For certain differences in wave numbers the system starts to store energy again after it passes by the state of equilibrium for the second time. In the

  17. Classical solution to 1D viscous polytropic perfect fluids with constant diffusion coefficients and vacuum

    NASA Astrophysics Data System (ADS)

    Liang, Zhilei; Wu, Shanqiu

    2017-02-01

    This paper deals with the initial boundary value problem for one-dimensional (1D) viscous, compressible and heat conducting fluids. We establish the global existence and uniqueness of classical solutions, with large data and possible vacuum at initial time. Our approach is based on the Calderón-Zygmund decomposition technique and allows that the viscosity and heat conductivity are both constant.

  18. Effect of flow maldistribution and axial conduction on compact microchannel heat exchanger

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-03-01

    When a compact microchannel heat exchanger is operated at cryogenic environments, it has potential problems of axial conduction and flow maldistribution. To analyze these detrimental effects, the heat exchanger model that includes both axial conduction and flow maldistribution effect is developed in consideration of the microchannel heat exchanger geometry. A dimensionless axial conduction parameter (λ) is used to describe the axial conduction effect, and the coefficient of variation (CoV) is introduced to quantify the flow maldistribution condition. The effectiveness of heat exchanger is calculated according to the various values of the axial conduction parameter and the CoV. The analysis results show that the heat exchanger effectiveness is insensitive when λ is less than 0.005, and effectiveness is degraded with the large value of CoV. Three microchannel heat exchangers are fabricated with printed circuit heat exchanger (PCHE) technology for validation purpose of the heat exchanger model. The first heat exchanger is a conventional heat exchanger, the second heat exchanger has the modified cross section to eliminate axial conduction effect, and the third heat exchanger has the modified cross section and the cross link in parallel channel to mitigate flow maldistribution effect. These heat exchangers are tested in cryogenic single-phase, and two-phase environments. The third heat exchanger shows the ideal thermal characteristic, while the other two heat exchangers experience some performance degradation due to axial conduction or flow maldistribution. The impact of axial conduction and flow maldistribution effects are verified by the simulation results and compared with the experimental results.

  19. Seebeck effect influence on joule heat evolution in electrically conductive silicate materials

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Medved, Igor; Maděra, Jiří; Černý, Robert

    2016-07-01

    In general, silicate building materials are non-conductive matters that are not able to evolve heat when they are subjected to an external voltage. However, the electrical conductivity can be increased by addition of electrically conductive admixtures in appropriate amount which leads to generation of conductive paths in materials matrix. Such enhanced materials can evolve Joule heat and are utilizable as a core of self-heating or snow-melting systems. In this paper, Joule heat evolution together with Seebeck effect in electrically conductive silicate materials was taken into consideration and the model based on heat equation with included influence of DC electric field was proposed. Besides, a modeling example of heating element was carried out on FEM basis and time development of temperature in chosen surface points was expressed in order to declare ability of such system to be applicable.

  20. A two-parameter nondiffusive heat conduction model for data analysis in pump-probe experiments

    NASA Astrophysics Data System (ADS)

    Ma, Yanbao

    2014-12-01

    Nondiffusive heat transfer has attracted intensive research interests in last 50 years because of its importance in fundamental physics and engineering applications. It has unique features that cannot be described by the Fourier law. However, current studies of nondiffusive heat transfer still focus on studying the effective thermal conductivity within the framework of the Fourier law due to a lack of a well-accepted replacement. Here, we show that nondiffusive heat conduction can be characterized by two inherent material properties: a diffusive thermal conductivity and a ballistic transport length. We also present a two-parameter heat conduction model and demonstrate its validity in different pump-probe experiments. This model not only offers new insights of nondiffusive heat conduction but also opens up new avenues for the studies of nondiffusive heat transfer outside the framework of the Fourier law.

  1. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Schwendeman, Carl; Anderson, William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  2. A two-fluid model for relativistic heat conduction

    SciTech Connect

    López-Monsalvo, César S.

    2014-01-14

    Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.

  3. Aerodynamic Heating Computations for Projectiles. Volume 1. In-Depth Heat Conduction Modifications to the ABRES Shape Change Code (BRLASCC)

    DTIC Science & Technology

    1984-06-01

    Modifications .............................. 16 2.2.2 Explicit Grid Modifications .............................. 19 2.3 Latent Heat of Fusion ...equations are utilized more accurately The user may now input latent heat of fusion for melting materials and BRLASCC will account for this energy during...contact resistance to the finite-difference conduction equations, (3) improved in-depth modeling by inclusion of latent heat of fusion , (4) increased

  4. A Simple Rate Law Experiment Using a Custom-Built Isothermal Heat Conduction Calorimeter

    ERIC Educational Resources Information Center

    Wadso, Lars; Li, Xi.

    2008-01-01

    Most processes (whether physical, chemical, or biological) produce or consume heat: measuring thermal power (the heat production rate) is therefore a typical method of studying processes. Here we describe the design of a simple isothermal heat conduction calorimeter built for use in teaching; we also provide an example of its use in simultaneously…

  5. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor

    PubMed Central

    Shrestha, R.; Lee, K. M.; Chang, W. S.; Kim, D. S.; Rhee, G. H.; Choi, T. Y.

    2013-01-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m−1 K−1 at room temperature. PMID:23556837

  6. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor.

    PubMed

    Shrestha, R; Lee, K M; Chang, W S; Kim, D S; Rhee, G H; Choi, T Y

    2013-03-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m(-1) K(-1) at room temperature.

  7. Numerical model for combined conductive and radiative heat transfer in annular packed beds

    SciTech Connect

    Kamiuto, K.; Saito, S.; Ito, K. . Dept. of Production Systems Engineering)

    1993-06-01

    A numerical model is developed for quantitatively analyzing combined conductive and radiative heat transfer in concentric annular packed beds. A packed bed is considered to be a continuous medium for heat transfer, but the porosity distribution within a packed bed is taken into account. To examine the validity of the proposed model, combined conductive and radiative heat transfer through annular packed beds of cordierite or porcelain beads is analyzed numerically using finite differences under conditions corresponding to heat transfer experiments of these packed beds. The resultant temperature profiles and heat transfer characteristics are compared with the experimental results.

  8. Elongating axial conduction path design to enhance performance of cryogeinc compact pche (printed circuit heat exchanger)

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Kim, Jinhyuck; Hwang, Gyuwan; Jeong, Sangkwon

    2012-06-01

    PCHE (Printed Circuit Heat Exchanger) is one of the promising cryogenic compact heat exchangers due to its compactness, high NTU and robustness. The essential procedure for fabricating PCHE is chemical etching and diffusion bonding. These technologies can create sufficiently large heat transfer area for a heat exchanger with numerous micro channels (Dh<1 mm). However, PCHE shows disadvantages of high pressure drop and large axial conduction loss. Axial conduction is a critical design issue of a cryogenic heat exchanger when it is operated with a large temperature difference. Elongating the heat conduction path is implemented to reduce axial conduction in PCHE in this study. Two PCHEs with identical channel configuration are fabricated, for comparison, one of which is modified to have longer heat conduction path. Both heat exchangers are tested in cryogenic environment (300~70 K), and the modified PCHE shows better performance with significantly reduced axial conduction. The experimental results indicate that the modification of the heat conduction path is effective to increase the performance of PCHE. This paper discusses and analyses the thermal characteristics of the modified PCHE obtained experimentally.

  9. Transient natural convection and conduction heat transfers on hot box of a coke drum in Pre-heating stage

    NASA Astrophysics Data System (ADS)

    Siahaan, A. S.; Ambarita, H.; Kawai, H.; Daimaruya, M.

    2017-01-01

    In an oil refinery unit, coke drum is subjected cyclic thermal stress and mechanical loads due to cyclic heating and cooling loads. Thus, the useful life of a coke drum is much shorter than other equipment. One of the most severe locations due to thermal stress is shell to skirt junction. Here, a hot box is proposed. In this study effectiveness of a hot box will be analyzed numerically. The addition of hot box (triangular cavity) was expected to generate natural convection, which will enhance heat transfer. As for the result show that heat flux conduction and natural convection have the same trend. The peak of conduction heat flux is 122 W/m2 and for natural convection is 12 W/m2. In the heating stage of coke drum cycle it found that the natural convection only provide approximately 10 % of heat transfer compare to conduction heat transfer. In this study it was proved that in the heating stage, the addition of triangular enclosure is less effective to enhance the heat transfer than previously thought.

  10. Using the heat flow plate method for determining thermal conductivity of building materials

    NASA Astrophysics Data System (ADS)

    Flori, M.; Puţan, V.; Vîlceanu, L.

    2017-01-01

    The heat flow plate method is used to determine thermal conductivity of a building material sample made of Rohacell (insulating foam). Experimental technique consists in placing the sample with a reference material on top (polystyrene sample) in a calorimetric chamber and heating from underside. Considering that the heat flux which passes through the two layers is constant and knowing thermal conductivity of the reference material, the sample thermal conductivity is determined. The temperature difference between the two opposite sample’s sides is recorded only when the steady state is achieved (constant heat flux).

  11. Thermal metamaterial for convergent transfer of conductive heat with high efficiency

    NASA Astrophysics Data System (ADS)

    Shen, Xiangying; Jiang, Chaoran; Li, Ying; Huang, Jiping

    2016-11-01

    It is crucially important to focus conductive heat in an efficient way, which has received much attention in energy science (say, solar cells), but is still far from being satisfactory due to the diffusive (divergent) nature of the heat. By developing a theory with hybrid transformations (rotation and stretch-compression), here we provide theoretical and experimental evidences for a type of thermal metamaterial called thermal converger. The converger is capable of convergently conducting heat in contrast to the known divergent behavior of heat diffusion, thus yielding a large heating region with high temperatures close to the heat source (high efficiency). The thermal converger further allows us to design a thermal grating—a thermal counterpart of optical grating. This work has relevance to heat focus with high efficiency, and it offers guidance both for efficient heat transfer and for designing thermal-converger-like metamaterials in other fields, such as electrics/magnetics, electromagnetics/optics, acoustics, and particle diffusion.

  12. Thin Film Conductive Coatings for Surface Heating and Decontamination

    DTIC Science & Technology

    1985-06-01

    area 9 - dimensionless surface coverage ( oo) Subscripts 0 - upper sur ace 1 - substrate material ( plexi - glass ) 2 -. heater m terial (Indium-Tin Oxide...ke 54 C* " C* THIS PROGRAM SOLVES FOR THE DIFFUSION OF HEAT AND CONTAMINANT S C VAPOR WITHIN A SOLID-SUBSTRATE ( PLEXI - GLASS ) WITH AN EMBEDDED C... PLEXI -. GLASS "Ups S - SOLUBILITY PARAMETER APPENOIX 55 , . * , 55 C*THE GIVEN INPU.IT DATA ISo PRINTEDc OUT. HERE ’NW~’ REFERS C* TO THE OUTPUT

  13. The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Y. Jun; Li, Chen-Lin; Xue, Zhang-Na; Tian, Xiao-Geng

    2016-01-01

    To model transiently thermal responses of numerous thermal shock issues at nano-scale, Fourier heat conduction law is commonly extended by introducing time rate of heat flux, and comes to hyperbolic heat conduction (HHC). However, solution to HHC under Dirichlet boundary condition depicts abnormal phenomena, e.g. heat conducts from the cold to the hot, and there are two temperatures at one location. In this paper, HHC model is further perfected with the aids of spatially nonlocal effect, and the exceeding temperature as well as the discontinuity at the wave front are avoided. The effect of nonlocal parameter on temperature response is discussed. From the analysis, the importance of size effect for nano-scale heat conduction is emphasized, indicating that spatial and temporal extensions should be simultaneously made to nano-scale heat conduction. Beyond that, it is found that heat flux boundary conditions should be directly given, instead of Neumann boundary condition, which does not make sense any longer for non-classical heat conductive models. And finally, it is observed that accurate solution to such problems may be obtained using Laplace transform method, especially for the time-dependent boundary conditions, e.g. heat flux boundary condition.

  14. Heat conduction in cooling flows. [in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; David, L. P.

    1988-01-01

    It has been suggested that electron conduction may significantly reduce the accretion rate (and star foramtion rate) for cooling flows in clusters of galaxies. A numerical hydrodynamics code was used to investigate the time behavior of cooling flows with conduction. The usual conduction coefficient is modified by an efficiency factor, mu, to realize the effects of tangled magnetic field lines. Two classes of models are considered, one where mu is independent of position and time, and one where inflow stretches the field lines and changes mu. In both cases, there is only a narrow range of initial conditions for mu in which the cluster accretion rate is reduced while a significant temperature gradient occurs. In the first case, no steady solution exists in which both conditions are met. In the second case, steady state solutions occur in which both conditions are met, but only for a narrow range of initial values where mu = 0.001.

  15. Heat transfer in vertical Bridgman growth of oxides - Effects of conduction, convection, and internal radiation

    NASA Technical Reports Server (NTRS)

    Brandon, S.; Derby, J. J.

    1992-01-01

    In the present investigation of crystalline phase internal radiation and heat conduction during the vertical Bridgman growth of a YAG-like oxide crystal, where transport through the melt is dominated by convection and conduction, heat is also noted to be conducted through ampoule walls via natural convection and enclosure radiation. The results of a quasi-steady-state axisymmetric Galerkin FEM indicate that heat transfer through the system is powerfully affected by the optical absorption coefficient of the crystal. The coupling of internal radiation through the crystal with conduction through the ampoule walls promotes melt/crystal interface shapes that are highly reflected near the ampoule wall.

  16. On the Role of Hall and Pedersen Conductivities in Determination of Ionospheric Joule Heating

    NASA Astrophysics Data System (ADS)

    Ceren Kalafatoglu, Emine; Kaymaz, Zerefsan

    2013-04-01

    Ionospheric Joule heating is defined as the frictional heating which results from the collisions between the neutrals and charged particles at the ionospheric heights. These collisional processes gain importance around 120 km in the E and F regions of the ionosphere where there are more neutral atoms, and particularly at the auroral altitudes, where Hall and Pedersen conductivities are comparable to each other. The most conventional ways of calculating ionospheric Joule heating relies on the relationship between electric field and Pedersen conductivity. The role of Hall conductivity in the calculation of Joule heating still remains unclear, and in general its contribution is accepted to be minor when compared to the Pedersen currents at the first approximation. However, results from the MHD simulations show that Joule heating is reduced in the regions where Hall conductivity is close to or higher than Pedersen conductivity. These local variations also modify the global Joule heating pattern and distribution. MHD models take into account the magnetosphere and ionosphere interaction and incorporate with the ionospheric modules which include the interaction between the neutral winds and charged paricles. In this study, we have selected two isolated substorm events that occurred in March, 2008 to investigate the effects of Hall conductivity on the Joule heating. We run NASA/CCMC MHD models, e.g. SWMF/BATSRUS, during these times under concurrent solar wind and IMF conditions. The outputs from the models will be used to calculate Joule heating with the Hall conductivity effects properly included. In this presentation, we will show our preliminary results on the Joule heating rates from the models, quantify the degree of Pedersen and Hall conductivity contributions on the Joule heating, and address on their contributions on the global distribution of the Joule heating. We will also compare and discuss our findings with those available in the literature.

  17. An approximate substitution principle for viscous heat conducting flows

    NASA Astrophysics Data System (ADS)

    Greitzer, E. M.; Paterson, R. W.; Tan, C. S.

    1985-09-01

    A new, approximate substitution principle is presented for a class of steady flows in which both heat transfer and momentum interchange by viscous stresses are significant. The principle, which has important implications for the design and scaling of mixing experiments, can be regarded as an extension of the Munk and Prim substitution principle (for steady isentropic flows) to nonisentropic flows (Munk and Prim, 1947). The concepts that are developed explain the scaling and distribution of various fluid dynamic properties observed in several different types of flow mixing experiments. Calculations are done to indicate the expected regimes of applicability of the approximate principle and comparison with experiment is made to show its utility in practical situations.

  18. Non-stationary heat conduction of a porous medium

    NASA Astrophysics Data System (ADS)

    Velinov, T.; Gusev, V.; Bransalov, K.

    1992-01-01

    The thermal diffusion process is examined for a porous sample with idealized arrangement and form of the pores, when its surface is illuminated by a modulated light. A formula for the frequency dependence of the average surface temperature is derived. It is shown that it depends on the porosity, the form of the pores, and the ratio between a characteristic pore size and the thermal wavelength. In the limiting cases of low frequency of modulation and low porosity the results agree well with those quoted in the literature. The frequency dependence of the surface temperature of a microporous rubber sample, glass filtering crucibles, and leather samples have been measured by a PA cell and compared with the analytical results. The influence of various processes on the heat diffusion in porous media is discussed.

  19. Determination of temperature-dependent heat conductivity and thermal diffusivity of waste glass melter feed

    SciTech Connect

    Pokorny, Richard; Rice, Jarrett A.; Schweiger, Michael J.; Hrma, Pavel R.

    2013-06-01

    The cold cap is a layer of reacting glass batch floating on the surface of melt in an all-electric continuous glass melter. The heat needed for the conversion of the melter feed to molten glass must be transferred to and through the cold cap. Since the heat flux into the cold cap determines the rate of melting, the heat conductivity is a key property of the reacting feed. We designed an experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples that monitors the evolution of the temperature field while the crucible is heated at a constant rate. Then we used two methods to calculate the heat conductivity and thermal diffusivity of the reacting feed: the approximation of the temperature field by polynomial functions and the finite-volume method coupled with least-squares analysis. Up to 680°C, the heat conductivity of the reacting melter feed was represented by a linear function of temperature.

  20. Specially tailored transfinite-element formulations for hyperbolic heat conduction involving non-Fourier effects

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The phenomenon of hyperbolic heat conduction in contrast to the classical (parabolic) form of Fourier heat conduction involves thermal energy transport that propagates only at finite speeds, as opposed to an infinite speed of thermal energy transport. To accommodate the finite speed of thermal wave propagation, a more precise form of heat flux law is involved, thereby modifying the heat flux originally postulated in the classical theory of heat conduction. As a consequence, for hyperbolic heat conduction problems, the thermal energy propagates with very sharp discontinuities at the wave front. Accurate solutions are found for a class of one-dimensional hyperbolic heat conduction problems involving non-Fourier effects that can be used effectively for representative benchmark tests and for validating alternate schemes. Modeling/analysis formulations via specially tailored hybrid computations are provided for accurately modeling the sharp discontinuities of the propagating thermal wave front. Comparative numerical test models are presented for various hyperbolic heat conduction models involving non-Fourier effects to demonstrate the present formulations.

  1. Phase change heat transfer during cryosurgery of lung cancer using hyperbolic heat conduction model.

    PubMed

    Kumar, Ajay; Kumar, Sushil; Katiyar, V K; Telles, Shirley

    2017-03-16

    The paper reports a numerical study of phase change heat transfer process in lung cancer undergoing cryosurgery. A two dimensional hyperbolic bio-heat model with non-ideal property of tissue, blood perfusion and metabolism is used to analyze the problem. The governing equations are solved by finite difference method based on enthalpy formulation. Effects of relaxation time of heat flux in hyperbolic model on freezing process have been examined. A comparative investigation of two different models (hyperbolic and parabolic bio-heat models) is also presented.

  2. Gas-kinetic model of heat conduction of heterogeneous substances

    NASA Astrophysics Data System (ADS)

    Gladkov, S. O.

    2008-07-01

    A theoretical approach is proposed for calculating thermal conductivity κ of an arbitrary type of porous structures as a function of porosity ξ, temperature T, density ρ, and a number of other parameters. The general computational algorithm is based on the theory of nonequilibrium processes. Its modification in the language of gas-kinetic approximation makes it possible to derive compact relations for κ and to easily estimate the corresponding dependences. Theoretical formulas are compared to experimental results and their good agreement is demonstrated for a specific example of refractory concrete, which is a very important substance for practical applications.

  3. Heat conduction in carbon nanotube materials: Strong effect of intrinsic thermal conductivity of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Volkov, Alexey N.; Zhigilei, Leonid V.

    2012-07-01

    Computational study of thermal conductivity of interconnected networks of bundles in carbon nanotube (CNT) films reveals a strong effect of the finite thermal conductivity kT of individual nanotubes on the conductivity k of the CNT materials. The physical origin of this effect is explained in a theoretical analysis of systems composed of straight randomly dispersed CNTs. An analytical equation for quantitative description of the effect of finite kT on the value of k is obtained and adopted for continuous networks of bundles characteristic of CNT films and buckypaper. Contrary to the common assumption of the dominant effect of the contact conductance, the contribution of the finite kT is found to control the value of k at material densities and CNT lengths typical for real materials.

  4. Heat Exchangers for Heavy Vehicles Utilizing High Thermal Conductivity Graphite Foams

    SciTech Connect

    James Klett, Ron Ott; April McMillan

    2000-06-19

    Approximately two thirds of the world's energy consumption is wasted as heat. In an attempt to reduce heat losses, heat exchangers are utilized to recover some of the energy. A unique graphite foam developed at the Oak Ridge National Laboratory (ORNL) and licensed to Poco Graphite, Inc., promises to allow for novel, more efficient heat exchanger designs. This graphite foam, Figure 1, has a density between 0.2 and 0.6 g/cm 3 and a bulk thermal conductivity between 40 and 187 W/m{center_dot}K. Because the foam has a very accessible surface area (> 4 m 2 /g) and is open celled, the overall heat transfer coefficients of foam-based heat exchangers can be up to two orders of magnitude greater than conventional heat exchangers. As a result, foam-based heat exchangers could be dramatically smaller and lighter.

  5. New Insights Into the Heat Sources of Mantle Plumes, or: Where Does all the Heat Come From, Heat Producing Elements, Advective or Conductive Heat Flow?

    NASA Astrophysics Data System (ADS)

    Rushmer, T.; Beier, C.; Turner, S.

    2007-12-01

    Melting anomalies in the Earth's upper mantle have often been attributed to the presence of mantle plumes that may originate in the lower mantle, possibly from the core-mantle boundary. Globally, mantle plumes exhibit a large range in buoyancy flux that which is proportional to their temperature and volume. Plumes with higher buoyancy fluxes should have higher temperatures and experience higher degrees of partial melting. Excess heat in mantle plumes could reflect either a) an enrichment of the heat producing elements (HPE: U, Th, K) in their mantle source leading to an increase of heat production by radioactive decay or b) advective or conductive heat transport across the core-mantle boundary. The advective transport of heat may result in a physical contribution of material from the core to the lower mantle. If core material is incorporated into the lower mantle, mantle plumes with a higher buoyancy flux should have higher core tracers, e.g. increased 186Os and Fe concentrations. Geophysical and dynamic modelling indicate that at least Afar, Easter, Hawaii, Louisville and Samoa may all originate at the core-mantle boundary. These plumes encompass the whole range of known buoyancy fluxes from 1.2 Mgs -1(Afar) to 6.5 Mgs -1 (Hawaii) providing evidence that the buoyancy flux is largely independent of other geophysical parameters. In an effort to explore whether the heat producing elements are the cause of excess heat we looked for correlations between fractionation corrected concentrations of the HPE and buoyancy flux. Our results suggest that there is no correlation between HPE concentrations and buoyancy flux (with and without an additional correction for variable degrees of partial melting). As anticipated, K, Th and U are positively correlated with each other (e.g. Hawaii, Iceland and Galapagos have significantly lower concentrations than e.g. Tristan da Cunha, the Canary Islands and the Azores). We also find no correlation between currently available Fe

  6. Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.

    2015-12-01

    In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.

  7. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Ai-Guo; Zhang, Guang-Cai

    2016-12-01

    The two-dimensional Rayleigh-Taylor instability problem is simulated with a multiple-relaxation-time discrete Boltzmann model with a gravity term. Viscosity, heat conductivity, and Prandtl number effects are probed from macroscopic and nonequilibrium viewpoints. In the macro sense, both viscosity and heat conduction show a significant inhibitory effect in the reacceleration stage, which is mainly achieved by inhibiting the development of the Kelvin-Helmholtz instability. Before this, the Prandtl number effect is not sensitive. Viscosity, heat conductivity, and Prandtl number effects on nonequilibrium manifestations and the degree of correlation between the nonuniformity and the nonequilibrium strength in the complex flow are systematically investigated.

  8. The effect of local thermal nonequilibrium on conduction in metal foam tube heat exchanger with a uniform heat source

    NASA Astrophysics Data System (ADS)

    Biglari, Mojtaba; Sakhaei, Ali; Ganji, Davood Domairy; Akbarzadeh, Sanaz; Rezvani, Abdollad

    2016-09-01

    The effect of local thermal nonequilibrium on the steady state heat conduction in metal foam tube heat exchanger as a porous layer in the presence of internal heat generated by considering the thermal conductivity coefficient as a function of temperature was investigated. A two temperature model is investigated by using reconstruction of variational iteration method (RVIM). The obtained results from RVIM are compared with the numerical results of Maple. These comparisons reveal that RVIM is a very powerful and precise approach to solve nonlinear ordinary differential equations and there is a good agreement between them. In this study, the effects of porosity and internal heat generation on the temperature distribution in the solid and liquid phases are presented.

  9. Inverse Analysis of Heat Conduction in Hollow Cylinders with Asymmetric Source Distributions

    NASA Astrophysics Data System (ADS)

    Lambrakos, Samuel G.; Michopoulos, John G.; Jones, Harry N.; Boyer, Craig N.

    2008-10-01

    This paper presents an application of inverse analysis for determining both the temperature field histories and corresponding heat source distributions in hollow cylinders. The primary goal, however, is the development of an inversion infrastructure in a manner that allows taking advantage of all aspects related to its utility, including sensitivity analysis. The conditions generating heat sources are those resulting from intense pulsed-current electrical contact experiments. Under these conditions intense heat currents are generated due to the Joule conversion of the electric conduction currents. Asymmetry of the heat source is induced from the localized melting due to arc-enhanced electric conduction. Experimentally acquired temperature histories and melting domain boundary data are utilized to setup an inverse model of the heat conduction problem. This permits the construction of an estimate not only of the temperature field histories throughout the computational domain but also of an evaluation of the effective thermal diffusivity of the material involved.

  10. Estimation of surface heat flux and temperature distributions in a multilayer tissue based on the hyperbolic model of heat conduction.

    PubMed

    Lee, Haw-Long; Chen, Wen-Lih; Chang, Win-Jin; Yang, Yu-Ching

    2015-01-01

    In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent surface heat flux in a skin tissue, which is stratified into epidermis, dermis, and subcutaneous layers, from the temperature measurements taken within the medium. Subsequently, the temperature distributions in the tissue can be calculated as well. The concept of finite heat propagation velocity is applied to the modeling of the bioheat transfer problem. The inverse solutions will be justified based on the numerical experiments in which two different heat flux distributions are to be determined. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors on the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent surface heat flux can be obtained for the test cases considered in this study.

  11. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    PubMed

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  12. Simulating Remediation of Trichloroethylene in Fractured Bedrock by Thermal Conductive Heating Using the Numerical Model TMVOC

    DTIC Science & Technology

    2013-01-01

    heat transfer rate positive (Thomas, 1980). 18 Equation 2.4 can be applied to a three-dimensional system where the thermal conductivity, K...consideration when heat is being applied to the system , as the compressibility properties will be changed due to changes in pressure (Fatt, 1958). A...are extracted by a vacuum system . Wells are typically placed 6 to 12 ft apart to ensure complete heating of the source zone when dealing with semi

  13. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... COMMISSION Certain Integrated Circuit Packages Provided With Multiple Heat- Conducting Paths and Products.... International Trade Commission has received a complaint entitled Certain Integrated Circuit Packages Provided... sale within the United States after importation of certain integrated circuit packages provided...

  14. The Thermal Conductivity Measurements of Solid Samples by Heat Flux Differantial Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Kök, M.; Aydoǧdu, Y.

    2007-04-01

    The thermal conductivity of polyvinylchloride (PVC), polysytrene (PS) and polypropylene (PP) were measured by heat flux DSC. Our results are in good agreement with the results observed by different methods.

  15. The comparison of models for calculating heat conduction losses in laser cutting of metals

    NASA Astrophysics Data System (ADS)

    Galushkin, M. G.; Golubev, V. S.; Grishaev, R. V.; Khomenko, M. D.

    2011-02-01

    Numerical comparisons of some models for estimating the power losses due to heat conduction in process of gas-assisted laser cutting are presented in this paper. In spite of differences between these models their results match fairly well.

  16. The comparison of models for calculating heat conduction losses in laser cutting of metals

    NASA Astrophysics Data System (ADS)

    Galushkin, M. G.; Golubev, V. S.; Grishaev, R. V.; Khomenko, M. D.

    2010-09-01

    Numerical comparisons of some models for estimating the power losses due to heat conduction in process of gas-assisted laser cutting are presented in this paper. In spite of differences between these models their results match fairly well.

  17. Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.

    SciTech Connect

    Tzanos, C. P.; Dionne, B.

    2011-05-23

    To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D

  18. Evaluation of three different radiative transfer equation solvers for combined conduction and radiation heat transfer

    NASA Astrophysics Data System (ADS)

    Sun, Yujia; Zhang, Xiaobing; Howell, John R.

    2016-11-01

    This work investigates the performance of P1 method, FVM and SP3 method for 2D combined conduction and radiation heat transfer problem. Results based on the Monte Carlo method coupled with the energy equation are used as the benchmark solutions. Effects of the conduction-radiation parameter and optical thickness are considered. Performance analyses in term of the accuracy of heat flux and temperature predictions and of computing time are presented and analyzed.

  19. Effects of friction and heat conduction on sound propagation in ducts. [analyzing complex aerodynamic noise problems

    NASA Technical Reports Server (NTRS)

    Huerre, P.; Karamcheti, K.

    1976-01-01

    The theory of sound propagation is examined in a viscous, heat-conducting fluid, initially at rest and in a uniform state, and contained in a rigid, impermeable duct with isothermal walls. Topics covered include: (1) theoretical formulation of the small amplitude fluctuating motions of a viscous, heat-conducting and compressible fluid; (2) sound propagation in a two dimensional duct; and (3) perturbation study of the inplane modes.

  20. Effects of anisotropic conduction and heat pipe interaction on minimum mass space radiators

    NASA Technical Reports Server (NTRS)

    Baker, Karl W.; Lund, Kurt O.

    1991-01-01

    Equations are formulated for the two dimensional, anisotropic conduction of heat in space radiator fins. The transverse temperature field was obtained by the integral method, and the axial field by numerical integration. A shape factor, defined for the axial boundary condition, simplifies the analysis and renders the results applicable to general heat pipe/conduction fin interface designs. The thermal results are summarized in terms of the fin efficiency, a radiation/axial conductance number, and a transverse conductance surface Biot number. These relations, together with those for mass distribution between fins and heat pipes, were used in predicting the minimum radiator mass for fixed thermal properties and fin efficiency. This mass is found to decrease monotonically with increasing fin conductivity. Sensitivities of the minimum mass designs to the problem parameters are determined.

  1. Microwave absorption in powders of small conducting particles for heating applications.

    PubMed

    Porch, Adrian; Slocombe, Daniel; Edwards, Peter P

    2013-02-28

    In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.

  2. The effects of heat conduction on the vaporization of liquid invading superheated permeable rock

    SciTech Connect

    Woods, Andrew, W.; Fitzgerald, Shaun D.

    1996-01-24

    We examine the role of conductive and convective heat transfer in the vaporization of liquid as it slowly invades a superheated permeable rock. For very slow migration, virtually all of the liquid vaporizes. As the liquid supply rate increases beyond the rate of heat transfer by thermal conduction, a decreasing fraction of the liquid can vaporize. Indeed, for sufficiently high flow rates, the fraction vaporizing depends solely on the superheat of the rock, and any heat transfer from the superheated region is negligible. These results complement earlier studies of vaporization under very high injection rates, in which case the dynamic vapour pressure reduces the mass fraction vaporizing to very small values.

  3. About Influence of Gravity on Heat Conductivity Process of the Planets

    NASA Astrophysics Data System (ADS)

    Gladkov, S. O.; Yadav, A.; Ray, Saibal; Rahaman, F.

    2016-03-01

    In the present study it is shown that the interaction of a quasi-static gravitational wave through density fluctuations give rise to a heat conductivity coefficient and hence rise in temperature. This fact is a very important characteristics needed to establish a heat equilibrium process of such massive body as the Earth and other Planets. To carry out this exercise, general mechanism has been provided, which makes a bridge between classical physics and quantum theory. The specific dependence of heat conductivity coefficient in wide region has also been calculated.

  4. Two-phase numerical model for thermal conductivity and convective heat transfer in nanofluids.

    PubMed

    Kondaraju, Sasidhar; Lee, Joon Sang

    2011-03-21

    Due to the numerous applications of nanofluids, investigating and understanding of thermophysical properties of nanofluids has currently become one of the core issues. Although numerous theoretical and numerical models have been developed by previous researchers to understand the mechanism of enhanced heat transfer in nanofluids; to the best of our knowledge these models were limited to the study of either thermal conductivity or convective heat transfer of nanofluids. We have developed a numerical model which can estimate the enhancement in both the thermal conductivity and convective heat transfer in nanofluids. It also aids in understanding the mechanism of heat transfer enhancement. The study reveals that the nanoparticle dispersion in fluid medium and nanoparticle heat transport phenomenon are equally important in enhancement of thermal conductivity. However, the enhancement in convective heat transfer was caused mainly due to the nanoparticle heat transport mechanism. Ability of this model to be able to understand the mechanism of convective heat transfer enhancement distinguishes the model from rest of the available numerical models.

  5. Interaction of surface radiation with combined conduction and convection from a discretely heated L-corner

    NASA Astrophysics Data System (ADS)

    Gururaja Rao, C.; Santhosh, D.; Vijay Chandra, P.

