Coherent thermal conductance of 1-D photonic crystals
NASA Astrophysics Data System (ADS)
Tschikin, Maria; Ben-Abdallah, Philippe; Biehs, Svend-Age
2012-10-01
We present an exact calculation of coherent thermal conductance in 1-D multilayer photonic crystals using the S-matrix method. In particular, we study the thermal conductance in a bilayer structure of Si/vacuum or Al2O3/vacuum slabs by means of the exact radiative heat flux expression. Based on the results obtained for the Al2O3/vacuum structure we show by comparison with previous works that the material losses and (localized) surface modes supported by the inner layers play a fundamental role and cannot be omitted in the definition of thermal conductance. Our results could have significant implications in the conception of efficient thermal barriers.
NASA Technical Reports Server (NTRS)
2003-01-01
Heat conduction plays an important role in the efficiency and life span of electronic components. To keep electronic components running efficiently and at a proper temperature, thermal management systems transfer heat generated from the components to thermal surfaces such as heat sinks, heat pipes, radiators, or heat spreaders. Thermal surfaces absorb the heat from the electrical components and dissipate it into the environment, preventing overheating. To ensure the best contact between electrical components and thermal surfaces, thermal interface materials are applied. In addition to having high conductivity, ideal thermal interface materials should be compliant to conform to the components, increasing the surface contact. While many different types of interface materials exist for varying purposes, Energy Science Laboratories, Inc. (ESLI), of San Diego, California, proposed using carbon velvets as thermal interface materials for general aerospace and electronics applications. NASA s Johnson Space Center granted ESLI a Small Business Innovation Research (SBIR) contract to develop thermal interface materials that are lightweight and compliant, and demonstrate high thermal conductance even for nonflat surfaces. Through Phase II SBIR work, ESLI created Vel-Therm for the commercial market. Vel-Therm is a soft, carbon fiber velvet consisting of numerous high thermal conductivity carbon fibers anchored in a thin layer of adhesive. The velvets are fabricated by precision cutting continuous carbon fiber tows and electrostatically flocking the fibers into uncured adhesive, using proprietary techniques.
Conduction heat transfer solutions
VanSant, J.H.
1983-08-01
This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs.
Conductance and Absolutely Continuous Spectrum of 1D Samples
NASA Astrophysics Data System (ADS)
Bruneau, L.; Jakšić, V.; Last, Y.; Pillet, C.-A.
2016-06-01
We characterize the absolutely continuous spectrum of the one-dimensional Schrödinger operators {h = -Δ + v} acting on {ℓ^2(mathbb{Z}_+)} in terms of the limiting behaviour of the Landauer-Büttiker and Thouless conductances of the associated finite samples. The finite sample is defined by restricting h to a finite interval {[1, L] \\cap mathbb{Z}_+} and the conductance refers to the charge current across the sample in the open quantum system obtained by attaching independent electronic reservoirs to the sample ends. Our main result is that the conductances associated to an energy interval {I} are non-vanishing in the limit {L to infty} iff {sp_ac(h) \\cap I neq emptyset}. We also discuss the relationship between this result and the Schrödinger Conjecture (Avila, J Am Math Soc 28:579-616, 2015; Bruneau et al., Commun Math Phys 319:501-513, 2013).
Conduction heat transfer solutions
VanSant, J.H.
1980-03-01
This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross-referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions. Problem solutions are given in the form of equations, graphs, and tables of data, all of which are also identified by problem case numbers and source references.
Inverse heat conduction problems
NASA Astrophysics Data System (ADS)
Orlande, Helcio Rangel Barreto
We present the solution of the following inverse problems: (1) Inverse Problem of Estimating Interface Conductance Between Periodically Contacting Surfaces; (2) Inverse Problem of Estimating Interface Conductance During Solidification via Conjugate Gradient Method; (3) Determination of the Reaction Function in a Reaction-Diffusion Parabolic Problem; and (4) Simultaneous Estimation of Thermal Diffusivity and Relaxation Time with Hyperbolic Heat Conduction Model. Also, we present the solution of a direct problem entitled: Transient Thermal Constriction Resistance in a Finite Heat Flux Tube. The Conjugate Gradient Method with Adjoint Equation was used in chapters 1-3. The more general function estimation approach was treated in these chapters. In chapter 1, we solve the inverse problem of estimating the timewise variation of the interface conductance between periodically contacting solids, under quasi-steady-state conditions. The present method is found to be more accurate than the B-Spline approach for situations involving small periods, which are the most difficult on which to perform the inverse analysis. In chapter 2, we estimate the timewise variation of the interface conductance between casting and mold during the solidification of aluminum. The experimental apparatus used in this study is described. In chapter 3, we present the estimation of the reaction function in a one dimensional parabolic problem. A comparison of the present function estimation approach with the parameter estimation technique, wing B-Splines to approximate the reaction function, revealed that the use of function estimation reduces the computer time requirements. In chapter 4 we present a finite difference solution for the transient constriction resistance in a cylinder of finite length with a circular contact surface. A numerical grid generation scheme was used to concentrate grid points in the regions of high temperature gradients in order to reduce discretization errors. In chapter 6, we
Experimental investigations of heat transport dynamics in a 1D porous medium column
NASA Astrophysics Data System (ADS)
Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicoletta M.
2016-04-01
A laboratory physical model has been set up to analyse the forced convective flow and the related heat transport dynamics through a 1d porous medium column. In particular, the experiments regard the observation of thermal breakthrough curves obtained through a continuous flow injection in correspondence of eight thermocouple positioned uniformly along a thermally isolated column of porous medium. The experiment has been conducted for different flow rates in order to investigate the critical issues regarding heat transport phenomena such as the influence of non-linear flow regime, the relationship between the thermal dispersion with the flow velocity and the validity of the local thermal equilibrium assumption between the fluid and solid phase. The results emphasize the magnitude of the errors of the commonly used assumptions in the numerical modelling of heat transport.
Variable conductance heat pipe technology
NASA Technical Reports Server (NTRS)
Marcus, B. D.; Edwards, D. K.; Anderson, W. T.
1973-01-01
Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.
Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong
2015-01-01
Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 10(5) S m(-1)) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors. PMID:25792333
NASA Astrophysics Data System (ADS)
Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong
2015-03-01
Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 105 S m-1) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors.
Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong
2015-01-01
Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 105 S m−1) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors. PMID:25792333
Realizing 1-D conducting channel between oppositely gated regions in bilayer graphene
NASA Astrophysics Data System (ADS)
Lee, Janghee; Watanabe, Kenji; Taniguchi, Takashi; Lee, Hu-Jong
The band gap of bilayer graphene (BLG) can be tuned by applying an external electric field perpendicular to the plane of a BLG sheet. If direction of the electric fields in two adjacent regions in BLG are opposite, one-dimensional (1-D) conducting channel emerges at the boundary between two regions with chiral nature. In this presentation, we introduce a method for fabricating two pairs of split-gates attached to BLG, which is sandwiched between two atomically clean hexagonal boron nitride (h-BN) single crystals and thus allows ballistic transport of carriers at least within the device size. Current-voltage characteristics show a large transport gap, which is comparable to the results obtained from optical measurements and numerical calculations. Opening the band gap in two adjacent regions of the BLG flake by oppositely gated electric fields, we observed metallic behavior in transport characteristics along the boundary between the two regions although the resistance of two gapped regions are a few hundreds of k Ω. These results indicate that a 1-D conducting channel formed between the two regions where the induced band gaps were inverted to each other. The formation of this 1-D conducting channel mimics the topological edge conducting channels emerging at the boundary of a two-dimensional topological insulator and may be utilized for applying BLG to valleytronics
One-Dimensional Heat Conduction
Sutton, Steven B.
1992-03-09
ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition, ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.
One-Dimensional Heat Conduction
1992-03-09
ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition,more » ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.« less
Heat conduction in three dimensions
NASA Technical Reports Server (NTRS)
Danza, T. M.; Fesler, L. W.; Mongan, R. D.
1980-01-01
Multidimensional heat conduction program computes transient temperature history and steady state temperatures of complex body geometries in three dimensions. Emphasis is placed on type of problems associated with Space Shuttle thermal protection system, but program could be used in thermal analysis of most three dimensional systems.
Localized self-heating in large arrays of 1D nanostructures
NASA Astrophysics Data System (ADS)
Monereo, O.; Illera, S.; Varea, A.; Schmidt, M.; Sauerwald, T.; Schütze, A.; Cirera, A.; Prades, J. D.
2016-02-01
One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called ``hot-spots''. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal
NASA Astrophysics Data System (ADS)
Tejero, A.; Chavez, R. E.
2001-12-01
The Born approximation method has been commonly employed to study the electromagnetic field response. Other interpretative techniques have benn employed based upon the Born Approximation, like the extended Born approximation (EBA). This method employs the total field, instead of the primary field. Also, the Quasi Linear Approximation method (QLA) is an extension of EVA. In the present work, we propose an alternative technique, which employs the Born Approximation using variable background conductivities (BAVBC). The Green function is represented as a Born perturbation of zero order. Such that, the reference medium conductivity is a parameter selected according the working frequency. A similar procedure has been reported for stratified 1D-earth seismic models. This technique (BAVBC) has been applied to model computational models with reasonable results, as compared with available computational packages in the market. This method permits variations in the conductivity contrast of up to 80%, which provides solutions with 30% error, with respect of the analytical solution.
Heat conduction in unconventional superconductors
NASA Astrophysics Data System (ADS)
Lussier, Benoit
Thermal conductivity is an excellent probe of quasiparticle excitations in superconductors both in the normal and superconducting state. We have applied this technique to the study of two unconventional superconductors, namely the heavy fermion superconductor UPtsb3 and the high-Tsb{c} cuprate YBasb2Cusb3Osb{7-delta}. In the case of UPtsb3, after reviewing previous low temperature thermal conductivity measurements, we show that, for our high quality single crystals, the thermal conductivity is totally dominated by electrons and therefore provides a direct probe of the superconducting gap structure. We demonstrate that our measurements of the anisotropy of heat conduction between b-axis and c-axis in this hexagonal crystal provide strong constraints with respect to the possible gap structures inferred by group theoretical arguments. By comparing our results with recent theoretical calculations, we show that a hybrid II gap structure provides good agreement between theory and experiments favoring an order parameter of Esb{2u} (strong spin-orbit coupling) or Asb{2u} (weak spin-orbit coupling) symmetry. For YBasb2Cusb3Osb{7-delta}, the thermal conductivity typically consists of both a phononic and an electronic contribution. After reviewing low temperature thermal conductivity measurements that address this question, we demonstrate the presence of electronic quasiparticles even at temperatures of {˜}Tsb{c}/1000, a clear indication of an unconventional gap structure. We then proceed to discuss zinc doping studies in YBasb2Cusb3Osb{7-delta} and show that we find a universal residual linear term at T=0 of a magnitude very close in value to that predicted by recent theories. These results validate the approach of resonant impurity scattering in the high-Tsb{c}, and our excellent agreement with theory reinforces the view that the gap structure in YBasb2Cusb3Osb{7-delta} is of dsb{xsp2-ysp2} symmetry. Finally, we present neutron scattering results in UPtsb3. In this chapter
Variable boundary II heat conduction
NASA Technical Reports Server (NTRS)
Gramer, J.; Oneill, R. F.
1972-01-01
Computer program for solving both transient and steady-state heat transfer problems is presented. Specific applications of computer program are described. Formulation for individual nodes of solid medium for heat balance is presented. Diffusion equation is solved for all nodes simultaneously at finite increments of time.
On nonlocal electron heat conduction
Krasheninnikov, S.I. )
1993-01-01
An improvement of the Albritton nonlocal electron heat transport model is proposed for high-[ital Z] plasmas. The thermal decay of the temperature perturbation in a uniform plasma as calculated by this model is compared with that obtained by Fokker--Planck simulations. Complete agreement is found up to values [ital k][lambda][sub [ital e
Modeling Classical Heat Conduction in FLAG
Ramsey, Scott D.; Hendon, Raymond Cori
2015-01-12
The Los Alamos National Laboratory FLAG code contains both electron and ion heat conduction modules; these have been constructed to be directly relevant to user application problems. However, formal code verification of these modules requires quantitative comparison to exact solutions of the underlying mathematical models. A wide variety of exact solutions to the classical heat conduction equation are available for this purpose. This report summarizes efforts involving the representation of the classical heat conduction equation as following from the large electron-ion coupling limit of the electron and ion 3T temperature equations, subject to electron and ion conduction processes. In FLAG, this limiting behavior is quantitatively verified using a simple exact solution of the classical heat conduction equation. For this test problem, both heat conduction modules produce nearly identical spatial electron and ion temperature profiles that converge at slightly less than 2nd order to the corresponding exact solution.
Heat conduction fronts in planetary nebulae
NASA Technical Reports Server (NTRS)
Soker, Noam
1994-01-01
We present arguments which suggest that many of the x-ray, some optical, and some UV observations of planetary nebulae, can be explained by the presence of heat conduction fronts. The heat flows from the hot bubble formed by the shocked fast wind to the cool shell and halo. Heat conduction fronts are likely to account for emission of x rays from plasma at lower temperature than the expected temperature of the hot bubble. In the presence of magnetic fields, only a small fraction of the fast wind luminosity emerges as radiation. Heat conduction fronts can naturally produce some unusual line flux ratios, which are observed in some planetary nebulae. Heat conduction fronts may heat the halo and cause some material at the inner surface of the shell to expand slower than the rest of the shell. In the presence of an asymmetrical magnetic field, this flow, the x-ray intensity, and the emission lines, may acquire asymmetrical structure as well.
NASA Astrophysics Data System (ADS)
Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando
2016-04-01
Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.
Sanda, Suresh; Biswas, Soumava; Konar, Sanjit
2015-02-16
We report the proton conduction properties of a 2D flexible MOF and a 1D coordination polymer having the molecular formulas {[Zn(C10H2O8)0.5(C10S2N2H8)]·5H2O]}n (1) and {[Zn(C10H2O8)0.5(C10S2N2H8)]·2H2O]}n (2), respectively. Compounds 1 and 2 show high conductivity values of 2.55 × 10(-7) and 4.39 × 10(-4) S cm(-1) at 80 °C and 95% RH. The conductivity value of compound 1 is in the range of those for previously reported flexible MOFs, and compound 2 shows the highest proton conductivity among the carboxylate-based 1D CPs. The dimensionality and the internal hydrogen bonding connectivity play a vital role in the resultant conductivity. Variable-temperature experiments of both compounds at high humidity reveal that the conductivity values increase with increasing temperature, whereas the variable humidity studies signify the influence of relative humidity on high-temperature proton conductivity. The time-dependent measurements for both compounds demonstrate their ability to retain conductivity up to 10 h.
1-D Van der Waals Foams Heated by Ion Beam Energy Deposition
Zylstra, A. B.; Barnard, J. J.; More, R. M.
2009-12-23
One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.
1-D Van der Waals Foams Heated by Ion Beam Energy Deposition
Zylstra, A; Barnard, J J; More, R M
2010-03-19
One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of state (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 to 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.
Cryogenic regenerator including sarancarbon heat conduction matrix
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)
1989-01-01
A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.
Information filtering via biased heat conduction.
Liu, Jian-Guo; Zhou, Tao; Guo, Qiang
2011-09-01
The process of heat conduction has recently found application in personalized recommendation [Zhou et al., Proc. Natl. Acad. Sci. USA 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.
Information filtering via biased heat conduction
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Zhou, Tao; Guo, Qiang
2011-09-01
The process of heat conduction has recently found application in personalized recommendation [Zhou , Proc. Natl. Acad. Sci. USA PNASA60027-842410.1073/pnas.1000488107107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction, which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix, and Delicious datasets could be improved by 43.5%, 55.4% and 19.2%, respectively, compared with the standard heat conduction algorithm and also the diversity is increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.
Heat conduction controlled combustion for scramjet applications
NASA Technical Reports Server (NTRS)
Ferri, A.; Agnone, A. M.
1974-01-01
The use of heat conduction flame generated in a premixed supersonic stream is discussed. It is shown that the flame is controlled initially by heat conduction and then by chemical reaction. Such a flame is shorter than the diffusion type of flame and therefore it requires a much shorter burner. The mixing is obtained by injecting the hydrogen in the inlet. Then the inlet can be cooled by film cooling.
Uncertainty in 1D heat-flow analysis to estimate groundwater discharge to a stream.
Ferguson, Grant; Bense, Victor
2011-01-01
Temperature measurements have been used by a variety of researchers to gain insight into groundwater discharge patterns. However, much of this research has reduced the problem to heat and fluid flow in one dimension for ease of analysis. This approach is seemingly at odds with the goal of determining spatial variability in specific discharge, which implies that the temperature field will vary in more than one dimension. However, it is unclear how important the resulting discrepancies are in the context of determining groundwater discharge to surface water bodies. In this study, the importance of these variations is examined by testing two popular one-dimensional analytical solutions with stochastic models of heat and fluid flow in a two-dimensional porous medium. For cases with low degrees of heterogeneity in hydraulic conductivity, acceptable results are possible for specific discharges between 10(-7) and 10(-5) m/s. However, conduction into areas with specific discharges less than 10(-7) m/s from adjacent areas can lead to significant errors. In some of these cases, the one-dimensional solutions produced estimates of specific discharge of nearly 10(-6) m/s. This phenomenon is more likely in situations with greater degrees of heterogeneity. PMID:20646070
The Conduction of Heat through Cryogenic Regenerative Heat Exchangers
NASA Astrophysics Data System (ADS)
Superczynski, W. F.; Green, G. F.
2006-04-01
The need for improved regenerative cryocooler efficiency may require the replacement of conventional matrices with ducts. The ducts can not be continuous in the direction of temperature gradient when using conventional materials to prevent unacceptable conduction losses. However, this discontinuity creates a complex geometry to model and determine conduction losses. Chesapeake Cryogenics, Inc. has designed, fabricated and tested an apparatus for measuring the heat conduction through regenerative heat exchangers implementing different matrices. Data is presented for stainless steel photo etched disk, phophorus-bronze embossed ribbon coils and screens made of both stainless steel and phosphorus-bronze. The heat conduction was measured with the regenerators evacuated and pressurized with helium gas. In this test apparatus, helium gas presence increased the heat leak significantly. A description of the test apparatus, instrumentation, experimental methods and data analysis are presented.
Numerical study of 1-D, 3-vector component, thermally-conductive MHD solar wind
NASA Technical Reports Server (NTRS)
Han, S.; Wu, S. T.; Dryer, M.
1993-01-01
In the present study, transient, 1-dimensional, 3-vector component MHD equations are used to simulate steady and unsteady, thermally conductive MHD solar wind expansions between the solar surface and 1 AU (astronomical unit). A variant of SIMPLE numerical method was used to integrate the equations. Steady state solar wind properties exhibit qualitatively similar behavior with the known Weber-Davies Solutions. Generation of Alfven shock, in addition to the slow and fast MHD shocks, was attempted by the boundary perturbations at the solar surface. Property changes through the disturbance were positively correlated with the fast and slow MHD shocks. Alfven shock was, however, not present in the present simulations.
Viscous shear heating instabilities in a 1-D viscoelastic shear zone
NASA Astrophysics Data System (ADS)
Homburg, J. M.; Coon, E. T.; Spiegelman, M.; Kelemen, P. B.; Hirth, G.
2010-12-01
Viscous shear instabilities may provide a possible mechanism for some intermediate depth earthquakes where high confining pressure makes it difficult to achieve frictional failure. While many studies have explored the feedback between temperature-dependent strain rate and strain-rate dependent shear heating (e.g. Braeck and Podladchikov, 2007), most have used thermal anomalies to initiate a shear instability or have imposed a low viscosity region in their model domain (John et al., 2009). By contrast, Kelemen and Hirth (2007) relied on an initial grain size contrast between a predetermined fine-grained shear zone and coarse grained host rock to initiate an instability. This choice is supported by observations of numerous fine grained ductile shear zones in shallow mantle massifs as well as the possibility that annealed fine grained fault gouge, formed at oceanic transforms, subduction related thrusts and ‘outer rise’ faults, could be carried below the brittle/ductile transition by subduction. Improving upon the work of Kelemen and Hirth (2007), we have developed a 1-D numerical model that describes the behavior of a Maxwell viscoelastic body with the rheology of dry olivine being driven at a constant velocity at its boundary. We include diffusion and dislocation creep, dislocation accommodated grain boundary sliding, and low-temperature plasticity (Peierls mechanism). Initial results suggest that including low-temperature plasticity inhibits the ability of the system to undergo an instability, similar to the results of Kameyama et al. (1999). This is due to increased deformation in the background allowing more shear heating to take place, and thus softening the system prior to reaching the peak stress. However if the applied strain rate is high enough (e.g. greater than 0.5 x 10-11 s-1 for a domain size of 2 km, an 8 m wide shear zone, a background grain size of 1 mm, a shear zone grain size of 150 μm, and an initial temperature of 650°C) dramatic
Determination of the heat transfer coefficients in transient heat conduction
NASA Astrophysics Data System (ADS)
Nho Hào, Dinh; Thanh, Phan Xuan; Lesnic, D.
2013-09-01
The determination of the space- or time-dependent heat transfer coefficient which links the boundary temperature to the heat flux through a third-kind Robin boundary condition in transient heat conduction is investigated. The reconstruction uses average surface temperature measurements. In both cases of the space- or time-dependent unknown heat transfer coefficient the inverse problems are nonlinear and ill posed. Least-squares penalized variational formulations are proposed and new formulae for the gradients are derived. Numerical results obtained using the nonlinear conjugate gradient method combined with a boundary element direct solver are presented and discussed.
XCHEM-1D: A Heat Transfer/Chemical Kinetics Computer Program for multilayered reactive materials
Gross, R.J.; Baer, M.R.; Hobbs, M.L.
1993-10-01
An eXplosive CHEMical kinetics code, XCHEM, has been developed to solve the reactive diffusion equations associated with thermal ignition of energetic materials. This method-of-lines code uses stiff numerical methods and adaptive meshing to resolve relevant combustion physics. Solution accuracy is maintained between multilayered materials consisting of blends of reactive components and/or inert materials. Phase change and variable properties are included in one-dimensional slab, cylindrical and spherical geometries. Temperature-dependent thermal properties have been incorporated and the modification of thermal conductivities to include decomposition effects are estimated using solid/gas volume fractions determined by species fractions. Gas transport properties, including high pressure corrections, have also been included. Time varying temperature, heat flux, convective and thermal radiation boundary conditions, and layer to layer contact resistances have also been implemented.
ORMDIN. 2-D Nonlinear Inverse Heat Conduction
Bass, B.R.
1990-05-01
ORMDIN is a finite-element program developed for two-dimensional nonlinear inverse heat conduction analysis as part of the Oak Ridge National Laboratory Pressurized Water Reactor Blowdown Heat Transfer (BDHT) program. One of the primary objectives of the program was to determine the transient surface temperature and surface heat flux of fuel pin simulators from internal thermocouple signals obtained during a loss-of-coolant accident experiment in the Thermal-Hydraulic Test Facility (THTF). ORMDIN was designed primarily to perform a transient two-dimensional nonlinear inverse heat conduction analysis of the THTF bundle 3 heater rod; however, it can be applied to other cylindrical geometries for which the thermophysical properties are prescribed functions of temperature. The program assumes that discretized temperature histories are provided at three thermocouple locations in the interior of the cylinder. Concurrent with the two-dimensional analysis, ORMDIN also generates one-dimensional solutions for each of the three thermocouple radial planes.
Compact pulsed laser having improved heat conductance
NASA Technical Reports Server (NTRS)
Yang, L. C. (Inventor)
1977-01-01
A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.
Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons
Gopar, Víctor A.
2014-01-14
Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studied phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.
Measurement of heat conduction through stacked screens
NASA Technical Reports Server (NTRS)
Lewis, M. A.; Kuriyama, T.; Kuriyama, F.; Radebaugh, R.
1998-01-01
This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.
Measurement of heat conduction through stacked screens.
Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R
1998-01-01
This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.
Single-mode heat conduction by photons.
Meschke, Matthias; Guichard, Wiebke; Pekola, Jukka P
2006-11-01
The thermal conductance of a single channel is limited by its unique quantum value G(Q), as was shown theoretically in 1983. This result closely resembles the well-known quantization of electrical conductance in ballistic one-dimensional conductors. Interestingly, all particles-irrespective of whether they are bosons or fermions-have the same quantized thermal conductance when they are confined within dimensions that are small compared to their characteristic wavelength. The single-mode heat conductance is particularly relevant in nanostructures. Quantized heat transport through submicrometre dielectric wires by phonons has been observed, and it has been predicted to influence cooling of electrons in metals at very low temperatures due to electromagnetic radiation. Here we report experimental results showing that at low temperatures heat is transferred by photon radiation, when electron-phonon as well as normal electronic heat conduction is frozen out. We study heat exchange between two small pieces of normal metal, connected to each other only via superconducting leads, which are ideal insulators against conventional thermal conduction. Each superconducting lead is interrupted by a switch of electromagnetic (photon) radiation in the form of a DC-SQUID (a superconducting loop with two Josephson tunnel junctions). We find that the thermal conductance between the two metal islands mediated by photons indeed approaches the expected quantum limit of G(Q) at low temperatures. Our observation has practical implications-for example, for the performance and design of ultra-sensitive bolometers (detectors of far-infrared light) and electronic micro-refrigerators, whose operation is largely dependent on weak thermal coupling between the device and its environment. PMID:17093446
Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.
2012-01-01
A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.
Large variable conductance heat pipe. Transverse header
NASA Technical Reports Server (NTRS)
Edelstein, F.
1975-01-01
The characteristics of gas-loaded, variable conductance heat pipes (VCHP) are discussed. The difficulties involved in developing a large VCHP header are analyzed. The construction of the large capacity VCHP is described. A research project to eliminate some of the problems involved in large capacity VCHP operation is explained.
Effects of anisotropic heat conduction on solidification
NASA Technical Reports Server (NTRS)
Weaver, J. A.; Viskanta, R.
1989-01-01
Two-dimensional solidification influenced by anisotropic heat conduction has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effects of the Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k(yy)/k(yx). The nonlinearity of the interface is influenced by the solidification rate, aspect ratio, and k(yy/k(yx).
Effects of anisotropic heat conduction on solidification
Weaver, J.A.; Viskanta, R.
1989-01-01
Two-dimensional solidfication influenced by anisotropic heat conductions has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effect of Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k/sub yy//k/sub yx/. The nonlinearity of the interface is influenced by the solidificaton rate, aspect ratio, and k/sub yy//k/sub yx/.
2-D Finite Element Heat Conduction
1989-10-30
AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less
NASA Astrophysics Data System (ADS)
Ocłoń, Paweł; Łopata, Stanisław; Nowak, Marzena
2014-09-01
This study presents a novel, simplified model for the time-efficient simulation of transient conjugate heat transfer in round tubes. The flow domain and the tube wall are modeled in 1D and 2D, respectively and empirical correlations are used to model the flow domain in 1D. The model is particularly useful when dealing with complex physics, such as flow boiling, which is the main focus of this study. The tube wall is assumed to have external fins. The flow is vertical upwards. Note that straightforward computational fluid dynamics (CFD) analysis of conjugate heat transfer in a system of tubes, leads to 3D modeling of fluid and solid domains. Because correlation is used and dimensionality reduced, the model is numerically more stable and computationally more time-efficient compared to the CFD approach. The benefit of the proposed approach is that it can be applied to large systems of tubes as encountered in many practical applications. The modeled equations are discretized in space using the finite volume method, with central differencing for the heat conduction equation in the solid domain, and upwind differencing of the convective term of the enthalpy transport equation in the flow domain. An explicit time discretization with forward differencing was applied to the enthalpy transport equation in the fluid domain. The conduction equation in the solid domain was time discretized using the Crank-Nicholson scheme. The model is applied in different boundary conditions and the predicted boiling patterns and temperature fields are discussed.
NASA Astrophysics Data System (ADS)
Ocłoń, Paweł; Łopata, Stanisław; Nowak, Marzena
2015-04-01
This study presents a novel, simplified model for the time-efficient simulation of transient conjugate heat transfer in round tubes. The flow domain and the tube wall are modeled in 1D and 2D, respectively and empirical correlations are used to model the flow domain in 1D. The model is particularly useful when dealing with complex physics, such as flow boiling, which is the main focus of this study. The tube wall is assumed to have external fins. The flow is vertical upwards. Note that straightforward computational fluid dynamics (CFD) analysis of conjugate heat transfer in a system of tubes, leads to 3D modeling of fluid and solid domains. Because correlation is used and dimensionality reduced, the model is numerically more stable and computationally more time-efficient compared to the CFD approach. The benefit of the proposed approach is that it can be applied to large systems of tubes as encountered in many practical applications. The modeled equations are discretized in space using the finite volume method, with central differencing for the heat conduction equation in the solid domain, and upwind differencing of the convective term of the enthalpy transport equation in the flow domain. An explicit time discretization with forward differencing was applied to the enthalpy transport equation in the fluid domain. The conduction equation in the solid domain was time discretized using the Crank-Nicholson scheme. The model is applied in different boundary conditions and the predicted boiling patterns and temperature fields are discussed.
NASA Astrophysics Data System (ADS)
Sifre, D.; Gaillard, F.; Hashim, L.; Massuyeau, M.; Gardés, E.; Hier-Majumder, S.
2014-12-01
Electromagnetic data images mantle regions more conductive than that of dry olivine. There is no doubt that melt is thermodynamically stable and present in the LAB, but how they can impact on mantle electrical conductivity remains debated. In addition, gravitational segregation and fast melt upwelling, being expected if melt fraction exceeds 2 vol. %, is thought to seriously restrict the role of partial melting at the level of the LAB. Petrological studies realized some 30 years ago have shown that peridotites exposed at the P-T-fO2 conditions of the LAB produced H2O and CO2 rich-melts. The segregation of such melts is not expected since they constitute only about 0.5 vol. % of the peridotite, but electrical conductivities of these melts are poorly known. Therefore, electrical conductivity experiments have been performed in piston cylinder on H2O-CO2 rich melts. Different melt compositions have been explored, from carbonated melts to basalts. The effects of chemical compositions and volatiles on these melts have been determined. The electrical conductivity measurements have shown that hydrous carbonated melts are very conductive, and the incorporation of basalt decreases the conductivity. With these new data, a semi-empirical law predicting the conductivity as a function of H2O and CO2 contents has been produced. Based on this law and the electrical conductivity of olivine, 1D conductivity profiles were constructed. With these profiles, the effect of volatiles content (partitioned between the melt and in the solids), melt fractions (mixing law and interconnection of the melt) and different temperature regimes on conductivity are discussed. These calculations are conducted on oceanic and continental settings with different ages. The electrical conductivities of the mantle is thus a powerful tool to track the fundamental process of mantle incipient melting, which is in turn narrowly associated to the cycling of H2O and CO2 in the upper mantle.
NASA Technical Reports Server (NTRS)
Aguirre-Ramirez, G.; Oden, J. T.
1969-01-01
Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH
Stretch diffusion and heat conduction in one-dimensional nonlinear lattices.
Gao, Zhibin; Li, Nianbei; Li, Baowen
2016-03-01
For heat conduction in one-dimensional (1D) nonlinear Hamiltonian lattices, it has been known that conserved quantities play an important role in determining the actual heat conduction behavior. In closed or microcanonical Hamiltonian systems, the total energy and stretch are always conserved. Depending on the existence of external on-site potential, the total momentum can be conserved or not. All the momentum-conserving lattices have anomalous heat conduction except the 1D coupled rotator lattice. It was recently claimed that "whenever stretch (momentum) is not conserved in a 1D model, the momentum (stretch) and energy fields exhibit normal diffusion." The stretch in a coupled rotator lattice was also argued to be nonconserved due to the requirement of a finite partition function, which enables the coupled rotator lattice to fulfill this claim. In this work, we will systematically investigate stretch diffusion and heat conduction in terms of energy diffusion for typical 1D nonlinear lattices. Contrary to what was claimed, no clear connection between conserved quantities and heat conduction can be established. The actual situation might be more complicated than what was proposed. PMID:27078315
Gen Purpose 1-D Finite Element Network Fluid Flow Heat Transfer System Simulator
1993-08-02
SAFSIM (System Analysis Flow Simulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanicsmore » module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems.« less
Microscale Heat Conduction Models and Doppler Feedback
Hawari, Ayman I.; Ougouag, Abderrafi
2015-01-22
The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.
Analytic solutions of inverse heat conduction problems
NASA Astrophysics Data System (ADS)
Al-Najem, N. M.
A direct analytic approach is systematically developed for solving inverse heat conduction problems in multi-dimensional finite regions. The inverse problems involve the determination of the surface conditions from the knowledge of the time variation of the temperature at an interior point in the region. In the present approach, the unknown surface temperature is represented by a polynominal in time and a splitting-up procedure is employed to develop a rapidly converging inverse solution. The least square technique is then utilized to estimate the unknown parameters associated with the solution. The method is developed first for the analysis of one-dimensional cases, and then it is generalized to handle two- and three-dimensional situations. It provides an efficient, stable and systematic approach for inverse heat condition problems. The stability and accuracy of the current method of analysis are demonstrated by several numerical examples chosen to provide a very strict test.
1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport
NASA Astrophysics Data System (ADS)
Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen
2015-04-01
Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an
Parallelized solvers for heat conduction formulations
NASA Technical Reports Server (NTRS)
Padovan, Joe; Kwang, Abel
1991-01-01
Based on multilevel partitioning, this paper develops a structural parallelizable solution methodology that enables a significant reduction in computational effort and memory requirements for very large scale linear and nonlinear steady and transient thermal (heat conduction) models. Due to the generality of the formulation of the scheme, both finite element and finite difference simulations can be treated. Diverse model topologies can thus be handled, including both simply and multiply connected (branched/perforated) geometries. To verify the methodology, analytical and numerical benchmark trends are verified in both sequential and parallel computer environments.
Information filtering via weighted heat conduction algorithm
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Guo, Qiang; Zhang, Yi-Cheng
2011-06-01
In this paper, by taking into account effects of the user and object correlations on a heat conduction (HC) algorithm, a weighted heat conduction (WHC) algorithm is presented. We argue that the edge weight of the user-object bipartite network should be embedded into the HC algorithm to measure the object similarity. The numerical results indicate that both the accuracy and diversity could be improved greatly compared with the standard HC algorithm and the optimal values reached simultaneously. On the Movielens and Netflix datasets, the algorithmic accuracy, measured by the average ranking score, can be improved by 39.7% and 56.1% in the optimal case, respectively, and the diversity could reach 0.9587 and 0.9317 when the recommendation list equals to 5. Further statistical analysis indicates that, in the optimal case, the distributions of the edge weight are changed to the Poisson form, which may be the reason why HC algorithm performance could be improved. This work highlights the effect of edge weight on a personalized recommendation study, which maybe an important factor affecting personalized recommendation performance.
Stochastic Heat Equation Limit of a (2 + 1)d Growth Model
NASA Astrophysics Data System (ADS)
Borodin, Alexei; Corwin, Ivan; Toninelli, Fabio Lucio
2016-07-01
We determine a {q to 1} limit of the two-dimensional q-Whittaker driven particle system on the torus studied previously in Corwin and Toninelli (Electron. Commun. Probab. 21(44):1-12, 2016). This has an interpretation as a (2 + 1)-dimensional stochastic interface growth model, which is believed to belong to the so-called anisotropic Kardar-Parisi-Zhang (KPZ) class. This limit falls into a general class of two-dimensional systems of driven linear SDEs which have stationary measures on gradients. Taking the number of particles to infinity we demonstrate Gaussian free field type fluctuations for the stationary measure. Considering the temporal evolution of the stationary measure, we determine that along characteristics, correlations are asymptotically given by those of the (2 + 1)-dimensional additive stochastic heat equation. This confirms (for this model) the prediction that the non-linearity for the anisotropic KPZ equation in (2 + 1)-dimension is irrelevant.
Simonelli, D P; Pollack, J B; McKay, C P
1997-02-01
As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in
Electron heat conductivity of epitaxial graphene on silicon carbide
NASA Astrophysics Data System (ADS)
Alisultanov, Z. Z.; Meilanov, R. P.
2016-08-01
The diagonal component of the electron heat conductivity tensor of epitaxial graphene formed in a semiconductor has been investigated within a simple analytical model. It is shown that the heat conductivity sharply changes at a chemical potential close to the substrate band gap edge. Low-temperature expressions for the heat conductivity are derived.
Extended Development of Variable Conductance Heat Pipes
NASA Technical Reports Server (NTRS)
Antoniuk, D.; Edwards, D. K.; Luedke, E. E.
1978-01-01
A high-capacity vapor-modulated heat pipe was designed and tested. In 1977, a program was undertaken to use the aforementioned heat pipe to study protection from freezing-point failure, increase control sensitivity, and transient behavior under a wide range of operating conditions in order to determine the full performance potential of the heat pipe. A new concept, based on the vapor-induced-dry-out principle, was developed for passive feedback temperature control as a heat pipe diode. This report documents this work and describes: (1) the experimental and theoretical investigation of the performance of the vapor-modulated heat pipe; and (2) the design, fabrication and test of the heat pipe diode.
Heat conduction in a chain of dissociating particles: Effect of dimensionality
NASA Astrophysics Data System (ADS)
Zolotarevskiy, V.; Savin, A. V.; Gendelman, O. V.
2015-03-01
The paper considers heat conduction in a model chain of composite particles with hard core and elastic external shell. Such model mimics three main features of realistic interatomic potentials—hard repulsive core, quasilinear behavior in a ground state, and possibility of dissociation. It has become clear recently that this latter feature has crucial effect on convergence of the heat conduction coefficient in thermodynamic limit. We demonstrate that in one-dimensional chain of elastic particles with hard core the heat conduction coefficient also converges, as one could expect. Then we explore effect of dimensionality on the heat transport in this model. For this sake, longitudinal and transversal motions of the particles are allowed in a long narrow channel. With varying width of the channel, we observe sharp transition from "one-dimensional" to "two-dimensional" behavior. Namely, the heat conduction coefficient drops by about order of magnitude for relatively small widening of the channel. This transition is not unique for the considered system. Similar phenomenon of transition to quasi-1D behavior with growth of aspect ratio of the channel is observed also in a gas of densely packed hard (billiard) particles, both for two- and three-dimensional cases. It is the case despite the fact that the character of transition in these two systems is not similar, due to different convergence properties of the heat conductivity. In the billiard model, the divergence pattern of the heat conduction coefficient smoothly changes from logarithmic to power-like law with increase of the length.
Theory and design of variable conductance heat pipes
NASA Technical Reports Server (NTRS)
Marcus, B. D.
1972-01-01
A comprehensive review and analysis of all aspects of heat pipe technology pertinent to the design of self-controlled, variable conductance devices for spacecraft thermal control is presented. Subjects considered include hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, materials compatibility and variable conductance control techniques. The report includes a selected bibliography of pertinent literature, analytical formulations of various models and theories describing variable conductance heat pipe behavior, and the results of numerous experiments on the steady state and transient performance of gas controlled variable conductance heat pipes. Also included is a discussion of VCHP design techniques.
Efficient Reformulation of HOTFGM: Heat Conduction with Variable Thermal Conductivity
NASA Technical Reports Server (NTRS)
Zhong, Yi; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)
2002-01-01
Functionally graded materials (FGMs) have become one of the major research topics in the mechanics of materials community during the past fifteen years. FGMs are heterogeneous materials, characterized by spatially variable microstructure, and thus spatially variable macroscopic properties, introduced to enhance material or structural performance. The spatially variable material properties make FGMs challenging to analyze. The review of the various techniques employed to analyze the thermodynamical response of FGMs reveals two distinct and fundamentally different computational strategies, called uncoupled macromechanical and coupled micromechanical approaches by some investigators. The uncoupled macromechanical approaches ignore the effect of microstructural gradation by employing specific spatial variations of material properties, which are either assumed or obtained by local homogenization, thereby resulting in erroneous results under certain circumstances. In contrast, the coupled approaches explicitly account for the micro-macrostructural interaction, albeit at a significantly higher computational cost. The higher-order theory for functionally graded materials (HOTFGM) developed by Aboudi et al. is representative of the coupled approach. However, despite its demonstrated utility in applications where micro-macrostructural coupling effects are important, the theory's full potential is yet to be realized because the original formulation of HOTFGM is computationally intensive. This, in turn, limits the size of problems that can be solved due to the large number of equations required to mimic realistic material microstructures. Therefore, a basis for an efficient reformulation of HOTFGM, referred to as user-friendly formulation, is developed herein, and subsequently employed in the construction of the efficient reformulation using the local/global conductivity matrix approach. In order to extend HOTFGM's range of applicability, spatially variable thermal
Anisotropy of heat conduction in Mo/Si multilayers
Medvedev, V. V.; Yakshin, A. E.; Kruijs, R. W. E. van de; Bijkerk, F.; Yang, J.; Schmidt, A. J.; Zoethout, E.
2015-08-28
This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.
Anisotropy of heat conduction in Mo/Si multilayers
NASA Astrophysics Data System (ADS)
Medvedev, V. V.; Yang, J.; Schmidt, A. J.; Yakshin, A. E.; van de Kruijs, R. W. E.; Zoethout, E.; Bijkerk, F.
2015-08-01
This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.
Heat conduction errors and time lag in cryogenic thermometer installations
NASA Technical Reports Server (NTRS)
Warshawsky, I.
1973-01-01
Installation practices are recommended that will increase rate of heat exchange between the thermometric sensing element and the cryogenic fluid and that will reduce the rate of undesired heat transfer to higher-temperature objects. Formulas and numerical data are given that help to estimate the magnitude of heat-conduction errors and of time lag in response.
Kupčić, I; Rukelj, Z; Barišić, S
2014-05-14
The current-dipole Kubo formula for the dynamical conductivity of interacting multiband electronic systems derived in Kupčić et al (2013 J. Phys.: Condens. Matter 25 145602) is illustrated on the Peierls model for quasi-one-dimensional systems with the charge-density-wave (CDW) instability. Using the microscopic representation of the Peierls model, it is shown in which way the scattering of conduction electrons by CDW fluctuations affects the dynamical conductivity at temperatures above and well below the CDW transition temperature. The generalized Drude formula for the intraband conductivity is derived in the ordered CDW state well below the transition temperature. The natural extension of this formula to the case where the intraband memory function is dependent on frequency and wave vectors is also presented. It is shown that the main adventage of such a memory-function conductivity model is that it can be easily extended to study the dynamical conductivity and the electronic Raman scattering in more complicated multiband electronic systems in a way consistent with the law of conservation of energy. The incoherent interband conductivity in the CDW pseudogap state is briefly discussed as well.
NASA Astrophysics Data System (ADS)
Wang, Dayong
2013-04-01
MagmaHeatNS1D is an IDL (Interactive Data Language) program that is aimed at numerically modeling heat transfer from an igneous intrusion to its host rocks and providing important thermal state information for minerals and organic matters in a contact aureole. It can be used to trace temperature time series, computing the peak temperature, and evaluating organic-matter maturation in a contact aureole. The theoretical basis of the program is a complete one-dimensional heat transfer model, and, hence, the program can allow for numerous potential influencing factors on the heat transfer, involving magma crystallization, volatilization and the supercritical state of pore water, dehydration and decarbonation reactions of host rock matrix, instantaneous and finite-time magma intrusion mechanisms, and hydrothermal convection in host rocks. This ensures that the program can be applicable to study different igneous intrusions in various geological conditions. MagmaHeatNS1D features a graphical user interface for controlling program execution, displaying real-time results, outputting final results, and opening secondary windows which serve to input the model parameters. MagmaHeatNS1D can be used in an intuitive framework for educational and research purposes.
NASA Astrophysics Data System (ADS)
Wan, Xiang; Li, Changzheng; Yue, Yanan; Xie, Danmei; Xue, Meixin; Hu, Niansu
2016-11-01
A fluorescence signal has been demonstrated as an effective implement for micro/nanoscale temperature measurement which can be realized by either direct fluorescence excitation from materials or by employing nanoparticles as sensors. In this work, a steady-state electrical-heating fluorescence-sensing (SEF) technique is developed for the thermal characterization of one-dimensional (1D) materials. In this method, the sample is suspended between two electrodes and applied with steady-state Joule heating. The temperature response of the sample is monitored by collecting a simultaneous fluorescence signal from the sample itself or nanoparticles uniformly attached on it. According to the 1D heat conduction model, a linear temperature dependence of heating powers is obtained, thus the thermal conductivity of the sample can be readily determined. In this work, a standard platinum wire is selected to measure its thermal conductivity to validate this technique. Graphene quantum dots (GQDs) are employed as the fluorescence agent for temperature sensing. Parallel measurement by using the transient electro-thermal (TET) technique demonstrates that a small dose of GQDs has negligible influence on the intrinsic thermal property of platinum wire. This SEF technique can be applied in two ways: for samples with a fluorescence excitation capability, this method can be implemented directly; for others with weak or no fluorescence excitation, a very small portion of nanoparticles with excellent fluorescence excitation can be used for temperature probing and thermophysical property measurement.
Quantum-limited heat conduction over macroscopic distances
NASA Astrophysics Data System (ADS)
Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko
2016-05-01
The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.
Quantum-limited heat conduction over macroscopic distances
Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko
2016-01-01
The emerging quantum technological apparatuses1, 2, such as the quantum computer3–6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8–10. However, the short distance between the heat-exchanging bodies in the previous experiments11–14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15–17 which provides a basis for the superconducting quantum computer18–21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26. PMID:27239219
Radiative heat conduction and the magnetorotational instability
NASA Astrophysics Data System (ADS)
Araya-Góchez, Rafael A.; Vishniac, Ethan T.
2004-12-01
A photon or a neutrino gas, semicontained by a non-diffusive particle species through scattering, comprises a rather peculiar magnetohydrodynamic fluid where the magnetic field is truly frozen only to the comoving volume associated with the mass density. Although radiative diffusion precludes a formal adiabatic treatment of compressive perturbations, we cast the energy equation in quasi-adiabatic form by assuming a negligible rate of energy exchange among species on the time-scale of the perturbation. This leads to a simplified dispersion relation for toroidal, non-axisymmetric magnetorotational modes when the accretion disc has comparable stress contributions from diffusive and non-diffusive components. The properties of the modes of fastest growth are shown to depend strongly on the compressibility of the mode, with a reduction in growth rate consistent with the results of Blaes & Socrates for axisymmetric modes. A clumpy disc structure is anticipated on the basis of the polarization properties of the fastest-growing modes. This analysis is accurate in the near-hole region of locally cooled, hyper-accreting flows if the electron gas becomes moderately degenerate such that non-conductive, thermalizing processes with associated electron-positron release (i.e. neutrino annihilation and neutrino absorption on to nuclei) are effectively blocked by high occupation of the Fermi levels.
