Science.gov

Sample records for 1d quantum spin

  1. Quantum soliton in 1D Heisenberg spin chains with Dzyaloshinsky-Moriya and next-nearest-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Djoufack, Z. I.; Tala-Tebue, E.; Nguenang, J. P.; Kenfack-Jiotsa, A.

    2016-10-01

    We report in this work, an analytical study of quantum soliton in 1D Heisenberg spin chains with Dzyaloshinsky-Moriya Interaction (DMI) and Next-Nearest-Neighbor Interactions (NNNI). By means of the time-dependent Hartree approximation and the semi-discrete multiple-scale method, the equation of motion for the single-boson wave function is reduced to the nonlinear Schrödinger equation. It comes from this present study that the spectrum of the frequencies increases, its periodicity changes, in the presence of NNNI. The antisymmetric feature of the DMI was probed from the dispersion curve while changing the sign of the parameter controlling it. Five regions were identified in the dispersion spectrum, when the NNNI are taken into account instead of three as in the opposite case. In each of these regions, the quantum model can exhibit quantum stationary localized and stable bright or dark soliton solutions. In each region, we could set up quantum localized n-boson Hartree states as well as the analytical expression of their energy level, respectively. The accuracy of the analytical studies is confirmed by the excellent agreement with the numerical calculations, and it certifies the stability of the stationary quantum localized solitons solutions exhibited in each region. In addition, we found that the intensity of the localization of quantum localized n-boson Hartree states increases when the NNNI are considered. We also realized that the intensity of Hartree n-boson states corresponding to quantum discrete soliton states depend on the wave vector.

  2. Quantum soliton in 1D Heisenberg spin chains with Dzyaloshinsky-Moriya and next-nearest-neighbor interactions.

    PubMed

    Djoufack, Z I; Tala-Tebue, E; Nguenang, J P; Kenfack-Jiotsa, A

    2016-10-01

    We report in this work, an analytical study of quantum soliton in 1D Heisenberg spin chains with Dzyaloshinsky-Moriya Interaction (DMI) and Next-Nearest-Neighbor Interactions (NNNI). By means of the time-dependent Hartree approximation and the semi-discrete multiple-scale method, the equation of motion for the single-boson wave function is reduced to the nonlinear Schrödinger equation. It comes from this present study that the spectrum of the frequencies increases, its periodicity changes, in the presence of NNNI. The antisymmetric feature of the DMI was probed from the dispersion curve while changing the sign of the parameter controlling it. Five regions were identified in the dispersion spectrum, when the NNNI are taken into account instead of three as in the opposite case. In each of these regions, the quantum model can exhibit quantum stationary localized and stable bright or dark soliton solutions. In each region, we could set up quantum localized n-boson Hartree states as well as the analytical expression of their energy level, respectively. The accuracy of the analytical studies is confirmed by the excellent agreement with the numerical calculations, and it certifies the stability of the stationary quantum localized solitons solutions exhibited in each region. In addition, we found that the intensity of the localization of quantum localized n-boson Hartree states increases when the NNNI are considered. We also realized that the intensity of Hartree n-boson states corresponding to quantum discrete soliton states depend on the wave vector.

  3. Magnetostriction and thermal expansion on 1D quantum spin system azurite

    SciTech Connect

    Fabris, Frederick W; Wolff-fabris, F; Francoual, S; Zapf, V; Jaime, M; Scott, B; Lacerda, A; Tozer, S; Hannahs, S; Murphy, T

    2008-01-01

    Recently the natural mineral Azurite has been proposed as model substance for the distorted S = 1/2 diamond chain in the spin fluid state. Azurite has alternating doublet monomers and singlet dimers along the chains yielding plateau-like features in the magnetization curves. Although Azurite was also reported to order antiferromagnetically at 1.86 K, the detailed phase diagram and its relationship to the 1/3 plateau is largely unknown. In the present paper, we report preliminary results from a dilatometry study on Azurite carried out in the 0.05--2.30 K temperature range at magnetic fields up to 31 T. It is shown that sizable structural distortions accompany the magnetic ordering and that at 100 mK the long range order between monomers is suppressed precisely at the transition field where the 1/3 plateau sets in.

  4. Tuning directional dependent metal-insulator transitions in quasi-1D quantum wires with spin-orbit density wave instability

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy

    2016-07-01

    We study directional dependent band gap evolutions and metal-insulator transitions (MITs) in model quantum wire systems within the spin-orbit density wave (SODW) model. The evolution of MIT is studied as a function of varying anisotropy between the intra-wire hopping ({{t}\\parallel} ) and inter-wire hopping ({{t}\\bot} ) with Rashba spin-orbit coupling. We find that as long as the anisotropy ratio (β ={{t}\\bot}/{{t}\\parallel} ) remains below 0.5, and the Fermi surface nesting is tuned to {{\\mathbf{Q}}1}=≤ft(π,0\\right) , an exotic SODW induced MIT easily develops, with its critical interaction strength increasing with increasing anisotropy. As β \\to 1 (2D system), the nesting vector switches to {{\\mathbf{Q}}2}=≤ft(π,π \\right) , making this state again suitable for an isotropic MIT. Finally, we discuss various physical consequences and possible applications of the directional dependent MIT.

  5. Spin-1 quantum walks

    NASA Astrophysics Data System (ADS)

    Morita, Daichi; Kubo, Toshihiro; Tokura, Yasuhiro; Yamashita, Makoto

    2016-06-01

    We study the quantum walks of two interacting spin-1 bosons. We derive an exact solution for the time-dependent wave function, which describes the two-particle dynamics governed by the one-dimensional spin-1 Bose-Hubbard model. We show that propagation dynamics in real space and mixing dynamics in spin space are correlated via the spin-dependent interaction in this system. The spin-mixing dynamics has two characteristic frequencies in the limit of large spin-dependent interactions. One of the characteristic frequencies is determined by the energy difference between two bound states, and the other frequency relates to the cotunneling process of a pair of spin-1 bosons. Furthermore, we numerically analyze the growth of the spin correlations in quantum walks. We find that long-range spin correlations emerge showing a clear dependence on the sign of the spin-dependent interaction and the initial state.

  6. The molecular spin filter constructed from 1D organic chain

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Xu, Ning; Wang, Baolin; Bian, Baoan

    2014-06-01

    We proposed a molecular spin filter, which is constructed from the 1D metallic organic chain (Fen+1(C6H4)n). The spin-polarized transport properties of the molecular spin filter are explored by combining density functional theory with nonequilibrium Green's function formalism. Theoretical results reveal that Fen+1(C6H4)n molecular chain exhibits robust spin filtering effect, and only the spin-down electrons can transmit through the molecular chain. At the given bias voltage window [-1 eV,1 eV], the calculated spin filter efficiency is close to 100% in the case of n≥3. We find that the effect of spin polarization origin from both Fen+1 and (C6H4)n. In addition, negative difference resistance behavior appears in Fen+1(C6H4)n molecular chain. The results can help us understand the spin transport properties of organic molecular chain.

  7. Quantum Spin Gyroscope

    DTIC Science & Technology

    2015-07-15

    strengths can be applied to other electron-nuclear systems, such as phosphorus or antimony donors in silicon, defects in silicon carbide or quantum dots ...Progress Report (ONR Award No. N00014-14-1-0804) Quantum Spin Gyroscope August 2014-July 2015 Report Type: Annual Report Primary Contact E-mail... Quantum Spin Gyroscope Grant/Contract Number: N00014-14-1-0804 Principal Investigator Name: Paola Cappellaro Program Manager: Richard Tommy Willis

  8. Quantum Spin Hall Effect

    SciTech Connect

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  9. Quantum spin liquid states

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Kanoda, Kazushi; Ng, Tai-Kai

    2017-04-01

    This is an introductory review of the physics of quantum spin liquid states. Quantum magnetism is a rapidly evolving field, and recent developments reveal that the ground states and low-energy physics of frustrated spin systems may develop many exotic behaviors once we leave the regime of semiclassical approaches. The purpose of this article is to introduce these developments. The article begins by explaining how semiclassical approaches fail once quantum mechanics become important and then describe the alternative approaches for addressing the problem. Mainly spin-1 /2 systems are discussed, and most of the time is spent in this article on one particular set of plausible spin liquid states in which spins are represented by fermions. These states are spin-singlet states and may be viewed as an extension of Fermi liquid states to Mott insulators, and they are usually classified in the category of so-called S U (2 ), U (1 ), or Z2 spin liquid states. A review is given of the basic theory regarding these states and the extensions of these states to include the effect of spin-orbit coupling and to higher spin (S >1 /2 ) systems. Two other important approaches with strong influences on the understanding of spin liquid states are also introduced: (i) matrix product states and projected entangled pair states and (ii) the Kitaev honeycomb model. Experimental progress concerning spin liquid states in realistic materials, including anisotropic triangular-lattice systems [κ -(ET )2Cu2(CN )3 and EtMe3Sb [Pd (dmit )2]2 ], kagome-lattice system [ZnCu3(OH )6Cl2 ], and hyperkagome lattice system (Na4 Ir3 O8 ), is reviewed and compared against the corresponding theories.

  10. Quantum Dot Spins and Photons

    NASA Astrophysics Data System (ADS)

    Atature, Mete

    2012-02-01

    Self-assembled semiconductor quantum dots are interesting and rich physical systems. Their inherently mesoscopic nature leads to a multitude of interesting interaction mechanisms of confined spins with the solid state environment of spins, charges and phonons. In parallel, the relatively clean spin-dependent optical transitions make quantum dots strong candidates for stationary and flying qubits within the context of spin-based quantum information science. The recently observed quantum dot resonance fluorescence has become a key enabler for further progress in this context. I will first discuss the real-time optical detection (or single-shot readout) of quantum dot spins, and then I will discuss how resonance fluorescence allows coherent generation of single photons suitable (and tailored) for linear-optics quantum computation and for establishing a high-efficiency spin-photon quantum interface within a distributed quantum network.

  11. Quantum model of spin noise.

    PubMed

    Annabestani, R; Cory, D G; Emerson, J

    2015-03-01

    Any ensemble of quantum particles exhibits statistical fluctuations known as spin noise. Here, we provide a description of spin noise in the language of open quantum systems. The description unifies the signatures of spin noise under both strong and weak measurements. Further, the model accounts for arbitrary spin dynamics from an arbitrary initial state. In all cases we can find both the spin noise and its time correlation function.

  12. Kinetics of spin relaxation in quantum wires and channels: Boundary spin echo and formation of a persistent spin helix

    SciTech Connect

    Slipko, Valeriy A.; Pershin, Yuriy V.

    2011-10-15

    In this paper we use a spin kinetic equation to study spin-polarization dynamics in one-dimensional (1D) wires and 2D channels. The spin kinetic equation is valid in both diffusive and ballistic spin transport regimes and therefore is more general than the usual spin drift-diffusion equations. In particular, we demonstrate that in infinite 1D wires with Rashba spin-orbit interaction the exponential spin-relaxation decay can be modulated by an oscillating function. In the case of spin relaxation in finite length 1D wires, it is shown that an initially homogeneous spin polarization spontaneously transforms into a persistent spin helix. We find that a propagating spin-polarization profile reflects from a system boundary and returns back to its initial position similarly to the reflectance of sound waves from an obstacle. The Green's function of the spin kinetic equation is derived for both finite and infinite 1D systems. Moreover, we demonstrate explicitly that the spin relaxation in specifically oriented 2D channels with Rashba and Dresselhaus spin-orbit interactions of equal strength occurs similarly to that in 1D wires of finite length. Finally, a simple transformation mapping 1D spin kinetic equation into the Klein-Gordon equation with an imaginary mass is found thus establishing an interesting connection between semiconductor spintronics and relativistic quantum mechanics.

  13. Spin resonance and spin fluctuations in a quantum wire

    NASA Astrophysics Data System (ADS)

    Pokrovsky, V. L.

    2017-02-01

    This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the

  14. Quantum spin liquids: a review

    NASA Astrophysics Data System (ADS)

    Savary, Lucile; Balents, Leon

    2017-01-01

    Quantum spin liquids may be considered ‘quantum disordered’ ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.

  15. 1D Josephson quantum interference grids: diffraction patterns and dynamics

    NASA Astrophysics Data System (ADS)

    Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2016-02-01

    We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.

  16. Connected components of irreducible maps and 1D quantum phases

    SciTech Connect

    Szehr, Oleg; Wolf, Michael M.

    2016-08-15

    We investigate elementary topological properties of sets of completely positive (CP) maps that arise in quantum Perron-Frobenius theory. We prove that the set of primitive CP maps of fixed Kraus rank is path-connected and we provide a complete classification of the connected components of irreducible CP maps at given Kraus rank and fixed peripheral spectrum in terms of a multiplicity index. These findings are then applied to analyse 1D quantum phases by studying equivalence classes of translational invariant matrix product states that correspond to the connected components of the respective CP maps. Our results extend the previously obtained picture in that they do not require blocking of physical sites, they lead to analytic paths, and they allow us to decompose into ergodic components and to study the breaking of translational symmetry.

  17. Spin superfluid Josephson quantum devices

    NASA Astrophysics Data System (ADS)

    Takei, So; Tserkovnyak, Yaroslav; Mohseni, Masoud

    2017-04-01

    A macroscopic spintronic qubit based on spin superfluidity and spin Hall phenomena is proposed. This magnetic quantum information processing device realizes the spin-supercurrent analog of the superconducting phase qubit and allows for full electrical control and readout. We also show that an array of interacting magnetic phase qubits can realize a quantum annealer. These devices can be built through standard solid-state fabrication technology, allowing for scalability. However, the upper bound for the operational temperature can, in principle, be higher than the superconducting counterpart, as it is ultimately governed by the magnetic ordering temperatures, which could be much higher than the critical temperatures of the conventional superconducting devices.

  18. Quantum melting of spin ice

    NASA Astrophysics Data System (ADS)

    Onoda, Shigeki; Tanaka, Yoichi

    2010-03-01

    A quantum melting of the spin ice is proposed for pyrochlore-lattice magnets Pr2TM2O7 (TM =Ir, Zr, and Sn). The quantum pseudospin-1/2 model is derived from the strong-coupling perturbation of the f-p electron transfer in the basis of atomic non-Kramers magnetic doublets. The ground states are characterized by a cooperative ferroquadrupole and pseudospin chirality in the cubic unit cell, forming a magnetic analog of smectic liquid crystals. Then, pinch points observed in spin correlations for dipolar spin-ice systems are replaced with the minima. The relevance to experiments is discussed.

  19. Quantumness of spin-1 states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, Fabian; Braun, D.; Giraud, O.

    2016-01-01

    We investigate quantumness of spin-1 states, defined as the Hilbert-Schmidt distance to the convex hull of spin coherent states. We derive its analytic expression in the case of pure states as a function of the smallest eigenvalue of the Bloch matrix and give explicitly the closest classical state for an arbitrary pure state. Numerical evidence is given that the exact formula for pure states provides an upper bound on the quantumness of mixed states. Due to the connection between quantumness and entanglement we obtain new insights into the geometry of symmetric entangled states.

  20. Quantum state engineering with spins

    NASA Astrophysics Data System (ADS)

    Heidebrecht, A.; Mende, J.; Mehring, M.

    2006-08-01

    Magnetic resonance methods and in particular Nuclear Magnetic Resonance in the liquid state were the first experimental techniques to implement quantum computing algorithms. The main drawbacks of these methods sofar have been the highly mixed nature of the quantum states and scalability issues. Recently, efforts have been made to address these problems by applying magnetic resonance to solid state systems at lower temperatures. In this contribution, we give an overview of our results on accurately controlling and measuring the quantum state of spin systems in the liquid and in particular in the solid state at low temperatures using Nuclear Magnetic Resonance and Electron Spin Resonance.

  1. Decoherence effects on the quantum spin channels

    SciTech Connect

    Cai Jianming; Zhou Zhengwei; Guo Guangcan

    2006-08-15

    An open ended spin chain can serve as a quantum data bus for the coherent transfer of quantum state information. In this paper, we investigate the efficiency of such quantum spin channels which work in a decoherence environment. Our results show that the decoherence will significantly reduce the fidelity of quantum communication through the spin channels. Generally speaking, as the distance increases, the decoherence effects become more serious, which will put some constraints on the spin chains for long distance quantum state transfer.

  2. Structural Electronic and Magnetic Properties of Quasi-1D Quantum Magnets [Ni(HF2)(pyz)2]X (pyz = pyrazine; X = PF6- SbF6-) Exhibiting Ni-FHF-Ni and Ni-pyz-Ni Spin Interactions

    SciTech Connect

    J Manson; S Lapidus; P Stephens; P Peterson; K Carreiro; H Southerland; T Lancaster; S Blundell; A Steele; et al.

    2011-12-31

    [Ni(HF{sub 2})(pyz){sub 2}]X {l_brace}pyz = pyrazine; X = PF{sub 6}{sup -} (1), SbF{sub 6}{sup -} (2){r_brace} were structurally characterized by synchrotron X-ray powder diffraction and found to possess axially compressed NiN{sub 4}F{sub 2} octahedra. At 298 K, 1 is monoclinic (C2/c) with unit cell parameters, a = 9.9481(3), b = 9.9421(3), c = 12.5953(4) {angstrom}, and {beta} = 81.610(3){sup o} while 2 is tetragonal (P4/nmm) with a = b = 9.9359(3) and c = 6.4471(2) {angstrom} and is isomorphic with the Cu-analogue. Infinite one-dimensional (1D) Ni-FHF-Ni chains propagate along the c-axis which are linked via {mu}-pyz bridges in the ab-plane to afford three-dimensional polymeric frameworks with PF{sub 6}{sup -} and SbF{sub 6}{sup -} counterions occupying the interior sites. A major difference between 1 and 2 is that the Ni-F-H bonds are bent (157{sup o}) in 1 but are linear in 2. Ligand field calculations (LFT) based on an angular overlap model (AOM), with comparison to the electronic absorption spectra, indicate greater {pi}-donation of the HF{sub 2}{sup -} ligand in 1 owing to the bent Ni-F-H bonds. Magnetic susceptibility data for 1 and 2 exhibit broad maxima at 7.4 and 15 K, respectively, and {lambda}-like peaks in dxT/dT at 6.2 and 12.2 K that are ascribed to transitions to long-range antiferromagnetic order (TN). Muon-spin relaxation and specific heat studies confirm these TN's. A comparative analysis of x vs T to various 1D Heisenberg/Ising models suggests moderate antiferromagnetic interactions, with the primary interaction strength determined to be 3.05/3.42 K (1) and 5.65/6.37 K (2). However, high critical fields of 19 and 37.4 T obtained from low temperature pulsed-field magnetization data indicate that a single exchange constant (J1D) alone is insufficient to explain the data and that residual terms in the spin Hamiltonian, which could include interchain magnetic couplings (J), as mediated by Ni-pyz-Ni, and single-ion anisotropy (D), must be considered

  3. Topological defect formation in 1D and 2D spin chains realized by network of optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Hamerly, Ryan; Inaba, Kensuke; Inagaki, Takahiro; Takesue, Hiroki; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-09-01

    A network of optical parametric oscillators (OPOs) is used to simulate classical Ising and XY spin chains. The collective nonlinear dynamics of this network, driven by quantum noise rather than thermal fluctuations, seeks out the Ising/XY ground state as the system transitions from below to above the lasing threshold. We study the behavior of this “Ising machine” for three canonical problems: a 1D ferromagnetic spin chain, a 2D square lattice and problems where next-nearest-neighbor couplings give rise to frustration. If the pump turn-on time is finite, topological defects form (domain walls for the Ising model, winding number and vortices for XY) and their density can be predicted from a numerical model involving a linear “growth stage” and a nonlinear “saturation stage”. These predictions are compared against recent data for a 10,000-spin 1D Ising machine.

  4. Quantum spin transistor with a Heisenberg spin chain

    PubMed Central

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  5. The Magical Geometry of 1D Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Plamadeala, Eugeniu

    We investigate the edge properties of Abelian topological phases in two spatial dimensions. We discover that many of them support multiple fully chiral edge phases, with surprising and measurable experimental consequences. Using the machinery of conformal field theory and integral quadratic forms we establish that distinct chiral edge phases correspond to genera of positive-definite integral lattices. This completes the notion of bulk-boundary correspondence for topological phases. We establish that by tuning inter-channel interactions the system can be made to transition between the different edge phases without closing the bulk gap. Separately we construct a family of one-dimensional models, called Perfect Metals, with no relevant mass-generating operators. These theories describe stable quantum critical phases of interacting fermions, bosons or spins in a quantum nanowire. These models rigorously answer a long-standing question about the existence of stable metallic phases in one and two spatial dimensions in the presence of generic disorder. Separately, they are the first example of a stable phase of an infinite parallel array of coupled Luttinger liquids. We perform a detailed study of the transport properties of Perfect Metals and show that in addition to violating the Wiedemann-Franz law, they naturally exhibit low power-law dependence of electric and thermal conductivities on temperature all the way to zero temperature. We dub this phenomenological set of properties a hyperconductor because in some sense, hyperconductors are better conductors that superconductors, which may have thermal conductivities that are exponentially small in temperature.

  6. Quantum Hall Spin Diode

    NASA Astrophysics Data System (ADS)

    Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2017-05-01

    Double layer two-dimensional electron systems at high perpendicular magnetic field are used to realize magnetic tunnel junctions in which the electrons at the Fermi level in the two layers have either parallel or antiparallel spin magnetizations. In the antiparallel case the tunnel junction, at low temperatures, behaves as a nearly ideal spin diode. At elevated temperatures the diode character degrades as long-wavelength spin waves are thermally excited. These tunnel junctions provide a demonstration that the spin polarization of the electrons in the N =1 Landau level at filling factors ν =5 /2 and 7 /2 is essentially complete, and, with the aid of an in-plane magnetic field component, that Landau level mixing at these filling factors is weak in the samples studied.

  7. Electrical control of flying spin precession in chiral 1D edge states

    SciTech Connect

    Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting

    2013-12-04

    Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.