    2009-08-01

    Prominent results pertaining to the problem of multi-mode heat transfer from an L-corner equipped with three identical flush-mounted discrete heat sources in its left leg are given here. The heat generated in the heat sources is conducted along the two legs of the device before being dissipated by combined convection and radiation into air that is considered to be the cooling agent. The governing equations for temperature distribution along the L-corner are obtained by making appropriate energy balance between the heat generated, conducted, convected and radiated. The non-linear partial differential equations thus obtained are converted into algebraic form using a finite-difference formulation. The resulting equations are solved simultaneously by Gauss-Seidel iterative solver. A computer code is specifically written to solve the problem. The computational domain is discretised using 101 grids along the left leg, with 15 grids taken per heat source, and 21 grids along the bottom leg. The effects of surface emissivity, convection heat transfer coefficient, thermal conductivity and aspect ratio on local temperature distribution, peak device temperature and relative contributions of convection and radiation to heat dissipation from the L-corner are studied in detail. The point that one cannot overlook radiation in problems of this class has been clearly elucidated.

  6. Variable thermal properties and thermal relaxation time in hyperbolic heat conduction

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Mcrae, D. Scott

    1989-01-01

    Numerical solutions were obtained for a finite slab with an applied surface heat flux at one boundary using both the hyperbolic (MacCormack's method) and parabolic (Crank-Nicolson method) heat conduction equations. The effects on the temperature distributions of varying density, specific heat, and thermal relaxation time were calculated. Each of these properties had an effect on the thermal front velocity (in the hyperbolic solution) as well as the temperatures in the medium. In the hyperbolic solutions, as the density or specific heat decreased with temperature, both the temperatures within the medium and the thermal front velocity increased. The value taken for the thermal relaxation time was found to determine the 'hyperbolicity' of the heat conduction model. The use of a time dependent relaxation time allowed for solutions where the thermal energy propagated as a high temperature wave initially, but approached a diffusion process more rapidly than was possible with a constant large relaxation time.

  7. An analysis of the vapor flow and the heat conduction through the liquid-wick and pipe wall in a heat pipe with single or multiple heat sources

    NASA Technical Reports Server (NTRS)

    Chen, Ming-Ming; Faghri, Amir

    1990-01-01

    A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.

  8. Molecular Dynamics Simulations of Shocks Including Electronic Heat Conduction and Electron-Phonon Coupling

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitriy S.; Zhigilei, Leonid V.; Bringa, Eduardo M.; De Koning, Maurice; Remington, Bruce A.; Caturla, Maria Jose; Pollaine, Stephen M.

    2004-07-01

    Shocks are often simulated using the classical molecular dynamics (MD) method in which the electrons are not included explicitly and the interatomic interaction is described by an effective potential. As a result, the fast electronic heat conduction in metals and the coupling between the lattice vibrations and the electronic degrees of freedom can not be represented. Under conditions of steep temperature gradients that can form near the shock front, however, the electronic heat conduction can play an important part in redistribution of the thermal energy in the shocked target. We present the first atomistic simulation of a shock propagation including the electronic heat conduction and electron-phonon coupling. The computational model is based on the two-temperature model (TTM) that describes the time evolution of the lattice and electron temperatures by two coupled non-linear differential equations. In the combined TTM-MD method, MD substitutes the TTM equation for the lattice temperature. Simulations are performed with both MD and TTM-MD models for an EAM Al target shocked at 300 kbar. The target includes a tilt grain boundary, which provides a region where shock heating is more pronounced and, therefore, the effect of the electronic heat conduction is expected to be more important. We find that the differences between the predictions of the MD and TTM-MD simulations are significantly smaller as compared to the hydrodynamics calculations performed at similar conditions with and without electronic heat conduction.

  9. A flexible variable conductance heat pipe design for temperature control of spacecraft equipment

    NASA Astrophysics Data System (ADS)

    Hwangbo, Han; Joost, T. E.

    1988-06-01

    The paper describes a variable conductance heat pipe design with a flexible joint. The heat pipe is developed for temperature control of high power electronics using a deployable space radiator. The evaporator section of the heat pipe is attached to the baseplate of the electronics. The condenser section of the heat pipe and the reservoir of noncondensible gas are attached to the deployable radiator. During the ascent phase of the flight the radiator is stowed for minimum heat rejection. During the final orbit period the radiator is deployed for full operation. An analytical thermal model of a Flexible Variable Conductance Heat Pipe (FVCHP) is developed to predict the heat transport capacity and the location of the noncondensible gas front in the heat pipe. Also, transient performance of the FVCHP in an orbital environment with electrical feedback temperature control is predicted. The analysis results indicate that a FVCHP radiator can reject at least twice the heat of a single sided fixed radiator of the same size. Results also indicate that control of the evaporator within 75 + or - 5 F is feasible for a unit with 100 W dissipation using the FVCHP radiator design presented.

  10. Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil

    SciTech Connect

    Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

    1989-12-12

    This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

  11. Radiative heat exchange of a meteor body in the approximation of radiant heat conduction

    SciTech Connect

    Pilyugin, N.N.; Chernova, T.A.

    1986-07-01

    The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted.

  12. Giant heat transfer in the crossover regime between conduction and radiation

    NASA Astrophysics Data System (ADS)

    Kloppstech, Konstantin; Könne, Nils; Biehs, Svend-Age; Rodriguez, Alejandro W.; Worbes, Ludwig; Hellmann, David; Kittel, Achim

    2017-02-01

    Heat is transferred by radiation between two well-separated bodies at temperatures of finite difference in vacuum. At large distances the heat transfer can be described by black body radiation, at shorter distances evanescent modes start to contribute, and at separations comparable to inter-atomic spacing the transition to heat conduction should take place. We report on quantitative measurements of the near-field mediated heat flux between a gold coated near-field scanning thermal microscope tip and a planar gold sample at nanometre distances of 0.2-7 nm. We find an extraordinary large heat flux which is more than five orders of magnitude larger than black body radiation and four orders of magnitude larger than the values predicted by conventional theory of fluctuational electrodynamics. Different theories of phonon tunnelling are not able to describe the observations in a satisfactory way. The findings demand modified or even new models of heat transfer across vacuum gaps at nanometre distances.

  13. Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2.

    PubMed

    Kumar, Suhas; Pickett, Matthew D; Strachan, John Paul; Gibson, Gary; Nishi, Yoshio; Williams, R Stanley

    2013-11-13

    Joule-heating induced conductance-switching is studied in VO2 , a Mott insulator. Complementary in situ techniques including optical characterization, blackbody microscopy, scanning transmission X-ray microscopy (STXM) and numerical simulations are used. Abrupt redistribution in local temperature is shown to occur upon conductance-switching along with a structural phase transition, at the same current.

  14. A Multi-Dimensional Cognitive Analysis of Undergraduate Physics Students' Understanding of Heat Conduction

    ERIC Educational Resources Information Center

    Chiou, Guo-Li; Anderson, O. Roger

    2010-01-01

    This study proposes a multi-dimensional approach to investigate, represent, and categorize students' in-depth understanding of complex physics concepts. Clinical interviews were conducted with 30 undergraduate physics students to probe their understanding of heat conduction. Based on the data analysis, six aspects of the participants' responses…

  15. Revisit of Joule heating in CE: the contribution of surface conductance.

    PubMed

    Xuan, Xiangchun

    2007-08-01

    We present in this short communication the true form of Joule heating in CE which considers the contribution of surface conductance. This increased conductivity of electrolyte solution within electrical double layer has never been discussed in previous studies. The resultant intensive heat generation near the capillary wall is demonstrated using numerical simulation to produce not a locally strong temperature rise, but an additional temperature elevation in the whole solution compared to the model neglecting surface conductance. The latter effect is, however, negligible in typical CE while it might become significant in very small channels.

  16. Preliminary study on improvement of cementitious grout thermal conductivity for geothermal heat pump applications

    SciTech Connect

    Allan, M.L.

    1996-06-01

    Preliminary studies were preformed to determine whether thermal conductivity of cementitious grouts used to backfill heat exchanger loops for geothermal heat pumps could be improved, thus improving efficiency. Grouts containing selected additives were compares with conventional bentonite and cement grouts. Significant enhancement of grout alumina grit, steel fibers, and silicon carbide increased the thermal conductivity when compared to unfilled, high solids bentonite grouts and conventional cement grouts. Furthermore, the developed grouts retained high thermal conductivity in the dry state, where as conventional bentonite and cement grouts tend to act as insulators if moisture is lost. The cementitious grouts studied can be mixed and placed using conventional grouting equipment.

  17. The role of percolation and sheet dynamics during heat conduction in poly-dispersed graphene nanofluids

    NASA Astrophysics Data System (ADS)

    Dhar, Purbarun; Sen Gupta, Soujit; Chakraborty, Saikat; Pattamatta, Arvind; Das, Sarit K.

    2013-04-01

    A thermal transport mechanism leading to the enhanced thermal conductivity of graphene nanofluids has been proposed. The graphene sheet size is postulated to be the key to the underlying mechanism. Based on a critical sheet size derived from Stokes-Einstein equation for the poly-dispersed nanofluid, sheet percolation and Brownian motion assisted sheet collisions are used to explain the heat conduction. A collision dependant dynamic conductivity considering Debye approximated volumetric specific heat due to phonon transport in graphene has been incorporated. The model has been found to be in good agreement with experimental data.

  18. Ionospheric absorption, typical ionization, conductivity, and possible synoptic heating parameters in the upper atmosphere

    SciTech Connect

    Walker, J.K.; Bhatnagar, V.P.

    1989-04-01

    Relations for the average energetic particle heating and the typical Hall and Pedersen conductances, as functions of the ground-based Hf radio absorption, are determined. Collis and coworkers used the geosynchronous GEOS 2 particle data to relate or ''calibrate'' the auroral absorption on the same magnetic field lines with five levels of D region ionization. These ionospheric models are related to a Chapman layer that extends these models into the E region. The average energetic particle heating is calculated for each of these models using recent expressions for the effective recombination coefficient. The corresponding height-integrated heating rates are determined and related to the absorption with a quadratic expression. The average Hall and Pedersen conductivities are calculated for each of the nominal absorption ionospheric models. The corresponding height-integrated conductances for nighttime conditions are determined and related to the absorption. Expressions for these conductances during disturbed sunlit conditions are also determined. These relations can be used in conjunction with simultaneous ground-based riometric and magnetic observations to determines the average Hall and Pedersen currents and the Joule heating. The typical daily rate of temperature increase in the mesosphere for storm conditions is several 10 K for both the energetic particle and the Joule heating. The increasing importance of these parameters of the upper and middle atmospheres is discussed. It is proposed that northern hemisphere ionospheric, current, and heating synoptic models and parameters be investigated for use on a regular basis. copyright American Geophysical Union 1989

  19. Similarity solution for a cylindrical shock wave in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Vishwakarma, J. P.; Nath, G.

    2012-01-01

    The propagation of shock waves in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux, which has a variable azimuthally fluid velocity together with a variable axial fluid velocity, is investigated. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-condition is maintained and variable energy input is continuously supplied by the piston (or inner expanding surface). The fluid velocities in the ambient medium are assume to be vary and obey power laws. The density of the ambient medium is assumed to be constant, the heat conduction is express in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. In order to obtain the similarity solutions the angular velocity of the ambient medium is assume to be decreasing as the distance from the axis increases. The effects of the variation of the heat transfer parameter and non-idealness of the gas in the mixture are investigated. The effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are also investigated.

  20. Empirical evaluation of diving wet suit material heat transfer and thermal conductivity

    SciTech Connect

    West, P.B.

    1993-10-01

    This wet suit material testing program provides a quantitative thermal conductivity and heat transfer analysis, and comparison of various materials used in skin diving and SCUBA diving. Thermal resistance represents the primary subject examined, but due to compressibility of the baseline materials and its effect on heat transfer, this program also examines compression at simulated depth. This article reports the empirical heat transfer coefficients for both thermal conductivity and convection. Due to the limitations of the test apparatus, this analysis must restrict the convection evaluation to an approximately 20-cm-height, free-convection model. As a consequence, this model best simulates the overall heat transfer coefficient of a diver hovering in a horizontal position. This program also includes evaluations of some nonstandard materials in an effort to identify alternative wet suit materials.

  1. On the correlation of electrical conductivity and heat flow in Middle Valley, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Webb, Spahr C.; Edwards, R. Nigel

    1995-11-01

    The near-surface electrical conductivity has been mapped within an area of Middle Valley, a sediment-filled axial valley at the northern end of the Juan de Fuca ridge. The conductivity in the uppermost 20 m of sediment was determined by analyzing the magnetic field signal transmitted between a source coil and a receiver that were towed along the seafloor. The instrument is a version of a time domain electromagnetic (TDEM) sounding system. The heat flow pattern within Middle Valley, with a large central anomaly above a basement high, is reproduced by the conductivity measurements, the result of enhanced pore fluid electrical conductivity due to higher near-surface temperatures in the high heat flow regions. The high correlation between heat flow and conductivity requires that porosity as inferred from Archie's law must be nearly uniform in the central part of the study area. Porosities derived from the conductivity measurements are in close agreement with measurements from the Ocean Drilling Project (ODP) boreholes. Higher near-surface porosities are required in the eastern part of the valley to match the observed heat flow, consistent with the higher porosity seen at ODP site 855. A small region of apparently lower porosity was detected to the west of the center of the valley.

  2. Electrical conductivity and physical properties of surimi-potato starch under ohmic heating.

    PubMed

    Pongviratchai, P; Park, J W

    2007-11-01

    Electrical conductivities of Alaska pollock surimi mixed with native and pregelled potato starch at different concentrations (0%, 3%, and 9%) were measured at different moisture contents (75% and 81%) using a multifrequency ohmic heating system. Surimi-starch paste was tested up to 80 degrees C at frequencies from 55 Hz to 20 KHz and at alternating currents of 4.3 and 15.5 V/cm voltage gradient. Electrical conductivity increased when moisture content, applied frequency, and applied voltage increased, but decreased when starch concentration increased. Electrical conductivity was correlated linearly with temperature (R(2) approximately 0.99). Electrical conductivity pattern (magnitude) changed when temperature increased, which was clearly seen after 55 degrees C in the native potato starch system, especially at high concentration. This confirms that starch gelatinization that occurred during heating affects the electrical conductivity. Whiteness and texture properties decreased with an increase of starch concentration and a decrease of moisture content.

  3. An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat and Thermal Conductivity

    SciTech Connect

    Wang, Hsin; Porter, Wallace D; Bottner, Harold; Konig, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolett, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Partricia; Sharp, J; Lo, Jason; Keinke, Holger; Kiss, Laszlo I.

    2013-01-01

    For bulk thermoelectrics, figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In recent years, the most significant improvements in ZT were mainly due to successful reduction of thermal conductivity. However, thermal conductivity cannot be measured directly at high temperatures. The combined measurements of thermal diffusivity and specific heat and density are required. It has been shown that thermal conductivity is the property with the greatest uncertainty and has a direct influence on the accuracy of the figure of merit. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) has conducted two international round-robins since 2009. This paper is Part II of the international round-robin testing of transport properties of bulk bismuth telluride. The main focuses in Part II are on thermal diffusivity, specific heat and thermal conductivity.

  4. Flight data analysis and further development of variable-conductance heat pipes. [for aircraft control

    NASA Technical Reports Server (NTRS)

    Enginer, J. E.; Luedke, E. E.; Wanous, D. J.

    1976-01-01

    Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.

  5. Development of soft-sphere contact models for thermal heat conduction in granular flows

    SciTech Connect

    Morris, A. B.; Pannala, S.; Ma, Z.; Hrenya, C. M.

    2016-06-08

    Conductive heat transfer to flowing particles occurs when two particles (or a particle and wall) come into contact. The direct conduction between the two bodies depends on the collision dynamics, namely the size of the contact area and the duration of contact. For soft-sphere discrete-particle simulations, it is computationally expensive to resolve the true collision time because doing so would require a restrictively small numerical time step. To improve the computational speed, it is common to increase the 'softness' of the material to artificially increase the collision time, but doing so affects the heat transfer. In this work, two physically-based correction terms are derived to compensate for the increased contact area and time stemming from artificial particle softening. By including both correction terms, the impact that artificial softening has on the conductive heat transfer is removed, thus enabling simulations at greatly reduced computational times without sacrificing physical accuracy.

  6. Transient modeling/analysis of hyperbolic heat conduction problems employing mixed implicit-explicit alpha method

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; D'Costa, Joseph F.

    1991-01-01

    This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.

  7. Borehole Heat Exchanger Systems: Hydraulic Conductivity and Frost-Resistance of Backfill Materials

    NASA Astrophysics Data System (ADS)

    Anbergen, Hauke; Sass, Ingo

    2016-04-01

    Ground source heat pump (GSHP) systems are economic solutions for both, domestic heating energy supply, as well as underground thermal energy storage (UTES). Over the past decades the technology developed to complex, advanced and highly efficient systems. For an efficient operation of the most common type of UTES, borehole heat exchanger (BHE) systems, it is necessary to design the system for a wide range of carrier fluid temperatures. During heat extraction, a cooled carrier fluid is heated up by geothermal energy. This collected thermal energy is energetically used by the heat pump. Thereby the carrier fluid temperature must have a lower temperature than the surrounding underground in order to collect heat energy. The steeper the thermal gradient, the more energy is transferred to the carrier fluid. The heat injection case works vice versa. For fast and sufficient heat extraction, even over long periods of heating (winter), it might become necessary to run the BHE with fluid temperatures below 0°C. As the heat pump runs periodically, a cyclic freezing of the pore water and corresponding ice-lens growth in the nearfield of the BHE pipes becomes possible. These so called freeze-thaw-cycles (FTC) are a critical state for the backfill material, as the sealing effect eventually decreases. From a hydrogeological point of view the vertical sealing of the BHE needs to be secured at any time (e.g. VDI 4640-2, Draft 2015). The vertical hydraulic conductivity of the BHE is influenced not only by the permeability of the grouting material itself, but by the contact area between BHE pipes and grout. In order to assess the sealing capacity of grouting materials a laboratory testing procedure was developed that measures the vertical hydraulic conductivity of the system BHE pipe and grout. The key features of the procedure are: • assessment of the systeḿs hydraulic conductivity • assessment of the systeḿs hydraulic conductivity after simulation of freeze-thaw-cycle

  8. Highly Stable and Conductive Microcapsules for Enhancement of Joule Heating Performance

    PubMed Central

    2016-01-01

    Nanocarbons show great promise for establishing the next generation of Joule heating systems, but suffer from the limited maximum temperature due to precociously convective heat dissipation from electrothermal system to surrounding environment. Here we introduce a strategy to eliminate such convective heat transfer by inserting highly stable and conductive microcapsules into the electrothermal structures. The microcapsule is composed of encapsulated long-chain alkanes and graphene oxide/carbon nanotube hybrids as core and shell material, respectively. Multiform carbon nanotubes in the microspheres stabilize the capsule shell to resist volume-change-induced rupture during repeated heating/cooling process, and meanwhile enhance the thermal conductance of encapsulated alkanes which facilitates an expeditious heat exchange. The resulting microcapsules can be homogeneously incorporated in the nanocarbon-based electrothermal structures. At a dopant of 5%, the working temperature can be enhanced by 30% even at a low voltage and moderate temperature, which indicates a great value in daily household applications. Therefore, the stable and conductive microcapsule may serve as a versatile and valuable dopant for varieties of heat generation systems. PMID:27002594

  9. Highly Stable and Conductive Microcapsules for Enhancement of Joule Heating Performance.

    PubMed

    Zheng, Zhaoliang; Jin, Jidong; Xu, Guang-Kui; Zou, Jianli; Wais, Ulrike; Beckett, Alison; Heil, Tobias; Higgins, Sean; Guan, Lunhui; Wang, Ying; Shchukin, Dmitry

    2016-04-26

    Nanocarbons show great promise for establishing the next generation of Joule heating systems, but suffer from the limited maximum temperature due to precociously convective heat dissipation from electrothermal system to surrounding environment. Here we introduce a strategy to eliminate such convective heat transfer by inserting highly stable and conductive microcapsules into the electrothermal structures. The microcapsule is composed of encapsulated long-chain alkanes and graphene oxide/carbon nanotube hybrids as core and shell material, respectively. Multiform carbon nanotubes in the microspheres stabilize the capsule shell to resist volume-change-induced rupture during repeated heating/cooling process, and meanwhile enhance the thermal conductance of encapsulated alkanes which facilitates an expeditious heat exchange. The resulting microcapsules can be homogeneously incorporated in the nanocarbon-based electrothermal structures. At a dopant of 5%, the working temperature can be enhanced by 30% even at a low voltage and moderate temperature, which indicates a great value in daily household applications. Therefore, the stable and conductive microcapsule may serve as a versatile and valuable dopant for varieties of heat generation systems.

  10. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge.

    PubMed

    Mehdizadeh, Seyedeh Neda; Eskicioglu, Cigdem; Bobowski, Jake; Johnson, Thomas

    2013-09-15

    Microwave (2.45 GHz, 1200 W) and conventional heating (custom pressure vessel) pretreatments were applied to dewatered municipal waste sludge (18% total solids) using identical heating profiles that span a wide range of temperatures (80-160 °C). Fourteen lab-scale semi-continuous digesters were set up to optimize the energy (methane) output and sludge retention time (SRT) requirements of untreated (control) and thermally pretreated anaerobic digesters operated under mesophilic and thermophilic temperatures. Both pretreatment methods indicated that in the pretreatment range of 80-160 °C, temperature was a statistically significant factor (p-value < 0.05) for increasing solubilization of chemical oxygen demand and biopolymers (proteins, sugars, humic acids) of the waste sludge. However, the type of pretreatment method, i.e. microwave versus conventional heating, had no statistically significant effect (p-value >0.05) on sludge solubilization. With the exception of the control digesters at a 5-d SRT, all control and pretreated digesters achieved steady state at all three SRTs, corresponding to volumetric organic loading rates of 1.74-6.96 g chemical oxygen demand/L/d. At an SRT of 5 d, both mesophilic and thermophilic controls stopped producing biogas after 20 d of operation with total volatile fatty acids concentrations exceeding 1818 mg/L at pH <5.64 for mesophilic and 2853 mg/L at pH <7.02 for thermophilic controls, while the pretreated digesters continued producing biogas. Furthermore, relative (to control) organic removal efficiencies dramatically increased as SRT was shortened from 20 to 10 and then 5 d, indicating that the control digesters were challenged as the organic loading rate was increased. Energy analysis showed that, at an elevated temperature of 160 °C, the amount of methane recovered was not enough to compensate for the energy input. Among the digesters with positive net energy productions, control and pretreated digesters at 80 °C were more

  11. Equilibration and Universal Heat Conduction in Fermi-Pasta-Ulam Chains

    NASA Astrophysics Data System (ADS)

    Mai, Trieu; Dhar, Abhishek; Narayan, Onuttom

    2007-05-01

    It is shown numerically that for Fermi-Pasta-Ulam (FPU) chains with alternating masses and heat baths at slightly different temperatures at the ends, the local temperature (LT) on small scales behaves paradoxically in steady state. This expands the long established problem of equilibration of FPU chains. A well-behaved LT appears to be achieved for equal mass chains; the thermal conductivity is shown to diverge with chain length N as N1/3, relevant for the much debated question of the universality of one-dimensional heat conduction. The reason why earlier simulations have obtained systematically higher exponents is explained.

  12. Design and analysis of a cryogenic variable conductance axial grooved heat pipe

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An investigation to adapt axial grooved designs to the gammit of heat pipe thermal control techniques, with particular emphasis on those suited for cryogenic applications was conducted. In addition to considering both active and passive gas control, diode designs utilizing liquid or gas blockage, or a liquid trap, are evaluated. The use of the liquid trap as a secondary heat pipe for forward mode operation during diode shutdown is also studied. This latter function is basically that of a thermal switch. Finally, a system capable of hybrid functions consisting of gas-controlled variable conductance and liquid trap diode shutdown or thermal switching is defined.

  13. Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Vishwakarma, J. P.; Nath, G.

    2010-04-01

    A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.

  14. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data

    USGS Publications Warehouse

    Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.

    2006-01-01

    Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.

  15. LDEF (Prelaunch), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09

    NASA Technical Reports Server (NTRS)

    1983-01-01

    LDEF (Prelaunch), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 EL-1994-00302 LDEF (Prelaunch), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 The prelaunch photograph was taken in SAEF II at KSC prior to installation of the Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) on the LDEF. The Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) occupies a 6 inch deep LDEF peripheral experiment tray and consist of two series connected variable conductance heatpipes, a black chrome solar collector panel and a silvered TEFLON® radiator panel, a power source to support six thermistor-type temperature monitoring sensors and actuations of two valves. Fiberglass standoffs and internal insulation blankets thermally isolated the experiment from the experiment tray and the LDEF interior. The outside of the CVCHPE, except the collector and radiator panels, was covered with an aluminumized Kapton multilayer insulation (MLI) blanket with an outer layer of 0.076 mm thick Kapton. The two patches of thin film materials, part of Experiment S1001 by NASA GSFC, were attached to the cover of the external thermal blanket with Kapton tape. The experiment was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners.

  16. Modeling of heat evolution in silicate building materials with electrically conductive admixtures

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Maděra, Jiří; Vejmelková, Eva; Černý, Robert

    2016-12-01

    Silicate building materials are electrically non-conductive, in general. However, a sufficient amount of electrically conductive admixtures can significantly increase their electrical conductivity. Consequently, new practical applications of such materials are available. Materials with enhanced electrical properties can be used as self-sensing sensors monitoring evolution of cracks, electromagnetic shields or cores of deicing systems. This paper deals with the modeling of heat evolution in silicate building materials by the action of passing electric current. Due to the conducting paths formed in the material's matrix by adding a sufficient amount of electrically conductive admixture and applying electric voltage on the installed electrodes, electric current is passing through the material. Thanks to the electric current, Joule heat is successively evolved. As it is crucial to evaluate theoretically the amount of evolved heat in order to assess the effectiveness of such a system, a model describing the Joule heat evolution is proposed and a modeling example based on finite-element method is introduced.

  17. The effects of fully implicit coupling on heat conduction between a flow field and conduction between a flow field and conduction slab in TRAC-PF1

    SciTech Connect

    Wang, L.C.; Baratta, A.J.; Mahaffy, J.H. )

    1990-01-01

    Numerical techniques used in thermal-hydraulic computer analysis codes must be fast to enable modeling of complex transients and accurate to provide a high degree of fidelity. In an attempt to satisfy these conflicting requirements, the best-estimate code TRAC-PF1 uses a semi-implicit technique to couple heat transfer between a flow field and a conduction slab. To test the accuracy of the current semi-implicit method used in TRAC-PF1, a series of simple tube experiments were modeled with TRAC-PF1 version 3.9B. To overcome identified problems, fully implicit techniques were developed and incorporated into TRAC-PF1. The new methods treat the heat transfer coefficient and wall temperature in the energy source term of both the convection and the conduction equation implicitly. One method uses a linear extrapolation and the other a nonlinear iterative technique. In general, both methods produced higher wall temperature and a lattice quench in better agreement with the experimental data. These methods also eliminated the double-valued results obtained for the other experiments. In general, these techniques have given more accurate results and saved computer time in the film boiling heat transfer regime.

  18. Thermal characterization of micro/nanoscale conductive and non-conductive wires based on optical heating and electrical thermal sensing

    NASA Astrophysics Data System (ADS)

    Hou, Jinbo; Wang, Xinwei; Guo, Jiaqi

    2006-08-01

    In this work, a technique based on optical heating and electrical thermal sensing (OHETS) is developed to characterize the thermophysical properties of one-dimensional micro/nanoscale conductive and non-conductive wires. In this method, the to-be-measured thin wire is suspended over two electrodes and is irradiated with a periodically modulated laser beam. The laser beam induces a periodical temperature variation in the wire/tube, which will lead to a periodical change in its electrical resistance. A dc current is applied to the sample, and the resulting periodical voltage variation over the wire is measured and used to extract the thermophysical properties of the wire/tube. A 25.4 µm thick platinum wire is used as the reference sample to verify this technique. Sound agreement is obtained between the measured thermal conductivity and the reference value. Applying the OHETS technique, the thermal diffusivity of conductive single-wall carbon nanotube (SWCNT) bundles and non-conductive human hair and cloth fibres are measured. For non-conductive wires, a thin (~nm) metallic film is coated at the outside of the wire for electrical thermal sensing. The measured thermal diffusivities for three different SWCNT bundles are 2.98 × 10-5 m2 s-1, 4.41 × 10-5 m2 s-1 and 6.64 × 10-5 m2 s-1. These values are much less than the thermal diffusivity of graphite in the layer direction. For human hair and microscale cloth fibres, our experiments show that their thermal diffusivities are at the level of 10-6 m2 s-1.

  19. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  20. Simulation study on heat conduction of a nanoscale phase-change random access memory cell.

    PubMed

    Kim, Junho; Song, Ki-Bong

    2006-11-01

    We have investigated heat transfer characteristics of a nano-scale phase-change random access memory (PRAM) cell using finite element method (FEM) simulation. Our PRAM cell is based on ternary chalcogenide alloy, Ge2Sb2Te5 (GST), which is used as a recording layer. For contact area of 100 x 100 nm2, simulations of crystallization and amorphization processes were carried out. Physical quantities such as electric conductivity, thermal conductivity, and specific heat were treated as temperature-dependent parameters. Through many simulations, it is concluded that one can reduce set current by decreasing both electric conductivities of amorphous GST and crystalline GST, and in addition to these conditions by decreasing electric conductivity of molten GST one can also reduce reset current significantly.

  1. Development of Novel Alternative Technologies for Decontamination of Warfare Agents: Electric Heating with Intrinsically Conductive Polymers

    DTIC Science & Technology

    2007-11-02

    processibility [9,10]. In this work, dodecylbenzene sulfonic acid (DBSA) doped polyaniline (PANI-DBSA) was synthesized by chemical oxidative emulsion...the preparation of the PANI-DBSA solution. III-2. Polymerization Polyaniline -DBSA powder was synthesized by chemical oxidative emulsion...Joule)-heating with conducting polymers. The basic concept is that electrically conducting polymers, such as polyaniline , can be used as coatings or

  2. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors

    NASA Astrophysics Data System (ADS)

    Valvano, J. W.; Cochran, J. R.; Diller, K. R.

    1985-05-01

    This paper presents an experimental method to measure the thermal conductivity and thermal diffusivity of biomaterials. Self-heated thermistor probes, inserted into the tissue of interest, are used to deliver heat as well as to monitor the rate of heat removal. An empirical calibration procedure allows accurate thermal-property measurements over a wide range of tissue temperatures. Operation of the instrument in three media with known thermal properties shows the uncertainty of measurements to be about 2%. The reproducibility is 0.5% for the thermal-conductivity measurements and 2% for the thermal-diffusivity measurements. Thermal properties were measured in dog, pig, rabbit, and human tissues. The tissues included kidney, spleen, liver, brain, heart, lung, pancreas, colon cancer, and breast cancer. Thermal properties were measured for 65 separate tissue samples at 3, 10, 17, 23, 30, 37, and 45°C. The results show that the temperature coefficient of biomaterials approximates that of water.

  3. Heat conduction in systems with Kolmogorov-Arnold-Moser phase space structure.

    PubMed

    Herrera-González, I F; Pérez-Aguilar, H I; Mendoza-Suárez, A; Tututi, E S

    2012-09-01

    We study heat conduction in a billiard channel formed by two sinusoidal walls and the diffusion of particles in the corresponding channel of infinite length; the latter system has an infinite horizon, i.e., a particle can travel an arbitrary distance without colliding with the rippled walls. For small ripple amplitudes, the dynamics of the heat carriers is regular and analytical results for the temperature profile and heat flux are obtained using an effective potential. The study also proposes a formula for the temperature profile that is valid for any ripple amplitude. When the dynamics is regular, ballistic conductance and ballistic diffusion are present. The Poincaré plots of the associated dynamical system (the infinitely long channel) exhibit the generic transition to chaos as ripple amplitude is increased. When no Kolmogorov-Arnold-Moser (KAM) curves are present to forbid the connection of all chaotic regions, the mean square displacement grows asymptotically with time t as tln(t).

  4. Thermal conduction study of warm dense aluminum by proton differential heating

    NASA Astrophysics Data System (ADS)

    Ping, Y.; Kemp, G.; McKelvey, A.; Fernandez-Panella, A.; Shepherd, R.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.

    2016-10-01

    A differential heating platform has been developed for thermal conduction study (Ping et al. PoP 2015), where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. An experiment using proton differential heating has been carried out at Titan laser for Au/Al targets. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Hydrodynamic simulations show that after 15ps, absorption in underdense plasma needs to be taken into account to correctly interpret SOP data. Comparison between simulations with different thermal conductivity models and a set of data with varying target thickness will be presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  5. Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics

    SciTech Connect

    Sonigra, Dhiren E-mail: ajit.kulkarni@iitb.ac.in; Soman, Swati E-mail: ajit.kulkarni@iitb.ac.in; Kulkarni, Ajit R. E-mail: ajit.kulkarni@iitb.ac.in

    2014-04-24

    Glass-ceramic is prepared by heat treatment of melt quenched 14Li{sub 2}O−9Al{sub 2}O{sub 3}−38TiO{sub 2}−39P{sub 2}O{sub 5} glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi{sub 2}(PO{sub 4}){sub 3} from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.

  6. Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics

    NASA Astrophysics Data System (ADS)

    Sonigra, Dhiren; Soman, Swati; Kulkarni, Ajit R.

    2014-04-01

    Glass-ceramic is prepared by heat treatment of melt quenched 14Li2O-9Al2O3-38TiO2-39P2O5 glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi2(PO4)3 from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.

  7. Hybrid transfinite element modeling/analysis of nonlinear heat conduction problems involving phase change

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.

  8. COYOTE: a finite-element computer program for nonlinear heat-conduction problems

    SciTech Connect

    Gartling, D.K.

    1982-10-01

    COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.