Prasher, Ravi; Tong, Tao; Majumdar, Arun
2008-01-01
We introduce simple approximate analytical models for phonon specific heat and ballistic thermal conductance of nanowires. The analytical model is in excellent agreement with the detailed numerical calculations based on the solution of the elastic wave equation and is also in good agreement with the ballistic thermal conductance data by Schwab et al. (Nature 2000, 404, 974). Finally, we propose a demarcating criterion in terms of temperature, dimension, and material properties to capture the dimensional crossover from a three-dimensional (3D) bulk system to a one-dimensional (1D) system.
Hybrid modeling of direct and inverse problems of heat conduction
NASA Astrophysics Data System (ADS)
Matsevityi, Yu. M.
1981-02-01
The article explains the method of solving nonlinear problems of heat conduction with the aid of hybrid computer systems. It examines the possibility of using hybrid systems for realizing the method of optimum dynamic filtration.
Heat conduction boundary layers of condensed clumps in cooling flows
NASA Astrophysics Data System (ADS)
Boehringer, H.; Fabian, A. C.
1989-04-01
The structure of heat conduction boundary layers of gaseous condensations embedded in the hot intergalactic gas in clusters of galaxies is investigated by means of steady, one-dimensional, hydrodynamic models. It is assumed that heat conduction is effective only on scales much smaller than the total region of the cooling flow. Models are calculated for an arbitrary scaling factor, accounting for the reduction in heat conduction efficiency compared to the classical Spitzer case. The results imply a lower limit to the size spectrum of the condensations. The enhancement of cooling in the ambient medium due to heat conduction losses is calculated for a range of clump parameters. The luminosity of several observable emission lines, the extreme ultraviolet (EUV) and soft X-ray emission spectrum, and the column density of some important ions are determined for the model boundary layers and compared with observations.
Kohlrausch Heat Conductivity Apparatus for Intermediate or Advanced Laboratory
ERIC Educational Resources Information Center
Jensen, H. G.
1970-01-01
Describes student experiment in measuring heat conductivity according to Kohlrausch's method. Theory, apparatus design, and experimental procedure is outlined. Results for copper are consistent to within 2 percent. (LC)
Experimental evidence of hyperbolic heat conduction in processed meat
Mitra, K.; Kumar, S.; Vedavarz, A.; Moallemi, M.K.
1995-08-01
The objective of this paper is to present experimental evidence of the wave nature of heat propagation in processed meat and to demonstrate that the hyperbolic heat conduction model is an accurate representation, on a macroscopic level, of the heat conduction process in such biological material. The value of the characteristic thermal time of a specific material, processed bologna meat, is determined experimentally. As a part of the work different thermophysical properties are also measured. The measured temperature distributions in the samples are compared with the Fourier results and significant deviation between the two is observed, especially during the initial stages of the transient conduction process. The measured values are found to match the theoretical non-Fourier hyperbolic predictions very well. The superposition of waves occurring inside the meat sample due to the hyperbolic nature of heat conduction is also proved experimentally. 14 refs., 7 figs., 2 tabs.
Ballistic heat conduction and mass disorder in one dimension.
Ong, Zhun-Yong; Zhang, Gang
2014-08-20
It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim(L--> ∞) κ ∝ L(0.5) where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (κ ∝ L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[-L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction.
Heat capacity, electrical and thermal conductivity of silicene
NASA Astrophysics Data System (ADS)
Feyzi, Azra; Chegel, Raad
2016-09-01
We investigate the electronic heat capacity, electrical and thermal conductivity of monolayer planar and buckled silicon sheets (silicene) through tight binding approximation and Kubo-Greenwood formula. Applying and increasing dopant atoms to the system leads to opening a gap in the band structures and density of states that causes to decrease (increase) the heat capacity before (after) the Schottky anomaly. The electrical and electronic thermal conductivity of doped silicene reduces with increasing impurity strength.
Conduction phase change beneath insulated heated or cooled structures
NASA Astrophysics Data System (ADS)
Lunardini, V. J.
1982-08-01
The problem of thawing beneath heated structures on permafrost (or cooled structures in non-permafrost zones) must be addressed if safe engineering designs are to be conceived. In general, there are no exact solutions to the problem of conduction heat transfer with phase change for practical geometries. The quasi-steady approximation is used here to solve the conductive heat transfer problem with phase change for insulated geometries including infinite strips, rectangular buildings, circular storage tanks, and buried pipes. Analytical solutions are presented and graphed for a range of parameters of practical importance.
Optical sensor for heat conduction measurement in biological tissue
NASA Astrophysics Data System (ADS)
Gutierrez-Arroyo, A.; Sanchez-Perez, C.; Aleman-Garcia, N.
2013-06-01
This paper presents the design of a heat flux sensor using an optical fiber system to measure heat conduction in biological tissues. This optoelectronic device is based on the photothermal beam deflection of a laser beam travelling in an acrylic slab this deflection is measured with a fiber optic angle sensor. We measure heat conduction in biological samples with high repeatability and sensitivity enough to detect differences in tissues from three chicken organs. This technique could provide important information of vital organ function as well as the detect modifications due to degenerative diseases or physical damage caused by medications or therapies.
A variable conductance heat pipe flight experiment - Performance in space
NASA Technical Reports Server (NTRS)
Wanous, D. J.; Marcus, B. D.; Kirkpatrick, J. P.
1975-01-01
The Ames Heat Pipe Experiment (AHPE) is a variable conductance heat pipe/radiator system which was launched aboard the OAO-C spacecraft in August, 1972. All available flight data was reviewed and those from a few orbits were selected for correlation with predictions from an analytical model of the system. The principal conclusion of this study is that gas controlled variable conductance heat pipes can perform reliably for long time periods in the space environment and can effectively provide temperature stabilization for spacecraft electronics. Furthermore, the performance of such systems can be adequately predicted using existing analysis tools.
Fourier analysis of conductive heat transfer for glazed roofing materials
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini
2014-07-10
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.
Quantal Heating of Conducting Electrons with Discrete Spectrum
Vitkalov, S. A.; Bykov, A. A.
2011-12-23
Usually heating of conducting electrons by dc electric field results in an increase of electron temperature. In this paper we show that the dc heating of 2D electrons, placed in quantized magnetic fields, results in a peculiar electron distribution, which has the same broadening or an effective 'temperature' as the unbiased electron system. The quantal heating, however, violates strongly the Ohm's Law. In the conducting system with discrete electron spectrum the quantal heating results in spectacular decrease of electron resistance and transition of the electrons into a state with zero differential resistance (ZDR). Finally the heating leads to apparent dc driven metal-insulator transition, which correlates with the transition into the ZDR state. The correlation is very unexpected and is not understood.
Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders
Johnson, Matthew ); Weyant, J.; Garner, S. ); Occhionero, M. )
2010-01-07
Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.
An Experiment in Heat Conduction Using Hollow Cylinders
ERIC Educational Resources Information Center
Ortuno, M.; Marquez, A.; Gallego, S.; Neipp, C.; Belendez, A.
2011-01-01
An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is…
NASA Astrophysics Data System (ADS)
Chen, Gang
In this talk, we will discuss different modes of heat conduction in nanostructures. Ballistic transport happens when phonon mean free path is longer than the characteristic size of the structure. We will discuss how we compute phonon mean free path distributions based on first-principles and measure the distributions with optical pump-probe techniques by exploring ballistic phonon transport processes. In superlattice structures, ballistic phonon transport across the whole thickness of the superlattices implies phase coherence. We observed this coherent transport in GaAs/AlAs superlattices with fixed periodic thickness and varying number of periods. Simulations show that although high frequency phonons are scattering by roughness, remaining long wavelength phonons maintain their phase and traverse the superlattices ballistically. Accessing the coherent heat conduction regime opens a new venue for phonon engineering. We show further that phonon heat conduction localization happens in GaAs/AlAs superlattice by placing ErAs nanodots at interfaces. This heat-conduction localization phenomenon is confirmed by nonequilibrium atomic Green's function simulation. These ballistic and localization effects can be exploited to improve thermoelectric energy conversion materials via reducing their thermal conductivity. In another opposite, we will discuss phonon hydrodynamic transport mode in graphene via first-principle simulations. In this mode, phonons drift with an average velocity under a temperature gradient, similar to fluid flow in a pipe. Conditions for observing such phonon hydrodynamic modes will be discussed. Finally, we will talk about the one-dimensional nature of heat conduction in polymer chains. Such 1D nature can lead to divergent thermal conductivity. Inspired by simulation, we have experimentally demonstrated high thermal conductivity in ultra-drawn polyethylene nanofibers and sheets. Work supported by DOE Office of Basic Energy Sciences under Award Number: DE
Variable Conductance Heat Pipe Performance after Extended Periods of Freezing
NASA Astrophysics Data System (ADS)
Ellis, Michael C.; Anderson, William G.
2009-03-01
Radiators operating in lunar or Martian environments must be designed to reject the maximum heat load at the maximum sink temperature, while maintaining acceptable temperatures at lower powers or sink temperatures. Variable Conductance Heat Pipe (VCHP) radiators can passively adjust to these changing conditions. Due to the presence of non-condensable gas (NCG) within each VCHP, the active condensing section adjusts with changes in either thermal load or sink temperature. In a Constant Conductance Heat Pipe (CCHP) without NCG, it is possible for all of the water to freeze in the condenser, by either sublimation or vaporization. With a dry evaporator, startup is difficult or impossible. Several previous studies have shown that adding NCG suppresses evaporator dryout when the condenser is frozen. These tests have been for relatively short durations, with relatively short condensers. This paper describes freeze/thaw experiments involving a VCHP with similar dimensions to the current reactor and cavity cooling radiator heat pipe designs.
Nodal integral method for transient heat conduction in a cylinder
Esser, P.D. )
1993-01-01
The accuracy and efficiency of nodal solution methods are well established for neutron diffusion in a variety of geometries, as well as for heat transfer and fluid flow in rectangular coordinates. This paper describes the development of a nodal integral method to solve the transient heat conduction equation in cylindrical geometry. Results for a test problem with an analytical solution indicate that the nodal solution provides higher accuracy than a conventional implicit finite difference scheme, while maintaining similar stability characteristics.
Analytical evaluation of thermal conductance and heat capacities of one-dimensional material systems
Saygi, Salih
2014-02-15
We theoretically predict some thermal properties versus temperature dependence of one dimensional (1D) material nanowire systems. A known method is used to provide an efficient and reliable analytical procedure for wide temperature range. Predicted formulas are expressed in terms of Bloch-Grüneisen functions and Debye functions. Computing results has proved that the expressions are in excellent agreement with the results reported in the literature even if it is in very low dimension limits of nanowire systems. Therefore the calculation method is a fully predictive approach to calculate thermal conductivity and heat capacities of nanowire material systems.
Thermally conductive cementitious grout for geothermal heat pump systems
Allan, Marita
2001-01-01
A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.
Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.
1995-09-01
Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.
Numerical study of conductive heat losses from a magmatic source at Phlegraean Fields
NASA Astrophysics Data System (ADS)
Di Maio, Rosa; Piegari, Ester; Mancini, Cecilia; Scandone, R.
2015-01-01
The thermal evolution of the Phlegraean magmatic system (southern Italy) is studied by analyzing the influence of the thermal property variations on the solution of the heat conduction equation. The aim of this paper is to verify if appropriate choices of thermal parameters can reproduce, at least to greater depths, the high temperatures measured in the geothermal wells, drilled inside the caldera, under the assumption of heat loss from a magma chamber by conduction. Since the main purpose is to verify the plausibility of such an assumption, rather simple models of the magmatic system are adopted and only major volcanic events (i.e., the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions) are considered. The results of the simulated two-dimensional model scenarios show that by assuming an extended source region, whose emplacement time is longer than 40 ka, heat conduction mechanisms can provide temperatures as high as those measured at depths deeper than about 2000 m. On the other hand, the 1D simulations show that appropriate choices for the thermal conductivity depth profiles can reproduce the observed temperatures at depths deeper than about 1000 m. These findings question the apparent consensus that convection is the only dominant form of heat transfer at Phlegraean Fields and might motivate new research for reconstructing the thermal evolution of the Phlegraean magmatic system.
Electron Heat Conduction in the Phaedrus Tandem Mirror.
NASA Astrophysics Data System (ADS)
Smatlak, Donna Lynn
Experiments to investigate electron heat conduction have been performed on the University of Wisconsin tandem mirror Phaedrus. Electron temperature differences along the magnetic field were generated using a mircowave heat pulse. Probe techniques were developed for the continuous measurement of local electron temperatures with a time resolution of less than one microsecond. Parameter studies indicated that the temperature differences were due to collisionless electron heat transport between the trapped and untrapped electron populations in the plugs and the central cell of a tandem mirror. The detailed time-dependent measurements of the electron temperatures in each plug and in the central cell verified that electron heat conduction is reduced across a thermal barrier. The electron temperature decays in the presence of strong gradients were stable and describable by classical processes. The measured electron temperature evolutions in each region were compared to the predictions of a power balance model which incorporated the theoretical expression for the power lost by collisionless heat transfer and an empirical collisional thermal conduction loss term. Good agreement between the results of the model and the experiment was obtained. Examination of the power balance also indicated tht the microwave power absorbed by the electrons was greater than predicted by single pass absorption. The observation of a density threshold for the heating is suggestive of a nonlinear absorption mechanism such as the two plasmon decay instability.
Application of Genetic Algorithms in Nonlinear Heat Conduction Problems
Khan, Waqar A.
2014-01-01
Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry. PMID:24695517
Neutrino Heat Conduction and Inhomogeneities in the Early Universe
NASA Technical Reports Server (NTRS)
Heckler, A.; Hogan, C. J.
1993-01-01
Constraints on parameters of inhomogeneous nucteosynthesis, namely, the overdensity and size of baryon lumps, are found by calculatig the blackbody neutrino heat conduction into the lumps, which tends to inflate them away. The scale size for efficient heat conduction is determined by the mean free path lambda of the neutrino, and so we compute lambda in our case of a high-temperature plasma with low chemical potential, and find a general result that many-body effects are unimportant, simplifying the calculation. We find that in the region of interest for nucleosynthesis, neutrino inflation is important for overdensities greater than 10(exp 4).
Assessing the RELAPS-3D Heat Conduction Enclosure Model
McCann, Larry D.
2008-09-30
Three heat conduction problems that have exact solutions are modeled with RELAP5-3D using the conduction enclosure model. These comparisons are designed to be used in the RELAP5-3D development assessment scheduled to be completed in 2009. It is shown that with proper input choices and adequate model detail the exact solutions can be matched. In addition, this analysis identified an error and the required correction in the cylindrical and spherical heat conductor models in RELAP5-3D which will be corrected in a future version of RELAP5-3D.
Numerical heat conductivity in smooth particle applied mechanics
Hoover, W.G. |; Posch, H.A.
1996-11-01
Smooth particle applied mechanics provides a method for solving the basic equations of continuum mechanics, interpolating these equations onto a grid made up of moving particles. The moving particle grid gives rise to a thoroughly artificial numerical heat conductivity, analogous to the numerical viscosities associated with finite-difference schemes. We exploit an isomorphism linking the smooth-particle method to conventional molecular dynamics, and evaluate this numerical heat conductivity. We find that the corresponding thermal diffusivity is comparable in value to the numerical kinematic viscosity, and that neither is described very well by the Enskog theory. {copyright} {ital 1996 The American Physical Society.}
Tunable heat conduction through coupled Fermi-Pasta-Ulam chains
NASA Astrophysics Data System (ADS)
Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang
2015-01-01
We conduct a study on heat conduction through coupled Fermi-Pasta-Ulam (FPU) chains by using classical molecular dynamics simulations. Our attention is dedicated to showing how the phonon transport is affected by the interchain coupling. It has been well accepted that the heat conduction could be impeded by the interchain interaction due to the interface phonon scattering. However, recent theoretical and experimental studies suggest that the thermal conductivity of nanoscale materials can be counterintuitively enhanced by the interaction with the substrate. In the present paper, by consecutively varying the interchain coupling intensity, we observed both enhancement and suppression of thermal transport through the coupled FPU chains. For weak interchain couplings, it is found that the heat flux increases with the coupling intensity, whereas in the case of strong interchain couplings, the energy transport is found to be suppressed by the interchain interaction. Based on the phonon spectral energy density method, we attribute the enhancement of the energy transport to the excited phonon modes (in addition to the intrinsic phonon modes), while the upward shift of the high-frequency phonon branch and the interface phonon-phonon scattering account for the suppressed heat conduction.
Heat conduction in partial vacuum. Final technical progress report
Thomas, J R
1980-09-01
Methods developed for computing conduction heat losses from evacuated solar collectors are reported. Results of such calculations are given, including the minimum vacuum necessary to effectively eliminate conduction. Experiments performed at Owens-Illinois, Inc. to assess helium penetration rates into evacuated collectors are analyzed, and estimates are given as to the likely penetration rate of atmospheric helium. Conclusions are drawn as to the probable effect of helium penetration on the lifetimes of evacuated solar collectors.
High Conductance Loop Heat Pipes for Space Application
NASA Astrophysics Data System (ADS)
Semenov, Sergey Y.; Cho, Wei-Lin; Jensen, Scott M.
2006-01-01
Three high conductance Loop Heat Pipes (LHPs) for the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) were designed, fabricated and thermal vacuum tested. One LHP with ammonia working fluid was designed for heat removal from a cryocooler cold head. Two ethane LHPs were designed to reject heat from the aft and fore optics to space. Thermal performance tests were performed in a vacuum chamber with attached masses simulating actual components. Thermal tests were also conducted on the bench and in an environmental chamber. The following features of the GIFTS LHPs were observed: (a) reliable startup and steady state operation with conductance as high as 83W/°C at various temperatures; (b) precision temperature control using compensation chamber heater during thermal cycling. Heat input power and condenser temperatures were varied periodically, while evaporator was maintained at a constant temperature. Temperature of the evaporator heat input surface fluctuated only by a fraction of a degree; (c) in addition there was no thermal performance degradation after 16 month of storage. The LHPs are installed on the instrument and waiting for a launch platform.
NASA Astrophysics Data System (ADS)
Ke, Quanpeng
Heat flux and heat transfer coefficients at the interfaces of castings and molds are important parameters in the mold design and computer simulations of the solidification process in foundry operations. A better understanding of the heat flux and heat transfer coefficient between the solidifying casting and its mold can promote model design and improve the accuracy of computer simulation. The main purpose of the present dissertation involves the estimation of the heat flux and heat transfer coefficient at the interface of the molten metal and green sand. Since the inverse heat conduction method requires temperature measurement data to deduce the missing surface information, it is suitable for the present research. However, heat transfer inside green sand is complicated by the migration of water vapor and zonal temperature distribution results. This makes the solution of the inverse heat conduction problem more challenging. In this dissertation, Galerkin's method of Weighted Residual together with the front tracking technique is used in the development of a forward solver. Beck's future time step method incorporated with the Gaussian iterative minimization method is used as the inverse solver. The mathematical descriptions of the sensitivity coefficient for both the direct heat flux and direct heat transfer coefficient estimation are derived. The variations of the sensitivity coefficients with time are revealed. From the analysis of sensitivity coefficients, the concept of blank time period is proposed. This blank time period makes the inverse problem much more difficult. A total energy balance criterion is used to combat this. Numerical experiments confirmed the accuracy and robustness of both the direct heat flux estimation algorithm and the direct heat transfer coefficient estimation algorithm. Finally, some pouring experiments are carried out. The inverse algorithms are applied to the estimation of the heat flux and heat transfer coefficient at the interface of
Nonconventional thermodynamics, indeterminate couple stress elasticity and heat conduction
NASA Astrophysics Data System (ADS)
Alber, H.-D.; Hutter, K.; Tsakmakis, Ch.
2016-05-01
We present a phenomenological thermodynamic framework for continuum systems exhibiting responses which may be nonlocal in space and for which short time scales may be important. Nonlocality in space is engendered by state variables of gradient type, while nonlocalities over time can be modelled, e.g. by assuming the rate of the heat flux vector to enter into the heat conduction law. The central idea is to restate the energy budget of the system by postulating further balance laws of energy, besides the classical one. This allows for the proposed theory to deal with nonequilibrium state variables, which are excluded by the second law in conventional thermodynamics. The main features of our approach are explained by discussing micropolar indeterminate couple stress elasticity and heat conduction theories.
Simultaneous specific heat and thermal conductivity measurement of individual nanostructures
NASA Astrophysics Data System (ADS)
Zheng, Jianlin; Wingert, Matthew C.; Moon, Jaeyun; Chen, Renkun
2016-08-01
Fundamental phonon transport properties in semiconductor nanostructures are important for their applications in energy conversion and storage, such as thermoelectrics and photovoltaics. Thermal conductivity measurements of semiconductor nanostructures have been extensively pursued and have enhanced our understanding of phonon transport physics. Specific heat of individual nanostructures, despite being an important thermophysical parameter that reflects the thermodynamics of solids, has remained difficult to characterize. Prior measurements were limited to ensembles of nanostructures in which coupling and sample inhomogeneity could play a role. Herein we report the first simultaneous specific heat and thermal conductivity measurements of individual rod-like nanostructures such as nanowires and nanofibers. This technique is demonstrated by measuring the specific heat and thermal conductivity of single ˜600-700 nm diameter Nylon-11 nanofibers (NFs). The results show that the thermal conductivity of the NF is increased by 50% over the bulk value, while the specific heat of the NFs exhibits bulk-like behavior. We find that the thermal diffusivity obtained from the measurement, which is related to the phonon mean free path (MFP), decreases with temperature, indicating that the intrinsic phonon Umklapp scattering plays a role in the NFs. This platform can also be applied to one- and two- dimensional semiconductor nanostructures to probe size effects on the phonon spectra and other transport physics.
Heat transfer in nuclear fuels: Measurements of gap conductance
NASA Astrophysics Data System (ADS)
Cho, Chun Hyung
Heat transfer in the fuel-clad gap in a nuclear reactor impacts the overall temperature distribution, stored energy and the mechanical properties of a nuclear fuel rod. Therefore, an accurate estimation of the gap conductance between the fuel and the clad is critically important for reactor design and operations. To obtain the requisite accuracy in the gap conductance estimation, it is important to understand the effects of the convective heat transfer coefficient, the gas composition, pressure and temperature, and so forth. The objectives of this study are to build a bench-scale experimental apparatus for the measurement of thermal gap conductances and to develop a better understanding of the differences that have been previously observed between such measured values and those predicted theoretically. This is accomplished by employing improved analyses of the experiments and improved theoretical models. Using laser heating of slightly separated stainless-steel plates, the gap conductance was measured using a technique that compares the theoretical and experimental time dependent temperatures at the back surface of the second plate. To consider the effects of surface temperature and gas pressure, the theoretical temperatures were calculated using a convective heat transfer coefficient that was dependent upon both the temperature and the gas pressure.
Element-by-element factorization algorithms for heat conduction
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Winget, J. M.; Park, K. C.
1983-01-01
Element-by-element solution strategies are developed for transient heat conduction problems. Results of numerical tests indicate the effectiveness of the procedures proposed. The small database requirements and attractive architectural features of the algorithms suggest considerable potential for solving large scale problems.
Simultaneous specific heat and thermal conductivity measurement of individual nanostructures
NASA Astrophysics Data System (ADS)
Zheng, Jianlin; Wingert, Matthew C.; Moon, Jaeyun; Chen, Renkun
2016-08-01
Fundamental phonon transport properties in semiconductor nanostructures are important for their applications in energy conversion and storage, such as thermoelectrics and photovoltaics. Thermal conductivity measurements of semiconductor nanostructures have been extensively pursued and have enhanced our understanding of phonon transport physics. Specific heat of individual nanostructures, despite being an important thermophysical parameter that reflects the thermodynamics of solids, has remained difficult to characterize. Prior measurements were limited to ensembles of nanostructures in which coupling and sample inhomogeneity could play a role. Herein we report the first simultaneous specific heat and thermal conductivity measurements of individual rod-like nanostructures such as nanowires and nanofibers. This technique is demonstrated by measuring the specific heat and thermal conductivity of single ∼600–700 nm diameter Nylon-11 nanofibers (NFs). The results show that the thermal conductivity of the NF is increased by 50% over the bulk value, while the specific heat of the NFs exhibits bulk-like behavior. We find that the thermal diffusivity obtained from the measurement, which is related to the phonon mean free path (MFP), decreases with temperature, indicating that the intrinsic phonon Umklapp scattering plays a role in the NFs. This platform can also be applied to one- and two- dimensional semiconductor nanostructures to probe size effects on the phonon spectra and other transport physics.
Heat Conduction Analysis in a Tissue Phantom Calculated by FDTD and HCE Method
Endoh, Nobuyuki; Tsuchiya, Takenobu; Saito, Yoshikazu; Ishizeki, Takahiro
2005-03-28
In order to study hyperthermia in tissue, it is important to predict accurately the heat distribution. This paper describes a preliminary study of the comparison between simulation and experiment for heat conduction in a simple tissue phantom. Since it is well known that the heat increase in tissue depends on the sound intensity and the absorption coefficient, the sound pressure distribution is calculated using a Finite Difference Time Domain (FDTD) method. The thermal diffusion profile in tissue generated by the energy of the sound pulse is also simulated using the Heat Conduction Equation (HCE) method. The calculation area is 100 x 40 [mm]. The simple tissue phantom is made of agar, water and graphite. The phantom whose attenuation coefficient is 1.1 dB/cm/MHz is placed in a temperature controlled water bath. This is kept at 37 deg. [C] while sound pulses of 1 MHz are emitted over 10 minutes. Temperatures at six points on the acoustic axis are measured in the phantom. The calculation and experiment results are compared to confirm the accuracy of the proposed method. As a result, the calculation results show the validity of the combined FDTD-HCE method for thermal conduction analysis.
Modelling heat conduction in polycrystalline hexagonal boron-nitride films.
Mortazavi, Bohayra; Pereira, Luiz Felipe C; Jiang, Jin-Wu; Rabczuk, Timon
2015-01-01
We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820
Modelling heat conduction in polycrystalline hexagonal boron-nitride films
Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon
2015-01-01
We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820
Validation of a heat conduction model for finite domain, non-uniformly heated, laminate bodies
NASA Astrophysics Data System (ADS)
Desgrosseilliers, Louis; Kabbara, Moe; Groulx, Dominic; White, Mary Anne
2016-07-01
Infrared thermographic validation is shown for a closed-form analytical heat conduction model for non-uniformly heated, laminate bodies with an insulated domain boundary. Experiments were conducted by applying power to rectangular electric heaters and cooled by natural convection in air, but also apply to constant-temperature heat sources and forced convection. The model accurately represents two-dimensional laminate heat conduction behaviour giving rise to heat spreading using one-dimensional equations for the temperature distributions and heat transfer rates under steady-state and pseudo-steady-state conditions. Validation of the model with an insulated boundary (complementing previous studies with an infinite boundary) provides useful predictions of heat spreading performance and simplified temperature uniformity calculations (useful in log-mean temperature difference style heat exchanger calculations) for real laminate systems such as found in electronics heat sinks, multi-ply stovetop cookware and interface materials for supercooled salt hydrates. Computational determinations of implicit insulated boundary condition locations in measured data, required to assess model equation validation, were also demonstrated. Excellent goodness of fit was observed (both root-mean-square error and R 2 values), in all cases except when the uncertainty of low temperatures measured via infrared thermography hindered the statistical significance of the model fit. The experimental validation in all other cases supports use of the model equations in design calculations and heat exchange simulations.
NASA Astrophysics Data System (ADS)
Gloesener, Elodie; Karatekin, Özgür; Dehant, Véronique
2016-04-01
MSL Rover Environmental Monitoring Station (REMS) performed high-resolution measurements of temperature and relative humidity during more than one Martian year. In this work, a 1D subsurface model is used to study water vapor exchange between the atmosphere and the subsurface at Gale crater using REMS data. The thermal model used includes several layers of varying thickness with depth and properties that can be changed to correspond to those of Martian rocks at locations studied. It also includes the transport of water vapor through porous Martian regolith and the different phases considered are vapor, ice and adsorbed H2O. The total mass flux is given by the sum of diffusive and advective transport. The role of an adsorbing regolith on water transfer as well as the range of parameters with significant effect on water transport in Martian conditions are investigated. In addition, kinetics of the adsorption process is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere.
High temperature electrically conducting ceramic heating element and control system
NASA Technical Reports Server (NTRS)
Halbach, C. R.; Page, R. J.
1975-01-01
Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.
NASA Astrophysics Data System (ADS)
von Hebel, Christian; Rudolph, Sebastian; Huisman, Johan A.; van der Kruk, Jan; Vereecken, Harry
2013-04-01
Electromagnetic induction (EMI) systems enable the non-invasive spatial characterization of soil structural and hydrogeological variations, since the measured apparent electrical conductivity (ECa) can be related to changes in soil moisture, soil water, clay content and/or salinity. Due to the contactless operation, ECa maps of relatively large areas, i.e. field to (small) catchment scale, can be measured in reasonably short times. A multi-configuration EMI system with one electromagnetic field transmitter and various receivers with different offsets provide simultaneous ECa measurements that are representative of different sensing depths. Unfortunately, measured ECa values can only be considered as qualitative values due to external influences like the operator, cables or other metal objects. Of course, a better vertical characterization of the subsurface is possible when quantitative measurement values could be obtained. To obtain such quantitative ECa values, the measured EMI apparent conductivities are calibrated using a linear regression approach with predicted apparent conductivities obtained from a Maxwell-based full-solution forward model using inverted electrical resistivity tomography (ERT) data as input. These calibrated apparent conductivities enable a quantitative multi-layer-inversion to resolve for the electrical conductivity of certain layers. To invert for a large scale three-layer model, a one-dimensional (1D) shuffled-complex-evolution inversion scheme was parallelized and run on JUROPA - one of the supercomputers of the Forschungszentrum Jülich. This novel inversion routine was applied to calibrated electromagnetic induction data acquired at the Selhausen test site (Germany), which has a size of about 190 x 70 m. The test site is weakly inclined and a distinct gradient in soil texture is present with considerably higher gravel content at the upper part of the field. Parallel profiles with approximately three meter distance were measured using
Conjugate conductive, convective, and radiative heat transfer in rocket engines
Naraghi, M.H.N.; DeLise, J.C.
1995-12-31
A comprehensive conductive, convective and radiative model for thermal analysis of rocket thrust chambers and nozzles is presented. In this model, the rocket thrust chamber and nozzle are subdivided into a number of stations along the longitudinal direction. At each station a finite element scheme is used to evaluate wall temperature distribution. The hot-gas-side convective heat transport is evaluated by numerically solving the compressible boundary layer equations and the radiative fluxes are evaluated by implementing an exchange factor scheme. The convective heat flux in the cooling channel is modeled based on the existing closed form correlations for rocket cooling channels. The conductive, convective and radiative processes are conjugated through an iterative procedure. The hot-gas-side heat transfer coefficients evaluated based on this model are compared to the experimental results reported in the literature. The computed convective heat transfer coefficients agree very well with experimental data for most of the engine except the throat where a discrepancy of approximately 20% exists. The model is applied to a typical regeneratively cooled rocket engine and the resulting wall temperature and heat flux distribution are presented.
Analysis of gas heat conduction in evacuated tube solar collectors
Beikircher, T.; Spirkl, W.
1996-12-31
The authors investigated the gas heat conduction in two types of evacuated tubular solar collectors for a wide range of Knudsen numbers. For tube-in-tube collectors, they generalized a solution of the gas kinetic Boltzmann equation, which has been obtained by the 4-momentum method, to polyatomic gases. The resulting equation coincides with Sherman`s interpolation formula. For a plate-in-tube collector, they measured the stationary heat loss for gas pressures varying between 10{sup {minus}2} and 10{sup 4} Pa. The accuracy of an earlier experiment was improved. For analysis the authors applied the temperature jump method: a heat conduction equation with boundary conditions of the third kind involving the temperature gradient and the pressure was numerically solved. The results with the temperature jump method agree with the experimental values nearly within the error bands. They also applied Sherman`s interpolation formula and found, as expected, that the heat conduction as function of the pressure is too steep. For both types of collectors, the influence of geometric parameters was theoretically studied.
Analysis of gas heat conduction in evacuated tube solar collectors
Beikircher, T.; Spirkl, W.
1996-08-01
The authors investigated the gas heat conduction in two types of evacuated tubular solar collectors for a wide range of Knudsen numbers. For tube-in-tube collectors, they generalized a solution of the gas kinetic Boltzmann equation, which has been obtained by the four-momentum method, to polyatomic gases. The resulting equation coincides with Sherman`s interpolation formula. For a plate-in-tube collector, they measured the stationary heat loss for gas pressures varying between 10{sup {minus}2} and 10{sup 4} Pa. The accuracy of an earlier experiment was improved. For analysis they applied the temperature jump method: a heat conduction equation with boundary conditions of the third kind involving the temperature gradient and the pressure was numerically solved. The results with the temperature jump method agree with the experimental values nearly within the error bands. They also applied Sherman`s interpolation formula and found, as expected, that the heat conduction as function of the pressure is too steep. For both types of collectors, the influence of geometric parameters was theoretically studied.
Observation of quantum-limited heat conduction over macroscopic distances
NASA Astrophysics Data System (ADS)
Mottonen, Mikko; Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell; Makela, Miika; Tanttu, Tuomo
The emerging quantum technological devices, such as the quantum computer, call for extreme performance in thermal engineering at the nanoscale. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. We present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a meter. We achieved this striking improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus it seems that quantum-limited heat conduction has no fundamental restriction in its distance. This work lays the foundation for the integration of normal-metal components into superconducting transmission lines, and hence provides an important tool for circuit quantum electrodynamics, the basis of the emerging superconducting quantum computer. In particular, our results may lead to remote cooling of nanoelectronic devices with the help of a far-away in-situ-tunable heat sink. European Research Council (ERC) is acknowledged for funding under the Grant No. 278117 (SINGLEOUT).
Kim, Taehoon; Park, Junyong; Sohn, Jongmoo; Cho, Donghwi; Jeon, Seokwoo
2016-04-26
Here we propose a concept of conductive dry adhesives (CDA) combining a gecko-inspired hierarchical structure and an elastomeric carbon nanocomposite. To complement the poor electrical percolation of 1D carbon nanotube (CNT) networks in an elastomeric matrix at a low filler content (∼1 wt %), a higher dimensional carbon material (i.e., carbon black, nanographite, and graphene nanopowder) is added into the mixture as an aid filler. The co-doped graphene and CNT in the composite show the lowest volume resistance (∼100 ohm·cm) at an optimized filler ratio (1:9, total filler content: 1 wt %) through a synergetic effect in electrical percolation. With an optimized conductive elastomer, gecko-inspired high-aspect-ratio (>3) microstructures over a large area (∼4 in.(2)) are successfully replicated from intaglio-patterned molds without collapse. The resultant CDA pad shows a high normal adhesion force (∼1.3 N/cm(2)) even on rough human skin and an excellent cycling property for repeatable use over 30 times without degradation of adhesion force, which cannot be achieved by commercial wet adhesives. The body-attachable CDA can be used as a metal-free, all-in-one component for measuring biosignals under daily activity conditions (i.e., underwater, movements) because of its superior conformality and water-repellent characteristic. PMID:26986477
Heat, Light, and Videotapes: Experiments in Heat Conduction Using Liquid Crystal Film.
ERIC Educational Resources Information Center
Bacon, Michael E.; And Others
1995-01-01
Presents a range of experiments in heat conduction suitable for upper-level undergraduate laboratories that make use of heat sensitive liquid crystal film to measure temperature contours. Includes experiments mathematically described by Laplace's equation, experiments theoretically described by Poisson's equation, and experiments that involve…
Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite
NASA Technical Reports Server (NTRS)
Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio
1988-01-01
A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.
Heating rate controller for thermally stimulated conductivity and thermoluminescence measurements.
NASA Technical Reports Server (NTRS)
Manning, E. G.; Littlejohn, M. A.; Oakley, E. M.; Hutchby , J. A.
1972-01-01
A temperature controller is described which enables the temperature of a sample mounted on a cold finger to be varied linearly with time. Heating rates between 0.5 and 10 K/min can be achieved for temperatures between 90 and 300 K. Provision for terminating the sample heating at any temperature between these extremes is available. The temperature can be held at the terminating temperature or be reduced to the starting temperature in a matter of minutes. The controller has been used for thermally stimulated conductivity measurements and should be useful for thermoluminescence measurements as well.
Estimating interfacial thermal conductivity in metamaterials through heat flux mapping
Canbazoglu, Fatih M.; Vemuri, Krishna P.; Bandaru, Prabhakar R.
2015-04-06
The variability of the thickness as well as the thermal conductivity of interfaces in composites may significantly influence thermal transport characteristics and the notion of a metamaterial as an effective medium. The consequent modulations of the heat flux passage are analytically and experimentally examined through a non-contact methodology using radiative imaging, on a model anisotropic thermal metamaterial. It was indicated that a lower Al layer/silver interfacial epoxy ratio of ∼25 compared to that of a Al layer/alumina interfacial epoxy (of ∼39) contributes to a smaller deviation of the heat flux bending angle.
Development of a high capacity variable conductance heat pipe.
NASA Technical Reports Server (NTRS)
Kosson, R.; Hembach, R.; Edelstein, F.; Loose, J.
1973-01-01
The high-capacity, pressure-primed, tunnel-artery wick concept was used in a gas-controlled variable conductance heat pipe. A variety of techniques were employed to control the size of gas/vapor bubbles trapped within the artery. Successful operation was attained with a nominal 6-foot long, 1-inch diameter cold reservoir VCHP using ammonia working fluid and nitrogen control gas. The pipe contained a heat exchanger to subcool the liquid in the artery. Maximum transport capacity with a 46-inch effective length was 1200 watts level (more than 50,000 watt-inches) and 800 watts at 0.5-inch adverse tilt.
A multilevel method for conductive-radiative heat transfer
Banoczi, J.M.; Kelley, C.T.
1996-12-31
We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.
Revealing the complex conduction heat transfer mechanism of nanofluids.
Sergis, A; Hardalupas, Y
2015-12-01
Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects.
Peletier, Mark A.; Redig, Frank; Vafayi, Kiamars
2014-09-01
We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter m (BEP(m)), a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti (KMP) process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP(m) and the KMP, and a nonlinear heat equation for the Generalized Brownian Energy Process with parameter a (GBEP(a)). We prove the hydrodynamic limit rigorously for the BEP(m), and give a formal derivation for the GBEP(a). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form -log ρ; they involve dissipation or mobility terms of order ρ² for the linear heat equation, and a nonlinear function of ρ for the nonlinear heat equation.
Heating of foods in space-vehicle environments. [by conductive heat transfer
NASA Technical Reports Server (NTRS)
Bannerot, R. B.; Cox, J. E.; Chen, C. K.; Heidelbaugh, N. D.
1973-01-01
In extended space missions, foods will be heated to enhance the psychological as well as the physiological well-being of the crew. In the low-gravity space environment natural convection is essentially absent so that the heat transfer within the food is by conduction alone. To prevent boiling in reduced pressure environments the maximum temperature of the heating system is severely limited. The Skylab food-heating system utilizes a tray with receptables for the food containers. The walls of the receptacles are lined with thermally controlled, electrical-resistance, blanket-type heating elements. A finite difference model is employed to perform parametric studies on the food-heating system. The effects on heating time of the (1) thermophysical properties of the food, (2) heater power level, (3) initial food temperatures, (4) container geometry, and (5) heater control temperature are presented graphically. The optimal heater power level and container geometry are determined.
Increasing Boiling Heat Transfer using Low Conductivity Materials
Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew
2015-01-01
We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches. PMID:26281890
Increasing Boiling Heat Transfer using Low Conductivity Materials
NASA Astrophysics Data System (ADS)
Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew
2015-08-01
We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches.
Increasing Boiling Heat Transfer using Low Conductivity Materials.
Rahman, Md Mahamudur; Pollack, Jordan; McCarthy, Matthew
2015-08-18
We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches.
Non-steady-state heat conduction in composite walls
Deconinck, Bernard; Pelloni, Beatrice; Sheils, Natalie E.
2014-01-01
The problem of heat conduction in one-dimensional piecewise homogeneous composite materials is examined by providing an explicit solution of the one-dimensional heat equation in each domain. The location of the interfaces is known, but neither temperature nor heat flux is prescribed there. Instead, the physical assumptions of their continuity at the interfaces are the only conditions imposed. The problem of two semi-infinite domains and that of two finite-sized domains are examined in detail. We indicate also how to extend the solution method to the setting of one finite-sized domain surrounded on both sides by semi-infinite domains, and on that of three finite-sized domains. PMID:24808751
Heat conduction nanocalorimeter for pl-scale single cell measurements
NASA Astrophysics Data System (ADS)
Johannessen, E. A.; Weaver, J. M. R.; Cobbold, P. H.; Cooper, J. M.
2002-03-01
An ultrasensitive nanocalorimeter for use with pl-scale biological samples using silicon microfabrication technology has been developed in which a 720 pl reaction vessel, a calibration heater, and a thermoelectric transducer of 125 μK sensitivity were integrated into a single multilayer thin-film configuration. The resolution of the system ranged from 10 to 25 nW depending on the heat capacity, conductance and power density of the samples studied. The device has been used in heat conduction measurements of the energy released from the enzyme catalyzed hydrolysis of hydrogen peroxide using purified catalase, and for the determination of the catalase activity within a single mouse hepatocyte. The nanocalorimeter has the potential for integration in a high-density array format, where the change in temperature from ultralow volume cellular assays could be used as a generic analytical tool for high throughput screening of bioactive compounds.
An eigenvalue method for solving transient heat conduction problems
NASA Technical Reports Server (NTRS)
Shih, T. M.; Skladany, J. T.
1983-01-01
The eigenvalue method, which has been used by researchers in structure mechanics, is applied to problems in heat conduction. Its formulation is decribed in terms of an examination of transient heat conduction in a square slab. Taking advantage of the availability of the exact solution, we compare the accuracy and other numerical properties of the eigenvalue method with those of existing numerical schemes. The comparsion shows that, overall, the eigenvalue method appears to be fairly attractive. Furthermore, only a few dominant eigenvalues and their corresponding eigenvectors need to be computed and retained to yield reasonably high accuracy. Greater savings are attained in the computation time for a transient problem with long time duration and a large computational domain.
NASA Technical Reports Server (NTRS)
Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.
1989-01-01
The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.
Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations
NASA Astrophysics Data System (ADS)
Vermeersch, Bjorn; Carrete, Jesús; Mingo, Natalio; Shakouri, Ali
2015-02-01
Semiconductor alloys exhibit a strong dependence of effective thermal conductivity on measurement frequency. So far this quasiballistic behavior has only been interpreted phenomenologically, providing limited insight into the underlying thermal transport dynamics. Here, we show that quasiballistic heat conduction in semiconductor alloys is governed by Lévy superdiffusion. By solving the Boltzmann transport equation (BTE) with ab initio phonon dispersions and scattering rates, we reveal a transport regime with fractal space dimension 1 <α <2 and superlinear time evolution of mean-square energy displacement σ2(t ) ˜tβ(1 <β <2 ) . The characteristic exponents are directly interconnected with the order n of the dominant phonon scattering mechanism τ ˜ω-n(n >3 ) and cumulative conductivity spectra κΣ(τ ;Λ ) ˜(τ;Λ ) γ resolved for relaxation times or mean free paths through the simple relations α =3 -β =1 +3 /n =2 -γ . The quasiballistic transport inside alloys is no longer governed by Brownian motion, but instead is dominated by Lévy dynamics. This has important implications for the interpretation of thermoreflectance (TR) measurements with modified Fourier theory. Experimental α values for InGaAs and SiGe, determined through TR analysis with a novel Lévy heat formalism, match ab initio BTE predictions within a few percent. Our findings lead to a deeper and more accurate quantitative understanding of the physics of nanoscale heat-flow experiments.
Fourier's heat conduction equation: History, influence, and connections
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.
1999-02-01
The equation describing the conduction of heat in solids has, over the past two centuries, proved to be a powerful tool for analyzing the dynamic motion of heat as well as for solving an enormous array of diffusion-type problems in physical sciences, biological sciences, earth sciences, and social sciences. This equation was formulated at the beginning of the nineteenth century by one of the most gifted scholars of modern science, Joseph Fourier of France. A study of the historical context in which Fourier made his remarkable contribution and the subsequent impact his work has had on the development of modern science is as fascinating as it is educational. This paper is an attempt to present a picture of how certain ideas initially led to Fourier's development of the heat equation and how, subsequently, Fourier's work directly influenced and inspired others to use the heat diffusion model to describe other dynamic physical systems. Conversely, others concerned with the study of random processes found that the equations governing such random processes reduced, in the limit, to Fourier's equation of heat diffusion. In the process of developing the flow of ideas, the paper also presents, to the extent possible, an account of the history and personalities involved.
Schmidt, Aaron J; Chen, Xiaoyuan; Chen, Gang
2008-11-01
The relationship between pulse accumulation and radial heat conduction in pump-probe transient thermoreflectance (TTR) is explored. The results illustrate how pulse accumulation allows TTR to probe two thermal length scales simultaneously. In addition, the conditions under which radial transport effects are important are described. An analytical solution for anisotropic heat flow in layered structures is given, and a method for measuring both cross-plane and in-plane thermal conductivities of thermally anisotropic thin films is described. As verification, the technique is used to extract the cross-plane and in-plane thermal conductivities of highly ordered pyrolytic graphite. Results are found to be in good agreement with literature values.
Multiscale Modeling of Heat Conduction in Carbon Nanotube Aerogels
NASA Astrophysics Data System (ADS)
Gong, Feng; Papavassiliou, Dimitrios; Duong, Hai
Carbon nanotube (CNT) aerogels have attracted a lot of interest due to their ultrahigh strength/weight and surface area/weight ratios. They are promising advanced materials used in energy storage systems, hydrogen storage media and weight-conscious devices such as satellites, because of their ultralight and highly porous quality. CNT aerogels can have excellent electrical conductivity and mechanical strength. However, the thermal conductivity of CNT aerogels are as low as 0.01-0.1 W/mK, which is five orders of magnitude lower than that of CNT (2000-5000 W/mK). To investigate the mechanisms for the low thermal conductivity of CNT aerogels, multiscale models are built in this study. Molecular dynamic (MD) simulations are first carried out to investigate the heat transfer between CNT and different gases (e.g. nitrogen and hydrogen), and the thermal conductance at CNT-CNT interface. The interfacial thermal resistances of CNT-gas and CNT-CNT are estimated from the MD simulations. Mesoscopic modeling of CNT aerogels are then built using an off-lattice Monte Carlo (MC) simulations to replicate the realistic CNT aerogels. The interfacial thermal resistances estimated from MD simulations are used as inputs in the MC models to predict the thermal conductivity of CNT aerogels. The volume fractions and the complex morphologies of CNTs are also quantified to study their effects on the thermal conductivity of CNT aerogels. The quantitative findings may help researchers to obtain the CNT aerogels with expected thermal conductivity.