  8. Quantum Spin Liquids and Fractionalization

    NASA Astrophysics Data System (ADS)

    Misguich, Grégoire

    This chapter discusses quantum antiferromagnets which do not break any symmetries at zero temperature - also called "spin liquids" - and focuses on lattice spin models with Heisenberg-like (i.e. SU(2)-symmetric) interactions in dimensions larger than one. We begin by discussing the Lieb-Schultz-Mattis theorem and its recent extension to D > 1 by Hastings (2004), which establishes an important distinction between spin liquids with an integer and with a half-integer spin per unit cell. Spin liquids of the first kind, "band insulators", can often be understood by elementary means, whereas the latter, "Mott insulators", are more complex (featuring "topological order") and support spin-1/2 excitations (spinons). The fermionic formalism (Affleck and Marston, 1988) is described and the effect of fluctuations about mean-field solutions, such as the possible creation of instabilities, is discussed in a qualitative way. In particular, we explain the emergence of gauge modes and their relation to fractionalization. The concept of the projective symmetry group (X.-G. Wen, 2002) is introduced, with the aid of some examples. Finally, we present the phenomenology of (gapped) short-ranged resonating-valence-bond spin liquids, and make contact with the fermionic approach by discussing their description in terms of a fluctuating Z 2 gauge field. Some recent references are given to other types of spin liquid, including gapless ones.

  9. The nonuniform spin polarization in the square-shaped 1D wire induced by spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Fedoseev, A. D.

    2017-10-01

    It is shown that the Rashba spin-orbit coupling induces the spatially nonuniform spin state in the square-shaped 1D wire. The electron states of this type are characterized with spin orientation changing according to the harmonic motion along the square side. The period of the oscillation is determined only by the spin-orbital coupling and the hopping parameters ratio. The modulation of spin orientation is caused by step-like changing of Rashba field direction. The obtained results were generalized on the case of polygon-shaped wire.

  10. Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires

    NASA Astrophysics Data System (ADS)

    Dufouleur, J.; Veyrat, L.; Dassonneville, B.; Xypakis, E.; Bardarson, J. H.; Nowka, C.; Hampel, S.; Schumann, J.; Eichler, B.; Schmidt, O. G.; Büchner, B.; Giraud, R.

    2017-04-01

    Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder.

  11. Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires

    PubMed Central

    Dufouleur, J.; Veyrat, L.; Dassonneville, B.; Xypakis, E.; Bardarson, J. H.; Nowka, C.; Hampel, S.; Schumann, J.; Eichler, B.; Schmidt, O. G.; Büchner, B.; Giraud, R.

    2017-01-01

    Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder. PMID:28374744

  12. Synthesis and characterization of 1D iron(II) spin crossover coordination polymers with hysteresis.

    PubMed

    Bauer, Wolfgang; Lochenie, Charles; Weber, Birgit

    2014-02-07

    Purposeful ligand design was used for the synthesis of eight new 1D iron(II) spin crossover coordination polymers aiming for cooperative spin transitions with hysteresis. The results from magnetic measurements and X-ray structure analysis show that the combination of rigid linkers and a hydrogen bond network between the 1D chains is a promising tool to reach this goal. Five of the eight new samples show a cooperative spin transition with hysteresis with up to 43 K wide hysteresis loops.

  13. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    DTIC Science & Technology

    2015-05-01

    QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...semiconductor quantum dots doped with a single electron, made possible by the Coulomb blockade in this system. The quantum dots confine both electrons and

  14. Measuring Spin-Charge Separation in a 1D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fry, Jacob A.; Revelle, Melissa C.; Hulet, Randall G.

    2016-05-01

    We present progress on measurement of spin-charge separation in a two-component, strongly interacting, 1D gas of fermionic lithium. A characteristic feature of interacting 1D Fermi gases is that the velocity of a charge excitation propagates faster than a spin excitation. We create an excitation by applying a dipole force at the center of the cloud using a sheet of light. Depending on the detuning of this beam, we can either excite both spin species equally (charge excitation) or preferentially (spin excitation). Once this beam is turned off, the excitations propagate to the edges of the atomic cloud at a velocity determined by coupling strength. A magnetically tuned Feshbach resonance enables us to vary this coupling and map out the velocities of spin and charge excitations. Supported by an ARO MURI Grant, NSF, and The Welch Foundation

  15. Nuclear spin effects in semiconductor quantum dots.

    PubMed

    Chekhovich, E A; Makhonin, M N; Tartakovskii, A I; Yacoby, A; Bluhm, H; Nowack, K C; Vandersypen, L M K

    2013-06-01

    The interaction of an electronic spin with its nuclear environment, an issue known as the central spin problem, has been the subject of considerable attention due to its relevance for spin-based quantum computation using semiconductor quantum dots. Independent control of the nuclear spin bath using nuclear magnetic resonance techniques and dynamic nuclear polarization using the central spin itself offer unique possibilities for manipulating the nuclear bath with significant consequences for the coherence and controlled manipulation of the central spin. Here we review some of the recent optical and transport experiments that have explored this central spin problem using semiconductor quantum dots. We focus on the interaction between 10(4)-10(6) nuclear spins and a spin of a single electron or valence-band hole. We also review the experimental techniques as well as the key theoretical ideas and the implications for quantum information science.

  16. Multiple-state quantum Otto engine, 1D box system

    SciTech Connect

    Latifah, E.; Purwanto, A.

    2014-03-24

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  17. Multiple-state quantum Otto engine, 1D box system

    NASA Astrophysics Data System (ADS)

    Latifah, E.; Purwanto, A.

    2014-03-01

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  18. Spin Polarized Transport and Spin Relaxation in Quantum Wires

    NASA Astrophysics Data System (ADS)

    Wenk, Paul; Yamamoto, Masayuki; Ohe, Jun-Ichiro; Ohtsuki, Tomi; Kramer, Bernhard; Kettemann, Stefan

    We give an introduction to spin dynamics in quantum wires. After a review of spin-orbit coupling (SOC) mechanisms in semiconductors, the spin diffusion equation with SOC is introduced. We discuss the particular conditions in which solutions of the spin diffusion equation with vanishing spin relaxation rates exist, where the spin density forms persistent spin helices. We give an overview of spin relaxation mechanisms, with particular emphasis on the motional narrowing mechanism in disordered conductors, the D'yakonov-Perel' spin relaxation. The solution of the spin diffusion equation in quantum wires shows that the spin relaxation becomes diminished when reducing the wire width below the spin precession length L SO. This corresponds to an effective alignment of the spin-orbit field in quantum wires and the formation of persistent spin helices whose form as well as amplitude is a measure of the particular SOCs, the linear Rashba and the linear Dresselhaus coupling. Cubic Dresselhaus coupling is found to yield in diffusive wires an undiminished contribution to the spin relaxation rate, however. We discuss recent experimental results which confirm the reduction of the spin relaxation rate. We next review theoretical proposals for creating spin-polarized currents in a T-shape structure with Rashba-SOC. For relatively small SOC, high spin polarization can be obtained. However, the corresponding conductance has been found to be small. Due to the self-duality of the scattering matrix for a system with spin-orbit interaction, no spin polarization of the current can be obtained for single-channel transport in two-terminal devices. Therefore, one has to consider at least a conductor with three terminals. We review results showing that the amplitude of the spin polarization becomes large if the SOC is sufficiently strong. We argue that the predicted effect should be experimentally accessible in InAs. For a possible experimental realization of InAs spin filters, see [1].

  19. Spinon walk in quantum spin ice

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; Carrasquilla, Juan; Melko, Roger

    Quantum spin ice is a novel family of spin ice magnets that possess substantial quantum fluctuations. The fractional excitations are spinons, which are quantum analog of the monopoles in classical spin ice. The spinon propagates in quantum spin ice via quantum tunnelling. As opposed to a conventional quantum particle, the spinon moves in a background of disordered spins. The orientation of background spins controls the spinon motion, whereas the spinon motion in turn alters the spin background. One may naturally ask what a suitable framework for understanding the dynamics of spinon is in quantum spin ice, and furthermore, whether the spinon propagation is coherent. In this talk, we address these issues by investigating a minimal model that captures the essential features of single spinon dynamics in quantum spin ice. We demonstrate that the spinon motion can be thought of as a quantum walk with entropy-induced memory. Our numerical simulation shows that the simple quasi-particle behaviour emerges out of the intricate interplay between the spinon and the background spins .

  20. On the origin of multi-step spin transition behaviour in 1D nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiruta, Daniel; Jureschi, Catalin-Maricel; Linares, Jorge; Dahoo, Pierre Richard; Garcia, Yann; Rotaru, Aurelian

    2015-09-01

    To investigate the spin state switching mechanism in spin crossover (SCO) nanoparticles, a special attention is given to three-step thermally induced SCO behavior in 1D chains. An additional term is included in the standard Ising-like Hamiltonian to account for the border interaction between SCO molecules and its local environment. It is shown that this additional interaction, together with the short range interaction, drives the multi-steps thermal hysteretic behavior in 1D SCO systems. The relation between a polymeric matrix and this particular multi-step SCO phenomenon is discussed accordingly. Finally, the environmental influence on the SCO system's size is analyzed as well.

  1. Exploring quantum phase slips in 1D bosonic systems

    NASA Astrophysics Data System (ADS)

    Abbate, Simona Scaffidi; Gori, Lorenzo; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2017-07-01

    Quantum phase slips, i.e., the primary excitations in one-dimensional superfluids at low temperature, have been well characterized in most condensed-matter systems, with the notable exception of ultracold quantum gases. Here we present our experimental investigation of the dissipation in one-dimensional Bose superfluids flowing along a periodic potential, which show signatures of the presence of quantum phase slips. In particular, by controlling the velocity of the superfluid and the interaction between the bosons we are apparently able to drive a crossover from a regime of thermal phase slips into a regime of quantum phase slips. Achieving a good control of quantum phase slips in ultracold quantum gases requires to keep under control other phenomena such as the breaking of superfluidity at the critical velocity or the appearance of a Mott insulator in the strongly correlated regime. Here we show our current results in these directions.

  2. Circuit quantum electrodynamics with a spin qubit.

    PubMed

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  3. Giant Fluctuations of Local Magnetoresistance of Organic Spin Valves and the Non-Hermitian 1D Anderson Model

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Nemirovsky, D.; Kagalovsky, V.; Raikh, M. E.

    2014-06-01

    Motivated by recent experiments, where the tunnel magnetoresitance (TMR) of a spin valve was measured locally, we theoretically study the distribution of TMR along the surface of magnetized electrodes. We show that, even in the absence of interfacial effects (like hybridization due to donor and acceptor molecules), this distribution is very broad, and the portion of area with negative TMR is appreciable even if on average the TMR is positive. The origin of the local sign reversal is quantum interference of subsequent spin-rotation amplitudes in the course of incoherent transport of carriers between the source and the drain. We find the distribution of local TMR exactly by drawing upon formal similarity between evolution of spinors in time and of the reflection coefficient along a 1D chain in the Anderson model. The results obtained are confirmed by the numerical simulations.

  4. Magnetic monopoles in quantum spin ice

    NASA Astrophysics Data System (ADS)

    Petrova, Olga; Moessner, Roderich; Sondhi, Shivaji

    Typical spin ice materials can be modeled using classical Ising spins. The geometric frustration of the pyrochlore lattice causes the spins to satisfy ice rules, whereas a violation of the ice constraint constitutes an excitation. Flipping adjacent spins fractionalizes the excitation into two monopoles. Long range dipolar spin couplings result in Coulombic interactions between charges, while the leading effect of quantum fluctuations is to provide the monopoles with kinetic energy. We study the effect of adding quantum dynamics to spin ice, a well-known classical spin liquid, with a particular view of how to best detect its presence in experiment. For the weakly diluted quantum spin ice, we find a particularly crisp phenomenon, namely, the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at various distances.

  5. The (2 + 1)-d U(1) quantum link model masquerading as deconfined criticality

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Jiang, F.-J.; Widmer, P.; Wiese, U.-J.

    2013-12-01

    The (2 + 1)-d U(1) quantum link model is a gauge theory, amenable to quantum simulation, with a spontaneously broken SO(2) symmetry emerging at a quantum phase transition. Its low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by an SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. At the quantum phase transition, the model mimics some features of deconfined quantum criticality, but remains linearly confining. Deconfinement only sets in at high temperature. Dedicated to the memory of Bernard B Beard (1957-2012).

  6. 1D quantum simulation using a solid state platform

    NASA Astrophysics Data System (ADS)

    Kirkendall, Megan; Irvin, Patrick; Huang, Mengchen; Levy, Jeremy; Lee, Hyungwoo; Eom, Chang-Beom

    Understanding the properties of large quantum systems can be challenging both theoretically and numerically. One experimental approach-quantum simulation-involves mapping a quantum system of interest onto a physical system that is programmable and experimentally accessible. A tremendous amount of work has been performed with quantum simulators formed from optical lattices; by contrast, solid-state platforms have had only limited success. Our experimental approach to quantum simulation takes advantage of nanoscale control of a metal-insulator transition at the interface between two insulating complex oxide materials. This system naturally exhibits a wide variety of ground states (e.g., ferromagnetic, superconducting) and can be configured into a variety of complex geometries. We will describe initial experiments that explore the magnetotransport properties of one-dimensional superlattices with spatial periods as small as 4 nm, comparable to the Fermi wavelength. The results demonstrate the potential of this solid-state quantum simulation approach, and also provide empirical constraints for physical models that describe the underlying oxide material properties. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL), FA9550-10-1-0524 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).

  7. Spin-dependent quantum interference in nonlocal graphene spin valves.

    PubMed

    Guimarães, M H D; Zomer, P J; Vera-Marun, I J; van Wees, B J

    2014-05-14

    Up to date, all spin transport experiments on graphene were done in a semiclassical regime, disregarding quantum transport properties such as phase coherence and interference. Here we show that in a quantum coherent graphene nanostructure the nonlocal voltage is strongly modulated. Using nonlocal measurements, we separate the signal in spin-dependent and spin-independent contributions. We show that the spin-dependent contribution is about 2 orders of magnitude larger than the spin-independent one, when corrected for the finite polarization of the electrodes. The nonlocal spin signal is not only strongly modulated but also changes polarity as a function of the applied gate voltage. By locally tuning the carrier density in the constriction via a side gate electrode we show that the constriction plays a major role in this effect. Our results show the potential of quantum coherent graphene nanostructures for the use in future spintronic devices.

  8. Two-step spin transition in a 1D Fe(II) 1,2,4-triazole chain compound.

    PubMed

    Dîrtu, Marinela M; Schmit, France; Naik, Anil D; Rusu, Ionela; Rotaru, Aurelian; Rackwitz, Sergej; Wolny, Juliusz A; Schünemann, Volker; Spinu, Leonard; Garcia, Yann

    2015-04-07

    A thermochromic 1D spin crossover coordination (SCO) polymer [Fe(βAlatrz)3](BF4)2⋅2 H2O (1⋅2 H2O), whose precursor βAlatrz, (1,2,4-triazol-4-yl-propionate) has been tailored from a β-amino acid ester is investigated in detail by a set of superconducting quantum interference device (SQUID), (57)Fe Mössbauer, differential scanning calorimetry, infrared, and Raman measurements. An hysteretic abrupt two-step spin crossover (T1/2(↓) = 230 K and T1/2(↑) = 235 K, and T1/2(↓) = 172 K and T1/2(↑) = 188 K, respectively) is registered for the first time for a 1,2,4-triazole-based Fe(II) 1D coordination polymer. The two-step SCO configuration is observed in a 1:2 ratio of low-spin/high-spin in the intermediate phase for a 1D chain. The origin of the stepwise transition was attributed to a distribution of chains of different lengths in 1⋅2 H2O after First Order Reversal Curves (FORC) analyses. A detailed DFT analysis allowed us to propose the normal mode assignment of the Raman peaks in the low-spin and high-spin states of 1⋅2 H2O. Vibrational spectra of 1⋅2 H2O reveal that the BF4(-) anions and water molecules play no significant role on the vibrational properties of the [Fe(βAlatrz)3](2+) polymeric chains, although non-coordinated water molecules have a dramatic influence on the emergence of a step in the spin transition curve. The dehydrated material [Fe(βAlatrz)3](BF4)2 (1) reveals indeed a significantly different magnetic behavior with a one-step SCO which was also investigated.

  9. Superadiabatic quantum state transfer in spin chains

    NASA Astrophysics Data System (ADS)

    Agundez, R. R.; Hill, C. D.; Hollenberg, L. C. L.; Rogge, S.; Blaauboer, M.

    2017-01-01

    In this paper we propose a superadiabatic protocol where quantum state transfer can be achieved with arbitrarily high accuracy and minimal control across long spin chains with an odd number of spins. The quantum state transfer protocol only requires the control of the couplings between the qubits on the edge and the spin chain. We predict fidelities above 0.99 for an evolution of nanoseconds using typical spin-exchange coupling values of μ eV . Furthermore, by building a superadiabatic formalism on top of this protocol, we propose an effective superadiabatic protocol that retains the minimal control over the spin chain and further improves the fidelity.

  10. Disorder-Induced Quantum Spin Liquid in Spin Ice Pyrochlores

    NASA Astrophysics Data System (ADS)

    Savary, Lucile; Balents, Leon

    2017-02-01

    We propose that in a certain class of magnetic materials, known as non-Kramers "spin ice," disorder induces quantum entanglement. Instead of driving glassy behavior, disorder provokes quantum superpositions of spins throughout the system and engenders an associated emergent gauge structure and set of fractional excitations. More precisely, disorder transforms a classical phase governed by a large entropy, classical spin ice, into a quantum spin liquid governed by entanglement. As the degree of disorder is increased, the system transitions between (i) a "regular" Coulombic spin liquid, (ii) a phase known as "Mott glass," which contains rare gapless regions in real space, but whose behavior on long length scales is only modified quantitatively, and (iii) a true glassy phase for random distributions with large width or large mean amplitude.

  11. Quantum Nucleation of Phase Slips in 1-d Superfluids

    NASA Astrophysics Data System (ADS)

    Arovas, Daniel

    1998-03-01

    The rate for quantum nucleation of phase slips past an impurity in a one-dimensional superfluid is computed. Real time evolution of the nonlinear Schrödinger equation shows that there is a critical velocity vc below which solutions are time-independent [1,2]; this is the regime of quantum phase slip nucleation. We start with the Gross-Pitaevskii model in the presence of an impurity potential, and derive the Euclidean action for a space-time vortex-antivortex pair, which describes a phase slip event. The action is computed as a function of the superfluid velocity v and the impurity potential width and depth.l [1] V. Hakim, Phys. Rev. E 55, 2835 (1997).l [1] J. A. Freire, D. P. Arovas, and H. Levine, Phys. Rev. Lett (in press, 1997).l

  12. Simulations of Edge Effect in 1D Spin Crossover Compounds by Atom-Phonon Coupling Model

    NASA Astrophysics Data System (ADS)

    Linares, J.; Chiruta, D.; Jureschi, C. M.; Alayli, Y.; Turcu, C. O.; Dahoo, P. R.

    2016-08-01

    We used the atom-phonon coupling model to explain and illustrate the behaviour of a linear nano-chain of molecules. The analysis of the system's behaviour was performed using Free Energy method, and by applying Monte Carlo Metropolis (MCM) method which take into account the phonon contribution. In particular we tested both the MCM algorithm and the dynamic-matrix method and we expose how the thermal behaviour of a 1D spin crossover system varies as a function of different factors. Furthermore we blocked the edge atoms of the chain in its high spin state to study the effect on the system's behaviour.

  13. Quasi-1D Superfluids In A Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Olsen, Ben A.; Fry, Jacob A.; Hulet, Randall G.

    2015-05-01

    We experimentally study the phases of an ultracold two-spin component gas of atomic fermions (6Li) confined to 1D tubes formed by a 2D optical lattice. The atoms are prepared in the lowest two hyperfine sublevels where their interactions are tuned by a Feshbach resonance. We previously observed phase separation into a partially-polarized superfluid core and either fully-paired or fully-polarized wings (depending on the spin polarization). In 3D, the phase separation is inverted, such that the cloud center is fully paired. We investigate the transition from a 1D to 3D gas by varying the lattice depth and interaction strength which changes the ratio of the tunneling rate between the tubes to the pair binding energy. The region of parameter space we are exploring is believed to be the most promising region for the exotic FFLO superfluid phase. Supported by ARO, NSF, ONR, and the Welch Foundation.

  14. Sensitivity of quantum yield for O(/sup 1/D) production from ozone photolysis

    SciTech Connect

    Wuebbles, D.J.; Tarp, R.L.

    1980-06-01

    Recent laboratory studies have indicated that the quantum yield for O(/sup 1/D) production from photolysis of ozone may be less than unity at wavelengths shorter than 300 nm (below the fall off region). Previously it had been assumed that the quantum yield was unity at these wavelengths. Based on the recent work of Brock and Watson (who measured the quantum yield at 266 nm), the effect of assuming a quantum yield of 0.9 for O(/sup 1/D) production at wavelengths less than 300 nm in the LLL 1-d model was tested. Since measurements of the quantum yield fall off at longer wavelength also assume unity quantum yield below the fall off region, we also multiplied the O(/sup 1/D) quantum yield through this region by 0.9. The remaining quantum yield from the photolysis reaction is assumed to produce O(/sup 3/P) at all wavelengths so that the total quantum yield is unity.

  15. Spin filtering and quantum phase transition in double quantum dots attached to spin-polarized leads.

    PubMed

    Wang, Wei-zhong

    2011-05-20

    We study the spin filtering and quantum phase transition (QPT) in double quantum dots attached to spin-polarized leads. For spin-independent leads, we observe a Kosterlitz-Thouless transition between the local triplet and doublet. For spin-polarized leads, the above QPT becomes first order, and Kondo splitting, gate-controlled spin reversal and a perfect spin filtering are observed. The breaking of spin-rotation SU(2) symmetry and the interdot transport mediated by the conduction electron are responsible for the fully spin-polarized conductance. Because spin-polarized leads suppress the Kondo effect, in order to obtain a large conductance with perfect spin filtering, one should choose leads with small spin polarization, such as Rashba spin-orbital coupling leads.

  16. Quantum computing with spin cluster qubits.

    PubMed

    Meier, Florian; Levy, Jeremy; Loss, Daniel

    2003-01-31

    We study the low energy states of finite spin chains with isotropic (Heisenberg) and anisotropic (XY and Ising-like) antiferromagnetic exchange interaction with uniform and nonuniform coupling constants. We show that for an odd number of sites a spin cluster qubit can be defined in terms of the ground state doublet. This qubit is remarkably insensitive to the placement and coupling anisotropy of spins within the cluster. One- and two-qubit quantum gates can be generated by magnetic fields and intercluster exchange, and leakage during quantum gate operation is small. Spin cluster qubits inherit the long decoherence times and short gate operation times of single spins. Control of single spins is hence not necessary for the realization of universal quantum gates.