  9. Reinforcing Concepts of Transient Heat Conduction and Convection with Simple Experiments and COMSOL Simulations

    ERIC Educational Resources Information Center

    Mendez, Sergio; AungYong, Lisa

    2014-01-01

    To help students make the connection between the concepts of heat conduction and convection to real-world phenomenon, we developed a combined experimental and computational module that can be incorporated into lecture or lab courses. The experimental system we present requires materials and apparatus that are readily accessible, and the procedure…

  10. An analytical solution to the one-dimensional heat conduction-convection equation in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat transfer in soil occurs by conduction and convection. Infiltrating water affects soil temperature distributions, and measuring soil temperature distributions below infiltrating water can provide a signal for the flux of water. In earlier work a sine wave function (hereinafter referred to as the...

  11. TOPAZ - a finite element heat conduction code for analyzing 2-D solids

    SciTech Connect

    Shapiro, A.B.

    1984-03-01

    TOPAZ is a two-dimensional implicit finite element computer code for heat conduction analysis. This report provides a user's manual for TOPAZ and a description of the numerical algorithms used. Sample problems with analytical solutions are presented. TOPAZ has been implemented on the CRAY and VAX computers.

  12. On The Solenoidal Heat Flux in Quasi-Ballistic Thermal Conduction

    NASA Astrophysics Data System (ADS)

    Ramu, Ashok; Bowers, John

    The Boltzmann transport equation for phonons is recast directly in terms of the heat-flux by means of iteration followed by truncation at the second order in the spherical harmonic expansion of the distribution function. This procedure displays the heat-flux in an explicitly coordinate-invariant form, and leads to a natural decomposition into two components, namely the solenoidal component in addition to the usual irrotational component. The solenoidal heat-flux is explicitly shown to arise in a right-circular cylinder when the transport is in the quasi-ballistic regime. These findings are important in the context of phonon resonators that utilize the strong quasi-ballistic thermal transport reported recently in silicon membranes at room temperature. Effects due to circulating heat fluxes are noted in the effective thermal conductivity of silicon discs. This work was funded by the National Science Foundation, USA under Project Number CMMI-1363207.

  13. Review of the influence of nanoparticles on thermal conductivity, nucleate pool boiling and critical heat flux

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Jagdeep M.; Shrivastava, Ramakant

    2015-03-01

    Nanofluids, the fluid suspensions of nonmaterials, have shown many interesting properties and the unique features offer unprecedented potential for many applications. Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was first noted, about a decade ago, though much debate and inconsistency have been reported. Insufficient understanding of the formulation, mechanism of nanofluids further limits their applications [1-34]. Inconsistent data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers [35-43] have noted an enhancement in the critical heat flux during nanofluid boiling. Some researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux augmentation. In the review, the future developments of these technologies are discussed. In order to be able to put the nanofluid heat transfer technologies into practice, fundamental of these studies are greatly needed to comprehend the physical mechanisms.

  14. Evaluation of heat transfer in acupuncture needles: convection and conduction approaches.

    PubMed

    Tzou, Chieh-Han John; Yang, Tzyy-Yih; Chung, Ya-Chien

    2015-04-01

    Originating in ancient China, acupuncture using needles has been developed for thousands of years and has received attention for its reported medical remedies, such as pain relief and chronic disease treatment. Heat transfer through the needles, which might have effects on the biomechanism of acupuncture, providing a stimulus and regulating homeostasis, has never been studied. This article analyzes the significance of heat transfer through needles via convection and conduction, approached by means of computational analysis. The needle is a cylindrical body, and an axis symmetrical steady-state heat-transfer model that viscosity and static pressure was not applied. This article evaluates heat transfer via acupuncture needles by using five metal materials: silver, copper, brass, iron, and stainless steel. A silver needle of the type extensively applied in acupuncture can dissipate more than seven times as much heat as a stainless steel needle of the same type. Heat transfer through such a needle is significant, compared to natural body-energy consumption over a range of ambient temperatures. The mechanism by which heat flows in or out of the body through the needles may be crucial in the remedial efficacy of acupuncture.

  15. Fourier heat conduction as a phenomenon described within the scope of the second law

    SciTech Connect

    Jesudason, Christopher G.

    2014-12-10

    The historical development of the Carnot cycle necessitated the construction of isothermal and adiabatic pathways within the cycle that were also mechanically 'reversible' which lead eventually to the Kelvin-Clausius development of the entropy function S where for any reversible closed path C, ∮{sub C} dS = 0 based on an infinite number of concatenated Carnot engines that approximated the said path and where for each engine ΔQ{sub 1}/T{sub 1}+ΔQ{sub 2}/T{sub 2} = 0 where the Q's and T's are the heat absorption increments and temperature respectively with the subscripts indicating the isothermal paths (1;2) where for the Carnot engine, the heat absorption is for the diathermal (isothermal) paths of the cycle only. Since 'heat' has been defined as that form of energy that is transferred as a result of a temperature difference and a corollary of the Clausius statement of the Second law is that it is impossible for heat to be transferred from a cold to a hot reservoir with no other effect on the environment, these statements suggested that the local mode of transfer of 'heat' in the isothermal segments of the pathway does imply a Fourier heat conduction mechanism (to conform to the definition of 'heat') albeit of a 'reversible' kind, but on the other hand, the Fourier mechanism is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the material involved in the conveyance of the heat energy. These and several other considerations lead Benofy and Quay (BQ) to postulate the Fourier heat conduction phenomenon to be an ancillary principle in thermodynamics, with this principle being strictly local in nature, where the global Second law statements could not be applied to this local process. Here we present equations that model heat conduction as a thermodynamically reversible but mechanically irreversible process where due to the belief in mechanical time reversible symmetry, thermodynamical reversibility has been

  16. Fourier heat conduction as a phenomenon described within the scope of the second law

    NASA Astrophysics Data System (ADS)

    Jesudason, Christopher G.

    2014-12-01

    The historical development of the Carnot cycle necessitated the construction of isothermal and adiabatic pathways within the cycle that were also mechanically "reversible" which lead eventually to the Kelvin-Clausius development of the entropy function S where for any reversible closed path C, ∮C dS = 0 based on an infinite number of concatenated Carnot engines that approximated the said path and where for each engine ΔQ1/T1+ΔQ2/T2 = 0 where the Q's and T's are the heat absorption increments and temperature respectively with the subscripts indicating the isothermal paths (1;2) where for the Carnot engine, the heat absorption is for the diathermal (isothermal) paths of the cycle only. Since 'heat' has been defined as that form of energy that is transferred as a result of a temperature difference and a corollary of the Clausius statement of the Second law is that it is impossible for heat to be transferred from a cold to a hot reservoir with no other effect on the environment, these statements suggested that the local mode of transfer of 'heat' in the isothermal segments of the pathway does imply a Fourier heat conduction mechanism (to conform to the definition of 'heat') albeit of a "reversible" kind, but on the other hand, the Fourier mechanism is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the material involved in the conveyance of the heat energy. These and several other considerations lead Benofy and Quay (BQ) to postulate the Fourier heat conduction phenomenon to be an ancillary principle in thermodynamics, with this principle being strictly local in nature, where the global Second law statements could not be applied to this local process. Here we present equations that model heat conduction as a thermodynamically reversible but mechanically irreversible process where due to the belief in mechanical time reversible symmetry, thermodynamical reversibility has been unfortunately linked to mechanical

  17. Unsteady convective heat transfer in cross flow past two tandem cylinders: an inverse heat conduction approach

    NASA Astrophysics Data System (ADS)

    Demiray, Engin; Seker, Anıl; Tulek, Yahya

    2016-11-01

    Rehydration, which is a complex process aimed at the restoration of raw material properties when dried material comes in contact with water. In the present research, studies were conducted to probe the kinetics of rehydration of sun-dried red peppers. The kinetics associated with rehydrating sun-dried red peppers was studied at three different temperatures (25, 35 and 45 °C). To describe the rehydration kinetics, four different models, Peleg's, Weibull, first order and exponential association, were considered. Between these four models proposed Weibull model gave a better fit for all rehydration conditions applied. The effective moisture diffusivity values of red peppers increased as water rehydration temperature increased. The values of the effective moisture diffusivity of red peppers were in the range 1.37 × 10-9-1.48 × 10-9 m2 s-1. On the other hand, the activation energy for rehydration kinetic was also calculated using Arrhenius equation and found as 3.17 kJ mol-1.

  18. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation

    PubMed Central

    Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-01-01

    Thermal conductance measures the ease with which heat leaves or enters  an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915

  19. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    PubMed

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  20. Conductive heat flux in measurements of the Nusselt number in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Shishkina, Olga; Weiss, Stephan; Bodenschatz, Eberhard

    2016-10-01

    We propose a recipe to calculate accurately the Nusselt number Nu in turbulent Rayleigh-Bénard convection, using the measured total heat flux q and known parameters of the fluid and convection cell. More precisely, we present a method to compute the conductive heat flux q ̂, which is a normalization of q in the definition of Nu, for conditions where the fluid parameters may vary strongly across the fluid layer. We show that in the Oberbeck-Boussinesq approximation and also when the thermal conductivity depends exclusively on the temperature, the value of q ̂ is determined by simple explicit formulas. For a general non-Oberbeck-Boussinesq (NOB) case we propose an iterative procedure to compute q ̂. Using our procedure, we critically analyze some already conducted and some hypothetical experiments and show how q ̂ is influenced by the NOB effects.

  1. Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Kim, Jin-Hyuck; Jeong, Sangkwon; Jung, Jeheon

    2012-07-01

    This paper presents the results of an experimental investigation of the thermal and hydraulic performance of a printed circuit heat exchanger (PCHE) for use in the cryogenic temperature region. Compact PCHEs with multiple corrugated, longitudinal flow microchannels were fabricated using chemical etching and diffusion bonding to evaluate their thermal and hydraulic performance. The testing of the PCHEs was conducted with helium gas at cryogenic temperatures. The pressure drop and thermal effectiveness values obtained from the measured pressures and temperatures are discussed. The thermal performance was predominantly affected by the axial conduction heat transfer in the low Reynolds number ranges of theses experiments. A simple performance calculation model is presented, and the effectiveness calculated from the model is compared with the experimental data. The design of the cryogenic PCHE was then modified to reduce axial conduction losses.

  2. Low temperature heat capacity, standard entropy, standard enthalpy and magnetic property: a new 1D Cu(II) coordination polymer incorporating tetrazole-1-acetic acid and p-nitrobenzoic acid.

    PubMed

    Yang, Qi; Ge, Jing; Liu, Xin; Shi, Quan; Ke, Hongshan; Wei, Qing; Xie, Gang; Chen, Sanping; Gao, Shengli

    2017-02-14

    A new 1D Cu(II) coordination polymer, formulated as {[Cu(TZA)(PNA)]·H2O}n (1) (HTZA = tetrazole-1-acetic acid, HPNA = p-nitrobenzoic acid), was synthesized and structurally characterized. Thermogravimetric analysis demonstrated that the main frame of 1 exhibited good thermostability up to 473 K. The non-isothermal kinetics for the first exothermic process of 1 were studied by Kissinger and Ozawa methods. The magnetic study revealed that 1 possessed antiferromagnetic exchange interactions between Cu(II) ions through the carboxyl-bridge. The low-temperature (1.9 to 300 K) heat capacity of 1 was measured using the heat-capacity option of a Quantum Design Physical Property Measurement System (PPMS). In addition, the thermodynamic functions in the experimental temperature range were derived by fitting the heat-capacity data to a series of theoretical and empirical models. The standard entropy and standard enthalpy of 1 were respectively calculated to be 411.37 ± 4.11 J mol(-1) K(-1) and 60.21 ± 0.60 kJ mol(-1).

  3. Transient heat conduction through a substrate of brine-spongy ice

    NASA Astrophysics Data System (ADS)

    Dehghani, S. R.; Naterer, G. F.; Muzychka, Y. S.

    2017-03-01

    An analytical model for heat conduction through brine-spongy ice is developed. This model fills a gap in knowledge related to transient heat conduction to a two-phase substrate which is crucial for modeling transient icing and deicing of cold surfaces in contact with salt water. The core of the model is based on the phase change of pure ice and brine pockets trapped in the structure of spongy ice. Freezing of brine pockets causes the release of the latent heat of fusion that is considered as the source of heat generation distributed throughout the brine-spongy ice. A nonlinear partial differential equation and a number of equations of state for ice, brine, and brine-spongy ice create governing equations of heat transfer through brine-spongy ice. A standard numerical scheme solves the set of equations in various initial conditions. The variation of temperature, volume fraction of brine and salinity of brine pockets are calculated numerically. Experimental samples of brine-spongy ice are examined under transient conditions and their surface temperatures are captured using an infrared thermal camera. The numerical results, which are for various overall salinities, are closely aligned with the measured surface temperatures.

  4. Design and Performance Validation of a Conductively Heated Sealed-Vessel Reactor for Organic Synthesis.

    PubMed

    Obermayer, David; Znidar, Desiree; Glotz, Gabriel; Stadler, Alexander; Dallinger, Doris; Kappe, C Oliver

    2016-12-02

    A newly designed robust and safe laboratory scale reactor for syntheses under sealed-vessel conditions at 250 °C maximum temperature and 20 bar maximum pressure is presented. The reactor employs conductive heating of a sealed glass vessel via a stainless steel heating jacket and implements both online temperature and pressure monitoring in addition to magnetic stirring. Reactions are performed in 10 mL borosilicate vials that are sealed with a silicone cap and Teflon septum and allow syntheses to be performed on a 2-6 mL scale. This conductively heated reactor is compared to a standard single-mode sealed-vessel microwave instrument with respect to heating and cooling performance, stirring efficiency, and temperature and pressure control. Importantly, comparison of the reaction outcome for a number of different synthetic transformations performed side by side in the new device and a standard microwave reactor suggest that results obtained using microwave conditions can be readily mimicked in the operationally much simpler and smaller conventionally heated device.

  5. Transient temperature distributions in simple conducting bodies steadily heated through a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Parker, Hermon M

    1953-01-01

    An analysis is made of the transient heat-conduction effects in three simple semi-infinite bodies: the flat insulated plate, the conical shell, and the slender solid cone. The bodies are assumed to have constant initial temperatures and, at zero time, to begin to move at a constant speed and zero angle of attack through a homogeneous atmosphere. The heat input is taken as that through a laminar boundary layer. Radiation heat transfer and transverse temperature gradients are assumed to be zero. The appropriate heat-conduction equations are solved by an iteration method, the zeroeth-order terms describing the situation in the limit of small time. The method is presented and the solutions are calculated to three orders which are sufficient to give reasonably accurate results when the forward edge has attained one-half the total temperature rise (nose half-rise time). Flight Mach number and air properties occur as parameters in the result. Approximate expressions for the extent of the conduction region and nose half-rise times as functions of the parameters of the problem are presented. (author)

  6. Thermal conductance of and heat generation in tire-pavement interface and effect on aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.

    1976-01-01

    A finite-difference analysis was performed on temperature records obtained from a free rolling automotive tire and from pavement surface. A high thermal contact conductance between tire and asphalt was found on a statistical basis. Average slip due to squirming between tire and asphalt was about 1.5 mm. Consequent friction heat was estimated as 64 percent of total power absorbed by bias-ply, belted tire. Extrapolation of results to aircraft tire indicates potential braking improvement by even moderate increase of heat absorbing capacity of runway surface.

  7. Asymptotic expansions of solutions of the heat conduction equation in internally bounded cylindrical geometry

    USGS Publications Warehouse

    Ritchie, R.H.; Sakakura, A.Y.

    1956-01-01

    The formal solutions of problems involving transient heat conduction in infinite internally bounded cylindrical solids may be obtained by the Laplace transform method. Asymptotic series representing the solutions for large values of time are given in terms of functions related to the derivatives of the reciprocal gamma function. The results are applied to the case of the internally bounded infinite cylindrical medium with, (a) the boundary held at constant temperature; (b) with constant heat flow over the boundary; and (c) with the "radiation" boundary condition. A problem in the flow of gas through a porous medium is considered in detail.

  8. High performance heat curing copper-silver powders filled electrically conductive adhesives

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi

    2015-03-01

    In this study, high performance electrically conductive adhesives were fabricated from a vinyl ester resin, a thermal initiator, silver coated copper powders, and pure silver powders, without using any other coupling agent, dispersing agent, and reducing agent. The heat cured copper-silver powders filled electrically conductive adhesives presented low bulk resistivity (e.g., 4.53 × 10-5 Ω·cm) due to the silver powders that had given high electrical conductivity to the adhesives, and high shear strength (e.g., 16.22 MPa) provided by the crosslinked structures of vinyl ester resin. These high performance copper-silver powders filled electrically conductive adhesives have lower cost than those filled by pure silver powders, which can be well used in the electronic packaging and can enlarge the application prospects of electrically conductive adhesives. [Figure not available: see fulltext.

  9. Giant heat transfer in the crossover regime between conduction and radiation

    PubMed Central

    Kloppstech, Konstantin; Könne, Nils; Biehs, Svend-Age; Rodriguez, Alejandro W.; Worbes, Ludwig; Hellmann, David; Kittel, Achim

    2017-01-01

    Heat is transferred by radiation between two well-separated bodies at temperatures of finite difference in vacuum. At large distances the heat transfer can be described by black body radiation, at shorter distances evanescent modes start to contribute, and at separations comparable to inter-atomic spacing the transition to heat conduction should take place. We report on quantitative measurements of the near-field mediated heat flux between a gold coated near-field scanning thermal microscope tip and a planar gold sample at nanometre distances of 0.2–7 nm. We find an extraordinary large heat flux which is more than five orders of magnitude larger than black body radiation and four orders of magnitude larger than the values predicted by conventional theory of fluctuational electrodynamics. Different theories of phonon tunnelling are not able to describe the observations in a satisfactory way. The findings demand modified or even new models of heat transfer across vacuum gaps at nanometre distances. PMID:28198369

  10. Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.

  11. Heat, chloride, and specific conductance as ground water tracers near streams.

    PubMed

    Cox, Marisa H; Su, Grace W; Constantz, Jim

    2007-01-01

    Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system.

  12. Near-Field Radiative Heat Transfer under Temperature Gradients and Conductive Transfer

    NASA Astrophysics Data System (ADS)

    Jin, Weiliang; Messina, Riccardo; Rodriguez, Alejandro W.

    2017-02-01

    We describe a recently developed formulation of coupled conductive and radiative heat transfer (RHT) between objects separated by nanometric, vacuum gaps. Our results rely on analytical formulas of RHT between planar slabs (based on the scattering-matrix method) as well as a general formulation of RHT between arbitrarily shaped bodies (based on the fluctuating-volume current method), which fully captures the existence of temperature inhomogeneities. In particular, the impact of RHT on conduction, and vice versa, is obtained via self-consistent solutions of the Fourier heat equation and Maxwell's equations. We show that in materials with low thermal conductivities (e.g. zinc oxides and glasses), the interplay of conduction and RHT can strongly modify heat exchange, exemplified for instance by the presence of large temperature gradients and saturating flux rates at short (nanometric) distances. More generally, we show that the ability to tailor the temperature distribution of an object can modify the behaviour of RHT with respect to gap separations, e.g. qualitatively changing the asymptotic scaling at short separations from quadratic to linear or logarithmic. Our results could be relevant to the interpretation of both past and future experimental measurements of RHT at nanometric distances.

  13. One-Pot Solvothermal in Situ Growth of 1D Single-Crystalline NiSe on Ni Foil as Efficient and Stable Transparent Conductive Oxide Free Counter Electrodes for Dye-Sensitized Solar Cells.

    PubMed

    Bao, Chao; Li, Faxin; Wang, Jiali; Sun, Panpan; Huang, Niu; Sun, Yihua; Fang, Liang; Wang, Lei; Sun, Xiaohua

    2016-12-07

    One-dimensional single-crystal nanostructural nickel selenides were successfully in situ grown on metal nickel foils by two simple one-step solvothermal methods, which formed NiSe/Ni counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The nickel foil acted as the nickel source in the reaction process, a supporting substrate, and an electron transport "speedway". Electrochemical testing indicated that the top 1D single-crystal NiSe exhibited prominent electrocatalytic activity for I3(-) reduction. Due to the metallic conductivity of Ni substrate and the outstanding electrocatalytic activity of single-crystal NiSe, the DSSC based on a NiSe/Ni CE exhibited higher fill factor (FF) and larger short-circuit current density (Jsc) than the DSSC based on Pt/FTO CE. The corresponding power conversion efficiency (6.75%) outperformed that of the latter (6.18%). Moreover, the NiSe/Ni CEs also showed excellent electrochemical stability in the I(-)/I3(-) redox electrolyte. These findings indicated that single-crystal NiSe in situ grown on Ni substrate was a potential candidate to replace Pt/TCO as a cheap and highly efficient counter electrode of DSSC.

  14. A Reduced-Boundary-Function Method for Convective Heat Transfer with Axial Heat Conduction and Viscous Dissipation

    SciTech Connect

    Xu, Zhijie

    2012-07-01

    We introduce a method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field is reduced to seek the solutions of T at the boundary (r=a or r=0, r is the distance from the centerline shown in Fig. 1), i.e. the boundary functions and/or . In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady state problem using the proposed method.

  15. A Reduced-Boundary-Function Method for Convective Heat Transfer With Axial Heat Conduction and Viscous Dissipation

    SciTech Connect

    Zhijie Xu

    2012-07-01

    We introduce a new method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field T(x,r,t) is reduced to seek the solutions of T at the boundary (r = a or r = 0, r is the distance from the centerline shown in Fig. 1), i.e., the boundary functions T{sub a}(x,t) {triple_bond} T(x,r=a,t) and/or T{sub 0}(x,t) {triple_bond} T(x,r=0,t). In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field T(x,r,t) can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady-state problem using the proposed method.

  16. Numerical identification of boundary conditions on nonlinearly radiating inverse heat conduction problems

    NASA Technical Reports Server (NTRS)

    Murio, Diego A.

    1991-01-01

    An explicit and unconditionally stable finite difference method for the solution of the transient inverse heat conduction problem in a semi-infinite or finite slab mediums subject to nonlinear radiation boundary conditions is presented. After measuring two interior temperature histories, the mollification method is used to determine the surface transient heat source if the energy radiation law is known. Alternatively, if the active surface is heated by a source at a rate proportional to a given function, the nonlinear surface radiation law is then recovered as a function of the interface temperature when the problem is feasible. Two typical examples corresponding to Newton cooling law and Stefan-Boltzmann radiation law respectively are illustrated. In all cases, the method predicts the surface conditions with an accuracy suitable for many practical purposes.

  17. Numerical analysis of heat conduction problems on irregular domains by means of a collocation meshless method

    NASA Astrophysics Data System (ADS)

    Zamolo, R.; Nobile, E.

    2017-01-01

    A Least Squares Collocation Meshless Method based on Radial Basis Function (RBF) interpolation is used to solve steady state heat conduction problems on 2D polygonal domains using MATLAB® environment. The point distribution process required by the numerical method can be fully automated, taking account of boundary conditions and geometry of the problem to get higher point distribution density where needed. Several convergence tests have been carried out comparing the numerical results to the corresponding analytical solutions to outline the properties of this numerical approach, considering various combinations of parameters. These tests showed favorable convergence properties in the simple cases considered: along with the geometry flexibility, these features confirm that this peculiar numerical approach can be an effective tool in the numerical simulation of heat conduction problems.

  18. Boundary Characteristics for the Generalized Heat-Conduction Equation and Their Equivalent Representations

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2016-07-01

    On the basis of the consideration of the boundary-value problem for the generalized equation of heat conduction in bounded nonuniform spaces with Dirichlet, Neumann, and Robin boundary conditions, corresponding sequences of boundary characteristics have been obtained. For each of these sequences, definite integro-differential representations (relations) have been constructed. It has been shown that approximate analytical solutions can be obtained for bounded nonuniform regions with variable transfer coefficients in the Cartesian, cylindrical, and spherical coordinate systems. On the basis of systems of algebraic equations, approximate analytical solutions have been constructed with approximately equal accuracies independently of the calculation scheme used (with the introduction of the temperature-disturbance front or without it, i.e., by multiple integration of the heat-conduction equation over the whole computational region). These solutions have a negligibly small error and, therefore, can be considered as conditionally exact.

  19. Neumann and Robin boundary conditions for heat conduction modeling using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Esmaili Sikarudi, M. A.; Nikseresht, A. H.

    2016-01-01

    Smoothed particle hydrodynamics is a robust Lagrangian particle method which is widely used in various applications, from astrophysics to hydrodynamics and heat conduction. It has intrinsic capabilities for simulating large deformation, composites, multiphysics events, and multiphase fluid flows. It is vital to use reliable boundary conditions when boundary value problems like heat conduction or Poisson equation for incompressible flows are solved. Since smoothed particle hydrodynamics is not a boundary fitted grids method, implementation of boundary conditions can be problematic. Many methods have been proposed for enhancing the accuracy of implementation of boundary conditions. In the present study a new approach for facilitating the implementation of Robin and Neumann boundary conditions is proposed and proven to give accurate results. Also there is no need to use complicated preprocessing as in virtual particle method. The new method is compared to an equivalent one dimensional moving least square scheme and it is shown that the present method is less sensitive to particle disorder.

  20. Heat conduction in a chain of colliding particles with a stiff repulsive potential

    NASA Astrophysics Data System (ADS)

    Gendelman, Oleg V.; Savin, Alexander V.

    2016-11-01

    One-dimensional billiards, i.e., a chain of colliding particles with equal masses, is a well-known example of a completely integrable system. Billiards with different particle masses is generically not integrable, but it still exhibits divergence of a heat conduction coefficient (HCC) in the thermodynamic limit. Traditional billiards models imply instantaneous (zero-time) collisions between the particles. We relax this condition of instantaneous impact and consider heat transport in a chain of stiff colliding particles with the power-law potential of the nearest-neighbor interaction. The instantaneous collisions correspond to the limit of infinite power in the interaction potential; for finite powers, the interactions take nonzero time. This modification of the model leads to a profound physical consequence—the probability of multiple (in particular triple) -particle collisions becomes nonzero. Contrary to the integrable billiards of equal particles, the modified model exhibits saturation of the heat conduction coefficient for a large system size. Moreover, the identification of scattering events with triple-particle collisions leads to a simple definition of the characteristic mean free path and a kinetic description of heat transport. This approach allows us to predict both the temperature and density dependencies for the HCC limit values. The latter dependence is quite counterintuitive—the HCC is inversely proportional to the particle density in the chain. Both predictions are confirmed by direct numerical simulations.

  1. Heat conduction in a chain of colliding particles with a stiff repulsive potential.

    PubMed

    Gendelman, Oleg V; Savin, Alexander V

    2016-11-01

    One-dimensional billiards, i.e., a chain of colliding particles with equal masses, is a well-known example of a completely integrable system. Billiards with different particle masses is generically not integrable, but it still exhibits divergence of a heat conduction coefficient (HCC) in the thermodynamic limit. Traditional billiards models imply instantaneous (zero-time) collisions between the particles. We relax this condition of instantaneous impact and consider heat transport in a chain of stiff colliding particles with the power-law potential of the nearest-neighbor interaction. The instantaneous collisions correspond to the limit of infinite power in the interaction potential; for finite powers, the interactions take nonzero time. This modification of the model leads to a profound physical consequence-the probability of multiple (in particular triple) -particle collisions becomes nonzero. Contrary to the integrable billiards of equal particles, the modified model exhibits saturation of the heat conduction coefficient for a large system size. Moreover, the identification of scattering events with triple-particle collisions leads to a simple definition of the characteristic mean free path and a kinetic description of heat transport. This approach allows us to predict both the temperature and density dependencies for the HCC limit values. The latter dependence is quite counterintuitive-the HCC is inversely proportional to the particle density in the chain. Both predictions are confirmed by direct numerical simulations.

  2. Mixed Convection with Conduction and Surface Radiation from a Vertical Channel with Discrete Heating

    NASA Astrophysics Data System (ADS)

    Londhe, S. D.; Rao, C. G.

    2013-10-01

    A numerical investigation into fluid flow and heat transfer for the geometry of a vertical parallel plate channel subjected to conjugate mixed convection with radiation is attempted here. The channel considered has three identical flush-mounted discrete heat sources in its left wall, while the right wall that does not contain any heat source acts as a sink. Air, assumed to be a radiatively non-participating and having constant thermophysical properties subject to the Boussinesq approximation, is the cooling agent. The heat generated in the left wall gets conducted along it and is later dissipated by mixed convection and radiation. The governing equations, considered in their full strength sans the boundary layer approximations, are converted into vorticity-stream function form and are then normalized. These equations along with pertinent boundary conditions are solved through finite volume method coupled with Gauss-Seidel iterative technique. The effects of modified Richardson number, surface emissivity, thermal conductivity and aspect ratio on local temperature distribution along the channel, maximum channel temperature and relative contributions of mixed convection and radiation have been thoroughly studied. The prominence of radiation in the present problem has been highlighted.

  3. Lateral conduction effects on heat-transfer data obtained with the phase-change paint technique

    NASA Technical Reports Server (NTRS)

    Maise, G.; Rossi, M. J.

    1974-01-01

    A computerized tool, CAPE, (Conduction Analysis Program using Eigenvalues) has been developed to account for lateral heat conduction in wind tunnel models in the data reduction of the phase-change paint technique. The tool also accounts for the effects of finite thickness (thin wings) and surface curvature. A special reduction procedure using just one time of melt is also possible on leading edges. A novel iterative numerical scheme was used, with discretized spatial coordinates but analytic integration in time, to solve the inverse conduction problem involved in the data reduction. A yes-no chart is provided which tells the test engineer when various corrections are large enough so that CAPE should be used. The accuracy of the phase-change paint technique in the presence of finite thickness and lateral conduction is also investigated.

  4. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core

    PubMed Central

    Manthilake, Geeth M.; de Koker, Nico; Frost, Dan J.; McCammon, Catherine A.

    2011-01-01

    The amount of heat flowing from Earth’s core critically determines the thermo-chemical evolution of both the core and the lower mantle. Consisting primarily of a polycrystalline aggregate of silicate perovskite and ferropericlase, the thermal boundary layer at the very base of Earth’s lower mantle regulates the heat flow from the core, so that the thermal conductivity (k) of these mineral phases controls the amount of heat entering the lowermost mantle. Here we report measurements of the lattice thermal conductivity of pure, Al-, and Fe-bearing MgSiO3 perovskite at 26 GPa up to 1,073 K, and of ferropericlase containing 0, 5, and 20% Fe, at 8 and 14 GPa up to 1,273 K. We find the incorporation of these elements in silicate perovskite and ferropericlase to result in a ∼50% decrease of lattice thermal conductivity relative to the end member compositions. A model of thermal conductivity constrained from our results indicates that a peridotitic mantle would have k = 9.1 ± 1.2 W/m K at the top of the thermal boundary layer and k = 8.4 ± 1.2 W/m K at its base. These values translate into a heat flux of 11.0 ± 1.4 terawatts (TW) from Earth’s core, a range of values consistent with a variety of geophysical estimates. PMID:22021444

  5. Sound propagation through a discretely inhomogeneous thermoelastic plane layer adjacent to heat-conducting liquids

    NASA Astrophysics Data System (ADS)

    Tolokonnikov, L. A.; Larin, N. V.

    2017-01-01

    An analytical solution of the problem of the propagation of a plane sound wave through a discretely inhomogeneous thermoelastic layer adjacent to inviscid heat-conducting liquids is obtained. Results of calculations of the dependences of the transmission coefficient on the wave incidence angle and frequency for discretely inhomogeneous and continuously inhomogeneous thermoelastic layers are given. It is shown that a thermoelastic layer with continuously inhomogeneous thickness can be simulated using a system of homogeneous thermoelastic layers.

  6. Dense Non Aqueous Phase Liquid (DNAPL) Removal from Fractured Rock using Thermal Conductive Heating (TCH)

    DTIC Science & Technology

    2013-01-01

    or karst . As control of water inflow may be problematic in fractured media and karst , and capture of contaminants may be difficult, effectiveness is...fractured media and karst , and capture of contaminants may be difficult, effectiveness is expected to be limited in these settings. If water inflow...conductive heating below the water table… As control of water inflow may be problematic in fractured media and karst , and capture of contaminants may be

  7. Resolving electrical conductivities from collisionally damped plasmons in isochorically heated warm dense aluminum

    SciTech Connect

    Sperling, P.; Fletcher, L. B.; Chung, H. -K.; Gamboa, E. J.; Lee, H. J.; Omarbakiyeva, Y.; Reinholz, H.; Ropke, G.; Rosmej, S.; Zastrau, U.; Glenzer, S. H.

    2016-03-29

    We measure the highly-resolved inelastic x-ray scattering spectrum of isochorically ultrafast heated aluminum. In the x-ray forward scattering spectra the electron temperature could be measured from the down- and upshifted plasmon, where the electron density of ne = 1:8 1023 cm3 is known a priori. We have studied the plasmon damping by applying electron-particle collision models beyond the Born approximation determining the electrical conductivity of warm dense aluminum.

  8. MHD stagnation point flow over a stretching cylinder with variable thermal conductivity and joule heating

    NASA Astrophysics Data System (ADS)

    Jahan, Shah; Sakidin, Hamzah; Nazar, Roslinda Mohd

    2016-11-01

    The behavior of magnetohydrodynamics (MHD) flow of viscous fluid near the stagnation point over a stretching cylinder with variable thermal conductivity is analyzed. Thermal conductivity is assumed to be linearly related with temperature. The joule heating effects due to magnetic field is also encountered here. Analytical solutions are developed for both momentum and energy equations by using the homotopy analysis method (HAM). The variations of different parameters on the velocity and temperature distributions along with the skin friction coefficient and local Nusselt number are displayed graphically. Numerical values for the skin friction coefficient are calculated and discussed

  9. Strongly coupled near-field radiative and conductive heat transfer between planar bodies

    NASA Astrophysics Data System (ADS)

    Messina, Riccardo; Jin, Weiliang; Rodriguez, Alejandro W.