Thermal conductivity measurements of proton-heated warm dense matter
NASA Astrophysics Data System (ADS)
McKelvey, A.; Fernandez-Panella, A.; Hua, R.; Kim, J.; King, J.; Sio, H.; McGuffey, C.; Kemp, G. E.; Freeman, R. R.; Beg, F. N.; Shepherd, R.; Ping, Y.
2015-06-01
Accurate knowledge of conductivity characteristics in the strongly coupled plasma regime is extremely important for ICF processes such as the onset of hydrodynamic instabilities, thermonuclear burn propagation waves, shell mixing, and efficient x-ray conversion of indirect drive schemes. Recently, an experiment was performed on the Titan laser platform at the Jupiter Laser Facility to measure the thermal conductivity of proton-heated warm dense matter. In the experiment, proton beams generated via target normal sheath acceleration were used to heat bi-layer targets with high-Z front layers and lower-Z back layers. The stopping power of a material is approximately proportional to Z2 so a sharp temperature gradient is established between the two materials. The subsequent thermal conduction from the higher-Z material to the lower-Z was measured with time resolved streaked optical pyrometry (SOP) and Fourier domain interferometry (FDI) of the rear surface. Results will be used to compare predictions from the thermal conduction equation and the Wiedemann-Franz Law in the warm dense matter regime. Data from the time resolved diagnostics for Au/Al and Au/C Targets of 20-200 nm thickness will be presented.
Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids.
Nandasiri, Manjula I; Liu, Jian; McGrail, B Peter; Jenks, Jeromy; Schaef, Herbert T; Shutthanandan, Vaithiyalingam; Nie, Zimin; Martin, Paul F; Nune, Satish K
2016-01-01
Metal-organic heat carriers (MOHCs) are recently developed nanofluids containing metal-organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nanoMIL-101(Cr) and the properties depended on the amount of GO added. MIL-101(Cr)/GO in methanol exhibited a significant increase in the thermal conductivity (by approximately 50%) relative to that of the intrinsic nanoMIL-101(Cr) in methanol. The thermal conductivity of the base fluid (methanol) was increased by about 20%. The increase in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to GO functionalization is explained using a classical Maxwell model. PMID:27302196
Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids
NASA Astrophysics Data System (ADS)
Nandasiri, Manjula I.; Liu, Jian; McGrail, B. Peter; Jenks, Jeromy; Schaef, Herbert T.; Shutthanandan, Vaithiyalingam; Nie, Zimin; Martin, Paul F.; Nune, Satish K.
2016-06-01
Metal-organic heat carriers (MOHCs) are recently developed nanofluids containing metal-organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nanoMIL-101(Cr) and the properties depended on the amount of GO added. MIL-101(Cr)/GO in methanol exhibited a significant increase in the thermal conductivity (by approximately 50%) relative to that of the intrinsic nanoMIL-101(Cr) in methanol. The thermal conductivity of the base fluid (methanol) was increased by about 20%. The increase in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to GO functionalization is explained using a classical Maxwell model.
Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids
Nandasiri, Manjula I.; Liu, Jian; McGrail, B. Peter; Jenks, Jeromy; Schaef, Herbert T.; Shutthanandan, Vaithiyalingam; Nie, Zimin; Martin, Paul F.; Nune, Satish K.
2016-01-01
Metal-organic heat carriers (MOHCs) are recently developed nanofluids containing metal-organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nanoMIL-101(Cr) and the properties depended on the amount of GO added. MIL-101(Cr)/GO in methanol exhibited a significant increase in the thermal conductivity (by approximately 50%) relative to that of the intrinsic nanoMIL-101(Cr) in methanol. The thermal conductivity of the base fluid (methanol) was increased by about 20%. The increase in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to GO functionalization is explained using a classical Maxwell model. PMID:27302196
A Monte Carlo solution of heat conduction and Poisson equations
Grigoriu, M.
2000-02-01
A Monte Carlo method is developed for solving the heat conduction, Poisson, and Laplace equations. The method is based on properties of Brownian motion and Ito processes, the Ito formula for differentiable functions of these processes, and the similarities between the generator of Ito processes and the differential operators of these equations. The proposed method is similar to current Monte Carlo solutions, such as the fixed random walk, exodus, and floating walk methods, in the sense that it is local, that is, it determines the solution at a single point or a small set of points of the domain of definition of the heat conduction equation directly. However, the proposed and the current Monte Carlo solutions are based on different theoretical considerations. The proposed Monte Carlo method has some attractive features. The method does not require to discretize the domain of definition of the differential equation, can be applied to domains of any dimension and geometry, works for both Dirichlet and Neumann boundary conditions, and provides simple solutions for the steady-state and transient heat equations. Several examples are presented to illustrate the application of the proposed method and demonstrate its accuracy.
Fabrication and test of a variable conductance heat pipe
NASA Technical Reports Server (NTRS)
Lehtinen, A. M.
1978-01-01
A variable conductance heat pipe (VCHP) with feedback control was fabricated with a reservoir-condenser volume ratio of 10 and an axially grooved action section. Tests of the heat transport capability were greater than or equal to the analytical predictions for the no gas case. When gas was added, the pipe performance degraded by 18% at zero tilt as was expected. The placement of the reservoir heater and the test fixture cooling fins are believed to have caused a superheated vapor condition in the reservoir. Erroneously high reservoir temperature indications resulted from this condition. The observed temperature gradients in the reservoir lend support to this theory. The net result was higher than predicted reservoir temperatures. Also, significant increases in minimum heat load resulted for controller set point temperatures higher than 0 C. At 30 C, control within the tolerance band was maintained, but high reservoir heater power was required. Analyses showed that control is not possible for reasonably low reservoir heater power. This is supported by the observation of a significant reservoir heat leak through the condenser.
Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Anderson, William G.; Walker, Kara
2009-01-01
In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.
Variable Conductance Heat Pipes for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Anderson, William G.; Tarau, Calin
2008-01-01
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP turns on with a delta T of 30 C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator delta T was roughly 70 C, due to distillation of the NaK in the evaporator.
NASA Technical Reports Server (NTRS)
Kachanov, Mark
1998-01-01
Analysis of the effective thermal conductivity of ceramic coatings and its relation to the microstructure continued. Results (obtained in Task 1) for the three-dimensional problem of heat conduction in a solid containing an inclusion (or, in particular, cavity - thermal insulator) of the ellipsoidal shape, were further advanced in the following two directions: (1) closed form expressions of H tensor have been derived for special cases of ellipsoidal cavity geometry: spheroid, crack-like spheroidal cavity and needle shaped spheroidal cavity; (2) these results for one cavity have been incorporated to construct heat energy potential for a solid with many spheroidal cavities (in the approximation of non-interacting defects). This problem constitutes a basic building block for further analyses.
Non-Fourier heat conduction in an exponentially graded slab
NASA Astrophysics Data System (ADS)
Raveshi, M. R.
2016-03-01
The present article investigates one-dimensional non-Fourier heat conduction in a functionally graded material by using the differential transformation method. The studied geometry is a finite functionally graded slab, which is initially at a uniform temperature and suddenly experiences a temperature rise at one side, while the other side is kept insulated. A general non-Fourier heat transfer equation related to the functionally graded slab is derived. The problem is solved in the Laplace domain analytically, and the final results in the time domain are obtained by using numerical inversion of the Laplace transform. The obtained results are compared with the exact solution to verify the accuracy of the proposed method, which shows excellent agreement.
Application of the hybrid method to inverse heat conduction problems
NASA Astrophysics Data System (ADS)
Chen, Han-Taw; Chang, Shiuh-Ming
1990-04-01
The hybrid method involving the combined use of Laplace transform method and the FEM method is considerably powerful for solving one-dimensional linear heat conduction problems. In the present method, the time-dependent terms are removed from the problem using the Laplace transform method, and then the FEM is applied to the space domain. The transformed temperature is inverted numerically to obtain the result in the physical quantity. The estimation of the surface heat flux or temperature from transient measured temperatures inside the solid agrees well with the analytical solution of the direct problem without Beck's sensitivity analysis and a least-square criterion. Due to no time step, the present method can directly calculate the surface conditions of an inverse problem without step by step computation in the time domain until the specific time is reached.
Numerical modeling of thermal conductive heating in fractured bedrock.
Baston, Daniel P; Falta, Ronald W; Kueper, Bernard H
2010-01-01
Numerical modeling was employed to study the performance of thermal conductive heating (TCH) in fractured shale under a variety of hydrogeological conditions. Model results show that groundwater flow in fractures does not significantly affect the minimum treatment zone temperature, except near the beginning of heating or when groundwater influx is high. However, fracture and rock matrix properties can significantly influence the time necessary to remove all liquid water (i.e., reach superheated steam conditions) in the treatment area. Low matrix permeability, high matrix porosity, and wide fracture spacing can contribute to boiling point elevation in the rock matrix. Consequently, knowledge of these properties is important for the estimation of treatment times. Because of the variability in boiling point throughout a fractured rock treatment zone and the absence of a well-defined constant temperature boiling plateau in the rock matrix, it may be difficult to monitor the progress of thermal treatment using temperature measurements alone.
Scanning thermal microscopy with heat conductive nanowire probes.
Timofeeva, Maria; Bolshakov, Alexey; Tovee, Peter D; Zeze, Dagou A; Dubrovskii, Vladimir G; Kolosov, Oleg V
2016-03-01
Scanning thermal microscopy (SThM), which enables measurement of thermal transport and temperature distribution in devices and materials with nanoscale resolution is rapidly becoming a key approach in resolving heat dissipation problems in modern processors and assisting development of new thermoelectric materials. In SThM, the self-heating thermal sensor contacts the sample allowing studying of the temperature distribution and heat transport in nanoscaled materials and devices. The main factors that limit the resolution and sensitivities of SThM measurements are the low efficiency of thermal coupling and the lateral dimensions of the probed area of the surface studied. The thermal conductivity of the sample plays a key role in the sensitivity of SThM measurements. During the SThM measurements of the areas with higher thermal conductivity the heat flux via SThM probe is increased compared to the areas with lower thermal conductivity. For optimal SThM measurements of interfaces between low and high thermal conductivity materials, well defined nanoscale probes with high thermal conductivity at the probe apex are required to achieve a higher quality of the probe-sample thermal contact while preserving the lateral resolution of the system. In this paper, we consider a SThM approach that can help address these complex problems by using high thermal conductivity nanowires (NW) attached to a tip apex. We propose analytical models of such NW-SThM probes and analyse the influence of the contact resistance between the SThM probe and the sample studied. The latter becomes particularly important when both tip and sample surface have high thermal conductivities. These models were complemented by finite element analysis simulations and experimental tests using prototype probe where a multiwall carbon nanotube (MWCNT) is exploited as an excellent example of a high thermal conductivity NW. These results elucidate critical relationships between the performance of the SThM probe on
DSMC Convergence for Microscale Gas-Phase Heat Conduction
NASA Astrophysics Data System (ADS)
Rader, D. J.; Gallis, M. A.; Torczynski, J. R.
2004-11-01
The convergence of Bird's Direct Simulation Monte Carlo (DSMC) method is investigated for gas-phase heat conduction at typical microscale conditions. A hard-sphere gas is confined between two fully accommodating walls of unequal temperature. Simulations are performed for small system and local Knudsen numbers, so continuum flow exists outside the Knudsen layers. The ratio of the DSMC thermal conductivity to the Chapman-Enskog value in the central region is determined for over 200 combinations of time step, cell size, and number of computational molecules per cell. In the limit of vanishing error, this ratio approaches 1.000 to within the correlation uncertainty. In the limit of infinite computational molecules per cell, the difference from unity depends quadratically on time step and cell size as these quantities become small. The coefficients of these quadratic terms are in good agreement with Green-Kubo values found by Hadjiconstantinou, Garcia, and co-workers. These results demonstrate that DSMC can accurately simulate microscale gas-phase heat conduction. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Numerical Model for Conduction-Cooled Current Lead Heat Loads
White, M.J.; Wang, X.L.; Brueck, H.D.; /DESY
2011-06-10
Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).
NASA Technical Reports Server (NTRS)
Anderson, W. T.; Edwards, D. K.; Eninger, J. E.; Marcus, B. D.
1974-01-01
A research and development program in variable conductance heat pipe technology is reported. The project involved: (1) theoretical and/or experimental studies in hydrostatics, (2) hydrodynamics, (3) heat transfer into and out of the pipe, (4) fluid selection, and (5) materials compatibility. The development, fabrication, and test of the space hardware resulted in a successful flight of the heat pipe experiment on the OAO-3 satellite. A summary of the program is provided and a guide to the location of publications on the project is included.
Combined conduction and radiation heat transfer in concentric cylindrical media
NASA Technical Reports Server (NTRS)
Pandey, D. K.
1987-01-01
The exact radiative transfer expressions for gray and nongray gases which are absorbing, emitting and nonscattering, contained between infinitely long concentric cylinders with black surfaces, are given in local thermodynamic equilibrium. Resulting energy equations due to the combination of conduction and radiation modes of heat transfer, under steady state conditions for gray and nongray media, are solved numerically using the undetermined parameters method. A single 4.3-micron band of CO2 is considered for the nongray problems. The present solutions for gray and nongray gases obtained in the plane-parallel limit (radius ratio approaches to one) are compared with the plane-parallel results reported in the literature.
Hierarchical Parallelism in Finite Difference Analysis of Heat Conduction
NASA Technical Reports Server (NTRS)
Padovan, Joseph; Krishna, Lala; Gute, Douglas
1997-01-01
Based on the concept of hierarchical parallelism, this research effort resulted in highly efficient parallel solution strategies for very large scale heat conduction problems. Overall, the method of hierarchical parallelism involves the partitioning of thermal models into several substructured levels wherein an optimal balance into various associated bandwidths is achieved. The details are described in this report. Overall, the report is organized into two parts. Part 1 describes the parallel modelling methodology and associated multilevel direct, iterative and mixed solution schemes. Part 2 establishes both the formal and computational properties of the scheme.
Pseudo-updated constrained solution algorithm for nonlinear heat conduction
NASA Technical Reports Server (NTRS)
Tovichakchaikul, S.; Padovan, J.
1983-01-01
This paper develops efficiency and stability improvements in the incremental successive substitution (ISS) procedure commonly used to generate the solution to nonlinear heat conduction problems. This is achieved by employing the pseudo-update scheme of Broyden, Fletcher, Goldfarb and Shanno in conjunction with the constrained version of the ISS. The resulting algorithm retains the formulational simplicity associated with ISS schemes while incorporating the enhanced convergence properties of slope driven procedures as well as the stability of constrained approaches. To illustrate the enhanced operating characteristics of the new scheme, the results of several benchmark comparisons are presented.
Hybrid fluid/kinetic model for parallel heat conduction
Callen, J.D.; Hegna, C.C.; Held, E.D.
1998-12-31
It is argued that in order to use fluid-like equations to model low frequency ({omega} < {nu}) phenomena such as neoclassical tearing modes in low collisionality ({nu} < {omega}{sub b}) tokamak plasmas, a Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid moment closure relations. Further, parallel heat conduction in a long collision mean free path regime can be described through a combination of a reduced phase space Chapman-Enskog-like approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.
Time fractional dual-phase-lag heat conduction equation
NASA Astrophysics Data System (ADS)
Xu, Huan-Ying; Jiang, Xiao-Yun
2015-03-01
We build a fractional dual-phase-lag model and the corresponding bioheat transfer equation, which we use to interpret the experiment results for processed meat that have been explained by applying the hyperbolic conduction. Analytical solutions expressed by H-functions are obtained by using the Laplace and Fourier transforms method. The inverse fractional dual-phase-lag heat conduction problem for the simultaneous estimation of two relaxation times and orders of fractionality is solved by applying the nonlinear least-square method. The estimated model parameters are given. Finally, the measured and the calculated temperatures versus time are compared and discussed. Some numerical examples are also given and discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11102102, 11472161, and 91130017), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AQ015), and the Independent Innovation Foundation of Shandong University, China (Grant No. 2013ZRYQ002).
Homogeneous thermal cloak with constant conductivity and tunable heat localization.
Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei
2013-01-01
Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139
Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization
NASA Astrophysics Data System (ADS)
Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei
2013-04-01
Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons.
Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization
Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei
2013-01-01
Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139
High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Walker, Kara L.; Anderson, William G.
2009-01-01
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.
Application of inverse heat conduction problem on temperature measurement
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhou, G.; Dong, B.; Li, Q.; Liu, L. Q.
2013-09-01
For regenerative cooling devices, such as G-M refrigerator, pulse tube cooler or thermoacoustic cooler, the gas oscillating bring about temperature fluctuations inevitably, which is harmful in many applications requiring high stable temperatures. To find out the oscillating mechanism of the cooling temperature and improve the temperature stability of cooler, the inner temperature of the cold head has to be measured. However, it is difficult to measure the inner oscillating temperature of the cold head directly because the invasive temperature detectors may disturb the oscillating flow. Fortunately, the outer surface temperature of the cold head can be measured accurately by invasive temperature measurement techniques. In this paper, a mathematical model of inverse heat conduction problem is presented to identify the inner surface oscillating temperature of cold head according to the measured temperature of the outer surface in a GM cryocooler. Inverse heat conduction problem will be solved using control volume approach. Outer surface oscillating temperature could be used as input conditions of inverse problem and the inner surface oscillating temperature of cold head can be inversely obtained. A simple uncertainty analysis of the oscillating temperature measurement also will be provided.
Variable Conductance Heat Pipes for Radioisotope Stirling Systems
NASA Astrophysics Data System (ADS)
Anderson, William G.; Tarau, Calin
2008-01-01
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.
NASA Astrophysics Data System (ADS)
Lesnic, D.; Elliott, L.; Ingham, D. B.
1996-07-01
In this study the inverse problem of the identification of temperature dependent thermal properties of a heat conducting body is investigated. The solution of the corresponding direct problem is obtained using a time marching boundary element method (BEM), which allows, without any need of interpolation and solution domain discretisation, efficient and accurate evaluation of the temperature everywhere inside the space-time dependent domain. Since the inverse problem, which requires the determination of the thermal conductivity and heat capacity from a finite set of temperature measurements taken inside the body, possesses poor uniqueness features, additional information is achieved by assuming that the thermal properties belong to a set of polynomials. Thus the inverse problem reduces to a parameter system estimation problem which is solved using the nonlinear least-squares method. Convergent and stable numerical results are obtained for the finite set of parameters which characterise the thermal properties for various test examples. Once the thermal properties are accurately obtained then the BEM determines automatically the temperature inside the solution domain and the remaining unspecified boundary values and the numerically obtained results show good agreement with the corresponding analytical solutions.
High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems
Tarau, Calin; Walker, Kara L.; Anderson, William G.
2009-03-16
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.
Heat conduction in nanoscale materials: a statistical-mechanics derivation of the local heat flux.
Li, Xiantao
2014-09-01
We derive a coarse-grained model for heat conduction in nanoscale mechanical systems. Starting with an all-atom description, this approach yields a reduced model, in the form of conservation laws of momentum and energy. The model closure is accomplished by introducing a quasilocal thermodynamic equilibrium, followed by a linear response approximation. Of particular interest is the constitutive relation for the heat flux, which is expressed nonlocally in terms of the spatial and temporal variation of the temperature. Nanowires made of copper and silicon are presented as examples. PMID:25314400
NASA Astrophysics Data System (ADS)
Naraghi, M. H. N.; Chung, B. T. F.
1982-06-01
A multiple step fixed random walk Monte Carlo method for solving heat conduction in solids with distributed internal heat sources is developed. In this method, the probability that a walker reaches a point a few steps away is calculated analytically and is stored in the computer. Instead of moving to the immediate neighboring point the walker is allowed to jump several steps further. The present multiple step random walk technique can be applied to both conventional Monte Carlo and the Exodus methods. Numerical results indicate that the present method compares well with finite difference solutions while the computation speed is much faster than that of single step Exodus and conventional Monte Carlo methods.
Efficient linear and nonlinear heat conduction with a quadrilateral element
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.
1983-01-01
A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2, and 1 for the normalized stabilization parameter lead to the 5-point, 9-point finite difference, and fully integrated finite element operators, respectively, for rectangular meshes and have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.
THERM: A three-dimensional transient heat conduction computer program
Cook, W.A.
1991-10-01
THERM is a three-dimensional finite-element computer program for solving transient heat conduction problems. This report presents the techniques used to develop THERM. The theory described consists of a governing equation, boundary conditions, and an equivalent variational principle. The matrix equations used in THERM are derived using both vector and tensor analysis. These equations used finite-element approximations for the geometry and a finite-difference approximation for the time. THERM has finite-element formulations using both Cartesian or cylindrical coordinates. Several example problems are included to demonstrate that the THERM formulations are correct and that THERM can be used to solve meaningful problems. 7 refs., 4 figs., 6 tabs.
Application of the boundary element method to transient heat conduction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.
1991-01-01
An advanced boundary element method (BEM) is presented for the transient heat conduction analysis of engineering components. The numerical implementation necessarily includes higher-order conforming elements, self-adaptive integration and a multiregion capability. Planar, three-dimensional and axisymmetric analyses are all addressed with a consistent time-domain convolution approach, which completely eliminates the need for volume discretization for most practical analyses. The resulting general purpose algorithm establishes BEM as an attractive alternative to the more familiar finite difference and finite element methods for this class of problems. Several detailed numerical examples are included to emphasize the accuracy, stability and generality of the present BEM. Furthermore, a new efficient treatment is introduced for bodies with embedded holes. This development provides a powerful analytical tool for transient solutions of components, such as casting moulds and turbine blades, which are cumbersome to model when employing the conventional domain-based methods.
Efficient linear and nonlinear heat conduction with a quadrilateral element
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.
1984-01-01
A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2 and 1 for the normalized stabilization parameter lead to the 5-point finite difference, 9-point finite difference and fully integrated finite element operators, respectively, for rectangular meshes; numerical experiments reported here show that the three have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.
Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials
NASA Astrophysics Data System (ADS)
Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T. L.; Qiu, Cheng-Wei
2015-05-01
The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond.
Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials
Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T. L.; Qiu, Cheng-Wei
2015-01-01
The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond. PMID:25974383
Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials.
Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T L; Qiu, Cheng-Wei
2015-05-14
The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond.
NASA Astrophysics Data System (ADS)
Zhang, Fan; He, Wen; He, Longbiao; Rong, Zuochao
2015-12-01
The wide concern on absolute pressure calibration of acoustic transducers at low frequencies prompts the development of the pistonphone method. At low frequencies, the acoustic properties of pistonphones are governed by the pressure leakage and the heat conduction effects. However, the traditional theory for these two effects applies a linear superposition of two independent correction models, which differs somewhat from their coupled effect at low frequencies. In this paper, acoustic properties of pistonphones at low frequencies in full consideration of the pressure leakage and heat conduction effects have been quantitatively studied, and the explicit expression for the generated sound pressure has been derived. With more practical significance, a coupled correction expression for these two effects of pistonphones has been derived. In allusion to two typical pistonphones, the NPL pistonphone and our developed infrasonic pistonphone, comparisons were done for the coupled correction expression and the traditional one, whose results reveal that the traditional one produces maximum insufficient errors of about 0.1 dB above the lower limiting frequencies of two pistonphones, while at lower frequencies, excessive correction errors with an explicit limit of about 3 dB are produced by the traditional expression. The coupled correction expression should be adopted in the absolute pressure calibration of acoustic transducers at low frequencies. Furthermore, it is found that the heat conduction effect takes a limiting deviation of about 3 dB for the pressure amplitude and a small phase difference as frequency decreases, while the pressure leakage effect remarkably drives the pressure amplitude to attenuate and the phase difference tends to be 90° as the frequency decreases. The pressure leakage effect plays a more important role on the low frequency property of pistonphones.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... COMMISSION Certain Integrated Circuit Packages Provided With Multiple Heat- Conducting Paths and Products... With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting... multiple heat-conducting paths and products containing same. The complaint names as respondents...
NASA Astrophysics Data System (ADS)
Alam, Muntasir; Kamruzzaman, Ahsan, Faraz; Hasan, Mohammad Nasim
2016-07-01
A numerical study of mixed convection heat transfer phenomena in a square cavity containing a heat conducting rotating cylinder has been investigated. A discrete isoflux heater is placed at the bottom wall of the enclosure while the top wall is kept adiabatic. Left and right sidewalls of the enclosure are assumed to be maintained at constant low temperature. A two-dimensional solution for steady laminar mixed convection flow is obtained by using the finite element scheme based on the Galerkin method of weighted residuals for different rotating speeds of the cylinder varying over the range of 0-1000 keeping the Rayleigh number fixed at 5×104 and the Prandtl number at 0.7. The effects of rotating speeds of the cylinder, its radius and conductivity ratio of the rotating cylinder and working fluid on the streamlines, isotherms, local Nusselt number, average Nusselt number and other heat transfer and fluid flow phenomena are investigated. The results indicate that the flow field, temperature distribution and heat transfer rate are dependent on rotating speeds and cylinder size. However, it has been observed that the effect of conductivity ratio is not so prominent.
SEP BIMOD variable conductance heat pipes acceptance and characterization tests
NASA Technical Reports Server (NTRS)
Hemminger, J. A.
1981-01-01
A series of six heat pipes, similar in design to those flown on the Comunications Technology Satellite Hermes, for use in a prototype Solar Electric Propulsion BIMOD thrust module are evaluated. The results of acceptance and characterization tests performed on the heat pipe subassemble are reported. The performance of all the heat pipes met, or exceeded, design specifications.
Radiation and gas conduction heat transport across a helium dewer multilayer insulation system
Green, M.A.
1995-02-01
This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.
Theory and design of variable conductance heat pipes: Steady state and transient performance
NASA Technical Reports Server (NTRS)
Edwards, D. K.; Fleischman, G. L.; Marcus, B. D.
1972-01-01
Heat pipe technology pertinent to the design and application of self-controlled, variable conductance heat pipes for spacecraft thermal control is discussed. Investigations were conducted to: (1) provide additional confidence in existing design tools, (2) to generate new design tools, and (3) to develop superior variable conductance heat pipe designs. A computer program for designing and predicting the performance of the heat pipe systems was developed.
NASA Astrophysics Data System (ADS)
Maher Abourabia, Aly; Hassan, Kawsar Mohammad; Abo-Elghar, Eman Mohammad
2015-02-01
We investigate a bio-system composed of a shape memory alloy (SMA) immersed and subjected to heat convection in a blood vessel, affected by heart beats that create a wave motion of long wavelength. The tackled model in (2+1)-D is based on the continuity and momentum equations for the fluid phase, besides; the state of the SMA are described via previous works in the form of statistical distributions of energy for both Martensite and Austenite phases. The solution based on the reductive perturbation technique gives a thermal diffusion-like equation as a key for expressing the temperature and velocity components of the blood. In terms of two cases concerning the difference between the wave numbers in the perpendicular directions, it is found that the system's temperature increases nonlinearly from a minimum initial temperature 293 K (20 °C) up to a maximum value about 316.68 K (43.68 °C), then tends to decrease along the blood flow (anisotropy of K and L) direction. In both cases it is observed that the SMA acquires most of this temperature raising not the blood because of its conventional biological limits (37-40 °C). The range of the heart beats wave numbers characteristic for each person plays an important role in realizing phase changes in the anisotropic case leading to the formation of the hysteresis loops Martensite-Austenite-Martensite or vice versa, according to the energy variation. The entropy generation σ is investigated for the system (Blood + SMA), it predicts that along the flow direction the system gains energy convectively up to a maximum value, then reverses his tendency to gradually loosing energy passing by the equilibrium state, then the system looses energy to the surroundings by the same amount which was gained beforehand. The loss diminishes but stops before arriving to equilibrium again. For certain differences in wave numbers the system starts to store energy again after it passes by the state of equilibrium for the second time. In the
Analysis of heat conduction in a disk brake system
NASA Astrophysics Data System (ADS)
Talati, Faramarz; Jalalifar, Salman
2009-06-01
In this paper, the governing heat equations for the disk and the pad are extracted in the form of transient heat equations with heat generation that is dependant to time and space. In the derivation of the heat equations, parameters such as the duration of braking, vehicle velocity, geometries and the dimensions of the brake components, materials of the disk brake rotor and the pad and contact pressure distribution have been taken into account. The problem is solved analytically using Green’s function approach. It is concluded that the heat generated due to friction between the disk and the pad should be ideally dissipated to the environment to avoid decreasing the friction coefficient between the disk and the pad and to avoid the temperature rise of various brake components and brake fluid vaporization due to excessive heating.
NASA Astrophysics Data System (ADS)
Ndlovu, Partner; Moitsheki, Rasselo
2013-08-01
Some new conservation laws for the transient heat conduction problem for heat transfer in a straight fin are constructed. The thermal conductivity is given by a power law in one case and by a linear function of temperature in the other. Conservation laws are derived using the direct method when thermal conductivity is given by the power law and the multiplier method when thermal conductivity is given as a linear function of temperature. The heat transfer coefficient is assumed to be given by the power law function of temperature. Furthermore, we determine the Lie point symmetries associated with the conserved vectors for the model with power law thermal conductivity.
Ping, Y.; Fernandez-Panella, A.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Collins, G. W.; Sio, H.; Boehly, T. R.
2015-09-15
We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.
Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Boehly, T. R.; Collins, G. W.
2015-09-04
We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.
Conjugate conduction-convection heat transfer model for four-stroke heat-barrier-piston engines
Blank, D.A.; Shih, T.M.
1989-01-01
A numerical model for conjugate conduction-convection heat transfer in a four-stroke heat-barrier-piston engine has been developed. The system boundaries were extended beyond the flow to fixed distances within the piston and cylinder linings. The model was used to simulate the compression stroke and fuel injection portion of the power stroke of a four-stroke engine cycle. Final runs involved a 20 X 26 mesh to solve the conjugate heat transfer problem in the large region made up of the flow field and a thin portion of the adjacent cylinder linings. A smaller mesh was used for other flow field calculations inside the interior boundary of the cylinder linings and piston. The engine was modeled with the fuel injector co-located with a single valve, making possible an axisymmetric solution. The effects of swirl were not considered. It was found to be convenient to divide the flow field into three regions: one fixed in space with time, one utilizing a stretching and compressing computational mesh, and one moving with time without stretching and compressing.
Williams, M.L.; Yuecel, A.; Nadkarny, S.
1988-05-01
The HEATING6 heat conduction code is modified to (a) read the multigroup particle fluxes from a two-dimensional DOT-IV neutron- photon transport calculation, (b) interpolate the fluxes from the DOT-IV variable (optional) mesh to the HEATING6 control volume mesh, and (c) fold the interpolated fluxes with kerma factors to obtain a nuclear heating source for the heat conduction equation. The modified HEATING6 is placed as a module in the ORNL discrete ordinates system (DOS), and has been renamed DOS-HEATING6. DOS-HEATING6 provides the capability for determining temperature distributions due to nuclear heating in complex, multi-dimensional systems. All of the original capabilities of HEATING6 are retained for the nuclear heating calculation; e.g., generalized boundary conditions (convective, radiative, finned, fixed temperature or heat flux), temperature and space dependent thermal properties, steady-state or transient analysis, general geometry description, etc. The numerical techniques used in the code are reviewed and the user input instructions and JCL to perform DOS-HEATING6 calculations are presented. Finally a sample problem involving coupled DOT-IV and DOS-HEATING6 calculations of a complex space-reactor configurations described, and the input and output of the calculations are listed. 10 refs., 11 figs., 6 tabs.
NASA Astrophysics Data System (ADS)
Kuznetzov, G. V.; Polovnikov, V. Yu.
2012-04-01
The results of numerical investigation are reported on thermal regimes in the systems of heat transport based on the solution of the conjugative problem of conductive-convective heat transfer in the system •twin-tube-channel underground heat pipeline„ environmental medium. It is shown that the use of the proposed approach allows one to perform the comprehensive analysis of the heating regimes in such systems.
Chen, Lin; Li, Zhen; Guo, Zeng-Yuan
2009-07-15
In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m{sup 2} K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension. (author)
In vitro burn model illustrating heat conduction patterns using compressed thermal papers.
Lee, Jun Yong; Jung, Sung-No; Kwon, Ho
2015-01-01
To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns.
A two-fluid model for relativistic heat conduction
López-Monsalvo, César S.
2014-01-14
Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.
Seebeck effect influence on joule heat evolution in electrically conductive silicate materials
NASA Astrophysics Data System (ADS)
Fiala, Lukáš; Medved, Igor; Maděra, Jiří; Černý, Robert
2016-07-01
In general, silicate building materials are non-conductive matters that are not able to evolve heat when they are subjected to an external voltage. However, the electrical conductivity can be increased by addition of electrically conductive admixtures in appropriate amount which leads to generation of conductive paths in materials matrix. Such enhanced materials can evolve Joule heat and are utilizable as a core of self-heating or snow-melting systems. In this paper, Joule heat evolution together with Seebeck effect in electrically conductive silicate materials was taken into consideration and the model based on heat equation with included influence of DC electric field was proposed. Besides, a modeling example of heating element was carried out on FEM basis and time development of temperature in chosen surface points was expressed in order to declare ability of such system to be applicable.
Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source
NASA Technical Reports Server (NTRS)
Tarau, Calin; Schwendeman, Carl; Anderson, William G.; Cornell, Peggy A.; Schifer, Nicholas A.
2013-01-01
In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental
Lopez, G.
1993-07-01
Using the one-dimensional, time-independent conduction state, a constant of thermal heating conduction is given that brings about the known stabilization theorem and a closed expression for the bus bar to be cryogenically stable in superconducting accelerators.
Shrestha, R.; Lee, K. M.; Chang, W. S.; Kim, D. S.; Rhee, G. H.; Choi, T. Y.
2013-01-01
In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m−1 K−1 at room temperature. PMID:23556837
NASA Astrophysics Data System (ADS)
Ranganayakulu, Ch.; Seetharamu, K. N.
An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effect of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow distribution on both hot and cold fluid sides is carried out using a finite element method. Using the fluid flow maldistribution models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction and flow nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performance deteriorations are quite significant in some typical applications due to the combined effects of wall longitudinal heat conduction and inlet fluid flow nonuniformity on crossflow plate-fin heat exchanger.
Uniqueness theorems for some inverse heat-conduction problems
NASA Astrophysics Data System (ADS)
Muzylev, N. V.
1980-04-01
Heat treatment of metals, involving rapid thermal processes, is an example of situations where the mathematical determination of thermal characteristics makes it necessary to solve a certain inverse problem, i.e., from some information on the temperature field, obtained from direct measurements. The present paper deals with the uniqueness of inverse problems of this type. Uniqueness theorems are proven for the determination of the coefficients of a nonlinear parabolic equation from the boundary conditions.
A Simple Rate Law Experiment Using a Custom-Built Isothermal Heat Conduction Calorimeter
ERIC Educational Resources Information Center
Wadso, Lars; Li, Xi.
2008-01-01
Most processes (whether physical, chemical, or biological) produce or consume heat: measuring thermal power (the heat production rate) is therefore a typical method of studying processes. Here we describe the design of a simple isothermal heat conduction calorimeter built for use in teaching; we also provide an example of its use in simultaneously…
NASA Astrophysics Data System (ADS)
Baek, Seungwhan; Kim, Jinhyuck; Hwang, Gyuwan; Jeong, Sangkwon
2012-06-01
PCHE (Printed Circuit Heat Exchanger) is one of the promising cryogenic compact heat exchangers due to its compactness, high NTU and robustness. The essential procedure for fabricating PCHE is chemical etching and diffusion bonding. These technologies can create sufficiently large heat transfer area for a heat exchanger with numerous micro channels (Dh<1 mm). However, PCHE shows disadvantages of high pressure drop and large axial conduction loss. Axial conduction is a critical design issue of a cryogenic heat exchanger when it is operated with a large temperature difference. Elongating the heat conduction path is implemented to reduce axial conduction in PCHE in this study. Two PCHEs with identical channel configuration are fabricated, for comparison, one of which is modified to have longer heat conduction path. Both heat exchangers are tested in cryogenic environment (300~70 K), and the modified PCHE shows better performance with significantly reduced axial conduction. The experimental results indicate that the modification of the heat conduction path is effective to increase the performance of PCHE. This paper discusses and analyses the thermal characteristics of the modified PCHE obtained experimentally.
Numerical model for combined conductive and radiative heat transfer in annular packed beds
Kamiuto, K.; Saito, S.; Ito, K. . Dept. of Production Systems Engineering)
1993-06-01
A numerical model is developed for quantitatively analyzing combined conductive and radiative heat transfer in concentric annular packed beds. A packed bed is considered to be a continuous medium for heat transfer, but the porosity distribution within a packed bed is taken into account. To examine the validity of the proposed model, combined conductive and radiative heat transfer through annular packed beds of cordierite or porcelain beads is analyzed numerically using finite differences under conditions corresponding to heat transfer experiments of these packed beds. The resultant temperature profiles and heat transfer characteristics are compared with the experimental results.
Global Well-Posedness for the Heat-conductive Incompressible Viscous Fluids
NASA Astrophysics Data System (ADS)
Ye, Xia; Zhu, Mingxuan
2016-09-01
This paper is concerned with the Cauchy problem derived from the non-stationary motion of heat-conducting incompressible viscous fluids in three-dimensional whole space, where the viscosity and heat-conductivity coefficient vary with the temperature. We establish blow-up criteria and existence of global strong solution provided that the initial data is small enough.
Methods for solving of inverse heat conduction problems
NASA Astrophysics Data System (ADS)
Kobilskaya, E.; Lyashenko, V.
2016-10-01
A general mathematical model of the high-temperature thermodiffusion that occurs in a limited environment is considered. Based on this model a formulation of inverse problems for homogeneous and inhomogeneous parabolic equations is proposed. The inverse problem aims at identifying one or several unknown parameters of the mathematical model. These parameters allow maintaining the required temperature distribution and concentration of distribution of substance in the whole area or in part. For each case (internal, external heat source or a combination) the appropriate method for solving the inverse problem is proposed.
Heat conduction in cooling flows. [in clusters of galaxies
NASA Technical Reports Server (NTRS)
Bregman, Joel N.; David, L. P.
1988-01-01
It has been suggested that electron conduction may significantly reduce the accretion rate (and star foramtion rate) for cooling flows in clusters of galaxies. A numerical hydrodynamics code was used to investigate the time behavior of cooling flows with conduction. The usual conduction coefficient is modified by an efficiency factor, mu, to realize the effects of tangled magnetic field lines. Two classes of models are considered, one where mu is independent of position and time, and one where inflow stretches the field lines and changes mu. In both cases, there is only a narrow range of initial conditions for mu in which the cluster accretion rate is reduced while a significant temperature gradient occurs. In the first case, no steady solution exists in which both conditions are met. In the second case, steady state solutions occur in which both conditions are met, but only for a narrow range of initial values where mu = 0.001.
NASA Astrophysics Data System (ADS)
Kurovics, E.; Buzimov, A. Y.; Gömze, L. A.
2016-04-01
In this work some new raw material compositions from alumina, conventional brick-clays and sawdust were mixed, compacted and heat treated by the authors. Depending on raw material compositions and firing temperatures the specimens were examined on shrinkage, water absorption, heat conductivity and microstructures. The real raised experiments have shown the important role of firing temperature and raw material composition on color, heat conductivity and microstructure of the final product.
Cu/Diamond composite heat-conducting shims
NASA Astrophysics Data System (ADS)
Galashov, E. N.; Yusuf, A. A.; Mandrik, E. M.
2015-11-01
Composite material with high thermal conductivity was obtained by the method of thermal sintering of a diamond (50 - 75%) with a size of 20 to 250 μm in a matrix of copper.Coefficient of thermal conductivity of copper diamond composite materials was measured and is 450 - 650 W·m-1·K-1. The coefficient of thermal expansion CTE was measured and is 5.5 - 7.5 · 10-6/°C. The obtained copper diamond composite materials are promising objects for use in THz and microwave devices.
NASA Astrophysics Data System (ADS)
Yu, Y. Jun; Li, Chen-Lin; Xue, Zhang-Na; Tian, Xiao-Geng
2016-01-01
To model transiently thermal responses of numerous thermal shock issues at nano-scale, Fourier heat conduction law is commonly extended by introducing time rate of heat flux, and comes to hyperbolic heat conduction (HHC). However, solution to HHC under Dirichlet boundary condition depicts abnormal phenomena, e.g. heat conducts from the cold to the hot, and there are two temperatures at one location. In this paper, HHC model is further perfected with the aids of spatially nonlocal effect, and the exceeding temperature as well as the discontinuity at the wave front are avoided. The effect of nonlocal parameter on temperature response is discussed. From the analysis, the importance of size effect for nano-scale heat conduction is emphasized, indicating that spatial and temporal extensions should be simultaneously made to nano-scale heat conduction. Beyond that, it is found that heat flux boundary conditions should be directly given, instead of Neumann boundary condition, which does not make sense any longer for non-classical heat conductive models. And finally, it is observed that accurate solution to such problems may be obtained using Laplace transform method, especially for the time-dependent boundary conditions, e.g. heat flux boundary condition.
NASA Technical Reports Server (NTRS)
Brandon, S.; Derby, J. J.
1992-01-01
In the present investigation of crystalline phase internal radiation and heat conduction during the vertical Bridgman growth of a YAG-like oxide crystal, where transport through the melt is dominated by convection and conduction, heat is also noted to be conducted through ampoule walls via natural convection and enclosure radiation. The results of a quasi-steady-state axisymmetric Galerkin FEM indicate that heat transfer through the system is powerfully affected by the optical absorption coefficient of the crystal. The coupling of internal radiation through the crystal with conduction through the ampoule walls promotes melt/crystal interface shapes that are highly reflected near the ampoule wall.
The evolution of interstellar clouds in a streaming hot plasma including heat conduction
NASA Astrophysics Data System (ADS)
Vieser, W.; Hensler, G.
2007-09-01
Context: The interstellar medium contains warm clouds that are embedded in a hot dilute gas produced by supernovae. Because both gas phases are in contact, an interface forms where mass and energy are exchanged. Whether heat conduction leads to evaporation of these clouds or whether condensation dominates has been analytically derived. Both phases behave differently dynamically so that their relative motion has to be taken into account. Aims: Real clouds in static conditions that experience saturated heat conduction are stabilized against evaporation if self-gravity and cooling play a role. Here, we investigte to what extent heat conduction can hamper the dynamical disruption of clouds embedded in a streaming hot plasma. Methods: To examine the evolution of giant molecular clouds in the stream of a hot plasma we performed two-dimensional hydrodynamical simulations that take full account of self-gravity, heating and cooling effects and heat conduction by electrons. We use the thermal conductivity of a fully ionized hydrogen plasma proposed by Spitzer and a saturated heat flux according to Cowie & McKee in regions where the mean free path of the electrons is large compared to the temperature scaleheight. Results: Significant structural and evolutionary differences occur between simulations with and without heat conduction. Dense clouds in pure dynamical models experience dynamical destruction by Kelvin-Helmholtz (KH) instability. In static models heat conduction leads to evaporation of such clouds. Heat conduction acting on clouds in a gas stream smooths out steep temperature and density gradients at the edge of the cloud because the conduction timescale is shorter than the cooling timescale. This diminishes the velocity gradient between the streaming plasma and the cloud, so that the timescale for the onset of KH instabilities increases, and the surface of the cloud becomes less susceptible to KH instabilities. The stabilisation effect of heat conduction against KH
Pokorny, Richard; Rice, Jarrett A.; Schweiger, Michael J.; Hrma, Pavel R.
2013-06-01
The cold cap is a layer of reacting glass batch floating on the surface of melt in an all-electric continuous glass melter. The heat needed for the conversion of the melter feed to molten glass must be transferred to and through the cold cap. Since the heat flux into the cold cap determines the rate of melting, the heat conductivity is a key property of the reacting feed. We designed an experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples that monitors the evolution of the temperature field while the crucible is heated at a constant rate. Then we used two methods to calculate the heat conductivity and thermal diffusivity of the reacting feed: the approximation of the temperature field by polynomial functions and the finite-volume method coupled with least-squares analysis. Up to 680°C, the heat conductivity of the reacting melter feed was represented by a linear function of temperature.
NASA Astrophysics Data System (ADS)
Volkov, Alexey N.; Zhigilei, Leonid V.
2012-07-01
Computational study of thermal conductivity of interconnected networks of bundles in carbon nanotube (CNT) films reveals a strong effect of the finite thermal conductivity kT of individual nanotubes on the conductivity k of the CNT materials. The physical origin of this effect is explained in a theoretical analysis of systems composed of straight randomly dispersed CNTs. An analytical equation for quantitative description of the effect of finite kT on the value of k is obtained and adopted for continuous networks of bundles characteristic of CNT films and buckypaper. Contrary to the common assumption of the dominant effect of the contact conductance, the contribution of the finite kT is found to control the value of k at material densities and CNT lengths typical for real materials.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1989-01-01
The phenomenon of hyperbolic heat conduction in contrast to the classical (parabolic) form of Fourier heat conduction involves thermal energy transport that propagates only at finite speeds, as opposed to an infinite speed of thermal energy transport. To accommodate the finite speed of thermal wave propagation, a more precise form of heat flux law is involved, thereby modifying the heat flux originally postulated in the classical theory of heat conduction. As a consequence, for hyperbolic heat conduction problems, the thermal energy propagates with very sharp discontinuities at the wave front. Accurate solutions are found for a class of one-dimensional hyperbolic heat conduction problems involving non-Fourier effects that can be used effectively for representative benchmark tests and for validating alternate schemes. Modeling/analysis formulations via specially tailored hybrid computations are provided for accurately modeling the sharp discontinuities of the propagating thermal wave front. Comparative numerical test models are presented for various hyperbolic heat conduction models involving non-Fourier effects to demonstrate the present formulations.
Exact variational principle for 3-D unsteady heat conduction with second sound
NASA Astrophysics Data System (ADS)
Liu, Gaolian
2006-12-01
The exact variational formulation of the extended unsteady heat conduction equation with finite propagation speed (the 2nd sound speed) of hyperbolic type is derived herein via a systematic and natural way. Moreover, the boundary-and the physically acceptable initial-value conditions are accommodated in the variational principle by a novel method suggested just recently. In this way a perfect justification of the variational theory of transient heat conduction and a rigorous theoretical basis for the finite element analysis of heat conduction are provided.
Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California
NASA Astrophysics Data System (ADS)
Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.