  17. Feynman propagator for spin foam quantum gravity.

    PubMed

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  18. Conductance anomalies in quantum point contacts and 1D wires

    NASA Astrophysics Data System (ADS)

    Das, Mukunda P.; Green, Frederick

    2017-06-01

    Over the last decade, interest in 1D charge transport has progressed from the seminal discovery of Landauer quantization of conductance, as a function of carrier density, to finer-scale phenomena at the onset of quantization. This has come to be called the ‘0.7 anomaly’, rather connoting a theoretical mystery of some profundity and universality, which remains open to date. Its somewhat imaginative appellation may tend to mislead, since the anomaly manifests itself over a range of conductance values: anywhere between 0.25-0.95 Landauer quanta. In this paper we offer a critique of the 0.7 anomaly and discuss the extent to which it represents a deep question of physics. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  19. Quantum Monte Carlo studies of quantum criticality in low-dimensional spin systems

    NASA Astrophysics Data System (ADS)

    Tang, Ying

    Strongly correlated low-dimensional quantum spin models provide a well-established frame- work to study magnetic properties of insulators, and are of great theoretical interest and experimental relevance in condensed-matter physics. In this thesis, I use quantum Monte Carlo methods to numerically study quantum critical behavior in low-dimensional quantum spin models and wavefunctions. First, I study spinons---emergent spin-1/2 bosonic excitations---at certain one- and two-dimensional quantum phase transitions (QPTs) in spin models, by characterizing their size and confinement length quantitatively. In particular, I focus on the QPT from an antiferromagnetic (AFM) phase into a valence-bond solid (VBS) phase, which is an example of a violation of the standard Landau-Ginzburg-Wilson paradigm for phase transitions. This transition in two dimensions (2D) is instead likely described by a novel theory called "deconfined quantum criticality" (DQC). According to the theory, spinons should be deconfined. The degree of deconfinement is quantified in my calculations. Second, I present a comprehensive study of so-called short-bond resonating-valence-bond (RVB) spin liquids in 2D, which have been suggested as a good starting point for understanding the spin physics of high-temperature cuprates. I find that these RVB states can also be classified as quantum-critical VBS states, which indicates that RVB is less disordered than expected. This work suggests a possible mapping from the quantum RVB states to classical dimer models via a classical continuum field theory---the height model. This map explicitly bridges well-established classical results to future quantum studies. Third, I consider 1D amplitude product (AP) states, which are generalized versions of RVB states, with different wavefunction weightings of bonds according to their lengths. AP states constitute a good ansatz for certain Hamiltonians and are of broad interest in quantum magnetism. I study phase transitions from

  20. Observing the 1D-3D Crossover in a Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Fry, Jacob A.; Olsen, Ben A.; Hulet, Randall G.

    2016-05-01

    Trapped two-component Fermi gases phase separate into superfluid and normal phases when their spin populations are imbalanced. In 3D, a balanced superfluid core is surrounded by shells of partially polarized and normal phases, while in 1D, the balanced superfluid occupies the low density wings. We explored the crossover from 3D to 1D using a two-spin component ultracold atomic gas of 6 Li prepared in the lowest two hyperfine sublevels, where the interactions are tuned by a Feshbach resonance. The atoms are confined to 1D tubes where the tunneling rate t between tubes is varied by changing the depth of a 2D optical lattice. We observe the transition from 1D to 3D-like phase separation by varying t and interaction strength which changes the pair binding energy ɛB. We find a universal scaling of the dimensional crossover with t /ɛB , in agreement with previous theory. The crossover region is believed to be the most promising to find the exotic FFLO superfluid phase. Supported by the NSF and the Welch Foundation.

  1. Probing the 1D-3D Crossover of a Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa; Olsen, Ben A.; Liao, Yean-An; Hulet, Randall G.

    2012-06-01

    We have previously mapped the phase diagram of a 1D spin-imbalanced Fermi gas by confining the atoms in an array of tubes using a 2D optical lattice.ootnotetextY.A. Liao et al., Nature 467, 567 (2010). Within each tube we observed separation of the atoms into a partially polarized superfluid core and fully paired or fully polarized wings (depending on the spin polarization). In 3D, the phase separation is inverted, such that the cloud center is fully paired.ootnotetextG. B. Partridge et al., Science 311, 503 (2006); Y. Shin et al., Phys. Rev. Lett. 97, 030401 (2006). We investigate the transition from a 1D to 3D gas by smoothly varying the lattice depth which changes the tunneling between the tubes. This allows us to study how the spin density changes as a function of inter-tube coupling. By varying the lattice depth quickly, we can measure the spin transport properties in a strongly interacting system. Progress will be reported.

  2. Quantum measurement of a mesoscopic spin ensemble

    SciTech Connect

    Giedke, G.; Taylor, J. M.; Lukin, M. D.; D'Alessandro, D.; Imamoglu, A.

    2006-09-15

    We describe a method for precise estimation of the polarization of a mesoscopic spin ensemble by using its coupling to a single two-level system. Our approach requires a minimal number of measurements on the two-level system for a given measurement precision. We consider the application of this method to the case of nuclear-spin ensemble defined by a single electron-charged quantum dot: we show that decreasing the electron spin dephasing due to nuclei and increasing the fidelity of nuclear-spin-based quantum memory could be within the reach of present day experiments.

  3. Disorder-Induced Quantum Spin Liquid in Spin Ice Pyrochlores

    NASA Astrophysics Data System (ADS)

    Savary, Lucile; Balents, Leon

    We discuss disorder in spin ice materials, and in particular in compounds with non-Kramers magnetic ions. We show that in the minimal relevant model, disorder succeeds in inducing a long-range entangled Coulombic quantum spin liquid phase. The phase diagram also contains an analog of the Mott glass state, envisioned in dirty boson systems with particle-hole symmetry. We discuss the relevance of our results to the material Pr2Zr2O7, and how these ideas might be applied to convert a classical spin ice to a quantum one.

  4. Dissipative entanglement of quantum spin fluctuations

    SciTech Connect

    Benatti, F.; Carollo, F.; Floreanini, R.

    2016-06-15

    We consider two non-interacting infinite quantum spin chains immersed in a common thermal environment and undergoing a local dissipative dynamics of Lindblad type. We study the time evolution of collective mesoscopic quantum spin fluctuations that, unlike macroscopic mean-field observables, retain a quantum character in the thermodynamical limit. We show that the microscopic dissipative dynamics is able to entangle these mesoscopic degrees of freedom, through a purely mixing mechanism. Further, the behaviour of the dissipatively generated quantum correlations between the two chains is studied as a function of temperature and dissipation strength.

  5. Dissipative entanglement of quantum spin fluctuations

    NASA Astrophysics Data System (ADS)

    Benatti, F.; Carollo, F.; Floreanini, R.

    2016-06-01

    We consider two non-interacting infinite quantum spin chains immersed in a common thermal environment and undergoing a local dissipative dynamics of Lindblad type. We study the time evolution of collective mesoscopic quantum spin fluctuations that, unlike macroscopic mean-field observables, retain a quantum character in the thermodynamical limit. We show that the microscopic dissipative dynamics is able to entangle these mesoscopic degrees of freedom, through a purely mixing mechanism. Further, the behaviour of the dissipatively generated quantum correlations between the two chains is studied as a function of temperature and dissipation strength.

  6. Quantum correlated heat engine with spin squeezing.

    PubMed

    Altintas, Ferdi; Hardal, Ali Ü C; Müstecaplıoglu, Özgür E

    2014-09-01

    We propose a four-level quantum heat engine in an Otto cycle with a working substance of two spins subject to an external magnetic field and coupled to each other by a one-axis twisting spin squeezing nonlinear interaction. We calculate the positive work and the efficiency of the engine for different parameter regimes. In particular, we investigate the effects of quantum correlations at the end of the two isochoric processes of the Otto cycle, as measured by the entanglement of formation and quantum discord, on the work extraction and efficiency. The regimes where the quantum correlations could enhance the efficiency and work extraction are characterized.

  7. Spin dynamics and spin freezing at ferromagnetic quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Schmakat, P.; Wagner, M.; Ritz, R.; Bauer, A.; Brando, M.; Deppe, M.; Duncan, W.; Duvinage, C.; Franz, C.; Geibel, C.; Grosche, F. M.; Hirschberger, M.; Hradil, K.; Meven, M.; Neubauer, A.; Schulz, M.; Senyshyn, A.; Süllow, S.; Pedersen, B.; Böni, P.; Pfleiderer, C.

    2015-07-01

    We report selected experimental results on the spin dynamics and spin freezing at ferromagnetic quantum phase transitions to illustrate some of the most prominent escape routes by which ferromagnetic quantum criticality is avoided in real materials. In the transition metal Heusler compound Fe2TiSn we observe evidence for incipient ferromagnetic quantum criticality. High pressure studies in MnSi reveal empirical evidence for a topological non-Fermi liquid state without quantum criticality. Single crystals of the hexagonal Laves phase compound Nb1- y Fe2+ y provide evidence of a ferromagnetic to spin density wave transition as a function of slight compositional changes. Last but not least, neutron depolarisation imaging in CePd1- x Rh x underscore evidence taken from the bulk properties of the formation of a Kondo cluster glass.

  8. Spin analogs of superconductivity and integer quantum Hall effect in an array of spin chains

    NASA Astrophysics Data System (ADS)

    Hill, Daniel; Kim, Se Kwon; Tserkovnyak, Yaroslav

    2017-05-01

    Motivated by the successful idea of using weakly coupled quantum electronic wires to realize the quantum Hall effects and the quantum spin Hall effects, we theoretically study two systems composed of weakly coupled quantum spin chains within the mean-field approximations, which can exhibit spin analogs of superconductivity and the integer quantum Hall effect. First, a certain bilayer of two arrays of interacting spin chains is mapped, via the Jordan-Wigner transformation, to an attractive Hubbard model that exhibits fermionic superconductivity, which corresponds to spin superconductivity in the original spin Hamiltonian. Secondly, an array of spin-orbit-coupled spin chains in the presence of a suitable external magnetic field is transformed to an array of quantum wires that exhibits the integer quantum Hall effect, which translates into its spin analog in the spin Hamiltonian. The resultant spin superconductivity and spin integer quantum Hall effect can be characterized by their ability to transport spin without any resistance.

  9. Charge-spin coupling in a quantum Heisenberg spin ladder

    SciTech Connect

    Singleton, John; Lee, C; Gunaydin - Sen, O; Tung, L C; Christen, H M; Wang, Y J; Turnbull, M M; Landee, C P; Mcdonald, R D; White, J L; Crooker, S A; Singleton, J; Whangbo, M - H; Musfeldt, J L

    2009-01-01

    We investigated the magnetic and optical properties of (2,3-dmpyH){sub 2}CuBr{sub 4}, an antiferromagnetic quantum spin ladder with strong rail interactions. Because the magnetic energy scales are smail, field drives the system into the fully polarized state with a concomitant change in the optical properties. Spin density distribution calculations reveal that electronic structure is sensitive to the magnetic state because the Br 4s orbital contribution to the empty down-spin band, into which the optical excitations take place, depends on the spin arrangement between adjacent CuBr{sub 4}{sup 2-} chromophores.

  10. Engineering 1D Quantum Stripes from Superlattices of 2D Layered Materials.

    PubMed

    Gruenewald, John H; Kim, Jungho; Kim, Heung Sik; Johnson, Jared M; Hwang, Jinwoo; Souri, Maryam; Terzic, Jasminka; Chang, Seo Hyoung; Said, Ayman; Brill, Joseph W; Cao, Gang; Kee, Hae-Young; Seo, Sung S Ambrose

    2017-01-01

    Dimensional tunability from two dimensions to one dimension is demonstrated for the first time using an artificial superlattice method in synthesizing 1D stripes from 2D layered materials. The 1D confinement of layered Sr2 IrO4 induces distinct 1D quantum-confined electronic states, as observed from optical spectroscopy and resonant inelastic X-ray scattering. This 1D superlattice approach is generalizable to a wide range of layered materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spin Dynamics of Charged Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Stern, N. P.

    2005-03-01

    Colloidal semiconductor quantum dots are promising structures for controlling spin phenomena because of their highly size- tunable physical properties, ease of manufacture, and nanosecond-scale spin lifetimes at room temperature. Recent experiments have succeeded in controlling the charging of the lowest electronic state of colloidal quantum dots ootnotetextC. Wang, B. L. Wehrenberg, C. Y. Woo, and P. Guyot-Sionnest, J. Phys. Chem B 108, 9027 (2004).. Here we use time-resolved Faraday rotation measurements in the Voigt geometry to investigate the spin dynamics of colloidal CdSe quantum dot films in both a charged and uncharged state at room temperature. The charging of the film is controlled by applying a voltage in an electrochemical cell and is confirmed by absorbance measurements. Significant changes in the spin precession are observed upon charging, reflecting the voltage- controlled electron occupation of the quantum dot states and filling of surface states.

  12. Quantum phase diagram of Polar Molecules in 1D Double Wire Systems

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Ming; Wang, Daw-Wei

    2007-03-01

    We study the quantum phase transitions of fermionic polar molecules loaded in a double wire potential. By tuning the magnitude and direction of external electric field we observed many interesting quantum phases in different parameter range, including an easy-plane spin density wave, a triplet superconducting phase, and a truly long range order of easy-axis ferromagnetic phase in strong interacting regime. We also discuss how these exotic quantum phases can be measured in the existing experimental techniques.

  13. Continuous Symmetry Breaking in 1D Long-Range Interacting Quantum Systems

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Gong, Zhe-Xuan; Gorshkov, Alexey V.

    2017-07-01

    Continuous symmetry breaking (CSB) in low-dimensional systems, forbidden by the Mermin-Wagner theorem for short-range interactions, may take place in the presence of slowly decaying long-range interactions. Nevertheless, there is no stringent bound on how slowly interactions should decay to give rise to CSB in 1D quantum systems at zero temperature. Here, we study a long-range interacting spin chain with U (1 ) symmetry and power-law interactions V (r )˜1 /rα. Using a number of analytical and numerical techniques, we find CSB for α smaller than a critical exponent αc(≤3 ) that depends on the microscopic parameters of the model. Furthermore, the transition from the gapless X Y phase to the gapless CSB phase is mediated by the breaking of conformal and Lorentz symmetries due to long-range interactions, and is described by a universality class akin to, but distinct from, the Berezinskii-Kosterlitz-Thouless transition. Signatures of the CSB phase should be accessible in existing trapped-ion experiments.

  14. Quantum limited heterodyne detection of spin noise

    NASA Astrophysics Data System (ADS)

    Cronenberger, S.; Scalbert, D.

    2016-09-01

    Spin noise spectroscopy is a powerful technique for studying spin relaxation in semiconductors. In this article, we propose an extension of this technique based on optical heterodyne detection of spin noise, which provides several key advantages compared to conventional spin noise spectroscopy: detection of high frequency spin noise not limited by detector bandwidth or sampling rates of digitizers, quantum limited sensitivity even in case of very weak probe power, and possible amplification of the spin noise signal. Heterodyne detection of spin noise is demonstrated on insulating n-doped GaAs. From measurements of spin noise spectra up to 0.4 Tesla, we determined the distribution of g-factors, Δg/g = 0.49%.

  15. Spin-mediated Hybrid Quantum Optomechanics

    NASA Astrophysics Data System (ADS)

    Shaffer, Airlia; Chang, Laura; Patil, Yogesh Sharad; Bariani, Francesco; Singh, Swati; Date, Aditya; Chakram, Srivatsan; Schwab, Keith; Meystre, Pierre; Vengalattore, Mukund

    2015-05-01

    We describe our realization of a hybrid quantum system where a macroscopic mechanical resonator is coupled to the collective spin of an ultracold gas through a remote optical interface. Through this interface, the spin ensemble is capable of sympathetic cooling, sub-SQL detection and quantum control of the mechanical resonator. As such, this hybrid quantum system presents a powerful scheme to combine the robustness of the mesoscopic resonator with the sensitivity and coherence of the spin ensemble. Our ongoing studies of this system include various aspects of quantum metrology and the out-of-equilibrium dynamics of open quantum systems. This work is supported by the ARO MURI on non-equilibrium dynamics, the DARPA QuASAR program through a grant from the ARO and an NSF INSPIRE award.

  16. Intrinsic spin dynamics in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Valín-Rodríguez, Manuel

    2005-12-01

    We investigate the characteristic spin dynamics corresponding to semiconductor quantum dots within the multiband envelope function approximation (EFA). By numerically solving an 8 × 8 k·p Hamiltonian we treat systems based on different III-V semiconductor materials. It is shown that, even in the absence of an applied magnetic field, these systems show intrinsic spin dynamics governed by intraband and interband transitions leading to characteristic spin frequencies ranging from THz to optical frequencies.

  17. Quantum decoration transformation for spin models

    SciTech Connect

    Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre

    2016-09-15

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.

  18. Spin-bus concept of spin quantum computing

    NASA Astrophysics Data System (ADS)

    Mehring, Michael; Mende, Jens

    2006-05-01

    We present a spin-bus concept of quantum computing where an electron spin S=1/2 acts as a bus qubit connected to a finite number N of nuclear spins I=1/2 serving as client qubits. Spin-bus clusters are considered as local processing units and may be interconnected with other spin-bus clusters via electron-electron coupling in a scaled up version. Here we lay the ground for the basic functional unit with long qubit registers, provide the theory and experimental verification of correlated qubit states, and demonstrate the Deutsch algorithm. Experiments were performed on a qubyte plus one nuclear spin in a solid state system.

  19. Consistent quantum prediction in spin-foam quantum cosmology

    NASA Astrophysics Data System (ADS)

    Craig, David

    2015-04-01

    A complete ``consistent histories'' framework is given for a covariant ``spin-foam'' quantum cosmological model, a highly symmetry-reduced (FLRW) model of covariant loop quantum gravity. A decoherence functional is constructed through which probabilities may be consistently extracted from quantum amplitudes. Branch wave functions corresponding to different possible quantum histories of the universe are described, such as whether the universe ``bounces'' at small volume or becomes singular. We discuss the construction and calculation of such branch wave functions, with an emphasis on the crucial role played by the decoherence of histories in arriving at self-consistent quantum predictions for these closed quantum systems. [Based on joint work with Parampreet Singh].

  20. Circuit quantum electrodynamics with a spin qubit

    NASA Astrophysics Data System (ADS)

    Petersson, Karl

    2013-03-01

    Electron spins in quantum dots have been proposed as the building blocks of a quantum information processor. While both fast one and two qubit operations have been demonstrated, coupling distant spins remains a daunting challenge. In contrast, circuit quantum electrodynamics (cQED) has enabled superconducting qubits to be readily coupled over large distances via a superconducting microwave cavity. I will present our recent work aimed at integrating spin qubits with the cQED architecture.[2] Our approach is to use spin qubits formed in strong spin-orbit materials such as InAs nanowires to enable a large effective coupling of the spin to the microwave cavity field. For an InAs nanowire double quantum dot coupled to the superconducting microwave cavity we achieve a charge-cavity coupling rate of ~ 30 MHz. Combining this large charge-cavity coupling rate with electrically driven spin qubit rotations we demonstrate that the cQED architecture can be used a sensitive probe of single spin dynamics. In another experiment, we can apply a source-drain bias to drive current through the double quantum dot and observe gain in the cavity transmission. We additionally measure photon emission from the cavity without any input field applied. Our results suggest that long-range spin coupling via superconducting microwave cavities is feasible and present new avenues for exploring quantum optics on a chip. Research was performed in collaboration with Will McFaul, Michael Schroer, Minkyung Jung, Jake Taylor, Andrew Houck and Jason Petta. We acknowledge support from the Sloan and Packard Foundations, Army Research Office, and DARPA QuEST.

  1. 1D to 3D Crossover of a Spin-Imbalanced Fermi Gas

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Fry, Jacob A.; Olsen, Ben A.; Hulet, Randall G.

    2016-12-01

    We have characterized the one-dimensional (1D) to three-dimensional (3D) crossover of a two-component spin-imbalanced Fermi gas of 6Li atoms in a 2D optical lattice by varying the lattice tunneling and the interactions. The gas phase separates, and we detect the phase boundaries using in situ imaging of the inhomogeneous density profiles. The locations of the phases are inverted in 1D as compared to 3D, thus providing a clear signature of the crossover. By scaling the tunneling rate t with respect to the pair binding energy ɛB, we observe a collapse of the data to a universal crossover point at a scaled tunneling value of t˜c=0.025 (7 ).

  2. Pressure sensor via optical detection based on a 1D spin transition coordination polymer.

    PubMed

    Jureschi, Cătălin M; Linares, Jorge; Rotaru, Aurelian; Ritti, Marie Hélène; Parlier, Michel; Dîrtu, Marinela M; Wolff, Mariusz; Garcia, Yann

    2015-01-22

    We have investigated the suitability of using the 1D spin crossover coordination polymer [Fe(4-(2'-hydroxyethyl)-1,2,4-triazole)3]I2∙H2O, known to crossover around room temperature, as a pressure sensor via optical detection using various contact pressures up to 250 MPa. A dramatic persistent colour change is observed. The experimental data, obtained by calorimetric and Mössbauer measurements, have been used for a theoretical analysis, in the framework of the Ising-like model, of the thermal and pressure induced spin state switching. The pressure (P)-temperature (T) phase diagram calculated for this compound has been used to obtain the P-T bistability region.

  3. Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer

    PubMed Central

    Jureschi, Cătălin M.; Linares, Jorge; Rotaru, Aurelian; Ritti, Marie Hélène; Parlier, Michel; Dîrtu, Marinela M.; Wolff, Mariusz; Garcia, Yann

    2015-01-01

    We have investigated the suitability of using the 1D spin crossover coordination polymer [Fe(4-(2′-hydroxyethyl)-1,2,4-triazole)3]I2·H2O, known to crossover around room temperature, as a pressure sensor via optical detection using various contact pressures up to 250 MPa. A dramatic persistent colour change is observed. The experimental data, obtained by calorimetric and Mössbauer measurements, have been used for a theoretical analysis, in the framework of the Ising-like model, of the thermal and pressure induced spin state switching. The pressure (P)-temperature (T) phase diagram calculated for this compound has been used to obtain the P-T bistability region. PMID:25621610

  4. Dynamical spin-spin coupling of quantum dots

    NASA Astrophysics Data System (ADS)

    Grigoryan, Vahram; Xiao, Jiang; A spintronics Group Team

    2014-03-01

    We carried out a nested Schrieffer-Wolff transformation of an Anderson two-impurity Hamiltonian to study the spin-spin coupling between two dynamical quantum dots under the influence of rotating transverse magnetic field. As a result of the rotating field, we predict a novel Ising type spin-spin coupling mechanism between quantum dots, whose strength is tunable via the magnitude of the rotating field. Due to its dynamical origin, this new coupling mechanism is qualitatively different from the all existing static couplings such as RKKY, while the strength could be comparable to the strength of the RKKY coupling. The dynamical coupling with the intristic RKKY coupling enables to construct a four level system of maximally entangled Bell states in a controllable manner. This work was supported by the special funds for the Major State Basic Research Project of China (No. 2011CB925601) and the National Natural Science Foundation of China (Grants No. 11004036 and No. 91121002).