    2016-09-01

    We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on geometric and material parameters and not so crucially on operating temperatures. Our findings exploit rigorous calculations based on a closed-form expression for the heat flux between two plates separated by vacuum gaps d and subject to arbitrary temperature profiles, along with an approximate but accurate analytical treatment of coupled conduction-radiation in this geometry. We find that these effects can be prominent in typical materials (e.g., silica and sapphire) at separations of tens of nanometers, and can play an even larger role in metal oxides, which exhibit moderate conductivities and enhanced radiative properties. Broadly speaking, these predictions suggest that the impact of RHT on thermal conduction, and vice versa, could manifest itself as a limit on the possible magnitude of RHT at the nanoscale, which asymptotes to a constant (the conductive transfer rate when the gap is closed) instead of diverging at short separations.

  10. Entropy and Nonlinear Nonequilibrium Thermodynamic Relation for Heat Conducting Steady States

    NASA Astrophysics Data System (ADS)

    Komatsu, Teruhisa S.; Nakagawa, Naoko; Sasa, Shin-Ichi; Tasaki, Hal

    2011-01-01

    Among various possible routes to extend entropy and thermodynamics to nonequilibrium steady states (NESS), we take the one which is guided by operational thermodynamics and the Clausius relation. In our previous study, we derived the extended Clausius relation for NESS, where the heat in the original relation is replaced by its "renormalized" counterpart called the excess heat, and the Gibbs-Shannon expression for the entropy by a new symmetrized Gibbs-Shannon-like expression. Here we concentrate on Markov processes describing heat conducting systems, and develop a new method for deriving thermodynamic relations. We first present a new simpler derivation of the extended Clausius relation, and clarify its close relation with the linear response theory. We then derive a new improved extended Clausius relation with a "nonlinear nonequilibrium" contribution which is written as a correlation between work and heat. We argue that the "nonlinear nonequilibrium" contribution is unavoidable, and is determined uniquely once we accept the (very natural) definition of the excess heat. Moreover it turns out that to operationally determine the difference in the nonequilibrium entropy to the second order in the temperature difference, one may only use the previous Clausius relation without a nonlinear term or must use the new relation, depending on the operation (i.e., the path in the parameter space). This peculiar "twist" may be a clue to a better understanding of thermodynamics and statistical mechanics of NESS.

  11. Transient conductive, radiative heat transfer coupled with moisture transport in attic insulations

    NASA Astrophysics Data System (ADS)

    Gorthala, R.; Harris, K. T.; Roux, J. A.; McCarty, T. A.

    1994-01-01

    A transient, one-dimensional thermal model that incorporates combined conduction, radiation heat transfer, and moisture transport for residential attic insulations has been developed. The governing equations are the energy equation, the radiative transport equation for volumetric radiation within the insulation batt, and the species equations for bound H2O and vapor H2O. A simultaneous solution procedure with a Eulerian control volume-based finite difference method was used to solve the energy equation and the species equations. The method of discrete ordinates was used in solving the radiative transport equation. For H2O transport, both diffusion of vapor H2O and bound H2O and moisture adsorption/desorption within the insulation binder are included in the model. The experimental data measured at an occupied North Mississippi residence for R19STD (standard R19 fiberglass insulation batt without a foil radiant barrier) were used to validate the model which predicted heat fluxes for summer, spring, winter, and fall seasonal conditions. These predictions were compared with the measured heat flux data and the predictions from the dry model (without the moisture transport). Various profiles such as temperature-time histories, relative humidity time histories, spatial H2O concentrations, spatial temperatures, and spatial heat fluxes are presented to explain the overall heat transfer behavior.

  12. A direct approach to finding unknown boundary conditions in steady heat conduction

    NASA Technical Reports Server (NTRS)

    Martin, Thomas J.; Dulikravich, George S.

    1993-01-01

    The capability of the boundary element method (BEM) in determining thermal boundary conditions on surfaces of a conducting solid where such quantities are unknown was demonstrated. The method uses a non-iterative direct approach in solving what is usually called the inverse heat conduction problem (IHCP). Given any over-specified thermal boundary conditions such as a combination of temperature and heat flux on a surface where such data is readily available, the algorithm computes the temperature field within the object and any unknown thermal boundary conditions on surfaces where thermal boundary values are unavailable. A two-dimensional, steady-state BEM program was developed and was tested on several simple geometries where the analytic solution was known. Results obtained with the BEM were in excellent agreement with the analytic values. The algorithm is highly flexible in treating complex geometries, mixed thermal boundary conditions, and temperature-dependent material properties and is presently being extended to three-dimensional and unsteady heat conduction problems. The accuracy and reliability of this technique was very good but tended to deteriorate when the known surface conditions were only slightly over-specified and far from the inaccessible surface.

  13. Conditions for Aeronomic Applicability of the Classical Electron Heat Conduction Formula

    NASA Technical Reports Server (NTRS)

    Cole, K. D.; Hoegy, W. R.

    1998-01-01

    Conditions for the applicability of the classical formula for heat conduction in the electrons in ionized gas are investigated. In a fully ionised gas ( V(sub en) much greater than V(sub ei)), when the mean free path for electron-electron (or electron-ion) collisions is much larger than the characteristic thermal scale length of the observed system, the conditions for applicability break down. In the case of the Venus ionosphere this breakdown is indicated for a large fraction of the electron temperature data from altitudes greater than 180 km, for electron densities less than 10(exp 4)/cc cm. In a partially ionised gas such that V(sub en) much greater than V(sub ei) there is breakdown of the formula not only when the mean free path of electrons greatly exceeds the thermal scale length, but also when the gradient of neutral particle density exceeds the electron thermal gradient. It is shown that electron heat conduction may be neglected in estimating the temperature of joule heated electrons by observed strong 100 Hz electric fields when the conduction flux is limited by the saturation flux. The results of this paper support our earlier aeronomical arguments against the hypothesis of planetary scale whistlers for the 100 Hz electric field signal. In turn this means that data from the 100 Hz signal may not be used to support the case for lightning on Venus.

  14. NaK Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2008-01-01

    In a Stirling radioisotope power system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides most of this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending use of that convertor for the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling convertor. In the design of the VCHP for the Advanced Stirling Radioisotope Generator, the VCHP reservoir temperature can vary between 40 and 120 C. While sodium, potassium, or cesium could be used as the working fluid, their melting temperatures are above the minimum reservoir temperature, allowing working fluid to freeze in the reservoir. In contrast, the melting point of NaK is -12 C, so NaK can't freeze in the reservoir. One potential problem with NaK as a working fluid is that previous tests with NaK heat pipes have shown that NaK heat pipes can develop temperature non-uniformities in the evaporator due to NaK's binary composition. A NaK heat pipe was fabricated to measure the temperature non-uniformities in a scale model of the VCHP for the Stirling Radioisotope system. The temperature profiles in the evaporator and condenser were measured as a function of operating temperature and power. The largest delta T across the condenser was 2S C. However, the condenser delta T decreased to 16 C for the 775 C vapor temperature at the highest heat flux applied, 7.21 W/ square cm. This decrease with increasing heat flux was caused by the increased mixing of the sodium and potassium in the vapor. This temperature differential is similar to the temperature variation in this ASRG heat transfer interface without a heat pipe, so NaK can be used as the VCHP working fluid.

  15. EMODEL_1D v. 1.0

    SciTech Connect

    Aldridge, David F.

    2016-07-06

    Program EMODEL_1D is an electromagnetic earth model construction utility designed to generate a three-dimensional (3D) uniformly-gridded representation of one-dimensional (1D) layered earth model. Each layer is characterized by the isotropic EM properties electric permittivity ?, magnetic permeability ?, and current conductivity ?. Moreover, individual layers of the model may possess a linear increase/decrease of any or all of these properties with depth.

  16. Temperature dependence of heat conduction in the Fermi-Pasta-Ulam-β lattice with next-nearest-neighbor coupling.

    PubMed

    Xiong, Daxing; Zhang, Yong; Zhao, Hong

    2014-08-01

    We show numerically that introducing the next-nearest-neighbor interactions (of appropriate strength) into the one-dimensional (1D) Fermi-Pasta-Ulam-β (FPU-β) lattice can result in an unusual, nonmonotonic temperature dependent divergence behavior in a wide temperature range, which is in clear contrast to the universal divergence manner independent of temperature as suggested previously in the conventional 1D FPU-β models with nearest-neighbor (NN) coupling only. We also discuss the underlying mechanism of this finding by analyzing the temperature variations of the properties of discrete breathers, especially that with frequencies having the intraband components. The results may provide useful information for establishing the connection between the macroscopic heat transport properties and the underlying dynamics in general 1D systems with interactions beyond NN couplings.

  17. On the equilibrium of heated self-gravitating masses - Cooling by conduction

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Low, B. C.

    1980-01-01

    An investigation is given of the equilibrium states available to a self-gravitating mass of gas, cooling by conduction, and being heated at a rate proportional to the local gas density. The plane geometry situation is shown to be reducible to quadratures for the pressure, density, temperature, and gravitational potential. For a constant thermal conductivity it is shown that the gas density has either a central maximum or a central minimum, depending on the ratio of the thermal conductivity to a parameter taken to be a measure of the rate of heating. For a thermal conductivity which is a positive power of the temperature, it is shown that the gas density always has a central minimum and a maximum at the outer boundary of the configuration. For cylindrical and spherical geometrical configurations the same general properties are obtained. The physical origin of this behavior is discussed, and it is suggested that these exploratory calculations provide an effect which may not only aid in understanding thin filamentary structure observed in supernova remnants, but also help to assuage the difficulties of producing maser activity in the interior regions of 'cocoon' protostars.

  18. Effect of heat treatment on microstructure and thermal conductivity of carbon/carbon-copper composites

    NASA Astrophysics Data System (ADS)

    Yang, Peng'ao; Yin, Jian; Zhang, Hongbo; Xiong, Xiang

    2016-03-01

    Using 2.5-dimensional carbon fiber fabrics as the reinforcement, porous carbon/carbon(C/C) substrates were firstly fabricated by impregnation/carbonization (I/C) technique with furan resin and then treated at 2000, 2300 and 3000 °C, respectively. Finally, carbon fiber reinforced carbon and copper(C/C-Cu) composites were prepared by infiltrating melt copper alloy into C/C substrates under pressure. The effects of treating temperatures on microstructures and thermal conductivities of the composites were investigated. The results show that heat treatment plays an important role in the microstructure and thermal conductivity of C/C-Cu composites. It is conducive not only to rearrange the carbon crystallite of resin-based carbon in oriented layer structure, but also to improve the content and connectivity of copper alloy. The thermal conductivity increases with the increase in heat treatment temperature in both parallel and perpendicular direction; the thermal conductivity in parallel direction is evidently superior to that in perpendicular direction.

  19. On Cattaneo-Christov heat flux in the flow of variable thermal conductivity Eyring-Powell fluid

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Khan, Muhammad Ijaz; Waqas, Muhammad; Alsaedi, Ahmed

    Here Cattaneo-Christov heat flux model is employed for heat transfer in the stagnation point flow due to stretching cylinder. This consideration modifies the Fourier's law of heat conduction through thermal relaxation time. Temperature-dependent thermal conductivity is adopted. Constitutive equations for Eyring-Powell liquid are considered in the boundary layer flow analysis. Convergent solutions to the nonlinear formulation are derived and analyzed using homotopic procedure. Skin friction coefficient is tabulated and examined for various embedded parameters.

  20. Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling.

    PubMed

    Perano, Kristen M; Usack, Joseph G; Angenent, Largus T; Gebremedhin, Kifle G

    2015-08-01

    The objective of this research was to test the effectiveness of conductive cooling in alleviating heat stress of lactating dairy cows. A conductive cooling system was built with waterbeds (Dual Chamber Cow Waterbeds, Advanced Comfort Technology Inc., Reedsburg, WI) modified to circulate chilled water. The experiment lasted 7 wk. Eight first-lactation Holstein cows producing 34.4±3.7kg/d of milk at 166±28 d in milk were used in the study. Milk yield, dry matter intake (DMI), and rectal temperature were recorded twice daily, and respiration rate was recorded 5 times per day. During wk 1, the cows were not exposed to experimental heat stress or conductive cooling. For the remaining 6 wk, the cows were exposed to heat stress from 0900 to 1700h each day. During these 6 wk, 4 of the 8 cows were cooled with conductive cooling (experimental cows), and the other 4 were not cooled (control cows). The study consisted of 2 thermal environment exposures (temperature-humidity index mean ± standard deviation of 80.7±0.9 and 79.0±1.0) and 2 cooling water temperatures (circulating water through the water mattresses at temperatures of 4.5°C and 10°C). Thus, a total of 4 conductive cooling treatments were tested, with each treatment lasting 1 wk. During wk 6, the experimental and control cows were switched and the temperature-humidity index of 79.0±1.0 with 4.5°C cooling water treatment was repeated. During wk 7, waterbeds were placed directly on concrete stalls without actively cooling the water. Least squares means and P-values for the different treatments were calculated with multivariate mixed models. Conductively cooling the cows with 4.5°C water decreased rectal temperature by 1.0°C, decreased respiration rate by 18 breaths/min, increased milk yield by 5%, and increased DMI by 14% compared with the controls. When the results from the 2 cooling water temperatures (4.5°C and 10°C circulating water) were compared, we found that the rectal temperature from 4.5

  1. Heat, chloride, and specific conductance as ground water tracers near streams

    USGS Publications Warehouse

    Cox, M.H.; Su, G.W.; Constantz, J.

    2007-01-01

    Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.

  2. Influence of mashed potato dielectric properties and circulating water electric conductivity on radio frequency heating at 27 MHz.

    PubMed

    Wang, Jian; Olsen, Robert G; Tang, Juming; Tang, Zhongwei

    2008-01-01

    Experiments and computer simulations were conducted to systematically investigate the influence of mashed potato dielectric properties and circulating water electric conductivity on electromagnetic field distribution, heating rate, and heating pattern in packaged food during radio frequency (RF) heating processes in a 6 kW, 27 MHz laboratory scale RF heating system. Both experimental and simulation results indicated that for the selected food (mashed potato) in this study, the heating rate decreased with an increase of electric conductivity of circulating water and food salt content. Simplified analytical calculations were carried out to verify the simulation results, which further indicated that the electric field distribution in the mashed potato samples was also influenced by their dielectric properties and the electric conductivity of the surrounding circulating water. Knowing the influence of water electric conductivity and mashed potato dielectric properties on the heating rate and heating pattern is helpful in optimizing the radio frequency heating process by properly adjusting these factors. The results demonstrate that computer simulation has the ability to demonstrate influence on RF heat pattern caused by the variation of material physical properties and the potential to aid the improvement on construction and modification of RF heating systems.

  3. One-Particle Representation of Heat Conduction Described within the Scope of the Second Law.

    PubMed

    Jesudason, Christopher Gunaseelan

    2016-01-01

    The Carnot cycle and its deduction of maximum conversion efficiency of heat inputted and outputted isothermally at different temperatures necessitated the construction of isothermal and adiabatic pathways within the cycle that were mechanically "reversible", leading eventually to the Kelvin-Clausius development of the entropy function S with differential dS = dq/T such that [symbol: see text]C dS = 0 where the heat absorption occurs at the isothermal paths of the elementary Carnot cycle. Another required condition is that the heat transfer processes take place infinitely slowly and "reversibly", implying that rates of transfer are not explicitly featured in the theory. The definition of 'heat' as that form of energy that is transferred as a result of a temperature difference suggests that the local mode of transfer of "heat" in the isothermal segments of the pathway implies a Fourier-like heat conduction mechanism which is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the conducting material, and which is deemed reversible mechanically. These paradoxes are circumvented here by first clarifying the terms used before modeling heat transfer as a thermodynamically reversible but mechanically irreversible process and applied to a one dimensional atomic lattice chain of interacting particles subjected to a temperature difference exemplifying Fourier heat conduction. The basis of a "recoverable trajectory" i.e. that which follows a zero entropy trajectory is identified. The Second Law is strictly maintained in this development. A corollary to this zero entropy trajectory is the generalization of the Zeroth law for steady state non-equilibrium systems with varying temperature, and thus to a statement about "equilibrium" in steady state non-thermostatic conditions. An energy transfer rate term is explicitly identified for each particle and agrees quantitatively (and independently) with the rate of heat absorbed at the

  4. GRABER: The Duct Tape of Space and JIMO Heat Conducting Foam

    NASA Technical Reports Server (NTRS)

    Gamble, Eleanor A.

    2004-01-01

    Crack formation in the space shuttle's heat shield during flight poses a major safety concern to everyone on board. Cracking weakens the structure of the shield and lessens the protection it offers against the high temperatures and forces encountered during re-entry. Astronauts need a way to mend these cracks while in space. This is GRABER s function; it can be spackled into the cracks by an astronaut. The material then hardens, or cures, due to being in a vacuum and the heat encountered when it faces the sun. A great deal of work and testing is necessary to create a material that will be workable in a vacuum over a wide range of temperatures, will cure without cracking, will adhere to the sides of the crack, and that can withstand the extreme temperatures of re-entry. A Brookfield PVS Rheometer is being used to characterize GRABER's viscosity at various temperatures and stirring rates. Various compositions of GRABER are being heat treated in a vacuum to determine probably curing times in space. The microstructures of cured samples of each composition are being examined using both optical and electron microscopy. Jupiter s Icy Moon Orbiter (JIMO) will be lifting off sometime around 2013. JIMO will have more power than its predecessor, Galileo, allowing it to change orbits to circle three of Jupiter s moons. Both of the engine types being considered require large heat dissipation systems. These systems will be comprised of heat conductive tubing and plates with a liquid flowing through them. In order to maximize the speed of heat transfer between the tubes and the panels, the in-between areas will be filled with heat conductive silicon carbide foam. Two different foam systems are being considered for this foam. Currently, experimentation is underway with adding Sic, carbon, and carbon fibers to a two part fuel retardant foam. The foam is them pyrolized and its mass and dimensional changes are measured. The structure of the foam will be examined using optical and

  5. Transport properties, specific heat and thermal conductivity of GaN nanocrystalline ceramic

    SciTech Connect

    Sulkowski, Czeslaw; ChuchmaLa, Andrzej; Zaleski, Andrzej J.; Matusiak, Marcin; Mucha, Jan; GLuchowski, PaweL; Strek, WiesLaw

    2010-10-15

    The structural and transport properties (resistivity, thermopower and Hall effect), specific heat and thermal conductivity have been measured for GaN nanocrystalline ceramic prepared by hot pressing. It was found that the temperature dependence of resistivity in temperature range 10-300 K shows the very low activation energy, which is ascribed to the shallow donor doping originating in amorphous phase of sample. The major charge carriers are electrons, what is indicated by negative sign of Hall constant and Seebeck coefficient. The thermopower attains large values (-58 {mu}V/K at 300 K) and was characterized by linear temperature dependence which suggests the diffusion as a major contribution to Seebeck effect. The high electron concentration of 1.3x10{sup 19} cm{sup -3} and high electronic specific heat coefficient determined to be 2.4 mJ/molK{sup 2} allow to conclude that GaN ceramic demonstrates the semimetallic-like behavior accompanied by very small mobility of electrons ({approx}0.1 cm{sup 2}/V s) which is responsible for its high resistivity. A low heat conductivity of GaN ceramics is associated with partial amorphous phase of GaN grains due to high pressure sintering. - Graphical Abstract: Thermal resistivity and thermopower measurements indicates the high phonon scattering and lack of phonon-drag contribution to thermopower in GaN nanoceramics pressed under 4 GPa at 800 {sup o}C.

  6. Radio-frequency-transparent, electrically conductive graphene nanoribbon thin films as deicing heating layers.

    PubMed

    Volman, Vladimir; Zhu, Yu; Raji, Abdul-Rahman O; Genorio, Bostjan; Lu, Wei; Xiang, Changsheng; Kittrell, Carter; Tour, James M

    2014-01-08

    Deicing heating layers are frequently used in covers of large radio-frequency (RF) equipment, such as radar, to remove ice that could damage the structures or make them unstable. Typically, the deicers are made using a metal framework and inorganic insulator; commercial resistive heating materials are often nontransparent to RF waves. The preparation of a sub-skin-depth thin film, whose thickness is very small relative to the RF skin (or penetration) depth, is the key to minimizing the RF absorption. The skin depth of typical metals is on the order of a micrometer at the gigahertz frequency range. As a result, it is very difficult for conventional conductive materials (such as metals) to form large-area sub-skin-depth films. In this report, we disclose a new deicing heating layer composite made using graphene nanoribbons (GNRs). We demonstrate that the GNR film is thin enough to permit RF transmission. This metal-free, ultralight, robust, and scalable graphene-based RF-transparent conductive coating could significantly reduce the size and cost of deicing coatings for RF equipment covers. This is important in many aviation and marine applications. This is a demonstration of the efficacy and applicability of GNRs to afford performances unattainable by conventional materials.

  7. On Electromagnetic Modulation of Flow Instabilities, Mixing and Heat Transfer in Conducting and Magnetized Fluids

    NASA Astrophysics Data System (ADS)

    Kenjeres, S.

    2016-09-01

    In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.

  8. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate

    USGS Publications Warehouse

    Waite, W.F.; Stern, L.A.; Kirby, S.H.; Winters, W.J.; Mason, D.H.

    2007-01-01

    Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between −20°C and 17°C at 31.5 MPa. The pressure dependence was measured between 31.5 and 102 MPa at 14.4°C. Only weak temperature and pressure dependencies were observed. Methane hydrate thermal conductivity differs from that of water by less than 10 per cent, too little to provide a sensitive measure of hydrate content in water-saturated systems. Thermal diffusivity of methane hydrate is more than twice that of water, however, and its specific heat is about half that of water. Thus, when drilling into or through hydrate-rich sediment, heat from the borehole can raise the formation temperature more than 20 per cent faster than if the formation's pore space contains only water. Thermal properties of methane hydrate should be considered in safety and economic assessments of hydrate-bearing sediment.

  9. Time-dependent conductive heat transfer in rarefied polyatomic gases confined between parallel plates

    NASA Astrophysics Data System (ADS)

    Tsimpoukis, A.; Tantos, C.; Valougeorgis, D.

    2017-01-01

    The transient conductive heat transfer through a rarefied gas confined between two infinite parallel plates due to a sudden jump in the temperature of one of the plates is investigated in the whole range of the Knudsen number via kinetic theory. More specifically, the time-dependent heat transfer flow is modelled by the Holway kinetic model subject to diffuse boundary conditions. The governing integro-differential equation is numerically solved using the discrete velocity method in the molecular velocity space and typical finite control volume schemes in time and physical spaces. The time evolution of the density and temperature distributions as well as of the translational and rotational heat fluxes in terms of the two parameters characterizing the heat flow, namely the Knudsen number and the imposed temperature ratio between the plates is provided. The investigation is focused on the effect of the rotational degrees of freedom and a comparison between monatomic and polyatomic gases is performed. It is found that the time needed to reach the steady-state conditions varies between monatomic and polyatomic gases. In all cases the total time to recover the stationary solution in terms of the rarefaction parameter exhibits a minimum close to the well-known Knudsen minimum.

  10. Negative differential thermal conductance and heat amplification in superconducting hybrid devices

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Timossi, Giuliano; Bosisio, Riccardo; Solinas, Paolo; Giazotto, Francesco

    2016-04-01

    We investigate the thermal transport properties of a temperature-biased Josephson tunnel junction composed of two different superconductors. We show that this simple system can provide a large negative differential thermal conductance (NDTC) with a peak-to-valley ratio of ˜3 in the transmitted electronic heat current. The NDTC is then exploited to outline the caloritronic analog of the tunnel diode, which can exhibit a modulation of the output temperature as large as 80 mK at a bath temperature of 50 mK. Moreover, this device may work in a regime of thermal hysteresis that can be used to store information as a thermal memory. On the other hand, the NDTC effect offers the opportunity to conceive two different designs of a thermal transistor, which might operate as a thermal switch or as an amplifier/modulator. The latter shows a heat amplification factor >1 in a 500-mK-wide working region of the gate temperature. After the successful realization of heat interferometers and thermal diodes, this kind of structures would complete the conversion of the most important electronic devices in their thermal counterparts, breaking ground for coherent caloritronics nanocircuits where heat currents can be manipulated at will.

  11. Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect

    NASA Astrophysics Data System (ADS)

    Izadi, M.; Shahmardan, M. M.; Norouzi, M.; Rashidi, A. M.; Behzadmehr, A.

    2014-12-01

    In this work, the forced convection of a nanofluid flow in a microscale duct has been investigated numerically. The governing equations have been solved utilizing the finite volume method. Two different conjugated domains for both flow field and substrate have been considered in order to solve the hydrodynamic and thermal fields. The results of the present study are compared to those of analytical and experimental ones, and a good agreement has been observed. The effects of Reynolds number, thermal conductivity and thickness of substrate on the thermal and hydrodynamic indexes have been studied. In general, considering the wall affected the thermal parameter while it had no impact on the hydrodynamics behavior. The results show that the effect of nanoparticle volume fraction on the increasing of normalized local heat transfer coefficient is more efficient in thick walls. For higher Reynolds number, the effect of nanoparticle inclusion on axial distribution of heat flux at solid-fluid interface declines. Also, less end losses and further uniformity of axial heat flux lead to an increase in the local normalized heat transfer coefficient.

  12. Design of a dual chamber heat conduction calorimeter for ultrasonic beam measurement

    NASA Astrophysics Data System (ADS)

    Ong, Hang See

    1997-12-01

    The recent emergence of medical ultrasound dosimetry in terms of Thermal and Mechanical Indices gives rise to the need for a device that is capable of measuring ultrasonic output power quickly and accurately. In the research project described in this dissertation, a dual chamber heat conduction calorimeter (HCC) is designed, built, and tested for the purpose of measuring ultrasonic output power of clinical diagnostic ultrasound devices. The HCC is composed of two identical water filled Aluminum wells housed in two separated compartments of an insulated box. The two compartments form the measuring and reference chambers of the calorimeter. The wells are sealed with plastic membranes that constitute the entrance window for the ultrasound. The bottom of each well is stuffed with a 4cm layer of 0.5cm thick rubber pads. These pads serve as a sonic-to-heat energy exchanger. A small resistive heater is embedded in both rubber pads for calibration purposes. Heat is measured with a series of Seebeck effect thermoelectric devices (thermopiles) sandwiched between the well and the heat sink surrounding the wells. The output voltage signal from the thermopiles is amplified, digitized, then analyzed and displayed in term of Thermal Index with a PC-based system. An optimum measurement technique is derived from an electric circuit model that is representative of the HCC. The performance and sensitivity of the HCC is tested and measured, initially with the embedded resistive heaters, then with an experimental transducer, and lastly with transducers from clinical ultrasound scanners.

  13. MHD natural convection in an inclined square porous cavity with a heat conducting solid block

    NASA Astrophysics Data System (ADS)

    Sivaraj, C.; Sheremet, M. A.

    2017-03-01

    This paper deals with natural convection in an inclined porous cavity with a heat conducting solid body placed at its center under the influence of the applied magnetic field of different orientations. The left and right vertical walls of the cavity are maintained at different temperatures Th and Tc, respectively, while the horizontal walls are adiabatic. The governing coupled partial differential equations were solved using a finite volume method on a uniformly staggered grid system. The effects of the inclination angles of the magnetic field and cavity and the Hartmann number on the flow and thermal fields are investigated in detail. Numerical results are presented in terms of isotherms, streamlines and average Nusselt numbers. In general, the results indicate that the inclusion of the magnetic field reduces the convective heat transfer rate in the cavity. It is also found that an increase in the angle of the applied magnetic field produces a non-linear variation in the average Nusselt numbers.

  14. An implicit-iterative solution of the heat conduction equation with a radiation boundary condition

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, D. M.

    1977-01-01

    For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.

  15. Nano-engineered Multiwall Carbon Nanotube-copper Composite Thermal Interface Material for Efficient Heat Conduction

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.

    2005-01-01

    Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.

  16. Thermally conductive cementitious grouts for geothermal heat pumps. Progress report FY 1998

    SciTech Connect

    Allan, M.L.; Philippacopoulos, A.J.

    1998-11-01

    Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98. The developed thermally conductive grout consists of cement, water, a particular grade of silica sand, superplasticizer and a small amount of bentonite. While the primary function of the grout is to facilitate heat transfer between the U-loop and surrounding formation, it is also essential that the grout act as an effective borehole sealant. Two types of permeability (hydraulic conductivity) tests was conducted to evaluate the sealing performance of the cement-sand grout. Additional properties of the proposed grout that were investigated include bleeding, shrinkage, bond strength, freeze-thaw durability, compressive, flexural and tensile strengths, elastic modulus, Poisson`s ratio and ultrasonic pulse velocity.

  17. Laser heating of an absorbing and conducting media applied to laser flash property measurements

    SciTech Connect

    Gritzo, L.A.; Anderson, E.E.

    1993-12-31

    The laser flash technique is widely used for determining the thermal diffusivity of a sample. In this work, the temperature distribution throughout the sample is investigated, identifying localized, highly-heated regions near the front surface of the sample as a function of: (1) pulse duration, (2) incident beam uniformity, and (3) sample opacity. These high-temperature regions result in an increase in the uncertainty due to temperature-dependent properties, an increase in the heat loss from the sample, and an increased risk of sample damage. The temperature within a semi-transparent media is also investigated in order to establish a regime for which the media can reasonably be considered as opaque. This analysis illustrates that, for same total energy deposition, treatment of the incident energy as a continuous heat source, as opposed to an infinitesimal pulse of energy, results in a factor of 2 increase in the front surface temperature during heating. Also, for the same total energy deposition and approximate beam size, use of a Gaussian intensity distribution increases the front surface temperature during heating by more than a factor of 2 as compared to the use of a uniform temperature distribution. By analyzing the front surface temperature of an absorbing and conducting semi-transparent sample subjected to a Gaussian intensity distribution, it is concluded that the media can be treated as opaque, (i.e. the energy can be applied as a boundary condition) for {var_epsilon} = kd > 50, where k is the extinction coefficient and d is the beam diameter. For materials with a sufficiently small absorption coefficient and thermal diffusivity, a closed-form solution suitable for design use is presented for the front-surface temperature at a location coincident with the beam centerline.

  18. Use of the correct heat conduction-convection equation as basis for heat-pulse sap flow methods in anisotropic wood.

    PubMed

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-05-01

    Heat-pulse methods to determine sap flux density in trees are founded on the theory of heat conduction and heat convection in an isotropic medium. However, sapwood is clearly anisotropic, implying a difference in thermal conductivity along and across the grain, and hence necessitates the theory for an anisotropic medium. This difference in thermal conductivities, which can be up to 50%, is, however, not taken into account in the key equation leading to the currently available heat-pulse methods. Despite this major flaw, the methods remain theoretically correct as they are based on derivations of the key equation, ruling out any anisotropic aspects. The importance of specifying the thermal characteristics of the sapwood according to axial, tangential or radial direction is revealed as well as referring to and using the proper anisotropic theory in order to avoid confusion and misinterpretation of thermal properties when dealing with sap flux density measurements or erroneous results when modelling heat transport in sapwood.

  19. Transient Three-Dimensional Heat Conduction Computations Using Brian’s Technique

    DTIC Science & Technology

    1988-09-01

    tilk ."J k ) +VU (T..2 - ) V(T. *)+V(.. TJ +w2 I~ +w U5w6 +x 2 (T. T2 ) +x3 (T~ -T 3 )+X(T’ -)+YE V6.J6-tk 20. Perimeter 6 -FRTn+l (1 +2 FMR )T n+1-FoR...7, pp. 367-370, September 1961. 4. Clover, R. M., and Wassel, A. T., "Three-Dimensional Transient Heat Conduction in a Multilayer Medium," Journal of

  20. Multiple Integration of the Heat-Conduction Equation for a Space Bounded From the Inside

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2016-03-01

    An N-fold integration of the heat-conduction equation for a space bounded from the inside has been performed using a system of identical equalities with definition of the temperature function by a power polynomial with an exponential factor. It is shown that, in a number of cases, the approximate solutions obtained can be considered as exact because their errors comprise hundredths and thousandths of a percent. The method proposed for N-fold integration represents an alternative to classical integral transformations.

  1. Mathematical equations for heat conduction in the fins of air-cooled engines

    NASA Technical Reports Server (NTRS)

    Harper, R R; Brown, W B

    1923-01-01

    The problem considered in this report is that of reducing actual geometrical area of fin-cooling surface, which is, of course, not uniform in temperature, to equivalent cooling area at one definite temperature, namely, that prevailing on the cylinder wall at the point of attachment of the fin. This makes it possible to treat all the cooling surface as if it were part of the cylinder wall and 100 per cent effective. The quantities involved in the equations are the geometrical dimensions of the fin, thermal conductivity of the material composing it, and the coefficient of surface heat dissipation between the fin and the air streams.

  2. Solution of inverse heat conduction problem using the Tikhonov regularization method

    NASA Astrophysics Data System (ADS)

    Duda, Piotr

    2017-02-01

    It is hard to solve ill-posed problems, as calculated temperatures are very sensitive to errors made while calculating "measured" temperatures or performing real-time measurements. The errors can create temperature oscillation, which can be the cause of an unstable solution. In order to overcome such difficulties, a variety of techniques have been proposed in literature, including regularization, future time steps and smoothing digital filters. In this paper, the Tikhonov regularization is applied to stabilize the solution of the inverse heat conduction problem. The impact on the inverse solution stability and accuracy is demonstrated.

  3. THERM3D -- A boundary element computer program for transient heat conduction problems

    SciTech Connect

    Ingber, M.S.