2015-12-01
In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.
NASA Astrophysics Data System (ADS)
Henke, Stephan; Gail, Hans-Peter; Trieloff, Mario
2016-05-01
Context. The construction of models for the internal constitution and temporal evolution of large planetesimals, which are the parent bodies of chondrites, requires as accurate as possible information on the heat conductivity of the complex mixture of minerals and iron metal found in chondrites. The few empirical data points on the heat conductivity of chondritic material are severely disturbed by impact-induced microcracks modifying the thermal conductivity. Aims: We attempt to evaluate the heat conductivity of chondritic material with theoretical methods. Methods: We derived the average heat conductivity of a multi-component mineral mixture and granular medium from the heat conductivities of its mixture components. We numerically generated random mixtures of solids with chondritic composition and packings of spheres. We solved the heat conduction equation in high spatial resolution for a test cube filled with such matter. We derived the heat conductivity of the mixture from the calculated heat flux through the cube. Results: For H and L chondrites, our results are in accord with empirical thermal conductivity at zero porosity. However, the porosity dependence of heat conductivity of granular material built from chondrules and matrix is at odds with measurements for chondrites, while our calculations are consistent with data for compacted sandstone. The discrepancy is traced back to subsequent shock modification of the currently available meteoritic material resulting from impacts on the parent body over the last 4.5 Ga. This causes a structure of void space made of fractures/cracks, which lowers the thermal conductivity of the medium and acts as a barrier to heat transfer. This structure is different from the structure that probably exists in the pristine material where voids are represented by pores rather than fractures. The results obtained for the heat conductivity of the pristine material are used for calculating models for the evolution of the H chondrite
Conductive heat flows in research drill holes in thermal areas of Yellowstone National Park, Wyoming
White, Donald E.
1978-01-01
In convection systems with boiling springs, geysers, fumaroles, and other thermal features, the modes of heat flow become increasingly complex as a single liquid phase at depth rises into the near-surface environment where heat flows by convection of liquid and vapor and by conduction in high thermal gradients. This paper is mainly concerned with the changing patterns of conductive heat flow as related to channels of subsurface convective flow and to horizontal distance from spring vents. The primary data consist of temperatures measured in 13 cored drill holes as drilling progressed. Some temperatures plot convincingly on straight-line segments that suggest conductive gradients in rocks of nearly constant thermal conductivity. Temperature gradients and the conductive component of total heat flow nearly always decrease drastically downward; the gradient and heat flow of the lowest depth interval recognized in each hole is commonly only about 10 percent of the highest interval; the changes in gradient at interval boundaries are commonly interpreted as channels of near-boiling water or of cooler meteoric water. Temperature reversals are probably related to inflowing cooler water rather than to transient effects from recent changes. Some temperatures plot on curved segments that probably indicate dispersed convective upflow and boiling of water in ground penetrated by the drill hole. Other similar curved segments are too low in temperature for local boiling and are probably on the margins of hot upflow zones, reflecting conductive cooling of flowing water. The conifers of Yellowstone National Park (mainly lodgepole pine) seem to have normal growth characteristics where near-surface conductive heat flow is below about 200 heat-flow units (1 HFU = 10-6 cal/cm2 = 41.8 mW/m2). Most areas of abnormal "stunted" trees (low ratio of height to base diameter, and low density of spacing) are characterized by conductive heat flows of about 250 to 350 HFU. The critical factor
Lee, Haw-Long; Chen, Wen-Lih; Chang, Win-Jin; Yang, Yu-Ching
2015-01-01
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent surface heat flux in a skin tissue, which is stratified into epidermis, dermis, and subcutaneous layers, from the temperature measurements taken within the medium. Subsequently, the temperature distributions in the tissue can be calculated as well. The concept of finite heat propagation velocity is applied to the modeling of the bioheat transfer problem. The inverse solutions will be justified based on the numerical experiments in which two different heat flux distributions are to be determined. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors on the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent surface heat flux can be obtained for the test cases considered in this study.
Effect of viscosity and wall heat conduction on shock attenuation in narrow channels
NASA Astrophysics Data System (ADS)
Deshpande, A.; Puranik, B.
2016-07-01
In the present work, the effects due to viscosity and wall heat conduction on shock propagation and attenuation in narrow channels are numerically investigated. A two-dimensional viscous shock tube configuration is simulated, and heat conduction in the channel walls is explicitly included. The simulation results indicate that the shock attenuation is significantly less in the case of an adiabatic wall, and the use of an isothermal wall model is adequate to take into account the wall heat conduction. A parametric study is performed to characterize the effects of viscous forces and wall heat conduction on shock attenuation, and the behaviour is explained on the basis of boundary layer formation in the post-shock region. A dimensionless parameter that describes the shock attenuation is correlated with the diaphragm pressure ratio and a dimensionless parameter which is expressed using the characteristic Reynolds number and the dimensionless shock travel.
Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps.
Chiloyan, Vazrik; Garg, Jivtesh; Esfarjani, Keivan; Chen, Gang
2015-01-01
When the separation of two surfaces approaches sub-nanometre scale, the boundary between the two most fundamental heat transfer modes, heat conduction by phonons and radiation by photons, is blurred. Here we develop an atomistic framework based on microscopic Maxwell's equations and lattice dynamics to describe the convergence of these heat transfer modes and the transition from one to the other. For gaps >1 nm, the predicted conductance values are in excellent agreement with the continuum theory of fluctuating electrodynamics. However, for sub-nanometre gaps we find the conductance is enhanced up to four times compared with the continuum approach, while avoiding its prediction of divergent conductance at contact. Furthermore, low-frequency acoustic phonons tunnel through the vacuum gap by coupling to evanescent electric fields, providing additional channels for energy transfer and leading to the observed enhancement. When the two surfaces are in or near contact, acoustic phonons become dominant heat carriers. PMID:25849305
Tzanos, C. P.; Dionne, B.
2011-05-23
To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D
NASA Astrophysics Data System (ADS)
Grott, M.; Knollenberg, J.; Krause, C.
2010-11-01
Lunar heat flow was determined in situ during the Apollo 15 and 17 missions, but some uncertainty is connected to the value of the regolith's thermal conductivity, which enters as a linear factor into the heat flow calculation. Different approaches to determine the conductivity yielded discordant results, which led to a downward correction of the obtained heat flow values by 30%-50% subsequent to the publication of the first results. We have reinvestigated likely causes for the observed discrepancies and find that neither poor coupling between the probe and regolith nor axial heat loss can explain the obtained results. Rather, regolith compaction and compression likely caused a local increase of the regolith's thermal conductivity by a factor of 2-3 in a region which extends at least 2-5 cm from the borehole wall. We conclude that the corrected lunar heat flow values, which are based on thermal diffusivity estimates sampling a large portion of undisturbed regolith, represent robust results. Future in situ measurements of regolith thermal conductivity using active heating methods should take care to both minimize regolith disturbance during probe emplacement and maximize heating time to obtain reliable results. We find that for the Apollo measurements, heating times should have exceeded at least 100 h, and ideally 200 h.
Integro-differential method of solving the inverse coefficient heat conduction problem
NASA Astrophysics Data System (ADS)
Baranov, V. L.; Zasyad'Ko, A. A.; Frolov, G. A.
2010-03-01
On the basis of differential transformations, a stable integro-differential method of solving the inverse heat conduction problem is suggested. The method has been tested on the example of determining the thermal diffusivity on quasi-stationary fusion and heating of a quartz glazed ceramics specimen.
NASA Astrophysics Data System (ADS)
Sun, Yujia; Zhang, Xiaobing; Howell, John R.
2016-11-01
This work investigates the performance of P1 method, FVM and SP3 method for 2D combined conduction and radiation heat transfer problem. Results based on the Monte Carlo method coupled with the energy equation are used as the benchmark solutions. Effects of the conduction-radiation parameter and optical thickness are considered. Performance analyses in term of the accuracy of heat flux and temperature predictions and of computing time are presented and analyzed.
NASA Technical Reports Server (NTRS)
Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.
1984-01-01
A numerical procedure is presented for analyzing a wide variety of heat conduction problems in multilayered bodies having complex geometry. The method is based on a finite difference solution of the heat conduction equation using a body fitted coordinate system transformation. Solution techniques are described for steady and transient problems with and without internal energy generation. Results are found to compare favorably with several well known solutions.
The importance of electron heat conduction in the energy balance of the F-region
NASA Technical Reports Server (NTRS)
Hoegy, W. R.; Brace, L. H.
1978-01-01
Taking into account heat conduction in the analysis of electron temperature data acquired by the AE-C satellite during the daytime at middle latitudes is shown to bring theoretical electron temperature profiles in good agreement with experimental ones. Middle latitude passes were chosen because in this region the horizontal electron temperature gradient is negligible and the height variation can be approximated by the satellite data. Inclusion of heat conduction is shown to have little effect on low-latitude data.
Analysis of heat conductivity in a 2D hard disk system
NASA Astrophysics Data System (ADS)
Del Pozo, J.; Garrido, P. L.
2009-01-01
Using numerical simulations, we study the heat conductivity in a 2d Hard Disk system. We find nonlinear temperature profiles for diferent gradients, and use this profiles to obtain the empirical expresion of heat conductivity κ(T,ρ). We compare our results with predictions based on the Enskog theory, finding good agreement even for large gradients. Also we find that Henderson state equation for Hard Disk stands for our system.
NASA Technical Reports Server (NTRS)
Huerre, P.; Karamcheti, K.
1976-01-01
The theory of sound propagation is examined in a viscous, heat-conducting fluid, initially at rest and in a uniform state, and contained in a rigid, impermeable duct with isothermal walls. Topics covered include: (1) theoretical formulation of the small amplitude fluctuating motions of a viscous, heat-conducting and compressible fluid; (2) sound propagation in a two dimensional duct; and (3) perturbation study of the inplane modes.
MRI thermometry: Fast mapping of RF-induced heating along conductive wires.
Ehses, Philipp; Fidler, Florian; Nordbeck, Peter; Pracht, Eberhard D; Warmuth, Marcus; Jakob, Peter M; Bauer, Wolfgang R
2008-08-01
Conductive implants are in most cases a strict contraindication for MRI examinations, as RF pulses applied during the MRI measurement can lead to severe heating of the surrounding tissue. Understanding and mapping of these heating effects is therefore crucial for determining the circumstances under which patient examinations are safe. The use of fluoroptic probes is the standard procedure for monitoring these heating effects. However, the observed temperature increase is highly dependent on the positioning of such a probe, as it can only determine the temperature locally. Temperature mapping with MRI after RF heating can be used, but cooling effects during imaging lead to a significant underestimation of the heating effect. In this work, an MRI thermometry method was combined with an MRI heating sequence, allowing for temperature mapping during RF heating. This technique may provide new opportunities for implant safety investigations.
Effects of anisotropic conduction and heat pipe interaction on minimum mass space radiators
NASA Technical Reports Server (NTRS)
Baker, Karl W.; Lund, Kurt O.
1991-01-01
Equations are formulated for the two dimensional, anisotropic conduction of heat in space radiator fins. The transverse temperature field was obtained by the integral method, and the axial field by numerical integration. A shape factor, defined for the axial boundary condition, simplifies the analysis and renders the results applicable to general heat pipe/conduction fin interface designs. The thermal results are summarized in terms of the fin efficiency, a radiation/axial conductance number, and a transverse conductance surface Biot number. These relations, together with those for mass distribution between fins and heat pipes, were used in predicting the minimum radiator mass for fixed thermal properties and fin efficiency. This mass is found to decrease monotonically with increasing fin conductivity. Sensitivities of the minimum mass designs to the problem parameters are determined.
Microwave absorption in powders of small conducting particles for heating applications.
Porch, Adrian; Slocombe, Daniel; Edwards, Peter P
2013-02-28
In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.
About Influence of Gravity on Heat Conductivity Process of the Planets
NASA Astrophysics Data System (ADS)
Gladkov, S. O.; Yadav, A.; Ray, Saibal; Rahaman, F.
2016-03-01
In the present study it is shown that the interaction of a quasi-static gravitational wave through density fluctuations give rise to a heat conductivity coefficient and hence rise in temperature. This fact is a very important characteristics needed to establish a heat equilibrium process of such massive body as the Earth and other Planets. To carry out this exercise, general mechanism has been provided, which makes a bridge between classical physics and quantum theory. The specific dependence of heat conductivity coefficient in wide region has also been calculated.
Two-phase numerical model for thermal conductivity and convective heat transfer in nanofluids.
Kondaraju, Sasidhar; Lee, Joon Sang
2011-03-21
Due to the numerous applications of nanofluids, investigating and understanding of thermophysical properties of nanofluids has currently become one of the core issues. Although numerous theoretical and numerical models have been developed by previous researchers to understand the mechanism of enhanced heat transfer in nanofluids; to the best of our knowledge these models were limited to the study of either thermal conductivity or convective heat transfer of nanofluids. We have developed a numerical model which can estimate the enhancement in both the thermal conductivity and convective heat transfer in nanofluids. It also aids in understanding the mechanism of heat transfer enhancement. The study reveals that the nanoparticle dispersion in fluid medium and nanoparticle heat transport phenomenon are equally important in enhancement of thermal conductivity. However, the enhancement in convective heat transfer was caused mainly due to the nanoparticle heat transport mechanism. Ability of this model to be able to understand the mechanism of convective heat transfer enhancement distinguishes the model from rest of the available numerical models.
Variable thermal properties and thermal relaxation time in hyperbolic heat conduction
NASA Technical Reports Server (NTRS)
Glass, David E.; Mcrae, D. Scott
1989-01-01
Numerical solutions were obtained for a finite slab with an applied surface heat flux at one boundary using both the hyperbolic (MacCormack's method) and parabolic (Crank-Nicolson method) heat conduction equations. The effects on the temperature distributions of varying density, specific heat, and thermal relaxation time were calculated. Each of these properties had an effect on the thermal front velocity (in the hyperbolic solution) as well as the temperatures in the medium. In the hyperbolic solutions, as the density or specific heat decreased with temperature, both the temperatures within the medium and the thermal front velocity increased. The value taken for the thermal relaxation time was found to determine the 'hyperbolicity' of the heat conduction model. The use of a time dependent relaxation time allowed for solutions where the thermal energy propagated as a high temperature wave initially, but approached a diffusion process more rapidly than was possible with a constant large relaxation time.
Thermal conductivity of cementitious grouts for geothermal heat pumps. Progress report FY 1997
Allan, M.L.
1997-11-01
Grout is used to seal the annulus between the borehole and heat exchanger loops in vertical geothermal (ground coupled, ground source, GeoExchange) heat pump systems. The grout provides a heat transfer medium between the heat exchanger and surrounding formation, controls groundwater movement and prevents contamination of water supply. Enhanced heat pump coefficient of performance (COP) and reduced up-front loop installation costs can be achieved through optimization of the grout thermal conductivity. The objective of the work reported was to characterize thermal conductivity and other pertinent properties of conventional and filled cementitious grouts. Cost analysis and calculations of the reduction in heat exchanger length that could be achieved with such grouts were performed by the University of Alabama. Two strategies to enhance the thermal conductivity of cementitious grouts were used simultaneously. The first of these was to incorporate high thermal conductivity filler in the grout formulations. Based on previous tests (Allan and Kavanaugh, in preparation), silica sand was selected as a suitable filler. The second strategy was to reduce the water content of the grout mix. By lowering the water/cement ratio, the porosity of the hardened grout is decreased. This results in higher thermal conductivity. Lowering the water/cement ratio also improves such properties as permeability, strength, and durability. The addition of a liquid superplasticizer (high range water reducer) to the grout mixes enabled reduction of water/cement ratio while retaining pumpability. Superplasticizers are commonly used in the concrete and grouting industry to improve rheological properties.
Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil
Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.
1989-12-12
This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.
Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties
Hansen, B.J.; White, M.J.; Klebaner, A.; /Fermilab
2011-06-10
Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters. A numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger was developed and the effect of various design parameters on overall heat exchanger size was investigated. It was found that highly conductive metals should be avoided in the design of compact JT heat exchangers. For the geometry considered, the optimal conductivity is around 3.5 W/m-K and can range from 0.3-10 W/m-K without a large loss in performance. The model was implemented with an isenthalpic expansion process. Increasing the cold side inlet temperature from 2K to 2.2 K decreased the liquid fraction from 0.856 to 0.839 which corresponds to a 0.12 g/s increase in supercritical helium supply needed to maintain liquid level in the cooling bath. Lastly, it was found that the effectiveness increased when the heat load was below the design value. Therefore, the heat exchanger
Radiative heat exchange of a meteor body in the approximation of radiant heat conduction
Pilyugin, N.N.; Chernova, T.A.
1986-07-01
The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted.
NASA Technical Reports Server (NTRS)
Chen, Ming-Ming; Faghri, Amir
1990-01-01
A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.
Kumar, Suhas; Pickett, Matthew D; Strachan, John Paul; Gibson, Gary; Nishi, Yoshio; Williams, R Stanley
2013-11-13
Joule-heating induced conductance-switching is studied in VO2 , a Mott insulator. Complementary in situ techniques including optical characterization, blackbody microscopy, scanning transmission X-ray microscopy (STXM) and numerical simulations are used. Abrupt redistribution in local temperature is shown to occur upon conductance-switching along with a structural phase transition, at the same current.
ERIC Educational Resources Information Center
Chiou, Guo-Li; Anderson, O. Roger
2010-01-01
This study proposes a multi-dimensional approach to investigate, represent, and categorize students' in-depth understanding of complex physics concepts. Clinical interviews were conducted with 30 undergraduate physics students to probe their understanding of heat conduction. Based on the data analysis, six aspects of the participants' responses…
Allan, M.L.
1996-06-01
Preliminary studies were preformed to determine whether thermal conductivity of cementitious grouts used to backfill heat exchanger loops for geothermal heat pumps could be improved, thus improving efficiency. Grouts containing selected additives were compares with conventional bentonite and cement grouts. Significant enhancement of grout alumina grit, steel fibers, and silicon carbide increased the thermal conductivity when compared to unfilled, high solids bentonite grouts and conventional cement grouts. Furthermore, the developed grouts retained high thermal conductivity in the dry state, where as conventional bentonite and cement grouts tend to act as insulators if moisture is lost. The cementitious grouts studied can be mixed and placed using conventional grouting equipment.
Numerical simulation on the thermal response of heat-conducting asphalt pavements
NASA Astrophysics Data System (ADS)
Wang, Hong; Wu, Shaopeng; Chen, Mingyu; Zhang, Yuan
2010-05-01
Using asphalt pavements as a solar collector is a subject of current interest all over the world because the sun provides a cheap and abundant source of clean and renewable energy, which can be captured by black asphalt pavements. A heat-conducting device is designed to absorb energy from the sun. In order to validate what parameters are critical in the asphalt collector, a finite element model is developed to predict the thermal response of the heat-conducting device compared to the conventional asphalt mixture. Some factors that may affect the asphalt pavement collector are considered, including the coefficient of heat conductivity of the asphalt pavement, the distance between pipes with the medium, water, and the pipe's diameter. Ultimately, the finite element model can provide pavement engineers with an efficient computational tool that can be a guide to the conductive asphalt solar collector's experiment in the laboratory.
Naziev, D.Ya.
1994-03-20
Heat conductivity of liquid ternary mixtures of various compositions at various pressures and temperatures was experimentally studied. Dependence of heat conductivities of ternary mixtures on concentration of components was established. An equation linking the heat conductivities of ternary mixtures through those of pure components and appropriate binary mixtures was proposed.
Innovations for reducing conduction heat losses from salt-gradient solar ponds
Lowrey, D.P. III
1985-01-01
A recent publication suggested using a storage zone (SZ) full of opaque water instead of a conventional lower convecting zone. This opaque SZ would be warmer on its top than bottom, and therefore thermally stratified and nonconvecting. Since the conductivity of water is less than that of many types of ground, this opaque zone would act like an added layer of insulation and reduce heat losses to the ground. This strategy can be improved by inducing a slow, upward flow through the opaque SZ. This flow can be produced by decanting warmed water near the top of this opaque SZ, and returning the same water to the bottom of the SZ after extracting heat. The flow will convect heat upward, and therefore reduce downward heat losses. A numerical analysis of this system under typical circumstances predicts 20-60% higher heat extraction rates for a given extraction temperature. Downward heat losses could be virtually eliminated in some cases. Similarly, heat losses up through the pond's surface could be reduced by inducing downward convection through the nonconvecting (NCZ) zone. However, the downward velocities needed to reduce these heat losses would soon sweep the essential salinity gradient to the pond's floor. Fortunately, the desired convection can be produced indirectly. This involves moving the NCZ horizontally across a heat exchanger in which a second fluid absorbs heat and then convects downward.
Murai, Takahiro; Fukasawa, Ryo; Muraoka, Tohru; Takauchi, Hiroyuki; Gotoh, Yasuo; Takizawa, Tokihiro; Matsuse, Takehiro
2009-01-01
In the course of experiments to perform deprotonation and carbonization of doped polyaniline (PANI) nanotubes (NTs) by irradiating directly 2.45 GHz microwave (MW) in our microwave heating system (MWHS), we have discovered that the PANI-NTs self heat by absorbing the MW but the temperature of the PANI-NTs stops rising around 300 degrees C in spite of the heightened MW power Furthermore, we have found that the MW irradiated PANI-NTs have transferred from electrical conductor to insulator depending on the temperature of the PANI-NTs. By measuring electron spin resonance (ESR) spectra of the MW heated PANI-NTs, the existence of the unpaired electrons is shown to have a strong correlation between the degree of MW absorption and the transition in the electrical conductivities. In order to deprotonate and carbonize further the PANI-NTs, we have performed heat treatment for the PANI-NTs up to a temperature (T(HT)) of about 1200 degrees C in the same MWHS using carbon fiber which self heats by absorbing MW. The chemical transformations in the PANI-NTs induced by the heat treatments are discussed by measuring the X-ray photoelectron spectroscopy (XPS) spectra. Finally, the temperature dependence of electrical conductivities of the PANI-NTs are measured in order to investigate the mechanism of electrical conduction of the heat treated PANI-NTs. PMID:21384721
Parameter estimation in heat conduction using a two-dimensional inverse analysis
NASA Astrophysics Data System (ADS)
Mohebbi, Farzad; Sellier, Mathieu
2016-07-01
This article is concerned with a two-dimensional inverse steady-state heat conduction problem. The aim of this study is to estimate the thermal conductivity, the heat transfer coefficient, and the heat flux in irregular bodies (both separately and simultaneously) using a two-dimensional inverse analysis. The numerical procedure consists of an elliptic grid generation technique to generate a mesh over the irregular body and solve for the heat conduction equation. This article describes a novel sensitivity analysis scheme to compute the sensitivity of the temperatures to variation of the thermal conductivity, the heat transfer coefficient, and the heat flux. This sensitivity analysis scheme allows for the solution of inverse problem without requiring solution of adjoint equation even for a large number of unknown variables. The conjugate gradient method (CGM) is used to minimize the difference between the computed temperature on part of the boundary and the simulated measured temperature distribution. The obtained results reveal that the proposed algorithm is very accurate and efficient.
NASA Astrophysics Data System (ADS)
Anisimov, M. V.; Rekunov, V. S.; Babuta, M. N.; Bach Lien, Nguyen Thi Hong
2016-02-01
We experimentally determined the coefficients of thermal conductivity of some ultra thin liquid composite heat insulating coatings, for sample #1 λ = 0.086 W/(m·°C), for sample #2 λ = 0.091 W/(m·°C). We performed the measurement error calculation. The actual thermal conduction coefficient of the studied samples was higher than the declared one. The manufactures of liquid coatings might have used some "ideal" conditions when defining heat conductivity in the laboratory or the coefficient was obtained by means of theoretical solution of heat conduction problem in liquid composite insulating media. However, liquid insulating coatings are of great interest to builders, because they allow to warm objects of complex geometric shapes (valve chambers, complex assemblies, etc.), which makes them virtually irreplaceable. The proper accounting of heating qualities of paints will allow to avoid heat loss increase above the specified limits in insulated pipes with heat transfer materials or building structures, as well as protect them from possible thawing in the period of subzero weather.
Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets
NASA Astrophysics Data System (ADS)
Hsieh, Chien-Te; Lee, Cheng-En; Chen, Yu-Fu; Chang, Jeng-Kuei; Teng, Hsi-Sheng
2015-11-01
The in-plane (kip) and through-plane (ktp) thermal conductivities of heat sinks using carbon nanotubes (CNTs), graphene nanosheets (GNs), and CNT/GN composites are extracted from two experimental setups within the 323-373 K temperature range. Hierarchical three-dimensional CNT/GN frameworks display higher kip and ktp values, as compared to the CNT- and GN-based heat sinks. The kip and ktp values of the CNT/GN-based heat sink reach as high as 1991 and 76 W m-1 K-1 at 323 K, respectively. This improved thermal conductivity is attributed to the fact that the hierarchical heat sink offers a stereo thermal conductive network that combines point, line, and plane contact, leading to better heat transport. Furthermore, the compression treatment provided an efficient route to increase both kip and ktp values. This result reveals that the hierarchical carbon structures become denser, inducing more thermal conductive area and less thermal resistivity, i.e., a reduced possibility of phonon-boundary scattering. The correlation between thermal and electrical conductivity (ε) can be well described by two empirical equations: kip = 567 ln(ε) + 1120 and ktp = 20.6 ln(ε) + 36.1. The experimental results are obtained within the temperature range of 323-373 K, suitably complementing the thermal management of chips for consumer electronics.
Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets.
Hsieh, Chien-Te; Lee, Cheng-En; Chen, Yu-Fu; Chang, Jeng-Kuei; Teng, Hsi-sheng
2015-11-28
The in-plane (kip) and through-plane (ktp) thermal conductivities of heat sinks using carbon nanotubes (CNTs), graphene nanosheets (GNs), and CNT/GN composites are extracted from two experimental setups within the 323-373 K temperature range. Hierarchical three-dimensional CNT/GN frameworks display higher kip and ktp values, as compared to the CNT- and GN-based heat sinks. The kip and ktp values of the CNT/GN-based heat sink reach as high as 1991 and 76 W m(-1) K(-1) at 323 K, respectively. This improved thermal conductivity is attributed to the fact that the hierarchical heat sink offers a stereo thermal conductive network that combines point, line, and plane contact, leading to better heat transport. Furthermore, the compression treatment provided an efficient route to increase both kip and ktp values. This result reveals that the hierarchical carbon structures become denser, inducing more thermal conductive area and less thermal resistivity, i.e., a reduced possibility of phonon-boundary scattering. The correlation between thermal and electrical conductivity (ε) can be well described by two empirical equations: kip = 567 ln(ε) + 1120 and ktp = 20.6 ln(ε) + 36.1. The experimental results are obtained within the temperature range of 323-373 K, suitably complementing the thermal management of chips for consumer electronics. PMID:26498343
Empirical evaluation of diving wet suit material heat transfer and thermal conductivity
West, P.B.
1993-10-01
This wet suit material testing program provides a quantitative thermal conductivity and heat transfer analysis, and comparison of various materials used in skin diving and SCUBA diving. Thermal resistance represents the primary subject examined, but due to compressibility of the baseline materials and its effect on heat transfer, this program also examines compression at simulated depth. This article reports the empirical heat transfer coefficients for both thermal conductivity and convection. Due to the limitations of the test apparatus, this analysis must restrict the convection evaluation to an approximately 20-cm-height, free-convection model. As a consequence, this model best simulates the overall heat transfer coefficient of a diver hovering in a horizontal position. This program also includes evaluations of some nonstandard materials in an effort to identify alternative wet suit materials.
NASA Astrophysics Data System (ADS)
Ren, Jie; Zhu, Jian-Xin
2013-06-01
Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices.
Electrical conductivity and physical properties of surimi-potato starch under ohmic heating.
Pongviratchai, P; Park, J W
2007-11-01
Electrical conductivities of Alaska pollock surimi mixed with native and pregelled potato starch at different concentrations (0%, 3%, and 9%) were measured at different moisture contents (75% and 81%) using a multifrequency ohmic heating system. Surimi-starch paste was tested up to 80 degrees C at frequencies from 55 Hz to 20 KHz and at alternating currents of 4.3 and 15.5 V/cm voltage gradient. Electrical conductivity increased when moisture content, applied frequency, and applied voltage increased, but decreased when starch concentration increased. Electrical conductivity was correlated linearly with temperature (R(2) approximately 0.99). Electrical conductivity pattern (magnitude) changed when temperature increased, which was clearly seen after 55 degrees C in the native potato starch system, especially at high concentration. This confirms that starch gelatinization that occurred during heating affects the electrical conductivity. Whiteness and texture properties decreased with an increase of starch concentration and a decrease of moisture content.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; D'Costa, Joseph F.
1991-01-01
This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
NASA Technical Reports Server (NTRS)
Enginer, J. E.; Luedke, E. E.; Wanous, D. J.
1976-01-01
Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.
Evaluation of liquid behavior in a Variable Conductance Heat Pipe by neutron radiography
NASA Astrophysics Data System (ADS)
Sugimoto, K.; Asano, H.; Murakawa, H.; Takenaka, N.; Nagayasu, T.; Ipposhi, S.
2011-09-01
A Variable Conductance Heat Pipe (VCHP) is used as a cooling device for electrical equipments. The condensation area is passively controlled by the non-condensable gas volume in the VCHP depending on the heat load. The VCHP has often a bent pipe between the evaporation and condensation area. The heat pipe performance depends much on the bent pipe shape and configuration because a liquid plug is formed in the bent pipe and disturbs the refrigerant circulation. However, the mechanism has not been clarified well. The neutron radiography system at the JRR-3 in Japan Atomic Energy Agency (JAEA) was used to visualize the refrigerant behavior in the VCHP. Effects of the thin plate inserted in the pipe, refrigerant filling ratios and heat pipe configuration were examined on the heat pipe performance. The liquid plug was formed at the bend and caused to decrease the performance. It was confirmed that the thin plate insert was effective to disturb the liquid plug formation.
Borehole Heat Exchanger Systems: Hydraulic Conductivity and Frost-Resistance of Backfill Materials
NASA Astrophysics Data System (ADS)
Anbergen, Hauke; Sass, Ingo
2016-04-01
Ground source heat pump (GSHP) systems are economic solutions for both, domestic heating energy supply, as well as underground thermal energy storage (UTES). Over the past decades the technology developed to complex, advanced and highly efficient systems. For an efficient operation of the most common type of UTES, borehole heat exchanger (BHE) systems, it is necessary to design the system for a wide range of carrier fluid temperatures. During heat extraction, a cooled carrier fluid is heated up by geothermal energy. This collected thermal energy is energetically used by the heat pump. Thereby the carrier fluid temperature must have a lower temperature than the surrounding underground in order to collect heat energy. The steeper the thermal gradient, the more energy is transferred to the carrier fluid. The heat injection case works vice versa. For fast and sufficient heat extraction, even over long periods of heating (winter), it might become necessary to run the BHE with fluid temperatures below 0°C. As the heat pump runs periodically, a cyclic freezing of the pore water and corresponding ice-lens growth in the nearfield of the BHE pipes becomes possible. These so called freeze-thaw-cycles (FTC) are a critical state for the backfill material, as the sealing effect eventually decreases. From a hydrogeological point of view the vertical sealing of the BHE needs to be secured at any time (e.g. VDI 4640-2, Draft 2015). The vertical hydraulic conductivity of the BHE is influenced not only by the permeability of the grouting material itself, but by the contact area between BHE pipes and grout. In order to assess the sealing capacity of grouting materials a laboratory testing procedure was developed that measures the vertical hydraulic conductivity of the system BHE pipe and grout. The key features of the procedure are: • assessment of the systeḿs hydraulic conductivity • assessment of the systeḿs hydraulic conductivity after simulation of freeze-thaw-cycle
Highly Stable and Conductive Microcapsules for Enhancement of Joule Heating Performance
2016-01-01
Nanocarbons show great promise for establishing the next generation of Joule heating systems, but suffer from the limited maximum temperature due to precociously convective heat dissipation from electrothermal system to surrounding environment. Here we introduce a strategy to eliminate such convective heat transfer by inserting highly stable and conductive microcapsules into the electrothermal structures. The microcapsule is composed of encapsulated long-chain alkanes and graphene oxide/carbon nanotube hybrids as core and shell material, respectively. Multiform carbon nanotubes in the microspheres stabilize the capsule shell to resist volume-change-induced rupture during repeated heating/cooling process, and meanwhile enhance the thermal conductance of encapsulated alkanes which facilitates an expeditious heat exchange. The resulting microcapsules can be homogeneously incorporated in the nanocarbon-based electrothermal structures. At a dopant of 5%, the working temperature can be enhanced by 30% even at a low voltage and moderate temperature, which indicates a great value in daily household applications. Therefore, the stable and conductive microcapsule may serve as a versatile and valuable dopant for varieties of heat generation systems. PMID:27002594
NASA Astrophysics Data System (ADS)
Mutabazi, Innocent; Yoshikawa, Harunori; Peixinho, Jorge; Kahouadji, Lyes
2013-11-01
Görtler vortices appear in a flow over a concave wall as a result of centrifugal instability [Saric, Annu. Rev. Fluid Mech. 26, 379 (1994)]. They may have a strong influence on heat transfer [Momayez et al., Int. J. heat Mass transfer 47, 3783 (2004)]. The purpose of this work is to model heat transfer by Görtler vortices using a weakly nonlinear analysis of Smith &-Haj- Hariri [Phys. Fluids A 5, 2815 (1993)]. We have investigated the coupling of the convective heat transfer by the stationary vortices with the heat conduction inside the solid wall. The finite thickness and thermal conductivity of the wall enter into the boundary conditions of the problem through the ratio δ of the wall thickness to the boundary layer thickness and through the ratio K of the thermal conductivities of the fluid and the wall. The parametric dependence Nu (δ , K) of the Nusselt number is performed and it is shown that found the heat transfer is quite well modified by these two parameters. The local thermal stress can be estimated in order to analyze the effects on ageing of the wall material. The authors acknowledge the financial support of the french Agence Nationale de la Recherche (ANR), through the program ``Investissements d'Avenir'' (ANR-10-LABX-09-01), LabEx EMC3.
Electrical conductivity of carbonaceous chondrites and electric heating of meteorite parent bodies
NASA Technical Reports Server (NTRS)
Duba, AL
1987-01-01
Electromagnetic heating of rock-forming materials most probably was an important process in the early history of the solar system. Electrical conductivity experiments of representative materials such as carbonaceous chondrites are necessary to obtain data for use in electromagnetic heating models. With the assumption that carbon was present at grain boundaries in the material that comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance using the T-Tauri model of Sonett and Herbert (1977). The results are discussed.
Effects of microwave radiation and conductive heating on Tribolium castaneum microstructure.
Lu, H H; Zhou, J C; Yan, D; Zhao, S M; Xiong, S B
2011-01-01
Microwave radiation and conductive heating were used to completely kill adult Tribolium castaneum (Coleoptera: Tenebrionidae) in wheat flour to protect the flour during storage without significantly effecting its quality. The microstructure of T. castaneum was analyzed to reveal the mechanisms leading to death under microwave and heat treatments. Microwave radiation and conductive heating had different effects on the microstructure of the cuticle of adult T. castaneum and on the ultrastructure of the cells of the epidermis, fat body, and midgut. Both treatments caused a large cavity to appear in the nucleus and the disappearance of mitochondria and the Golgi apparatus. After microwave treatment, there was little change in the surface microstructure but the epidermis was of uneven thickness and the four outer layers of the cuticle were thinner. Nuclear size was essentially unchanged, but fat body cells were fewer and coalesced together. In contrast, conductive heating led to a disordered arrangement of cells on the surface of T. castaneum and indistinct boundaries between layers of the cuticle. The nuclei were enlarged and the fat body cells noticeably fewer and indistinct with a scattered distribution. Thus, microwave treatment produced less severe effects on the surface microstructure and cellular ultrastructure of T. castaneum than did conductive heating. It is concluded that these cellular and surface changes were responsible for the death of T. castaneum.
Mehdizadeh, Seyedeh Neda; Eskicioglu, Cigdem; Bobowski, Jake; Johnson, Thomas
2013-09-15
Microwave (2.45 GHz, 1200 W) and conventional heating (custom pressure vessel) pretreatments were applied to dewatered municipal waste sludge (18% total solids) using identical heating profiles that span a wide range of temperatures (80-160 °C). Fourteen lab-scale semi-continuous digesters were set up to optimize the energy (methane) output and sludge retention time (SRT) requirements of untreated (control) and thermally pretreated anaerobic digesters operated under mesophilic and thermophilic temperatures. Both pretreatment methods indicated that in the pretreatment range of 80-160 °C, temperature was a statistically significant factor (p-value < 0.05) for increasing solubilization of chemical oxygen demand and biopolymers (proteins, sugars, humic acids) of the waste sludge. However, the type of pretreatment method, i.e. microwave versus conventional heating, had no statistically significant effect (p-value >0.05) on sludge solubilization. With the exception of the control digesters at a 5-d SRT, all control and pretreated digesters achieved steady state at all three SRTs, corresponding to volumetric organic loading rates of 1.74-6.96 g chemical oxygen demand/L/d. At an SRT of 5 d, both mesophilic and thermophilic controls stopped producing biogas after 20 d of operation with total volatile fatty acids concentrations exceeding 1818 mg/L at pH <5.64 for mesophilic and 2853 mg/L at pH <7.02 for thermophilic controls, while the pretreated digesters continued producing biogas. Furthermore, relative (to control) organic removal efficiencies dramatically increased as SRT was shortened from 20 to 10 and then 5 d, indicating that the control digesters were challenged as the organic loading rate was increased. Energy analysis showed that, at an elevated temperature of 160 °C, the amount of methane recovered was not enough to compensate for the energy input. Among the digesters with positive net energy productions, control and pretreated digesters at 80 °C were more
Photonic heat conduction in Josephson-coupled Bardeen-Cooper-Schrieffer superconductors
NASA Astrophysics Data System (ADS)
Bosisio, R.; Solinas, P.; Braggio, A.; Giazotto, F.
2016-04-01
We investigate the photon-mediated heat flow between two Josephson-coupled Bardeen-Cooper-Schrieffer (BCS) superconductors. We demonstrate that in standard low temperature experiments involving temperature-biased superconducting quantum interference devices (SQUIDs), this radiative contribution is negligible if compared to the direct galvanic one, but it largely exceeds the heat exchanged between electrons and the lattice phonons. The corresponding thermal conductance is found to be several orders of magnitude smaller, for real experiments setup parameters, than the universal quantum of thermal conductance, κ0(T ) =π kB2T /6 ℏ .
The effect of axial conduction on a thermosyphon with prescribed heat flux
NASA Astrophysics Data System (ADS)
Sen, M.; Ramos, E.; Trevino, C.; Salazar, O.
A one-dimensional model of a natural convection loop of arbitrary shape with prescribed heat flux over its entire length is analyzed. The effect of inclusion of axial conduction is considered in detail. Steady state solutions are presented for the velocity and temperature fields. The transcendental equation for the fluid velocity is studied for the special case of a toroidal geometry with sinusoidal heating. The time-dependent toroidal problem is reduced to a set of three ordinary differential equations which have steady, periodic and chaotic solutions. The stability characteristics of the equilibrium solutions are discussed. The nonconducting model is found to exhibit supercritical instability while the conducting model is subcritical.
NASA Technical Reports Server (NTRS)
Sonett, C. P.; Duba, A.
1975-01-01
Three-layer monotonic electrical conductivity models for the lunar interior to a depth of 600 km are used in conjunction with laboratory measurements of the electrical conductivity of olivine and pyroxene to estimate a temperature-depth profile. The temperatures calculated for depths of 400-600 km are consistent with attenuation of the seismic shear wave. The temperature calculated at a depth of 100-250 km yields a heat flow that is in good agreement with the directly measured lunar heat flow. The temperature, however, is sufficiently close to melting that mascon anisostasy would not be maintained. Thus a better conductor is required at this depth.
Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data
Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.
2006-01-01
Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.
Vajravelu, K.; Kassab, A.; Hadjinicolaou, A.
1996-11-08
The nonlinear partial differential equations for the transient free convective heat transfer in a viscous, electrically conducting, and heat-generating fluid past a vertical porous plate in the presence of free stream oscillations are solved by the boundary element method (BEM). Time-dependent fundamental solutions are employed in a time marching scheme to resolve the field variables. Numerical results are compared with previously reported analytical solutions in order to validate the developed BEM algorithm. These previous studies reported results for simpler versions of the problem, in which the convective effects in the momentum and energy equations were neglected in order to obtain analytical numerical solutions. The BEM results are shown to be in close agreement with the reported data. The effects of convection currents, the temperature-dependent heat sources (or sinks), the magnetic currents, and the viscous dissipation on the flow and heat transfer characteristics are assessed in a parametric study, which considers a variety of the dimensionless parameters Gr, Ec, Pr, M, and {gamma}. It is observed that {gamma} plays an important role in delaying the fluid flow reversal, present in the case of air, and acts to enhance the effect of Gr in augmenting the rate of heat transfer at the wall. The skin friction is observed to be an increasing function of Gr, Ec, and {gamma} and a decreasing function of M and Pr. However, the rate of heat transfer (in an absolute sense) is an increasing function of M, {gamma}, Gr, and Ec and a decreasing function of Pr. Of all the parameters, the Prandtl number has the strongest effect on the flow and heat transfer characteristics.
Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian
2008-09-11
While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.
Rice, Jarrett A.; Pokorny, Richard; Schweiger, Michael J.; Hrma, Pavel R.
2014-06-01
The heat conductivity ({lambda}) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating {lambda} of melter feed at temperatures up to 680 deg C, we focus in this work on the {lambda}(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the {lambda}(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap.
Heat Transfer Investigation of Air Flow in Microtubes-Part II: Scale and Axial Conduction Effects.
Lin, Ting-Yu; Kandlikar, Satish G
2013-03-01
In this paper, the scale effects are specifically addressed by conducting experiments with air flow in different microtubes. Three stainless steel tubes of 962, 308, and 83 μm inner diameter (ID) are investigated for friction factor, and the first two are investigated for heat transfer. Viscous heating effects are studied in the laminar as well as turbulent flow regimes by varying the air flow rate. The axial conduction effects in microtubes are experimentally explored for the first time by comparing the heat transfer in SS304 tube with a 910 μm ID/2005 μm outer diameter nickel tube specifically fabricated using an electrodeposition technique. After carefully accounting for the variable heat losses along the tube length, it is seen that the viscous heating and the axial conduction effects become more important at microscale and the present models are able to predict these effects accurately. It is concluded that neglecting these effects is the main source of discrepancies in the data reported in the earlier literature.
Conductive heat loss in recent eruptions at mid-ocean ridges
NASA Astrophysics Data System (ADS)
Johnson, Paul; Hutnak, Michael
A new technique for measuring conductive heat flow from unsedimented volcanic rocks on the sea floor has been tested on two new eruption sites in the NE Pacific. This technique consists of isolating the surficial rocks from sea water using water-saturated urethane foam as an insulating thermal blanket. The thermal gradient transferred from the outcrop to the thermal blanket is a quantitative measurement of the conductive heat flow that takes place in unsedimented volcanic areas. We deployed two thermal blankets at 13 sites on the 1993 and 1996 Juan de Fuca/Gorda Ridge flows and found (1) a factor of 10 decrease in heat flow over a period of 12 months on the 1993 CoAxial flow, (2) a value of 6950 mW/m² on the 8 month old Gorda flow, and (3) measurements of heat flow versus age-since-eruption indicate that newly extruded volcanic units are quite permeable to fluid circulation and cool rapidly by convection in only a few years. These new heat flux data confirm that the extrusive volcanic layer is not the primary heat source for long-lived, high temperature hydrothermal systems, which must instead rely on a more isolated thermal reservoir within the lower crustal rocks.
NASA Astrophysics Data System (ADS)
Giri, Ashutosh; Niemelä, Janne-Petteri; Szwejkowski, Chester J.; Karppinen, Maarit; Hopkins, Patrick E.
2016-01-01
We study the influence of molecular monolayers on the thermal conductivities and heat capacities of hybrid inorganic/organic superlattice thin films fabricated via atomic/molecular layer deposition. We measure the cross plane thermal conductivities and volumetric heat capacities of TiO2- and ZnO-based superlattices with periodic inclusion of hydroquinone layers via time domain thermoreflectance. In comparison to their homogeneous counterparts, the thermal conductivities in these superlattice films are considerably reduced. We attribute this reduction in the thermal conductivity mainly due to incoherent phonon boundary scattering at the inorganic/organic interface. Increasing the inorganic/organic interface density reduces the thermal conductivity and heat capacity of these films. High-temperature annealing treatment of the superlattices results in a change in the orientation of the hydroquinone molecules to a 2D graphitic layer along with a change in the overall density of the hybrid superlattice. The thermal conductivity of the hybrid superlattice increases after annealing, which we attribute to an increase in crystallinity.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.
Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors
NASA Astrophysics Data System (ADS)
Valvano, J. W.; Cochran, J. R.; Diller, K. R.
1985-05-01
This paper presents an experimental method to measure the thermal conductivity and thermal diffusivity of biomaterials. Self-heated thermistor probes, inserted into the tissue of interest, are used to deliver heat as well as to monitor the rate of heat removal. An empirical calibration procedure allows accurate thermal-property measurements over a wide range of tissue temperatures. Operation of the instrument in three media with known thermal properties shows the uncertainty of measurements to be about 2%. The reproducibility is 0.5% for the thermal-conductivity measurements and 2% for the thermal-diffusivity measurements. Thermal properties were measured in dog, pig, rabbit, and human tissues. The tissues included kidney, spleen, liver, brain, heart, lung, pancreas, colon cancer, and breast cancer. Thermal properties were measured for 65 separate tissue samples at 3, 10, 17, 23, 30, 37, and 45°C. The results show that the temperature coefficient of biomaterials approximates that of water.
Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics
Sonigra, Dhiren E-mail: ajit.kulkarni@iitb.ac.in; Soman, Swati E-mail: ajit.kulkarni@iitb.ac.in; Kulkarni, Ajit R. E-mail: ajit.kulkarni@iitb.ac.in
2014-04-24
Glass-ceramic is prepared by heat treatment of melt quenched 14Li{sub 2}O−9Al{sub 2}O{sub 3}−38TiO{sub 2}−39P{sub 2}O{sub 5} glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi{sub 2}(PO{sub 4}){sub 3} from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.
Heat conduction in systems with Kolmogorov-Arnold-Moser phase space structure.