  5. Non-Markovian dynamics in chiral quantum networks with spins and photons

    NASA Astrophysics Data System (ADS)

    Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter

    2016-06-01

    We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.

  6. ``Spin-orbit" susceptibility in the quantum spin Hall systems

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi

    2006-03-01

    There are two classes of insulators showing the spin Hall effect. One is a spin Hall insulator such as PbTe while the other is a quantum spin Hall system. They are distinguished by an absence or presence of edge states. To study such insulators showing the spin Hall effect, we construct a spin analog of the Streda formula. We use the conserved spin current as proposed by Zhang et al.[cond-mat/0503505], thereby the resulting Streda formula becomes quite simple (i.e. without any s terms). As a result, the spin Hall conductivity for band insulators is proportional to a ``spin- orbit'' susceptibility, representing a response of the orbital magnetization to the Zeeman field (or equivalently a response of the spin magnetiation to the orbital magnetic field). We apply the result to real systems such as Bi1-xSbx, because in insulating Bi1-xSbx the diamagnetic susceptibility is largely enhanced due to the spin-orbit coupling.

  7. Quantum dissipative Rashba spin ratchets.

    PubMed

    Smirnov, Sergey; Bercioux, Dario; Grifoni, Milena; Richter, Klaus

    2008-06-13

    We predict the possibility to generate a finite stationary spin current by applying an unbiased ac driving to a quasi-one-dimensional asymmetric periodic structure with Rashba spin-orbit interaction and strong dissipation. We show that under a finite coupling strength between the orbital degrees of freedom the electron dynamics at low temperatures exhibits a pure spin ratchet behavior, i.e., a finite spin current and the absence of charge transport in spatially asymmetric structures. It is also found that the equilibrium spin currents are not destroyed by the presence of strong dissipation.

  8. Spin-Polarized Fermi Gases in 1D, 3D, and Crossover Regimes

    NASA Astrophysics Data System (ADS)

    Fry, Jacob A.; Revelle, Melissa C.; Olsen, Ben A.; Hulet, Randall G.

    2015-05-01

    We report recent results on mapping the superfluid transition as a function of atomic interaction and global spin polarization in a two-component, 3D gas of fermionic lithium. The atomic interactions are controlled using a Feshbach resonance to tune between the strongly interacting BEC regime and the weakly interacting BCS regime. Previously, a 3D gas was found to have an unpolarized superfluid core that is enclosed by polarized shells. By applying a 2D optical lattice we confine our gas in one-dimensional tubes. In this 1D gas, in contrast to the 3D gas, we found a partially polarized superfluid core and either fully polarized or fully paired wings depending on the overall spin polarization. In the current experiment, we have mapped the phase diagram of the 1D/3D crossover by increasing the inter-tube coupling. The exotic superfluid state, FFLO, is predicted to occupy a large portion of the phase diagram in the crossover regime, making it an ideal location in parameter space for its detection. ARO, NSF, ONR, and The Welch Foundation.

  9. Spin-orbit interaction in multiple quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  10. One-dimensional quantum spin heterojunction as a thermal switch

    NASA Astrophysics Data System (ADS)

    Yang, Chuan-Jing; Jin, Li-Hui; Gong, Wei-Jiang

    2016-03-01

    We study the thermal transport through a quantum spin-1 2 heterojunction, which consists of a finite-size chain with two-site anisotropic XY interaction and three-site XZX+YZY interaction coupled at its ends to two semi-infinite isotropic XY chains. By performing the Jordan-Wigner transformation, the original spin Hamiltonian is mapped onto a fermionic Hamiltonian. Then, the fermionic structure is discussed, and the heat current as a function of structural parameters is evaluated. It is found that the magnetic fields applied at respective chains play different roles in adjusting the heat current in this heterojunction. Moreover, the interplay between the anisotropy of the XY interaction and the three-site spin interaction assists to further control the thermal transport. In view of the numerical results, we propose this heterojunction to be an alternate candidate for manipulating the heat current in one-dimensional (1D) systems.

  11. Optical nuclear spin polarization in quantum dots

    NASA Astrophysics Data System (ADS)

    Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei

    2016-10-01

    Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot (QD) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip-flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time. Project partially supported by the National Natural Science Foundations of China (Grant Nos. 11374039 and 11174042) and the National Basic Research Program of China (Grant Nos. 2011CB922204 and 2013CB632805).

  12. Quantum criticality in a metallic spin liquid.

    PubMed

    Tokiwa, Y; Ishikawa, J J; Nakatsuji, S; Gegenwart, P

    2014-04-01

    When magnetic order is suppressed by frustrated interactions, spins form a highly correlated fluctuating 'spin liquid' state down to low temperatures. The magnetic order of local moments can also be suppressed when they are fully screened by conduction electrons through the Kondo effect. Thus, the combination of strong geometrical frustration and Kondo screening may lead to novel types of quantum phase transition. We report low-temperature thermodynamic measurements on the frustrated Kondo lattice Pr₂Ir₂O₇, which exhibits a chiral spin liquid state below 1.5 K as a result of the frustrated interaction between Ising 4f local moments and their interplay with Ir conduction electrons. Our results provide a first clear example of zero-field quantum critical scaling that emerges in a spin liquid state of a highly frustrated metal.

  13. Quantum criticality in a metallic spin liquid

    NASA Astrophysics Data System (ADS)

    Tokiwa, Y.; Ishikawa, J. J.; Nakatsuji, S.; Gegenwart, P.

    2014-04-01

    When magnetic order is suppressed by frustrated interactions, spins form a highly correlated fluctuating ‘spin liquid’ state down to low temperatures. The magnetic order of local moments can also be suppressed when they are fully screened by conduction electrons through the Kondo effect. Thus, the combination of strong geometrical frustration and Kondo screening may lead to novel types of quantum phase transition. We report low-temperature thermodynamic measurements on the frustrated Kondo lattice Pr2Ir2O7, which exhibits a chiral spin liquid state below 1.5 K as a result of the frustrated interaction between Ising 4f local moments and their interplay with Ir conduction electrons. Our results provide a first clear example of zero-field quantum critical scaling that emerges in a spin liquid state of a highly frustrated metal.

  14. Communication: quantum dynamics in classical spin baths.

    PubMed

    Sergi, Alessandro

    2013-07-21

    A formalism for studying the dynamics of quantum systems embedded in classical spin baths is introduced. The theory is based on generalized antisymmetric brackets and predicts the presence of open-path off-diagonal geometric phases in the evolution of the density matrix. The weak coupling limit of the equation can be integrated by standard algorithms and provides a non-Markovian approach to the computer simulation of quantum systems in classical spin environments. It is expected that the theory and numerical schemes presented here have a wide applicability.

  15. Communication: Quantum dynamics in classical spin baths

    NASA Astrophysics Data System (ADS)

    Sergi, Alessandro

    2013-07-01

    A formalism for studying the dynamics of quantum systems embedded in classical spin baths is introduced. The theory is based on generalized antisymmetric brackets and predicts the presence of open-path off-diagonal geometric phases in the evolution of the density matrix. The weak coupling limit of the equation can be integrated by standard algorithms and provides a non-Markovian approach to the computer simulation of quantum systems in classical spin environments. It is expected that the theory and numerical schemes presented here have a wide applicability.

  16. Quantum Spin Liquid Emerging from Antiferromagnetic Order by Introducing Disorder.

    PubMed

    Furukawa, T; Miyagawa, K; Itou, T; Ito, M; Taniguchi, H; Saito, M; Iguchi, S; Sasaki, T; Kanoda, K

    2015-08-14

    Quantum spin liquids, which are spin versions of quantum matter, have been sought after in systems with geometrical frustration. We show that disorder drives a classical magnet into a quantum spin liquid through conducting NMR experiments on an organic Mott insulator, κ-(ET)_{2}Cu[N(CN)_{2}]Cl. Antiferromagnetic ordering in the pristine crystal, when irradiated by x rays, disappears. Spin freezing, spin gap, and critical slowing down are not observed, but gapless spin excitations emerge, suggesting a novel role of disorder that brings forth a quantum spin liquid from a classical ordered state.

  17. Quantum Spin Liquid Emerging from Antiferromagnetic Order by Introducing Disorder

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Miyagawa, K.; Itou, T.; Ito, M.; Taniguchi, H.; Saito, M.; Iguchi, S.; Sasaki, T.; Kanoda, K.

    2015-08-01

    Quantum spin liquids, which are spin versions of quantum matter, have been sought after in systems with geometrical frustration. We show that disorder drives a classical magnet into a quantum spin liquid through conducting NMR experiments on an organic Mott insulator, κ -(ET) 2Cu [N (CN) 2]Cl . Antiferromagnetic ordering in the pristine crystal, when irradiated by x rays, disappears. Spin freezing, spin gap, and critical slowing down are not observed, but gapless spin excitations emerge, suggesting a novel role of disorder that brings forth a quantum spin liquid from a classical ordered state.

  18. En Route to Solid State Spin Quantum Computing

    NASA Astrophysics Data System (ADS)

    Mehring, M.; Mende, J.; Scherer, W.

    We present routes to quantum information processing in solids. An introduction to electron and nuclear spins as quantum bits (qubits) is given and basic quantum algorithms are discussed. In particular we focus on the preparation of pseudo pure states and pseudo entangled states in solid systems of combined electron and nuclear spins. As an example we demonstrate the Deutsch algorithm of quantum computing in an S-bus system with one electron spin coupled to a many 19F nuclear spins.

  19. Bending strain engineering in quantum spin hall system for controlling spin currents

    NASA Astrophysics Data System (ADS)

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; Zhai, Feng; Mei, Jiawei; Liu, Feng

    2017-06-01

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. Here the concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. We show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Furthermore, the curved quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.

  20. Bending strain engineering in quantum spin hall system for controlling spin currents.

    PubMed

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; Zhai, Feng; Mei, Jiawei; Liu, Feng

    2017-06-16

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. Here the concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. We show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Furthermore, the curved quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.

  1. Drude Weight in Non Solvable Quantum Spin Chains

    NASA Astrophysics Data System (ADS)

    Benfatto, G.; Mastropietro, V.

    2011-04-01

    For a quantum spin chain or 1D fermionic system, we prove that the Drude weight D verifies the universal Luttinger liquid relation vs2=D/kappa, where κ is the susceptibility and v s is the Fermi velocity. This result is proved by rigorous Renormalization Group methods and is true for any weakly interacting system, regardless its integrability. This paper, combined with Benfatto and Mastropietro (in J. Stat. Phys. 138, 1084-1108, 2010), completes the proof of the Luttinger liquid conjecture for such systems.

  2. Quantum spin liquid with seven elementary particles

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Changlani, Hitesh J.; Wan, Yuan; Tchernyshyov, Oleg

    2017-04-01

    We present an exactly solvable model of a quantum spin liquid with Abelian anyons in d =2 spatial dimensions. With spins 1/2 on a triangular lattice and six-body interactions, our model has zero spin correlation length and localized elementary excitations like the toric codes of Kitaev and Wen. In contrast to those earlier models, it has more elementary particles—four bosons and three fermions—and higher topological degeneracy of 64 on a torus. Elementary excitations are boson-fermion pairs that come in 12 distinct flavors. We use string operators to expose the topological nature of the model.

  3. Quantum computing with an electron spin ensemble.

    PubMed

    Wesenberg, J H; Ardavan, A; Briggs, G A D; Morton, J J L; Schoelkopf, R J; Schuster, D I; Mølmer, K

    2009-08-14

    We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized radiation field. The transformation between different spin waves is achieved by applying gradient magnetic fields across the sample, while a Cooper pair box, resonant with the cavity field, may be used to carry out one- and two-qubit gate operations.

  4. Spin thermopower in interacting quantum dots

    NASA Astrophysics Data System (ADS)

    Rejec, Tomaž; Žitko, Rok; Mravlje, Jernej; Ramšak, Anton

    2012-02-01

    Using analytical arguments and the numerical renormalization group method, we investigate the spin thermopower of a quantum dot in a magnetic field. In the particle-hole-symmetric situation, the temperature difference applied across the dot drives a pure spin current without accompanying charge current. For temperatures and fields at or above the Kondo temperature, but of the same order of magnitude, the spin-Seebeck coefficient is large, of the order of kB/|e|. Via a mapping, we relate the spin-Seebeck coefficient to the charge-Seebeck coefficient of a negative-U quantum dot where the corresponding result was recently reported by Andergassen [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.241107 84, 241107 (2011)]. For several regimes, we provide simplified analytical expressions. In the Kondo regime, the dependence of the spin-Seebeck coefficient on the temperature and the magnetic field is explained in terms of the shift of the Kondo resonance due to the field and its broadening with the temperature and the field. We also consider the influence of breaking the particle-hole symmetry and show that a pure spin current can still be realized, provided a suitable electric voltage is applied across the dot. Then, except for large asymmetries, the behavior of the spin-Seebeck coefficient remains similar to that found in the particle-hole-symmetric point.

  5. The classical and quantum dynamics of molecular spins on graphene

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  6. Topological Effects on Quantum Phase Slips in Superfluid Spin Transport.

    PubMed

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2016-03-25

    We theoretically investigate effects of quantum fluctuations on superfluid spin transport through easy-plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations result in the decaying spin supercurrent by unwinding the magnetic order parameter within the easy plane, which is referred to as phase slips. We show that the topological term in the nonlinear sigma model for the spin chains qualitatively differentiates the decaying rate of the spin supercurrent between the integer versus half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is proposed, in which the dependence of the decaying rate on constituent spins can be verified by measuring the nonlocal magnetoresistance.

  7. Quantum interference effects in molecular spin hybrids

    NASA Astrophysics Data System (ADS)

    Esat, Taner; Friedrich, Rico; Matthes, Frank; Caciuc, Vasile; Atodiresei, Nicolae; Blügel, Stefan; Bürgler, Daniel E.; Tautz, F. Stefan; Schneider, Claus M.

    2017-03-01

    We have studied by means of low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) single molecular spin hybrids formed upon chemisorbing a polycyclic aromatic, threefold symmetric hydrocarbon molecule on Co(111) nanoislands. The spin-dependent hybridization between the Co d states and the π orbitals of the molecule leads to a spin-imbalanced electronic structure of the chemisorbed organic molecule. Spin-sensitive measurements reveal that the spin polarization shows intramolecular variations among the different aromatic rings in spite of the highly symmetric adsorption geometry promoted by symmetry matching of the threefold symmetric molecule and the sixfold symmetric Co(111) lattice. Hence the varying degree of spin polarization on the organic molecule does not stem from a different hybridization of the aromatic rings with the Co atoms, but is proposed to be a consequence of the superposition of the spin polarization of the molecule and the spatially modulated spin polarization of the spin-dependent quantum interference pattern of the Co(111) surface state.

  8. Quantum kagome frustrated antiferromagnets: One route to quantum spin liquids

    NASA Astrophysics Data System (ADS)

    Mendels, Philippe; Bert, Fabrice

    2016-03-01

    After introducing the field of Highly Frustrated Magnetism through the quest for a quantum spin liquid in dimension higher than one, we focus on the emblematic case of the kagome network. From a theoretical point of view, the simple Heisenberg case for an antiferromagnetic kagome lattice decorated with quantum spins has been a long-standing problem, not solved yet. Experimental realizations have remained scarce for long until the discovery of herbertsmithite ZnCu3(OH)6Cl2 in 2005. This is one of the very few quantum kagome spin liquid candidates that triggered a burst of activity both on theory and experiment sides. We give a survey of theory outcomes on the "kagome" problem, review the experimental properties of that model candidate and shortly discuss them with respect to recent theoretical results.

  9. Stretchable Persistent Spin Helices in GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Dettwiler, Florian; Fu, Jiyong; Mack, Shawn; Weigele, Pirmin J.; Egues, J. Carlos; Awschalom, David D.; Zumbühl, Dominik M.

    2017-07-01

    the extracted spin-diffusion lengths and decay times show a significant enhancement near α =β . Since within the continuous-locking regime quantum transport is diffusive (2D) for charge while ballistic (1D) for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication ˜8 - 25 μ m between solid-state spin qubits, where the spin diffusion length for α ≠β is an order of magnitude smaller.

  10. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets.

    PubMed

    Gingras, M J P; McClarty, P A

    2014-05-01

    The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare-earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Spin ices provide one of very few experimentally realized examples of fractionalization because their elementary excitations can be regarded as magnetic monopoles and, over some temperature range, spin ice materials are best described as liquids of these emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a quantum spin liquid descended from the classical spin ice state characterized by emergent photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic charges with a mutual Coulomb interaction, in the quantum spin liquid these charges interact through a dynamic and emergent electromagnetic field. In this review, we describe the latest developments in the study of such a quantum spin ice, focusing on the spin liquid phenomenology and the kinds of materials where such a phase might be found.

  11. Quantum computing with acceptor spins in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  12. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  13. Manipulating quantum information with spin torque

    PubMed Central

    Sutton, Brian; Datta, Supriyo

    2015-01-01

    The use of spin torque as a substitute for magnetic fields is now well established for classical operations like the switching of a nanomagnet. What we are describing here could be viewed as an application of spin torque like effects to quantum processes involving single qubit rotations as well as two qubit entanglement. A key ingredient of this scheme is the use of a large number of itinerant electrons whose cumulative effect is to produce the desired qubit operations on static spins. Each interaction involves entanglement and collapse of wavefunctions so that the operation is only approximately unitary. However, we show that the non-unitary component of the operations can be kept below tolerable limits with proper design. As a capstone example, we present the implementation of a complete CNOT gate using the proposed spin potential based architecture, and show that the fidelity under ideal conditions can be made acceptably close to one. PMID:26648524

  14. Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas

    SciTech Connect

    Andreev, Pavel A.

    2016-01-15

    Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.

  15. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  16. Quantum interface between light and nuclear spins in quantum dots

    NASA Astrophysics Data System (ADS)

    Schwager, Heike; Cirac, J. Ignacio; Giedke, Géza

    2010-01-01

    The coherent coupling of flying photonic qubits to stationary matter-based qubits is an essential building block for quantum-communication networks. We show how such a quantum interface can be realized between a traveling-wave optical field and the polarized nuclear spins in a singly charged quantum dot strongly coupled to a high-finesse optical cavity. By adiabatically eliminating the electron a direct effective coupling is achieved. Depending on the laser field applied, interactions that enable either write-in or read-out are obtained.

  17. Quantum pump in quantum spin Hall edge states

    NASA Astrophysics Data System (ADS)

    Cheng, Fang

    2016-09-01

    We present a theory for quantum pump in a quantum spin Hall bar with two quantum point contacts (QPCs). The pump currents can be generated by applying harmonically modulating gate voltages at QPCs. The phase difference between the gate voltages introduces an effective gauge field, which breaks the time-reversal symmetry and generates pump currents. The pump currents display very different pump frequency dependence for weak and strong e-e interaction. These unique properties are induced by the helical feature of the edge states, and therefore can be used to detect and control edge state transport.

  18. Geometric Quantum Noise of Spin

    NASA Astrophysics Data System (ADS)

    Shnirman, Alexander; Gefen, Yuval; Saha, Arijit; Burmistrov, Igor S.; Kiselev, Mikhail N.; Altland, Alexander

    2015-05-01

    The presence of geometric phases is known to affect the dynamics of the systems involved. Here, we consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described by a Langevin equation with quantum noise. We show that geometric phases enter the stochastic noise terms. Specifically, we consider small ferromagnetic particles (nanomagnets) or quantum dots close to Stoner instability, and investigate the dynamics of the total magnetization in the presence of tunneling coupling to the metallic leads. We generalize the Ambegaokar-Eckern-Schön effective action and the corresponding semiclassical equations of motion from the U(1) case of the charge degree of freedom to the SU(2) case of the magnetization. The Langevin forces (torques) in these equations are strongly influenced by the geometric phase. As a first but nontrivial application, we predict low temperature quantum diffusion of the magnetization on the Bloch sphere, which is governed by the geometric phase. We propose a protocol for experimental observation of this phenomenon.

  19. A quantum spin-probe molecular microscope.

    PubMed

    Perunicic, V S; Hill, C D; Hall, L T; Hollenberg, L C L

    2016-10-11

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.

  20. A quantum spin-probe molecular microscope

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L. C. L.

    2016-10-01

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.

  1. A quantum spin-probe molecular microscope

    PubMed Central

    Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L.C.L.

    2016-01-01

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy. PMID:27725630

  2. Quantum Spin Fluctuations for a Distorted Incommensurate Spiral

    SciTech Connect

    Fishman, Randy Scott

    2012-01-01

    Quantum spin fluctuations are investigated for the incommensurate state of a geometrically- frustrated triangular-lattice antiferromagnet. With increasing anisotropy, the average suppression of the spin by quantum fluctuations is reduced but the distorted spiral becomes more elliptical. Quan- tum fluctuations also increase the wavevector of the spin state and enhance the critical anisotropy above which a collinear spin state is stabilized. An experimental technique is proposed to isolate the effect of quantum fluctuations from the classical distortion of the spiral.

  3. Quantum optics of chiral spin networks

    NASA Astrophysics Data System (ADS)

    Pichler, Hannes; Ramos, Tomás; Daley, Andrew J.; Zoller, Peter

    2015-04-01

    We study the driven-dissipative dynamics of a network of spin-1/2 systems coupled to one or more chiral 1D bosonic waveguides within the framework of a Markovian master equation. We determine how the interplay between a coherent drive and collective decay processes can lead to the formation of pure multipartite entangled steady states. The key ingredient for the emergence of these many-body dark states is an asymmetric coupling of the spins to left and right propagating guided modes. Such systems are motivated by experimental possibilities with internal states of atoms coupled to optical fibers, or motional states of trapped atoms coupled to a spin-orbit coupled Bose-Einstein condensate. We discuss the characterization of the emerging multipartite entanglement in this system in terms of the Fisher information.

  4. Dimensional crossover in a spin liquid to helimagnet quantum phase transition.

    SciTech Connect

    Garlea, Vasile O; Zheludev, Andrey I; Habicht, Klaus; Meissner, Michael; Grenier, B.; Regnault, L.-P.; Ressouche, E.