    1994-02-01

    The computer code THERM3D implements the direct boundary element method (BEM) to solve transient heat conduction problems in arbitrary three-dimensional domains. This particular implementation of the BEM avoids performing time-consuming domain integrations by approximating a ``generalized forcing function`` in the interior of the domain with the use of radial basis functions. An approximate particular solution is then constructed, and the original problem is transformed into a sequence of Laplace problems. The code is capable of handling a large variety of boundary conditions including isothermal, specified flux, convection, radiation, and combined convection and radiation conditions. The computer code is benchmarked by comparisons with analytic and finite element results.

  4. Preparation and Property Study of Graphene Oxide Reinforced Epoxy Resin Insulation Nanocomposites with High Heat Conductivity

    NASA Astrophysics Data System (ADS)

    Shan, Xinran; Liu, Yongchang; Wu, Zhixiong; Liu, Huiming; Zhang, Zhong; Huang, Rongjin; Huang, Chuanjun; Liu, Zheng; Li, Laifeng

    2017-02-01

    In this paper, graphene oxide reinforced epoxy resin nanocomposites were successfully prepared. Compared with unmodified epoxy resin, the heat conductivity of the graphene oxide reinforced epoxy resin nanocomposites had been improved while keeping the insulation performance. The tensile strength was investigated at both room temperature (300 K) and liquid nitrogen temperature (77 K). And the fracture surfaces were examined by scanning electron microscopy (SEM). Results showed that the materials had excellent mechanical properties, which could be advantages for the applications as insulating layer in low temperature superconducting magnets.

  5. Effects of friction and heat conduction on sound propagation in ducts

    NASA Technical Reports Server (NTRS)

    Huerre, P.; Karamcheti, K.

    1975-01-01

    A theoretical formulation of the propagation of sound in a viscous and heat conducting medium is presented. The problem is reduced to the determination of two scalar potentials related to pressure and entropy fluctuations respectively, and a vector potential related to vorticity fluctuations. The particular case of a two-dimensional duct of constant width is thoroughly investigated in the low, high, and very high frequency ranges. It is shown that three distinct families of modes may propagate along the duct axis, namely, pressure, entropy, and vorticity dominated modes. Perturbation methods are used to study the variations of attenuation rates, phase velocities, and mode shapes, as a function of frequency and duct width.

  6. A Beale-Kato-Majda Criterion for Three Dimensional Compressible Viscous Heat-Conductive Flows

    NASA Astrophysics Data System (ADS)

    Sun, Yongzhong; Wang, Chao; Zhang, Zhifei

    2011-08-01

    We prove a blow-up criterion in terms of the upper bound of ( ρ, ρ -1, θ) for a strong solution to three dimensional compressible viscous heat-conductive flows. The main ingredient of the proof is an a priori estimate for a quantity independently introduced in Haspot (Regularity of weak solutions of the compressible isentropic Navier-Stokes equation, arXiv:1001.1581, 2010) and Sun et al. (J Math Pure Appl 95:36-47, 2011), whose divergence can be viewed as the effective viscous flux.

  7. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer

    Cable, William; Romanovsky, Vladimir

    2014-03-31

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  8. Analytical insight into the lattice thermal conductivity and heat capacity of monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Saha, Dipankar; Mahapatra, Santanu

    2016-09-01

    We report, a detailed theoretical study on the lattice thermal conductivity of a suspended monolayer MoS2, far beyond its ballistic limit. The analytical approach adopted in this work mainly relies on the use of Boltzmann transport equation (BTE) within the relaxation time approximation (RTA), along with the first-principles calculations. Considering the relative contributions from the various in-plane and out-of-plane acoustic modes, we derive the closed-form expressions of the mode specific heat capacities, which we later use to obtain the phonon thermal conductivities of the monolayer MoS2. Besides finding the intrinsic thermal conductivity, we also analyse the effect of the phonon-boundary scattering, for different dimensions and edge roughness conditions. The viability of the semi-analytic solution of lattice thermal conductivity reported in this work ranges from a low temperature (T∼30 K) to a significantly high temperature (T∼550 K), and the room temperature (RT) thermal conductivity value has been obtained as 34.06 Wm-1K-1 which is in good agreement with the experimental result.

  9. Silver Nanowire Transparent Conductive Films with High Uniformity Fabricated via a Dynamic Heating Method.

    PubMed

    Jia, Yonggao; Chen, Chao; Jia, Dan; Li, Shuxin; Ji, Shulin; Ye, Changhui

    2016-04-20

    The uniformity of the sheet resistance of transparent conductive films is one of the most important quality factors for touch panel applications. However, the uniformity of silver nanowire transparent conductive films is far inferior to that of indium-doped tin oxide (ITO). Herein, we report a dynamic heating method using infrared light to achieve silver nanowire transparent conductive films with high uniformity. This method can overcome the coffee ring effect during the drying process and suppress the aggregation of silver nanowires in the film. A nonuniformity factor of the sheet resistance of the as-prepared silver nanowire transparent conductive films could be as low as 6.7% at an average sheet resistance of 35 Ω/sq and a light transmittance of 95% (at 550 nm), comparable to that of high-quality ITO film in the market. In addition, a mechanical study shows that the sheet resistance of the films has little change after 5000 bending cycles, and the film could be used in touch panels for human-machine interactive input. The highly uniform and mechanically stable silver nanowire transparent conductive films meet the requirement for many significant applications and could play a key role in the display market in a near future.

  10. Hamiltonian Monte Carlo algorithm for the characterization of hydraulic conductivity from the heat tracing data

    NASA Astrophysics Data System (ADS)

    Djibrilla Saley, A.; Jardani, A.; Soueid Ahmed, A.; Raphael, A.; Dupont, J. P.

    2016-11-01

    Estimating spatial distributions of the hydraulic conductivity in heterogeneous aquifers has always been an important and challenging task in hydrology. Generally, the hydraulic conductivity field is determined from hydraulic head or pressure measurements. In the present study, we propose to use temperature data as source of information for characterizing the spatial distributions of the hydraulic conductivity field. In this way, we performed a laboratory sandbox experiment with the aim of imaging the heterogeneities of the hydraulic conductivity field from thermal monitoring. During the laboratory experiment, we injected a hot water pulse, which induces a heat plume motion into the sandbox. The induced plume was followed by a set of thermocouples placed in the sandbox. After the temperature data acquisition, we performed a hydraulic tomography using the stochastic Hybrid Monte Carlo approach, also called the Hamiltonian Monte Carlo (HMC) algorithm to invert the temperature data. This algorithm is based on a combination of the Metropolis Monte Carlo method and the Hamiltonian dynamics approach. The parameterization of the inverse problem was done with the Karhunen-Loève (KL) expansion to reduce the dimensionality of the unknown parameters. Our approach has provided successful reconstruction of the hydraulic conductivity field with low computational effort.

  11. One-Particle Representation of Heat Conduction Described within the Scope of the Second Law

    PubMed Central

    Jesudason, Christopher Gunaseelan

    2016-01-01

    The Carnot cycle and its deduction of maximum conversion efficiency of heat inputted and outputted isothermally at different temperatures necessitated the construction of isothermal and adiabatic pathways within the cycle that were mechanically “reversible”, leading eventually to the Kelvin-Clausius development of the entropy function S with differential dS=dq/T such that ∮CdS=0 where the heat absorption occurs at the isothermal paths of the elementary Carnot cycle. Another required condition is that the heat transfer processes take place infinitely slowly and “reversibly”, implying that rates of transfer are not explicitly featured in the theory. The definition of ‘heat’ as that form of energy that is transferred as a result of a temperature difference suggests that the local mode of transfer of “heat” in the isothermal segments of the pathway implies a Fourier-like heat conduction mechanism which is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the conducting material, and which is deemed reversible mechanically. These paradoxes are circumvented here by first clarifying the terms used before modeling heat transfer as a thermodynamically reversible but mechanically irreversible process and applied to a one dimensional atomic lattice chain of interacting particles subjected to a temperature difference exemplifying Fourier heat conduction. The basis of a “recoverable trajectory” i.e. that which follows a zero entropy trajectory is identified. The Second Law is strictly maintained in this development. A corollary to this zero entropy trajectory is the generalization of the Zeroth law for steady state non-equilibrium systems with varying temperature, and thus to a statement about “equilibrium” in steady state non-thermostatic conditions. An energy transfer rate term is explicitly identified for each particle and agrees quantitatively (and independently) with the rate of heat absorbed at

  12. Experimental thermal conductivity, thermal diffusivity, and specific heat values for mixtures of nitrogen, oxygen, and argon

    NASA Technical Reports Server (NTRS)

    Perkins, R. A.; Cieszkiewicz, M. T.

    1991-01-01

    Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.

  13. The role of several heat transfer mechanisms on the enhancement of thermal conductivity in nanofluids

    NASA Astrophysics Data System (ADS)

    Machrafi, H.; Lebon, G.

    2016-09-01

    A modelling of the thermal conductivity of nanofluids based on extended irreversible thermodynamics is proposed with emphasis on the role of several coupled heat transfer mechanisms: liquid interfacial layering between nanoparticles and base fluid, particles agglomeration and Brownian motion. The relative importance of each specific mechanism on the enhancement of the effective thermal conductivity is examined. It is shown that the size of the nanoparticles and the liquid boundary layer around the particles play a determining role. For nanoparticles close to molecular range, the Brownian effect is important. At nanoparticles of the order of 1-100 nm, both agglomeration and liquid layering are influent. Agglomeration becomes the most important mechanism at nanoparticle sizes of the order of 100 nm and higher. The theoretical considerations are illustrated by three case studies: suspensions of alumina rigid spherical nanoparticles in water, ethylene glycol and a 50/50w% water/ethylene glycol mixture, respectively, good agreement with experimental data is observed.

  14. A new hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.

  15. Similarity solution for the flow behind a shock wave in a non-ideal gas with heat conduction and radiation heat-flux in magnetogasdynamics

    NASA Astrophysics Data System (ADS)

    Nath, G.; Vishwakarma, J. P.

    2014-05-01

    The propagation of a spherical (or cylindrical) shock wave in a non-ideal gas with heat conduction and radiation heat-flux, in the presence of a spacially decreasing azimuthal magnetic field, driven out by a moving piston is investigated. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. The shock wave moves with variable velocity and the total energy of the wave is non-constant. Similarity solutions are obtained for the flow-field behind the shock and the effects of variation of the heat transfer parameters, the parameter of the non-idealness of the gas, both, decreases the compressibility of the gas and hence there is a decrease in the shock strength. Further, it is investigated that with an increase in the parameters of radiative and conductive heat transfer the tendency of formation of maxima in the distributions of heat flux, density and isothermal speed of sound decreases. The pressure and density vanish at the inner surface (piston) and hence a vacuum is form at the center of symmetry. The shock waves in conducting non-ideal gas with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, nuclear explosion, chemical detonation, rupture of a pressurized vessels, in the analysis of data from exploding wire experiments, and cylindrically symmetric hypersonic flow problems associated with meteors or reentry vehicles, etc. The findings of the present works provided a clear picture of whether and how the non-idealness parameter, conductive and radiative heat transfer parameters and the magnetic field affect the flow behind the shock

  16. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  17. General Boundary-Value Problems for the Heat Conduction Equation with Piecewise-Continuous Coefficients

    NASA Astrophysics Data System (ADS)

    Tatsii, R. M.; Pazen, O. Yu.

    2016-03-01

    A constructive scheme for the construction of a solution of a mixed problem for the heat conduction equation with piecewise-continuous coefficients coordinate-dependent in the final interval is suggested and validated in the present work. The boundary conditions are assumed to be most general. The scheme is based on: the reduction method, the concept of quasi-derivatives, the currently accepted theory of the systems of linear differential equations, the Fourier method, and the modified method of eigenfunctions. The method based on this scheme should be related to direct exact methods of solving mixed problems that do not employ the procedures of constructing Green's functions or integral transformations. Here the theorem of eigenfunction expansion is adapted for the case of coefficients that have discontinuity points of the 1st kind. The results obtained can be used, for example, in investigating the process of heat transfer in a multilayer slab under conditions of ideal thermal contact between the layers. A particular case of piecewise-continuous coefficients is considered. A numerical example of calculation of a temperature field in a real four-layer building slab under boundary conditions of the 3rd kind (conditions of convective heat transfer) that model the phenomenon of fire near one of the external surfaces is given.

  18. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps

    NASA Astrophysics Data System (ADS)

    Song, Bai; Thompson, Dakotah; Fiorino, Anthony; Ganjeh, Yashar; Reddy, Pramod; Meyhofer, Edgar

    2016-06-01

    Recent experiments have demonstrated that radiative heat transfer between objects separated by nanometre-scale gaps considerably exceeds the predictions of far-field radiation theories. Exploiting this near-field enhancement is of great interest for emerging technologies such as near-field thermophotovoltaics and nano-lithography because of the expected increases in efficiency, power conversion or resolution in these applications. Past measurements, however, were performed using tip-plate or sphere-plate configurations and failed to realize the orders of magnitude increases in radiative heat currents predicted from near-field radiative heat transfer theory. Here, we report 100- to 1,000-fold enhancements (at room temperature) in the radiative conductance between parallel-planar surfaces at gap sizes below 100 nm, in agreement with the predictions of near-field theories. Our measurements were performed in vacuum gaps between prototypical materials (SiO2-SiO2, Au-Au, SiO2-Au and Au-Si) using two microdevices and a custom-built nanopositioning platform, which allows precise control over a broad range of gap sizes (from <100 nm to 10 μm). Our experimental set-up will enable systematic studies of a variety of near-field-based thermal phenomena, with important implications for thermophotovoltaic applications, that have been predicted but have defied experimental verification.

  19. Heat and mass transfer in a vertical double passage channel filled with electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Umavathi, Jawali C.; Kumar, J. Prathap; Sheremet, Mikhail A.

    2017-01-01

    This paper investigates the influence of first order chemical reaction in a vertical double passage channel in the presence of applied electric field. The wall and ambient medium are maintained at constant but different temperatures and concentrations and the heat and mass transfer occur from the wall to the medium. The channel is divided into two passages by means of a thin perfectly conducting baffle. The coupled non-linear ordinary differential equations are solved analytically by using regular perturbation method (PM) valid for small values of Brinkman number. To understand the flow structure for large values of Brinkman number the governing equations are also solved by differential transform method (DTM) which is a semi-analytical method. The effects of thermal Grashof number (GrT = 1 , 5 , 10 , 15), mass Grashof number (GrC = 1 , 5 , 10 , 15), Brinkman number (Br = 0 , 0.1 , 0.5 , 1), first order chemical reaction parameter (α = 0.1 , 0.5 , 1 , 1.5), Hartmann number (M = 4 , 6 , 8 , 10) and electrical field load parameter (E = - 2 , - 1 , 0 , 1 , 2) on the velocity, temperature and concentration profiles, volumetric flow rate, total heat rate, skin friction and Nusselt number are analyzed. It was found that the thermal Grashof number, mass Grashof number and Brinkman number enhances the flow whereas the Hartmann number and chemical reaction parameter suppresses the flow ​field. Also the obtained results have revealed that the heat transfer enhancement depends on the baffle position.

  20. Three discontinuous Galerkin schemes for the anisotropic heat conduction equation on non-aligned grids

    NASA Astrophysics Data System (ADS)

    Held, M.; Wiesenberger, M.; Stegmeir, A.

    2016-02-01

    We present and discuss three discontinuous Galerkin (dG) discretizations for the anisotropic heat conduction equation on non-aligned cylindrical grids. Our non-aligned scheme relies on a self-adjoint local dG (LDG) discretization of the elliptic operator. It conserves the energy exactly and converges with arbitrary order. The pollution by numerical perpendicular heat fluxes decreases with superconvergence rates. We compare this scheme with aligned schemes that are based on the flux-coordinate independent approach for the discretization of parallel derivatives. Here, the dG method provides the necessary interpolation. The first aligned discretization can be used in an explicit time-integrator. However, the scheme violates conservation of energy and shows up stagnating convergence rates for very high resolutions. We overcome this partly by using the adjoint of the parallel derivative operator to construct a second self-adjoint aligned scheme. This scheme preserves energy, but reveals unphysical oscillations in the numerical tests, which result in a decreased order of convergence. Both aligned schemes exhibit low numerical heat fluxes into the perpendicular direction and are superior for flute-modes with finite parallel gradients. We build our argumentation on various numerical experiments on all three schemes for a general axisymmetric magnetic field, which is closed by a comparison to the aligned finite difference (FD) schemes of Stegmeir et al. (2014) and Stegmeir et al. (submitted for publication).

  1. Measurement of in-plane thermal conductivity and heat capacity of separator in Li-ion cells using a transient DC heating method

    NASA Astrophysics Data System (ADS)

    Vishwakarma, V.; Jain, A.

    2014-12-01

    The separator is a critical, multi-functional component of a Li-ion cell that plays a key role in performance and safety during energy conversion and storage processes. Heat flow through the separator is important for minimizing cell temperature and avoiding thermal runaway. Despite the critical nature of thermal conduction through the separator, very little research has been reported on understanding and measuring the thermal conductivity and heat capacity of the separator. This paper presents first-ever measurements of thermal conductivity and heat capacity of the separator material. These measurements are based on thermal response to an imposed DC heating within a time period during which an assumption of a thermally semi-infinite domain is valid. Experimental data are in excellent agreement with the analytical model. Comparison between the two results in measurement of the in-plane thermal conductivity and heat capacity of the separator. Results indicate very low thermal conductivity of the separator. Measurements at an elevated temperature indicate that thermal conductivity and heat capacity do not change much with increasing temperature. Experimental measurements of previously unavailable thermal properties reported here may facilitate a better fundamental understanding of thermal transport in a Li-ion cell, and enhanced safety due to more accurate thermal prediction.

  2. Heat conduction in plates and shells with emphasis on a conical shell

    NASA Astrophysics Data System (ADS)

    Rubin, M. B.

    This paper is concerned with analyzing heat conduction in rigid shell-like bodies. The thermal equations of the theory of a Cosserat surface are used to calculate the average (through-the-thickness) temperature and temperature gradient directly, without resorting to integration of three-dimensional results. Specific attention is focused on a conical shell. The conical shell is particularly interesting because it has a converging geometry, so that the shell near its tip is 'thick' even though the shell near its base may be 'thin'. Generalized constitutive equations are developed here in a consistent manner which include certain geometrical features of shells. These equations are tested by considering a number of problems of plates, circular cylindrical shells and spherical shells, and comparing the results with exact solutions. In all cases, satisfactory results are predicted even in the thick-shell limit. Finally, a problem of transient heat conduction in a conical shell is solved. It is shown that the thermal bending moment produced by the average temperature gradient is quite severe near the tip, and it attains its maximum value in a relatively short time.

  3. Superdiffusive heat conduction in semiconductor alloys. II. Truncated Lévy formalism for experimental analysis

    NASA Astrophysics Data System (ADS)

    Vermeersch, Bjorn; Mohammed, Amr M. S.; Pernot, Gilles; Koh, Yee Rui; Shakouri, Ali

    2015-02-01

    Nearly all experimental observations of quasiballistic heat flow are interpreted using Fourier theory with modified thermal conductivity. Detailed Boltzmann transport equation (BTE) analysis, however, reveals that the quasi-ballistic motion of thermal energy in semiconductor alloys is no longer Brownian but instead exhibits Lévy dynamics with fractal dimension α <2 . Here, we present a framework that enables full three-dimensional experimental analysis by retaining all essential physics of the quasiballistic BTE dynamics phenomenologically. A stochastic process with just two fitting parameters describes the transition from pure Lévy superdiffusion as short length and time scales to regular Fourier diffusion. The model provides accurate fits to time domain thermoreflectance raw experimental data over the full modulation frequency range without requiring any "effective" thermal parameters and without any a priori knowledge of microscopic phonon scattering mechanisms. Identified α values for InGaAs and SiGe match ab initio BTE predictions within a few percent. Our results provide experimental evidence of fractal Lévy heat conduction in semiconductor alloys. The formalism additionally indicates that the transient temperature inside the material differs significantly from Fourier theory and can lead to improved thermal characterization of nanoscale devices and material interfaces.

  4. Contribution of moving speed of vacuum arc cathode spot to the heat conduction process

    NASA Astrophysics Data System (ADS)

    Nagasawa, Chihiro; Yamamoto, Shinji; Iwao, Toru

    2015-11-01

    Thermal spraying has been widely used because it can give various functions by coating materials on the surface. It is necessary to remove an oxide layer and form a roughness. However, the blast has problems that occurs crushing and wear of the particles, and residual grid becomes a starting point of rust and peeling. The pretreatment with vacuum arc cathode spot is focused by this problem. Cathode spot with high energy density evaporates the oxide layer and melts the bulk for roughness. However, this process is believed that surface state is changed by the power density and sojourn time because the roughness depends on the location. It remains to be elucidated the formation factor of roughness and removal process. Therefore, the models of heat conduction process and vapor mixed affected by moving speed were proposed. To elucidate the formation factor of roughness and removal process, the contribution of moving speed to the heat conduction process is analyzed. As a result, the molten depth, width, and volume depend on the moving speed.

  5. Advanced development of the boundary element method for steady-state heat conduction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, Prasanta K.

    1989-01-01

    Considerable progress has been made in recent years toward advancing the state-of-the-art in solid mechanics boundary element technology. In the present work, much of this new technology is applied in the development of a general-purpose boundary element method (BEM) for steady-state heat conduction. In particular, the BEM implementation involves the use of higher-order conforming elements, self-adaptive integration and multi-region capability. Two- and three-dimensional, as well as axisymmetric analysis, are incorporated within a unified framework. In addition, techniques are introduced for the calculation of boundary flux, and for the inclusion of thermal resistance across interfaces. As a final extension, an efficient formulation is developed for the analysis of solid three-dimensional bodies with embedded holes. For this last class of problems, the new BEM formulation is particularly attractive, since use of the alternatives (i.e. finite element or finite difference methods) is not practical. A number of detailed examples illustrate the suitability and robustness of the present approach for steady-state heat conduction.

  6. Analytical Solution for Three-Dimensional, Unsteady Heat Conduction in a Multilayer Sphere

    DOE PAGES

    Singh, Suneet; Jain, Prashant K.; Uddin, Rizwan

    2016-06-07

    An analytical solution has been obtained for the transient problem of three-dimensional multilayer heat conduction in a sphere with layers in the radial direction. The solution procedure can be applied to a hollow sphere or a solid sphere composed of several layers of various materials. In general, the separation of variables applied to 3D spherical coordinates has unique characteristics due to the presence of associated Legendre functions as the eigenfunctions. Moreover, an eigenvalue problem in the azimuthal direction also requires solution; again, its properties are unique owing to periodicity in the azimuthal direction. Therefore, extending existing solutions in 2D sphericalmore » coordinates to 3D spherical coordinates is not straightforward. In a spherical coordinate system, one can solve a 3D transient multilayer heat conduction problem without the presence of imaginary eigenvalues. A 2D cylindrical polar coordinate system is the only other case in which such multidimensional problems can be solved without the use of imaginary eigenvalues. The absence of imaginary eigenvalues renders the solution methodology significantly more useful for practical applications. The methodology described can be used for all three types of boundary conditions in the outer and inner surface of the sphere. Lastly, the solution procedure is demonstrated on an illustrative problem for which results are obtained.« less

  7. Finite Element A Posteriori Error Estimation for Heat Conduction. Degree awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lang, Christapher G.; Bey, Kim S. (Technical Monitor)

    2002-01-01

    This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.

  8. Analytical Solution for Three-Dimensional, Unsteady Heat Conduction in a Multilayer Sphere

    SciTech Connect

    Singh, Suneet; Jain, Prashant K.; Uddin, Rizwan

    2016-06-07

    An analytical solution has been obtained for the transient problem of three-dimensional multilayer heat conduction in a sphere with layers in the radial direction. The solution procedure can be applied to a hollow sphere or a solid sphere composed of several layers of various materials. In general, the separation of variables applied to 3D spherical coordinates has unique characteristics due to the presence of associated Legendre functions as the eigenfunctions. Moreover, an eigenvalue problem in the azimuthal direction also requires solution; again, its properties are unique owing to periodicity in the azimuthal direction. Therefore, extending existing solutions in 2D spherical coordinates to 3D spherical coordinates is not straightforward. In a spherical coordinate system, one can solve a 3D transient multilayer heat conduction problem without the presence of imaginary eigenvalues. A 2D cylindrical polar coordinate system is the only other case in which such multidimensional problems can be solved without the use of imaginary eigenvalues. The absence of imaginary eigenvalues renders the solution methodology significantly more useful for practical applications. The methodology described can be used for all three types of boundary conditions in the outer and inner surface of the sphere. Lastly, the solution procedure is demonstrated on an illustrative problem for which results are obtained.

  9. Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers

    NASA Astrophysics Data System (ADS)

    Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.

    2015-11-01

    This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced

  10. Conductive heat transfer from an isothermal magma chamber and its application to the measured heat flow distribution from mount hood, Oregon

    USGS Publications Warehouse

    Nathenson, Menuel; Tilling, Robert I.; ,

    1993-01-01

    A steady-state solution for heat transfer from an isothermal, spherical magma chamber, with an imposed regional geothermal gradient far from the chamber, is developed. The extensive published heat-flow data set for Mount Hood, Oregon, is dominated by conductive heat transfer in the deeper parts of most drill holes and provides an ideal application of such a model. Magma-chamber volumes or depths needed to match the distribution of heat-flow data are larger or shallower than those inferred from geologic evidence.

  11. Modal Contributions to Heat Conduction across Crystalline and Amorphous Si/Ge Interfaces

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Henry, Asegun

    Until now, our entire understanding of interfacial heat transfer has been based on the phonon gas model and Landauer formalism. Based on this framework, it is difficult to offer any intuition on heat transfer between two solid materials if one side of the interface is an amorphous structure. Here, using the interface conductance modal analysis (ICMA) method, we investigate the modal contributions to thermal interface conductance (TIC) through crystalline (c) and amorphous (a) Si/Ge interfaces. It is revealed that around 15% of the conductance through the cSi/cGe interface arises from less than 0.1% of the modes of vibration in the structure that exist between 12-13THz and because of their large eigenvectors around the interface are classified as interfacial modes. Correlation maps show that these interfacial modes exhibit strong correlations with all the other modes. The physics behind this strong coupling ability is studied by calculating the mode-level harmonic and anharmonic energy distribution among all the atoms in the system. It is found that these interfacial modes are enabled by the large degree of anharmonicity near the interface, which is higher than the bulk and ultimately allows this small group of modes to couple to other modes of vibration. In addition, unlike the cSi/cGe, correlation maps for aSi/cGe, cSi/aGe, and aSi/aGe interfaces show that the majority of contributions to TIC arise from auto-correlations instead of cross-correlations. The provided analysis sheds light on the nature of localized vibrations at interfaces and can be enlightening for other investigations of localization.

  12. Similarity Solutions for the Flow Behind an Exponential Shock in a Rotating Nonideal Gas with Heat Conduction and Radiation Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Nath, B.

    2014-07-01

    A self-similar solution for the propagation of a shock wave driven by a cylindrical piston moving according to exponential temporal law in a nonideal rotating gas with heat conduction and radiation heat fluxes is investigated. The density and angular velocity of the ambient medium are assumed to be constant. Heat conduction is expressed in terms of the Fourier law, and radiation is considered to be of diffusion type for an optically thick gray gas model. The thermal conductivity and absorption coefficient are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variations in the heat transfer parameters and gas nonidealness on the flow variables in the region behind the shock are investigated.

  13. On the heat flux vector for flowing granular materials--Part I: effective thermal conductivity and background

    SciTech Connect

    Massoudi, Mehrdad

    2006-09-10

    Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier’s law of heat conduction and for complex materials such as nonlinear fluids, porous media, or granular materials, the coeffcient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame-invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier’s law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non-linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or suffcient.

  14. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    SciTech Connect

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-08-15

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B{sub y}=0). For the B{sub y}=0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B{sub y}{ne}0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B{sub y}{ne}0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B{sub y}, the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B{sub y}. The results can be applied to the shock heating

  15. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    NASA Astrophysics Data System (ADS)

    Tsai, C. L.; Wu, B. H.; Lee, L. C.

    2005-08-01

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (By=0). For the By=0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with By≠0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with By≠0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing By, the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing By. The results can be applied to the shock heating in the solar corona and solar wind.

  16. Below and above boiling point comparison of microwave irradiation and conductive heating for municipal sludge digestion under identical heating/cooling profiles.

    PubMed

    Hosseini Koupaie, E; Eskicioglu, C

    2015-01-01

    This research provides a comprehensive comparison between microwave (MW) and conductive heating (CH) sludge pretreatments under identical heating/cooling profiles at below and above boiling point temperatures. Previous comparison studies were constrained to an uncontrolled or a single heating rate due to lack of a CH equipment simulating MW under identical thermal profiles. In this research, a novel custom-built pressure-sealed vessel which could simulate MW pretreatment under identical heating/cooling profiles was used for CH pretreatment. No statistically significant difference was proven between MW and CH pretreatments in terms of sludge solubilization, anaerobic biogas yield and organics biodegradation rate (p-value>0.05), while statistically significant effects of temperature and heating rate were observed (p-value<0.05). These results explain the contradictory results of previous studies in which only the final temperature (not heating/cooling rates) was controlled.

  17. LDEF (Flight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 EL-1994-00020 LDEF (Flight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 The flight photograph of the Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays right flange and lower flange appear to be slightly discolored. The LDEF structure, top intercostal, has a dark brown discoloration adjacent to the black thermal panel. Aluminum particles from the degraded CVCHPE thermal blanket are also visible in this area. The Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) occupies a 6 inch deep LDEF peripheral experiment tray and consist of two series connected variable conductance heatpipes, a black chrome solar collector panel and a silvered TEFLON® radiator panel, a power source to support six thermistor-type temperature monitoring sensors and actuations of two valves. Fiberglass standoffs and internal insulation blankets thermally isolated the experiment from the experiment tray and the LDEF interior. The outside of the CVCHPE, except the collector and radiator panels, was covered with an aluminumized Kapton multilayer insulation (MLI) blanket with an outer layer of 0.076 mm thick Kapton. The two patches of thin film materials, part of an atomic oxygen experiment (see S1001) by NASA GSFC, were attached to the cover of the external thermal blanket with Kapton tape. The experiment was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners. The external CVCHPE materials have changed significantly. The Kapton on the thermal blanket aluminized Kapton cover appears to be completely eroded, except under Kel-F buttons used to secure the blanket, leaving only the very thin vapor deposited aluminum coating as a cover. Parts of the aluminum coating residue has moved to

  18. Heat capacity, enthalpy of mixing, and thermal conductivity of Hg(1-x)Cd(x)Te pseudobinary melts

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    1986-01-01

    Heat capacity and enthalpy of mixing of Hg(1-x)Cd(x)Te pseudobinary melts were calculated assuming an associated solution model for the liquid phase. The thermal conductivity of the pseudobinary melts for x = 0, 0.05, 0.1, and 0.2 was then calculated from the heat capacity values and the experimental values of thermal diffusivity and density for these melts. The thermal conductivity for the pseudobinary solid solution is also discussed.

  19. Global strong solution to compressible Navier-Stokes equations with density dependent viscosity and temperature dependent heat conductivity

    NASA Astrophysics Data System (ADS)

    Duan, Ran; Guo, Ai; Zhu, Changjiang

    2017-04-01

    We obtain existence and uniqueness of global strong solution to one-dimensional compressible Navier-Stokes equations for ideal polytropic gas flow, with density dependent viscosity and temperature dependent heat conductivity under stress-free and thermally insulated boundary conditions. Here we assume viscosity coefficient μ (ρ) = 1 +ρα and heat conductivity coefficient κ (θ) =θβ for all α ∈ [ 0 , ∞) and β ∈ (0 , + ∞).

  20. Thermal convection in a magnetized conducting fluid with the Cattaneo-Christov heat-flow model

    NASA Astrophysics Data System (ADS)

    Bissell, J. J.

    2016-11-01

    By substituting the Cattaneo-Christov heat-flow model for the more usual parabolic Fourier law, we consider the impact of hyperbolic heat-flow effects on thermal convection in the classic problem of a magnetized conducting fluid layer heated from below. For stationary convection, the system is equivalent to that studied by Chandrasekhar (Hydrodynamic and Hydromagnetic Stability, 1961), and with free boundary conditions we recover the classical critical Rayleigh number Rc(c )(Q ) which exhibits inhibition of convection by the field according to Rc(c )→π2Q as Q →∞ , where Q is the Chandrasekhar number. However, for oscillatory convection we find that the critical Rayleigh number Rc(o )(Q ,P1,P2,C ) is given by a more complicated function of the thermal Prandtl number P1, magnetic Prandtl number P2 and Cattaneo number C. To elucidate features of this dependence, we neglect P2 (in which case overstability would be classically forbidden), and thereby obtain an expression for the Rayleigh number that is far less strongly inhibited by the field, with limiting behaviour Rc(o )→π √{Q }/ C , as Q →∞ . One consequence of this weaker dependence is that onset of instability occurs as overstability provided C exceeds a threshold value CT(Q); indeed, crucially we show that when Q is large, CT∝1 / √{Q }, meaning that oscillatory modes are preferred even when C itself is small. Similar behaviour is demonstrated in the case of fixed boundaries by means of a novel numerical solution.