Herrera-González, I F; Pérez-Aguilar, H I; Mendoza-Suárez, A; Tututi, E S
2012-09-01
We study heat conduction in a billiard channel formed by two sinusoidal walls and the diffusion of particles in the corresponding channel of infinite length; the latter system has an infinite horizon, i.e., a particle can travel an arbitrary distance without colliding with the rippled walls. For small ripple amplitudes, the dynamics of the heat carriers is regular and analytical results for the temperature profile and heat flux are obtained using an effective potential. The study also proposes a formula for the temperature profile that is valid for any ripple amplitude. When the dynamics is regular, ballistic conductance and ballistic diffusion are present. The Poincaré plots of the associated dynamical system (the infinitely long channel) exhibit the generic transition to chaos as ripple amplitude is increased. When no Kolmogorov-Arnold-Moser (KAM) curves are present to forbid the connection of all chaotic regions, the mean square displacement grows asymptotically with time t as tln(t).
Heat conduction in a turbulent magnetic field, with application to solar-wind electrons.
NASA Technical Reports Server (NTRS)
Hollweg, J. V.; Jokipii, J. R.
1972-01-01
Consideration of random, long-wavelength fluctuations in a turbulent magnetic field, showing that they can appreciably decrease the heat conductivity of a plasma along the magnetic field. In simple cases of interest, the reduction along the average field is approximately by the factor (cos delta theta) squared, where delta theta is the angle of the local magnetic field relative to the average field. Application to solar-wind electrons indicates that this reduction in heat conductivity due to observed fluctuations in the interplanetary magnetic field may be of the order of a factor of 2. This may help to explain recent measurements which indicate a rather low electron heat flux in the solar wind.
Solution of non-linear inverse heat conduction problems using the method of lines
NASA Astrophysics Data System (ADS)
Taler, J.; Duda, P.
Two space marching methods for solving the one-dimensional nonlinear inverse heat conduction problems are presented. The temperature-dependent thermal properties and the boundary condition on the accessible part of the boundary of the body are known. Additional temperature measurements in time are taken with a sensor located in an arbitrary position within the solid, and the objective is to determine the surface temperature and heat flux on the remaining part of the unspecified boundary. The methods have the advantage that time derivatives are not replaced by finite differences and the good accuracy of the method results from an appropriate approximation of the first time derivative using smoothing polynomials. The extension of the first method presented in this study to higher dimensions inverse heat conduction problems is straightforward.
Heat Conduction of Walls with a Monotone Temperature Change. Asymptotics and Quasi-Stationarity
NASA Astrophysics Data System (ADS)
Korshunov, O. V.
2014-07-01
Systematizing the partial solutions of the nonstationarity heat conduction problem of a flat wall in comparison with the general asymptotic solution of this problem, we have found the transverse temperature distributions with any monotone change in the ambient conditions and elucidated the heat conduction properties of the wall under these conditions. The asymptotic solution is given by semiconvergent series and definite integrals and has been investigated for power time dependences with an exponent of 0-2, which has enabled us to justify the concept of quasi-stationarity of the thermal parameters of the wall and obtain asymptotic errors and corrections defining the deviations of these parameters from their stationary values. The features of the average heat flows most resistant to thermal disturbances as to both time and amplitude have been considered.
Specific heat and thermal conductivity of UCu4+ x Al8- x compounds
NASA Astrophysics Data System (ADS)
Nasreen, F.; Torikachvili, M. S.; Kothapalli, K.; Kohama, Y.; Zapf, V. S.; Nakotte, H.
2013-05-01
We report on thermal conductivity and specific heat measurements for eight UCu4+ x Al8- x compounds (0 ≤ x ≤ 2.0) as a function of temperature and magnetic field. For this series of compounds, previous magnetic and transport studies indicated a transition from magnetic to a non-magnetic heavy fermion state near x cr ≈ 1.15. This paper presents supplementary specific heat and thermal conductivity studies. The ratio of the specific heat over temperature C/T data on the non magnetic compound with x cr ≈ 1.15 show logarithmic dependence with T, a hallmark of non-Fermi liquid (NFL) behavior due to the proximity of a quantum critical point. Compounds with higher Cu content ( x > x cr ) exhibit unusual temperature scaling in the specific heat possibly due to an increase in disorder between Cu and Al. Thermal conductivity data show stark contrast in the behaviors between the magnetic ( x = 0.5) and non-magnetic compound ( x = 1.75). Our results confirm that a simple free-electron picture is inadequate for the description of the low-temperature thermal conductivity properties in non-magnetic UCu4+ x Al8- x compounds.
COYOTE: a finite-element computer program for nonlinear heat-conduction problems
Gartling, D.K.
1982-10-01
COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.
An analytical solution to the one-dimensional heat conduction-convection equation in soil
Technology Transfer Automated Retrieval System (TEKTRAN)
Heat transfer in soil occurs by conduction and convection. Infiltrating water affects soil temperature distributions, and measuring soil temperature distributions below infiltrating water can provide a signal for the flux of water. In earlier work a sine wave function (hereinafter referred to as the...
ERIC Educational Resources Information Center
Mendez, Sergio; AungYong, Lisa
2014-01-01
To help students make the connection between the concepts of heat conduction and convection to real-world phenomenon, we developed a combined experimental and computational module that can be incorporated into lecture or lab courses. The experimental system we present requires materials and apparatus that are readily accessible, and the procedure…
TOPAZ - a finite element heat conduction code for analyzing 2-D solids
Shapiro, A.B.
1984-03-01
TOPAZ is a two-dimensional implicit finite element computer code for heat conduction analysis. This report provides a user's manual for TOPAZ and a description of the numerical algorithms used. Sample problems with analytical solutions are presented. TOPAZ has been implemented on the CRAY and VAX computers.
NASA Astrophysics Data System (ADS)
Blackwell, B. F.
1981-06-01
A very efficient numerical technique has been developed to solve the one-dimensional inverse problem of heat conduction. The Gauss elimination algorithm for solving the tridiagonal system of linear algebraic equations associated with most implicit heat conduction codes is specialized to the inverse problem. When compared to the corresponding direct problem, the upper limit in additional computation time generally does not exceed 27-36%. The technique can be adapted to existing one-dimensional implicit heat conduction codes with minimal effort and applied to difference equations obtained from finite-difference, finite-element, finite control volume, or similar techniques, provided the difference equations are tridiagonal in form. It is also applicable to the nonlinear case in which thermal properties are temperature-dependent and is valid for one-dimensional radial cylindrical and spherical geometries as well as composite bodies. The calculations reported here were done by modifying a one-dimensional implicit (direct) heat conduction code. Program changes consisted of 13 additional lines of FORTRAN coding.
Heat Flow, Thermal Conductivity, and the Plausibility of the White Mars Hypothesis
NASA Technical Reports Server (NTRS)
Urquhart, M. L.; Gulick, V. C.
2002-01-01
Due to the low thermal conductivity of CO2 ice and clathrate vs. water ice, we find that liquid water reservoirs would not be confined to the deep subsurface as predicted by the controversial White Mars model, even assuming low global heat flow. Additional information is contained in the original extended abstract.
On the role of surface shape in a micro-scale heat conduction problem
NASA Astrophysics Data System (ADS)
Dinler, A.; Graur, I. A.; Barber, R. W.; Emerson, D. R.; Perrier, P.
2012-05-01
The present study investigates the importance of the surface shape in a micro-scale heat conduction problem. A heated infinitely-thin cylindrical shell is positioned in the middle of two concentric cylinders, and the heat transfer through a rarefied gas between the shell and the confining inner (or outer) cylinder is investigated. The study initially considers the solution of the first- and second-order temperature-jump models (i.e. the conventional heat equation with temperature-jump boundary conditions). The study then examines the numerical solution of the nonlinear Shakhov model kinetic equation subject to the Maxwell boundary condition using the discrete velocity method (DVM). The variable-hard-sphere molecular interaction model is taken into account in the temperature-jump models allowing the presence of significant temperature differences between surfaces to be considered. Anomalous temperature profiles near the convex (or concave) side of the shell are attributed to the effects of surface shape.
NASA Astrophysics Data System (ADS)
Kshirsagar, Jagdeep M.; Shrivastava, Ramakant
2015-03-01
Nanofluids, the fluid suspensions of nonmaterials, have shown many interesting properties and the unique features offer unprecedented potential for many applications. Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was first noted, about a decade ago, though much debate and inconsistency have been reported. Insufficient understanding of the formulation, mechanism of nanofluids further limits their applications [1-34]. Inconsistent data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers [35-43] have noted an enhancement in the critical heat flux during nanofluid boiling. Some researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux augmentation. In the review, the future developments of these technologies are discussed. In order to be able to put the nanofluid heat transfer technologies into practice, fundamental of these studies are greatly needed to comprehend the physical mechanisms.
A Review on the Finite Element Methods for Heat Conduction in Functionally Graded Materials
NASA Astrophysics Data System (ADS)
Sharma, R.; Jadon, V. K.; Singh, B.
2015-01-01
The review presented in this paper focuses mainly on the application of finite element methods for investigating the effect of heat transfer, variation of temperature and other parameters in the functionally graded materials. Different methods have been investigated for thermal conduction in functionally graded materials. The use of FEM for steady state heat transfer has been addressed in this work. The authors have also discussed the utilization of FEM based shear deformation theories and FEM in combination with other methods for the problems involving complexity of the shape and geometry of functionally graded materials. Finite element methods proved to be effective for the solution of heat transfer problem in functionally graded materials. These methods can be used for steady state heat transfer and as well as for transient state.
Evaluation of heat transfer in acupuncture needles: convection and conduction approaches.
Tzou, Chieh-Han John; Yang, Tzyy-Yih; Chung, Ya-Chien
2015-04-01
Originating in ancient China, acupuncture using needles has been developed for thousands of years and has received attention for its reported medical remedies, such as pain relief and chronic disease treatment. Heat transfer through the needles, which might have effects on the biomechanism of acupuncture, providing a stimulus and regulating homeostasis, has never been studied. This article analyzes the significance of heat transfer through needles via convection and conduction, approached by means of computational analysis. The needle is a cylindrical body, and an axis symmetrical steady-state heat-transfer model that viscosity and static pressure was not applied. This article evaluates heat transfer via acupuncture needles by using five metal materials: silver, copper, brass, iron, and stainless steel. A silver needle of the type extensively applied in acupuncture can dissipate more than seven times as much heat as a stainless steel needle of the same type. Heat transfer through such a needle is significant, compared to natural body-energy consumption over a range of ambient temperatures. The mechanism by which heat flows in or out of the body through the needles may be crucial in the remedial efficacy of acupuncture.
Fourier heat conduction as a phenomenon described within the scope of the second law
Jesudason, Christopher G.
2014-12-10
The historical development of the Carnot cycle necessitated the construction of isothermal and adiabatic pathways within the cycle that were also mechanically 'reversible' which lead eventually to the Kelvin-Clausius development of the entropy function S where for any reversible closed path C, ∮{sub C} dS = 0 based on an infinite number of concatenated Carnot engines that approximated the said path and where for each engine ΔQ{sub 1}/T{sub 1}+ΔQ{sub 2}/T{sub 2} = 0 where the Q's and T's are the heat absorption increments and temperature respectively with the subscripts indicating the isothermal paths (1;2) where for the Carnot engine, the heat absorption is for the diathermal (isothermal) paths of the cycle only. Since 'heat' has been defined as that form of energy that is transferred as a result of a temperature difference and a corollary of the Clausius statement of the Second law is that it is impossible for heat to be transferred from a cold to a hot reservoir with no other effect on the environment, these statements suggested that the local mode of transfer of 'heat' in the isothermal segments of the pathway does imply a Fourier heat conduction mechanism (to conform to the definition of 'heat') albeit of a 'reversible' kind, but on the other hand, the Fourier mechanism is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the material involved in the conveyance of the heat energy. These and several other considerations lead Benofy and Quay (BQ) to postulate the Fourier heat conduction phenomenon to be an ancillary principle in thermodynamics, with this principle being strictly local in nature, where the global Second law statements could not be applied to this local process. Here we present equations that model heat conduction as a thermodynamically reversible but mechanically irreversible process where due to the belief in mechanical time reversible symmetry, thermodynamical reversibility has been
Fourier heat conduction as a phenomenon described within the scope of the second law
NASA Astrophysics Data System (ADS)
Jesudason, Christopher G.
2014-12-01
The historical development of the Carnot cycle necessitated the construction of isothermal and adiabatic pathways within the cycle that were also mechanically "reversible" which lead eventually to the Kelvin-Clausius development of the entropy function S where for any reversible closed path C, ∮C dS = 0 based on an infinite number of concatenated Carnot engines that approximated the said path and where for each engine ΔQ1/T1+ΔQ2/T2 = 0 where the Q's and T's are the heat absorption increments and temperature respectively with the subscripts indicating the isothermal paths (1;2) where for the Carnot engine, the heat absorption is for the diathermal (isothermal) paths of the cycle only. Since 'heat' has been defined as that form of energy that is transferred as a result of a temperature difference and a corollary of the Clausius statement of the Second law is that it is impossible for heat to be transferred from a cold to a hot reservoir with no other effect on the environment, these statements suggested that the local mode of transfer of 'heat' in the isothermal segments of the pathway does imply a Fourier heat conduction mechanism (to conform to the definition of 'heat') albeit of a "reversible" kind, but on the other hand, the Fourier mechanism is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the material involved in the conveyance of the heat energy. These and several other considerations lead Benofy and Quay (BQ) to postulate the Fourier heat conduction phenomenon to be an ancillary principle in thermodynamics, with this principle being strictly local in nature, where the global Second law statements could not be applied to this local process. Here we present equations that model heat conduction as a thermodynamically reversible but mechanically irreversible process where due to the belief in mechanical time reversible symmetry, thermodynamical reversibility has been unfortunately linked to mechanical
Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco
2013-01-01
Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915
Armstrong, Jeff; Bresme, Fernando
2014-06-28
The coupling of mass and heat fluxes is responsible for the Soret effect in fluid mixtures containing particles of dissimilar mass and/or size. We investigate using equilibrium and non-equilibrium molecular dynamics simulations the relevance of these coupling effects in determining the thermal transport in fluids consisting of binary mixtures where the individual components feature significant mass, 1 : 8, or size, 1 : 3, asymmetries. We quantify the thermal transport by using both boundary driven molecular dynamics simulations (NEMD) and the equilibrium Green-Kubo (GK) approach and investigate the impact of different heat flux definitions, relevant in kinetic theory and experiments, in the quantification of the thermal conductivity. We find that the thermal conductivities obtained from the different definitions agree within numerical accuracy, suggesting that the Soret coefficient does not lead to significant changes in the thermal conduction, even for the large asymmetries considered here, which lead to significant Soret coefficients (∼10(-2) K(-1)). The asymmetry in size and mass introduces large differences in the specific enthalpy of the individual components that must be carefully considered to compute accurate thermal conductivities using the GK approach. Neglecting the enthalpic contributions, results in large overestimations of the thermal conductivity, typically between 20% and 50%. Further, we quantify the time dependent behavior of the internal energy and mass flux correlation functions and propose a microscopic mechanism for the heat transport in these asymmetric mixtures.
Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.
Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin
2015-07-01
Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.
Experimental and Theoretical Study of Heat Conduction for Air up to 5000 K
NASA Technical Reports Server (NTRS)
Peng, Tzy-Cheng; Ahtye, Warren F.
1961-01-01
The theoretical value of the integral of thermal conductivity is compared with the experimental values from shock-tube measurements. The particular case considered is the one-dimensional nonsteady flow of heat through air at constant pressure. This approach has been previously described in NASA TR R-27. experiment was uncertain because of the large scatter in the experimental data. In this paper, an attempt is made to improve the correlation by use of a more refined calculation of the integral of thermal conductivity, and by use of improved experimental techniques and instrumentation. As a result of these changes, a much closer correlation is shown between the experimental and theoretical heat-flux potentials. This indicates that the predicted values of the coefficient of thermal conductivity for high-temperature air may be suitably accurate for many engineering needs, up to the limits of the test (4600 K).
NASA Technical Reports Server (NTRS)
Parker, Hermon M
1953-01-01
An analysis is made of the transient heat-conduction effects in three simple semi-infinite bodies: the flat insulated plate, the conical shell, and the slender solid cone. The bodies are assumed to have constant initial temperatures and, at zero time, to begin to move at a constant speed and zero angle of attack through a homogeneous atmosphere. The heat input is taken as that through a laminar boundary layer. Radiation heat transfer and transverse temperature gradients are assumed to be zero. The appropriate heat-conduction equations are solved by an iteration method, the zeroeth-order terms describing the situation in the limit of small time. The method is presented and the solutions are calculated to three orders which are sufficient to give reasonably accurate results when the forward edge has attained one-half the total temperature rise (nose half-rise time). Flight Mach number and air properties occur as parameters in the result. Approximate expressions for the extent of the conduction region and nose half-rise times as functions of the parameters of the problem are presented. (author)
Thermal energy conduction in a honey bee comb due to cell-heating bees.
Humphrey, J A C; Dykes, E S
2008-01-01
Theoretical analysis and numerical calculations are performed to characterize the unsteady two-dimensional conduction of thermal energy in an idealized honey bee comb. The situation explored corresponds to a comb containing a number of brood cells occupied by pupae. These cells are surrounded by other cells containing pollen which, in turn, are surrounded (above) by cells containing honey and (below) by vacant cells containing air. Up to five vacant cells in the brood region can be occupied by cell-heating bees which, through the isometrical contraction of their flight muscles, can generate sufficient energy to raise their body temperatures by a few degrees. In this way, the cell-heating bees alter the heat flux and temperature distributions in the brood region so as to maintain conditions that benefit the pupae. The calculations show that the number of cell-heating bees significantly affects the magnitude, time rate of change, and spatial distribution of temperature throughout the comb. They also reveal a vertically aligned asymmetry in the spatial distribution of temperature that is due to the large heat capacity and thermal conductivity of honey relative to air, whereby air-filled cells experience larger temperature increases than honey-filled cells. Analysis shows that convection and radiation represent negligible modes of thermal energy transfer at all levels in the problem considered. Also, because of its small thickness, the wax wall of a comb cell simultaneously presents negligible resistance to conduction heat transfer normal to it and very large resistance along it. As a consequence the walls of a cell play no thermal role, but simply serve as mechanical supports for the materials they contain.
High performance heat curing copper-silver powders filled electrically conductive adhesives
NASA Astrophysics Data System (ADS)
Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi
2015-03-01
In this study, high performance electrically conductive adhesives were fabricated from a vinyl ester resin, a thermal initiator, silver coated copper powders, and pure silver powders, without using any other coupling agent, dispersing agent, and reducing agent. The heat cured copper-silver powders filled electrically conductive adhesives presented low bulk resistivity (e.g., 4.53 × 10-5 Ω·cm) due to the silver powders that had given high electrical conductivity to the adhesives, and high shear strength (e.g., 16.22 MPa) provided by the crosslinked structures of vinyl ester resin. These high performance copper-silver powders filled electrically conductive adhesives have lower cost than those filled by pure silver powders, which can be well used in the electronic packaging and can enlarge the application prospects of electrically conductive adhesives. [Figure not available: see fulltext.
Thermal conductance of and heat generation in tire-pavement interface and effect on aircraft braking
NASA Technical Reports Server (NTRS)
Miller, C. D.
1976-01-01
A finite-difference analysis was performed on temperature records obtained from a free rolling automotive tire and from pavement surface. A high thermal contact conductance between tire and asphalt was found on a statistical basis. Average slip due to squirming between tire and asphalt was about 1.5 mm. Consequent friction heat was estimated as 64 percent of total power absorbed by bias-ply, belted tire. Extrapolation of results to aircraft tire indicates potential braking improvement by even moderate increase of heat absorbing capacity of runway surface.
Ritchie, R.H.; Sakakura, A.Y.
1956-01-01
The formal solutions of problems involving transient heat conduction in infinite internally bounded cylindrical solids may be obtained by the Laplace transform method. Asymptotic series representing the solutions for large values of time are given in terms of functions related to the derivatives of the reciprocal gamma function. The results are applied to the case of the internally bounded infinite cylindrical medium with, (a) the boundary held at constant temperature; (b) with constant heat flow over the boundary; and (c) with the "radiation" boundary condition. A problem in the flow of gas through a porous medium is considered in detail.
Innovative hybrid heat sink materials with high thermal conductivities and tailored CTE
NASA Astrophysics Data System (ADS)
Kitzmantel, M.; Neubauer, E.
2015-02-01
This paper talks about high performance heat sinks and heat spreaders made by hybrid structures based on metaldiamond composites. Thermal conductivities can be tuned between 450 and 650 W/mK while maintaining customizable thermal expansion of 6-10 ppm/K (@30°C). Using different hybrid structures in combination with the metal-diamond core significant changes in thermal properties can be identified. Applications targeted are LED, disc laser and laser diode heatsinks with these high performance inserts without the need of CTE matched submounts.
NASA Astrophysics Data System (ADS)
Okamoto, Yoichi; Okada, Ryo; Nemoto, Takashi; Ohta, Hiromichi; Takiguchi, Hiroaki
2012-07-01
A novel method is proposed for the simultaneous calculation of thermal conductivity κ and specific heat capacity C. The new method is a combination of two established techniques. One is the photopyroelectric method for thermal diffusivity α and the other is the front-heat front-detection photothermoreflectance method for thermal effusivity b. After α, b, and density ρ measurements, C and κ are easily calculated as C = b α -1/2 ρ -1 and κ = α 1/2 b. Test measurements on a commercial Si single-crystal wafer were performed to demonstrate that the method is sufficiently accurate.
Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)
1995-01-01
The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.
Self-gravitational instability of rotating anisotropic heat-conducting plasma
Prajapati, R. P.; Parihar, A. K.; Chhajlani, R. K.
2008-01-15
The self-gravitational instability of rotating anisotropic heat-conducting plasma with modified Chew-Goldberger-Low equations is investigated. The general dispersion relation is obtained using normal mode analysis by constructing the linearized set of equations. This dispersion relation is further reduced for propagation parallel and perpendicular to the direction of magnetic field. These conditions are discussed for axis of rotation along and perpendicular to the magnetic field. It is found that the heat flux vector does not influence the transverse mode of propagation for both cases of rotation and Jeans condition remains unchanged. In case of propagation parallel to the magnetic field with axis of rotation perpendicular to the magnetic field, we get the dispersion relation, which shows the joint effect of rotation and heat flux vector. The two separate modes of propagation are obtained in terms of rotation and heat flux vector for rotation parallel to the magnetic field. It is demonstrated that the Alfven wave and the associated firehose instability are not affected by the presence of heat flux corrections and rotation also. The numerical analysis is performed to show the effect of rotation, pressure anisotropy, and heat flux parameter on the condition of instability in the spiral arms of galaxy. The Jeans condition of gravitational instability is obtained for both the cases of propagation.
Heat conductivity of LiF-NaF-Al(PO{sub 3}){sub 3} mixed-alkali glasses
Il`in, A.A.; Pronkin, A.A.
1995-03-01
Described is the heat conductivity of LiF-NaF-Al(PO{sub 3}){sub 3} mixed-alkali phosphate glasses. The percentage of NaF was varied to measure the density, mean sound velocity, Debye temperature, thermal oscillation frequency, and heat conductivity coefficient at different molar fractions. Correlation between the heat conductivity and the Debye temperature show the same regularity of variation in these parameters as for most crystalline substances.
Midwinter Snowmelt Generated by Ground Heat Conduction: Implications for Catchment Hydrology
NASA Astrophysics Data System (ADS)
Smith, R.; Moore, D.; Weiler, M.
2007-12-01
Ground heat conduction is commonly ignored in modelling of snowpack energy exchanges and snowmelt runoff due to its perceived insignificance relative to other energy sources. Snowmelt at the base of a snowpack was continuously measured during the winter of 2006-2007 with 4 m2 lysimeters at six different sites within a 3.5 km2 continental, mountainous catchment in southeast British Columbia. Soil wetness, soil temperature, and air temperature were also continuously measured at each site. Snowmelt during a three month midwinter period with sub-zero air temperatures ranged from 11 to 113 mm, comprising 3 to 38 % as much as the annual peak snow water accumulation. Given the lack of surface melt, this midwinter snowmelt was driven by ground heat conduction. Spatially, total melt was positively associated with shallow soil moisture content, likely because midwinter snowmelt maintained soil wetness at or near field capacity at three of six sites. There also was likely a positive feedback between soil moisture and melt rate, due to the association between soil thermal conductivity and soil wetness. It is hypothesized that midwinter melt caused by ground heat conduction may be important for enhancing catchment response by maintaining hydrologic connectivity between upslope areas and the channel network.
Variation of thermal conductivity and heat flux at the Earth's core mantle boundary
NASA Astrophysics Data System (ADS)
Ammann, Michael W.; Walker, Andrew M.; Stackhouse, Stephen; Wookey, James; Forte, Alessandro M.; Brodholt, John P.; Dobson, David P.
2014-03-01
The two convective systems that dominate Earth's internal dynamics meet at the boundary between the rocky mantle and metallic liquid core. Energy transfer between processes driving plate tectonics and the geodynamo is controlled by thermal conduction in the lowermost mantle (D″). We use atomic scale simulations to determine the thermal conductivity of MgSiO3 perovskite and post-perovskite under D″ conditions and probe how these two convective systems interact. We show that the thermal conductivity of post-perovskite (∼12 W/mK) is 50% larger than that of perovskite under the same conditions (∼8.5 W/mK) and is anisotropic, with conductivity along the a-axis being 40% higher than conductivity along the c-axis. This enhances the high heat flux into cold regions of D″ where post-perovskite is stable, strengthening the feedback between convection in the core and mantle. Reminiscent of the situation in the lithosphere, there is potential for deformation induced texturing associated with mantle convection to modify how the mantle is heated from below. We test this by coupling our atomic scale results to models of texture in D″ and suggest that anisotropic thermal conductivity may help to stabilise the roots of mantle plumes over their protracted lifetime.
Khine, Soe Minn; Houra, Tomoya; Tagawa, Masato
2013-04-01
In temperature measurement of non-isothermal fluid flows by a contact-type temperature sensor, heat conduction along the sensor body can cause significant measurement error which is called "heat-conduction error." The conventional formula for estimating the heat-conduction error was derived under the condition that the fluid temperature to be measured is uniform. Thus, if we apply the conventional formula to a thermal field with temperature gradient, the heat-conduction error will be underestimated. In the present study, we have newly introduced a universal physical model of a temperature-measurement system to estimate accurately the heat-conduction error even if a temperature gradient exists in non-isothermal fluid flows. Accordingly, we have been able to successfully derive a widely applicable estimation and/or evaluation formula of the heat-conduction error. Then, we have verified experimentally the effectiveness of the proposed formula using the two non-isothermal fields-a wake flow formed behind a heated cylinder and a candle flame-whose fluid-dynamical characteristics should be quite different. As a result, it is confirmed that the proposed formula can represent accurately the experimental behaviors of the heat-conduction error which cannot be explained appropriately by the existing formula. In addition, we have analyzed theoretically the effects of the heat-conduction error on the fluctuating temperature measurement of a non-isothermal unsteady fluid flow to derive the frequency response of the temperature sensor to be used. The analysis result shows that the heat-conduction error in temperature-fluctuation measurement appears only in a low-frequency range. Therefore, if the power-spectrum distribution of temperature fluctuations to be measured is sufficiently away from the low-frequency range, the heat-conduction error has virtually no effect on the temperature-fluctuation measurements even by the temperature sensor accompanying the heat-conduction error in
NASA Astrophysics Data System (ADS)
Minn Khine, Soe; Houra, Tomoya; Tagawa, Masato
2013-04-01
In temperature measurement of non-isothermal fluid flows by a contact-type temperature sensor, heat conduction along the sensor body can cause significant measurement error which is called "heat-conduction error." The conventional formula for estimating the heat-conduction error was derived under the condition that the fluid temperature to be measured is uniform. Thus, if we apply the conventional formula to a thermal field with temperature gradient, the heat-conduction error will be underestimated. In the present study, we have newly introduced a universal physical model of a temperature-measurement system to estimate accurately the heat-conduction error even if a temperature gradient exists in non-isothermal fluid flows. Accordingly, we have been able to successfully derive a widely applicable estimation and/or evaluation formula of the heat-conduction error. Then, we have verified experimentally the effectiveness of the proposed formula using the two non-isothermal fields—a wake flow formed behind a heated cylinder and a candle flame—whose fluid-dynamical characteristics should be quite different. As a result, it is confirmed that the proposed formula can represent accurately the experimental behaviors of the heat-conduction error which cannot be explained appropriately by the existing formula. In addition, we have analyzed theoretically the effects of the heat-conduction error on the fluctuating temperature measurement of a non-isothermal unsteady fluid flow to derive the frequency response of the temperature sensor to be used. The analysis result shows that the heat-conduction error in temperature-fluctuation measurement appears only in a low-frequency range. Therefore, if the power-spectrum distribution of temperature fluctuations to be measured is sufficiently away from the low-frequency range, the heat-conduction error has virtually no effect on the temperature-fluctuation measurements even by the temperature sensor accompanying the heat-conduction
Feng, Bo; Ma, Weigang; Li, Zhixin; Zhang, Xing
2009-06-01
The electrothermal technique is developed to simultaneously measure the specific heat and thermal conductivity of individual thin samples suspended across two heat sinks, resorting to pulsed direct currents with or without a dc offset. The temperature evolution due to Joule self-heating is recorded and compared with the numerical solutions of transient heat conduction equations using the finite volume method. The thermal conductivity is determined by the steady temperature level and the specific heat by the transient temperature rise or relaxation. This technique is applied to a 10 microm thick platinum wire and the thermal conductivity and specific heat are in good agreement with the literature values. In addition, the influences of thermal radiation and thermal boundary resistance between the sample and heat sinks on the experimental results are discussed. PMID:19566218
NASA Technical Reports Server (NTRS)
Murio, Diego A.
1991-01-01
An explicit and unconditionally stable finite difference method for the solution of the transient inverse heat conduction problem in a semi-infinite or finite slab mediums subject to nonlinear radiation boundary conditions is presented. After measuring two interior temperature histories, the mollification method is used to determine the surface transient heat source if the energy radiation law is known. Alternatively, if the active surface is heated by a source at a rate proportional to a given function, the nonlinear surface radiation law is then recovered as a function of the interface temperature when the problem is feasible. Two typical examples corresponding to Newton cooling law and Stefan-Boltzmann radiation law respectively are illustrated. In all cases, the method predicts the surface conditions with an accuracy suitable for many practical purposes.
Zhijie Xu
2012-07-01
We introduce a new method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field T(x,r,t) is reduced to seek the solutions of T at the boundary (r = a or r = 0, r is the distance from the centerline shown in Fig. 1), i.e., the boundary functions T{sub a}(x,t) {triple_bond} T(x,r=a,t) and/or T{sub 0}(x,t) {triple_bond} T(x,r=0,t). In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field T(x,r,t) can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady-state problem using the proposed method.
Xu, Zhijie
2012-07-01
We introduce a method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field is reduced to seek the solutions of T at the boundary (r=a or r=0, r is the distance from the centerline shown in Fig. 1), i.e. the boundary functions and/or . In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady state problem using the proposed method.
Analytical and experimental studies for space boundary and geometry inverse heat conduction problems
NASA Astrophysics Data System (ADS)
Chen, Tzu-Fang
Inverse Heat Conduction Problems (IHCPs) have been widely used in engineering fields in recent decades. IHCPs are not the same as direct heat conduction problems which are ``well-posed''. IHCPs are made more difficult since they are inherently ``ill-posed'' that is, a small error perturbation will lead to a large error in the solution reconstructed. Prediction of an unknown in an IHCP is not an easy event. An IHCP also handles the desired information from measurements containing noise. A stable and accurate reliable inversion solver shall be studied. This dissertation is split into four parts. The first part describes space boundary IHCPs, and attempts to utilize noisy measurement data to predict unknown surface temperatures or heat fluxes. A new algorithm, using a Kalman Filter to filter the measurement noise combined with an implicit time-marching finite difference scheme, solves a space boundary IHCP. In the second part, errors in reconstruction of the temperature at each boundary of a one-dimensional IHCP can be presented by a simple relation. Each relation contains an unknown coefficient, which can be determined by using one simulation through the inversion solver of a pair of specified sensor locations. This relation can then be used to estimate the other recovery errors at the boundary without using the inverse solver. In the third part, an experimental study of temperature drop between two rough surfaces is conducted. The experimental data are analyzed by utilizing an inversion solver developed in this dissertation. In the fourth part, an IHCP with a melting process using the measured temperature and heat flux at one surface is solved by a new geometry inversion solver with a heat flux limiter to reconstruct the melting front location and the temperature history inside the test domain.
A phase-field study on the oxidation behavior of Ni considering heat conduction
NASA Astrophysics Data System (ADS)
Wang, Chao; Ai, Shigang; Fang, Daining
2016-08-01
Phase-field modeling approach has been used to study the oxidation behavior of pure Ni when considering heat conduction. In this calculation, the dependence of the coefficient of the Cahn-Hilliard equation Lc on the temperature T was considered. To this end, high-temperature oxidation experiments and phase-field modeling for pure Ni were performed in air under atmospheric pressure at 600, 700, and 800° C. The oxidation rate was measured by thermogravimetry and Lc at these temperatures was determined via interactive algorithm. With the Lc {-}T relationship constructed, oxidation behavior of Ni when considering heat conduction was investigated. The influence of temperature boundaries on the oxidation degree, oxide film thickness, and specific weight gain were discussed. The phase-field modeling approach proposed in this study will give some highlights of the oxidation resistance analysis and cooling measures design of thermal protection materials.
NASA Astrophysics Data System (ADS)
Kot, V. A.
2016-07-01
On the basis of the consideration of the boundary-value problem for the generalized equation of heat conduction in bounded nonuniform spaces with Dirichlet, Neumann, and Robin boundary conditions, corresponding sequences of boundary characteristics have been obtained. For each of these sequences, definite integro-differential representations (relations) have been constructed. It has been shown that approximate analytical solutions can be obtained for bounded nonuniform regions with variable transfer coefficients in the Cartesian, cylindrical, and spherical coordinate systems. On the basis of systems of algebraic equations, approximate analytical solutions have been constructed with approximately equal accuracies independently of the calculation scheme used (with the introduction of the temperature-disturbance front or without it, i.e., by multiple integration of the heat-conduction equation over the whole computational region). These solutions have a negligibly small error and, therefore, can be considered as conditionally exact.
NASA Astrophysics Data System (ADS)
Esmaili Sikarudi, M. A.; Nikseresht, A. H.
2016-01-01
Smoothed particle hydrodynamics is a robust Lagrangian particle method which is widely used in various applications, from astrophysics to hydrodynamics and heat conduction. It has intrinsic capabilities for simulating large deformation, composites, multiphysics events, and multiphase fluid flows. It is vital to use reliable boundary conditions when boundary value problems like heat conduction or Poisson equation for incompressible flows are solved. Since smoothed particle hydrodynamics is not a boundary fitted grids method, implementation of boundary conditions can be problematic. Many methods have been proposed for enhancing the accuracy of implementation of boundary conditions. In the present study a new approach for facilitating the implementation of Robin and Neumann boundary conditions is proposed and proven to give accurate results. Also there is no need to use complicated preprocessing as in virtual particle method. The new method is compared to an equivalent one dimensional moving least square scheme and it is shown that the present method is less sensitive to particle disorder.
Analysis and solution of the ill-posed inverse heat conduction problem
Weber, C.F.
1981-01-01
The inverse conduction problem arises when experimental measurements are taken in the interior of a body, and it is desired to calculate temperature and heat flux values on the surface. The problem is shown to be ill-posed, as the solution exhibits unstable dependence on the given data functions. A special solution procedure is developed for the one-dimensional case which replaces the heat conduction equation with an approximating hyperbolic equation. If viewed from a new perspective, where the roles of the spatial and time variables are interchanged, then an initial value problem for the damped wave equation is obtained. Since this formulation is well-posed, both analytic and numerical solution procedures are readily available. Sample calculations confirm that this approach produces consistent, reliable results for both linear and nonlinear problems.
NASA Technical Reports Server (NTRS)
Winget, J. M.; Hughes, T. J. R.
1985-01-01
The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.
A blowup criterion for viscous, compressible, and heat-conductive magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Du, Lili; Wang, Yongfu
2015-09-01
In this paper, we proved a blowup criterion for the two-dimensional (2D) viscous, compressible, and heat-conducting magnetohydrodynamic (MHD) flows for Cauchy problem, which depends only on the divergence of the velocity vector field, as well as for the case of bounded domain with Dirichlet boundary conditions. This result indicates that the nature of the blowup for compressible models of viscous media in 2D space is similar to the barotropic compressible Navier-Stokes equations and does not depend on further sophistication of the MHD model. More precisely, taking into account the magnetic effects and heat conductivity does not introduce any new features in the blowup mechanism of full MHD flows, especially, which is independent of the temperature and the magnetic field. The results also imply the global regularity of the strong solution to compressible MHD flows, provided that velocity divergence remains bounded.
Tree-Shaped Fluid Flow and Heat Storage in a Conducting Solid
Combelles, L.; Lorente, S.; Anderson, R.; Bejan, A.
2012-01-01
This paper documents the time-dependent thermal interaction between a fluid stream configured as a plane tree of varying complexity embedded in a conducting solid with finite volume and insulated boundaries. The time scales of the convection-conduction phenomenon are identified. Two-dimensional and three-dimensional configurations are simulated numerically. The number of length scales of the tree architecture varies from one to four. The results show that the heat transfer density increases, and the time of approach to equilibrium decreases as the complexity of the tree designs increases. These results are then formulated in the classical notation of energy storage by sensible heating, which shows that the effective number of heat transfer units increases as the complexity of the tree design increases. The complexity of heat transfer designs in many applications is constrained by first cost and operating cost considerations. This work provides a fundamental basis for objective evaluation of cost and performance tradeoffs in thermal design of energy systems with complexity as an unconstrained parameter that can be actively varied over a broad range to determine the optimum system design.
Mixed Convection with Conduction and Surface Radiation from a Vertical Channel with Discrete Heating
NASA Astrophysics Data System (ADS)
Londhe, S. D.; Rao, C. G.
2013-10-01
A numerical investigation into fluid flow and heat transfer for the geometry of a vertical parallel plate channel subjected to conjugate mixed convection with radiation is attempted here. The channel considered has three identical flush-mounted discrete heat sources in its left wall, while the right wall that does not contain any heat source acts as a sink. Air, assumed to be a radiatively non-participating and having constant thermophysical properties subject to the Boussinesq approximation, is the cooling agent. The heat generated in the left wall gets conducted along it and is later dissipated by mixed convection and radiation. The governing equations, considered in their full strength sans the boundary layer approximations, are converted into vorticity-stream function form and are then normalized. These equations along with pertinent boundary conditions are solved through finite volume method coupled with Gauss-Seidel iterative technique. The effects of modified Richardson number, surface emissivity, thermal conductivity and aspect ratio on local temperature distribution along the channel, maximum channel temperature and relative contributions of mixed convection and radiation have been thoroughly studied. The prominence of radiation in the present problem has been highlighted.
Electrical conductivity of carbonaceous chondrites and electric heating of meteorite parent bodies
NASA Technical Reports Server (NTRS)
Duba, A.
1986-01-01
The electrical conductivity of samples of the Murchison and Allende carbonaceous chondrites is 4 to 6 magnitudes greater than rock forming minerals such as Olivine up to 700 C. The remarkably high electrical conductivity of these meteorites is attributed to carbon at grain boundaries. The environment in the wake of the space station can be exploited to produce conditions which will allow pyrolysis of carbonaceous chondrites. An experimental package consisting of a one square meter shield attached to a 15 cm diameter by 40 cm long furnace and tied to a conductance bridge, furnace controller, and digital voltmeter inside the space station via umbilical cable could make the required measurements. Since heating rates as low as 0.1 C/hour are required to study kinetics of the pyrolysis reations which are the cause of the high conductivity of the carbonaceous chondrites, experimental times up to 3 months will be needed.
Lateral conduction effects on heat-transfer data obtained with the phase-change paint technique
NASA Technical Reports Server (NTRS)
Maise, G.; Rossi, M. J.
1974-01-01
A computerized tool, CAPE, (Conduction Analysis Program using Eigenvalues) has been developed to account for lateral heat conduction in wind tunnel models in the data reduction of the phase-change paint technique. The tool also accounts for the effects of finite thickness (thin wings) and surface curvature. A special reduction procedure using just one time of melt is also possible on leading edges. A novel iterative numerical scheme was used, with discretized spatial coordinates but analytic integration in time, to solve the inverse conduction problem involved in the data reduction. A yes-no chart is provided which tells the test engineer when various corrections are large enough so that CAPE should be used. The accuracy of the phase-change paint technique in the presence of finite thickness and lateral conduction is also investigated.
Influence of heat conductivity on an intense shock wave that converges onto the center of symmetry
NASA Astrophysics Data System (ADS)
Makhmudov, A. A.; Popov, S. P.
1980-04-01
In the motion of a shock wave near the axis of a cylinder or the center of a sphere, there occurs a self-similar flow. This region is of practical importance, since many nonself-similar problems reduce to self-similar ones. In the present paper, the transformation of Guderley's (1942) self-simulating solution to an isothermal wave under the influence of nonlinear heat conductivity is analyzed numerically.
On heat conduction in multicomponent, non-Maxwellian spherically symmetric solar wind plasmas
NASA Technical Reports Server (NTRS)
Cuperman, S.; Dryer, M.
1985-01-01
A generalized expression for the steady-state heat flux in multicomponent, moderately non-Maxwellian spherically symmetric plasmas is presented and discussed. The work was motivated by the inability of the simple, Fourier-type formula for the thermal conductivity to explain the observed correlations in the solar wind. The results hold for situations not far from local thermodynamic equilibrium. The generalized expression includes not only correlations that have been observed but also correlations not sought for previously.
A direct analytical approach for solving linear inverse heat conduction problems
NASA Astrophysics Data System (ADS)
Ainajem, N. M.; Ozisik, M. N.
1985-08-01
The analytical approach presented for the solution of linear inverse heat conduction problems demonstrates that applied surface conditions involving abrupt changes with time can be effectively accommodated with polynomial representations in time over the entire time domain; the resulting inverse analysis predicts surface conditions accurately. All previous attempts have experienced difficulties in the development of analytic solutions that are applicable over the entire time domain when a polynomial representation is used.
Strongly coupled near-field radiative and conductive heat transfer between planar bodies
NASA Astrophysics Data System (ADS)
Messina, Riccardo; Jin, Weiliang; Rodriguez, Alejandro W.
2016-09-01
We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on geometric and material parameters and not so crucially on operating temperatures. Our findings exploit rigorous calculations based on a closed-form expression for the heat flux between two plates separated by vacuum gaps d and subject to arbitrary temperature profiles, along with an approximate but accurate analytical treatment of coupled conduction-radiation in this geometry. We find that these effects can be prominent in typical materials (e.g., silica and sapphire) at separations of tens of nanometers, and can play an even larger role in metal oxides, which exhibit moderate conductivities and enhanced radiative properties. Broadly speaking, these predictions suggest that the impact of RHT on thermal conduction, and vice versa, could manifest itself as a limit on the possible magnitude of RHT at the nanoscale, which asymptotes to a constant (the conductive transfer rate when the gap is closed) instead of diverging at short separations.
A direct approach to finding unknown boundary conditions in steady heat conduction
NASA Technical Reports Server (NTRS)
Martin, Thomas J.; Dulikravich, George S.
1993-01-01
The capability of the boundary element method (BEM) in determining thermal boundary conditions on surfaces of a conducting solid where such quantities are unknown was demonstrated. The method uses a non-iterative direct approach in solving what is usually called the inverse heat conduction problem (IHCP). Given any over-specified thermal boundary conditions such as a combination of temperature and heat flux on a surface where such data is readily available, the algorithm computes the temperature field within the object and any unknown thermal boundary conditions on surfaces where thermal boundary values are unavailable. A two-dimensional, steady-state BEM program was developed and was tested on several simple geometries where the analytic solution was known. Results obtained with the BEM were in excellent agreement with the analytic values. The algorithm is highly flexible in treating complex geometries, mixed thermal boundary conditions, and temperature-dependent material properties and is presently being extended to three-dimensional and unsteady heat conduction problems. The accuracy and reliability of this technique was very good but tended to deteriorate when the known surface conditions were only slightly over-specified and far from the inaccessible surface.
Conditions for Aeronomic Applicability of the Classical Electron Heat Conduction Formula
NASA Technical Reports Server (NTRS)
Cole, K. D.; Hoegy, W. R.
1998-01-01
Conditions for the applicability of the classical formula for heat conduction in the electrons in ionized gas are investigated. In a fully ionised gas ( V(sub en) much greater than V(sub ei)), when the mean free path for electron-electron (or electron-ion) collisions is much larger than the characteristic thermal scale length of the observed system, the conditions for applicability break down. In the case of the Venus ionosphere this breakdown is indicated for a large fraction of the electron temperature data from altitudes greater than 180 km, for electron densities less than 10(exp 4)/cc cm. In a partially ionised gas such that V(sub en) much greater than V(sub ei) there is breakdown of the formula not only when the mean free path of electrons greatly exceeds the thermal scale length, but also when the gradient of neutral particle density exceeds the electron thermal gradient. It is shown that electron heat conduction may be neglected in estimating the temperature of joule heated electrons by observed strong 100 Hz electric fields when the conduction flux is limited by the saturation flux. The results of this paper support our earlier aeronomical arguments against the hypothesis of planetary scale whistlers for the 100 Hz electric field signal. In turn this means that data from the 100 Hz signal may not be used to support the case for lightning on Venus.
A direct approach to finding unknown boundary conditions in steady heat conduction
NASA Astrophysics Data System (ADS)
Martin, Thomas J.; Dulikravich, George S.
1993-11-01
The capability of the boundary element method (BEM) in determining thermal boundary conditions on surfaces of a conducting solid where such quantities are unknown was demonstrated. The method uses a non-iterative direct approach in solving what is usually called the inverse heat conduction problem (IHCP). Given any over-specified thermal boundary conditions such as a combination of temperature and heat flux on a surface where such data is readily available, the algorithm computes the temperature field within the object and any unknown thermal boundary conditions on surfaces where thermal boundary values are unavailable. A two-dimensional, steady-state BEM program was developed and was tested on several simple geometries where the analytic solution was known. Results obtained with the BEM were in excellent agreement with the analytic values. The algorithm is highly flexible in treating complex geometries, mixed thermal boundary conditions, and temperature-dependent material properties and is presently being extended to three-dimensional and unsteady heat conduction problems. The accuracy and reliability of this technique was very good but tended to deteriorate when the known surface conditions were only slightly over-specified and far from the inaccessible surface.
Transient conductive, radiative heat transfer coupled with moisture transport in attic insulations
NASA Astrophysics Data System (ADS)
Gorthala, R.; Harris, K. T.; Roux, J. A.; McCarty, T. A.