    2009-01-01

    Neutron scattering is used to study magnetic field induced ordering in the quasi-1D quantum spin-tube compound Sul-Cu2Cl4 that in zero field has a non-magnetic spin-liquid ground state. The experiments reveal an incommensurate chiral high-field phase stabilized by a geometric frustration of the magnetic interactions. The measured critical exponents \\beta= 0.235 and \

  5. Entanglement and Quantum Phase Transition in Low Dimensional Spin Systems

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zanardi, Paolo; Wang, Zidan; Zhang, Fuchun

    2005-03-01

    Entanglement of the ground states in XXZ and dimerized Heisenberg spin chains and in two-leg spin ladder is analyzed by using spin-spin concurrence and the entanglement entropy between a selected block of spins and the rest of the system. Quantum critical points as well as phase boundaries can be in some cases identified straightforwardly by analyzing the local extreme of the entanglement. We show that various subsystem partitions may provide complementary description of a quantum phase diagram.

  6. Generating quantum states through spin chain dynamics

    NASA Astrophysics Data System (ADS)

    Kay, Alastair

    2017-04-01

    The spin chain is a theoretical work-horse of the physicist, providing a convenient, tractable model that yields insight into a host of physical phenomena including conduction, frustration, superconductivity, topological phases, localisation, phase transitions, quantum chaos and even string theory. Our ultimate aim, however, is not just to understand the properties of a physical system, but to harness it for our own ends. We therefore study the possibilities for engineering a special class of spin chain, envisaging the potential for this to feedback into the original physical systems. We pay particular attention to the generation of multipartite entangled states such as the W (Dicke) state, superposed over multiple sites of the chain.

  7. Optimal quantum cloning via spin networks

    SciTech Connect

    Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng

    2006-09-15

    In this paper we demonstrate that optimal 1{yields}M phase-covariant cloning quantum cloning is available via free dynamical evolution of spin networks. By properly designing the network and the couplings between spins, we show that optimal 1{yields}M phase-covariant cloning can be achieved if the initial state is prepared as a specific symmetric state. Especially, when M is an odd number, the optimal phase-covariant cloning can be achieved without ancillas. Moreover, we demonstrate that the same framework is capable for optimal 1{yields}2 universal cloning.

  8. Spin current source based on a quantum point contact with local spin-orbit interaction

    SciTech Connect

    Nowak, M. P.; Szafran, B.

    2013-11-11

    Proposal for construction of a source of spin-polarized current based on quantum point contact (QPC) with local spin-orbit interaction is presented. We show that spin-orbit interaction present within the narrowing acts like a spin filter. The spin polarization of the current is discussed as a function of the Fermi energy and the width of the QPC.

  9. Love triangles, quantum fluctuations and spin jam

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hun

    When magnetic moments are interacting with each other in a situation resembling that of complex love triangles, called frustration, a large set of states that are energetically equivalent emerge. This leads to exotic spin states such as spin liquid and spin ice. Recently, we presented evidence for the existence of a topological glassy state, that we call spin jam, induced by quantum fluctuations. The case in point is SrCr9pGa12-9pO19 (SCGO(p)), a highly frustrated magnet, in which the magnetic Cr ions form a quasi-two-dimensional triangular system of bi-pyramids. This system has been an archetype in search for exotic spin states. Understanding the nature of the state has been a great intellectual challenge. Our new experimental data and theoretical spin jam model provide for the first time a coherent understanding of the phenomenon. Furthermore, the findings strongly support the possible existence of purely topological glassy states. Reference:

  10. Single-electron Spin Resonance in a Quadruple Quantum Dot.

    PubMed

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2016-08-23

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.

  11. Single-electron Spin Resonance in a Quadruple Quantum Dot

    NASA Astrophysics Data System (ADS)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2016-08-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.

  12. Single-electron Spin Resonance in a Quadruple Quantum Dot

    PubMed Central

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2016-01-01

    Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible. PMID:27550534

  13. Almost sure convergence in quantum spin glasses

    NASA Astrophysics Data System (ADS)

    Buzinski, David; Meckes, Elizabeth

    2015-12-01

    Recently, Keating, Linden, and Wells [Markov Processes Relat. Fields 21(3), 537-555 (2015)] showed that the density of states measure of a nearest-neighbor quantum spin glass model is approximately Gaussian when the number of particles is large. The density of states measure is the ensemble average of the empirical spectral measure of a random matrix; in this paper, we use concentration of measure and entropy techniques together with the result of Keating, Linden, and Wells to show that in fact the empirical spectral measure of such a random matrix is almost surely approximately Gaussian itself with no ensemble averaging. We also extend this result to a spherical quantum spin glass model and to the more general coupling geometries investigated by Erdős and Schröder [Math. Phys., Anal. Geom. 17(3-4), 441-464 (2014)].

  14. Almost sure convergence in quantum spin glasses

    SciTech Connect

    Buzinski, David Meckes, Elizabeth

    2015-12-15

    Recently, Keating, Linden, and Wells [Markov Processes Relat. Fields 21(3), 537-555 (2015)] showed that the density of states measure of a nearest-neighbor quantum spin glass model is approximately Gaussian when the number of particles is large. The density of states measure is the ensemble average of the empirical spectral measure of a random matrix; in this paper, we use concentration of measure and entropy techniques together with the result of Keating, Linden, and Wells to show that in fact the empirical spectral measure of such a random matrix is almost surely approximately Gaussian itself with no ensemble averaging. We also extend this result to a spherical quantum spin glass model and to the more general coupling geometries investigated by Erdős and Schröder [Math. Phys., Anal. Geom. 17(3-4), 441–464 (2014)].

  15. Multiple-quantum spin coherence in the ground state of alkali atomic vapors

    NASA Astrophysics Data System (ADS)

    Xu, J. D.; Wäautckerle, G.; Mehring, M.

    1997-01-01

    Two-dimensional (2D) multiple-quantum coherence is reported for the hyperfine ground state of rubidium and cesium atoms by applying multiple radio-frequency pulses to the optically polarized atoms. Calculations of 1D and 2D multiple quantum coherences were performed with a general theory for an arbitrary high spin system by using irreducible tensor operators. The experimental results compare very well with the calculations.

  16. Spin-dependent quantum interference within a single magnetic nanostructure.

    PubMed

    Oka, H; Ignatiev, P A; Wedekind, S; Rodary, G; Niebergall, L; Stepanyuk, V S; Sander, D; Kirschner, J

    2010-02-12

    Quantum interference is a coherent quantum phenomenon that takes place in confined geometries. Using spin-polarized scanning tunneling microscopy, we found that quantum interference of electrons causes spatial modulation of spin polarization within a single magnetic nanostructure. We observed changes in both the sign and magnitude of the spin polarization on a subnanometer scale. A comparison of our experimental results with ab initio calculations shows that at a given energy, the modulation of the spin polarization can be ascribed to the difference between the spatially modulated local density of states of the majority spin and the nonmodulated minority spin contribution.

  17. Final COMPASS results on the deuteron spin-dependent structure function g1d and the Bjorken sum rule

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Vauth, A.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Windmolders, R.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.

    2017-06-01

    Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a 6LiD target. The data were taken at 160 GeV beam energy and the results are shown for the kinematic range 1(GeV / c) 2 4GeV /c2 in the mass of the hadronic final state. The deuteron double-spin asymmetry A1d and the deuteron longitudinal-spin structure function g1d are presented in bins of x and Q2. Towards lowest accessible values of x, g1d decreases and becomes consistent with zero within uncertainties. The presented final g1d values together with the recently published final g1p values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the g1 world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge a0, which is identified in the MS ‾ renormalisation scheme with the total contribution of quark helicities to the nucleon spin, is extracted at next-to-leading order accuracy from only the COMPASS deuteron data: a0 (Q2 = 3(GeV / c) 2) = 0.32 ±0.02stat ±0.04syst ±0.05evol. Together with the recent results on the proton spin structure function g1p, the results on g1d constitute the COMPASS legacy on the measurements of g1 through inclusive spin-dependent deep inelastic scattering.

  18. Quantum Phase Transition of a Triangular Lattice Spin Tube and Edge Spin Effects

    NASA Astrophysics Data System (ADS)

    Okunishi, Kouichi; Yoshikawa, Shin-Ichiro; Sakai, Tôru; Miyashita, Seiji

    We study the low-energy excitation of the quantum spin tube with the triangular lattice structure, using density matrix renormalization group. Taking account of the edge spin effect, we particularly investigate the spin gap behavior and the low-field magnetization curve near the quantum phase transition point in contrast with the usual free boundary condition. We then find that the bulk behavior of the spin tube can be extracted easier for the single spin termination.

  19. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  20. Entanglement in Nonunitary Quantum Critical Spin Chains

    NASA Astrophysics Data System (ADS)

    Couvreur, Romain; Jacobsen, Jesper Lykke; Saleur, Hubert

    2017-07-01

    Entanglement entropy has proven invaluable to our understanding of quantum criticality. It is natural to try to extend the concept to "nonunitary quantum mechanics," which has seen growing interest from areas as diverse as open quantum systems, noninteracting electronic disordered systems, or nonunitary conformal field theory (CFT). We propose and investigate such an extension here, by focusing on the case of one-dimensional quantum group symmetric or supergroup symmetric spin chains. We show that the consideration of left and right eigenstates combined with appropriate definitions of the trace leads to a natural definition of Rényi entropies in a large variety of models. We interpret this definition geometrically in terms of related loop models and calculate the corresponding scaling in the conformal case. This allows us to distinguish the role of the central charge and effective central charge in rational minimal models of CFT, and to define an effective central charge in other, less well-understood cases. The example of the s l (2 |1 ) alternating spin chain for percolation is discussed in detail.

  1. Quantum Control in an Atomic Spin System

    NASA Astrophysics Data System (ADS)

    Phillips, C. S.; Woods, W.; Potts, J. R.; Ponsor, S.; Gardner, J. R.

    1998-11-01

    The experimental work described here investigates the physics of coherent quantum control in an atomic spin system. This type of system is very attractive for precision studies of coherent control for a number of reasons, including the ease with which it may be manipulated experimentally and the relative simplicity of its theoretical description. To this end, we are studying quantum control of the spin wavefunction of ground state (F=3) ^85Rb atoms confined in a vapor-cell MOT. Application of uniform magnetic and optical fields to this system results in an anharmonic ladder of seven levels whose state can be manipulated arbitrarily using radio-frequency rotating magnetic fields. Using the optimal control formalism of Shi and Rabitz, we have developed a numerical model of this system which predicts the appropriate control pulse shape given the initial and desired final state of the system. As predicted, we find that the control pulse which causes a given system evolution is not unique, allowing the construction of control pulses with multiple goals, such as evolution through specified intermediate states. This freedom should allow for the construction of control pulses that both produce the desired final state and are robust to decoherence effects. This type of precise control may find application in the development of quantum computation devices as well as in other types of nano-technology. An experimental implementation of quantum control in this system, already underway in our lab, will be presented.

  2. Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins

    NASA Astrophysics Data System (ADS)

    Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou

    2016-07-01

    We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.

  3. Adiabatic Theorem for Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, S.; De Roeck, W.; Fraas, M.

    2017-08-01

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  4. Adiabatic Theorem for Quantum Spin Systems.

    PubMed

    Bachmann, S; De Roeck, W; Fraas, M

    2017-08-11

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ϵ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  5. Quantum criticality of hot random spin chains.

    PubMed

    Vasseur, R; Potter, A C; Parameswaran, S A

    2015-05-29

    We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit nonergodic behavior at strong disorder. The analysis is conveniently implemented in terms of SU(2)_{k} anyon chains that include the Ising and Potts chains as notable examples. Highly excited eigenstates of these systems exhibit properties usually associated with quantum critical ground states, leading us to dub them "quantum critical glasses." We argue that random-bond Heisenberg chains self-thermalize and that the excited-state entanglement crosses over from volume-law to logarithmic scaling at a length scale that diverges in the Heisenberg limit k→∞. The excited state fixed points are generically distinct from their ground state counterparts, and represent novel nonequilibrium critical phases of matter.

  6. Quantum Nucleation of Phase Slips in a 1D Model of a Superfluid

    SciTech Connect

    Freire, J.A.; Arovas, D.P.; Levine, H.

    1997-12-01

    We use a 1D model of a superfluid based on the Gross-Pitaevskii Lagrangian to illustrate a general numerical method designed to find quantum tunneling rates in extended bosonic systems. Specifically, we study flow past an obstacle and directly solve the imaginary time dynamics to find the {open_quotes}bounce{close_quotes} solution connected with the decay of the metastable laminar state via phase slip nucleation. The action for the tunneling configuration goes to zero at the threshold (in superfluid velocity) for classical production of these slips. Applications to other processes are briefly discussed. {copyright} {ital 1997} {ital The American Physical Society}

  7. Probing the Quantum State of a 1D Bose Gas Using Off-Resonant Light Scattering

    SciTech Connect

    Sykes, A. G.; Ballagh, R. J.

    2011-12-30

    We present a theoretical treatment of coherent light scattering from an interacting 1D Bose gas at finite temperatures. We show how this can provide a nondestructive measurement of the atomic system states. The equilibrium states are determined by the temperature and interaction strength, and are characterized by the spatial density-density correlation function. We show how this correlation function is encoded in the angular distribution of the fluctuations of the scattered light intensity, thus providing a sensitive, quantitative probe of the density-density correlation function and therefore the quantum state of the gas.

  8. Quantum simulation of 2D topological physics in a 1D array of optical cavities.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-07-06

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.

  9. Quantum simulation of 2D topological physics in a 1D array of optical cavities

    PubMed Central

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-01-01

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. PMID:26145177

  10. Observation of unconventional quantum spin textures in topological insulators.

    PubMed

    Hsieh, D; Xia, Y; Wray, L; Qian, D; Pal, A; Dil, J H; Osterwalder, J; Meier, F; Bihlmayer, G; Kane, C L; Hor, Y S; Cava, R J; Hasan, M Z

    2009-02-13

    A topologically ordered material is characterized by a rare quantum organization of electrons that evades the conventional spontaneously broken symmetry-based classification of condensed matter. Exotic spin-transport phenomena, such as the dissipationless quantum spin Hall effect, have been speculated to originate from a topological order whose identification requires a spin-sensitive measurement, which does not exist to this date in any system. Using Mott polarimetry, we probed the spin degrees of freedom and demonstrated that topological quantum numbers are completely determined from spin texture-imaging measurements. Applying this method to Sb and Bi(1-x)Sb(x), we identified the origin of its topological order and unusual chiral properties. These results taken together constitute the first observation of surface electrons collectively carrying a topological quantum Berry's phase and definite spin chirality, which are the key electronic properties component for realizing topological quantum computing bits with intrinsic spin Hall-like topological phenomena.

  11. More about "short" spinning quantum strings

    NASA Astrophysics Data System (ADS)

    Beccaria, M.; Tseytlin, A. A.

    2012-07-01

    We continue investigation of the spectrum of semiclassical quantum strings in AdS 5 × S 5 on the examples of folded ( S, J) string (with spin S in AdS 5 and orbital momentum J in S 5) dual to an sl(2) sector state in gauge theory and its ( J ' , J ) counterpart with spin J ' in S 5 dual to an su(2) sector state. We study the limits of small spins and large J at weak and strong coupling, pointing out that terms linear in spins provide a generalization of "protected" coefficients in the energy that are given by finite polynomials in 't Hooft coupling λ (or square of string tension) for any value of λ. We propose an expression for the coefficient of the term linear in spin J ' in the ( J ' , J ) string energy which should be the su(2) sector counterpart of the "slope function" in the sl(2) sector suggested by Basso in arXiv:1109.3154.

  12. Ultrafast optical spin echo in a single quantum dot

    NASA Astrophysics Data System (ADS)

    Press, David; de Greve, Kristiaan; McMahon, Peter L.; Ladd, Thaddeus D.; Friess, Benedikt; Schneider, Christian; Kamp, Martin; Höfling, Sven; Forchel, Alfred; Yamamoto, Yoshihisa

    2010-06-01

    Many proposed photonic quantum networks rely on matter qubits to serve as memory elements. The spin of a single electron confined in a semiconductor quantum dot forms a promising matter qubit that may be interfaced with a photonic network. Ultrafast optical spin control allows gate operations to be performed on the spin within a picosecond timescale, orders of magnitude faster than microwave or electrical control. One obstacle to storing quantum information in a single quantum dot spin is the apparent nanosecond-timescale dephasing due to slow variations in the background nuclear magnetic field. Here we use an ultrafast, all-optical spin echo technique to increase the decoherence time of a single quantum dot electron spin from nanoseconds to several microseconds. The ratio of decoherence time to gate time exceeds 105, suggesting strong promise for future photonic quantum information processors and repeater networks.

  13. Optimal Power and Efficiency of Quantum Thermoacoustic Micro-cycle Working in 1D Harmonic Trap

    NASA Astrophysics Data System (ADS)

    E, Qing; Wu, Feng; Yin, Yong; Liu, XiaoWei

    2017-10-01

    Thermoacoustic engines (including heat engines and refrigerators) are energy conversion devices without moving part. They have great potential in aviation, new energy utilization, power technology, refrigerating and cryogenics. The thermoacoustic parcels, which compose the working fluid of a thermoacoustic engine, oscillate within the sound channel with a temperature gradient. The thermodynamic foundation of a thermoacoustic engine is the thermoacoustic micro-cycle (TAMC). In this paper, the theory of quantum mechanics is applied to the study of the actual thermoacoustic micro-cycle for the first time. A quantum mechanics model of the TAMC working in a 1D harmonic trap, which is named as a quantum thermoacoustic micro-cycle (QTAMC), is established. The QTAMC is composed of two constant force processes connected by two straight line processes. Analytic expressions of the power output and the efficiency for QTAMC have been derived. The effects of the trap width and the temperature amplitude on the power output and the thermal efficiency have been discussed. Some optimal characteristic curves of power output versus efficiency are plotted, and then the optimization region of QTAMC is given in this paper. The results obtained here not only enrich the thermoacoustic theory but also expand the application of quantum thermodynamics.

  14. Optimal Power and Efficiency of Quantum Thermoacoustic Micro-cycle Working in 1D Harmonic Trap

    NASA Astrophysics Data System (ADS)

    E, Qing; Wu, Feng; Yin, Yong; Liu, XiaoWei

    2017-07-01

    Thermoacoustic engines (including heat engines and refrigerators) are energy conversion devices without moving part. They have great potential in aviation, new energy utilization, power technology, refrigerating and cryogenics. The thermoacoustic parcels, which compose the working fluid of a thermoacoustic engine, oscillate within the sound channel with a temperature gradient. The thermodynamic foundation of a thermoacoustic engine is the thermoacoustic micro-cycle (TAMC). In this paper, the theory of quantum mechanics is applied to the study of the actual thermoacoustic micro-cycle for the first time. A quantum mechanics model of the TAMC working in a 1D harmonic trap, which is named as a quantum thermoacoustic micro-cycle (QTAMC), is established. The QTAMC is composed of two constant force processes connected by two straight line processes. Analytic expressions of the power output and the efficiency for QTAMC have been derived. The effects of the trap width and the temperature amplitude on the power output and the thermal efficiency have been discussed. Some optimal characteristic curves of power output versus efficiency are plotted, and then the optimization region of QTAMC is given in this paper. The results obtained here not only enrich the thermoacoustic theory but also expand the application of quantum thermodynamics.

  15. Quantum information transfer between topological and spin qubit systems.

    PubMed

    Leijnse, Martin; Flensberg, Karsten

    2011-11-18

    We propose a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. Our suggestion uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vice versa. Furthermore, we show how a topological superconductor can be used to facilitate long-distance quantum information transfer and entanglement between spatially separated spin qubits.

  16. Qubit protection in nuclear-spin quantum dot memories.

    PubMed

    Kurucz, Z; Sørensen, M W; Taylor, J M; Lukin, M D; Fleischhauer, M

    2009-07-03

    We present a mechanism to protect quantum information stored in an ensemble of nuclear spins in a semiconductor quantum dot. When the dot is charged the nuclei interact with the spin of the excess electron through the hyperfine coupling. If this coupling is made off-resonant, it leads to an energy gap between the collective storage states and all other states. We show that the energy gap protects the quantum memory from local spin-flip and spin-dephasing noise. Effects of nonperfect initial spin polarization and inhomogeneous hyperfine coupling are discussed.

  17. The spin Hall effect in a quantum gas.

    PubMed

    Beeler, M C; Williams, R A; Jiménez-García, K; LeBlanc, L J; Perry, A R; Spielman, I B

    2013-06-13

    Electronic properties such as current flow are generally independent of the electron's spin angular momentum, an internal degree of freedom possessed by quantum particles. The spin Hall effect, first proposed 40 years ago, is an unusual class of phenomena in which flowing particles experience orthogonally directed, spin-dependent forces--analogous to the conventional Lorentz force that gives the Hall effect, but opposite in sign for two spin states. Spin Hall effects have been observed for electrons flowing in spin-orbit-coupled materials such as GaAs and InGaAs (refs 2, 3) and for laser light traversing dielectric junctions. Here we observe the spin Hall effect in a quantum-degenerate Bose gas, and use the resulting spin-dependent Lorentz forces to realize a cold-atom spin transistor. By engineering a spatially inhomogeneous spin-orbit coupling field for our quantum gas, we explicitly introduce and measure the requisite spin-dependent Lorentz forces, finding them to be in excellent agreement with our calculations. This 'atomtronic' transistor behaves as a type of velocity-insensitive adiabatic spin selector, with potential application in devices such as magnetic or inertial sensors. In addition, such techniques for creating and measuring the spin Hall effect are clear prerequisites for engineering topological insulators and detecting their associated quantized spin Hall effects in quantum gases. As implemented, our system realizes a laser-actuated analogue to the archetypal semiconductor spintronic device, the Datta-Das spin transistor.

  18. Induced spin-accumulation and spin-polarization in a quantum-dot ring by using magnetic quantum dots and Rashba spin-orbit effect

    SciTech Connect

    Eslami, L. Faizabadi, E.

    2014-05-28

    The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.

  19. Quantum Optimization of Fully Connected Spin Glasses

    NASA Astrophysics Data System (ADS)

    Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim

    2015-07-01

    Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.

  20. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  1. Adiabatic Spin Pumping with Quantum Dots

    NASA Astrophysics Data System (ADS)

    Mucciolo, Eduardo R.