  1. Simultaneous Measurement of Thermal Diffusivity and Thermal Conductivity by Means of Inverse Solution for One-Dimensional Heat Conduction (Anisotropic Thermal Properties of CFRP for FCEV)

    NASA Astrophysics Data System (ADS)

    Kosaka, Masataka; Monde, Masanori

    2015-11-01

    For safe and fast fueling of hydrogen in a fuel cell electric vehicle at hydrogen fueling stations, an understanding of the heat transferred from the gas into the tank wall (carbon fiber reinforced plastic (CFRP) material) during hydrogen fueling is necessary. Its thermal properties are needed in estimating heat loss accurately during hydrogen fueling. The CFRP has anisotropic thermal properties, because it consists of an adhesive agent and layers of the CFRP which is wound with a carbon fiber. In this paper, the thermal diffusivity and thermal conductivity of the tank wall material were measured by an inverse solution for one-dimensional unsteady heat conduction. As a result, the thermal diffusivity and thermal conductivity were 2.09 × 10^{-6}{ m}2{\\cdot }{s}^{-1} and 3.06{ W}{\\cdot }{m}{\\cdot }^{-1}{K}^{-1} for the axial direction, while they were 6.03 × 10^{-7} {m}2{\\cdot }{s}^{-1} and 0.93 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} for the radial direction. The thermal conductivity for the axial direction was about three times higher than that for the radial direction. The thermal diffusivity shows the same trend in both directions because the thermal capacity, ρ c, is independent of direction, where ρ is the density and c is the heat capacity.

  2. Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste

    SciTech Connect

    Fu, X.; Chung, D.D.L.

    1997-12-01

    Due to their poor conductivity, latex (20--30% by weight of cement), methylcellulose (0.4--0.8% by weight of cement), and silica fume (15% by weight of cement) decreased the thermal conductivity of cement paste by up to 46%. In addition, these admixtures increased the specific heat of cement paste by up to 10%. The thermal conductivity decreased and the specific heat increased with increasing latex or methylcellulose content. Short carbon fibers (0.5--1.0% by weight of cement) either did not change or decreased the thermal conductivity of cement paste, such that the thermal conductivity decreased with increasing fiber content due to the increase in air void content. The fibers increased the specific heat due to the contribution of the fiber-matrix interface to vibration.

  3. Effect of the time window on the heat-conduction information filtering model

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Song, Wen-Jun; Hou, Lei; Zhang, Yi-Lu; Liu, Jian-Guo

    2014-05-01

    Recommendation systems have been proposed to filter out the potential tastes and preferences of the normal users online, however, the physics of the time window effect on the performance is missing, which is critical for saving the memory and decreasing the computation complexity. In this paper, by gradually expanding the time window, we investigate the impact of the time window on the heat-conduction information filtering model with ten similarity measures. The experimental results on the benchmark dataset Netflix indicate that by only using approximately 11.11% recent rating records, the accuracy could be improved by an average of 33.16% and the diversity could be improved by 30.62%. In addition, the recommendation performance on the dataset MovieLens could be preserved by only considering approximately 10.91% recent records. Under the circumstance of improving the recommendation performance, our discoveries possess significant practical value by largely reducing the computational time and shortening the data storage space.

  4. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    SciTech Connect

    Bieler, Thomas R. Kang, Di Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar Wright, Neil T.; Ciovati, Gianluigi Myneni, Ganapati Rao; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.

    2015-12-04

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  5. Passive amplification of the pyroelectric current in thin films on a heat-conducting substrate

    SciTech Connect

    Yablonskii, S. V.; Soto-Bustamante, E. A.

    2010-11-15

    We show both theoretically and experimentally that passive amplification of the pyroelectric current takes place when modulated radiation is recorded by a pyroelectric detector in some range of modulation frequencies. The amplification effect manifests itself in the fact that the current generated by a thin pyroelectric film lying on a massive heat-conducting substrate exceeds that in a freely suspended film. We use a ferroelectric 70:30 P(VDF-TrFE) copolymer, a crystalline guanidine pyroelectric, and a 70:30 composition of an achiral liquid-crystal polymer and its monomer PM6R14n-M6R14n to illustrate the frequency dependence of the pyroelectric current.

  6. High Conductivity Carbon-Carbon Heat Pipes for Light Weight Space Power System Radiators

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2008-01-01

    Based on prior successful fabrication and demonstration testing of a carbon-carbon heat pipe radiator element with integral fins this paper examines the hypothetical extension of the technology via substitution of high thermal conductivity composites which would permit increasing fin length while still maintaining high fin effectiveness. As a result the specific radiator mass could approach an ultimate asymptotic minimum value near 1.0 kg/m2, which is less than one fourth the value of present day satellite radiators. The implied mass savings would be even greater for high capacity space and planetary surface power systems, which may require radiator areas ranging from hundreds to thousands of square meters, depending on system power level.

  7. Beyond the classical theory of heat conduction: a perspective view of future from entropy

    NASA Astrophysics Data System (ADS)

    Tian, Xiaowei; Lai, Xiang; Zhu, Pingan; Wang, Liqiu

    2016-10-01

    Energy is conserved by the first law of thermodynamics; its quality degrades constantly due to entropy generation, by the second law of thermodynamics. It is thus important to examine the entropy generation regarding the way to reduce its magnitude and the limit of entropy generation as time tends to infinity regarding whether it is bounded or not. This work initiates such an analysis with one-dimensional heat conduction. The work not only offers some fundamental insights of universe and its future, but also builds up the relation between the second law of thermodynamics and mathematical inequalities via developing the latter of either new or classical nature. A concise review of entropy is also included for the interest of performing the analysis in this work and the similar analysis for other processes in the future.

  8. Second-order approximation for heat conduction: dissipation principle and free energies.

    PubMed

    Amendola, Giovambattista; Fabrizio, Mauro; Golden, Murrough; Lazzari, Barbara

    2016-02-01

    In the context of new models of heat conduction, the second-order approximation of Tzou's theory, derived by Quintanilla and Racke, has been studied recently by two of the present authors, where it was proved equivalent to a fading memory material. The importance of determining free energy functionals for such materials, and indeed for any material with memory, is emphasized. Because the kernel does not satisfy certain convexity restrictions that allow us to obtain various traditional free energies for materials with fading memory, it is necessary to restrict the study to the minimum and related free energies, which do not require these restrictions. Thus, the major part of this work is devoted to deriving an explicit expression for the minimum free energy. Simple modifications of this expression also give an intermediate free energy and the maximum free energy for the material. These derivations differ in certain important respects from earlier work on such free energies.

  9. Second-order approximation for heat conduction: dissipation principle and free energies

    PubMed Central

    Amendola, Giovambattista; Golden, Murrough

    2016-01-01

    In the context of new models of heat conduction, the second-order approximation of Tzou's theory, derived by Quintanilla and Racke, has been studied recently by two of the present authors, where it was proved equivalent to a fading memory material. The importance of determining free energy functionals for such materials, and indeed for any material with memory, is emphasized. Because the kernel does not satisfy certain convexity restrictions that allow us to obtain various traditional free energies for materials with fading memory, it is necessary to restrict the study to the minimum and related free energies, which do not require these restrictions. Thus, the major part of this work is devoted to deriving an explicit expression for the minimum free energy. Simple modifications of this expression also give an intermediate free energy and the maximum free energy for the material. These derivations differ in certain important respects from earlier work on such free energies. PMID:27118896

  10. Beyond the classical theory of heat conduction: a perspective view of future from entropy.

    PubMed

    Tian, Xiaowei; Lai, Xiang; Zhu, Pingan; Wang, Liqiu

    2016-10-01

    Energy is conserved by the first law of thermodynamics; its quality degrades constantly due to entropy generation, by the second law of thermodynamics. It is thus important to examine the entropy generation regarding the way to reduce its magnitude and the limit of entropy generation as time tends to infinity regarding whether it is bounded or not. This work initiates such an analysis with one-dimensional heat conduction. The work not only offers some fundamental insights of universe and its future, but also builds up the relation between the second law of thermodynamics and mathematical inequalities via developing the latter of either new or classical nature. A concise review of entropy is also included for the interest of performing the analysis in this work and the similar analysis for other processes in the future.

  11. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    NASA Astrophysics Data System (ADS)

    Bieler, Thomas R.; Kang, Di; Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar; Ciovati, Gianluigi; Wright, Neil T.; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.; Myneni, Ganapati Rao

    2015-12-01

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.

  12. Response-coefficient method for heat-conduction transients with time-dependent inputs

    NASA Technical Reports Server (NTRS)

    Ceylan, Tamer

    1993-01-01

    A theoretical overview of the response coefficient method for heat conduction transients with time-dependent input forcing functions is presented with a number of illustrative applications. The method may be the most convenient and economical if the same problem is to be solved many times with different input-time histories or if the solution time is relatively long. The method is applicable to a wide variety of problems, including irregular geometries, position-dependent boundary conditions, position-dependent physical properties, and nonperiodic irregular input histories. Nonuniform internal energy generation rates within the structure can also be handled by the method. The area of interest is long-time solutions, in which initial condition is unimportant, and not the early transient period. The method can be applied to one dimensional problems in cartesian, cylindrical, and spherical coordinates as well as to two dimensional problems in cartesian and cylindrical coordinates.

  13. A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Pang, Guofei

    2016-03-01

    This paper proposes a new implicit definition of the fractional Laplacian. Compared with the existing explicit definitions in literature, this novel definition has clear physical significance and is mathematically simple and numerically easy to calculate for multidimensional problems. In stark contrast to a quick increasing and extensive applications of time-fractional derivative to diverse scientific and engineering problems, little has been reported on space-fractional derivative modeling. This is largely because the existing definitions are only feasible for one-dimensional case and become mathematically too complicated and computationally very expensive when applied to higher dimensional cases. In this study, we apply the newly-defined fractional Laplacian for modeling the power law behaviors of three-dimensional nonlocal heat conduction. The singular boundary method (SBM), a recent boundary-only collocation discretization method, is employed to numerically solve the proposed fractional Laplacian heat equation. And the computational costs are observed moderate owing to the proposed new definition of fractional Laplacian and the boundary-only discretization, meshfree, and integration-free natures of the SBM technique. Numerical experiments show the validity of the proposed definition of fractional Laplacian.

  14. Transient Heat Conduction in a Wall Exposed to a Fire: an Analytic Approach

    NASA Astrophysics Data System (ADS)

    Casano, G.; Piva, S.

    2017-01-01

    Fire safety engineering requires a detailed understanding of fire behaviour and of its effects on structures and people. Currently, advanced numerical codes for the prediction of the fire behaviour are available. However, they often require heavy calculations and long times. In this context analytical solutions can be useful for a fast analysis of simplified schematizations. It allows a more effective final utilization of the advanced fire codes. In this contribution, for a separation wall exposed to a fire the temperature history is analysed of the unexposed wall surface. Due to the limitations of the model, the temperature in the fire room changes stepwise, with a final value typical of a post-flashover condition. Nevertheless, with an appropriate choice of the heat transfer coefficient, the thermal action on the surface exposed to fire becomes that due to a fire following the standard temperature-time curve. The solution is then obtained by applying the separation of variables to the heat conduction equation. The problem is made dimensionless and the results are analysed in order to validate their significance. This simplified model allows to obtain useful information on the magnitude of the temperature reached.

  15. Computing specific intensity distributions for laser material processing by solving an inverse heat conduction problem

    NASA Astrophysics Data System (ADS)

    Völl, Annika; Stollenwerk, Jochen; Loosen, Peter

    2016-03-01

    Laser beam intensity distribution profiles for material processing techniques are most of the time restricted to be either of Gaussian or tophat shape. This often leads to different kind of problems especially at the edges of the laser-heated tracks, examples are energy losses or unnecessary overlaps. Thus, machining quality and process efficiency could be much improved by using application specific intensity profiles to generate optimal temperature distributions in the processed material. In this work, we present a numerical method to derive a specific intensity profile for a given temperature distribution. As this problem belongs to the set of inverse heat conduction problems, which are ill-posed, special regularization algorithms are needed. The only method to solve this inverse problem in reasonable time is the conjugate gradient method which we extend to the given problem of laser material processing applications. This method is an iterative approach where in each step the actual temperature distribution is calculated by using the finite element method. In general, the proposed method is applicable for materials with constant or temperature dependent coefficients, for static and dynamic distributions as well as for plane or complex geometries. However, restricting ourselves to plane geometries, intensity distributions that create tophat- or stepped temperature distributions on the plane surface of the processed material are derived and will be presented. In future work, we intend to verify these results using freeform optics as well as singly addressable V(E)CSEL arrays.

  16. Steady-state heat conduction in multilayered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Burton, W. S.

    1991-01-01

    A study is made of a predictor-corrector procedure for the accurate determination of the temperature and heat flux distributions in thick multilayered composite plates and shells. A linear through-the-thickness temperature distribution is used in the predictor phase. The functional dependence of temperature on the thickness coordinate is then calculated a posteriori and used in the corrector phase. Extensive numerical results are presented for linear steady-state heat conduction problems, showing the effects of variation in the geometric and lamination parameters on the accuracy of the thermal response predictions of the predictor-corrector approach. Both antisymmetrically laminated anisotropic plates and multilayered orthotropic cylinders are considered. The solutions are assumed to be periodic in the surface coordinates. For each problem the standard of comparison is taken to be the analytic three-dimensional solution based on treating each layer as a homogeneous anisotropic medium. The potential of the predictor-corrector approach for predicting the thermal response of multilayered plates and shells with complicated geometry is discussed.

  17. Discipline report on thermal analyses of M551, M552, and M553 experiments. [on gravity and heat conduction

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Masubuchi, K.

    1974-01-01

    Reduced gravity does not significantly affect the thermal histories in the M551 specimen, even if molten metal flow pattern is different from that in terrestrial conditions. Thermal histories corresponding to terrestrial experimental conditions were calculated by use of the computer programs. Heat conduction through brazing alloy (M552 experiment) is improved in the Skylab conditions, because of the increased extent, rate and uniformity of braze spreading in space. Effects of reduced gravity on heat flow in the M553 specimen are insignificant, because convection effects appear instantaneously and conduction is a governing factor on the heat flow.

  18. COYOTE : a finite element computer program for nonlinear heat conduction problems. Part I, theoretical background.

    SciTech Connect

    Glass, Micheal W.; Hogan, Roy E., Jr.; Gartling, David K.

    2010-03-01

    The need for the engineering analysis of systems in which the transport of thermal energy occurs primarily through a conduction process is a common situation. For all but the simplest geometries and boundary conditions, analytic solutions to heat conduction problems are unavailable, thus forcing the analyst to call upon some type of approximate numerical procedure. A wide variety of numerical packages currently exist for such applications, ranging in sophistication from the large, general purpose, commercial codes, such as COMSOL, COSMOSWorks, ABAQUS and TSS to codes written by individuals for specific problem applications. The original purpose for developing the finite element code described here, COYOTE, was to bridge the gap between the complex commercial codes and the more simplistic, individual application programs. COYOTE was designed to treat most of the standard conduction problems of interest with a user-oriented input structure and format that was easily learned and remembered. Because of its architecture, the code has also proved useful for research in numerical algorithms and development of thermal analysis capabilities. This general philosophy has been retained in the current version of the program, COYOTE, Version 5.0, though the capabilities of the code have been significantly expanded. A major change in the code is its availability on parallel computer architectures and the increase in problem complexity and size that this implies. The present document describes the theoretical and numerical background for the COYOTE program. This volume is intended as a background document for the user's manual. Potential users of COYOTE are encouraged to become familiar with the present report and the simple example analyses reported in before using the program. The theoretical and numerical background for the finite element computer program, COYOTE, is presented in detail. COYOTE is designed for the multi-dimensional analysis of nonlinear heat conduction problems

  19. Phonon scattering in the thermal conductivity of large-grain superconducting niobium as a function of heat treatment temperature

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Saravan Kumar; Bieler, Tom; Compton, Chris; Wright, Neil T.

    2012-06-01

    Production of niobium ingots and subsequent fabrication and processing of superconducting radio frequency (SRF) cavities affect the thermal conductivity of superconducting niobium in an as yet unknown way. Here, parameters of a theoretically-based model are used to relate thermal conductivity to the heat treatment temperature of niobium. Temperature and heat flux measurements on large grain niobium specimens with different heat treatment histories are used to estimate the parameters in the model. The parameter associated with the scattering of phonons by normal conducting electrons, β3, deviates from its theoretical value at cooler heat treatment temperatures, but converges to the theoretical value at hotter heat treatment temperatures. The parameter associated with the scattering of phonons by lattice defects and boundaries, β4, correlates well with the heat treatment temperature. The parameter associated with the condensation of electrons to form Cooper pairs, β5, is shown to be unaffected by the heat treatment temperature. These results show promise for relating thermal conductivity to the material processing of niobium.

  20. Advances in heat conduction models and approaches for the prediction of lattice thermal conductivity of dielectric materials

    NASA Astrophysics Data System (ADS)

    Saikia, Banashree

    2017-03-01

    An overview of predominant theoretical models used for predicting the thermal conductivities of dielectric materials is given. The criteria used for different theoretical models are explained. This overview highlights a unified theory based on temperature-dependent thermal-conductivity theories, and a drifting of the equilibrium phonon distribution function due to normal three-phonon scattering processes causes transfer of phonon momentum to (a) the same phonon modes (KK-S model) and (b) across the phonon modes (KK-H model). Estimates of the lattice thermal conductivities of LiF and Mg2Sn for the KK-H model are presented graphically.

  1. Heat Conduction to Photoresist on Top of Wafer during Post Exposure Bake Process: I. Numerical Approach

    NASA Astrophysics Data System (ADS)

    Kim, Do Wan; Lee, Ji-Eun; Oh, Hye-Keun

    2008-11-01

    The post exposure bake (PEB) of a chemically amplified resist is one of the key processes for fabricating very small features of semiconductor devices. The use of photogenerated acid enables the de-protection of protected polymers, and this de-protection highly depends on PEB temperature and time. The diffusion length of acid is also strongly dependent on PEB temperature and time. As the line width of a device decreases, a smaller diffusion length is required to reduce the roughness of the line edge and width, and an acid diffusion length less than 20 nm is needed. One of the key factors for determining de-protection and acid diffusion is the initial temperature rise of the resist. The unpredictable temperature rise to the preset temperature mainly causes a variation in line width. In addition, in order to accurately predict the PEB temperature and time dependencies of line width, heat transfer from the hot plate to the resist on the top of a silicon wafer has to be calculated since reaction and diffusion occur inside the resist, not on the top of the bare silicon wafer. Heat transfer includes multiscale conductivity and thickness, so that we need an accurate and reliable approach. For this purpose, a novel numerical approach incorporated with analytic method is proposed to solve the heat conduction problem. Since this approach is incorporated with an analytic method, the number of unknowns can be markedly reduced. Indeed, only the interface temperatures are unknowns in this method and we can derive a system of Volterra-type integral equations for the same number of unknowns. Accordingly, this method has many advantages over other methods. Since it is not a difference method but an integral method, it is stable and robust in time step. The unknowns for temperature are located only at the interfaces between layers, so that this approach is fast and effective. The discretization in time variable is flexible enough to readily achieve the accuracy of the numerical

  2. Refinement of the Upper and Lower Bounds of Effective Heat Conductivity Coefficients of Rib-Reinforced Composite Media

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2016-07-01

    We propose two refined structural models of the thermal behavior of a rib-reinforced composite medium at general anisotropy of the materials of compound components. For the criterion of equivalence of the rib-reinforced composite to the fictitious homogeneous anisotropic material, equality of the specific heat dissipation in them was used, which permits determining the upper and lower bounds of the effective heat conductivity coefficients of the composite material. The design values of the effective heat conductivity coefficients of a honeycomb structure with cavities filled and not filled with foam plastic have been determined. It has been shown that the refinement of certain thermal characteristics of 12%, and the refined "fork" of values of these quantities, does not exceed 2.5%. Indirect comparison has been made between the calculated and experimental values of the effective heat conductivity coefficients of such compounds, which has shown that the results obtained in the work are qualitatively reliable.

  3. Nanoparticle synergies in modifying thermal conductivity for heat exchanger in condensing boilers

    NASA Astrophysics Data System (ADS)

    Yang, Kai; He, Shan; Butcher, Thomas; Trojanowski, Rebecca; Sun, Ning; Gersappe, Dilip; Rafailovich, Miriam

    2013-03-01

    The heat exchanger we are using for condensing boilers is mainly made from aluminum alloys and stainless steel. However, the metal is relatively expensive and corrosion together with maintenance is also a big problem. Therefore, we have developed a new design and material which contain carbon black, carbon nanotube, aluminum oxide and graphene as additives in polypropylene. When multiple types of particles can be melt blended simultaneously and synergies can be achieved, imparting particles to the nanocomposite, achieved much higher thermal conductivity rather than single additive. Here we show the flame retardant nanocomposite which can pass the UL-94-V0 vertical burning test, perform nice in Cone Calorimetry Test and has relatively good mechanical properties. SEM images of the blend show that the Carbon nanobute and other additives well dispersed within the polymer matrix which match our computational calculation for getting the percolation to achieve thermal conductivity around 1.5W/m .K rather than 0.23W/m .K as pure polypropylene. Haydale/Cheap Tubes

  4. Belmont Hyperthermia Pump in the conduct of intra-operative heated chemotherapy.

    PubMed

    Riley, W

    2009-03-01

    Intra-operative heated chemotherapy (IOHC) has been performed in the Thoracic surgical department of Brigham and Women's Hospital (BWH, Boston, MA, USA) for over a decade. A "home-grown" system was developed for this purpose with limited improvements made to it through the years. This technology is used for neo-adjuvant therapy in the conduct of extra-pleural pneumonectomy and pleurectomy for treatment of mesothelioma. Improvements to the traditional BWH system were sought due to the hazardous nature of the chemotherapy solution and the relative complexity of the IOHC circuit. Belmont Instrument (Belmont Instrument Corporation, Billerica, MA, USA) applied their proprietary infusion/warming technology to develop the Belmont Hyperthermia Pump. The Hyperthermia Pump was designed to recirculate large volumes of fluid while maintaining perfusate temperatures up to 46oC at a flow rate of up to 750 ml/min. Approval from the FDA for clinical use of this device was granted June 2007. Parameters were defined and investigated to determine if the Hyperthermia Pump would meet or exceed the performance characteristics of the traditional BWH system. Our investigation resulted in the replacement of the traditional BWH circuit. The Belmont Hyperthermia Pump is a compact, easy to use, extremely safe means to deliver intra-operative hyperthermic chemotherapy in the conduct of surgical treatment of mesothelioma.

  5. Conductive Sphere in a Radio Frequency Field: Theory and Applications to Positioners, Heating, and Noncontact Measurements

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.; Watkins, J. L.; Chung, S.; Wagner, P.

    1996-01-01

    An electrically conductive spherical sample located in an electromagnetic field excited by rf (radio frequency) current in a system of coaxial coils is treated theoretically. Maxwell's equations are solved exactly and all integrals in the formulas for the fields are evaluated analytically for the case where the sphere is on the axis and the coil system is modeled by a stack of filamentary circular loops. Formulas are also derived for electromagnetic force exerted on the sphere, excess impedance in the coil system due to the presence of the sphere, and power absorbed by the sphere. All integrals in those formulas have been evaluated analytically. Force measurements are presented and they are in excellent agreement with the new theory. A low-power electromagnetic levitator that is accurately described by the theory has been demonstrated and is discussed. Experimental measurements of excess impedance are presented and compared with theory, and those results are used to demonstrate an accurate noncontact method for determining electrical conductivity. Theoretical formulas for power absorption are evaluated numerically and their usefulness in both rf heating and in making noncontact measurements of a number of thermophysical properties of materials is discussed.

  6. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  7. Enhanced thermal conductivity of novel multifunctional polyphenylene sulfide composites embedded with heat transfer networks of hybrid fillers

    NASA Astrophysics Data System (ADS)

    Leung, Siu N.; Khan, Omer M.; Chan, Ellen; Naguib, Hani E.; Dawson, Francis; Adinkrah, Vincent; Lakatos-Hayward, Laszlo

    2011-04-01

    Today's smaller, more powerful electronic devices, communications equipment, and lighting apparatus required optimum heat dissipation solutions. Traditionally, metals are widely known for their superior thermal conductivity; however, their good electrical conductivity has limited their applications in heat management components for microelectronic applications. This prompts the requirement to develop novel plastic composites that satisfy multifunctional requirements thermally, electrically, and mechanically. Furthermore, the moldability of polymer composites would make them ideal for manufacturing three-dimensional, net-shape enclosures and/or heat management assembly. Using polyphenylene sulfide (PPS) as the matrix, heat transfer networks were developed and structured by embedding hexagonal boron nitride (BN) alone, blending BN fillers of different shapes and sizes, as well as hybridizing BN fillers with carbonaceous nano- and micro-fillers. Parametric studies were conducted to elucidate the effects of types, shapes, sizes, and hybridization of fillers on the composite's thermal and electrical properties. The use of hybrid fillers, with optimized material formulations, was found to effectively promote a composite's thermal conductivity. This was achieved by optimizing the development of an interconnected thermal conductive network through structuring hybrid fillers with appropriate shapes and sizes. The thermal conductive composite affords unique opportunities to injection mold three-dimensional, net-shape microelectronic enclosures with superior heat dissipation performance.

  8. LDEF (Postflight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 EL-1994-00354 LDEF (Postflight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 The postflight photograph was taken in the SAEF II at KSC prior to removal of the experiment from the LDEF. The color of the white paint dots on the exper- iment tray clamp blocks appear to be unchanged. The LDEF structure, the intercostal on the right, has a dark brown discoloration adjacent to the black Earth end thermal panel. Aluminum pieces of the degraded CVCHPE thermal cover that were shown lodged in the vent area between the intercostal and the black thermal panel in the flight photograph are gone. The Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) occupies a 6 inch deep LDEF peripheral experiment tray and consist of two series connected variable conductance heatpipes, a black chrome solar collector panel and a silvered TEFLON® radiator panel, a power source to support six thermistor-type temperature monitoring sensors and actuations of two valves. Fiberglass standoffs and internal insulation blankets thermally isolated the experiment from the experiment tray and the LDEF interior. The outside of the CVCHPE, except the collector and radiator panels, was covered with an aluminized Kapton multilayer insulation (MLI) blanket with an outer layer of 0.076 mm thick Kapton. The two patches of thin film materials, part of Experiment S1001 by NASA GSFC, were attached to the cover of the external thermal blanket with Kapton tape. The experiment was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners. The external surface of the CVCHPE has changed from that observed in the flight photograph. The thin vapor deposited aluminum coating, left after the Kapton eroded, is essentially gone with only fragments left near the edges of the thermal blanket. Pieces of a layer of Dacron mesh (bridle vail) material, used to separate the thermal cover from the thermal

  9. Radiative thermal conductivity in obsidian and estimates of heat transfer in magma bodies

    SciTech Connect

    Stein, J.; Shankland, T.J.; Nitsan, U.

    1981-05-10

    The optical transmission spectra of four ryholitic obsidian samples were measured in order to determine the importance of radiative heat transfer in granite magmas. The spectra, obtained in the temperature range 20-800/sup 0/C, show that the radiative spectral window in these samples is limited by a charge transfer band in the UV (400 nm) and Si-O stretching overtone in the IR (4500 nm). Within this window the main obstacles to radiative transfer, in order of decreasing importance, are background scattering, a water band centered at 2800 nm, and an Fe/sup 2 +/ crystal field band at 1100 nm. Unlike crystalline silicates the absorption bands in obsidian do not broaden significantly as temperature increases. As a result, the temperature dependence of the calculated radiative thermal conductivity K/sub R/ is dominated by the T/sup ..beta../ term. Actual values of K/sub R/ increase from 9 x 10/sup -5/ to 1 x 1/sup -3/ cal cm/sup -1/ s/sup -1/ deg/sup -1/ between 300/sup 0/ and 800/sup 0/C, the high-temperature value being comparable to the lattice thermal conductivity in obsidian and a lower limit for K/sub R/ in granitic melts. As the scattering coefficient in melts is probably significantly lower than in obsidian, the radiative conductivity in active plutons is likely to be much higher. As an example, if scattering and the water band are removed from the observed spectra of the obsidian samples, calculated values of K/sub R/ could increase by a factor of 5, to about 5 x 10/sup -3/ cal cm/sup -1/ s/sup -1/ deg/sup -1/ at 1000/sup 0/C.

  10. Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Nagaraj, Ben A.; Bruce, Robert W.

    2000-01-01

    The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) Zr02-8wt%Y2O3 thermal barrier coatings was determined by a steady-state heat flux laser technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long term test conditions. The thermal conductivity increase due to micro-pore sintering and the decrease due to coating micro-delaminations in the EB-PVD coatings were evaluated for grooved and non-grooved EB-PVD coating systems under isothermal and thermal cycling conditions. The coating failure modes under the high heat flux test conditions were also investigated. The test technique provides a viable means for obtaining coating thermal conductivity data for use in design, development, and life prediction for engine applications.

  11. Thermal Conductive Heat Transfer and Partial Melting of Volatiles in Icy Moons, Asteroids, and Kuiper Belt Objects (Invited)

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Furfaro, R.

    2013-12-01

    Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of

  12. Transport Properties of Bulk Thermoelectrics: An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat, and Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Porter, Wallace D.; Böttner, Harald; König, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolet, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Patricia; Sharp, Jeff; Lo, Jason; Kleinke, Holger; Kiss, Laszlo

    2013-06-01

    For bulk thermoelectrics, improvement of the figure of merit ZT to above 2 from the current values of 1.0 to 1.5 would enhance their competitiveness with alternative technologies. In recent years, the most significant improvements in ZT have mainly been due to successful reduction of thermal conductivity. However, thermal conductivity is difficult to measure directly at high temperatures. Combined measurements of thermal diffusivity, specific heat, and mass density are a widely used alternative to direct measurement of thermal conductivity. In this work, thermal conductivity is shown to be the factor in the calculation of ZT with the greatest measurement uncertainty. The International Energy Agency (IEA) group, under the implementing agreement for Advanced Materials for Transportation (AMT), has conducted two international round-robins since 2009. This paper, part II of our report on the international round-robin testing of transport properties of bulk bismuth telluride, focuses on thermal diffusivity, specific heat, and thermal conductivity measurements.

  13. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    PubMed

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  14. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    PubMed Central

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  15. Finite element method formulation in polar coordinates for transient heat conduction problems

    NASA Astrophysics Data System (ADS)

    Duda, Piotr

    2016-04-01

    The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.

  16. Linear response of heat conductivity of normal-superfluid interface of a polarized Fermi gas to orbital magnetic field

    NASA Astrophysics Data System (ADS)

    Ebrahimian, N.; Mehrafarin, M.; Afzali, R.

    2012-01-01

    Using perturbed Bogoliubov equations, we study the linear response to a weak orbital magnetic field of the heat conductivity of the normal-superfluid interface of a polarized Fermi gas at sufficiently low temperature. We consider the various scattering regions of the BCS regime and analytically obtain the transmission coefficients and the heat conductivity across the interface in an arbitrary weak orbital field. For a definite choice of the field, we consider various values of the scattering length in the BCS range and numerically obtain the allowed values of the average and species-imbalance chemical potentials. Thus, taking Andreev reflection into account, we describe how the heat conductivity is affected by the field and the species imbalance. In particular, we show that the additional heat conductivity due to the orbital field increases with the species imbalance, which is more noticeable at higher temperatures. Our results indicate how the heat conductivity may be controlled, which is relevant to sensitive magnetic field sensors/regulators at the interface.

  17. The dependence of radiofrequency induced pacemaker lead tip heating on the electrical conductivity of the medium at the lead tip.

    PubMed

    Langman, Deborah A; Goldberg, Ira B; Judy, Jack; Paul Finn, J; Ennis, Daniel B

    2012-08-01

    Radiofrequency induced pacemaker lead tip heating is one of the main reasons magnetic resonance imaging (MRI) is contraindicated for patients with pacemakers. The objective of this work was to evaluate the dependence of pacemaker lead tip heating during MRI scanning on the electrical conductivity of the medium surrounding the pacemaker lead tip. The effect of conductivity was measured using hydroxyethyl cellulose, polyacrylic acid, and saline with conductivities ranging from 0 to 3 S/m which spans the range of human tissue conductivity. The maximum lead tip heating observed in polyacrylic acid was 50.4 °C at 0.28 S/m, in hydroxyethyl cellulose the maximum was 36.8 °C at 0.52 S/m, and in saline the maximum was 12.5 °C at 0.51 S/m. The maximum power transfer theorem was used to calculate the relative power deposited in the solution based on the characteristic impedance of the pacemaker lead and test solution impedance. The results demonstrate a strong correlation between the relative power deposited and pacemaker lead tip heating for hydroxyethyl cellulose and saline solutions. Maximum power deposition occurred when the impedance of the solution matched the pacemaker lead impedance. Pacemaker lead tip heating is dependent upon the electrical conductivity of the solution at the lead tip and should be considered when planning in vitro gel or saline experiments.

  18. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth's core.

    PubMed

    de Koker, Nico; Steinle-Neumann, Gerd; Vlcek, Vojtech

    2012-03-13

    Earth's magnetic field is sustained by magnetohydrodynamic convection within the metallic liquid core. In a thermally advecting core, the fraction of heat available to drive the geodynamo is reduced by heat conducted along the core geotherm, which depends sensitively on the thermal conductivity of liquid iron and its alloys with candidate light elements. The thermal conductivity for Earth's core is very poorly constrained, with current estimates based on a set of scaling relations that were not previously tested at high pressures. We perform first-principles electronic structure computations to determine the thermal conductivity and electrical resistivity for Fe, Fe-Si, and Fe-O liquid alloys. Computed resistivity agrees very well with existing shock compression measurements and shows strong dependence on light element concentration and type. Thermal conductivity at pressure and temperature conditions characteristic of Earth's core is higher than previous extrapolations. Conductive heat flux near the core-mantle boundary is comparable to estimates of the total heat flux from the core but decreases with depth, so that thermally driven flow would be constrained to greater depths in the absence of an inner core.

  19. Calculation methodology of the heat pump in the process of oscillating vacuum-conductive drying of lumber

    NASA Astrophysics Data System (ADS)

    Safin, R. R.; Khasanshin, R. R.; Shaikhutdinova, A. R.; Khakimzyanov, I. F.