1994-01-01
A transient, one-dimensional thermal model that incorporates combined conduction, radiation heat transfer, and moisture transport for residential attic insulations has been developed. The governing equations are the energy equation, the radiative transport equation for volumetric radiation within the insulation batt, and the species equations for bound H2O and vapor H2O. A simultaneous solution procedure with a Eulerian control volume-based finite difference method was used to solve the energy equation and the species equations. The method of discrete ordinates was used in solving the radiative transport equation. For H2O transport, both diffusion of vapor H2O and bound H2O and moisture adsorption/desorption within the insulation binder are included in the model. The experimental data measured at an occupied North Mississippi residence for R19STD (standard R19 fiberglass insulation batt without a foil radiant barrier) were used to validate the model which predicted heat fluxes for summer, spring, winter, and fall seasonal conditions. These predictions were compared with the measured heat flux data and the predictions from the dry model (without the moisture transport). Various profiles such as temperature-time histories, relative humidity time histories, spatial H2O concentrations, spatial temperatures, and spatial heat fluxes are presented to explain the overall heat transfer behavior.
Review and comparison of nanofluid thermal conductivity and heat transfer enhancements.
Yu, W.; France, D. M.; Routbort, J. L.; Choi, S. U.S.; Energy Systems; Univ. of Illinois at Chicago; Korea Inst. of Energy Research
2008-05-01
This study provides a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications. Nanofluid technology is a relatively new field, and as such, the supporting studies are not extensive. Specifically, experimental results were reviewed in this study regarding the enhancement of the thermal conductivity and convective heat transfer of nanofluids relative to conventional heat transfer fluids, and assessments were made as to the state-of-the-art of verified parametric trends and magnitudes. Pertinent parameters of particle volume concentration, particle material, particle size, particle shape, base fluid material, temperature, additive, and acidity were considered individually, and experimental results from multiple research groups were used together when assessing results. To this end, published research results from many studies were recast using a common parameter to facilitate comparisons of data among research groups and to identify thermal property and heat transfer trends. The current state of knowledge is presented as well as areas where the data are presently inconclusive or conflicting. Heat transfer enhancement for available nanofluids is shown to be in the 15-40% range, with a few situations resulting in orders of magnitude enhancement.
NaK Variable Conductance Heat Pipe for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Anderson, William G.; Walker, Kara
2008-01-01
In a Stirling radioisotope power system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides most of this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending use of that convertor for the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling convertor. In the design of the VCHP for the Advanced Stirling Radioisotope Generator, the VCHP reservoir temperature can vary between 40 and 120 C. While sodium, potassium, or cesium could be used as the working fluid, their melting temperatures are above the minimum reservoir temperature, allowing working fluid to freeze in the reservoir. In contrast, the melting point of NaK is -12 C, so NaK can't freeze in the reservoir. One potential problem with NaK as a working fluid is that previous tests with NaK heat pipes have shown that NaK heat pipes can develop temperature non-uniformities in the evaporator due to NaK's binary composition. A NaK heat pipe was fabricated to measure the temperature non-uniformities in a scale model of the VCHP for the Stirling Radioisotope system. The temperature profiles in the evaporator and condenser were measured as a function of operating temperature and power. The largest delta T across the condenser was 2S C. However, the condenser delta T decreased to 16 C for the 775 C vapor temperature at the highest heat flux applied, 7.21 W/ square cm. This decrease with increasing heat flux was caused by the increased mixing of the sodium and potassium in the vapor. This temperature differential is similar to the temperature variation in this ASRG heat transfer interface without a heat pipe, so NaK can be used as the VCHP working fluid.
First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures
Sandip Mazumder; Ju Li
2010-06-30
The inability to remove heat efficiently is currently one of the stumbling blocks toward further miniaturization and advancement of electronic, optoelectronic, and micro-electro-mechanical devices. In order to formulate better heat removal strategies and designs, it is first necessary to understand the fundamental mechanisms of heat transport in semiconductor thin films. Modeling techniques, based on first principles, can play the crucial role of filling gaps in our understanding by revealing information that experiments are incapable of. Heat conduction in crystalline semiconductor films occurs by lattice vibrations that result in the propagation of quanta of energy called phonons. If the mean free path of the traveling phonons is larger than the film thickness, thermodynamic equilibrium ceases to exist, and thus, the Fourier law of heat conduction is invalid. In this scenario, bulk thermal conductivity values, which are experimentally determined by inversion of the Fourier law itself, cannot be used for analysis. The Boltzmann Transport Equation (BTE) is a powerful tool to treat non-equilibrium heat transport in thin films. The BTE describes the evolution of the number density (or energy) distribution for phonons as a result of transport (or drift) and inter-phonon collisions. Drift causes the phonon energy distribution to deviate from equilibrium, while collisions tend to restore equilibrium. Prior to solution of the BTE, it is necessary to compute the lifetimes (or scattering rates) for phonons of all wave-vector and polarization. The lifetime of a phonon is the net result of its collisions with other phonons, which in turn is governed by the conservation of energy and momentum during the underlying collision processes. This research project contributed to the state-of-the-art in two ways: (1) by developing and demonstrating a calibration-free simple methodology to compute intrinsic phonon scattering (Normal and Umklapp processes) time scales with the inclusion
Two-fluid nature of phonon heat conduction in a monatomic lattice
NASA Astrophysics Data System (ADS)
Evteev, Alexander V.; Levchenko, Elena V.; Belova, Irina V.; Murch, Graeme E.
2015-08-01
The thermal resistance of a crystal lattice with a monatomic unit cell due to three-phonon scattering processes is investigated in detail theoretically. A general expression for the lattice thermal conductivity is derived from a combined analysis based on: (i) the Boltzmann equation and (ii) data on the heat current autocorrelation function obtained via molecular dynamics simulations in conjunction with the Green-Kubo formalism. It is argued that the phonon gas in a monatomic lattice conducts heat as if it consisted of two distinct parts (two 'thermal fluids'), so that the lattice thermal conductivity can be decomposed into contributions from these two parts. The origin of the behaviour of the phonon gas, which is explored in the present work, is due to an intrinsic interplay between Umklapp and normal three-phonon scattering processes. New insight into the nature of the lattice thermal conductivity is demonstrated and the results of the present work are in agreement with previous studies in this area.
On the equilibrium of heated self-gravitating masses - Cooling by conduction
NASA Technical Reports Server (NTRS)
Lerche, I.; Low, B. C.
1980-01-01
An investigation is given of the equilibrium states available to a self-gravitating mass of gas, cooling by conduction, and being heated at a rate proportional to the local gas density. The plane geometry situation is shown to be reducible to quadratures for the pressure, density, temperature, and gravitational potential. For a constant thermal conductivity it is shown that the gas density has either a central maximum or a central minimum, depending on the ratio of the thermal conductivity to a parameter taken to be a measure of the rate of heating. For a thermal conductivity which is a positive power of the temperature, it is shown that the gas density always has a central minimum and a maximum at the outer boundary of the configuration. For cylindrical and spherical geometrical configurations the same general properties are obtained. The physical origin of this behavior is discussed, and it is suggested that these exploratory calculations provide an effect which may not only aid in understanding thin filamentary structure observed in supernova remnants, but also help to assuage the difficulties of producing maser activity in the interior regions of 'cocoon' protostars.
Heat, chloride, and specific conductance as ground water tracers near streams
Cox, M.H.; Su, G.W.; Constantz, J.
2007-01-01
Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.
Perano, Kristen M; Usack, Joseph G; Angenent, Largus T; Gebremedhin, Kifle G
2015-08-01
The objective of this research was to test the effectiveness of conductive cooling in alleviating heat stress of lactating dairy cows. A conductive cooling system was built with waterbeds (Dual Chamber Cow Waterbeds, Advanced Comfort Technology Inc., Reedsburg, WI) modified to circulate chilled water. The experiment lasted 7 wk. Eight first-lactation Holstein cows producing 34.4±3.7kg/d of milk at 166±28 d in milk were used in the study. Milk yield, dry matter intake (DMI), and rectal temperature were recorded twice daily, and respiration rate was recorded 5 times per day. During wk 1, the cows were not exposed to experimental heat stress or conductive cooling. For the remaining 6 wk, the cows were exposed to heat stress from 0900 to 1700h each day. During these 6 wk, 4 of the 8 cows were cooled with conductive cooling (experimental cows), and the other 4 were not cooled (control cows). The study consisted of 2 thermal environment exposures (temperature-humidity index mean ± standard deviation of 80.7±0.9 and 79.0±1.0) and 2 cooling water temperatures (circulating water through the water mattresses at temperatures of 4.5°C and 10°C). Thus, a total of 4 conductive cooling treatments were tested, with each treatment lasting 1 wk. During wk 6, the experimental and control cows were switched and the temperature-humidity index of 79.0±1.0 with 4.5°C cooling water treatment was repeated. During wk 7, waterbeds were placed directly on concrete stalls without actively cooling the water. Least squares means and P-values for the different treatments were calculated with multivariate mixed models. Conductively cooling the cows with 4.5°C water decreased rectal temperature by 1.0°C, decreased respiration rate by 18 breaths/min, increased milk yield by 5%, and increased DMI by 14% compared with the controls. When the results from the 2 cooling water temperatures (4.5°C and 10°C circulating water) were compared, we found that the rectal temperature from 4.5
Acousto-thermometric recovery of the deep temperature profile using heat conduction equations
NASA Astrophysics Data System (ADS)
Anosov, A. A.; Belyaev, R. V.; Vilkov, V. A.; Dvornikova, M. V.; Dvornikova, V. V.; Kazanskii, A. S.; Kuryatnikova, N. A.; Mansfel'd, A. D.
2012-09-01
In a model experiment using the acousto-thermographic method, deep temperature profiles varying in time are recovered. In the recovery algorithm, we used a priori information in the form of a requirement that the calculated temperature must satisfy the heat conduction equation. The problem is reduced to determining two parameters: the initial temperature and the temperature conductivity coefficient of the object under consideration (the plasticine band). During the experiment, there was independent inspection using electronic thermometers mounted inside the plasticine. The error in the temperature conductivity coefficient was about 17% and the error in initial temperature determination was less than one degree. Such recovery results allow application of this approach to solving a number of medical problems. It is experimentally proved that acoustic irregularities influence the acousto-thermometric results as well. It is shown that in the chosen scheme of experiment (which corresponds to measurements of human muscle tissue), this influence can be neglected.
One-Particle Representation of Heat Conduction Described within the Scope of the Second Law.
Jesudason, Christopher Gunaseelan
2016-01-01
The Carnot cycle and its deduction of maximum conversion efficiency of heat inputted and outputted isothermally at different temperatures necessitated the construction of isothermal and adiabatic pathways within the cycle that were mechanically "reversible", leading eventually to the Kelvin-Clausius development of the entropy function S with differential dS = dq/T such that [symbol: see text]C dS = 0 where the heat absorption occurs at the isothermal paths of the elementary Carnot cycle. Another required condition is that the heat transfer processes take place infinitely slowly and "reversibly", implying that rates of transfer are not explicitly featured in the theory. The definition of 'heat' as that form of energy that is transferred as a result of a temperature difference suggests that the local mode of transfer of "heat" in the isothermal segments of the pathway implies a Fourier-like heat conduction mechanism which is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the conducting material, and which is deemed reversible mechanically. These paradoxes are circumvented here by first clarifying the terms used before modeling heat transfer as a thermodynamically reversible but mechanically irreversible process and applied to a one dimensional atomic lattice chain of interacting particles subjected to a temperature difference exemplifying Fourier heat conduction. The basis of a "recoverable trajectory" i.e. that which follows a zero entropy trajectory is identified. The Second Law is strictly maintained in this development. A corollary to this zero entropy trajectory is the generalization of the Zeroth law for steady state non-equilibrium systems with varying temperature, and thus to a statement about "equilibrium" in steady state non-thermostatic conditions. An energy transfer rate term is explicitly identified for each particle and agrees quantitatively (and independently) with the rate of heat absorbed at the
One-Particle Representation of Heat Conduction Described within the Scope of the Second Law.
Jesudason, Christopher Gunaseelan
2016-01-01
The Carnot cycle and its deduction of maximum conversion efficiency of heat inputted and outputted isothermally at different temperatures necessitated the construction of isothermal and adiabatic pathways within the cycle that were mechanically "reversible", leading eventually to the Kelvin-Clausius development of the entropy function S with differential dS = dq/T such that [symbol: see text]C dS = 0 where the heat absorption occurs at the isothermal paths of the elementary Carnot cycle. Another required condition is that the heat transfer processes take place infinitely slowly and "reversibly", implying that rates of transfer are not explicitly featured in the theory. The definition of 'heat' as that form of energy that is transferred as a result of a temperature difference suggests that the local mode of transfer of "heat" in the isothermal segments of the pathway implies a Fourier-like heat conduction mechanism which is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the conducting material, and which is deemed reversible mechanically. These paradoxes are circumvented here by first clarifying the terms used before modeling heat transfer as a thermodynamically reversible but mechanically irreversible process and applied to a one dimensional atomic lattice chain of interacting particles subjected to a temperature difference exemplifying Fourier heat conduction. The basis of a "recoverable trajectory" i.e. that which follows a zero entropy trajectory is identified. The Second Law is strictly maintained in this development. A corollary to this zero entropy trajectory is the generalization of the Zeroth law for steady state non-equilibrium systems with varying temperature, and thus to a statement about "equilibrium" in steady state non-thermostatic conditions. An energy transfer rate term is explicitly identified for each particle and agrees quantitatively (and independently) with the rate of heat absorbed at the
GRABER: The Duct Tape of Space and JIMO Heat Conducting Foam
NASA Technical Reports Server (NTRS)
Gamble, Eleanor A.
2004-01-01
Crack formation in the space shuttle's heat shield during flight poses a major safety concern to everyone on board. Cracking weakens the structure of the shield and lessens the protection it offers against the high temperatures and forces encountered during re-entry. Astronauts need a way to mend these cracks while in space. This is GRABER s function; it can be spackled into the cracks by an astronaut. The material then hardens, or cures, due to being in a vacuum and the heat encountered when it faces the sun. A great deal of work and testing is necessary to create a material that will be workable in a vacuum over a wide range of temperatures, will cure without cracking, will adhere to the sides of the crack, and that can withstand the extreme temperatures of re-entry. A Brookfield PVS Rheometer is being used to characterize GRABER's viscosity at various temperatures and stirring rates. Various compositions of GRABER are being heat treated in a vacuum to determine probably curing times in space. The microstructures of cured samples of each composition are being examined using both optical and electron microscopy. Jupiter s Icy Moon Orbiter (JIMO) will be lifting off sometime around 2013. JIMO will have more power than its predecessor, Galileo, allowing it to change orbits to circle three of Jupiter s moons. Both of the engine types being considered require large heat dissipation systems. These systems will be comprised of heat conductive tubing and plates with a liquid flowing through them. In order to maximize the speed of heat transfer between the tubes and the panels, the in-between areas will be filled with heat conductive silicon carbide foam. Two different foam systems are being considered for this foam. Currently, experimentation is underway with adding Sic, carbon, and carbon fibers to a two part fuel retardant foam. The foam is them pyrolized and its mass and dimensional changes are measured. The structure of the foam will be examined using optical and
Waite, W.F.; Stern, L.A.; Kirby, S.H.; Winters, W.J.; Mason, D.H.
2007-01-01
Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between −20°C and 17°C at 31.5 MPa. The pressure dependence was measured between 31.5 and 102 MPa at 14.4°C. Only weak temperature and pressure dependencies were observed. Methane hydrate thermal conductivity differs from that of water by less than 10 per cent, too little to provide a sensitive measure of hydrate content in water-saturated systems. Thermal diffusivity of methane hydrate is more than twice that of water, however, and its specific heat is about half that of water. Thus, when drilling into or through hydrate-rich sediment, heat from the borehole can raise the formation temperature more than 20 per cent faster than if the formation's pore space contains only water. Thermal properties of methane hydrate should be considered in safety and economic assessments of hydrate-bearing sediment.
Heat conductivity in graphene and related materials: A time-domain modal analysis
NASA Astrophysics Data System (ADS)
Gill-Comeau, Maxime; Lewis, Laurent J.
2015-11-01
We use molecular dynamics (MD) simulations to study heat conductivity in single-layer graphene and graphite. We analyze the MD trajectories through a time-domain modal analysis and show that this is essential for obtaining a reliable representation of the heat flow in graphene and graphite as it permits the proper treatment of collective vibrational excitations, in contrast to a frequency-domain formulation. Our temperature-dependent results are in very good agreement with experiment and, for temperatures in the range 300-1200 K, we find that the ZA branch allows more heat flow than all other branches combined while the contributions of the TA, LA, and ZO branches are comparable at all temperatures. Conductivity mappings reveal strong collective excitations associated with low-frequency ZA modes. We demonstrate that these collective effects are a consequence of the quadratic nature of the ZA branch as they also show up in graphite but are reduced in strained graphene, where the dispersion becomes linear, and are absent in diamond, where acoustic branches are linear. In general, neglecting collective excitations yields errors similar to those from the single-mode relaxation-time approximation.
A multilayer heat conduction solution for magneto-optical disk recording
NASA Astrophysics Data System (ADS)
Shih, O. W.
1994-05-01
The Green's function temperature expressions formulated by McGahan and Cole [J. Appl. Phys. 72, 1362 (1992)] are modified into a form suitable for solving the heat conduction problem encountered in magneto-optical (MO) disk recording situations. The temperature distribution within MO multilayer media heated by a pulsed scanning Gaussian laser beam is calculated by using Fourier-transformed Green's functions. The linear heat conduction equation is solved exactly not in real space but in frequency space. The temperature in real space is efficiently recovered by the inverse fast Fourier transform; numerical integrations are unnecessary. Optical absorption in MO media is calculated exactly. Realistic and piecewise-linear models of the laser pulse's time dependence are incorporated directly into the formalism. Elliptically shaped laser-beam cross sections are also easily included. At the same time, the extended method still preserves the conceptual simplicity and computational efficiency of the original theory. This paper describes the extended method, discusses some numerical issues arising from the modifications, and presents comparisons with previously published finite-difference calculations.
Tuan, P.C.; Ju, M.C.
2000-03-01
A novel adaptive and robust input estimation inverse methodology of estimating the time-varying unknown heat flux, named as the input, on the two active boundaries of a 2-D inverse heat conduction problem is presented. The algorithm includes using the Kalman filter to propose a regression model between the residual innovation and the two thermal unknown boundaries flux through given 2-D heat conduction state-space models and noisy measurement sequence. Based on this regression equation, a recursive least-square estimator (RLSE) weighted by the forgetting factor is proposed to on-line estimate these unknowns. The adaptive and robust weighting technique is essential since unknowns input are time-varied and have unpredictable changing status. In this article, the authors provide the bandwidth analysis together with bias and variance tests to construct an efficient and robust forgetting factor as the ratio between the standard deviation of measurement and observable bias innovation at each time step. Herein, the unknowns are robustly and adaptively estimated under the system involving measurement noise, process error, and unpredictable change status of time-varying unknowns. The capabilities of the proposed algorithm are demonstrated through the comparison with the conventional input estimation algorithm and validated by two benchmark performance tests in 2-D cases. Results show that the proposed algorithm not only exhibits superior robust capability but also enhances the estimation performance and highly facilitates practical implementation.
Transport properties, specific heat and thermal conductivity of GaN nanocrystalline ceramic
Sulkowski, Czeslaw; ChuchmaLa, Andrzej; Zaleski, Andrzej J.; Matusiak, Marcin; Mucha, Jan; GLuchowski, PaweL; Strek, WiesLaw
2010-10-15
The structural and transport properties (resistivity, thermopower and Hall effect), specific heat and thermal conductivity have been measured for GaN nanocrystalline ceramic prepared by hot pressing. It was found that the temperature dependence of resistivity in temperature range 10-300 K shows the very low activation energy, which is ascribed to the shallow donor doping originating in amorphous phase of sample. The major charge carriers are electrons, what is indicated by negative sign of Hall constant and Seebeck coefficient. The thermopower attains large values (-58 {mu}V/K at 300 K) and was characterized by linear temperature dependence which suggests the diffusion as a major contribution to Seebeck effect. The high electron concentration of 1.3x10{sup 19} cm{sup -3} and high electronic specific heat coefficient determined to be 2.4 mJ/molK{sup 2} allow to conclude that GaN ceramic demonstrates the semimetallic-like behavior accompanied by very small mobility of electrons ({approx}0.1 cm{sup 2}/V s) which is responsible for its high resistivity. A low heat conductivity of GaN ceramics is associated with partial amorphous phase of GaN grains due to high pressure sintering. - Graphical Abstract: Thermal resistivity and thermopower measurements indicates the high phonon scattering and lack of phonon-drag contribution to thermopower in GaN nanoceramics pressed under 4 GPa at 800 {sup o}C.
Wang, Jian; Olsen, Robert G; Tang, Juming; Tang, Zhongwei
2008-01-01
Experiments and computer simulations were conducted to systematically investigate the influence of mashed potato dielectric properties and circulating water electric conductivity on electromagnetic field distribution, heating rate, and heating pattern in packaged food during radio frequency (RF) heating processes in a 6 kW, 27 MHz laboratory scale RF heating system. Both experimental and simulation results indicated that for the selected food (mashed potato) in this study, the heating rate decreased with an increase of electric conductivity of circulating water and food salt content. Simplified analytical calculations were carried out to verify the simulation results, which further indicated that the electric field distribution in the mashed potato samples was also influenced by their dielectric properties and the electric conductivity of the surrounding circulating water. Knowing the influence of water electric conductivity and mashed potato dielectric properties on the heating rate and heating pattern is helpful in optimizing the radio frequency heating process by properly adjusting these factors. The results demonstrate that computer simulation has the ability to demonstrate influence on RF heat pattern caused by the variation of material physical properties and the potential to aid the improvement on construction and modification of RF heating systems.
Wang, Jian; Olsen, Robert G; Tang, Juming; Tang, Zhongwei
2008-01-01
Experiments and computer simulations were conducted to systematically investigate the influence of mashed potato dielectric properties and circulating water electric conductivity on electromagnetic field distribution, heating rate, and heating pattern in packaged food during radio frequency (RF) heating processes in a 6 kW, 27 MHz laboratory scale RF heating system. Both experimental and simulation results indicated that for the selected food (mashed potato) in this study, the heating rate decreased with an increase of electric conductivity of circulating water and food salt content. Simplified analytical calculations were carried out to verify the simulation results, which further indicated that the electric field distribution in the mashed potato samples was also influenced by their dielectric properties and the electric conductivity of the surrounding circulating water. Knowing the influence of water electric conductivity and mashed potato dielectric properties on the heating rate and heating pattern is helpful in optimizing the radio frequency heating process by properly adjusting these factors. The results demonstrate that computer simulation has the ability to demonstrate influence on RF heat pattern caused by the variation of material physical properties and the potential to aid the improvement on construction and modification of RF heating systems. PMID:19227075
Negative differential thermal conductance and heat amplification in superconducting hybrid devices
NASA Astrophysics Data System (ADS)
Fornieri, Antonio; Timossi, Giuliano; Bosisio, Riccardo; Solinas, Paolo; Giazotto, Francesco
2016-04-01
We investigate the thermal transport properties of a temperature-biased Josephson tunnel junction composed of two different superconductors. We show that this simple system can provide a large negative differential thermal conductance (NDTC) with a peak-to-valley ratio of ˜3 in the transmitted electronic heat current. The NDTC is then exploited to outline the caloritronic analog of the tunnel diode, which can exhibit a modulation of the output temperature as large as 80 mK at a bath temperature of 50 mK. Moreover, this device may work in a regime of thermal hysteresis that can be used to store information as a thermal memory. On the other hand, the NDTC effect offers the opportunity to conceive two different designs of a thermal transistor, which might operate as a thermal switch or as an amplifier/modulator. The latter shows a heat amplification factor >1 in a 500-mK-wide working region of the gate temperature. After the successful realization of heat interferometers and thermal diodes, this kind of structures would complete the conversion of the most important electronic devices in their thermal counterparts, breaking ground for coherent caloritronics nanocircuits where heat currents can be manipulated at will.
Layered thermal metamaterials for the directing and harvesting of conductive heat
NASA Astrophysics Data System (ADS)
Bandaru, P. R.; Vemuri, K. P.; Canbazoglu, F. M.; Kapadia, R. S.
2015-05-01
The utility of a metamaterial, assembled from two layers of nominally isotropic materials, for thermal energy re-orientation and harvesting is examined. A study of the underlying phenomena related to heat flux manipulation, exploiting the anisotropy of the thermal conductivity tensor, is a focus. The notion of the assembled metamaterial as an effective thermal medium forms the basis for many of these investigations and will be probed. An overarching aim is to implement in such thermal metamaterials, functionalities well known from light optics, such as reflection and refraction, which in turn may yield insights on efficient thermal lensing. Consequently, the harness and dissipation of heat, which are for example, of much importance in energy conservation and improving electrical device performance, may be accomplished. The possibilities of energy harvesting, through exploiting anisotropic thermopower in the metamaterials is also examined. The review concludes with a brief survey of the outstanding issues and insights needed for further progress.
An implicit-iterative solution of the heat conduction equation with a radiation boundary condition
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, D. M.
1977-01-01
For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.
Superadiabatic combustion in conducting tubes and heat exchangers of finite length
Schoegl, Ingmar; Ellzey, Janet L.
2007-10-15
Classic theories of combustion rely upon the principle that the maximum temperature attainable in a reaction is predicted by the adiabatic equilibrium temperature. In certain burner configurations, however, the maximum temperature may locally exceed this value by a significant amount due to heat recirculation, which has led to the concept of superadiabatic combustion. A striking aspect of this type of combustion is a broadening of the limits of flammability due to the accelerating effect of temperature increases on chemical reaction rates. In this paper, a simple analytical model is developed to study the superadiabatic performance of a combustor consisting of two parallel channels of finite length that are divided by a conducting wall. Assuming equal flow rates in the individual channels, the co-flow configuration is equivalent to combustion in conducting tubes, whereas the counterflow configuration is conceptually similar to a Swiss-roll burner. In both cases, the characteristics of superadiabatic combustion of a fuel-rich premixed fuel/air mixture are studied in terms of wall conductivity, heat transfer, and geometry of the combustor. (author)
Heat conduction in periodic laminates with probabilistic distribution of material properties
NASA Astrophysics Data System (ADS)
Ostrowski, Piotr; Jędrysiak, Jarosław
2016-09-01
This contribution deals with a problem of heat conduction in a two-phase laminate made of periodically distributed micro-laminas along one direction. In general, the Fourier's Law describing the heat conduction in a considered composite has highly oscillating and discontinuous coefficients. Therefore, the tolerance averaging technique (cf. Woźniak et al. in Thermomechanics of microheterogeneous solids and structures. Monografie - Politechnika Łódzka, Wydawnictwo Politechniki Łódzkiej, Łódź, 2008) is applied. Based on this technique, the averaged differential equations for a tolerance-asymptotic model are derived and solved analytically for given initial-boundary conditions. The second part of this contribution is an investigation of the effect of material properties ratio ω of two components on the total temperature field θ , by the assumption that conductivities of micro-laminas are not necessary uniquely described. Numerical experiments (Monte Carlo simulation) are executed under assumption that ω is a random variable with a fixed probability distribution. At the end, based on the obtained results, a crucial hypothesis is formulated.
Thermally conductive cementitious grouts for geothermal heat pumps. Progress report FY 1998
Allan, M.L.; Philippacopoulos, A.J.
1998-11-01
Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98. The developed thermally conductive grout consists of cement, water, a particular grade of silica sand, superplasticizer and a small amount of bentonite. While the primary function of the grout is to facilitate heat transfer between the U-loop and surrounding formation, it is also essential that the grout act as an effective borehole sealant. Two types of permeability (hydraulic conductivity) tests was conducted to evaluate the sealing performance of the cement-sand grout. Additional properties of the proposed grout that were investigated include bleeding, shrinkage, bond strength, freeze-thaw durability, compressive, flexural and tensile strengths, elastic modulus, Poisson`s ratio and ultrasonic pulse velocity.
NASA Technical Reports Server (NTRS)
Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.
2005-01-01
Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.
Laser heating of an absorbing and conducting media applied to laser flash property measurements
Gritzo, L.A.; Anderson, E.E.
1993-12-31
The laser flash technique is widely used for determining the thermal diffusivity of a sample. In this work, the temperature distribution throughout the sample is investigated, identifying localized, highly-heated regions near the front surface of the sample as a function of: (1) pulse duration, (2) incident beam uniformity, and (3) sample opacity. These high-temperature regions result in an increase in the uncertainty due to temperature-dependent properties, an increase in the heat loss from the sample, and an increased risk of sample damage. The temperature within a semi-transparent media is also investigated in order to establish a regime for which the media can reasonably be considered as opaque. This analysis illustrates that, for same total energy deposition, treatment of the incident energy as a continuous heat source, as opposed to an infinitesimal pulse of energy, results in a factor of 2 increase in the front surface temperature during heating. Also, for the same total energy deposition and approximate beam size, use of a Gaussian intensity distribution increases the front surface temperature during heating by more than a factor of 2 as compared to the use of a uniform temperature distribution. By analyzing the front surface temperature of an absorbing and conducting semi-transparent sample subjected to a Gaussian intensity distribution, it is concluded that the media can be treated as opaque, (i.e. the energy can be applied as a boundary condition) for {var_epsilon} = kd > 50, where k is the extinction coefficient and d is the beam diameter. For materials with a sufficiently small absorption coefficient and thermal diffusivity, a closed-form solution suitable for design use is presented for the front-surface temperature at a location coincident with the beam centerline.
NASA Astrophysics Data System (ADS)
Djibrilla Saley, A.; Jardani, A.; Soueid Ahmed, A.; Raphael, A.; Dupont, J. P.
2016-11-01
Estimating spatial distributions of the hydraulic conductivity in heterogeneous aquifers has always been an important and challenging task in hydrology. Generally, the hydraulic conductivity field is determined from hydraulic head or pressure measurements. In the present study, we propose to use temperature data as source of information for characterizing the spatial distributions of the hydraulic conductivity field. In this way, we performed a laboratory sandbox experiment with the aim of imaging the heterogeneities of the hydraulic conductivity field from thermal monitoring. During the laboratory experiment, we injected a hot water pulse, which induces a heat plume motion into the sandbox. The induced plume was followed by a set of thermocouples placed in the sandbox. After the temperature data acquisition, we performed a hydraulic tomography using the stochastic Hybrid Monte Carlo approach, also called the Hamiltonian Monte Carlo (HMC) algorithm to invert the temperature data. This algorithm is based on a combination of the Metropolis Monte Carlo method and the Hamiltonian dynamics approach. The parameterization of the inverse problem was done with the Karhunen-Loève (KL) expansion to reduce the dimensionality of the unknown parameters. Our approach has provided successful reconstruction of the hydraulic conductivity field with low computational effort.
Jia, Yonggao; Chen, Chao; Jia, Dan; Li, Shuxin; Ji, Shulin; Ye, Changhui
2016-04-20
The uniformity of the sheet resistance of transparent conductive films is one of the most important quality factors for touch panel applications. However, the uniformity of silver nanowire transparent conductive films is far inferior to that of indium-doped tin oxide (ITO). Herein, we report a dynamic heating method using infrared light to achieve silver nanowire transparent conductive films with high uniformity. This method can overcome the coffee ring effect during the drying process and suppress the aggregation of silver nanowires in the film. A nonuniformity factor of the sheet resistance of the as-prepared silver nanowire transparent conductive films could be as low as 6.7% at an average sheet resistance of 35 Ω/sq and a light transmittance of 95% (at 550 nm), comparable to that of high-quality ITO film in the market. In addition, a mechanical study shows that the sheet resistance of the films has little change after 5000 bending cycles, and the film could be used in touch panels for human-machine interactive input. The highly uniform and mechanically stable silver nanowire transparent conductive films meet the requirement for many significant applications and could play a key role in the display market in a near future. PMID:27054546
Analytical insight into the lattice thermal conductivity and heat capacity of monolayer MoS2
NASA Astrophysics Data System (ADS)
Saha, Dipankar; Mahapatra, Santanu
2016-09-01
We report, a detailed theoretical study on the lattice thermal conductivity of a suspended monolayer MoS2, far beyond its ballistic limit. The analytical approach adopted in this work mainly relies on the use of Boltzmann transport equation (BTE) within the relaxation time approximation (RTA), along with the first-principles calculations. Considering the relative contributions from the various in-plane and out-of-plane acoustic modes, we derive the closed-form expressions of the mode specific heat capacities, which we later use to obtain the phonon thermal conductivities of the monolayer MoS2. Besides finding the intrinsic thermal conductivity, we also analyse the effect of the phonon-boundary scattering, for different dimensions and edge roughness conditions. The viability of the semi-analytic solution of lattice thermal conductivity reported in this work ranges from a low temperature (T∼30 K) to a significantly high temperature (T∼550 K), and the room temperature (RT) thermal conductivity value has been obtained as 34.06 Wm-1K-1 which is in good agreement with the experimental result.
On the motion of viscous, compressible, and heat-conducting liquids
NASA Astrophysics Data System (ADS)
Feireisl, Eduard; Novotný, Antonín; Sun, Yongzhong
2016-08-01
We consider a system of equations governing the motion of a viscous, compressible, and heat conducting liquid-like fluid, with a general equation of state (EOS) of Mie-Grüneisen type. In addition, we suppose that the viscosity coefficients may decay to zero for large values of the temperature. We show the existence of global-in-time weak solution, derive a relative energy inequality, and compare the weak solutions with strong one emanating from the same initial data—the weak strong uniqueness property.
Anisotropy of heat conduction in the heavy fermion superconductor UPt3
NASA Astrophysics Data System (ADS)
Lussier, Benoit; Ellman, Brett; Taillefer, Louis
1994-12-01
We report on the first measurement of the anisotropy of heat conduction in a heavy fermion superconductor, performed on a single crystal of UPt3 with a current parallel and perpendicular to the hexagonal axis. Beyond the temperature-independent anisotropy of the normal state, a clear additional anisotropy develops in the superconducting state. This direct measure of gap anisotropy places precise constraints on the possible states for the two zero-field phases. An axial gap is excluded for both, and a comparison with existing calculations favors a d-wave gap for the low-temperature phase.
Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D
Cable, William; Romanovsky, Vladimir
2014-03-31
Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.
Multiple Integration of the Heat-Conduction Equation for a Space Bounded From the Inside
NASA Astrophysics Data System (ADS)
Kot, V. A.
2016-03-01
An N-fold integration of the heat-conduction equation for a space bounded from the inside has been performed using a system of identical equalities with definition of the temperature function by a power polynomial with an exponential factor. It is shown that, in a number of cases, the approximate solutions obtained can be considered as exact because their errors comprise hundredths and thousandths of a percent. The method proposed for N-fold integration represents an alternative to classical integral transformations.
Mathematical equations for heat conduction in the fins of air-cooled engines
NASA Technical Reports Server (NTRS)
Harper, R R; Brown, W B
1923-01-01
The problem considered in this report is that of reducing actual geometrical area of fin-cooling surface, which is, of course, not uniform in temperature, to equivalent cooling area at one definite temperature, namely, that prevailing on the cylinder wall at the point of attachment of the fin. This makes it possible to treat all the cooling surface as if it were part of the cylinder wall and 100 per cent effective. The quantities involved in the equations are the geometrical dimensions of the fin, thermal conductivity of the material composing it, and the coefficient of surface heat dissipation between the fin and the air streams.
Gartling, D.K.; Hogan, R.E.
1994-10-01
The theoretical and numerical background for the finite element computer program, COYOTE II, is presented in detail. COYOTE II is designed for the multi-dimensional analysis of nonlinear heat conduction problems and other types of diffusion problems. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in COYOTE II are also outlined. Instructions for use of the code are documented in SAND94-1179; examples of problems analyzed with the code are provided in SAND94-1180.
Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems
NASA Technical Reports Server (NTRS)
Padovan, Joe; Krishna, Lala
1986-01-01
To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.
Effects of friction and heat conduction on sound propagation in ducts
NASA Technical Reports Server (NTRS)
Huerre, P.; Karamcheti, K.
1975-01-01
A theoretical formulation of the propagation of sound in a viscous and heat conducting medium is presented. The problem is reduced to the determination of two scalar potentials related to pressure and entropy fluctuations respectively, and a vector potential related to vorticity fluctuations. The particular case of a two-dimensional duct of constant width is thoroughly investigated in the low, high, and very high frequency ranges. It is shown that three distinct families of modes may propagate along the duct axis, namely, pressure, entropy, and vorticity dominated modes. Perturbation methods are used to study the variations of attenuation rates, phase velocities, and mode shapes, as a function of frequency and duct width.
NASA Astrophysics Data System (ADS)
Alekseev, Gennady
2016-09-01
We consider the boundary value problem for stationary magnetohydrodynamic equations of electrically and heat conducting fluid under inhomogeneous mixed boundary conditions for electromagnetic field and temperature and Dirichlet condition for the velocity. The problem describes the thermoelectromagnetic flow of a viscous fluid in 3D bounded domain with the boundary consisting of several parts with different thermo- and electrophysical properties. The global solvability of the boundary value problem is proved and the apriori estimates of the solution are derived. The sufficient conditions on the data are established which provide a local uniqueness of the solution.
NASA Astrophysics Data System (ADS)
Alekseev, G. V.
2015-12-01
The boundary value problem for the stationary magnetohydrodynamics model of a viscous heatconducting fluid considered under inhomogeneous mixed boundary conditions for an electromagnetic field and the temperature and Dirichlet condition for the velocity is investigated. This problem describes the flow of an electricaland heat-conducting liquid in a bounded three-dimensional domain the boundary of which consists of several parts with different thermoand electrophysical properties. Sufficient conditions imposed on the initial data to provide for global solvability of the problem and local uniqueness of its solution are established.
Solution of the stationary 2D inverse heat conduction problem by Treffetz method
NASA Astrophysics Data System (ADS)
Cialkowski, Michael J.; Frąckowiak, Andrzej
2002-05-01
The paper presents analysis of a solution of Laplace equation with the use of FEM harmonic basic functions. The essence of the problem is aimed at presenting an approximate solution based on possibly large finite element. Introduction of harmonic functions allows to reduce the order of numerical integration as compared to a classical Finite Element Method. Numerical calculations conform good efficiency of the use of basic harmonic functions for resolving direct and inverse problems of stationary heat conduction. Further part of the paper shows the use of basic harmonic functions for solving Poisson’s equation and for drawing up a complete system of biharmonic and polyharmonic basic functions
NASA Astrophysics Data System (ADS)
Alekseev, Gennady
2016-04-01
We consider the boundary value problem for stationary magnetohydrodynamic equations of electrically and heat conducting fluid under inhomogeneous mixed boundary conditions for electromagnetic field and temperature and Dirichlet condition for the velocity. The problem describes the thermoelectromagnetic flow of a viscous fluid in 3D bounded domain with the boundary consisting of several parts with different thermo- and electrophysical properties. The global solvability of the boundary value problem is proved and the apriori estimates of the solution are derived. The sufficient conditions on the data are established which provide a local uniqueness of the solution.
NASA Astrophysics Data System (ADS)
Min, Dong; Shen, Jun; Lai, Shiqiang; Chen, Jie; Xu, Nan; Liu, Hui
2011-01-01
The effects of heat input on the low power Nd:YAG pulse laser conduction weldability of magnesium alloy AZ61 plates were investigated. The results show that for a hot-extruded AZ61 magnesium alloy plate laser conduction welding, the penetration depth and area of welds cross-section increased with an increase of the heat input. The microstructure of a band zone, which is located in the fusion zone (FZ) and close to the fusion boundary, evolved with an increase of the heat input. Moreover, an increase of the heat input increased the tendency of the formation of solidification cracking and liquation cracking. The porosities and average diameters of pores increased with an increase of the heat input but reduced sharply when a relatively large heat input was achieved. In addition, the degree of formation of craters increased linearly with an increase of the heat input.
One-Particle Representation of Heat Conduction Described within the Scope of the Second Law
Jesudason, Christopher Gunaseelan
2016-01-01
The Carnot cycle and its deduction of maximum conversion efficiency of heat inputted and outputted isothermally at different temperatures necessitated the construction of isothermal and adiabatic pathways within the cycle that were mechanically “reversible”, leading eventually to the Kelvin-Clausius development of the entropy function S with differential dS=dq/T such that ∮CdS=0 where the heat absorption occurs at the isothermal paths of the elementary Carnot cycle. Another required condition is that the heat transfer processes take place infinitely slowly and “reversibly”, implying that rates of transfer are not explicitly featured in the theory. The definition of ‘heat’ as that form of energy that is transferred as a result of a temperature difference suggests that the local mode of transfer of “heat” in the isothermal segments of the pathway implies a Fourier-like heat conduction mechanism which is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the conducting material, and which is deemed reversible mechanically. These paradoxes are circumvented here by first clarifying the terms used before modeling heat transfer as a thermodynamically reversible but mechanically irreversible process and applied to a one dimensional atomic lattice chain of interacting particles subjected to a temperature difference exemplifying Fourier heat conduction. The basis of a “recoverable trajectory” i.e. that which follows a zero entropy trajectory is identified. The Second Law is strictly maintained in this development. A corollary to this zero entropy trajectory is the generalization of the Zeroth law for steady state non-equilibrium systems with varying temperature, and thus to a statement about “equilibrium” in steady state non-thermostatic conditions. An energy transfer rate term is explicitly identified for each particle and agrees quantitatively (and independently) with the rate of heat absorbed at
NASA Astrophysics Data System (ADS)
Machrafi, H.; Lebon, G.
2016-09-01
A modelling of the thermal conductivity of nanofluids based on extended irreversible thermodynamics is proposed with emphasis on the role of several coupled heat transfer mechanisms: liquid interfacial layering between nanoparticles and base fluid, particles agglomeration and Brownian motion. The relative importance of each specific mechanism on the enhancement of the effective thermal conductivity is examined. It is shown that the size of the nanoparticles and the liquid boundary layer around the particles play a determining role. For nanoparticles close to molecular range, the Brownian effect is important. At nanoparticles of the order of 1-100 nm, both agglomeration and liquid layering are influent. Agglomeration becomes the most important mechanism at nanoparticle sizes of the order of 100 nm and higher. The theoretical considerations are illustrated by three case studies: suspensions of alumina rigid spherical nanoparticles in water, ethylene glycol and a 50/50w% water/ethylene glycol mixture, respectively, good agreement with experimental data is observed.
Effects of preheating and highly heat-conductive brick on coke quality
Fukuda, K.; Arima, T.
1995-12-31
In replacing the coke ovens available currently, the introduction of a combined technique of a preheated coal charging method (preheating temperature:175 C) and the use of highly heat-conductive brick is under examination for raising the productivity of coke ovens. With such background, a study of the effects of this combined technique on the coke quality, especially the coke size was conducted. The experimental results revealed that the primary size of coke produced by the combined technique is noticeably larger than that of the coke made from wet coal and after five revolutions of drum (equivalent to mechanical impact given at a time of dropping from coke oven chamber to wharf), the coke size reduces even compared with an ordinary coke. This may be due to the fact that the coke produced by the combined technique includes a lot of fissures inside the coke lump.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.
NASA Technical Reports Server (NTRS)
Perkins, R. A.; Cieszkiewicz, M. T.
1991-01-01
Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.
AC-Conductivity Measure from Heat Production of Free Fermions in Disordered Media
NASA Astrophysics Data System (ADS)
Bru, J.-B.; de Siqueira Pedra, W.; Hertling, C.
2016-05-01
We extend (Bru et al. in J Math Phys 56:051901-1-51, 2015) in order to study the linear response of free fermions on the lattice within a (independently and identically distributed) random potential to a macroscopic electric field that is time- and space-dependent. We obtain the notion of a macroscopic AC-conductivity measure which only results from the second principle of thermodynamics. The latter corresponds here to the positivity of the heat production for cyclic processes on equilibrium states. Its Fourier transform is a continuous bounded function which is naturally called (macroscopic) conductivity. We additionally derive Green-Kubo relations involving time-correlations of bosonic fields coming from current fluctuations in the system. This is reminiscent of non-commutative central limit theorems.
Numerical model of heat conduction in active volcanoes induced by magmatic activity
NASA Astrophysics Data System (ADS)
Atmojo, Antono Arif; Rosandi, Yudi
2015-09-01
We study the heat transfer mechanism of active volcanoes using the numerical thermal conduction model. A 2D model of volcano with its conduit filled by magma is considered, and acts as a constant thermal source. The temperature of the magma activity diffuses through the rock layers of the mountain to the surface. The conduction equation is solved using finite-difference method, with some adaptations to allow temperature to flow through different materials. Our model allows to simulate volcanoes having dikes, branch-pipes, and sills by constructing the domain appropriately, as well as layers with different thermal properties. Our research will show the possibility to monitor magma activity underneath a volcano by probing its surface temperature. The result of our work will be very useful for further study of volcanoes, eruption prediction, and volcanic disaster mitigation.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1999-01-01
Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.
NASA Astrophysics Data System (ADS)
Tatsii, R. M.; Pazen, O. Yu.
2016-03-01
A constructive scheme for the construction of a solution of a mixed problem for the heat conduction equation with piecewise-continuous coefficients coordinate-dependent in the final interval is suggested and validated in the present work. The boundary conditions are assumed to be most general. The scheme is based on: the reduction method, the concept of quasi-derivatives, the currently accepted theory of the systems of linear differential equations, the Fourier method, and the modified method of eigenfunctions. The method based on this scheme should be related to direct exact methods of solving mixed problems that do not employ the procedures of constructing Green's functions or integral transformations. Here the theorem of eigenfunction expansion is adapted for the case of coefficients that have discontinuity points of the 1st kind. The results obtained can be used, for example, in investigating the process of heat transfer in a multilayer slab under conditions of ideal thermal contact between the layers. A particular case of piecewise-continuous coefficients is considered. A numerical example of calculation of a temperature field in a real four-layer building slab under boundary conditions of the 3rd kind (conditions of convective heat transfer) that model the phenomenon of fire near one of the external surfaces is given.
Contribution of inter- and intramolecular energy transfers to heat conduction in liquids
NASA Astrophysics Data System (ADS)
Torii, Daichi; Nakano, Takeo; Ohara, Taku
2008-01-01
The molecular dynamics expression of heat flux, originally derived by Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)] for pairwise potentials, is generalized in this paper for systems with many-body potentials. The original formula consists of a kinetic part and a potential part, and the latter term is found in the present study to be expressible as a summation of contributions from all the many-body potentials defined in the system. The energy transfer among a set of sites for which a many-body potential is defined is discussed and evaluated by the rate of increase in the kinetic energy of each site due to the potential, and its accumulation over all the potentials in the system is shown to make up the potential part of the generalized expression. A molecular dynamics simulation for liquid n-octane was performed to demonstrate the applicability of the new expression obtained in this study to measure the heat flux and to elucidate the contributions of inter- and intramolecular potentials to heat conduction.
Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps
NASA Astrophysics Data System (ADS)
Song, Bai; Thompson, Dakotah; Fiorino, Anthony; Ganjeh, Yashar; Reddy, Pramod; Meyhofer, Edgar
2016-06-01
Recent experiments have demonstrated that radiative heat transfer between objects separated by nanometre-scale gaps considerably exceeds the predictions of far-field radiation theories. Exploiting this near-field enhancement is of great interest for emerging technologies such as near-field thermophotovoltaics and nano-lithography because of the expected increases in efficiency, power conversion or resolution in these applications. Past measurements, however, were performed using tip-plate or sphere-plate configurations and failed to realize the orders of magnitude increases in radiative heat currents predicted from near-field radiative heat transfer theory. Here, we report 100- to 1,000-fold enhancements (at room temperature) in the radiative conductance between parallel-planar surfaces at gap sizes below 100 nm, in agreement with the predictions of near-field theories. Our measurements were performed in vacuum gaps between prototypical materials (SiO2–SiO2, Au–Au, SiO2–Au and Au–Si) using two microdevices and a custom-built nanopositioning platform, which allows precise control over a broad range of gap sizes (from <100 nm to 10 μm). Our experimental set-up will enable systematic studies of a variety of near-field-based thermal phenomena, with important implications for thermophotovoltaic applications, that have been predicted but have defied experimental verification.
NASA Astrophysics Data System (ADS)
Held, M.; Wiesenberger, M.; Stegmeir, A.
2016-02-01
We present and discuss three discontinuous Galerkin (dG) discretizations for the anisotropic heat conduction equation on non-aligned cylindrical grids. Our non-aligned scheme relies on a self-adjoint local dG (LDG) discretization of the elliptic operator. It conserves the energy exactly and converges with arbitrary order. The pollution by numerical perpendicular heat fluxes decreases with superconvergence rates. We compare this scheme with aligned schemes that are based on the flux-coordinate independent approach for the discretization of parallel derivatives. Here, the dG method provides the necessary interpolation. The first aligned discretization can be used in an explicit time-integrator. However, the scheme violates conservation of energy and shows up stagnating convergence rates for very high resolutions. We overcome this partly by using the adjoint of the parallel derivative operator to construct a second self-adjoint aligned scheme. This scheme preserves energy, but reveals unphysical oscillations in the numerical tests, which result in a decreased order of convergence. Both aligned schemes exhibit low numerical heat fluxes into the perpendicular direction and are superior for flute-modes with finite parallel gradients. We build our argumentation on various numerical experiments on all three schemes for a general axisymmetric magnetic field, which is closed by a comparison to the aligned finite difference (FD) schemes of Stegmeir et al. (2014) and Stegmeir et al. (submitted for publication).
Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps
NASA Astrophysics Data System (ADS)
Song, Bai; Thompson, Dakotah; Fiorino, Anthony; Ganjeh, Yashar; Reddy, Pramod; Meyhofer, Edgar
2016-06-01
Recent experiments have demonstrated that radiative heat transfer between objects separated by nanometre-scale gaps considerably exceeds the predictions of far-field radiation theories. Exploiting this near-field enhancement is of great interest for emerging technologies such as near-field thermophotovoltaics and nano-lithography because of the expected increases in efficiency, power conversion or resolution in these applications. Past measurements, however, were performed using tip-plate or sphere-plate configurations and failed to realize the orders of magnitude increases in radiative heat currents predicted from near-field radiative heat transfer theory. Here, we report 100- to 1,000-fold enhancements (at room temperature) in the radiative conductance between parallel-planar surfaces at gap sizes below 100 nm, in agreement with the predictions of near-field theories. Our measurements were performed in vacuum gaps between prototypical materials (SiO2-SiO2, Au-Au, SiO2-Au and Au-Si) using two microdevices and a custom-built nanopositioning platform, which allows precise control over a broad range of gap sizes (from <100 nm to 10 μm). Our experimental set-up will enable systematic studies of a variety of near-field-based thermal phenomena, with important implications for thermophotovoltaic applications, that have been predicted but have defied experimental verification.
NASA Astrophysics Data System (ADS)
Nath, G.; Vishwakarma, J. P.
2014-05-01
The propagation of a spherical (or cylindrical) shock wave in a non-ideal gas with heat conduction and radiation heat-flux, in the presence of a spacially decreasing azimuthal magnetic field, driven out by a moving piston is investigated. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. The shock wave moves with variable velocity and the total energy of the wave is non-constant. Similarity solutions are obtained for the flow-field behind the shock and the effects of variation of the heat transfer parameters, the parameter of the non-idealness of the gas, both, decreases the compressibility of the gas and hence there is a decrease in the shock strength. Further, it is investigated that with an increase in the parameters of radiative and conductive heat transfer the tendency of formation of maxima in the distributions of heat flux, density and isothermal speed of sound decreases. The pressure and density vanish at the inner surface (piston) and hence a vacuum is form at the center of symmetry. The shock waves in conducting non-ideal gas with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, nuclear explosion, chemical detonation, rupture of a pressurized vessels, in the analysis of data from exploding wire experiments, and cylindrically symmetric hypersonic flow problems associated with meteors or reentry vehicles, etc. The findings of the present works provided a clear picture of whether and how the non-idealness parameter, conductive and radiative heat transfer parameters and the magnetic field affect the flow behind the shock
Gao, Zhibin; Li, Nianbei; Li, Baowen
2016-02-01
The ding-a-ling model is a kind of half lattice and half hard-point-gas (HPG) model. The original ding-a-ling model proposed by Casati et al. does not conserve total momentum and has been found to exhibit normal heat conduction behavior. Recently, a modified ding-a-ling model which conserves total momentum has been studied and normal heat conduction has also been claimed. In this work, we propose a full-lattice ding-a-ling model without hard point collisions where total momentum is also conserved. We investigate the heat conduction and energy diffusion of this full-lattice ding-a-ling model with three different nonlinear inter-particle potential forms. For symmetrical potential lattices, the thermal conductivities diverges with lattice length and their energy diffusions are superdiffusive signaturing anomalous heat conduction. For asymmetrical potential lattices, although the thermal conductivity seems to converge as the length increases, the energy diffusion is definitely deviating from normal diffusion behavior indicating anomalous heat conduction as well. No normal heat conduction behavior can be found for the full-lattice ding-a-ling model.
Gao, Zhibin; Li, Nianbei; Li, Baowen
2016-02-01
The ding-a-ling model is a kind of half lattice and half hard-point-gas (HPG) model. The original ding-a-ling model proposed by Casati et al. does not conserve total momentum and has been found to exhibit normal heat conduction behavior. Recently, a modified ding-a-ling model which conserves total momentum has been studied and normal heat conduction has also been claimed. In this work, we propose a full-lattice ding-a-ling model without hard point collisions where total momentum is also conserved. We investigate the heat conduction and energy diffusion of this full-lattice ding-a-ling model with three different nonlinear inter-particle potential forms. For symmetrical potential lattices, the thermal conductivities diverges with lattice length and their energy diffusions are superdiffusive signaturing anomalous heat conduction. For asymmetrical potential lattices, although the thermal conductivity seems to converge as the length increases, the energy diffusion is definitely deviating from normal diffusion behavior indicating anomalous heat conduction as well. No normal heat conduction behavior can be found for the full-lattice ding-a-ling model. PMID:26986283
Advanced development of the boundary element method for steady-state heat conduction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, Prasanta K.
1989-01-01
Considerable progress has been made in recent years toward advancing the state-of-the-art in solid mechanics boundary element technology. In the present work, much of this new technology is applied in the development of a general-purpose boundary element method (BEM) for steady-state heat conduction. In particular, the BEM implementation involves the use of higher-order conforming elements, self-adaptive integration and multi-region capability. Two- and three-dimensional, as well as axisymmetric analysis, are incorporated within a unified framework. In addition, techniques are introduced for the calculation of boundary flux, and for the inclusion of thermal resistance across interfaces. As a final extension, an efficient formulation is developed for the analysis of solid three-dimensional bodies with embedded holes. For this last class of problems, the new BEM formulation is particularly attractive, since use of the alternatives (i.e. finite element or finite difference methods) is not practical. A number of detailed examples illustrate the suitability and robustness of the present approach for steady-state heat conduction.
NASA Technical Reports Server (NTRS)
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
NASA Astrophysics Data System (ADS)
Vermeersch, Bjorn; Mohammed, Amr M. S.; Pernot, Gilles; Koh, Yee Rui; Shakouri, Ali
2015-02-01
Nearly all experimental observations of quasiballistic heat flow are interpreted using Fourier theory with modified thermal conductivity. Detailed Boltzmann transport equation (BTE) analysis, however, reveals that the quasi-ballistic motion of thermal energy in semiconductor alloys is no longer Brownian but instead exhibits Lévy dynamics with fractal dimension α <2 . Here, we present a framework that enables full three-dimensional experimental analysis by retaining all essential physics of the quasiballistic BTE dynamics phenomenologically. A stochastic process with just two fitting parameters describes the transition from pure Lévy superdiffusion as short length and time scales to regular Fourier diffusion. The model provides accurate fits to time domain thermoreflectance raw experimental data over the full modulation frequency range without requiring any "effective" thermal parameters and without any a priori knowledge of microscopic phonon scattering mechanisms. Identified α values for InGaAs and SiGe match ab initio BTE predictions within a few percent. Our results provide experimental evidence of fractal Lévy heat conduction in semiconductor alloys. The formalism additionally indicates that the transient temperature inside the material differs significantly from Fourier theory and can lead to improved thermal characterization of nanoscale devices and material interfaces.
Effects of heat conduction and radical quenching on premixed stagnation flame stabilised by a wall
NASA Astrophysics Data System (ADS)
Zhang, Huangwei; Chen, Zheng
2013-08-01
The premixed stagnation flame stabilised by a wall is analysed theoretically considering thermally sensitive intermediate kinetics. We consider the limit case of infinitely large activation energy of the chain-branching reaction, in which the radical is produced infinitely fast once the cross-over temperature is reached. Under the assumptions of potential flow field and constant density, the correlation for flame position and stretch rate of the premixed stagnation flame is derived. Based on this correlation, the effects of heat conduction and radical quenching on the wall surface are examined. The wall temperature is shown to have great impact on flame bifurcation and extinction, especially when the flame is close to the wall. Different flame structures are observed for near-wall normal flame, weak flame, and critically quenched flame. The fuel and radical Lewis numbers are found to have opposite effects on the extinction stretch rate. Moreover, it is also demonstrated that only when the flame is close to the wall does the radical quenching strongly influence the flame bifurcation and extinction. The extinction stretch rate is shown to decrease with the amount of radical quenching for different fuel and radical Lewis numbers. Besides, the coupling between the wall heat conduction and radical quenching is found to greatly influence the bifurcation and extinction of the premixed stagnation flame.
Analytical Solution for Three-Dimensional, Unsteady Heat Conduction in a Multilayer Sphere
Singh, Suneet; Jain, Prashant K.; Uddin, Rizwan
2016-06-07
An analytical solution has been obtained for the transient problem of three-dimensional multilayer heat conduction in a sphere with layers in the radial direction. The solution procedure can be applied to a hollow sphere or a solid sphere composed of several layers of various materials. In general, the separation of variables applied to 3D spherical coordinates has unique characteristics due to the presence of associated Legendre functions as the eigenfunctions. Moreover, an eigenvalue problem in the azimuthal direction also requires solution; again, its properties are unique owing to periodicity in the azimuthal direction. Therefore, extending existing solutions in 2D sphericalmore » coordinates to 3D spherical coordinates is not straightforward. In a spherical coordinate system, one can solve a 3D transient multilayer heat conduction problem without the presence of imaginary eigenvalues. A 2D cylindrical polar coordinate system is the only other case in which such multidimensional problems can be solved without the use of imaginary eigenvalues. The absence of imaginary eigenvalues renders the solution methodology significantly more useful for practical applications. The methodology described can be used for all three types of boundary conditions in the outer and inner surface of the sphere. Lastly, the solution procedure is demonstrated on an illustrative problem for which results are obtained.« less
Contribution of moving speed of vacuum arc cathode spot to the heat conduction process
NASA Astrophysics Data System (ADS)
Nagasawa, Chihiro; Yamamoto, Shinji; Iwao, Toru
2015-11-01
Thermal spraying has been widely used because it can give various functions by coating materials on the surface. It is necessary to remove an oxide layer and form a roughness. However, the blast has problems that occurs crushing and wear of the particles, and residual grid becomes a starting point of rust and peeling. The pretreatment with vacuum arc cathode spot is focused by this problem. Cathode spot with high energy density evaporates the oxide layer and melts the bulk for roughness. However, this process is believed that surface state is changed by the power density and sojourn time because the roughness depends on the location. It remains to be elucidated the formation factor of roughness and removal process. Therefore, the models of heat conduction process and vapor mixed affected by moving speed were proposed. To elucidate the formation factor of roughness and removal process, the contribution of moving speed to the heat conduction process is analyzed. As a result, the molten depth, width, and volume depend on the moving speed.
TOODEE: A two-dimensional, time-dependent heat conduction program
Sackett, B.J.; Ambrosek, R.G.
1990-01-01
TOODEE is a two-dimensional, time-dependent heat conduction computer program written in FORTRAN. This program is suitable for investigating general transient and/or steady-state problems. Typical of (but not limited to) the type of problems for which the program has been used are the calculation of temperature distributions in reactor fuel elements during power excursions. The mesh for the program is formed by variably spaced orthogonal curves in either slab or cylindrical geometry. The cylindrical geometry may be either axisymmetric, with space variables R-Z, or polar, with space variables R-{theta}. Conditions to be specified independently at each boundary are either surface temperatures or heat transfer coefficients and either exterior temperatures of flow rates. Materials and coolant properties required in the program are evaluated from FORTRAN arithmetic functions supplied by the user. These properties may be time and/or temperature dependent. In addition, nonisotropic thermal conductivities and expansion coefficients may be defined. Phase changes are permitted in all materials except coolants. 6 refs.
Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers
NASA Astrophysics Data System (ADS)
Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.
2015-11-01
This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced
Modal Contributions to Heat Conduction across Crystalline and Amorphous Si/Ge Interfaces
NASA Astrophysics Data System (ADS)
Gordiz, Kiarash; Henry, Asegun
Until now, our entire understanding of interfacial heat transfer has been based on the phonon gas model and Landauer formalism. Based on this framework, it is difficult to offer any intuition on heat transfer between two solid materials if one side of the interface is an amorphous structure. Here, using the interface conductance modal analysis (ICMA) method, we investigate the modal contributions to thermal interface conductance (TIC) through crystalline (c) and amorphous (a) Si/Ge interfaces. It is revealed that around 15% of the conductance through the cSi/cGe interface arises from less than 0.1% of the modes of vibration in the structure that exist between 12-13THz and because of their large eigenvectors around the interface are classified as interfacial modes. Correlation maps show that these interfacial modes exhibit strong correlations with all the other modes. The physics behind this strong coupling ability is studied by calculating the mode-level harmonic and anharmonic energy distribution among all the atoms in the system. It is found that these interfacial modes are enabled by the large degree of anharmonicity near the interface, which is higher than the bulk and ultimately allows this small group of modes to couple to other modes of vibration. In addition, unlike the cSi/cGe, correlation maps for aSi/cGe, cSi/aGe, and aSi/aGe interfaces show that the majority of contributions to TIC arise from auto-correlations instead of cross-correlations. The provided analysis sheds light on the nature of localized vibrations at interfaces and can be enlightening for other investigations of localization.
Nathenson, Menuel; Tilling, Robert I.; ,
1993-01-01
A steady-state solution for heat transfer from an isothermal, spherical magma chamber, with an imposed regional geothermal gradient far from the chamber, is developed. The extensive published heat-flow data set for Mount Hood, Oregon, is dominated by conductive heat transfer in the deeper parts of most drill holes and provides an ideal application of such a model. Magma-chamber volumes or depths needed to match the distribution of heat-flow data are larger or shallower than those inferred from geologic evidence.
Sapelkin, V.A.; Sergeev, Yu.V.
1988-03-01
The conjugate problem of nonsteady heat transfer between a laminar boundary layer with a pressure gradient and a wall with stepwise change in its thermophysical properties (heat conduction and volume specific heat) in the longitudinal direction is solved by the finite-difference method for an incompressible liquid and a wall whose internal surface is heat insulated. The results of the calculations show that the reaction of the thermal boundary layer to discontinuity in the thermophysical properties of the wall is nonunique and multi-parametric. Since these parameters determine the thickness of the thermal boundary layer it may be concluded that thin thermal boundary layers react more strongly than thick layers.
NASA Astrophysics Data System (ADS)
Singh, K. K.; Nath, B.
2014-07-01
A self-similar solution for the propagation of a shock wave driven by a cylindrical piston moving according to exponential temporal law in a nonideal rotating gas with heat conduction and radiation heat fluxes is investigated. The density and angular velocity of the ambient medium are assumed to be constant. Heat conduction is expressed in terms of the Fourier law, and radiation is considered to be of diffusion type for an optically thick gray gas model. The thermal conductivity and absorption coefficient are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variations in the heat transfer parameters and gas nonidealness on the flow variables in the region behind the shock are investigated.
LDEF (Flight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09
NASA Technical Reports Server (NTRS)
1990-01-01
LDEF (Flight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 EL-1994-00020 LDEF (Flight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 The flight photograph of the Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays right flange and lower flange appear to be slightly discolored. The LDEF structure, top intercostal, has a dark brown discoloration adjacent to the black thermal panel. Aluminum particles from the degraded CVCHPE thermal blanket are also visible in this area. The Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) occupies a 6 inch deep LDEF peripheral experiment tray and consist of two series connected variable conductance heatpipes, a black chrome solar collector panel and a silvered TEFLON® radiator panel, a power source to support six thermistor-type temperature monitoring sensors and actuations of two valves. Fiberglass standoffs and internal insulation blankets thermally isolated the experiment from the experiment tray and the LDEF interior. The outside of the CVCHPE, except the collector and radiator panels, was covered with an aluminumized Kapton multilayer insulation (MLI) blanket with an outer layer of 0.076 mm thick Kapton. The two patches of thin film materials, part of an atomic oxygen experiment (see S1001) by NASA GSFC, were attached to the cover of the external thermal blanket with Kapton tape. The experiment was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners. The external CVCHPE materials have changed significantly. The Kapton on the thermal blanket aluminized Kapton cover appears to be completely eroded, except under Kel-F buttons used to secure the blanket, leaving only the very thin vapor deposited aluminum coating as a cover. Parts of the aluminum coating residue has moved to
Enhanced electrical conductivities of N-doped carbon nanotubes by controlled heat treatment.
Fujisawa, Kazunori; Tojo, Tomohiro; Muramatsu, Hiroyuki; Elías, Ana L; Vega-Díaz, Sofía M; Tristán-López, Ferdinando; Kim, Jin Hee; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio
2011-10-01
The thermal stability of nitrogen (N) functionalities on the sidewalls of N-doped multi-walled carbon nanotubes was investigated at temperatures ranging between 1000 °C and 2000 °C. The structural stability of the doped tubes was then correlated with the electrical conductivity both at the bulk and at the individual tube levels. When as-grown tubes were thermally treated at 1000 °C, we observed a very significant decrease in the electrical resistance of the individual nanotubes, from 54 kΩ to 0.5 kΩ, which is attributed to a low N doping level (e.g. 0.78 at% N). We noted that pyridine-type N was first decomposed whereas the substitutional N was stable up to 1500 °C. For nanotubes heat treated to 1800 °C and 2000 °C, the tubes exhibited an improved degree of crystallinity which was confirmed by both the low R value (I(D)/I(G)) in the Raman spectra and the presence of straight graphitic planes observed in TEM images. However, N atoms were not detected in these tubes and caused an increase in their electrical resistivity and resistance. These partially annealed doped tubes with enhanced electrical conductivities could be used in the fabrication of robust and electrically conducting composites, and these results could be extrapolated to N-doped graphene and other nanocarbons.
Heating of a thermally conducting stratified medium. II. A simple plane model of an atmosphre
Lerche, I.; Low, B.C.
1980-10-01
Exact solutions of the following theroretical problem are present: A plane atmosphere is in hydrostatic equilibrium with a uniform gravity. The ideal gas law is assumed. Heat is generated everywhere at a rate proportional to the local density. The atmosphere is maintained in a steady state through cooling by thermal conduction and radiation. This problem is reducible to quadratures for a thermal conductivity which is an arbitrary, but prescribed, function of the temperature, and for a radiative loss which is expressible as the product of the density and an arbitrary, but prescribed, function of the pressure. The analysis is carried out for the case of power law thermal conductivity, and a radiative loss proportional to the square of the density and to the first power of the temperature. The radiative cooling function adopted here has the basic mathematical form for an optically thin medium. The solutions reproduce the macroscopic ordering of a hot ''corona'' separated from a ''photosphere'' by a layer of temperature minimum. The analytic solutions allow direct illustration of the interplay between steady energy transport and the requirements of hydorstatic equilibrium.
Zhijie Xu
2014-07-01
We present a new stochastic analysis for steady and transient one-dimensional heat conduction problem based on the homogenization approach. Thermal conductivity is assumed to be a random field K consisting of random variables of a total number N. Both steady and transient solutions T are expressed in terms of the homogenized solution (symbol) and its spatial derivatives (equation), where homogenized solution (symbol) is obtained by solving the homogenized equation with effective thermal conductivity. Both mean and variance of stochastic solutions can be obtained analytically for K field consisting of independent identically distributed (i.i.d) random variables. The mean and variance of T are shown to be dependent only on the mean and variance of these i.i.d variables, not the particular form of probability distribution function of i.i.d variables. Variance of temperature field T can be separated into two contributions: the ensemble contribution (through the homogenized temperature (symbol)); and the configurational contribution (through the random variable Ln(x)Ln(x)). The configurational contribution is shown to be proportional to the local gradient of (symbol). Large uncertainty of T field was found at locations with large gradient of (symbol) due to the significant configurational contributions at these locations. Numerical simulations were implemented based on a direct Monte Carlo method and good agreement is obtained between numerical Monte Carlo results and the proposed stochastic analysis.
Heat capacity, enthalpy of mixing, and thermal conductivity of Hg(1-x)Cd(x)Te pseudobinary melts
NASA Technical Reports Server (NTRS)
Su, Ching-Hua
1986-01-01
Heat capacity and enthalpy of mixing of Hg(1-x)Cd(x)Te pseudobinary melts were calculated assuming an associated solution model for the liquid phase. The thermal conductivity of the pseudobinary melts for x = 0, 0.05, 0.1, and 0.2 was then calculated from the heat capacity values and the experimental values of thermal diffusivity and density for these melts. The thermal conductivity for the pseudobinary solid solution is also discussed.
NASA Astrophysics Data System (ADS)
Zhukov, V. T.; Zabrodin, A. V.; Feodoritova, O. B.
1993-08-01
An algorithm is proposed for the numerical solution of two-dimensional equations of gas dynamics with heat conduction in domains of complex configurations with movable boundaries. The algorithm employs a difference scheme which is constructed on a movable curvilinear grid using conservation laws and is adapted to the characteristics of the solution. A set of software written in FORTRAN has been developed for calculating heat-conducting flows.
Hosseini Koupaie, E; Eskicioglu, C
2015-01-01
This research provides a comprehensive comparison between microwave (MW) and conductive heating (CH) sludge pretreatments under identical heating/cooling profiles at below and above boiling point temperatures. Previous comparison studies were constrained to an uncontrolled or a single heating rate due to lack of a CH equipment simulating MW under identical thermal profiles. In this research, a novel custom-built pressure-sealed vessel which could simulate MW pretreatment under identical heating/cooling profiles was used for CH pretreatment. No statistically significant difference was proven between MW and CH pretreatments in terms of sludge solubilization, anaerobic biogas yield and organics biodegradation rate (p-value>0.05), while statistically significant effects of temperature and heating rate were observed (p-value<0.05). These results explain the contradictory results of previous studies in which only the final temperature (not heating/cooling rates) was controlled.
NASA Astrophysics Data System (ADS)
Kosaka, Masataka; Monde, Masanori
2015-11-01
For safe and fast fueling of hydrogen in a fuel cell electric vehicle at hydrogen fueling stations, an understanding of the heat transferred from the gas into the tank wall (carbon fiber reinforced plastic (CFRP) material) during hydrogen fueling is necessary. Its thermal properties are needed in estimating heat loss accurately during hydrogen fueling. The CFRP has anisotropic thermal properties, because it consists of an adhesive agent and layers of the CFRP which is wound with a carbon fiber. In this paper, the thermal diffusivity and thermal conductivity of the tank wall material were measured by an inverse solution for one-dimensional unsteady heat conduction. As a result, the thermal diffusivity and thermal conductivity were 2.09 × 10^{-6}{ m}2{\\cdot }{s}^{-1} and 3.06{ W}{\\cdot }{m}{\\cdot }^{-1}{K}^{-1} for the axial direction, while they were 6.03 × 10^{-7} {m}2{\\cdot }{s}^{-1} and 0.93 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} for the radial direction. The thermal conductivity for the axial direction was about three times higher than that for the radial direction. The thermal diffusivity shows the same trend in both directions because the thermal capacity, ρ c, is independent of direction, where ρ is the density and c is the heat capacity.
NASA Astrophysics Data System (ADS)
Rainey, Emma Sojourner Gage
The thermal conductivity of the Earth's lowermost mantle controls the rate of heat flow across the core-mantle boundary, and is thus a critical parameter for determining the core and mantle thermal state and evolution. This parameter and its dependence on pressure, temperature, and composition are poorly known, in part due to the inherent difficulties in determining thermal conductivities at the high pressures and temperatures (135 GPa and 3800 K) that occur at the base of the mantle. In this dissertation I estimate the thermal conductivity of the lower mantle using measurements of the thermal conductivity of MgO and (Mg,Fe)SiO3 perovskite made at high pressure and high temperature in the laser-heated diamond anvil cell. Using three-dimensional heat flow modeling, I demonstrate that the steady-state temperature distributions that form during laser heating experiments in the diamond anvil cell depend on the sample thermal conductivity as well as the experimental geometry. Relative thermal conductivity can be determined by comparing measured temperature vs. laser power curves with a numerical model. I use this technique to determine the pressure-dependence of thermal conductivity of MgO and (Mg,Fe)SiO3 perovskite, and then I extrapolate absolute measurements of thermal conductivity taken near ambient pressure to lower mantle conditions. I also estimate the contribution of radiation to heat transfer in the lower mantle. My resulting value for the thermal conductivity of the lowermost mantle is approximately 6 W/m·K, lower than the commonly assumed value of 10 W/m·K. When combined with estimates for the lower mantle boundary layer temperature gradient, the total core-mantle boundary heat flow is roughly 7 TW. This heat flow implies a slow growth rate for the Earth's inner core.
Conductive and convective heat flows of exercising humans in cold water.
Ferretti, G; Veicsteinas, A; Rennie, D W
1989-12-01
The apparent conductance (Kss, in W.m-2.degrees C-1) of a given region of superficial shell (on the thigh, fat + skin) was determined on four nonsweating and nonshivering subjects, resting and exercising (200 W) in water [water temperature (Tw) 22-23 degrees C] Kss = Hss/(Tsf-Tsk) where Hss is the skin-to-water heat flow directly measured by heat flow transducers and Tsf and Tsk are the temperatures of the subcutaneous fat at a known depth below the skin surface and of the skin surface, respectively. The convective heat flow (qc) through the superficial shell was then estimated as qc = (Tsf - Tsk).(Kss - Kss,min), assuming that at rest Kss was minimal (Kss,min) and resting qc = 0. The duration of immersion was set to allow rectal temperature (Tre) to reach approximately 37 degrees C at the end of rest and approximately 38 degrees C at the end of exercise. Except at the highest Tw used, Kss at the start of exercise was always Kss,min and averaged 51 W.m-2.degrees C-1 (range 33-57 W.m-2.degrees C-1) across subjects, and qc was zero. At the end of exercise at the highest Tw used for each subject, Kss averaged 97 W.m-2.degrees C-1 (range 77-108 W.m-2.degrees C-1) and qc averaged 53% (range 48-61%) of Hss (mean Hss = 233 W.m-2).(ABSTRACT TRUNCATED AT 250 WORDS)
Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium
NASA Astrophysics Data System (ADS)
Bieler, Thomas R.; Kang, Di; Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar; Ciovati, Gianluigi; Wright, Neil T.; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.; Myneni, Ganapati Rao
2015-12-01
The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.
Passive amplification of the pyroelectric current in thin films on a heat-conducting substrate
Yablonskii, S. V.; Soto-Bustamante, E. A.
2010-11-15
We show both theoretically and experimentally that passive amplification of the pyroelectric current takes place when modulated radiation is recorded by a pyroelectric detector in some range of modulation frequencies. The amplification effect manifests itself in the fact that the current generated by a thin pyroelectric film lying on a massive heat-conducting substrate exceeds that in a freely suspended film. We use a ferroelectric 70:30 P(VDF-TrFE) copolymer, a crystalline guanidine pyroelectric, and a 70:30 composition of an achiral liquid-crystal polymer and its monomer PM6R14n-M6R14n to illustrate the frequency dependence of the pyroelectric current.
Response-coefficient method for heat-conduction transients with time-dependent inputs
NASA Technical Reports Server (NTRS)
Ceylan, Tamer
1993-01-01
A theoretical overview of the response coefficient method for heat conduction transients with time-dependent input forcing functions is presented with a number of illustrative applications. The method may be the most convenient and economical if the same problem is to be solved many times with different input-time histories or if the solution time is relatively long. The method is applicable to a wide variety of problems, including irregular geometries, position-dependent boundary conditions, position-dependent physical properties, and nonperiodic irregular input histories. Nonuniform internal energy generation rates within the structure can also be handled by the method. The area of interest is long-time solutions, in which initial condition is unimportant, and not the early transient period. The method can be applied to one dimensional problems in cartesian, cylindrical, and spherical coordinates as well as to two dimensional problems in cartesian and cylindrical coordinates.
On the reconstruction of boundary impedance of a heat conduction system from nonlocal measurement
NASA Astrophysics Data System (ADS)
Liu, Jijun; Wang, Yuchan
2016-07-01
We consider the reconstruction of the Robin impedance coefficient of a heat conduction system in a two-dimensional spatial domain from the time-average measurement specified on the boundary. By applying the potential representation of a solution, this nonlinear inverse problem is transformed into an ill-posed integral system coupling the density function for potential and the unknown boundary impedance. The uniqueness as well as the conditional stability of this inverse problem is established from the integral system. Then we propose to find the boundary impedance by solving a non-convex regularizing optimization problem. The well-posedness of this optimization problem together with the convergence property of the minimizer is analyzed. Finally, based on the singularity decomposition of the potential representation of the solution, two iteration schemes with their numerical realizations are proposed to solve this optimization problem.
Specific heat and thermal conductivity in the mixed state of MgB2.
Tewordt, L; Fay, D
2002-09-23
The specific heat C and the electronic and phononic thermal conductivities kappa(e) and kappa(ph) are calculated in the mixed state for magnetic fields H near H(c2), including the effects of supercurrent flow and Andreev scattering. The resulting function C(H) is nearly linear while kappa(e)(H) exhibits an upward curvature near H(c2). The slopes decrease with impurity scattering which improves the agreement with the data on MgB2. The ratio of phonon relaxation times tau(n)/tau(s)=g(omega(0),H) for phonon energy omega(0) is smeared out around omega(0)=2Delta and tends to one for increasing H. This leads to a rapid reduction of kappa(ph)(H) in MgB2 for relatively small fields due to the rapid suppression of the smaller energy gap.
Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium
Bieler, Thomas R. Kang, Di Baars, Derek C.; Chandrasekaran, Saravan; Mapar, Aboozar Wright, Neil T.; Ciovati, Gianluigi Myneni, Ganapati Rao; Pourboghrat, Farhang; Murphy, James E.; Compton, Chris C.
2015-12-04
The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of the large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.
High Conductivity Carbon-Carbon Heat Pipes for Light Weight Space Power System Radiators
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2008-01-01
Based on prior successful fabrication and demonstration testing of a carbon-carbon heat pipe radiator element with integral fins this paper examines the hypothetical extension of the technology via substitution of high thermal conductivity composites which would permit increasing fin length while still maintaining high fin effectiveness. As a result the specific radiator mass could approach an ultimate asymptotic minimum value near 1.0 kg/m2, which is less than one fourth the value of present day satellite radiators. The implied mass savings would be even greater for high capacity space and planetary surface power systems, which may require radiator areas ranging from hundreds to thousands of square meters, depending on system power level.
Effect of the time window on the heat-conduction information filtering model
NASA Astrophysics Data System (ADS)
Guo, Qiang; Song, Wen-Jun; Hou, Lei; Zhang, Yi-Lu; Liu, Jian-Guo
2014-05-01
Recommendation systems have been proposed to filter out the potential tastes and preferences of the normal users online, however, the physics of the time window effect on the performance is missing, which is critical for saving the memory and decreasing the computation complexity. In this paper, by gradually expanding the time window, we investigate the impact of the time window on the heat-conduction information filtering model with ten similarity measures. The experimental results on the benchmark dataset Netflix indicate that by only using approximately 11.11% recent rating records, the accuracy could be improved by an average of 33.16% and the diversity could be improved by 30.62%. In addition, the recommendation performance on the dataset MovieLens could be preserved by only considering approximately 10.91% recent records. Under the circumstance of improving the recommendation performance, our discoveries possess significant practical value by largely reducing the computational time and shortening the data storage space.
NASA Astrophysics Data System (ADS)
Yang, Ruizhen; He, Yunze
2014-11-01
Longitudinal heat conduction from surface to inside of solid material could be used to evaluate the subsurface defects. Considering that the skin depth of high frequency eddy current in metal is quite small, this paper proposed logarithmic analysis of eddy current thermography (ECT) to quantify the depth of subsurface defects. The proposed method was verified through numerical and experimental studies. In numerical study, ferromagnetic material and non-ferromagnetic material were both considered. Results showed that the temperature-time curve in the logarithm domain could be used to detect subsurface defects. Separation time was defined as the characteristic feature to measure the defect's depth based on their linear relationships. The thermograms reconstructed by logarithm of temperature can improve defect detectability.
Steady-state heat conduction in multilayered composite plates and shells
NASA Technical Reports Server (NTRS)
Noor, A. K.; Burton, W. S.
1991-01-01
A study is made of a predictor-corrector procedure for the accurate determination of the temperature and heat flux distributions in thick multilayered composite plates and shells. A linear through-the-thickness temperature distribution is used in the predictor phase. The functional dependence of temperature on the thickness coordinate is then calculated a posteriori and used in the corrector phase. Extensive numerical results are presented for linear steady-state heat conduction problems, showing the effects of variation in the geometric and lamination parameters on the accuracy of the thermal response predictions of the predictor-corrector approach. Both antisymmetrically laminated anisotropic plates and multilayered orthotropic cylinders are considered. The solutions are assumed to be periodic in the surface coordinates. For each problem the standard of comparison is taken to be the analytic three-dimensional solution based on treating each layer as a homogeneous anisotropic medium. The potential of the predictor-corrector approach for predicting the thermal response of multilayered plates and shells with complicated geometry is discussed.
NASA Astrophysics Data System (ADS)
Chen, Wen; Pang, Guofei
2016-03-01
This paper proposes a new implicit definition of the fractional Laplacian. Compared with the existing explicit definitions in literature, this novel definition has clear physical significance and is mathematically simple and numerically easy to calculate for multidimensional problems. In stark contrast to a quick increasing and extensive applications of time-fractional derivative to diverse scientific and engineering problems, little has been reported on space-fractional derivative modeling. This is largely because the existing definitions are only feasible for one-dimensional case and become mathematically too complicated and computationally very expensive when applied to higher dimensional cases. In this study, we apply the newly-defined fractional Laplacian for modeling the power law behaviors of three-dimensional nonlocal heat conduction. The singular boundary method (SBM), a recent boundary-only collocation discretization method, is employed to numerically solve the proposed fractional Laplacian heat equation. And the computational costs are observed moderate owing to the proposed new definition of fractional Laplacian and the boundary-only discretization, meshfree, and integration-free natures of the SBM technique. Numerical experiments show the validity of the proposed definition of fractional Laplacian.
Thermal conductivity and heat transport properties of nitrogen-doped graphene.
Goharshadi, Elaheh K; Mahdizadeh, Sayyed Jalil
2015-11-01
In the present study, the thermal conductivity (TC) and heat transport properties of nitrogen doped graphene (N-graphene) were investigated as a function of temperature (107-400K) and N-doped concentration (0.0-7.0%) using equilibrium molecular dynamics simulation based on Green-Kubo method. According to the results, a drastic decline in TC of graphene observed at very low N-doped concentration (0.5 and 1.0%). Substitution of just 1.0% of carbon atoms with nitrogens causes a 77.2, 65.4, 59.2, and 53.7% reduction in TC at 107, 200, 300, and 400K, respectively. The values of TC of N-graphene at different temperatures approach to each other as N-doped concentration increases. The results also indicate that TC of N-graphene is much less sensitive to temperature compared with pristine graphene and the sensitivity decreases as N-doped concentration increases. The phonon-phonon scattering relaxation times and the phonon mean free path of phonons were also calculated. The contribution of high frequency optical phonons for pristine graphene and N-graphene with 7.0% N-doped concentration is 0-2% and 4-8%, respectively. These findings imply that it is potentially feasible to control heat transfer on the nanoscale when designing N-graphene based thermal devices.
Glass, Micheal W.; Hogan, Roy E., Jr.; Gartling, David K.
2010-03-01
The need for the engineering analysis of systems in which the transport of thermal energy occurs primarily through a conduction process is a common situation. For all but the simplest geometries and boundary conditions, analytic solutions to heat conduction problems are unavailable, thus forcing the analyst to call upon some type of approximate numerical procedure. A wide variety of numerical packages currently exist for such applications, ranging in sophistication from the large, general purpose, commercial codes, such as COMSOL, COSMOSWorks, ABAQUS and TSS to codes written by individuals for specific problem applications. The original purpose for developing the finite element code described here, COYOTE, was to bridge the gap between the complex commercial codes and the more simplistic, individual application programs. COYOTE was designed to treat most of the standard conduction problems of interest with a user-oriented input structure and format that was easily learned and remembered. Because of its architecture, the code has also proved useful for research in numerical algorithms and development of thermal analysis capabilities. This general philosophy has been retained in the current version of the program, COYOTE, Version 5.0, though the capabilities of the code have been significantly expanded. A major change in the code is its availability on parallel computer architectures and the increase in problem complexity and size that this implies. The present document describes the theoretical and numerical background for the COYOTE program. This volume is intended as a background document for the user's manual. Potential users of COYOTE are encouraged to become familiar with the present report and the simple example analyses reported in before using the program. The theoretical and numerical background for the finite element computer program, COYOTE, is presented in detail. COYOTE is designed for the multi-dimensional analysis of nonlinear heat conduction problems
NASA Technical Reports Server (NTRS)
Muraki, T.; Masubuchi, K.
1974-01-01
Reduced gravity does not significantly affect the thermal histories in the M551 specimen, even if molten metal flow pattern is different from that in terrestrial conditions. Thermal histories corresponding to terrestrial experimental conditions were calculated by use of the computer programs. Heat conduction through brazing alloy (M552 experiment) is improved in the Skylab conditions, because of the increased extent, rate and uniformity of braze spreading in space. Effects of reduced gravity on heat flow in the M553 specimen are insignificant, because convection effects appear instantaneously and conduction is a governing factor on the heat flow.
NASA Astrophysics Data System (ADS)
Zmywaczyk, J.; Koniorczyk, P.
2009-08-01
The problem of simultaneous identification of the thermal conductivity Λ(T) and the asymmetry parameter g of the Henyey-Greenstein scattering phase function is under consideration. A one-dimensional configuration in a grey participating medium with respect to silica fibers for which the thermophysical and optical properties are known from the literature is accepted. To find the unknown parameters, it is assumed that the thermal conductivity Λ(T) may be represented in a base of functions {1, T, T 2, . . .,T K } so the inverse problem can be applied to determine a set of coefficients {Λ0, Λ1, . . ., Λ K ; g}. The solution of the inverse problem is based on minimization of the ordinary squared differences between the measured and model temperatures. The measured temperatures are considered known. Temperature responses measured or theoretically generated at several different distances from the heat source along an x axis of the specimen set are known as a result of the numerical solution of the transient coupled heat transfer in a grey participating medium. An implicit finite volume method (FVM) is used for handling the energy equation, while a finite difference method (FDM) is applied to find the sensitivity coefficients with respect to the unknown set of coefficients. There are free parameters in a model, so these parameters are changed during an iteration process used by the fitting procedure. The Levenberg- Marquardt fitting procedure is iteratively searching for best fit of these parameters. The source term in the governing conservation-of-energy equation taking into account absorption, emission, and scattering of radiation is calculated by means of a discrete ordinate method together with an FDM while the scattering phase function approximated by the Henyey-Greenstein function is expanded in a series of Legendre polynomials with coefficients {c l } = (2l + 1)g l . The numerical procedure proposed here also allows consideration of some cases of coupled heat
NASA Astrophysics Data System (ADS)
Yankovskii, A. P.
2016-07-01
We propose two refined structural models of the thermal behavior of a rib-reinforced composite medium at general anisotropy of the materials of compound components. For the criterion of equivalence of the rib-reinforced composite to the fictitious homogeneous anisotropic material, equality of the specific heat dissipation in them was used, which permits determining the upper and lower bounds of the effective heat conductivity coefficients of the composite material. The design values of the effective heat conductivity coefficients of a honeycomb structure with cavities filled and not filled with foam plastic have been determined. It has been shown that the refinement of certain thermal characteristics of 12%, and the refined "fork" of values of these quantities, does not exceed 2.5%. Indirect comparison has been made between the calculated and experimental values of the effective heat conductivity coefficients of such compounds, which has shown that the results obtained in the work are qualitatively reliable.
DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS
L.R. Eisler
1995-02-02
The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.
Nanoparticle synergies in modifying thermal conductivity for heat exchanger in condensing boilers
NASA Astrophysics Data System (ADS)
Yang, Kai; He, Shan; Butcher, Thomas; Trojanowski, Rebecca; Sun, Ning; Gersappe, Dilip; Rafailovich, Miriam
2013-03-01
The heat exchanger we are using for condensing boilers is mainly made from aluminum alloys and stainless steel. However, the metal is relatively expensive and corrosion together with maintenance is also a big problem. Therefore, we have developed a new design and material which contain carbon black, carbon nanotube, aluminum oxide and graphene as additives in polypropylene. When multiple types of particles can be melt blended simultaneously and synergies can be achieved, imparting particles to the nanocomposite, achieved much higher thermal conductivity rather than single additive. Here we show the flame retardant nanocomposite which can pass the UL-94-V0 vertical burning test, perform nice in Cone Calorimetry Test and has relatively good mechanical properties. SEM images of the blend show that the Carbon nanobute and other additives well dispersed within the polymer matrix which match our computational calculation for getting the percolation to achieve thermal conductivity around 1.5W/m .K rather than 0.23W/m .K as pure polypropylene. Haydale/Cheap Tubes
Mechanisms of heat conductivity in high-{ital T}{sub {ital c}} superconductors
Pogorelov, Y.; Arranz, M.A.; Villar, R.; Vieira, S.
1995-06-01
A phenomenological approach to the heat conductivity {kappa} in the mixed state of a high-{ital T}{sub {ital c}} superconductor is proposed, which permits resolution between the electronic and phononic contributions, {kappa}{sub el} and {kappa}{sub ph}. The scattering amplitude for bandlike quasiparticles vs bound states in the vortex cores has been microscopically estimated. The measurements of the in-plane thermal conductivity {kappa}({ital B},{ital T}) of single crystals YBa{sub 2}Cu{sub 3}O{sub 7} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} have been performed at several temperatures {ital T} from 4 to 110 K and magnetic fields {ital B} (along the {ital c} axis) up to 11 T. From comparison of experimental data with the phenomenologic model, the ratio {kappa}{sub el}/{kappa}{sub ph} (at {ital B}=0) has been extracted. This analysis shows that only {kappa}{sub el} is field sensitive and it is mostly responsible for the maximum of {kappa} vs {ital T}, observed at {ital B}=0 in both materials.
NASA Astrophysics Data System (ADS)
Shojaeefard, M. H.; Goudarzi, K.; Mazidi, M. Sh.
2009-06-01
The problems involving periodic contacting surfaces have different practical applications. An inverse heat conduction problem for estimating the periodic Thermal Contact Conductance (TCC) between one-dimensional, constant property contacting solids has been investigated with conjugate gradient method (CGM) of function estimation. This method converges very rapidly and is not so sensitive to the measurement errors. The advantage of the present method is that no a priori information is needed on the variation of the unknown quantities, since the solution automatically determines the functional form over the specified domain. A simple, straight forward technique is utilized to solve the direct, sensitivity and adjoint problems, in order to overcome the difficulties associated with numerical methods. Two general classes of results, the results obtained by applying inexact simulated measured data and the results obtained by using data taken from an actual experiment are presented. In addition, extrapolation method is applied to obtain actual results. Generally, the present method effectively improves the exact TCC when exact and inexact simulated measurements input to the analysis. Furthermore, the results obtained with CGM and the extrapolation results are in agreement and the little deviations can be negligible.
NASA Astrophysics Data System (ADS)
Barbone, Paul E.; Oberai, Assad A.; Harari, Isaac
2007-12-01
We consider the direct (i.e. non-iterative) solution of the inverse problem of heat conduction for which at least two interior temperature fields are available. The strong form of the problem for the single, unknown, thermal conductivity field is governed by two partial differential equations of pure advective transport. The given temperature fields must satisfy a compatibility condition for the problem to have a solution. We introduce a novel variational formulation, the adjoint-weighted equation (AWE), for solving the two-field problem. In this case, the gradients of two given temperature fields must be linearly independent in the entire domain, a weaker condition than the compatibility required by the strong form. We show that the solution of the AWE formulation is equivalent to that of the strong form when both are well posed. We prove that the Galerkin discretization of the AWE formulation leads to a stable, convergent numerical method that has optimal rates of convergence. We show computational examples that confirm these optimal rates. The AWE formulation shows good numerical performance on problems with both smooth and rough coefficients and solutions.
Conduction block of mammalian myelinated nerve by local cooling to 15-30°C after a brief heating.