    Electronic transport in mesoscopic systems has been intensively studied for more the last three decades. While there is a substantial understanding of the stationary regime, much less is know about phase-coherent nonequilibrium transport when pulses or ac perturbations are used to drive electrons at low temperatures and at small length scales. However, about 20 years ago Thouless proposed to drive nondissipative currents in quantum systems by applying simultaneously two phase-locked external perturbations. The so-called adiabatic pumping mechanism has been revived in the last few years, both theoretically and experimentally, in part because of the development of lateral semiconductor quantum dots. Here we will explain how open dots can be used to create spin-polarized currents with little or no net charge transfer. The pure spin pump we propose is the analog of a charge battery in conventional electronics and may provide a needed circuit element for spin-based electronics. We will also discuss other relevant issues such as rectification and decoherence and point out possible extensions of the mechanism to closed dots.

  2. Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in quantum dots

    NASA Astrophysics Data System (ADS)

    Romano, C. L.; Marques, G. E.; Sanz, L.; Alcalde, A. M.

    2008-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dot due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. By studying suitable choices of magnetic field and lateral dot size, we determine regions where the spin relaxation rates can be practically suppressed. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  3. Work fluctuations in quantum spin chains.

    PubMed

    Dorosz, Sven; Platini, Thierry; Karevski, Dragi

    2008-05-01

    We study the work fluctuations of two types of finite quantum spin chains under the application of a time-dependent magnetic field in the context of the fluctuation relation and Jarzynski equality. The two types of quantum chains correspond to the integrable Ising quantum chain and the nonintegrable XX quantum chain in a longitudinal magnetic field. For several magnetic field protocols, the quantum Crooks and Jarzynski relations are numerically tested and fulfilled. As a more interesting situation, we consider the forcing regime where a periodic magnetic field is applied. In the Ising case we give an exact solution in terms of double-confluent Heun functions. We show that the fluctuations of the work performed by the external periodic drift are maximum at a frequency proportional to the amplitude of the field. In the nonintegrable case, we show that depending on the field frequency a sharp transition is observed between a Poisson-limit work distribution at high frequencies toward a normal work distribution at low frequencies.

  4. Condensed-matter physics: Quantum mechanics in a spin

    NASA Astrophysics Data System (ADS)

    Balents, Leon

    2016-12-01

    Quantum spin liquids are exotic states of matter first predicted more than 40 years ago. An inorganic material has properties consistent with these predictions, revealing details about the nature of quantum matter. See Letter p.559

  5. Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao

    2017-01-01

    Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.

  6. Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.

    PubMed

    Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao

    2017-01-01

    Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.

  7. Quantum spin dynamics with pairwise-tunable, long-range interactions

    PubMed Central

    Hung, C.-L.; González-Tudela, Alejandro; Cirac, J. Ignacio; Kimble, H. J.

    2016-01-01

    We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in 1D and 2D lattices. In our scheme, two internal atomic states represent a pseudospin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin–spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom–atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom–atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce nontrivial Berry phases in the spin lattice, thus opening new avenues for realizing topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well-known spin models. PMID:27496329

  8. Spin qubit relaxation in a moving quantum dot

    NASA Astrophysics Data System (ADS)

    Huang, Peihao; Hu, Xuedong

    2013-08-01

    Long-range quantum communication for spin qubits is an important open problem. Here we study decoherence of an electron spin qubit that is being transported in a moving quantum dot. We focus on spin decoherence due to spin-orbit interaction and a random electric potential. We find that at the lowest order, the motion induces longitudinal spin relaxation, with a rate linear in the dot velocity. Our calculated spin relaxation time ranges from sub μs in GaAs to above ms in Si, making this relaxation a significant decoherence channel. Our results also give clear indications on how to reduce the decoherence effect of electron motion.

  9. Spin-orbit-coupled quantum gases

    NASA Astrophysics Data System (ADS)

    Radic, Juraj

    The dissertation explores the effects of synthetic spin-orbit coupling on the behaviour of quantum gases in several different contexts. We first study realistic methods to create vortices in spin-orbit-coupled (SOC) Bose-Einstein condensates (BEC). We propose two different methods to induce thermodynamically stable static vortex configurations: (1) to rotate both the Raman lasers and the anisotropic trap; and (2) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. We solve the Gross-Pitaevskii equation for several experimentally relevant regimes and find new interesting effects such as spatial separation of left- and right-moving spin-orbit-coupled condensates, and the appearance of unusual vortex arrangements. Next we consider cold atoms in an optical lattice with synthetic SOC in the Mott-insulator regime. We calculate the parameters of the corresponding tight-binding model and derive the low-energy spin Hamiltonian which is a combination of Heisenberg model, quantum compass model and Dzyaloshinskii-Moriya interaction. We find that the Hamiltonian supports a rich classical phase diagram with collinear, spiral and vortex phases. Next we study the time evolution of the magnetization in a Rashba spin-orbit-coupled Fermi gas, starting from a fully-polarized initial state. We model the dynamics using a Boltzmann equation, which we solve in the Hartree-Fock approximation. The resulting non-linear system of equations gives rise to three distinct dynamical regimes controlled by the ratio of interaction and spin-orbit-coupling strength lambda: for small lambda, the magnetization decays to zero. For intermediate lambda, it displays undamped oscillations about zero and for large lambda, a partially magnetized state is dynamically stabilized. Motivated by an interesting stripe phase which appears in BEC with SOC [Li et al., Phys. Rev. Lett. 108, 225301 (2011)], we study the finite-temperature phase diagram of a pseudospin-1/2 Bose gas with

  10. Theory of spin blockade in a triple quantum dots

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Hawrylak, Pawel

    2011-03-01

    We present a theory of electronic properties and spin blockade in a linear triple quantum dots. We use micoroscopic LCHO-CI and double-band Hubbard model to analyze the electronic and spin properties of a triple quantum dots near a symmetrical quadruple point involving the (1,1,1) configuration which is essential for implementing quantum information processing with electron spin. We calculate spectral functions and relate them via the rate equation, including coupling with a phonon bath, to current as a function of applied bias. We show that the spin blockade in a triple quantum dots can serve as a spectroscopic tool to distinguish spin polarized states from spin depolarized states. We also show that a spin blockade is developed only at high bias when an onsite triplet state on the edge quantum dot connected to the source lead becomes accessible in the transport window. In contradiction to the case of double quantum dot molecule, the onsite triplet is not only essential for lifting spin blockade but also important for building up spin polarisation and spin blockade in the system. The authors would like to acknowledge financial support from NSERC, OGS, and QuantumWorks.

  11. Electrical control of single hole spins in nanowire quantum dots.

    PubMed

    Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  12. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  13. Ultrafast optical control of individual quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    De Greve, Kristiaan; Press, David; McMahon, Peter L.; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a ‘flying’ photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is

  14. Hypercuboidal renormalization in spin foam quantum gravity

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Steinhaus, Sebastian

    2017-06-01

    In this article, we apply background-independent renormalization group methods to spin foam quantum gravity. It is aimed at extending and elucidating the analysis of a companion paper, in which the existence of a fixed point in the truncated renormalization group flow for the model was reported. Here, we repeat the analysis with various modifications and find that both qualitative and quantitative features of the fixed point are robust in this setting. We also go into details about the various approximation schemes employed in the analysis.

  15. Spin-spin and spin-orbit interactions in nanographene fragments: a quantum chemistry approach.

    PubMed

    Perumal, S; Minaev, B; Ågren, H

    2012-03-14

    The relativistic behavior of graphene structures, starting from the fundamental building blocks--the poly-aromatic hydrocarbons (PAHs) along with other PAH nanographenes--is studied to quantify any associated intrinsic magnetism in the triplet (T) state and subsequently in the ground singlet (S) state with account of possible S-T mixture induced by spin-orbit coupling (SOC). We employ a first principle quantum chemical-based approach and density functional theory (DFT) for a systematic treatment of the spin-Hamiltonian by considering both the spin-orbit and spin-spin interactions as dependent on different numbers of benzene rings. We assess these relativistic spin-coupling phenomena in terms of splitting parameters which cause magnetic anisotropy in absence of external perturbations. Possible routes for changes in the couplings in terms of doping and defects are also simulated and discussed. Accounting for the artificial character of the broken-symmetry solutions for strong spin polarization of the so-called "singlet open-shell" ground state in zigzag graphene nanoribbons predicted by spin-unrestricted DFT approaches, we interpolate results from more sophisticated methods for the S-T gaps and spin-orbit coupling (SOC) integrals and find that these spin interactions become weak as function of size and increasing decoupling of electrons at the edges. This leads to reduced electron spin-spin interaction and hence almost negligible intrinsic magnetism in the carbon-based PAHs and carbon nanographene fragments. Our results are in agreement with the fact that direct experimental evidence of edge magnetism in pristine graphene has been reported so far. We support the notion that magnetism in graphene only can be ascribed to structural defects or impurities.

  16. Effect of quantum tunneling on spin Hall magnetoresistance

    NASA Astrophysics Data System (ADS)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-01

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  17. Effect of quantum tunneling on spin Hall magnetoresistance.

    PubMed

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-22

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  18. Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Cheng; Ye, Liu

    2017-05-01

    In this paper, we study the relation among quantum coherence, uncertainty, steerability of quantum coherence based on skew information and quantum phase transition in the spin model by employing quantum renormalization-group method. Interestingly, the results show that the value of the local quantum uncertainty is equal to the local quantum coherence corresponding to local observable σ _z in XXZ model, and unlikely in XY model, local quantum uncertainty is minimal optimization of the local quantum coherence over local observable σ _x and this proposition can be generalized to a multipartite system. Therefore, one can directly achieve quantum correlation measured by local quantum uncertainty and coherence by choosing different local observables σ _x, σ _z, corresponding to the XY model and XXZ model separately. Meanwhile, steerability of quantum coherence in XY and XXZ model is investigated systematically, and our results reveal that no matter what times the QRG iterations are carried out, the quantum coherence of the state of subsystem cannot be steerable, which can also be suitable for block-block steerability of local quantum coherence in both XY and XXZ models. On the other hand, we have illustrated that the quantum coherence and uncertainty measure can efficiently detect the quantum critical points associated with quantum phase transitions after several iterations of the renormalization. Moreover, the nonanalytic and scaling behaviors of steerability of local quantum coherence have been also taken into consideration.

  19. Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot

    SciTech Connect

    Noiri, A.; Yoneda, J.; Nakajima, T.; Otsuka, T.; Delbecq, M. R.; Takeda, K.; Tarucha, S.; Amaha, S.; Allison, G.; Ludwig, A.; Wieck, A. D.

    2016-04-11

    Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantum dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.

  20. Quantum Cavity for Spin due to Spin-Orbit Interaction at a Metal Boundary

    NASA Astrophysics Data System (ADS)

    Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A. M.; Gudat, W.; Eberhardt, W.; Rader, O.

    2008-12-01

    A quantum cavity for spin is created using a tungsten crystal as substrate of high nuclear charge and breaking the structural inversion symmetry through deposition of a gold quantum film. Spin- and angle-resolved photoelectron spectroscopy shows directly that quantum-well states and the “matrioshka” or Russian nested doll Fermi surface of the gold film are spin polarized and spin-orbit split up to a thickness of at least nine atomic layers. Ferromagnetic materials or external magnetic fields are not required, and the quantum film does not need to possess a high atomic number as analogous results with silver show.

  1. Spin Wigner molecules in quantum dots

    NASA Astrophysics Data System (ADS)

    Zutic, Igor; Oszwaldowski, Rafal; Stano, Peter; Petukhov, A. G.

    2013-03-01

    The interplay of confinement and Coulomb interactions in quantum dots can lead to strongly correlated phases differing qualitatively from the Fermi liquid behavior. While in three dimensions the correlation-induced Wigner crystal is elusive and expected only in the limit of an extremely low carrier density, its nanoscale analog, the Wigner molecule, has been observed in quantum dots at much higher densities [1]. We explore how the presence of magnetic impurities in quantum dots can provide additional opportunities to study correlation effects and the resulting ordering in carrier and impurity spins[2]. By employing exact diagonalization we reveal that seemingly simple two-carrier quantum dots lead to a rich phase diagram [2,3]. We propose experiments to verify our predictions; in particular, we discuss interband optical transitions as a function of temperature and magnetic field. DOE-BES, meta-QUTE 259 ITMS NFP Grant No. 26240120022, CE SAS QUTE, EU 260 Project Q-essence, Grant No. APVV-0646-10, and SCIEX.

  2. Laser flash photolysis of ozone - O/1D/ quantum yields in the fall-off region 297-325 nm

    NASA Technical Reports Server (NTRS)

    Brock, J. C.; Watson, R. T.

    1980-01-01

    The wavelength dependence of the quantum yield for O(1D) production from ozone photolysis has been determined between 297.5 nm and 325 nm in order to resolve serious discrepancies among previous studies. The results of this investigation are compared to earlier work by calculating atmospheric production rate constants for O(1D). It is found that for the purpose of calculating this rate constant, there is now good agreement among three studies at 298 K. Furthermore, it appears that previous data on the temperature dependence of the O(1D) quantum yield fall-off is adequate for determining the vertical profile of the O(1D) production rate constant. Several experimental difficulties associated with using NO2(asterisk) chemiluminescence to monitor O(1D) have been identified.

  3. Quantum spin ice on the breathing pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Savary, Lucile; Wang, Xiaoqun; Kee, Hae-Young; Kim, Yong Baek; Yu, Yue; Chen, Gang

    2016-08-01

    The Coulombic quantum spin liquid in quantum spin ice is an exotic quantum phase of matter that emerges on the pyrochlore lattice and is currently actively searched for. Motivated by recent experiments on the Yb-based breathing pyrochlore material Ba3Yb2Zn5O11 , we theoretically study the phase diagram and magnetic properties of the relevant spin model. The latter takes the form of a quantum spin ice Hamiltonian on a breathing pyrochlore lattice, and we analyze the stability of the quantum spin liquid phase in the absence of the inversion symmetry which the lattice breaks explicitly at lattice sites. Using a gauge mean-field approach, we show that the quantum spin liquid occupies a finite region in parameter space. Moreover, there exists a direct quantum phase transition between the quantum spin liquid phase and featureless paramagnets, even though none of theses phases break any symmetry. At nonzero temperature, we show that breathing pyrochlores provide a much broader finite-temperature spin liquid regime than their regular counterparts. We discuss the implications of the results for current experiments and make predictions for future experiments on breathing pyrochlores.

  4. Quantum propagation and confinement in 1D systems using the transfer-matrix method

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Carles, Robert; Pérez, José-Philippe

    2014-05-01

    The aim of this article is to provide some Matlab scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field. Scripts and other examples (hydrogen-like ions and transmission by a smooth variation of potential energy) are available freely at http://www-loa.univ-lille1.fr/˜pujol in three languages: English, French and Spanish.

  5. Localized whistlers in magnetized spin quantum plasmas

    SciTech Connect

    Misra, A. P.; Brodin, G.; Marklund, M.; Shukla, P. K.

    2010-11-15

    The nonlinear propagation of electromagnetic (EM) electron-cyclotron waves (whistlers) along an external magnetic field, and their modulation by electrostatic small but finite amplitude ion-acoustic density perturbations are investigated in a uniform quantum plasma with intrinsic spin of electrons. The effects of the quantum force associated with the Bohm potential and the combined effects of the classical as well as the spin-induced ponderomotive forces (CPF and SPF, respectively) are taken into consideration. The latter modify the local plasma density in a self-consistent manner. The coupled modes of wave propagation is shown to be governed by a modified set of nonlinear Schroedinger-Boussinesq-like equations which admit exact solutions in form of stationary localized envelopes. Numerical simulation reveals the existence of large-scale density fluctuations that are self-consistently created by the localized whistlers in a strongly magnetized high density plasma. The conditions for the modulational instability (MI) and the value of its growth rate are obtained. Possible applications of our results, e.g., in strongly magnetized dense plasmas and in the next generation laser-solid density plasma interaction experiments are discussed.

  6. Fast electron spin resonance controlled manipulation of spin injection into quantum dots

    SciTech Connect

    Merz, Andreas Siller, Jan; Schittny, Robert; Krämmer, Christoph; Kalt, Heinz; Hetterich, Michael

    2014-06-23

    In our spin-injection light-emitting diodes, electrons are spin-polarized in a semimagnetic ZnMnSe spin aligner and then injected into InGaAs quantum dots. The resulting electron spin state can be read out by measuring the circular polarization state of the emitted light. Here, we resonantly excite the Mn 3d electron spin system with microwave pulses and perform time-resolved measurements of the spin dynamics. We find that we are able to control the spin polarization of the injected electrons on a microsecond timescale. This electron spin resonance induced spin control could be one of the ingredients required to utilize the quantum dot electrons or the Mn spins as qubits.

  7. Electrically tunable quantum interfaces between photons and spin qubits in carbon nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Ze-Song; Hong, Fang-Yu

    2016-11-01

    We present a new scheme for quantum interfaces (QIs) to accomplish the interconversion of photonic qubits and spin qubits based on optomechanical resonators and the spin-orbit-induced interactions in suspended carbon nanotube quantum dots (CNTQDs). This interface implements quantum spin transducers and further enables electrical manipulation of local electron spin qubits, which lays the foundation for all-electrical control of state transfer protocols between two distant quantum nodes in a quantum network. We numerically evaluate the state transfer processes and proceed to estimate the effect of each coupling strength on the operation fidelities. The simulation suggests that high operation fidelities are obtainable under realistic experimental conditions.

  8. Studies of electron spin in GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Craft, Daniel; Colton, John; Park, Tyler; White, Phil

    2013-03-01

    We have studied electron spins in GaAs quantum dots with a pump-probe technique that normally yields the T1 spin lifetime, the time required for initially polarized electrons to relax and randomize. Using a circularly polarized laser tuned to the wavelength response of the quantum dot we can ``pump'' the spins into alignment. After aligning the spins we can detect them using a second, linearly polarized ``probe'' laser. By changing the delay between the two lasers we can trace out the spin response over time. In contrast with other samples (bulk GaAs and a GaAs quantum well), where the spin response decayed exponentially with time, initial data on the quantum dots has shown an unexpected, oscillating behavior which dies out on the order of 700 ns, independent of both temperature and magnetic field.

  9. Towards a spin-ensemble quantum memory for superconducting qubits

    NASA Astrophysics Data System (ADS)

    Grezes, Cécile; Kubo, Yuimaru; Julsgaard, Brian; Umeda, Takahide; Isoya, Junichi; Sumiya, Hitoshi; Abe, Hiroshi; Onoda, Shinobu; Ohshima, Takeshi; Nakamura, Kazuo; Diniz, Igor; Auffeves, Alexia; Jacques, Vincent; Roch, Jean-François; Vion, Denis; Esteve, Daniel; Moelmer, Klaus; Bertet, Patrice

    2016-08-01

    This article reviews efforts to build a new type of quantum device, which combines an ensemble of electronic spins with long coherence times, and a small-scale superconducting quantum processor. The goal is to store over long times arbitrary qubit states in orthogonal collective modes of the spin-ensemble, and to retrieve them on-demand. We first present the protocol devised for such a multi-mode quantum memory. We then describe a series of experimental results using NV (as in nitrogen vacancy) center spins in diamond, which demonstrate its main building blocks: the transfer of arbitrary quantum states from a qubit into the spin ensemble, and the multi-mode retrieval of classical microwave pulses down to the single-photon level with a Hahn-echo like sequence. A reset of the spin memory is implemented in-between two successive sequences using optical repumping of the spins. xml:lang="fr"

  10. Universal quantum computation with hybrid spin-Majorana qubits

    NASA Astrophysics Data System (ADS)

    Hoffman, Silas; Schrade, Constantin; Klinovaja, Jelena; Loss, Daniel

    2016-07-01

    We theoretically propose a set of universal quantum gates acting on a hybrid qubit formed by coupling a quantum-dot spin qubit and Majorana fermion qubit. First, we consider a quantum dot that is tunnel coupled to two topological superconductors. The effective spin-Majorana exchange facilitates a hybrid cnot gate for which either qubit can be the control or target. The second setup is a modular scalable network of topological superconductors and quantum dots. As a result of the exchange interaction between adjacent spin qubits, a cnot gate is implemented that acts on neighboring Majorana qubits and eliminates the necessity of interqubit braiding. In both setups, the spin-Majorana exchange interaction allows for a phase gate, acting on either the spin or the Majorana qubit, and for a swap or hybrid swap gate which is sufficient for universal quantum computation without projective measurements.

  11. The classical and quantum dynamics of molecular spins on graphene

    PubMed Central

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2015-01-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019

  12. Charge- and spin-density modulations in semiconductor quantum wires

    NASA Astrophysics Data System (ADS)

    Lee, Minchul; Bruder, Christoph

    2005-07-01

    We investigate static charge- and spin-density modulation patterns along a ferromagnet-semiconductor single-junction quantum wire in the presence of spin-orbit coupling. Coherent scattering theory is used to calculate the charge and spin densities in the ballistic regime. The observed oscillatory behavior is explained in terms of the symmetry of the charge and spin distributions of eigenstates in the semiconductor quantum wire. Also, we discuss the condition that these charge- and spin-density oscillations can be observed experimentally.

  13. Bending strain engineering in quantum spin hall system for controlling spin currents

    DOE PAGES

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; ...

    2017-06-16

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less

  14. Spectral periodicity of the spinon continuum in quantum spin ice

    NASA Astrophysics Data System (ADS)

    Chen, Gang

    2017-08-01

    Motivated by the rapid experimental progress of quantum spin ice materials, we study the dynamical properties of pyrochlore spin ice in the U(1) spin liquid phases. In particular, we focus on the spinon excitations that appear at high energies and show up as an excitation continuum in the dynamic spin structure factor. The keen connection between the crystal symmetry fractionalization of the spinons and the spectral periodicity of the spinon continuum is emphasized and explicitly demonstrated. When the spinon experiences a background π flux and the spinon continuum exhibits an enhanced spectral periodicity with a folded Brillouin zone, this spectral property can then be used to detect the spin quantum number fractionalization and U(1) spin liquid. Our prediction can be immediately examined by inelastic neutron-scattering experiments among quantum spin ice materials with Kramers' doublets. Further application to the non-Kramers' doublets is discussed.

  15. Dynamical cooling of nuclear spins in double quantum dots.

    PubMed

    Rudner, M S; Levitov, L S

    2010-07-09

    Electrons trapped in quantum dots can exhibit quantum-coherent spin dynamics over long timescales. These timescales are limited by the coupling of electron spins to the disordered nuclear spin background, which is a major source of noise and dephasing in such systems. We propose a scheme for controlling and suppressing fluctuations of nuclear spin polarization in double quantum dots, which uses nuclear spin pumping in the spin-blockade regime. We show that nuclear spin polarization fluctuations can be suppressed when electronic levels in the two dots are properly positioned near resonance. The proposed mechanism is analogous to that of optical Doppler cooling. The Overhauser shift due to fluctuations of nuclear polarization brings electron levels in and out of resonance, creating internal feedback to suppress fluctuations. Estimates indicate that a better than 10-fold reduction of fluctuations is possible.