    2016-04-01

    The oscillating technologies consisting in alternating of the stage of heating of the material and vacuumization are the most advanced in the process of wood drying. In this regard, the article examines the energy-saving technology of the oscillating vacuum-conductive drying of lumber, during which the thermal energy of the moisture evaporated from the material under vacuum in one chamber by using the heat pump is transferred to the heating of the material in the other chamber. The authors develop the method of calculating the rate of removal of moisture from the heated material at the stage of vacuumization depending on the depth of vacuum, temperature, humidity and thickness of the material, which is the initial condition for calculating the heat pump.

  20. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    NASA Astrophysics Data System (ADS)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  1. Steady-state heat conduction in quiescent fluids: Incompleteness of the Navier-Stokes-Fourier equations

    NASA Astrophysics Data System (ADS)

    Brenner, Howard

    2011-10-01

    Linear irreversible thermodynamic principles are used to demonstrate, by counterexample, the existence of a fundamental incompleteness in the basic pre-constitutive mass, momentum, and energy equations governing fluid mechanics and transport phenomena in continua. The demonstration is effected by addressing the elementary case of steady-state heat conduction (and transport processes in general) occurring in quiescent fluids. The counterexample questions the universal assumption of equality of the four physically different velocities entering into the basic pre-constitutive mass, momentum, and energy conservation equations. Explicitly, it is argued that such equality is an implicit constitutive assumption rather than an established empirical fact of unquestioned authority. Such equality, if indeed true, would require formal proof of its validity, currently absent from the literature. In fact, our counterexample shows the assumption of equality to be false. As the current set of pre-constitutive conservation equations appearing in textbooks are regarded as applicable both to continua and noncontinua (e.g., rarefied gases), our elementary counterexample negating belief in the equality of all four velocities impacts on all aspects of fluid mechanics and transport processes, continua and noncontinua alike.

  2. Steady-State and Transient Boundary Element Methods for Coupled Heat Conduction

    NASA Technical Reports Server (NTRS)

    Kontinos, Dean A.

    1997-01-01

    Boundary element algorithms for the solution of steady-state and transient heat conduction are presented. The algorithms are designed for efficient coupling with computational fluid dynamic discretizations and feature piecewise linear elements with offset nodal points. The steady-state algorithm employs the fundamental solution approach; the integration kernels are computed analytically based on linear shape functions, linear elements, and variably offset nodal points. The analytic expressions for both singular and nonsingular integrands are presented. The transient algorithm employs the transient fundamental solution; the temporal integration is performed analytically and the nonsingular spatial integration is performed numerically using Gaussian quadrature. A series solution to the integration is derived for the instance of a singular integrand. The boundary-only character of the algorithm is maintained by integrating the influence coefficients from initial time. Numerical results are compared to analytical solutions to verify the current boundary element algorithms. The steady-state and transient algorithms are numerically shown to be second-order accurate in space and time, respectively.

  3. Development of Low Conductivity and Ultra High Temperature Ceramic Coatings Using A High-Heat-Flux Testing Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1990-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 17OOOC) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, ultra-high temperature ceramic thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity: the initial conductivity rise under a steady-state high temperature thermal gradient test due to coating sintering, and the later coating conductivity reduction under a subsequent cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on the damage accumulations and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The coating external radiation resistance is assessed based on the measured specimen temperature response under a laser heated intense radiation flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature is derived.

  4. Heat Conduction: An Important Process for the Shape of Iapetus's Dark Spots?

    NASA Astrophysics Data System (ADS)

    Galuba, Goetz; Denk, T.; Neukum, G.

    2010-10-01

    The saturnian moon Iapetus is famous for its global black-and-white dichotomy. While its leading side (Cassini Regio) is covered by very dark material, the poles and trailing side are relatively bright. However, craters and troughs with dark floors are located within the bright area, especially at low latitudes. The boundaries of these smaller-scaled dark areas are very sharp. Even within the best-resolved images from the Cassini imaging experiment (ISS), the typical length of a drop-off in albedo is below the resolution limit. Thermal segregation, driven by a feedback process, has been proposed as the cause for the global dichotomy (Spencer and Denk 2010; Denk et al. 2010). In addition, for local features like craters and troughs, we explain the local darkening by an increased amount of insolation caused by the concave curvature of these features. We studied the insolation geometry using varying reflectance models. A model of linear interpolation between lunar and Lambert-like scattering reproduces the dark patterns relatively well. However, the increased insolation by itself neither explains the abundance of darkened terrain, nor the temporal behavior of darkening of fresh bright craters from the outside inward within the Cassini Regio area. A comparison of time scales and spatial scales shows that heat conduction might act as a major contributor to the growth of local dark areas within the bright terrain, despite its short range. Due to the repetitive nature of the processes needed for the growth of darkened terrain, the significant processes should not be as long-ranged as saltation of ice or CO2. We gratefully acknowledge funding of this work by the German Space Agency (DLR) Bonn through grant no. 50 OH 0305.

  5. Determination of thermophysical characteristics of solid materials by electrical modelling of the solutions to the inverse problems in nonsteady heat conduction

    NASA Technical Reports Server (NTRS)

    Kozdoba, L. A.; Krivoshei, F. A.

    1985-01-01

    The solution of the inverse problem of nonsteady heat conduction is discussed, based on finding the coefficient of the heat conduction and the coefficient of specific volumetric heat capacity. These findings are included in the equation used for the electrical model of this phenomenon.

  6. On the stability of the exact solutions of the dual-phase lagging model of heat conduction.

    PubMed

    Ordonez-Miranda, Jose; Alvarado-Gil, Juan Jose

    2011-04-13

    The dual-phase lagging (DPL) model has been considered as one of the most promising theoretical approaches to generalize the classical Fourier law for heat conduction involving short time and space scales. Its applicability, potential, equivalences, and possible drawbacks have been discussed in the current literature. In this study, the implications of solving the exact DPL model of heat conduction in a three-dimensional bounded domain solution are explored. Based on the principle of causality, it is shown that the temperature gradient must be always the cause and the heat flux must be the effect in the process of heat transfer under the dual-phase model. This fact establishes explicitly that the single- and DPL models with different physical origins are mathematically equivalent. In addition, taking into account the properties of the Lambert W function and by requiring that the temperature remains stable, in such a way that it does not go to infinity when the time increases, it is shown that the DPL model in its exact form cannot provide a general description of the heat conduction phenomena.

  7. On the stability of the exact solutions of the dual-phase lagging model of heat conduction

    NASA Astrophysics Data System (ADS)

    Ordonez-Miranda, Jose; Alvarado-Gil, Juan Jose

    2011-12-01

    The dual-phase lagging (DPL) model has been considered as one of the most promising theoretical approaches to generalize the classical Fourier law for heat conduction involving short time and space scales. Its applicability, potential, equivalences, and possible drawbacks have been discussed in the current literature. In this study, the implications of solving the exact DPL model of heat conduction in a three-dimensional bounded domain solution are explored. Based on the principle of causality, it is shown that the temperature gradient must be always the cause and the heat flux must be the effect in the process of heat transfer under the dual-phase model. This fact establishes explicitly that the single- and DPL models with different physical origins are mathematically equivalent. In addition, taking into account the properties of the Lambert W function and by requiring that the temperature remains stable, in such a way that it does not go to infinity when the time increases, it is shown that the DPL model in its exact form cannot provide a general description of the heat conduction phenomena.

  8. Thermal conductivity and specific heat of the spin-ice compound Dy2Ti2O7: Experimental evidence for monopole heat transport

    NASA Astrophysics Data System (ADS)

    Kolland, G.; Breunig, O.; Valldor, M.; Hiertz, M.; Frielingsdorf, J.; Lorenz, T.

    2012-08-01

    Elementary excitations in the spin-ice compound Dy2Ti2O7 can be described as magnetic monopoles propagating independently within the pyrochlore lattice formed by magnetic Dy ions. We studied the magnetic-field dependence of the thermal conductivity κ(B) for B||[001] and observe clear evidence for magnetic heat transport originating from the monopole excitations. The magnetic contribution κmag is strongly field dependent and correlates with the magnetization M(B). The diffusion coefficient obtained from the ratio of κmag and the magnetic specific heat is strongly enhanced below 1 K, indicating a high mobility of the monopole excitations in the spin-ice state.

  9. Thermal Conductivity Change Kinetics of Ceramic Thermal Barrier Coatings Determined by the Steady-State Laser Heat Flux Technique

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.

  10. Effects of thermophoresis particle deposition and of the thermal conductivity in a porous plate with dissipative heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Zueco, Joaquín; Anwar Bég, O.; López-Ochoa, L. M.

    2011-06-01

    Network simulation method (NSM) is used to solve the laminar heat and mass transfer of an electrically-conducting, heat generating/absorbing fluid past a perforated horizontal surface in the presence of viscous and Joule heating problem. The governing partial differential equations are non-dimensionalized and transformed into a system of nonlinear ordinary differential similarity equations, in a single independent variable, η. The resulting coupled, nonlinear equations are solved under appropriate transformed boundary conditions. Computations are performed for a wide range of the governing flow parameters, viz Prandtl number, thermophoretic coefficient (a function of Knudsen number), thermal conductivity parameter, wall transpiration parameter and Schmidt number. The numerical details are discussed with relevant applications. The present problem finds applications in optical fiber fabrication, aerosol filter precipitators, particle deposition on hydronautical blades, semiconductor wafer design, thermo-electronics and problems including nuclear reactor safety.

  11. Effect of passive whole body heating on central conduction and cortical excitability in multiple sclerosis patients and healthy controls.

    PubMed

    White, Andrea T; Vanhaitsma, Timothy A; Vener, Jamie; Davis, Scott L

    2013-06-15

    Heat stress is associated with increased fatigue perception and decrements in function for individuals with multiple sclerosis (MS). Similarly, healthy individuals experience decrements in exercise performance during hyperthermia. Alterations in central nervous system (CNS) function during hyperthermia include reduced voluntary activation of muscle and increased effort perception. The purpose of this investigation was to test the hypothesis that passive heat exposure in MS patients will produce increased subjective fatigue and impairments in physiological measures of central conduction and cortical excitability compared with healthy individuals. Eleven healthy individuals and 11 MS patients completed a series of transcranial magnetic stimulation studies to examine central conduction and cortical excitability under thermoneutral and heat-stressed (HS) conditions at rest and after a fatiguing thumb abduction task. Passive heat stress resulted in significantly greater fatigue perception and impairments in force production in MS patients. Central motor conduction time was significantly shorter during HS in controls; however, in MS patients normal increases in conduction velocity with increased temperature were not observed centrally. MS patients also exhibited decreased cortical excitability during HS, evidenced by significant increases in resting motor threshold, decreased MEP amplitude, and decreased recruitment curve slope. Both groups exhibited postexercise depression of MEP amplitude, but the magnitude of these decrements was amplified in MS patients during HS. Taken together, these results suggest that CNS pathology in MS patients played a substantial role in reducing cortical excitability during HS.

  12. Solution of the equation of heat conduction with time dependent sources: Programmed application to planetary thermal history

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1975-01-01

    A computer program (Program SPHERE) solving the inhomogeneous equation of heat conduction with radiation boundary condition on a thermally homogeneous sphere is described. The source terms are taken to be exponential functions of the time. Thermal properties are independent of temperature. The solutions are appropriate to studying certain classes of planetary thermal history. Special application to the moon is discussed.

  13. Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials

    DOEpatents

    Carolan, Michael Francis [Allentown, PA; Bernhart, John Charles [Fleetwood, PA

    2012-08-21

    Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

  14. Description and orbit data of variable-conductance heat-pipe system for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Gedeon, L.

    1979-01-01

    A variable-conductance heat-pipe system (VCHPS) with methanol as the working fluid and a nitrogen and helium mixture as the control gas was used for the thermal control of a 200 W RF traveling wave tube of the Communication Technology Satellite. Three stainless steel heat pipes (one redundant) and an aluminum radiator were designed to transfer 196 watts for an evaporator temperature of 50 C. The system has operated for three years with no noticeable change in performance. On four occasions the heat pipes apparently deprimed. A short time after reducing the tube power, the heat pipes reprimed and the system continued to operate normally. The description, qualification testing, and orbit data of the VCHPS are presented.

  15. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    SciTech Connect

    Zinkle, S.J.; Eatherly, W.S.

    1997-08-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle ({approximately}1{degrees}C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle ({approximately}100{degrees}C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475{degrees}C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to {approximately}65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500{degrees}C on one of these new heats of CuNiBe, similar to that observed in other heats.

  16. EXACT SOLUTION OF HEAT CONDUCTION IN A TWO-DOMAIN COMPOSITE CYLINDER WITH AN ORTHOTROPIC OUTER LAYER.

    SciTech Connect

    C. AVILES-RAMOS; C. RUDY

    2000-11-01

    The transient exact solution of heat conduction in a two-domain composite cylinder is developed using the separation of variables technique. The inner cylinder is isotropic and the outer cylindrical layer is orthotropic. Temperature solutions are obtained for boundary conditions of the first and second kinds at the outer surface of the orthotropic layer. These solutions are applied to heat flow calorimeters modeling assuming that there is heat generation due to nuclear reactions in the inner cylinder. Heat flow calorimeter simulations are carried out assuming that the inner cylinder is filled with plutonium oxide powder. The first objective in these simulations is to predict the onset of thermal equilibrium of the calorimeter with its environment. Two types of boundary conditions at the outer surface of the orthotropic layer are used to predict thermal equilibrium. The procedure developed to carry out these simulations can be used as a guideline for the design of calorimeters. Another important application of these solutions is on the estimation of thermophysical properties of orthotropic cylinders. The thermal conductivities in the vertical, radial and circumferential directions of the orthotropic outer layer can be estimated using this exact solution and experimental data. Simultaneous estimation of the volumetric heat capacity and thermal conductivities is also possible. Furthermore, this solution has potential applications to the solution of the inverse heat conduction problem in this cylindrical geometry. An interesting feature of the construction of this solution is that two different sets of eigenfunctions need to be considered in the eigenfunction expansion. These eigenfunctions sets depend on the relative values of the thermal diffusivity of the inner cylinder and the thermal diffusivity in the vertical direction of the outer cylindrical layer.

  17. Boiling Heat Transfer Measurements on Highly Conductive Surfaces Using Microscale Heater and Temperature Arrays

    NASA Technical Reports Server (NTRS)

    Kim, J.; Bae, S. W.; Whitten, M. W.; Mullen, J. D.; Quine, R. W.; Kalkur, T. S.

    1999-01-01

    Two systems have been developed to study boiling heat transfer on the microscale. The first system utilizes a 32 x 32 array of diodes to measure the local temperature fluctuations during boiling on a silicon wafer heated from below. The second system utilizes an array of 96 microscale heaters each maintained at constant surface temperature using electronic feedback loops. The power required to keep each heater at constant temperature is measured, enabling the local heat transfer coefficient to be determined. Both of these systems as well as some preliminary results are discussed.

  18. Evaluation of Model Complexity and Parameter Estimation: Indirect Inversion of a Numerical Model of Heat Conduction and Convection Using Subsurface Temperatures in Peat

    NASA Astrophysics Data System (ADS)

    Christensen, W.; Kamai, T.; Fogg, G. E.

    2012-12-01

    The presence of metal piezometers (thermal conductivity 16.0 W m-1 K-1) in peat (thermal conductivity 0.5 W m-1 K-1) can significantly influence temperatures recorded in the subsurface. Radially symmetrical 2D numerical models of heat conduction and convection that use a transient specified temperature boundary condition (Dirichlet) and explicitly account for the difference in thermal properties differ from the commonly used 1D analytical solution by as much as 2°C at 0.15m below ground surface. Field data from temperature loggers located inside and outside piezometers show similar differences, supporting the use of the more complex numerical model. In order to better simulate field data, an energy balance approach is used to calculate the temperature along the upper boundary using hourly radiation and air temperature data, along with daily average wind velocity and cloud cover data. Normally distributed random noise is added to recorded field data to address potential natural variation between conditions at the instrument site and the field site (piezometer). Five influential parameters are considered: albedo, crop coefficient, hydraulic conductivity, thermal diffusivity, and surface water depth. Ten sets of these five parameters are generated from a uniform random distribution and constrained by values reported in the literature or measured in the field. The ten parameter sets and noise are used to generate synthetic subsurface data in the numerical model. The synthetic temperature data is offset by a constant value determined from a uniform random distribution to represent potential offset in instrument accuracy (+/- 0.1 °C). The original parameter values are satisfactorily recovered by indirect inversion of the noise-free model using UCODE. Comparison of the parameter estimates from the homogeneous numerical model (equivalent to the analytical model) and the numerical model that explicitly models the metal piezometer are compared. The same inversion scheme is

  19. Effects of temperature dependence of electrical and thermal conductivities on the heating of a one dimensional conductor

    NASA Astrophysics Data System (ADS)

    Antoulinakis, Foivos; Zhang, Peng; Lau, Y. Y.; Chernin, David

    2016-10-01

    Dependence of electrical conductivity on temperature gives rise to electrotheramal instability, an important instability for Z-pinches. In other areas, ohmic heating limits the operation of nanoscale circuits such as graphene electronics, carbon nanofiber based field emitters, and nanolasers. For many applications, it is important to consider the temperature dependence of the thermal and electrical conductivities when calculating the effects of ohmic heating. We examine the effects of linear temperature dependence of the electrical and thermal conductivities on the heating of a one-dimensional conductor by solving the coupled non-linear steady state electrical and thermal conduction equations. We find that there are conditions under which no steady state solution exists. In the special case in which the temperature dependence of the electrical conductivity may be neglected, we have obtained explicit expressions for these conditions. The maximum temperature and its location within the conductor are examined for various boundary conditions. We note that the absence of a steady state solution may indicate the possibility of thermal runaway. Work supported by AFOSR No. FA9550-14-1-0309, and by L-3 Communications.

  20. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.

    PubMed

    Sayer, Robert A; Piekos, Edward S; Phinney, Leslie M

    2012-12-01

    Accurate knowledge of thermophysical properties is needed to predict and optimize the thermal performance of microsystems. Thermal conductivity is experimentally determined by measuring quantities such as voltage or temperature and then inferring a thermal conductivity from a thermal model. Thermal models used for data analysis contain inherent assumptions, and the resultant thermal conductivity value is sensitive to how well the actual experimental conditions match the model assumptions. In this paper, a modified data analysis procedure for the steady state Joule heating technique is presented that accounts for bond pad effects including thermal resistance, electrical resistance, and Joule heating. This new data analysis method is used to determine the thermal conductivity of polycrystalline silicon (polysilicon) microbridges fabricated using the Sandia National Laboratories SUMMiT V™ micromachining process over the temperature range of 77-350 K, with the value at 300 K being 71.7 ± 1.5 W/(m K). It is shown that making measurements on beams of multiple lengths is useful, if not essential, for inferring the correct thermal conductivity from steady state Joule heating measurements.

  1. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique

    NASA Astrophysics Data System (ADS)

    Sayer, Robert A.; Piekos, Edward S.; Phinney, Leslie M.

    2012-12-01

    Accurate knowledge of thermophysical properties is needed to predict and optimize the thermal performance of microsystems. Thermal conductivity is experimentally determined by measuring quantities such as voltage or temperature and then inferring a thermal conductivity from a thermal model. Thermal models used for data analysis contain inherent assumptions, and the resultant thermal conductivity value is sensitive to how well the actual experimental conditions match the model assumptions. In this paper, a modified data analysis procedure for the steady state Joule heating technique is presented that accounts for bond pad effects including thermal resistance, electrical resistance, and Joule heating. This new data analysis method is used to determine the thermal conductivity of polycrystalline silicon (polysilicon) microbridges fabricated using the Sandia National Laboratories SUMMiT V™ micromachining process over the temperature range of 77-350 K, with the value at 300 K being 71.7 ± 1.5 W/(m K). It is shown that making measurements on beams of multiple lengths is useful, if not essential, for inferring the correct thermal conductivity from steady state Joule heating measurements.

  2. Flight data analysis and further development of variable-conductance heat pipes

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Edwards, D. K.; Luedke, E. E.

    1976-01-01

    The work focuses on the mathematical modeling of three critical mechanisms of heat-pipe operation: (1) the effect that excess liquid has on heat-pipe performance; (2) the calculation of the dryout limit of circumferential grooves; (3) an efficient mathematical model for the calculation of the viscous-inertial interaction in the vapor flow. These mathematical models are incorporated in the computer program GRADE II, which is described.

  3. Evaluation of Specific Heat, Sound Velocity and Lattice Thermal Conductivity of Strained Nanocrystalline Bismuth Antimony Telluride Thin Films

    NASA Astrophysics Data System (ADS)

    Zheng, D.; Tanaka, S.; Miyazaki, K.; Takashiri, M.

    2015-06-01

    To investigate the effect of strain on specific heat, sound velocity and lattice thermal conductivity of nanocrystalline bismuth antimony telluride thin films, we performed both experimental study and modeling. The nanocrystalline thin films had mostly preferred crystal orientation along c-axis, and strains in the both directions of c-axis and a- b-axis. It was found that the thermal conductivity of nanocrystalline thin films decreased greatly as compared with that of bulk alloys. To gain insight into the thermal transport in the strained nanocrystalline thin films, we estimated the lattice thermal conductivity based on the phonon transport model of full distribution of mean free paths accounting for the effects of grain size and strain which was influenced to both the sound velocity and the specific heat. As a result, the lattice thermal conductivity was increased when the strain was shifted from compressive to tensile direction. We also confirmed that the strain was influenced by the lattice thermal conductivity but the reduction of the lattice thermal conductivity of thin films can be mainly attributed to the nano-size effect rather than the strain effect. Finally, it was found that the measured lattice thermal conductivities were in good agreement with modeling.

  4. Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes

    NASA Astrophysics Data System (ADS)

    Nath, G.; Vishwakarma, J. P.

    2016-11-01

    Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  5. High thermally conductive and electrically insulating 2D boron nitride nanosheet for efficient heat dissipation of high-power transistors

    NASA Astrophysics Data System (ADS)

    Lin, Ziyuan; Liu, Chunru; Chai, Yang

    2016-12-01

    High-power transistors suffer greatly from inefficient heat dissipation of the hotspots, which elevate the local temperature and significantly degrade the performance and reliability of the high-power devices. Although various thermal management methods at package-level have been demonstrated, the heat dissipation from non-uniform hotspots at micro/nanoscale still persist in the high power transistors. Here, we develop a method for local thermal management using thermally conductive and electrical insulating few-layer hexagonal boron nitride (h-BN) as heat spreaders and thick counterpart as heat sinks. The electrically insulating characteristic of h-BN nanosheet allows it to be intimately contacted with the hotspot region that is located at the gate electrode edge near the drain side of a high-electron-mobility transistor (HEMT). The high thermal conductivity of h-BN nanosheet, which is quantitatively measured by Raman thermography, reduces the temperature of the hotspot by introducing an additional heat transporting pathway. Our DC and radio-frequency characterizations of the HEMT show the improvement of saturation current, cut-off frequency and maximum oscillation frequency. The finite element simulations show a temperature decrease of ∼32 °C at the hotspot with the use of h-BN nanosheet. This method can be further extended for the micro/nanoscale thermal management of other high-power devices.

  6. Incorporation of the Joule Heating of highly conducting materials into the Truchas code via an asymptotic approach

    SciTech Connect

    Akcay, Cihan; Haut, Terry Scot; Carlson, Neil N.

    2016-05-21

    The EM module of the Truchas code currently lacks the capability to model the Joule (Ohmic) heating of highly conducting materials that are inserted into induction furnaces from time to time to change the heating profile. This effect is difficult to simulate directly because of the requirement to resolve the extremely thin skin depth of good conductors, which is computationally costly. For example, copper has a skin depth, δ ~ 1 mm, for an oscillation frequency of tens of kHz. The industry is interested in determining what fraction of the heating power is lost to the Joule heating of these good conductors inserted inside the furnaces. The approach presented in this document is one of asymptotics where the leading order (unperturbed) solution is taken as that which emerges from solving the EM problem for a perfectly conducting insert. The conductor is treated as a boundary of the domain. The perturbative correction enters as a series expansion in terms of the dimensionless skin depth δ/L, where L is the characteristic size of the EM system. The correction at each order depends on the previous. This means that the leading order correction only depends on the unperturbed solution, in other words, it does not require Truchas to perform an additional EM field solve. Thus, the Joule heating can be captured by a clever leveraging of the existing tools in Truchas with only slight modifications.

  7. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  8. Vapor-modulated heat pipe report. Flight data analysis and further development of variable-conductance heat pipes. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1975-01-01

    The design and testing of a heat pipe for spacecraft application is presented. The application in mind calls for heat loads up to 20 watts, a set-point temperature of 294K, and a sink that varies from -220K to nearly as high as the set-point. The overall heat pipe length is 137 cm. Two basically different mechanisms of achieving variable conductance in the pipe by vapor-flow throttling were studied. In one, the thermal resistance between the heat source and sink is due to a saturation-temperature drop corresponding to the vapor-pressure drop developed across the valve. In the other, the pressure difference across the valve induces capillary groove and wick dry out in an evaporation region, and thus results in an increased thermal resistance. This mechanism was selected for fabrication and testing. The pipe is a stainless-steel/methanol two-heat-pipe system. Results are presented and discussed. Engineering drawings and specifications of the pipe are shown.

  9. Multiple pulse-heating experiments with different current to determine total emissivity, heat capacity, and electrical resistivity of electrically conductive materials at high temperatures.

    PubMed

    Watanabe, Hiromichi; Yamashita, Yuichiro

    2012-01-01

    A modified pulse-heating method is proposed to improve the accuracy of measurement of the hemispherical total emissivity, specific heat capacity, and electrical resistivity of electrically conductive materials at high temperatures. The proposed method is based on the analysis of a series of rapid resistive self-heating experiments on a sample heated at different temperature rates. The method is used to measure the three properties of the IG-110 grade of isotropic graphite at temperatures from 850 to 1800 K. The problem of the extrinsic heating-rate effect, which reduces the accuracy of the measurements, is successfully mitigated by compensating for the generally neglected experimental error associated with the electrical measurands (current and voltage). The results obtained by the proposed method can be validated by the linearity of measured quantities used in the property determinations. The results are in reasonably good agreement with previously published data, which demonstrate the suitability of the proposed method, in particular, to the resistivity and total emissivity measurements. An interesting result is the existence of a minimum in the emissivity of the isotropic graphite at around 1120 K, consistent with the electrical resistivity results.

  10. Flow and Heat Transfer of Powell-Eyring Fluid due to an Exponential Stretching Sheet with Heat Flux and Variable Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Megahed, Ahmed M.

    2015-03-01

    An analysis was carried out to describe the problem of flow and heat transfer of Powell-Eyring fluid in boundary layers on an exponentially stretching continuous permeable surface with an exponential temperature distribution in the presence of heat flux and variable thermal conductivity. The governing partial differential equations describing the problem were transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the shooting method over the entire range of physical parameters. The effects of various parameters like the thermal conductivity parameter, suction parameter, dimensionless Powell-Eyring parameters and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. In this work, special attention was given to investigate the effect of the thermal conductivity parameter on the velocity and temperature fields above the sheet in the presence of heat flux. The numerical results were also validated with results from a previously published work on various special cases of the problem, and good agreements were seen.

  11. Non-homogeneous Steady-State Heat Conduction Problem in a Thin Circular Plate and Its Thermal Stresses

    NASA Astrophysics Data System (ADS)

    Deshmukh, K. C.; Warbhe, S. D.; Kulkarni, V. S.

    2009-10-01

    The present paper deals with the determination of the displacement and thermal stresses in a thin circular plate defined as 0 ≤ r ≤ b, 0 ≤ z ≤ h under a steady temperature field, due to a constant rate of heat generation within it. A thin circular plate is insulated at the fixed circular boundary ( r = b), and the remaining boundary surfaces ( z = 0, z = h) are kept at zero temperature. The governing heat conduction equation has been solved by using an integral transform technique. The results are obtained in series form in terms of modified Bessel functions. The results for displacement and stresses have been computed numerically and are illustrated graphically.

  12. Heat transfer within hydrodissection fluids: An analysis of thermal conduction and convection using liquid and gel materials.

    PubMed

    Johnson, Alexander; Brace, Christopher

    2015-01-01

    Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.

  13. Conductive heat flux in VC-1 and the thermal regime of Valles caldera, Jemez Mountains, New Mexico ( USA).

    USGS Publications Warehouse

    Sass, J.H.; Morgan, P.

    1988-01-01

    Over 5% of heat in the western USA is lost through Quaternary silicic volcanic centers, including the Valles caldera in N central New Mexico. These centers are the sites of major hydrothermal activity and upper crustal metamorphism, metasomatism, and mineralization, producing associated geothermal resources. Presents new heat flow data from Valles caldera core hole 1 (VC-1), drilled in the SW margin of the Valles caldera. Thermal conductivities were measured on 55 segments of core from VC-1, waxed and wrapped to preserve fluids. These values were combined with temperature gradient data to calculate heat flow. Above 335 m, which is probably unsaturated, heat flow is 247 + or - 16 mW m-2. Inteprets the shallow thermal gradient data and the thermal regime at VC-1 to indicate a long-lived hydrothermal (and magmatic) system in the southwestern Valles caldera that has been maintained through the generation of shallow magma bodies during the long postcollapse history of the caldera. High heat flow at the VC-1 site is interpreted to result from hot water circulating below the base of the core hole, and we attribute the lower heat flow in the unsaturated zone is attributed to hydrologic recharge. -from Authors

  14. On the global solvability and the non-resistive limit of the one-dimensional compressible heat-conductive MHD equations

    NASA Astrophysics Data System (ADS)

    Zhang, Jianwen; Zhao, Xiaokui

    2017-03-01

    In general, the resistivity is inversely proportional to the electrical conductivity and is usually taken to be zero when the conducting fluid is of extremely high conductivity (e.g., ideal conductors). In this paper, the global well-posedness of strong solution to the one-dimensional compressible, viscous, heat-conductive, non-resistive magnetohydrodynamics equations with large data, and general heat-conductivity is proved. Moreover, the non-resistive limit is justified and the convergence rates in L2-norm are obtained, provided the heat-conductivity satisfies some growth condition.

  15. FORTRAN 77 programs for conductive cooling of dikes with temperature-dependent thermal properties and heat of crystallization

    USGS Publications Warehouse

    Delaney, P.T.

    1988-01-01

    Temperature histories obtained from transient heat-conduction theory are applicable to most dikes despite potential complicating effects related to magma flow during emplacement, groundwater circulation, and metamorphic reaction during cooling. Here. machine-independent FORTRAN 77 programs are presented to calculate temperatures in and around dikes as they cool conductively. Analytical solutions can treat thermal-property contrasts between the dike and host rocks, but cannot address the release of magmatic heat of crystallization after the early stages of cooling or the appreciable temperature dependence of thermal conductivity and diffusivity displayed by most rock types. Numerical solutions can incorporate these additional factors. The heat of crystallization can raise the initial temperature at the dike contact, ??c1, about 100??C above that which would be estimated if it were neglected, and can decrease the rate at which the front of solidified magma moves to the dike center by a factor of as much as three. Thermal conductivity and diffusivity of rocks increase with decreasing temperature and, at low temperatures, these properties increase more if the rocks are saturated with water. Models that treat these temperature dependencies yield estimates of ??c1 that are as much as 75??C beneath those which would be predicted if they were neglected. ?? 1988.

  16. Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction.

    PubMed

    López Molina, Juan A; Rivera, María J; Trujillo, Macarena; Berjano, Enrique J

    2009-04-01

    The objectives of this study were to model the temperature progress of a pulsed radiofrequency (RF) power during RF heating of biological tissue, and to employ the hyperbolic heat transfer equation (HHTE), which takes the thermal wave behavior into account, and compare the results to those obtained using the heat transfer equation based on Fourier theory (FHTE). A theoretical model was built based on an active spherical electrode completely embedded in the biological tissue, after which HHTE and FHTE were analytically solved. We found three typical waveforms for the temperature progress depending on the relations between the dimensionless duration of the RF pulse delta(a) and the expression square root of lambda(rho-1), with lambda as the dimensionless thermal relaxation time of the tissue and rho as the dimensionless position. In the case of a unique RF pulse, the temperature at any location was the result of the overlapping of two different heat sources delayed for a duration delta(a) (each heat source being produced by a RF pulse of limitless duration). The most remarkable feature in the HHTE analytical solution was the presence of temperature peaks traveling through the medium at a finite speed. These peaks not only occurred during the RF power switch-on period but also during switch off. Finally, a physical explanation for these temperature peaks is proposed based on the interaction of forward and reverse thermal waves. All-purpose analytical solutions for FHTE and HHTE were obtained during pulsed RF heating of biological tissues, which could be used for any value of pulsing frequency and duty cycle.

  17. Effect of low-grade conductive heating on vascular compliance during in vitro balloon angioplasty.

    PubMed

    Mitchel, J F; Fram, D B; Aretz, T A; Gillam, L D; Woronick, C; Waters, D D; McKay, R G

    1994-07-01

    Radiofrequency-powered, thermal balloon angioplasty is a new technique that enhances luminal dilatation with less dissection than conventional angioplasty. The purpose of this study was to assess the effect of radiofrequency heating of balloon fluid on the pressure-volume mechanics of in vitro balloon angioplasty and to determine the histologic basis for thermal-induced compliance changes. In vitro, radiofrequency-powered, thermal balloon angioplasty was performed on 46 paired iliac segments freshly harvested from 23 nonatherosclerotic pigs. Balloon inflations at 60 degrees C were compared to room temperature inflations in paired arterial segments. Intraballoon pressure and volume were recorded during each inflation as volume infusion increased pressure over a 0 to 10 atm range. Pressure-volume compliance curves were plotted for all dilatations. Six segments were stained to assess the histologic abnormalities associated with thermal compliance changes. Radiofrequency heating acutely shifted the pressure-volume curves rightward in 20 of 23 iliac segments compared to nonheated controls. This increase in compliance persisted after heating and exceeded the maximum compliance shift caused by multiple nonheated inflations in a subset of arterial segments. Histologically, heated segments showed increased thinning and compression of the arterial wall, increased medial cell necrosis and altered elastic tissue fibers compared to nonheated specimens. In conclusion, radiofrequency heating of intraballoon fluid to 60 degrees C acutely increases vascular compliance during in vitro balloon angioplasty of nonatherosclerotic iliac arteries. The increased compliance persists after heating and can be greater than the compliance shifts induced by multiple conventional dilatations. Arterial wall thinning and irreversible alteration of elastic tissue fibers probably account for thermal compliance changes.