Zhang, Zhaocun; Lyon, Timothy D; Kadow, Brian T; Shen, Bing; Wang, Jicheng; Lee, Andy; Kang, Audry; Roppolo, James R; de Groat, William C; Tai, Changfeng
2016-03-01
This study aimed at understanding thermal effects on nerve conduction and developing new methods to produce a reversible thermal block of axonal conduction in mammalian myelinated nerves. In 13 cats under α-chloralose anesthesia, conduction block of pudendal nerves (n = 20) by cooling (5-30°C) or heating (42-54°C) a small segment (9 mm) of the nerve was monitored by the urethral striated muscle contractions and increases in intraurethral pressure induced by intermittent (5 s on and 20 s off) electrical stimulation (50 Hz, 0.2 ms) of the nerve. Cold block was observed at 5-15°C while heat block occurred at 50-54°C. A complete cold block up to 10 min was fully reversible, but a complete heat block was only reversible when the heating duration was less than 1.3 ± 0.1 min. A brief (<1 min) reversible complete heat block at 50-54°C or 15 min of nonblock mild heating at 46-48°C significantly increased the cold block temperature to 15-30°C. The effect of heating on cold block fully reversed within ∼40 min. This study discovered a novel method to block mammalian myelinated nerves at 15-30°C, providing the possibility to develop an implantable device to block axonal conduction and treat many chronic disorders. The effect of heating on cold block is of considerable interest because it raises many basic scientific questions that may help reveal the mechanisms underlying cold or heat block of axonal conduction. PMID:26740534
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.
LDEF (Postflight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09
NASA Technical Reports Server (NTRS)
1990-01-01
LDEF (Postflight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 EL-1994-00354 LDEF (Postflight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 The postflight photograph was taken in the SAEF II at KSC prior to removal of the experiment from the LDEF. The color of the white paint dots on the exper- iment tray clamp blocks appear to be unchanged. The LDEF structure, the intercostal on the right, has a dark brown discoloration adjacent to the black Earth end thermal panel. Aluminum pieces of the degraded CVCHPE thermal cover that were shown lodged in the vent area between the intercostal and the black thermal panel in the flight photograph are gone. The Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) occupies a 6 inch deep LDEF peripheral experiment tray and consist of two series connected variable conductance heatpipes, a black chrome solar collector panel and a silvered TEFLON® radiator panel, a power source to support six thermistor-type temperature monitoring sensors and actuations of two valves. Fiberglass standoffs and internal insulation blankets thermally isolated the experiment from the experiment tray and the LDEF interior. The outside of the CVCHPE, except the collector and radiator panels, was covered with an aluminized Kapton multilayer insulation (MLI) blanket with an outer layer of 0.076 mm thick Kapton. The two patches of thin film materials, part of Experiment S1001 by NASA GSFC, were attached to the cover of the external thermal blanket with Kapton tape. The experiment was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners. The external surface of the CVCHPE has changed from that observed in the flight photograph. The thin vapor deposited aluminum coating, left after the Kapton eroded, is essentially gone with only fragments left near the edges of the thermal blanket. Pieces of a layer of Dacron mesh (bridle vail) material, used to separate the thermal cover from the thermal
NASA Astrophysics Data System (ADS)
Gao, H.
2012-11-01
Electron heat transport across stochastic magnetic fields is studied numerically in order to find out how the ratio of the parallel to the perpendicular heat diffusivity affects the enhanced heat conductivity and its radial profile in tokomak plasma physics. To find out the details of profile, non-local stochastic magnetic fields, in which the perturbed magnetic islands are separated with each other but very close to in the minor radius of tokomak, are chosen as research objects in our simulation work. Our numerical results indicate that the ratio of the parallel to the perpendicular heat diffusivity is a very important effective factor, which dominate how far the enhanced conductivity contributed by a perturbed magnetic field approach to zero from the rational surface in minor radius. Besides that, a theoretical analysis was provided and compared with the numerical results in this article.
Radiative thermal conductivity in obsidian and estimates of heat transfer in magma bodies
Stein, J.; Shankland, T.J.; Nitsan, U.
1981-05-10
The optical transmission spectra of four ryholitic obsidian samples were measured in order to determine the importance of radiative heat transfer in granite magmas. The spectra, obtained in the temperature range 20-800/sup 0/C, show that the radiative spectral window in these samples is limited by a charge transfer band in the UV (400 nm) and Si-O stretching overtone in the IR (4500 nm). Within this window the main obstacles to radiative transfer, in order of decreasing importance, are background scattering, a water band centered at 2800 nm, and an Fe/sup 2 +/ crystal field band at 1100 nm. Unlike crystalline silicates the absorption bands in obsidian do not broaden significantly as temperature increases. As a result, the temperature dependence of the calculated radiative thermal conductivity K/sub R/ is dominated by the T/sup ..beta../ term. Actual values of K/sub R/ increase from 9 x 10/sup -5/ to 1 x 1/sup -3/ cal cm/sup -1/ s/sup -1/ deg/sup -1/ between 300/sup 0/ and 800/sup 0/C, the high-temperature value being comparable to the lattice thermal conductivity in obsidian and a lower limit for K/sub R/ in granitic melts. As the scattering coefficient in melts is probably significantly lower than in obsidian, the radiative conductivity in active plutons is likely to be much higher. As an example, if scattering and the water band are removed from the observed spectra of the obsidian samples, calculated values of K/sub R/ could increase by a factor of 5, to about 5 x 10/sup -3/ cal cm/sup -1/ s/sup -1/ deg/sup -1/ at 1000/sup 0/C.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Nagaraj, Ben A.; Bruce, Robert W.
2000-01-01
The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) Zr02-8wt%Y2O3 thermal barrier coatings was determined by a steady-state heat flux laser technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long term test conditions. The thermal conductivity increase due to micro-pore sintering and the decrease due to coating micro-delaminations in the EB-PVD coatings were evaluated for grooved and non-grooved EB-PVD coating systems under isothermal and thermal cycling conditions. The coating failure modes under the high heat flux test conditions were also investigated. The test technique provides a viable means for obtaining coating thermal conductivity data for use in design, development, and life prediction for engine applications.
NASA Astrophysics Data System (ADS)
Kargel, J. S.; Furfaro, R.
2013-12-01
Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of
Finite element method formulation in polar coordinates for transient heat conduction problems
NASA Astrophysics Data System (ADS)
Duda, Piotr
2016-04-01
The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.
NASA Astrophysics Data System (ADS)
Stranne, Christian; O'Regan, Matt
2016-02-01
A basic premise in marine heat flow studies is that the temperature gradient varies with depth as a function of the bulk thermal conductivity of the sediments. As sediments become more deeply buried, compaction reduces the porosity and causes an increase in the bulk thermal conductivity. Therefore, while the heat flow may remain constant with depth, the thermal gradient is not necessarily linear. However, it has been argued that measurements showing increased sediment thermal conductivity with burial depth may be caused by a horizontal measurement bias generated by increasing anisotropy in sediments during consolidation. This study reanalyses a synthesis of Ocean Drilling Program data from 186 boreholes, and investigates the occurrence of nonlinear geothermal gradients in marine sediments. The aim is to identify whether observed downhole changes in thermal conductivity influence the measured temperature gradient, and to investigate potential errors in the prediction of in-situ temperatures derived from the extrapolation of near-surface thermal gradients. The results indicate that the measured thermal conductivity does influence the geothermal gradient. Furthermore, comparisons between shallow measurements (<10 m) from surface heat flow surveys and the deeply constrained temperature data from 98 ODP boreholes indicate that the shallow gradients are consistently higher by on average 19 °C km-1. This is consistent with higher porosity and generally lower thermal conductivity in near-seafloor sediments, and highlights the need to develop robust porosity-thermal conductivity models to accurately predict temperatures at depth from shallow heat flow surveys.
Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong
2014-01-01
An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219
Langman, Deborah A; Goldberg, Ira B; Judy, Jack; Paul Finn, J; Ennis, Daniel B
2012-08-01
Radiofrequency induced pacemaker lead tip heating is one of the main reasons magnetic resonance imaging (MRI) is contraindicated for patients with pacemakers. The objective of this work was to evaluate the dependence of pacemaker lead tip heating during MRI scanning on the electrical conductivity of the medium surrounding the pacemaker lead tip. The effect of conductivity was measured using hydroxyethyl cellulose, polyacrylic acid, and saline with conductivities ranging from 0 to 3 S/m which spans the range of human tissue conductivity. The maximum lead tip heating observed in polyacrylic acid was 50.4 °C at 0.28 S/m, in hydroxyethyl cellulose the maximum was 36.8 °C at 0.52 S/m, and in saline the maximum was 12.5 °C at 0.51 S/m. The maximum power transfer theorem was used to calculate the relative power deposited in the solution based on the characteristic impedance of the pacemaker lead and test solution impedance. The results demonstrate a strong correlation between the relative power deposited and pacemaker lead tip heating for hydroxyethyl cellulose and saline solutions. Maximum power deposition occurred when the impedance of the solution matched the pacemaker lead impedance. Pacemaker lead tip heating is dependent upon the electrical conductivity of the solution at the lead tip and should be considered when planning in vitro gel or saline experiments.
Steady-State and Transient Boundary Element Methods for Coupled Heat Conduction
NASA Technical Reports Server (NTRS)
Kontinos, Dean A.
1997-01-01
Boundary element algorithms for the solution of steady-state and transient heat conduction are presented. The algorithms are designed for efficient coupling with computational fluid dynamic discretizations and feature piecewise linear elements with offset nodal points. The steady-state algorithm employs the fundamental solution approach; the integration kernels are computed analytically based on linear shape functions, linear elements, and variably offset nodal points. The analytic expressions for both singular and nonsingular integrands are presented. The transient algorithm employs the transient fundamental solution; the temporal integration is performed analytically and the nonsingular spatial integration is performed numerically using Gaussian quadrature. A series solution to the integration is derived for the instance of a singular integrand. The boundary-only character of the algorithm is maintained by integrating the influence coefficients from initial time. Numerical results are compared to analytical solutions to verify the current boundary element algorithms. The steady-state and transient algorithms are numerically shown to be second-order accurate in space and time, respectively.
NASA Astrophysics Data System (ADS)
Gee, David B.
1986-01-01
This is a comparison study of the abilities of the eigenvalue method as a numerical method in solving the transient heat conduction equation. The eigenvalue method was compared to five other numerical methods; Runge-Kutta, Gears, extrapolation, fully implicit, and Crank-Nicolson. The latter were used to solve three physical problems: (1) a two dimensional slap which takes advantage of the symmetry of the problem; (2) the same slap problem without taking advantage of the symmetry; and (3) a cylindrical problem taking full advantage of symmetry. The scope of the study is to see which methods take less computer time while maintaining sufficient accuracy. The time it takes the computer to totally execute the program was used as the time comparison basis. The accuracy is a comparison of the exact solution to the numerical solution. A root mean square average of all the grid points per time step is used. The results of the study were surprising. The accuracy of the eigenvalue method is not any better than that of the Crank-Nicolson method. The computer times show that the eigenvalue is not the fastest for short transient times. A long transient problem with nonlinear terme was not used.
Zhi-Jie Xu
2012-03-01
We present a general homogenization method for diffusion, heat conduction, and wave propagation in a periodic heterogeneous material with piecewise constants. The method is relevant to the frequently encountered upscaling issues for heterogeneous materials. The dispersion relation for each problem is first expressed in the general form where the frequency w (or wavenumber k) is expanded in terms of the wavenumber k (or frequency w). A general homogenization model can be directly obtained with any given dispersion relation. Next step we study the unit cell of the heterogeneous material and derive the exact dispersion relation. The final homogenized equations include both leading order terms (effective properties) and high order contributions that represent the effect of the microscopic heterogeneity on the macroscopic behavior. That effect can be lumped into a single dimensionless heterogeneity parameter, which is bounded between -1/12 less than or equal to less than or equal to 0 and has a universal expression for all three problems. Numerical examples validate the proposed method and demonstrate a significant computational saving.
A boundary-dispatch Monte Carlo (Exodus) method for analysis of conductive heat transfer problems
Naraghi, M.H.N.; Shunchang Tsai
1993-12-01
A boundary-dispatch Monte Carlo (Exodus) method, in which the particles are dispatched from the boundaries of a conductive medium or source of heat, is developed. A fixed number of particles are dispatched from a boundary node to the nearest internal node. These particles make random walks within the medium similar to that of the conventional Monte Carlo method. Once a particle visits an internal node, a number equal to the temperature of the boundary node from which particles are dispatched is added to a counter. Performing this procedure for all boundary nodes, the temperature of a node can be determined by dividing the flag, or the counter of this node by the total number of particle visits to this node. Two versions of the boundary-dispatch method (BDM) are presented, multispecies and bispecies BDM. The results of bispecies BDM based on the Exodus dispatching method compare well with the Gauss-Seidel method in both accuracy and computational time. Its computational time is much less than the shrinking-boundary Exodus method.
Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP
NASA Astrophysics Data System (ADS)
Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio
1988-09-01
This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.
Rana, Sohel; Kanesan, Jeevan; Reza, Ahmed Wasif; Ramiah, Harikrishnan
2014-01-01
Non-Fourier heat conduction model with dual phase lag wave-diffusion model was analyzed by using well-conditioned asymptotic wave evaluation (WCAWE) and finite element method (FEM). The non-Fourier heat conduction has been investigated where the maximum likelihood (ML) and Tikhonov regularization technique were used successfully to predict the accurate and stable temperature responses without the loss of initial nonlinear/high frequency response. To reduce the increased computational time by Tikhonov WCAWE using ML (TWCAWE-ML), another well-conditioned scheme, called mass effect (ME) T-WCAWE, is introduced. TWCAWE with ME (TWCAWE-ME) showed more stable and accurate temperature spectrum in comparison to asymptotic wave evaluation (AWE) and also partial Pade AWE without sacrificing the computational time. However, the TWCAWE-ML remains as the most stable and hence accurate model to analyze the fast transient thermal analysis of non-Fourier heat conduction model.
NASA Astrophysics Data System (ADS)
Makinde, O. D.; Onyejekwe, O. O.
2011-11-01
The steady flow and heat transfer of an electrically conducting fluid with variable viscosity and electrical conductivity between two parallel plates in the presence of a transverse magnetic field is investigated. It is assumed that the flow is driven by combined action of axial pressure gradient and uniform motion of the upper plate. The governing nonlinear equations of momentum and energy transport are solved numerically using a shooting iteration technique together with a sixth-order Runge-Kutta integration algorithm. Solutions are presented in graphical form and given in terms of fluid velocity, fluid temperature, skin friction and heat transfer rate for various parametric values. Our results reveal that the combined effect of magnetic field, viscosity, exponents of variable properties, various fluid and heat transfer dimensionless quantities and the electrical conductivity variation, have significant impact on the hydromagnetic and electrical properties of the fluid.
NASA Astrophysics Data System (ADS)
Safin, R. R.; Khasanshin, R. R.; Shaikhutdinova, A. R.; Khakimzyanov, I. F.
2016-04-01
The oscillating technologies consisting in alternating of the stage of heating of the material and vacuumization are the most advanced in the process of wood drying. In this regard, the article examines the energy-saving technology of the oscillating vacuum-conductive drying of lumber, during which the thermal energy of the moisture evaporated from the material under vacuum in one chamber by using the heat pump is transferred to the heating of the material in the other chamber. The authors develop the method of calculating the rate of removal of moisture from the heated material at the stage of vacuumization depending on the depth of vacuum, temperature, humidity and thickness of the material, which is the initial condition for calculating the heat pump.
T. Hadgu; S. Webb; M. Itamura
2004-02-12
Yucca Mountain, Nevada has been designated as the nation's high-level radioactive waste repository and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. Heat transfer in the Yucca Mountain Project (YMP) drift enclosures is an important aspect of repository waste emplacement. Canisters containing radioactive waste are to be emplaced in tunnels drilled 500 m below the ground surface. After repository closure, decaying heat is transferred from waste packages to the host rock by a combination of thermal radiation, natural convection and conduction heat transfer mechanism?. Current YMP mountain-scale and drift-scale numerical models often use a simplified porous medium code to model fluid and heat flow in the drift openings. To account for natural convection heat transfer, the thermal conductivity of the air was increased in the porous medium model. The equivalent thermal conductivity, defined as the ratio of total heat flow to conductive heat flow, used in the porous media models was based on horizontal concentric cylinders. Such modeling does not effectively capture turbulent natural convection in the open spaces as discussed by Webb et al. (2003) yet the approach is still widely used on the YMP project. In order to mechanistically model natural convection conditions in YMP drifts, the computational fluid dynamics (CFD) code FLUENT (Fluent, Incorporated, 2001) has been used to model natural convection heat transfer in the YMP emplacement drifts. A two-dimensional (2D) model representative of YMP geometry (e.g., includes waste package, drip shield, invert and drift wall) has been developed and numerical simulations made (Francis et al., 2003). Using CFD simulation results for both natural convection and conduction-only heat transfer in a single phase, single component fluid, equivalent thermal conductivities have been calculated for different Rayleigh numbers. Correlation
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1990-01-01
The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 17OOOC) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, ultra-high temperature ceramic thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity: the initial conductivity rise under a steady-state high temperature thermal gradient test due to coating sintering, and the later coating conductivity reduction under a subsequent cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on the damage accumulations and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The coating external radiation resistance is assessed based on the measured specimen temperature response under a laser heated intense radiation flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature is derived.
NASA Astrophysics Data System (ADS)
Rainey, E. S.; Kavner, A.; Hernlund, J. W.; Pilon, L.; Veitch, M.
2012-12-01
The thermal conductivity of minerals in the lowermost mantle controls the total heat flow across the core-mantle boundary and is critical for the thermal evolution of the Earth. However, lower mantle thermal conductivity values and their pressure, temperature, and compositional dependencies are not well known. Here we present our recent progress combining 3D models of heat flow in the laser-heated diamond cell (LHDAC) with laboratory measurements of hotspot temperature distributions to assess the thermal conductivity of lower mantle minerals as a function of pressure and temperature. Using our numerical model of heat flow in the LHDAC, central hotspot temperature and radial and axial temperature gradients are calculated as a function of laser power, sample thermal conductivity, and sample geometry. For a given geometry, the relationship between peak sample temperature and laser power depends on the sample thermal conductivity. However, quantifying the experimental parameters sufficiently to precisely determine an absolute value of sample thermal conductivity is difficult. But relative differences in thermal conductivity are easily inferred by comparing the slopes of differing temperature vs. laser power curves measured on the same system. This technique can be used to measure the pressure dependence of thermal conductivity for minerals at lower mantle conditions. We confirm the effectiveness of this approach by measuring the pressure slope of thermal conductivity for MgO between 10 and 30 GPa. MgO retains the B1 phase throughout the experimental pressure range, and existing experimental measurements and theoretical calculations are in good agreement on the pressure- and temperature- dependence of the thermal conductivity of MgO. We also use this technique to measure the relative thermal conductivity of high pressure assemblages created from San Carlos olivine starting material. Both MgO and (Mg,Fe)2SiO4 materials show a shallower temperature vs. laser power slope
ERIC Educational Resources Information Center
Clough, Elizabeth Engel; Driver, Rosalind
1985-01-01
Describes main features of students' thinking about heat and temperature (developed before formal science teaching) and results of a study that shows that many notions about heat/temperature used by younger children are still apparent in the thinking of older students. The study involved interviews with 84 students in three age groups. (JN)
NASA Technical Reports Server (NTRS)
Kozdoba, L. A.; Krivoshei, F. A.
1985-01-01
The solution of the inverse problem of nonsteady heat conduction is discussed, based on finding the coefficient of the heat conduction and the coefficient of specific volumetric heat capacity. These findings are included in the equation used for the electrical model of this phenomenon.
NASA Astrophysics Data System (ADS)
Agrawal, H. L.; Nath, R.; Singh, R. P.
1987-01-01
An analytical study is performed to examine the heat transfer characteristics on the flow of a viscous, incompressible rarefied gas in a parallel plate channel under the action of transverse magnetic field when (1) suction velocity normal to the plate is constant, (2) the second plate oscillates in time about a constant nonzero mean, (3) fluid is subjected to a constant heat source of absorption type. Approximate solutions for velocity, temperature, phase, and amplitude of skin-friction and rate of heat transfer are evaluated. Mean temperature profiles, phase and amplitude of rate of heat transfer at both plates are discussed graphically followed by a quantitative discussion. Mean rate of heat transfer is tabulated.
Design and testing of a passive, feedback-controlled, variable conductance heat pipe
NASA Technical Reports Server (NTRS)
Schlitt, K. R.
1973-01-01
A passive feedback system, which stabilizes the heat source temperature (T sub s) of a gas loaded heat pipe, was designed and tested. The control of T sub s is accomplished by an auxiliary liquid that senses the heat source and actuates a metal bellows system due to the liquid's thermal expansion. The movement of the bellows varies the gas reservoir volume and leads to a corresponding change of the condensation area of the heat pipe. With methanol as the heat pipe working fluid and perfluoro-n-pentane as the auxiliary liquid, the control capability was found to be T sub s = 31.5 + or - 1.5 C in a power range from 3 to 30 W, compared to T sub s = 33 + or - 3 C with methanol as auxiliary liquid. The change in T sub s was 35 + or - 5.5 C with the bellows held in the closed position.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2000-01-01
A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.
NASA Technical Reports Server (NTRS)
Conel, J. E.
1975-01-01
A computer program (Program SPHERE) solving the inhomogeneous equation of heat conduction with radiation boundary condition on a thermally homogeneous sphere is described. The source terms are taken to be exponential functions of the time. Thermal properties are independent of temperature. The solutions are appropriate to studying certain classes of planetary thermal history. Special application to the moon is discussed.
NASA Astrophysics Data System (ADS)
Christensen, W.; Kamai, T.; Fogg, G. E.
2012-12-01
The presence of metal piezometers (thermal conductivity 16.0 W m-1 K-1) in peat (thermal conductivity 0.5 W m-1 K-1) can significantly influence temperatures recorded in the subsurface. Radially symmetrical 2D numerical models of heat conduction and convection that use a transient specified temperature boundary condition (Dirichlet) and explicitly account for the difference in thermal properties differ from the commonly used 1D analytical solution by as much as 2°C at 0.15m below ground surface. Field data from temperature loggers located inside and outside piezometers show similar differences, supporting the use of the more complex numerical model. In order to better simulate field data, an energy balance approach is used to calculate the temperature along the upper boundary using hourly radiation and air temperature data, along with daily average wind velocity and cloud cover data. Normally distributed random noise is added to recorded field data to address potential natural variation between conditions at the instrument site and the field site (piezometer). Five influential parameters are considered: albedo, crop coefficient, hydraulic conductivity, thermal diffusivity, and surface water depth. Ten sets of these five parameters are generated from a uniform random distribution and constrained by values reported in the literature or measured in the field. The ten parameter sets and noise are used to generate synthetic subsurface data in the numerical model. The synthetic temperature data is offset by a constant value determined from a uniform random distribution to represent potential offset in instrument accuracy (+/- 0.1 °C). The original parameter values are satisfactorily recovered by indirect inversion of the noise-free model using UCODE. Comparison of the parameter estimates from the homogeneous numerical model (equivalent to the analytical model) and the numerical model that explicitly models the metal piezometer are compared. The same inversion scheme is
NASA Astrophysics Data System (ADS)
Malik, M. Y.; Bibi, M.; Khan, Farzana; Salahuddin, T.
2016-03-01
In this article, Williamson fluid flow and heat transfer over a stretching cylinder is discussed. The thermal conductivity is assumed to be vary linearly with temperature. Heat generation/absorption effects are also taken into account. Modeled partial differential equations are converted into ordinary differential form by using appropriate transformations. Shooting method in conjunction with Runge-Kutta-Fehlberg method is used to find the solution of the problem. Moreover, the effects of different flow parameters γ, λ, ɛ, β and Pr on velocity and temperature profiles are shown graphically. Local Nusselt number and skin friction coefficient are shown in tabular and graphical form.
Carolan, Michael Francis; Bernhart, John Charles
2012-08-21
Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.
Zinkle, S.J.; Eatherly, W.S.
1997-08-01
The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle ({approximately}1{degrees}C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle ({approximately}100{degrees}C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475{degrees}C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to {approximately}65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500{degrees}C on one of these new heats of CuNiBe, similar to that observed in other heats.
C. AVILES-RAMOS; C. RUDY
2000-11-01
The transient exact solution of heat conduction in a two-domain composite cylinder is developed using the separation of variables technique. The inner cylinder is isotropic and the outer cylindrical layer is orthotropic. Temperature solutions are obtained for boundary conditions of the first and second kinds at the outer surface of the orthotropic layer. These solutions are applied to heat flow calorimeters modeling assuming that there is heat generation due to nuclear reactions in the inner cylinder. Heat flow calorimeter simulations are carried out assuming that the inner cylinder is filled with plutonium oxide powder. The first objective in these simulations is to predict the onset of thermal equilibrium of the calorimeter with its environment. Two types of boundary conditions at the outer surface of the orthotropic layer are used to predict thermal equilibrium. The procedure developed to carry out these simulations can be used as a guideline for the design of calorimeters. Another important application of these solutions is on the estimation of thermophysical properties of orthotropic cylinders. The thermal conductivities in the vertical, radial and circumferential directions of the orthotropic outer layer can be estimated using this exact solution and experimental data. Simultaneous estimation of the volumetric heat capacity and thermal conductivities is also possible. Furthermore, this solution has potential applications to the solution of the inverse heat conduction problem in this cylindrical geometry. An interesting feature of the construction of this solution is that two different sets of eigenfunctions need to be considered in the eigenfunction expansion. These eigenfunctions sets depend on the relative values of the thermal diffusivity of the inner cylinder and the thermal diffusivity in the vertical direction of the outer cylindrical layer.
NASA Astrophysics Data System (ADS)
Sandin, C.; Steffen, M.; Schönberner, D.; Rühling, U.
2016-02-01
Heat conduction has been found a plausible solution to explain discrepancies between expected and measured temperatures in hot bubbles of planetary nebulae (PNe). While the heat conduction process depends on the chemical composition, to date it has been exclusively studied for pure hydrogen plasmas in PNe. A smaller population of PNe show hydrogen-deficient and helium- and carbon-enriched surfaces surrounded by bubbles of the same composition; considerable differences are expected in physical properties of these objects in comparison to the pure hydrogen case. The aim of this study is to explore how a chemistry-dependent formulation of the heat conduction affects physical properties and how it affects the X-ray emission from PN bubbles of hydrogen-deficient stars. We extend the description of heat conduction in our radiation hydrodynamics code to work with any chemical composition. We then compare the bubble-formation process with a representative PN model using both the new and the old descriptions. We also compare differences in the resulting X-ray temperature and luminosity observables of the two descriptions. The improved equations show that the heat conduction in our representative model of a hydrogen-deficient PN is nearly as efficient with the chemistry-dependent description; a lower value on the diffusion coefficient is compensated by a slightly steeper temperature gradient. The bubble becomes somewhat hotter with the improved equations, but differences are otherwise minute. The observable properties of the bubble in terms of the X-ray temperature and luminosity are seemingly unaffected.
NASA Technical Reports Server (NTRS)
Kim, J.; Bae, S. W.; Whitten, M. W.; Mullen, J. D.; Quine, R. W.; Kalkur, T. S.
1999-01-01
Two systems have been developed to study boiling heat transfer on the microscale. The first system utilizes a 32 x 32 array of diodes to measure the local temperature fluctuations during boiling on a silicon wafer heated from below. The second system utilizes an array of 96 microscale heaters each maintained at constant surface temperature using electronic feedback loops. The power required to keep each heater at constant temperature is measured, enabling the local heat transfer coefficient to be determined. Both of these systems as well as some preliminary results are discussed.
Sayer, Robert A; Piekos, Edward S; Phinney, Leslie M
2012-12-01
Accurate knowledge of thermophysical properties is needed to predict and optimize the thermal performance of microsystems. Thermal conductivity is experimentally determined by measuring quantities such as voltage or temperature and then inferring a thermal conductivity from a thermal model. Thermal models used for data analysis contain inherent assumptions, and the resultant thermal conductivity value is sensitive to how well the actual experimental conditions match the model assumptions. In this paper, a modified data analysis procedure for the steady state Joule heating technique is presented that accounts for bond pad effects including thermal resistance, electrical resistance, and Joule heating. This new data analysis method is used to determine the thermal conductivity of polycrystalline silicon (polysilicon) microbridges fabricated using the Sandia National Laboratories SUMMiT V™ micromachining process over the temperature range of 77-350 K, with the value at 300 K being 71.7 ± 1.5 W/(m K). It is shown that making measurements on beams of multiple lengths is useful, if not essential, for inferring the correct thermal conductivity from steady state Joule heating measurements.
NASA Astrophysics Data System (ADS)
Makinde, O. D.
2012-10-01
In this article, we investigate the thermal decomposition of a stockpile of reactive material undergoing a steady-state exothermic chemical reaction inside a long pipe with heat loss characteristics at its surface. It is assumed that the thermal conductivity (k) of the material varies exponentially with temperature and the pipe surface exchanges heat with the ambient following Newton's law of cooling. The nonlinear differential equation governing the problem is tackled analytically using a regular perturbation technique (RPT) coupled with a computer-extended series solution (CESS) and a special type of Hermite-Padé approximation. The effects of various thermophysical parameters on the temperature field together with critical conditions for thermal ignition represented by turning points on the bifurcation diagram are obtained and discussed quantitatively. An increase in critical behavior is observed with a decrease in the material's thermal conductivity. However, the stability of the material is enhanced by an increase in the material's thermal conductivity.
Universal heat conduction in Ce1 -xYbxCoIn5 : Evidence for robust nodal d -wave superconducting gap
NASA Astrophysics Data System (ADS)
Xu, Y.; Dong, J. K.; Lum, I. K.; Zhang, J.; Hong, X. C.; He, L. P.; Wang, K. F.; Ma, Y. C.; Petrovic, C.; Maple, M. B.; Shu, L.; Li, S. Y.
2016-02-01
In the heavy-fermion superconductor Ce1 -xYbxCoIn5 , Yb doping was reported to cause a possible change from nodal d -wave superconductivity to a fully gapped d -wave molecular superfluid of composite pairs near x ≈0.07 (nominal value xnom=0.2 ). Here we present systematic thermal conductivity measurements on Ce1 -xYbxCoIn5 (x =0.013 , 0.084, and 0.163) single crystals. The observed finite residual linear term κ0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d -wave superconducting gap in Ce1 -xYbxCoIn5 . Similar universal heat conduction is also observed in the CeCo (In1 -yCdy )5 system. These results reveal a robust nodal d -wave gap in CeCoIn5 upon Yb or Cd doping.
Some aspects of the computer simulation of conduction heat transfer and phase change processes
Solomon, A. D.
1982-04-01
Various aspects of phase change processes in materials are discussd including computer modeling, validation of results and sensitivity. In addition, the possible incorporation of cognitive activities in computational heat transfer is examined.
Flight data analysis and further development of variable-conductance heat pipes
NASA Technical Reports Server (NTRS)
Eninger, J. E.; Edwards, D. K.; Luedke, E. E.
1976-01-01
The work focuses on the mathematical modeling of three critical mechanisms of heat-pipe operation: (1) the effect that excess liquid has on heat-pipe performance; (2) the calculation of the dryout limit of circumferential grooves; (3) an efficient mathematical model for the calculation of the viscous-inertial interaction in the vapor flow. These mathematical models are incorporated in the computer program GRADE II, which is described.
NASA Astrophysics Data System (ADS)
Nath, G.; Vishwakarma, J. P.
2016-11-01
Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.
NASA Technical Reports Server (NTRS)
Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.
2012-01-01
Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.
Watanabe, Hiromichi; Yamashita, Yuichiro
2012-01-01
A modified pulse-heating method is proposed to improve the accuracy of measurement of the hemispherical total emissivity, specific heat capacity, and electrical resistivity of electrically conductive materials at high temperatures. The proposed method is based on the analysis of a series of rapid resistive self-heating experiments on a sample heated at different temperature rates. The method is used to measure the three properties of the IG-110 grade of isotropic graphite at temperatures from 850 to 1800 K. The problem of the extrinsic heating-rate effect, which reduces the accuracy of the measurements, is successfully mitigated by compensating for the generally neglected experimental error associated with the electrical measurands (current and voltage). The results obtained by the proposed method can be validated by the linearity of measured quantities used in the property determinations. The results are in reasonably good agreement with previously published data, which demonstrate the suitability of the proposed method, in particular, to the resistivity and total emissivity measurements. An interesting result is the existence of a minimum in the emissivity of the isotropic graphite at around 1120 K, consistent with the electrical resistivity results.
NASA Technical Reports Server (NTRS)
Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.
1975-01-01
The design and testing of a heat pipe for spacecraft application is presented. The application in mind calls for heat loads up to 20 watts, a set-point temperature of 294K, and a sink that varies from -220K to nearly as high as the set-point. The overall heat pipe length is 137 cm. Two basically different mechanisms of achieving variable conductance in the pipe by vapor-flow throttling were studied. In one, the thermal resistance between the heat source and sink is due to a saturation-temperature drop corresponding to the vapor-pressure drop developed across the valve. In the other, the pressure difference across the valve induces capillary groove and wick dry out in an evaporation region, and thus results in an increased thermal resistance. This mechanism was selected for fabrication and testing. The pipe is a stainless-steel/methanol two-heat-pipe system. Results are presented and discussed. Engineering drawings and specifications of the pipe are shown.
Sass, J.H.; Morgan, P.
1988-01-01
Over 5% of heat in the western USA is lost through Quaternary silicic volcanic centers, including the Valles caldera in N central New Mexico. These centers are the sites of major hydrothermal activity and upper crustal metamorphism, metasomatism, and mineralization, producing associated geothermal resources. Presents new heat flow data from Valles caldera core hole 1 (VC-1), drilled in the SW margin of the Valles caldera. Thermal conductivities were measured on 55 segments of core from VC-1, waxed and wrapped to preserve fluids. These values were combined with temperature gradient data to calculate heat flow. Above 335 m, which is probably unsaturated, heat flow is 247 + or - 16 mW m-2. Inteprets the shallow thermal gradient data and the thermal regime at VC-1 to indicate a long-lived hydrothermal (and magmatic) system in the southwestern Valles caldera that has been maintained through the generation of shallow magma bodies during the long postcollapse history of the caldera. High heat flow at the VC-1 site is interpreted to result from hot water circulating below the base of the core hole, and we attribute the lower heat flow in the unsaturated zone is attributed to hydrologic recharge. -from Authors
Johnson, Alexander; Brace, Christopher
2015-01-01
Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.
Constantz, Jim; Su, Grace; Hatch, Christine
2004-08-01
Both the measurement of temperature and the simulation of heat and water transport have benefited from significant recent advances in data acquisition and computer resources. This has afforded the opportunity for routine use of heat as a tracer in a variety of hydrological regimes. Heat is particularly well suited for investigations of stream/groundwater exchanges. Dynamic temperature patterns between the stream and underlying sediments are typical, due to large stream surface area to volume ratios relative to other surface water bodies. Heat is a naturally occurring tracer, free from (real or perceived) issues of contamination associated with use of chemical tracers in stream environments. The use of heat as a tracer relies on the measurement of temperature gradients, and temperature is an extremely robust parameter to monitor. Temperature data is immediately available as opposed to chemical tracers, which often require significant laboratory analysis. In this work, we report on the progress in the use of heat as a tracer to determine the hydraulic conductance of the streambed along the middle reaches of the Russian River, located west of Santa Rosa, CA. The general hydrological setting is described and the unique matter in which the water resources are managed in an environment of increasing population, a rapid shift to agricultural crops requiring more irrigation, and a series of fishery related mandates.
Delaney, P.T.
1988-01-01
Temperature histories obtained from transient heat-conduction theory are applicable to most dikes despite potential complicating effects related to magma flow during emplacement, groundwater circulation, and metamorphic reaction during cooling. Here. machine-independent FORTRAN 77 programs are presented to calculate temperatures in and around dikes as they cool conductively. Analytical solutions can treat thermal-property contrasts between the dike and host rocks, but cannot address the release of magmatic heat of crystallization after the early stages of cooling or the appreciable temperature dependence of thermal conductivity and diffusivity displayed by most rock types. Numerical solutions can incorporate these additional factors. The heat of crystallization can raise the initial temperature at the dike contact, ??c1, about 100??C above that which would be estimated if it were neglected, and can decrease the rate at which the front of solidified magma moves to the dike center by a factor of as much as three. Thermal conductivity and diffusivity of rocks increase with decreasing temperature and, at low temperatures, these properties increase more if the rocks are saturated with water. Models that treat these temperature dependencies yield estimates of ??c1 that are as much as 75??C beneath those which would be predicted if they were neglected. ?? 1988.
NASA Astrophysics Data System (ADS)
Jeong, J. Y.; Lee, K. M.; Shrestha, R.; Horne, K.; Das, S.; Choi, W.; Kim, M.; Choi, T. Y.
2016-05-01
We report a thermal characterization method for a large-scale free-standing chemical vapor deposited few layer graphene (FLG), in which a micropipette temperature sensor with an inbuilt laser point heating source was used. The technique is unique as it exhibits in general the characteristic features of high accuracy measurement of thermal conductivity of free-standing ultrathin films. Using the micropipette sensor we successfully implemented the characterization technique to show high thermal transport behavior in free-standing graphene. For accurate and successful measurement of thermal conductivity, FLG grown on Ni was transferred to a polycarbonate (PC) membrane with holes (average diameter of 100 μm) in order to isolate the graphene film from heat spreading through the bottom of the film by the laser point heating. The thermal conductivity of FLG by this method was measured at 2868 ± 932 W/m °C. The large uncertainty of 32% in thermal conductivity measurement is mainly due to the non-uniform (∼30% deviation) thickness of the film.
López Molina, Juan A; Rivera, María J; Trujillo, Macarena; Berjano, Enrique J
2009-04-01
The objectives of this study were to model the temperature progress of a pulsed radiofrequency (RF) power during RF heating of biological tissue, and to employ the hyperbolic heat transfer equation (HHTE), which takes the thermal wave behavior into account, and compare the results to those obtained using the heat transfer equation based on Fourier theory (FHTE). A theoretical model was built based on an active spherical electrode completely embedded in the biological tissue, after which HHTE and FHTE were analytically solved. We found three typical waveforms for the temperature progress depending on the relations between the dimensionless duration of the RF pulse delta(a) and the expression square root of lambda(rho-1), with lambda as the dimensionless thermal relaxation time of the tissue and rho as the dimensionless position. In the case of a unique RF pulse, the temperature at any location was the result of the overlapping of two different heat sources delayed for a duration delta(a) (each heat source being produced by a RF pulse of limitless duration). The most remarkable feature in the HHTE analytical solution was the presence of temperature peaks traveling through the medium at a finite speed. These peaks not only occurred during the RF power switch-on period but also during switch off. Finally, a physical explanation for these temperature peaks is proposed based on the interaction of forward and reverse thermal waves. All-purpose analytical solutions for FHTE and HHTE were obtained during pulsed RF heating of biological tissues, which could be used for any value of pulsing frequency and duty cycle.
Effects of heat conduction on artificial viscosity methods for shock capturing
Cook, Andrew W.
2013-12-01
Here we investigate the efficacy of artificial thermal conductivity for shock capturing. The conductivity model is derived from artificial bulk and shear viscosities, such that stagnation enthalpy remains constant across shocks. By thus fixing the Prandtl number, more physical shock profiles are obtained, only on a larger scale. The conductivity model does not contain any empirical constants. It increases the net dissipation of a computational algorithm but is found to better preserve symmetry and produce more robust solutions for strong-shock problems.
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick; Early, Richard A.; Alzofon, Frederick E.; Witteborn, Fred C.
1959-01-01
Solutions are presented for the conduction of beat through a semi-infinite gas medium having a uniform initial temperature and a constant boundary temperature. The coefficients of thermal conductivity and diffusivity are treated as variables, and the solutions are extended to the case of air at temperatures where oxygen dissociation occurs. These solutions are used together with shock-tube measurements to evaluate the integral of thermal conductivity for air as a function of temperature.
Heat conduction in metal-filled polymers - The role of particle size, shape, and orientation
NASA Technical Reports Server (NTRS)
Hansen, D.; Tomkiewicz, R.
1975-01-01
This paper presents a new type of analysis for predicting the thermal conductivity of disperse composites from the properties of the component phases and elementary characterizations of particle shapes and orientation. This analysis successfully predicted the sensitivity to particle shape which was confirmed by experiments also reported in this paper. These results suggest that highly elongated particles may be used to achieve dramatic modifications of thermal conductivity and the analysis presented here may be a useful tool in the design or development of disperse composites of specific thermal conductivity. The analysis may also apply to other properties such as electrical conductivity or magnetic permeability.
NASA Astrophysics Data System (ADS)
Bakan, Gokhan; Adnane, Lhacene; Gokirmak, Ali; Silva, Helena
2012-09-01
Temperature-dependent electrical resistivity, ρ(T), and thermal conductivity, k(T), of nanocrystalline silicon microwires self-heated to melt are extracted by matching simulated current-voltage (I-V) characteristics to experimental I-V characteristics. Electrical resistivity is extracted from highly doped p-type wires on silicon dioxide in which the heat losses are predominantly to the substrate and the self-heating depends mainly on ρ(T) of the wires. The extracted ρ(T) decreases from 11.8 mΩ cm at room-temperature to 5.2 mΩ cm at 1690 K, in reasonable agreement with the values measured up to ˜650 K. Electrical resistivity and thermal conductivity are extracted from suspended highly doped n-type silicon wires in which the heat losses are predominantly through the wires. In this case, measured ρ(T) (decreasing from 20.5 mΩ cm at room temperature to 12 mΩ cm at 620 K) is used to extract ρ(T) at higher temperatures (decreasing to 1 mΩ cm at 1690 K) and k(T) (decreasing from 30 W m-1 K-1 at room temperature to 20 W m-1 K-1 at 1690 K). The method is tested by using the extracted parameters to model wires with different dimensions. The experimental and simulated I-V curves for these wires show good agreement up to high voltage and temperature levels. This technique allows extraction of the electrical resistivity and thermal conductivity up to very high temperatures from self-heated microstructures.
Students' Design of Experiments: An Inquiry Module on the Conduction of Heat
ERIC Educational Resources Information Center
Hatzikraniotis, E.; Kallery, M.; Molohidis, A.; Psillos, D.
2010-01-01
This article examines secondary students' design of experiments after engagement in an innovative and inquiry-oriented module on heat transfer. The module consists of an integration of hands-on experiments, simulated experiments and microscopic model simulations, includes a structured series of guided investigative tasks and was implemented for a…
THERMALLY CONDUCTIVE CEMENTITIOUS GROUTS FOR GEOTHERMAL HEAT PUMPS. PROGRESS REPORT BY 1998
ALLAN,M.L.; PHILIPPACOPOULOS,A.J.
1998-11-01
Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98.
Nonlinear unsteady contact heat conduction of two-layer shells in the presence of thermal radiation
NASA Technical Reports Server (NTRS)
Novikov, V. S.; Chumakov, V. L.
1974-01-01
A technique is proposed for calculating the complex heat transfer of mated shells with the surrounding medium which also takes into account the temperature dependence of the contact thermal resistance between the shells. This technique can be used for thermal calculations and for calculations of the temperature stresses in two-layer space structure shells.
Effect of structural heat conduction on the performance of micro-combustors and micro-thrusters
NASA Astrophysics Data System (ADS)
Leach, Timothy Thierry
This thesis investigates the effect of gas-structure interaction on the design and performance of miniaturized combustors with characteristic dimensions less than a few millimeters. These are termed 'micro-combustors' and are intended for use in devices ranging from micro-scale rocket motors for micro, nano, and pico-satellite propulsion, to micro-scale engines for micro-Unmanned Air Vehicle (UAV) propulsion and compact power generation. Analytical models for the propagation of a premixed laminar flame in a micro-channel are developed. The models' predictions are compared to the results of more detailed numerical simulations that incorporate multi-step chemistry, distributed heat transfer between the reacting gas and the combustor structure, heat transfer between the combustor and the environment, and heat transfer within the combustor structure. The results of the modeling and simulation efforts are found to be in good qualitative agreement and demonstrate that the behavior of premixed laminar flames in micro-channels is governed by heat transfer within the combustor structure and heat loss to the environment. The key findings of this work are as follows: First, heat transfer through the micro-combustor's structure tends to increase the flame speed and flame thickness. The increase in flame thickness with decreasing passage height suggests that micro-scale combustors will need to be longer than their conventional-scale counterparts. However, the increase in flame speed more than compensates for this effect and the net effect is that miniaturizing a combustor can increase its power density substantially. Second, miniaturizing chemical rocket thrusters can substantially increase thrust/weight ratio but comes at the price of reduced specific impulse (i.e. overall efficiency). Third, heat transfer through the combustor's structure increases steady-state and transient flame stability. This means that micro-scale combustors will be more stable than their conventional
Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki
2016-01-01
The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092
Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki
2016-01-01
The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~10(12) cm(-2)). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092
NASA Technical Reports Server (NTRS)
Van Hoven, G.; Mok, Y.
1984-01-01
The condensation-mode growth rate of the thermal instability in an empirically motivated sheared field is shown to depend upon the existence of perpendicular thermal conduction. This typically very small effect (perpendicular conductivity/parallel conductivity less than about 10 to the -10th for the solar corona) increases the spatial-derivative order of the compressible temperature-perturbation equation, and thereby eliminates the singularities which appear when perpendicular conductivity = 0. The resulting growth rate is less than 1.5 times the controlling constant-density radiation rate, and has a clear maximum at a cross-field length of order 100 times and a width of about 0.1 the magnetic shear scale for solar conditions. The profiles of the observable temperature and density perturbations are independent of the thermal conductivity, and thus agree with those found previously. An analytic solution to the short-wavelength incompressible case is also given.
Gartling, D.K.; Hogan, R.E.
1994-10-01
User instructions are given for the finite element computer program, COYOTE II. COYOTE II is designed for the multi-dimensional analysis of nonlinear heat conduction problems including the effects of enclosure radiation and chemical reaction. The theoretical background and numerical methods used in the program are documented in SAND94-1173. Examples of the use of the code are presented in SAND94-1180.
NASA Technical Reports Server (NTRS)
Cox, D. P.; Edgar, R. J.
1982-01-01
Accurate approximations are presented for the self-similar structures of nonradiating blast waves with adiabatic ions, isothermal electrons, and equation ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform density case) and have negligible external pressure. The results provide the early time asymptote for systems with shock heating of electrons and strong thermal conduction. In addition, they provide analytical results against which two fluid numerical hydrodynamic codes can be checked.