  16. Theory of Spin Seebeck Effects in a Quantum Wire

    NASA Astrophysics Data System (ADS)

    Ogata, Masao; Fukuyama, Hidetoshi

    2017-09-01

    Spin Seebeck coefficient in a quantum wire is microscopically derived using the Kubo formula and thermal Green’s functions, taking account of the effects of disorder in a self-consistent t-matrix approximation. It is found that the induced spin current to be detected through the inverse spin Hall effect will be in the range of experimental detectability when the chemical potential for electrons in the quantum wire is close to the band edge.

  17. A quantum dot spin qubit with thermal bias

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Cheng, Jie

    2015-02-01

    Temperature effect on the spin manipulation and spin injection in a quantum dot is investigated with the help of master equation method. Results show that the magnitude and the direction of the temperature difference between the source and drain leads have great impact on the spin store, writing, and reading processes. In practical devices, the thermal bias is quite general and then our results may be useful in quantum information processing and spintronics.

  18. Spin-dependent shot noise enhancement in a quantum dot

    NASA Astrophysics Data System (ADS)

    Ubbelohde, Niels; Fricke, Christian; Hohls, Frank; Haug, Rolf J.

    2013-07-01

    The spin-dependent dynamical blockade was investigated in a lateral quantum dot in a magnetic field. Spin-polarized edge channels in the two-dimensional leads and the spatial distribution of Landau orbitals in the dot modulate the tunnel coupling of the quantum dot level spectrum. In a measurement of the electron shot noise we observe a pattern of super-Poissonian noise which is correlated to the spin-dependent competition between different transport channels.

  19. Scalable Spin-Qubit Circuits with Quantum Dots

    DTIC Science & Technology

    2007-11-02

    quantum wires with Rashba spin -orbit interaction” Phys. Stat. Sol. (c) 3, 4317 (2006). 9. B. Trauzettel, Denis V. Bulaev, Daniel Loss, Guido Burkard...Seigo Tarucha, “Dynamical nuclear spin polarization induced by hyperfine mediated singlet-triplet transition in coupled quantum dots” 2007Aspen...used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correlated to different charge

  20. Spin Quantum Bit with Ferromagnetic Contacts for Circuit QED

    SciTech Connect

    Cottet, Audrey; Kontos, Takis

    2010-10-15

    We theoretically propose a scheme for a spin quantum bit based on a double quantum dot contacted to ferromagnetic elements. Interface exchange effects enable an all electric manipulation of the spin and a switchable strong coupling to a superconducting coplanar waveguide cavity. Our setup does not rely on any specific band structure and can in principle be realized with many different types of nanoconductors. This allows us to envision on-chip single spin manipulation and readout using cavity QED techniques.

  1. Spin quantum bit with ferromagnetic contacts for circuit QED.

    PubMed

    Cottet, Audrey; Kontos, Takis

    2010-10-15

    We theoretically propose a scheme for a spin quantum bit based on a double quantum dot contacted to ferromagnetic elements. Interface exchange effects enable an all electric manipulation of the spin and a switchable strong coupling to a superconducting coplanar waveguide cavity. Our setup does not rely on any specific band structure and can in principle be realized with many different types of nanoconductors. This allows us to envision on-chip single spin manipulation and readout using cavity QED techniques.

  2. How quantum are classical spin ices?

    NASA Astrophysics Data System (ADS)

    Gingras, Michel J. P.; Rau, Jeffrey G.

    The pyrochlore spin ice compounds Dy2TiO7 and Ho2Ti2O7 are well described by classical Ising models down to low temperatures. Given the empirical success of this description, the question of the importance of quantum effects in these materials has been mostly ignored. We argue that the common wisdom that the strictly Ising moments of non-interacting Dy3+ and Ho3+ ions imply Ising interactions is too naive and that a more complex argument is needed to explain the close agreement between the classical Ising model theory and experiments. By considering a microscopic picture of the interactions in rare-earth oxides, we show that the high-rank multipolar interactions needed to induce quantum effects in these two materials are generated only very weakly by superexchange. Using this framework, we formulate an estimate of the scale of quantum effects in Dy2Ti2O7 and Ho2Ti2O7, finding it to be well below experimentally relevant temperatures. Published as: PHYSICAL REVIEW B 92, 144417 (2015).

  3. Local duality in spin structure functions g1(p) and g1(d)

    SciTech Connect

    Yelena Prok

    2006-02-01

    Inclusive double spin asymmetries obtained by scattering polarized electrons off polarized protons and deuterons have been analyzed to address the issue of quark hadron duality in the polarized spin structure functions gp 1 and gd 1. A polarized electron beam, solid polarized NH3 and ND3 targets and the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B were used to collect the data. The resulting gp 1 and gd 1 were averaged over the nucleon resonance energy region (M

  4. Quantum Entanglement and Discord Dynamics of two Noninteracting Spin Qubits in Two Independent Spin Baths

    NASA Astrophysics Data System (ADS)

    Xu, Lan; Wu, Guiping; Yan, Lin

    2017-03-01

    We study the dynamics of quantum entanglement and quantum discord between two non-interacting qubits, which couple with two independent spin baths, obeying the XXZ Hamiltonian. After the Holstein-Primakoff transformation, one could reduce the spin bath to a single-mode bosonic bath field. Then we use this model to study the entanglement and discord dynamics of two qubits in their corresponding spin bath. For the initial Werner state, it is indicated that both entanglement and quantum discord exhibit death and revival behavior, while the quantum correlations change more smaller.

  5. Electron Spin Qubits in Si/SiGe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Eriksson, Mark

    2010-10-01

    It is intriguing that silicon, the central material of modern classical electronics, also has properties well suited to quantum electronics. Recent advances in Si/SiGe quantum devices have enabled the creation of high-quality silicon quantum dots, also known as artificial atoms. Motivated in part by the potential for very long spin coherence times in this material, we are pursuing the development of individual electron spin qubits in silicon quantum dots. I will discuss recent demonstrations of single-shot spin measurement in a Si/SiGe quantum dot spin qubit, and the demonstration of spin-relaxation times longer than one second in such a system. These and similar measurements depend on a knowledge of tunnel rates between quantum dots and nearby reservoirs or between pairs of quantum dots. Measurements of such rates provide an opportunity to revisit classic experiments in quantum mechanics. At the same time, the unique features of the silicon conduction band lead to novel and unexpected effects, demonstrating that Si/SiGe quantum dots provide a highly controlled experimental system in which to study ideas at the heart of quantum physics.

  6. Fractional quantization of charge and spin in topological quantum pumps

    NASA Astrophysics Data System (ADS)

    Marra, Pasquale; Citro, Roberta

    2017-07-01

    Topological quantum pumps are topologically equivalent to the quantum Hall state: In these systems, the charge pumped during each pumping cycle is quantized and coincides with the Chern invariant. However, differently from quantum Hall insulators, quantum pumps can exhibit novel phenomena such as the fractional quantization of the charge transport, as a consequence of their distinctive symmetries in parameter space. Here, we report the analogous fractional quantization of the spin transport in a topological spin pump realized in a one-dimensional lattice via a periodically modulated Zeeman field. In the proposed model, which is a spinfull generalization of the Harper-Hofstadter model, the amount of spin current pumped during well-defined fractions of the pumping cycle is quantized as fractions of the spin Chern number. This fractional quantization of spin is topological, and is a direct consequence of the additional symmetries ensuing from the commensuration of the periodic field with the underlying lattice.

  7. Optical signatures of spin polarization of carriers in quantum dots.

    PubMed

    Korkusinski, Marek; Hawrylak, Pawel

    2008-07-11

    We predict theoretically the optical signatures of spin polarization of carriers in self-assembled quantum dots. The emission spectra are mapped out as a function of increasing electron spin polarization for a fixed number of electrons and holes. The spin-polarized spectra are determined using exact diagonalization techniques for up to 12 particles, corresponding to two lowest filled shells. We predict that the spin polarization leads to photon polarization, to redshifts of emission lines due to excess exchange interactions among the spin-polarized electrons, and to a complete breakup of emission lines for spin-polarized electronic shells.

  8. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    PubMed

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  9. Coherent spin-exchange via a quantum mediator

    NASA Astrophysics Data System (ADS)

    Baart, Timothy Alexander; Fujita, Takafumi; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven Mark Koenraad

    2017-01-01

    Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.

  10. Aging dynamics of quantum spin glasses of rotors

    NASA Astrophysics Data System (ADS)

    Kennett, Malcolm P.; Chamon, Claudio; Ye, Jinwu

    2001-12-01

    We study the long time dynamics of quantum spin glasses of rotors using the nonequilibrium Schwinger-Keldysh formalism. These models are known to have a quantum phase transition from a paramagnetic to a spin-glass phase, which we approach by looking at the divergence of the spin-relaxation rate at the transition point. In the aging regime, we determine the dynamical equations governing the time evolution of the spin response and correlation functions, and show that all terms in the equations that arise solely from quantum effects are irrelevant at long times under time reparametrization group (RPG) transformations. At long times, quantum effects enter only through the renormalization of the parameters in the dynamical equations for the classical counterpart of the rotor model. Consequently, quantum effects only modify the out-of-equilibrium fluctuation-dissipation relation (OEFDR), i.e. the ratio X between the temperature and the effective temperature, but not the form of the classical OEFDR.

  11. A two-dimensional spin liquid in quantum kagome ice.

    PubMed

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-06-22

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.

  12. Spin polarization and quantum spins in Au nanoparticles.

    PubMed

    Li, Chi-Yen; Karna, Sunil K; Wang, Chin-Wei; Li, Wen-Hsien

    2013-08-28

    The present study focuses on investigating the magnetic properties and the critical particle size for developing sizable spontaneous magnetic moment of bare Au nanoparticles. Seven sets of bare Au nanoparticle assemblies, with diameters from 3.5 to 17.5 nm, were fabricated with the gas condensation method. Line profiles of the X-ray diffraction peaks were used to determine the mean particle diameters and size distributions of the nanoparticle assemblies. The magnetization curves M(H(a)) reveal Langevin field profiles. Magnetic hysteresis was clearly revealed in the low field regime even at 300 K. Contributions to the magnetization from different size particles in the nanoparticle assemblies were considered when analyzing the M(H(a)) curves. The results show that the maximum particle moment will appear in 2.4 nm Au particles. A similar result of the maximum saturation magnetization appearing in 2.3 nm Au particles is also concluded through analysis of the dependency of the saturation magnetization M(P) on particle size. The M(P)(d) curve departs significantly from the 1/d dependence, but can be described by a log-normal function. Magnetization can be barely detected for Au particles larger than 27 nm. Magnetic field induced Zeeman magnetization from the quantum confined Kubo gap opening appears in Au nanoparticles smaller than 9.5 nm in diameter.

  13. Characterizing gapped phases of a 1D spin chain with on-site and spatial symmetries

    NASA Astrophysics Data System (ADS)

    West, Colin; Prakash, Abhishodh; Wei, Tzu-Chieh

    We investigate the phase diagram of a spin-1 chain whose Hamiltonian is invariant under translation, lattice inversion and a global A4 symmetry in the spin degrees of freedom. The classification scheme by Chen, Gu, and Wen allows us to enumerate all possible phases under the given symmetry. Then, we determine which of these phases actually occur in the two-parameter Hamiltonian. Using numerical methods proposed by Pollmann and Turner (2012) we determine the characteristic projective parameters for the Symmetry Protected Topological (SPT) phases. In addition, we present a method for determining the projective commutation parameter in these phases. The resulting phase diagram is rich and contains at least nine different SPT phases. This work was supported in part by the National Science Foundation.

  14. Dynamical quantum phase transitions in presence of a spin bath

    NASA Astrophysics Data System (ADS)

    Gómez-León, Á.; Stamp, P. C. E.

    2017-02-01

    We derive an effective time independent Hamiltonian for the transverse Ising model coupled to a spin bath, in the presence of a high frequency AC magnetic field. The spin blocking mechanism that removes the quantum phase transition can be suppressed by the AC field, allowing tunability of the quantum critical point. We calculate the phase diagram, including the nuclear spins, and apply the results to quantum Ising systems with long-range dipolar interactions; the example of LiHoF4 is discussed in detail.

  15. The impact of quantum dots magnetization on spin separation and spin current in a multiple quantum-dot ring in the presence of Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Faizabadi, Edris; Eslami, Leila

    2012-06-01

    The influence of quantum dot magnetization on electronic spin-dependent transport is investigated through a triple-quantum-dot ring structure in which one of the quantum dots is non-magnetic subjected to the Rashba spin-orbit interaction and the two other ones possess magnetic structure. Evaluated results, based on single particle Green's function formalism, indicate that the presence of magnetic moment on the quantum dots leads to additional spin-dependent phase factor which affects electronic transport through the system. For both antiferromagnetic and ferromagnetic quantum dots, the system can operate as a spin-splitter but differently; by tuning Rashba spin-orbit strength and in the presence of magnetic flux, respectively. Besides, in the absence of one of the outgoing leads, spin current in the output is calculated and demonstrated that magnetization of quantum dots leads to spin current even in the absence of Rashba spin-orbit effect. Moreover, it is shown that in the presence of Rashba spin orbit interaction, magnetic quantum dots, and magnetic flux, the two terminal system produces a completely tunable spin current.

  16. Sensitivity to small perturbations in systems of large quantum spins

    NASA Astrophysics Data System (ADS)

    Elsayed, Tarek A.; Fine, Boris V.

    2015-10-01

    We investigate the sensitivity of nonintegrable large-spin quantum lattices to small perturbations with a particular focus on the time reversal experiments known in statistical physics as ‘Loschmidt echoes’ and in nuclear magnetic resonance (NMR) as ‘magic echoes.’ Our numerical simulations of quantum spin-7\\frac{1}{2} clusters indicate that there is a regime where Loschmidt echoes exhibit nearly exponential sensitivity to small perturbations with characteristic constant approximately equal to twice the value of the largest Lyapunov exponent of the corresponding classical spin clusters. The above theoretical results are verifiable by NMR experiments on solids containing large-spin nuclei.

  17. Proposal for fast optical spin rotations in quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.; Reinecke, T. L.

    2008-04-01

    A proposal for fast optical rotation of the spin of an electron in a quantum dot is presented. Hyperbolic secant pulses of appropriate polarization are employed to induce a relative phase between two spin basis states. This phase is the angle of spin rotation, and the polarization determines the direction of the spin. Varying both allows for the construction of arbitrary rotations. Simulations with typical parameters for InAs self-assembled quantum dots-including dissipative dynamics-show that the fidelity of the operations is at least 99%. The effect of deviation from the ideal pulse shape is also examined.

  18. A hydrodynamical model for relativistic spin quantum plasmas

    SciTech Connect

    Asenjo, Felipe A.; Munoz, Victor; Valdivia, J. Alejandro; Mahajan, Swadesh M.

    2011-01-15

    Based on the one-body particle-antiparticle Dirac theory of electrons, a set of relativistic quantum fluid equations for a spin half plasma is derived. The particle-antiparticle nature of the relativistic particles is explicit in this fluid theory, which also includes quantum effects such as spin. The nonrelativistic limit is shown to be in agreement with previous attempts to develop a spin plasma theory derived from the Pauli Hamiltonian. Harnessing the formalism to the study of electromagnetic mode propagation, conceptually new phenomena are revealed; the particle-antiparticle effects increase the fluid opacity to these waves, while the spin effects tend to make the fluid more transparent.

  19. Pumped double quantum dot with spin-orbit coupling.

    PubMed

    Khomitsky, Denis; Sherman, Eugene

    2011-03-11

    We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin- dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures.PACS numbers: 73.63.Kv,72.25.Dc,72.25.Pn.

  20. Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Liang, Zhenguo

    2017-04-01

    In this paper we prove an infinite dimensional KAM theorem, in which the assumptions on the derivatives of the perturbation in [24] are weakened from polynomial decay to logarithmic decay. As a consequence, we can apply it to 1D quantum harmonic oscillators and prove the reducibility of the linear harmonic oscillator, T=-\\frac{{{\\text{d}}2}}{\\text{d}{{x}2}}+{{x}2} , on {{L}2}≤ft({R}\\right) perturbed by the quasi-periodic in the time potential V(x,ω t;ω ) with logarithmic decay. This proves the pure-point nature of the spectrum of the Floquet operator K, where K:=-i∑k=1nωk∂∂θk-d2dx2+x2+ɛV(x,θω) is defined on {{L}2}≤ft({R}\\right)\\otimes {{L}2}≤ft({{{T}}n}\\right) , and the potential V(x,θ ;ω ) has logarithmic decay as well as its gradient in ω.

  1. Propagation of excitation in long 1D chains: Transition from regular quantum dynamics to stochastic dynamics

    SciTech Connect

    Benderskii, V. A.; Kats, E. I.

    2013-01-15

    The quantum dynamics problem for a 1D chain consisting of 2N + 1 sites (N Much-Greater-Than 1) with the interaction of nearest neighbors and an impurity site at the middle differing in energy and in coupling constant from the sites of the remaining chain is solved analytically. The initial excitation of the impurity is accompanied by the propagation of excitation over the chain sites and with the emergence of Loschmidt echo (partial restoration of the impurity site population) in the recurrence cycles with a period proportional to N. The echo consists of the main (most intense) component modulated by damped oscillations. The intensity of oscillations increases with increasing cycle number and matrix element C of the interaction of the impurity site n = 0 with sites n = {+-}1 (0 < C {<=} 1; for the remaining neighboring sites, the matrix element is equal to unity). Mixing of the components of echo from neighboring cycles induces a transition from the regular to stochastic evolution. In the regular evolution region, the wave packet propagates over the chain at a nearly constant group velocity, embracing a number of sites varying periodically with time. In the stochastic regime, the excitation is distributed over a number of sites close to 2N, with the populations varying irregularly with time. The model explains qualitatively the experimental data on ballistic propagation of the vibrational energy in linear chains of CH{sub 2} fragments and predicts the possibility of a nondissipative energy transfer between reaction centers associated with such chains.

  2. Quantum entanglement and spin control in silicon nanocrystal.

    PubMed

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.

  3. Single spins in self-assembled quantum dots.

    PubMed

    Warburton, Richard J

    2013-06-01

    Self-assembled quantum dots have excellent photonic properties. For instance, a single quantum dot is a high-brightness, narrow-linewidth source of single photons. Furthermore, the environment of a single quantum dot can be tailored relatively easily using semiconductor heterostructure and post-growth processing techniques, enabling electrical control of the quantum dot charge and control over the photonic modes with which the quantum dot interacts. A single electron or hole trapped inside a quantum dot has spintronics applications. Although the spin dephasing is rather rapid, a single spin can be manipulated using optical techniques on subnanosecond timescales. Optical experiments are also providing new insights into old issues, such as the central spin problem. This Review provides a snapshot of this active field, with some indications for the future. It covers the basic materials and optical properties of single quantum dots, techniques for initializing, manipulating and reading out single spin qubits, and the mechanisms that limit the electron-spin and hole-spin coherence.

  4. Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction

    PubMed Central

    2011-01-01

    We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE) in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d PMID:21711500

  5. Experimental realization of long-distance entanglement between spins in antiferromagnetic quantum spin chains

    NASA Astrophysics Data System (ADS)

    Sahling, S.; Remenyi, G.; Paulsen, C.; Monceau, P.; Saligrama, V.; Marin, C.; Revcolevschi, A.; Regnault, L. P.; Raymond, S.; Lorenzo, J. E.

    2015-03-01

    Entanglement is a concept that has defied common sense since the discovery of quantum mechanics. Two particles are said to be entangled when the quantum state of each particle cannot be described independently, no matter how far apart in space and time the two particles are. We demonstrate experimentally that unpaired spins separated by several hundred ångström entangle through a collection of spin singlets made up of antiferromagnetic spin-1/2 chains in a bulk material. Low-temperature magnetization and specific heat studies as a function of magnetic field reveal the occurrence of very dilute spin dimers and at least two quantum phase transitions related to the breaking of excited local triplets. The mechanism at the origin of the unpaired spins inside the quantum chains is the inter-modulation potential between two sublattices, and may be replicated using well-designed synthetic multilayers.

  6. Theory of quantum control of spin-photon dynamics and spin decoherence in semiconductors

    NASA Astrophysics Data System (ADS)

    Yao, Wang

    Single electron spin in a semiconductor quantum dot (QD) and single photon wavepacket propagating in an optical waveguide are investigated as carriers of quantum bit (qubit) for information processing. Cavity quantum electrodynamics of the coupled system composed of charged QD, microcavity and waveguide provides a quantum interface for the interplay of stationary spin qubits and flying photon qubits via cavity assisted optical control. This interface forms the basis for a wide range of essential functions of a quantum network, including transferring, swapping, and entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector of a single photon wavepacket with arbitrarily specified shape. The cavity assisted optical process also made possible ultrafast initialization and QND readout of the spin qubit in QD. In addition, the strong optical nonlinearity of dot-cavity-waveguide coupled system enables phase gate and entanglement operation for flying single photon qubits in waveguides. The coherence of the electron spin is the wellspring of these quantum applications being investigated. At low temperature and strong magnetic field, the dominant cause of electron spin decoherence is the coupling with the interacting lattice nuclear spins. We present a quantum solution to the coupled dynamics of the electron with the nuclear spin bath. The decoherence is treated in terms of quantum entanglement of the electron with the nuclear pair-flip excitations driven by the various nuclear interactions. A novel nuclear interaction, mediated by virtue spin-flips of the single electron, plays an important role in single spin free-induction decay (FID). The spin echo not only refocuses the dephasing by inhomogeneous broadening in ensemble dynamics but also eliminates the decoherence by electron-mediated nuclear interaction. Thus, the decoherence times for single spin FID and ensemble spin echo are significantly different. The quantum theory of

  7. Giant Rashba spin splitting with unconventional spin texture in a quantum spin Hall insulator

    NASA Astrophysics Data System (ADS)

    Mera Acosta, Carlos; Babilonia, Oscar; Abdalla, Leonardo; Fazzio, Adalberto

    We propose a non-centrosymmetric honeycomb-lattice quantum spin Hall effect family formed by atoms of the groups IV, V and VII of the periodic table. We make a structural analysis, a Z2 characterization. According to our ab-initio phonon calculations, the system formed by Bi, Pb and I atoms is only mechanically stable system. This material presents a Rashba-type spin-splitting and a hexagonal warping effect, which lead to an unusual spin texture. Due to this spin texture, the backscattering is forbidden for both edge conductivity channels and bulk conductivity channels. This suggests that, contrary to what happens in most systems with nontrivial topological phases, the bulk states would not pose a problem for spintronic devices. The value of the spin-splitting due to the Rashba effect is about 60 meV, which is huge compared with the values found in 2D systems and surprisingly is on the order of the highest found in 3D systems. We would like to thank the financial support by the Sao Paulo research fundation (FAPESP).