  18. The effect of heat conduction on the rate of chemical reaction in dilute gases

    NASA Astrophysics Data System (ADS)

    Fort, J.; Cukrowski, A. S.

    1997-09-01

    Information statistical theory is used to obtain the second-order terms (similar to those analyzed in the Burnett approximation to the solution of the Boltzmann equation) in the expansion of the nonequilibrium velocity distribution function. These terms are used for the evaluation of the effect of the heat flux on the rate of bimolecular chemical reactions. This effect is shown to be important for reactions characterized by high values of the activation energy. However, very large values of the heat flux would be necessary. The results are compared with those obtained earlier from the square terms calculated from the linearized Boltzmann equation and with recent results due to Nettleton.

  19. Effects of heat conduction on artificial viscosity methods for shock capturing

    DOE PAGES

    Cook, Andrew W.

    2013-12-01

    Here we investigate the efficacy of artificial thermal conductivity for shock capturing. The conductivity model is derived from artificial bulk and shear viscosities, such that stagnation enthalpy remains constant across shocks. By thus fixing the Prandtl number, more physical shock profiles are obtained, only on a larger scale. The conductivity model does not contain any empirical constants. It increases the net dissipation of a computational algorithm but is found to better preserve symmetry and produce more robust solutions for strong-shock problems.

  20. Bias induced modulation of electrical and thermal conductivity and heat capacity of BN and BN/graphene bilayers

    NASA Astrophysics Data System (ADS)

    Chegel, Raad

    2017-04-01

    By using the tight binding approximation and Green function method, the electronic structure, density of state, electrical conductivity, heat capacity of BN and BN/graphene bilayers are investigated. The AA-, AB1- and AB2- BN/graphene bilayers have small gap unlike to BN bilayers which are wide band gap semiconductors. Unlike to BN bilayer, the energy gap of graphene/BN bilayers increases with external field. The magnitude of the change in the band gap of BN bilayers is much higher than the graphene/BN bilayers. Near absolute zero, the σ(T) is zero for BN bilayers and it increases with temperature until reaches maximum value then decreases. The BN/graphene bilayers have larger electrical conductivity larger than BN bilayers. For both bilayers, the specific heat capacity has a Schottky anomaly.

  1. Thermal conductivity of vitreous silica from molecular dynamics simulations: The effects of force field, heat flux and system size

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Du, Jincheng; Han, Wei; Zu, Xiaotao; Yuan, Xiaodong; Zheng, Wanguo

    2017-02-01

    The thermal conductivity of vitreous silica is computed using the direct method in molecular dynamics simulations with three sets of empirical force fields, including the BKS, Teter, and ReaxFF, to investigate their performance in thermal characterization. Various heat flux and system sizes are used in the simulations to evaluate the statistical uncertainty and the finite-size effect. While all these potentials can reproduce realistic silica structures, the ReaxFF provides better agreement with experiments at 300 K than the BKS and Teter, which is due to its improved description of low-frequency vibrations. Increasing the heat flux and cross-sectional area tends to reduce the calculated standard deviation induced by thermal fluctuations, thus contributing to more accurate thermal conductivity predictions.

  2. THERMALLY CONDUCTIVE CEMENTITIOUS GROUTS FOR GEOTHERMAL HEAT PUMPS. PROGRESS REPORT BY 1998

    SciTech Connect

    ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

    1998-11-01

    Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98.

  3. Students' Design of Experiments: An Inquiry Module on the Conduction of Heat

    ERIC Educational Resources Information Center

    Hatzikraniotis, E.; Kallery, M.; Molohidis, A.; Psillos, D.

    2010-01-01

    This article examines secondary students' design of experiments after engagement in an innovative and inquiry-oriented module on heat transfer. The module consists of an integration of hands-on experiments, simulated experiments and microscopic model simulations, includes a structured series of guided investigative tasks and was implemented for a…

  4. Another self-similar blast wave: Early time asymptote with shock heated electrons and high thermal conductivity

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Edgar, R. J.

    1982-01-01

    Accurate approximations are presented for the self-similar structures of nonradiating blast waves with adiabatic ions, isothermal electrons, and equation ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform density case) and have negligible external pressure. The results provide the early time asymptote for systems with shock heating of electrons and strong thermal conduction. In addition, they provide analytical results against which two fluid numerical hydrodynamic codes can be checked.

  5. Anomalous decrease of the specific heat capacity at the electrical and thermal conductivity percolation threshold in nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, B.-W.; Park, S.-H.; Bandaru, P. R.

    2014-12-01

    We report an unusual specific heat variation in nanotube/polymer composites, related to a reduction in its value at the electrical and the thermal conductivity percolation threshold, with a concomitant increase in the crystallinity. The reduction has been interpreted in terms of the partition of the total number of nanostructures into isolated or clustered/connected entities, the numbers of which vary as a function of the nanotube filler fraction, and the consequent modulation of the entropic characteristics as well as the conductivity.

  6. Simultaneous measurement for thermal conductivity, diffusivity, and specific heat of methane hydrate bearing sediments recovered from Nankai-Trough wells

    NASA Astrophysics Data System (ADS)

    Muraoka, M.; Ohtake, M.; Susuki, N.; Yamamoto, Y.; Suzuki, K.; Tsuji, T.

    2014-12-01

    This study presents the results of the measurements of the thermal constants of natural methane-hydrate-bearing sediments samples recovered from the Tokai-oki test wells (Nankai-Trough, Japan) in 2004. The thermal conductivity, thermal diffusivity, and specific heat of the samples were simultaneously determined using the hot-disk transient method. The thermal conductivity of natural hydrate-bearing sediments decreases slightly with increasing porosity. In addition, the thermal diffusivity of hydrate-bearing sediment decrease as porosity increases. We also used simple models to calculate the thermal conductivity and thermal diffusivity. The results of the distribution model (geometric-mean model) are relatively consistent with the measurement results. In addition, the measurement results are consistent with the thermal diffusivity, which is estimated by dividing the thermal conductivity obtained from the distribution model by the specific heat obtained from the arithmetic mean. In addition, we discuss the relation between the thermal conductivity and mineral composition of core samples in conference. Acknowledgments. This work was financially supported by MH21 Research Consortium for Methane Hydrate Resources in Japan on the National Methane Hydrate Exploitation Program planned by the Ministry of Economy, Trade and Industry.

  7. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  8. Heat conduction in chain polymer liquids: molecular dynamics study on the contributions of inter- and intramolecular energy transfer.

    PubMed

    Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro

    2011-07-21

    In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.

  9. Heat capacities and thermal conductivities of AmO 2 and AmO 1.5

    NASA Astrophysics Data System (ADS)

    Nishi, Tsuyoshi; Itoh, Akinori; Ichise, Kenichi; Arai, Yasuo

    2011-07-01

    The thermal diffusivity of AmO 2 was measured from 473 to 773 K and that of AmO 1.5 between 473 and 1373 K using a laser flash method. The enthalpy increment of AmO 2 was measured from 335 to 1081 K and that of AmO 1.5 between 335 and 1086 K using drop calorimetry. The heat capacities of AmO 2 and AmO 1.5 were derived from the enthalpy increment measurements. The thermal conductivity was determined from the measured thermal diffusivity, heat capacity and bulk density. The heat capacities of AmO 2 was found larger than that of AmO 1.5. The thermal conductivities of AmO 2 and AmO 1.5 were found to decrease with increasing temperature in the investigated temperature range. The thermal conductivity of AmO 1.5 with A -type hexagonal structure was smaller than that of AmO 2 with C-type fluorite structure but larger than that of sub-stoichiometric AmO 1.73.

  10. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials

    PubMed Central

    Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki

    2016-01-01

    The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092

  11. The thermal instability in a sheared magnetic field - Filament condensation with anisotropic heat conduction. [solar physics

    NASA Technical Reports Server (NTRS)

    Van Hoven, G.; Mok, Y.

    1984-01-01

    The condensation-mode growth rate of the thermal instability in an empirically motivated sheared field is shown to depend upon the existence of perpendicular thermal conduction. This typically very small effect (perpendicular conductivity/parallel conductivity less than about 10 to the -10th for the solar corona) increases the spatial-derivative order of the compressible temperature-perturbation equation, and thereby eliminates the singularities which appear when perpendicular conductivity = 0. The resulting growth rate is less than 1.5 times the controlling constant-density radiation rate, and has a clear maximum at a cross-field length of order 100 times and a width of about 0.1 the magnetic shear scale for solar conditions. The profiles of the observable temperature and density perturbations are independent of the thermal conductivity, and thus agree with those found previously. An analytic solution to the short-wavelength incompressible case is also given.

  12. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials.

    PubMed

    Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki

    2016-03-14

    The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~10(12) cm(-2)). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control.

  13. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Transient heat conduction in laser diodes

    NASA Astrophysics Data System (ADS)

    Enders, P.; Galley, J.

    1988-11-01

    The dynamics of heat transfer in stripe GaAlAs laser diodes is investigated by solving the linear diffusion equation for a quasitwo-dimensional multilayer structure. The calculations are rationalized drastically by the transfer matrix method and also using for the first time the asymptotes of the decay constants. Special attention is given to the convergence of the Fourier series. A comparison with experimental results reveals however that this is essentially the Stefan problem (with moving boundary conditions).

  14. Solutions of the heat conduction equation in multilayers for photothermal deflection experiments

    NASA Technical Reports Server (NTRS)

    Mcgahan, William A.; Cole, K. D.

    1992-01-01

    Analytical expressions for temperature and laser beam deflection in multilayer medium is derived using Green function techniques. The approach is based on calculation of the normal component of heat fluxes across the boundaries, from which either the beam deflections or the temperature anywhere in space can be found. A general expression for the measured signals for the case of four-quadrant detection is also presented and compared with previous calculations of detector response for finite probe beams.

  15. Model surface conductivity effect for the electromagnetic heat shield in re-entry flight

    SciTech Connect

    Matsuda, Atsushi; Kawamura, Masaaki; Konigorski, Detlev; Takizawa, Yuji; Abe, Takashi

    2008-12-15

    Effects of model surface conductivity on shock layer enhancement by an applied magnetic field in weakly ionized supersonic plasma flow with a large Hall parameter ({beta}{approx}300) was investigated experimentally. The shock layer structures of test models of two kinds were measured using laser absorption spectroscopy, in the large Hall parameter situation. One was an insulated model; the other was a conductive spherical blunt model. The shock layer enhancement phenomenon by the applied magnetic field was more pronounced for the insulated model than for the conductive model. This tendency agrees with the computational fluid dynamics result, at least qualitatively.

  16. Characterization of a Method for Inverse Heat Conduction Using Real and Simulated Thermocouple Data

    NASA Technical Reports Server (NTRS)

    Pizzo, Michelle E.; Glass, David E.

    2017-01-01

    It is often impractical to instrument the external surface of high-speed vehicles due to the aerothermodynamic heating. Temperatures can instead be measured internal to the structure using embedded thermocouples, and direct and inverse methods can then be used to estimate temperature and heat flux on the external surface. Two thermocouples embedded at different depths are required to solve direct and inverse problems, and filtering schemes are used to reduce noise in the measured data. Accuracy in the estimated surface temperature and heat flux is dependent on several factors. Factors include the thermocouple location through the thickness of a material, the sensitivity of the surface solution to the error in the specified location of the embedded thermocouples, and the sensitivity to the error in thermocouple data. The effect of these factors on solution accuracy is studied using the methodology discussed in the work of Pizzo, et. al.1 A numerical study is performed to determine if there is an optimal depth at which to embed one thermocouple through the thickness of a material assuming that a second thermocouple is installed on the back face. Solution accuracy will be discussed for a range of embedded thermocouple depths. Moreover, the sensitivity of the surface solution to (a) the error in the specified location of the embedded thermocouple and to (b) the error in the thermocouple data are quantified using numerical simulation, and the results are discussed.

  17. Image sharpening method based on anti-heat conduction equation and Sobel operator

    NASA Astrophysics Data System (ADS)

    Zhao, Enliang; Sun, Lihua; Wang, Changtao; Xia, Xinghua

    2013-10-01

    The paper studies effective ways to sharpen images by using of partial differential equation and the classical image sharpening operators. Based on the physical meaning of heat equation, by regarding the gray values of an image as the temperature on a flat object, a model on anti-heat equation is obtained. Under the assumptions of the blurred image is the result of the original image filtered by the heat equation and the time t is small enough, we establish a model for image sharpening, which is solved by means of Sobel operator. The results of numerical experiments show that the method can make the image sharper and obtain clearer image. Sharpened image hasn't moved information, at the same time noise doesn't appear, it does keep the edges and details in the original image. The algorithm maintains stably over a long time, that is, the sharpened image does not been blurred again with the increase of the number of iterations.

  18. Modelling of three-dimensional transient conjugate convection-conduction-radiation heat transfer processes and turbulence in building spaces

    NASA Astrophysics Data System (ADS)

    Potter, Stephen Edward

    1998-12-01

    A survey of the developments in the field of Computational Fluid Dynamics (CFD) is presented the results of which are used to identify numerical methods capable of solving the equation sets that define the various categories of fluid flow and heat transfer that apply to air movement within buildings. The background to turbulence modelling is discussed together with the treatment of near-wall regions to which turbulence models are inapplicable. A further survey into the application of CFD methods to air movement within buildings is presented together with an appraisal of the success of these studies in terms of realistic modelling. From this survey it is concluded that there is a need to integrate surface radiation heat transfer methods within CFD procedures in order to provide a fully coupled model. The equation set describing advection, convection and conduction processes together with the k-ɛ turbulence model are presented and the development of this equation set into the final mathematical model described. Details of the numerical procedure adopted for solution of the equation set are provided together with a general approach to the incorporation of radiation heat transfer within the same solution scheme. Shortwave and longwave radiation heat transfer processes in buildings are discussed and the geometric requirements for the numerical simulation of radiation process identified. A general numerical method for handling room geometry is presented together with a method for linking building surface and CFD grid geometries. A method for incorporating shortwave solar radiation together with an approximate method for longwave radiation within the CFD solution scheme is detailed dispensing with the need for an involved iterative approach. A computer program has been developed from these mathematical models which is capable of solving coupled three-dimensional convection, conduction and radiation heat transfer processes. The program has been applied to a set of test

  19. Thermal conductivity and electron-phonon relaxation in a metal heated by a subpicosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Anisimov, S. I.

    2006-06-01

    This paper discusses the initial stages of the interaction of subpicosecond laser pulses with metallic targets: the absorption of light, energy transport by electronic thermal conductivity, and electron-phonon relaxation. It is shown that, with moderate surface energy density, hydrodynamic motion begins after the electronic and lattice temperatures equalize. A connection is established between the energy exchange rate between the electrons and the lattice and the electronic thermal conductivity (an analog of the Wiedemann-Franz law).

  20. Effects of temperature dependence of electrical and thermal conductivities on the Joule heating of a one dimensional conductor

    NASA Astrophysics Data System (ADS)

    Antoulinakis, F.; Chernin, D.; Zhang, Peng; Lau, Y. Y.

    2016-10-01

    We examine the effects of temperature dependence of the electrical and thermal conductivities on Joule heating of a one-dimensional conductor by solving the coupled non-linear steady state electrical and thermal conduction equations. The spatial temperature distribution and the maximum temperature and its location within the conductor are evaluated for four cases: (i) constant electrical conductivity and linear temperature dependence of thermal conductivity, (ii) linear temperature dependence of both electrical and thermal conductivities, (iii) the Wiedemann-Franz relation for metals, and (iv) polynomial fits to measured data for carbon nanotube fibers and for copper. For (i) and (ii), it is found that there are conditions under which no steady state solution exists, which may indicate the possibility of thermal runaway. For (i), analytical solutions are constructed, from which explicit expressions for the parameter bounds for the existence of steady state solutions are obtained. The shifting of these bounds due to the introduction of linear temperature dependence of electrical conductivity (case (ii)) is studied numerically. These results may provide guidance in the design of circuits and devices in which the effects of coupled thermal and electrical conduction are important.

  1. An experimentally verified model for thermal microactuators including nonlinear material properties, vacuum, and intra-device heat conduction

    NASA Astrophysics Data System (ADS)

    Colbert, Keegan; Naraghi, Mohammad; Boyd, James G.

    2017-02-01

    This paper presents a model and computational method to predict the steady-state performance of thermal flexure microactuators at high input powers and various levels of partial vacuum. The model accounts for nonlinear temperature dependence of material properties, heat loss due to radiation, and intra-device heat transfer by conduction across an air gap. The model is validated by comparing the model predictions with the experimentally measured voltage, current, and displacement at standard conditions, prior to adjusting for partial vacuum. In order to understand the effect of nonlinearities on model reliability, the predictions of six additional hypothetical models are considered where (1) intra-device heat transfer is neglected, (2) radiation is neglected, (3) the thermal conductivity of silicon is assumed to be temperature-independent, (4) the thermal conductivity of air is assumed to be temperature-independent, (5) the electrical resistivity of silicon is assumed to be linear in temperature, and (6) the thermal expansion coefficient of silicon is assumed to be temperature-independent. All factors except radiation were shown to have a significant influence on the device performance especially at high input powers. The experimentally validated full model is then employed to predict the effect of reduced air pressure on the displacement and heat transfer properties of the actuator. This aspect of the study targets applications of thermal actuators in controlled environments such as space applications, actuators used for in situ micropositioning and tensile testing inside electron microscopy chambers, or actuators incorporated into the design of MEMS resonators. It was demonstrated that the maximum actuator displacement is not a linear function of reduced pressure and that it reaches a maximum at a certain partial vacuum level.

  2. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.

    PubMed

    Shrivastava, Devashish; Roemer, Robert B

    2005-08-07

    To conveniently and properly account for the vessel to vessel and vessel to tissue heat transfer rates to predict in vivo tissue temperature distributions, this paper analyses two different types of Poisson conduction shape factors (PCSFs) for unheated and/or uniformly heated, non-insulated, finite tissue domains. One is related to the heat transfer rate from one vessel to another (vessel-vessel PCSF (VVPCSF)) and the other is related to the vessel to tissue heat transfer rates (vessel-tissue PCSF (VTPCSF)). Two alternative formulations for the VTPCSFs are studied; one is based on the difference between the vessel wall and tissue boundary temperatures, and the other on the difference between the vessel wall and the average tissue temperatures. The effects of a uniform source term and of the diameters and locations of the two vessels on the PCSFs are studied for two different cases: one, when the vessel wall temperatures are lower than the tissue boundary temperature, i.e., the vessels cool the tissue, and vice versa. Results show that, first, the VVPCSFs are only geometry dependent and they do not depend on the applied source term and the vessel wall and tissue boundary temperatures. Conversely, the VTPCSFs are strong functions of the source term and of the temperatures of the vessel walls and tissue boundary. These results suggest that to account for the vessel to vessel heat transfer rates, the VVPCSFs can be evaluated solely based on the vessel network geometry. However, to account for the vessel to tissue heat transfer rates, the VTPCSFs should be used iteratively while solving for the tissue temperature distributions. Second, unlike the tissue boundary temperature-based VTPCSFs which may become singular only in heated tissues, the average tissue temperature-based VTPCSFs have the potential to become singular in both unheated and heated tissues. These results suggest that caution should be exercised in the use of the VTPCSFs since they may approach singularity

  3. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue

    NASA Astrophysics Data System (ADS)

    Shrivastava, Devashish; Roemer, Robert B.

    2005-08-01

    To conveniently and properly account for the vessel to vessel and vessel to tissue heat transfer rates to predict in vivo tissue temperature distributions, this paper analyses two different types of Poisson conduction shape factors (PCSFs) for unheated and/or uniformly heated, non-insulated, finite tissue domains. One is related to the heat transfer rate from one vessel to another (vessel-vessel PCSF (VVPCSF)) and the other is related to the vessel to tissue heat transfer rates (vessel-tissue PCSF (VTPCSF)). Two alternative formulations for the VTPCSFs are studied; one is based on the difference between the vessel wall and tissue boundary temperatures, and the other on the difference between the vessel wall and the average tissue temperatures. The effects of a uniform source term and of the diameters and locations of the two vessels on the PCSFs are studied for two different cases: one, when the vessel wall temperatures are lower than the tissue boundary temperature, i.e., the vessels cool the tissue, and vice versa. Results show that, first, the VVPCSFs are only geometry dependent and they do not depend on the applied source term and the vessel wall and tissue boundary temperatures. Conversely, the VTPCSFs are strong functions of the source term and of the temperatures of the vessel walls and tissue boundary. These results suggest that to account for the vessel to vessel heat transfer rates, the VVPCSFs can be evaluated solely based on the vessel network geometry. However, to account for the vessel to tissue heat transfer rates, the VTPCSFs should be used iteratively while solving for the tissue temperature distributions. Second, unlike the tissue boundary temperature-based VTPCSFs which may become singular only in heated tissues, the average tissue temperature-based VTPCSFs have the potential to become singular in both unheated and heated tissues. These results suggest that caution should be exercised in the use of the VTPCSFs since they may approach singularity

  4. Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon; Amar, Adam J.

    2016-01-01

    Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of determining boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation details will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of problems.

  5. Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Oliver, A Brandon; Amar, Adam J.

    2016-01-01

    Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of specifying boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation nuances will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of one-dimensional and multi-dimensional problems

  6. Measuring thermal conductivity of the lunar regolith in-situ: Lessons learned from the Apollo heat flow experiment

    NASA Astrophysics Data System (ADS)

    Grott, Matthias; Knollenberg, Joerg; Sohl, Frank; Krause, Christian

    With landed lunar missions like the International Lunar Network ILN on the agenda of major space agencies, new opportunities for the in-situ geophysical exploration of the Moon are arising. In preparation for these missions, it is due time to re-evaluate earlier measurements and to identify open science questions and lessons learned from the Apollo Lunar Surface Experiment Package. Here we focus on the heat flow experiment conducted during the Apollo 15 and 17 missions, which provided the first extraterrestrial heat flow measurements in history. The lunar heat flow values measured at the two sites carry some uncertainty connected to am-biguities considering the in-situ determination of the thermal conductivity. Disparate thermal conductivity values were deduced using two different methods, (i) a modified line heat source (LHS) method and (ii) a transient method involving the analysis of transient thermal waves. This led to a downward correction of the estimated lunar heat flow by 30 to 50 % relative to first published results. It was concluded at that time that the discrepancy between the both methods must be attributed to regolith disruption close to the borestem and that transient methods would yield more reliable results. We have re-evaluated the influence of regolith disruption caused by probe emplacement on the measurements. We find that disturbed regolith probably extended across many cm from the drill stem into the surrounding soil. This finding poses significant challenges to future in-situ experiments, as the volume sampled by LHS methods is usually fairly restricted. On the other hand, as a direct method, the measurement accuracy of the LHS methods is much higher than that expected from transient methods. We therefore propose to use a combination of methods to gain confidence in the obtained results. Our results suggest that the influence of probe emplacement on the surroundings needs to be carefully analyzed and we will present a model for regolith

  7. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals.

    PubMed

    Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H

    2015-12-29

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.

  8. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals

    PubMed Central

    Fristoe, Trevor S.; Burger, Joseph R.; Balk, Meghan A.; Khaliq, Imran; Hof, Christian; Brown, James H.

    2015-01-01

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359

  9. Vibrational cooling, heating, and instability in molecular conducting junctions: full counting statistics analysis.

    PubMed

    Simine, Lena; Segal, Dvira

    2012-10-28

    We study current-induced vibrational cooling, heating, and instability in a donor-acceptor rectifying molecular junction using a full counting statistics approach. In our model, electron-hole pair excitations are coupled to a given molecular vibrational mode which is either harmonic or highly anharmonic. This mode may be further coupled to a dissipative thermal environment. Adopting a master equation approach, we confirm the charge and heat exchange fluctuation theorem in the steady-state limit, for both harmonic and anharmonic models. Using simple analytical expressions, we calculate the charge current and several measures for the mode effective temperature. At low bias, we observe the effect of bias-induced cooling of the vibrational mode. At higher bias, the mode effective temperature is higher than the environmental temperature, yet the junction is stable. Beyond that, once the vibrational mode (bias-induced) excitation rate overcomes its relaxation rate, instability occurs. We identify regimes of instability as a function of voltage bias and coupling to an additional phononic thermal bath. Interestingly, we observe a reentrant behavior where an unstable junction can properly behave at a high enough bias. The mechanism for this behavior is discussed.

  10. COXPRO-II: a computer program for calculating radiation and conduction heat transfer in irradiated fuel assemblies

    SciTech Connect

    Rhodes, C.A.

    1984-12-01

    This report describes the computer program COXPRO-II, which was written for performing thermal analyses of irradiated fuel assemblies in a gaseous environment with no forced cooling. The heat transfer modes within the fuel pin bundle are radiation exchange among fuel pin surfaces and conduction by the stagnant gas. The array of parallel cylindrical fuel pins may be enclosed by a metal wrapper or shroud. Heat is dissipated from the outer surface of the fuel pin assembly by radiation and convection. Both equilateral triangle and square fuel pin arrays can be analyzed. Steady-state and unsteady-state conditions are included. Temperatures predicted by the COXPRO-II code have been validated by comparing them with experimental

  11. Solving Heat Conduction Problems in Movable Boundary Domains under Intensive Physical-Chemical Transformation Conditions

    NASA Astrophysics Data System (ADS)

    Garashchenko, A. N.; Rudzinsky, V. P.; Garashchenko, N. A.

    2016-02-01

    Results of solving problems of simulating temperature fields in domains with movable boundaries of characteristic zones of intensive physical-chemical and thermomechanical transformations to be realized in materials upon high-temperature heating have been presented. Intumescent fire-protective coatings based on organic and mineral materials are the object of study. Features of numerical realization of input equation systems taking into account, in particular, a dynamics of considerable increase and subsequent decrease of the intumescent layer thickness have been considered. Example calculations for structures of metal and wood protected with various coatings are given. Results of calculating two-dimensional temperature fields in polymer composite square-shaped structures with internal cruciform load-bearing elements have been presented. The intumescent coating is arranged on the external surface of a structure. The solution of the above-listed problems is of important significance to provide fire protection of different-purpose structures and products.

  12. Arrays of flow channels with heat transfer embedded in conducting walls

    SciTech Connect

    Bejan, A.; Almerbati, A.; Lorente, S.; Sabau, A. S.; Klett, J. W.

    2016-04-20

    Here we illustrate the free search for the optimal geometry of flow channel cross-sections that meet two objectives simultaneously: reduced resistances to heat transfer and fluid flow. The element cross section and the wall material are fixed, while the shape of the fluid flow opening, or the wetted perimeter is free to vary. Two element cross sections are considered, square and equilateral triangular. We find that the two objectives are best met when the solid wall thickness is uniform, i.e., when the wetted perimeters are square and triangular, respectively. In addition, we consider arrays of square elements and triangular elements, on the basis of equal mass flow rate per unit of array cross sectional area. The conclusion is that the array of triangular elements meets the two objectives better than the array of square elements.

  13. Arrays of flow channels with heat transfer embedded in conducting walls

    DOE PAGES

    Bejan, A.; Almerbati, A.; Lorente, S.; ...

    2016-04-20

    Here we illustrate the free search for the optimal geometry of flow channel cross-sections that meet two objectives simultaneously: reduced resistances to heat transfer and fluid flow. The element cross section and the wall material are fixed, while the shape of the fluid flow opening, or the wetted perimeter is free to vary. Two element cross sections are considered, square and equilateral triangular. We find that the two objectives are best met when the solid wall thickness is uniform, i.e., when the wetted perimeters are square and triangular, respectively. In addition, we consider arrays of square elements and triangular elements,more » on the basis of equal mass flow rate per unit of array cross sectional area. The conclusion is that the array of triangular elements meets the two objectives better than the array of square elements.« less

  14. A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids

    NASA Astrophysics Data System (ADS)

    Sui, Jize; Zheng, Liancun; Zhang, Xinxin; Chen, Ying; Cheng, Zhengdong

    2016-01-01

    We propose a multilevel equivalent agglomeration (MEA) model in which all particles in an irregular cluster are treated as a new particle with equivalent volume, the liquid molecules wrapping the cluster and in the gaps are considered to assemble on the surface of new particle as mixing nanolayer (MNL), the thermal conductivity in MNL is assumed to satisfy exponential distribution. Theoretical predictions for thermal conductivity enhancement are highly in agreement with the classical experimental data. Also, we first try to employ TEM information quantitatively to offer probable reference agglomeration ratio (not necessary a very precise value) to just test rational estimations range by present model. The comparison results indicate the satisfactory priori agglomeration ratio estimations range from renovated model.

  15. A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids

    PubMed Central

    Sui, Jize; Zheng, Liancun; Zhang, Xinxin; Chen, Ying; Cheng, Zhengdong

    2016-01-01

    We propose a multilevel equivalent agglomeration (MEA) model in which all particles in an irregular cluster are treated as a new particle with equivalent volume, the liquid molecules wrapping the cluster and in the gaps are considered to assemble on the surface of new particle as mixing nanolayer (MNL), the thermal conductivity in MNL is assumed to satisfy exponential distribution. Theoretical predictions for thermal conductivity enhancement are highly in agreement with the classical experimental data. Also, we first try to employ TEM information quantitatively to offer probable reference agglomeration ratio (not necessary a very precise value) to just test rational estimations range by present model. The comparison results indicate the satisfactory priori agglomeration ratio estimations range from renovated model. PMID:26777389

  16. Conductive and evaporative precooling lowers mean skin temperature and improves time trial performance in the heat.

    PubMed

    Faulkner, S H; Hupperets, M; Hodder, S G; Havenith, G

    2015-06-01

    Self-paced endurance performance is compromised by moderate-to-high ambient temperatures that are evident in many competitive settings. It has become common place to implement precooling prior to competition in an attempt to alleviate perceived thermal load and performance decline. The present study aimed to investigate precooling incorporating different cooling avenues via either evaporative cooling alone or in combination with conductive cooling on cycling time trial performance. Ten trained male cyclists completed a time trial on three occasions in hot (35 °C) ambient conditions with the cooling garment prepared by (a) immersion in water (COOL, evaporative); (b) immersion in water and frozen (COLD, evaporative and conductive); or (c) no precooling (CONT). COLD improved time trial performance by 5.8% and 2.6% vs CONT and COOL, respectively (both P < 0.05). Power output was 4.5% higher for COLD vs CONT (P < 0.05). Mean skin temperature was lower at the onset of the time trial following COLD compared with COOL and CONT (both P < 0.05) and lasted for the first 20% of the time trial. Thermal sensation was perceived cooler following COOL and COLD. The combination of evaporative and conductive cooling (COLD) had the greatest benefit to performance, which is suggested to be driven by reduced skin temperature following cooling.

  17. Thermal shock fracture mechanics analysis of a semi-infinite medium based on the dual-phase-lag heat conduction model

    PubMed Central

    Wang, B.; Li, J. E.; Yang, C.

    2015-01-01

    The generalized lagging behaviour in solids is very important in understanding heat conduction in small-scale and high-rate heating. In this paper, an edge crack in a semi-infinite medium subjected to a heat shock on its surface is studied under the framework of the dual-phase-lag (DPL) heat conduction model. The transient thermal stress in the medium without crack is obtained first. This stress is used as the crack surface traction with an opposite sign to formulate the crack problem. Numerical results of thermal stress intensity factor are obtained as the functions of crack length and thermal shock time. Crack propagation predictions are conducted and results based on the DPL model and those based on the classical Fourier heat conduction model are compared. The thermal shock strength that the medium can sustain without catastrophic failure is established according to the maximum local stress criterion and the stress intensity factor criterion. PMID:25663805

  18. Thermal shock fracture mechanics analysis of a semi-infinite medium based on the dual-phase-lag heat conduction model.

    PubMed

    Wang, B; Li, J E; Yang, C

    2015-02-08

    The generalized lagging behaviour in solids is very important in understanding heat conduction in small-scale and high-rate heating. In this paper, an edge crack in a semi-infinite medium subjected to a heat shock on its surface is studied under the framework of the dual-phase-lag (DPL) heat conduction model. The transient thermal stress in the medium without crack is obtained first. This stress is used as the crack surface traction with an opposite sign to formulate the crack problem. Numerical results of thermal stress intensity factor are obtained as the functions of crack length and thermal shock time. Crack propagation predictions are conducted and results based on the DPL model and those based on the classical Fourier heat conduction model are compared. The thermal shock strength that the medium can sustain without catastrophic failure is established according to the maximum local stress criterion and the stress intensity factor criterion.

  19. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.

    PubMed

    Liu, Jun; Zhu, Jie; Tian, Miao; Gu, Xiaokun; Schmidt, Aaron; Yang, Ronggui

    2013-03-01

    The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.

  20. The impact of the thermal conductivity of a dielectric layer on the self-heating effect of a graphene transistor.

    PubMed

    Pan, T S; Gao, M; Huang, Z L; Zhang, Y; Feng, Xue; Lin, Y

    2015-08-28

    The self-heating effect of a graphene transistor on the transport properties was studied. Different dielectric layers, SiO2 and AlN, which have different thermal conductivities, were used to tune the thermal dissipation of the graphene transistor. An obvious change in channel resistance and a shift of charge neutrality point were observed during the operation of the transistor with SiO2, while the change is slight when AlN is the dielectric layer. This observation is considered to be related to the temperature determined desorption rate of p-type dopants in graphene.