  8. Anisotropic intrinsic spin Hall effect in quantum wires.

    PubMed

    Cummings, A W; Akis, R; Ferry, D K

    2011-11-23

    We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [N110] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.

  9. Phase diagram of 1D spin-orbit coupled Fermi gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Qu, Chunlei; Gong, Ming; Zhang, Chuanwei

    2013-03-01

    We consider a one dimensional spin-orbit coupled Fermi gas in optical lattices with open boundary condition. This system belongs to the BDI symmetry class because the Hamiltonian can be made real when the Zeeman field is assumed to be along the z direction, thus the topological superfluid is characterized by Z, instead of Z2 class. In the optical lattice system, each site admits at most two fermions. The system can host plenty of phases depending on the filling factor and the Zeeman field. At finite Zeeman field we observe a strong competition between the topological superfluid phase and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. The latter phase is more likely to be observed near the half filling. The spin-orbit coupling plays the role of enhancing the topological superfluid phase and suppressing the FFLO phase, which the Hartree shift plays an utterly opposite role. The possible observation of topological phase is also discussed in the presence of a harmonic trap. This work is supported by ARO, AFOSR, and NSF

  10. Correlation between inter-spin interaction and molecular dynamics of organic radicals in organic 1D nanochannels

    SciTech Connect

    Kobayashi, Hirokazu

    2015-12-31

    One-dimensional (1D) molecular chains of 4-substituted-2,2,6,6-tetramethyl-1-piperidinyloxyl (4-X-TEMPO) radicals were constructed in the crystalline 1D nanochannels of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) used as a template. The ESR spectra of CLPOT inclusion compounds (ICs) using 4-X-TEMPO were examined on the basis of spectral simulation using EasySpin program package for simulating and fitting ESR spectra. The ESR spectra of [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC were isotropic in the total range of temperatures. The peak-to-peak line width (ΔB{sub pp}) became monotonically narrower from 2.8 to 1.3 mT with increase in temperature in the range of 4.2–298 K. The effect of the rotational diffusion motion of TEMPO radicals in the CLPOT nanochannels for the inter-spin interaction of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC was found to be smaller than the case of [(TPP){sub 2}−(TEMPO){sub 1.0}] IC (TPP = tris(o-phenylenedioxy)cyclotriphosphazene) reported in our previous study. The ΔB{sub pp} of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC in the whole range of temperatures was much narrower than the estimation to be based on the Van Vleck’s formula for the second moment of the rigid lattice model where the electron spin can be considered as fixed; 11 mT of Gaussian line-width component. This suggests the possibility of exchange narrowing in the 1D organic-radical chains of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC. On the other hand, the ESR spectra of [(CLPOT){sub 2}-(MeO-TEMPO){sub 0.41}] IC (MeO-TEMPO = 4-methoxy-TEMPO) were reproduced by a superposition of major broad isotropic adsorption line and minor temperature-dependent modulated triplet component. This suggests that the IC has the part of 1D organic-radical chains and MeO-TEMPO molecules isolated in the CLPOT nanochannels.

  11. Theory of quantum annealing of an Ising spin glass.

    PubMed

    Santoro, Giuseppe E; Martonák, Roman; Tosatti, Erio; Car, Roberto

    2002-03-29

    Probing the lowest energy configuration of a complex system by quantum annealing was recently found to be more effective than its classical, thermal counterpart. By comparing classical and quantum Monte Carlo annealing protocols on the two-dimensional random Ising model (a prototype spin glass), we confirm the superiority of quantum annealing relative to classical annealing. We also propose a theory of quantum annealing based on a cascade of Landau-Zener tunneling events. For both classical and quantum annealing, the residual energy after annealing is inversely proportional to a power of the logarithm of the annealing time, but the quantum case has a larger power that makes it faster.

  12. Electron nuclear spin transfer in quantum-dot networks

    NASA Astrophysics Data System (ADS)

    Prada, M.; Toonen, R. C.; Blick, R. H.; Harrison, P.

    2005-05-01

    We investigate the conductance spectra of coupled quantum dots to study systematically the nuclear spin relaxation of different geometries of a two-dimensional network of quantum dots and observe spin blockade dependence on the electronic configurations. We derive the conductance using the Beenakker approach generalized to an array of quantum dots where we consider the nuclear spin transfer to electrons by hyperfine coupling. This allows us to predict the relevant memory effects on the different electronic states by studying the evolution of the single electron resonances in the presence of nuclear spin relaxation. We find that the gradual depolarization of the nuclear system is imprinted in the conductance spectra of the multidot system. Our calculations of the temporal evolution of the conductance resonance reveal that spin blockade can be lifted by hyperfine coupling.

  13. Gate-controlled electron spins in quantum dots

    SciTech Connect

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.

    2013-12-16

    In this paper we study the properties of anisotropic semiconductor quantum dots (QDs) formed in the conduction band in the presence of the magnetic field. The Kane-type model is formulated and is analyzed by using both analytical and finite element techniques. Among other things, we demonstrate that in such quantum dots, the electron spin states in the phonon-induced spin-flip rate can be manipulated with the application of externally applied anisotropic gate potentials. More precisely, such potentials enhance the spin flip rates and reduce the level crossing points to lower quantum dot radii. This happens due to the suppression of the g-factor towards bulk crystal. We conclude that the phonon induced spin-flip rate can be controlled through the application of spin-orbit coupling. Numerical examples are shown to demonstrate these findings.

  14. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case

    SciTech Connect

    Muminov, M.; Neidhardt, H.; Rasulov, T.

    2015-05-15

    A lattice model of radiative decay (so-called spin-boson model) of a two level atom and at most two photons is considered. The location of the essential spectrum is described. For any coupling constant, the finiteness of the number of eigenvalues below the bottom of its essential spectrum is proved. The results are obtained by considering a more general model H for which the lower bound of its essential spectrum is estimated. Conditions which guarantee the finiteness of the number of eigenvalues of H below the bottom of its essential spectrum are found. It is shown that the discrete spectrum might be infinite if the parameter functions are chosen in a special form.

  15. Revealing topological superconductivity in extended quantum spin Hall Josephson junctions.

    PubMed

    Lee, Shu-Ping; Michaeli, Karen; Alicea, Jason; Yacoby, Amir

    2014-11-07

    Quantum spin Hall-superconductor hybrids are promising sources of topological superconductivity and Majorana modes, particularly given recent progress on HgTe and InAs/GaSb. We propose a new method of revealing topological superconductivity in extended quantum spin Hall Josephson junctions supporting "fractional Josephson currents." Specifically, we show that as one threads magnetic flux between the superconductors, the critical current traces an interference pattern featuring sharp fingerprints of topological superconductivity-even when noise spoils parity conservation.

  16. Resolving spin-orbit- and hyperfine-mediated electric dipole spin resonance in a quantum dot.

    PubMed

    Shafiei, M; Nowack, K C; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-03-08

    We investigate the electric manipulation of a single-electron spin in a single gate-defined quantum dot. We observe that so-far neglected differences between the hyperfine- and spin-orbit-mediated electric dipole spin resonance conditions have important consequences at high magnetic fields. In experiments using adiabatic rapid passage to invert the electron spin, we observe an unusually wide and asymmetric response as a function of the magnetic field. Simulations support the interpretation of the line shape in terms of four different resonance conditions. These findings may lead to isotope-selective control of dynamic nuclear polarization in quantum dots.

  17. Spin dynamics and spin noise in the presence of randomly varying spin-orbit interaction in a semiconductor quantum wire.

    PubMed

    Agnihotri, Pratik; Bandyopadhyay, Supriyo

    2012-05-30

    Using ensemble Monte Carlo simulation, we have studied hot carrier spin dynamics and spin noise in a multi-subband GaAs quantum wire in the presence of a randomly varying Rashba spin-orbit interaction. The random variation reduces the carrier ensemble's spin dephasing time due to the D'yakonov-Perel' mechanism, but otherwise makes no qualitative difference to the temporal spin relaxation characteristics. However, it makes a qualitative difference to the spatial spin relaxation characteristics which change from monotonic and smooth to non-monotonic and chaotic because of a complex interplay between carriers in different subbands. As far as spin fluctuation and spin noise are concerned, the random variation has no major effect except that the low-frequency noise power spectral density increases slightly when the magnitude of the Rashba spin-orbit interaction field is varied randomly while holding the direction constant.

  18. Universal quantum computation with ordered spin-chain networks

    SciTech Connect

    Tserkovnyak, Yaroslav; Loss, Daniel

    2011-09-15

    It is shown that anisotropic spin chains with gapped bulk excitations and magnetically ordered ground states offer a promising platform for quantum computation, which bridges the conventional single-spin-based qubit concept with recently developed topological Majorana-based proposals. We show how to realize the single-qubit Hadamard, phase, and {pi}/8 gates as well as the two-qubit controlled-not (cnot) gate, which together form a fault-tolerant universal set of quantum gates. The gates are implemented by judiciously controlling Ising exchange and magnetic fields along a network of spin chains, with each individual qubit furnished by a spin-chain segment. A subset of single-qubit operations is geometric in nature, relying on control of anisotropy of spin interactions rather than their strength. We contrast topological aspects of the anisotropic spin-chain networks to those of p-wave superconducting wires discussed in the literature.

  19. Quantum dot spin coherence governed by a strained nuclear environment

    NASA Astrophysics Data System (ADS)

    Stockill, R.; Le Gall, C.; Matthiesen, C.; Huthmacher, L.; Clarke, E.; Hugues, M.; Atatüre, M.

    2016-09-01

    The interaction between a confined electron and the nuclei of an optically active quantum dot provides a uniquely rich manifestation of the central spin problem. Coherent qubit control combines with an ultrafast spin-photon interface to make these confined spins attractive candidates for quantum optical networks. Reaching the full potential of spin coherence has been hindered by the lack of knowledge of the key irreversible environment dynamics. Through all-optical Hahn echo decoupling we now recover the intrinsic coherence time set by the interaction with the inhomogeneously strained nuclear bath. The high-frequency nuclear dynamics are directly imprinted on the electron spin coherence, resulting in a dramatic jump of coherence times from few tens of nanoseconds to the microsecond regime between 2 and 3 T magnetic field and an exponential decay of coherence at high fields. These results reveal spin coherence can be improved by applying large magnetic fields and reducing strain inhomogeneity.

  20. Spin-foams for all loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2010-05-01

    The simplicial framework of Engle-Pereira-Rovelli-Livine spin-foam models is generalized to match the diffeomorphism invariant framework of loop quantum gravity. The simplicial spin-foams are generalized to arbitrary linear 2-cell spin-foams. The resulting framework admits all the spin-network states of loop quantum gravity, not only those defined by triangulations (or cubulations). In particular, the notion of embedded spin-foam we use allows us to consider knotting or linking spin-foam histories. Also the main tools, the vertex structure and the vertex amplitude, are naturally generalized to an arbitrary valency case. The correspondence between all the SU(2) intertwiners and the SU(2)×SU(2) EPRL intertwiners is proved to be 1-1 in the case of the Barbero-Immirzi parameter |γ| >= 1.

  1. Energy dependent dynamics of the O(1D) + HCl reaction: a quantum, quasiclassical and statistical study.

    PubMed

    Bargueño, P; Jambrina, P G; Alvariño, J M; Menéndez, M; Verdasco, E; Hankel, M; Smith, S C; Aoiz, F J; González-Lezana, T

    2011-05-14

    The dynamics of the reaction O((1)D) + HCl → ClO + H, OH + Cl has been investigated in detail by means of a time-dependent wave packet (TDWP) method in comparison with quasiclassical trajectory (QCT) and statistical approaches on the ground potential energy surface by Martínez et al. [Phys. Chem. Chem. Phys., 2000, 2, 589]. Fully coupled quantum mechanical (QM) reaction probabilities for high values of the total angular momentum (J≤ 50) are reported for the first time. At the low collision energy regime (E(c)≤ 0.4 eV) the TDWP probabilities are well reproduced by the QCT and statistical results for the ClO forming product channel, but for the OH + Cl arrangement, only QCT probabilities are found to agree with the QM values. The good accordance found between the rigorous statistical models and the dynamical QM and QCT calculations for the O + HCl → ClO + H process underpins the assumption that the reaction pathway leading to ClO is predominantly governed by a complex-forming mechanism. In addition, to further test the statistical character of this reaction channel, the laboratory angular distribution and time-of-flight spectra obtained in a crossed molecular beam study by Balucani et al. [Chem. Phys. Lett. 1991, 180, 34] at a collision energy as high as 0.53 eV have been simulated using the state resolved differential cross section obtained with the statistical approaches yielding a satisfactory agreement with the experimental results. For the other channel, O + HCl → OH + Cl, noticeable differences between the statistical results and those found with the QCT calculation suggest that the dynamics of the reaction are controlled by a direct mechanism. The comparison between the QCT and QM-TDWP results in the whole range of collision energies lends credence to the QCT description of the dynamics of this reaction.

  2. Generation of heralded entanglement between distant quantum dot hole spins

    NASA Astrophysics Data System (ADS)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of

  3. Families of quasilocal conservation laws and quantum spin transport.

    PubMed

    Prosen, Tomaž; Ilievski, Enej

    2013-08-02

    For fundamental integrable quantum chains with deformed symmetries we outline a general procedure for defining a continuous family of quasilocal operators whose time derivative is supported near the two boundary sites only. The program is implemented for a spin 1/2 XXZ chain, resulting in improved rigorous estimates for the high temperature spin Drude weight.

  4. Spin and Uncertainty in the Interpretation of Quantum Mechanics.

    ERIC Educational Resources Information Center

    Hestenes, David

    1979-01-01

    Points out that quantum mechanics interpretations, using Heisenberg's Uncertainty Relations for the position and momentum of an electron, have their drawbacks. The interpretations are limited to the Schrodinger theory and fail to take into account either spin or relativity. Shows why spin cannot be ignored. (Author/GA)

  5. Spin and Uncertainty in the Interpretation of Quantum Mechanics.

    ERIC Educational Resources Information Center

    Hestenes, David

    1979-01-01

    Points out that quantum mechanics interpretations, using Heisenberg's Uncertainty Relations for the position and momentum of an electron, have their drawbacks. The interpretations are limited to the Schrodinger theory and fail to take into account either spin or relativity. Shows why spin cannot be ignored. (Author/GA)

  6. The Anticommutator Spin Algebra, its Representations and Quantum Group Invariance

    NASA Astrophysics Data System (ADS)

    Arik, M.; Kayserilioglu, U.

    We define a 3-generator algebra obtained by replacing the commutators with anticommutators in the defining relations of the angular momentum algebra. We show that integer spin representations are in one to one correspondence with those of the angular momentum algebra. The half-integer spin representations, on the other hand, split into two representations of dimension j+(1)/(2). The anticommutator spin algebra is invariant under the action of the quantum group SOq(3) with q=-1.

  7. Quark-Hadron Duality in Spin Structure Functions $g_1^p$ and $g_1^d$

    SciTech Connect

    P.E. Bosted; K.V. Dharmawardane; G.E. Dodge; T.A. Forest; S.E. Kuhn; Y. Prok

    2006-07-25

    New measurements of the spin structure functions of the proton and deuteron g{sub 1}{sup p}(x, Q{sup 2}) and g{sub 1}{sup d}(x, Q{sup 2}) in the nucleon resonance region are compared with extrapolations of target-mass-corrected next-to-leading-order (NLO) QCD fits to higher energy data. Averaged over the entire resonance region (W < 2 GeV), the data and QCD fits are in good agreement in both magnitude and Q{sup 2} dependence for Q{sup 2} > 1.7 GeV{sup 2}/c{sup 2}. This ''global'' duality appears to result from cancellations among the prominent ''local'' resonance regions: in particular strong {sigma}{sub 3/2} contributions in the {Delta}(1232) region appear to be compensated by strong {sigma}{sub 1/2} contributions in the resonance region centered on 1.5 GeV. These results are encouraging for the extension of NLO QCD fits to lower W and Q{sup 2} than have been used previously.

  8. Spin-orbit interaction induced current dip in a single quantum dot coupled to a spin

    NASA Astrophysics Data System (ADS)

    Giavaras, G.

    2017-03-01

    Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet-triplet anticrossing point which appears due to the spin-orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin-orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.

  9. Sublattice entanglement and quantum phase transitions in antiferromagnetic spin chains

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zanardi, Paolo; Wang, Z. D.; Zhang, F. C.

    2006-06-01

    Entanglement of the ground states in the S = 1/2 XXZ chain, dimerized Heisenberg spin chain, two-leg spin ladders as well as S = 1 anisotropic Haldane chain is analysed using the entanglement entropy between a selected sublattice of spins and the rest of the system. In particular, we reveal that quantum phase transition points/boundaries may be identified based on the analysis on the local extreme of this sublattice entanglement entropy, which is illustrated to be superior over the concurrence scenario and may enable us to explore quantum phase transitions in many other systems including higher dimensional ones.

  10. Hole-Nuclear Spin Interaction in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Eble, B.; Testelin, C.; Desfonds, P.; Bernardot, F.; Balocchi, A.; Amand, T.; Miard, A.; Lemaître, A.; Marie, X.; Chamarro, M.

    2009-04-01

    We have measured the carrier spin dynamics in p-doped InAs/GaAs quantum dots by pump-probe and time-resolved photoluminescence experiments. We obtained experimental evidence of the hyperfine interaction between hole and nuclear spins. In the absence of an external magnetic field, our calculations based on dipole-dipole coupling between the hole and the quantum dot nuclei lead to a hole-spin dephasing time for an ensemble of dots of 14 ns, in close agreement with experiments.

  11. Hybrid Toffoli gate on photons and quantum spins

    PubMed Central

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum computation offers potential advantages in solving a number of interesting and difficult problems. Several controlled logic gates, the elemental building blocks of quantum computer, have been realized with various physical systems. A general technique was recently proposed that significantly reduces the realization complexity of multiple-control logic gates by harnessing multi-level information carriers. We present implementations of a key quantum circuit: the three-qubit Toffoli gate. By exploring the optical selection rules of one-sided optical microcavities, a Toffoli gate may be realized on all combinations of photon and quantum spins in the QD-cavity. The three general controlled-NOT gates are involved using an auxiliary photon with two degrees of freedom. Our results show that photons and quantum spins may be used alternatively in quantum information processing. PMID:26568078

  12. Electron Spin Dephasing and Decoherence by Interaction with Nuclear Spins in Self-Assembled Quantum Dots

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta

    2004-01-01

    Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.

  13. Electron Spin Dephasing and Decoherence by Interaction with Nuclear Spins in Self-Assembled Quantum Dots

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta

    2004-01-01

    Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.

  14. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    PubMed

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  15. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    NASA Astrophysics Data System (ADS)

    Mani, Arjun; Benjamin, Colin

    2016-04-01

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible—the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  16. Decoupling-free NMR quantum computer on a quantum spin chain

    SciTech Connect

    Goto, Atsushi; Shimizu, Tadashi; Hashi, Kenjiro; Kitazawa, Hideaki; Ohki, Shinobu

    2003-02-01

    We propose a decoupling-free nuclear-spin quantum computer installed on a quantum electron spin chain with a singlet ground state and a finite spin gap. Qubits are I=1/2 nuclear spins implanted periodically along the quantum spin chain. A magnetic field gradient is applied parallel to the chain, which allows individual access to each qubit. A single-qubit operation (rotation gate) is realized with the rf field tuned to the nuclear Larmor frequency at the qubit of interest, while a two-qubit operation (controlled-NOT gate) is achieved using the Suhl-Nakamura interaction through a packet of triplet magnons, which are excited by a microwave tuned to the spin gap energy (SN gate). The interaction can be switched off by turning off the microwave, and a decoupling-free quantum computer is realized. The initialization is achieved with an optical pumping qubit initializer, which has a multilayered structure of the quantum spin chain and a semiconductor. Spin polarizations created by the optical pumping in the semiconducting layers are transferred to the spin chain layers through a cross polarization and a spin diffusion. The scheme allows us to separate the initialization process from the computation, enabling us to optimize the latter independently of the former.

  17. Edge states in twisted bilayer graphene: quantum spin Hall and electron-hole bilayers

    NASA Astrophysics Data System (ADS)

    Sanchez-Yamagishi, Javier D.; Luo, Jason; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    2015-03-01

    Twisted bilayer graphene offers a unique platform for studying 1d edge states in a bilayer 2-dimensional electron gas. Despite being spaced by only 0.34 nm, a large interlayer twist decouples the layers in the bulk, while opening the door for interesting interactions at the edges. To probe this physics, we study the electronic transport through quantum Hall edge modes in twisted bilayer graphene devices. Using dual electrostatic gates, we independently control the filling factor of each layer to form different combinations of bilayer edge states while measuring their conductance. The most dramatic transport effects are observed when the layers are doped to have edge states of opposite chiralities, resulting in coexisting electron- and hole-like states. We will present evidence that, in this regime, the twisted bilayer graphene can form a quantum spin Hall state where edge states in each layer counter-propagate in opposite directions with opposite spin polarizations. This bilayer realization offers a flexible system to study quantum spin Hall edge transport as well as to build more complex 1d circuits. We will also discuss the possibility for fractional generalizations of this edge physics and our measurements of the fractional QHE in twisted bilayer graphene.

  18. Spin-resolved quantum-dot resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Nick Vamivakas, A.; Zhao, Yong; Lu, Chao-Yang; Atatüre, Mete

    2009-03-01

    Confined spins in self-assembled semiconductor quantum dots promise to serve both as probes for studying mesoscopic physics in the solid state and as stationary qubits for quantum-information science. Moreover, the excitations of self-assembled quantum dots can interact with near-infrared photons, providing an interface between stationary and `flying' qubits. Here, we report the observation of spin-selective photon emission from a resonantly driven quantum-dot transition. The Mollow triplet in the scattered photon spectrum-the hallmark of resonance fluorescence when an optical transition is driven resonantly-is presented as a natural way to spectrally isolate the photons of interest from the original driving field. We also demonstrate that the relative frequencies of the two spin-tagged photon states can be tuned independent of an applied magnetic field through the spin-selective dynamic Stark effect, induced by the same driving laser. This demonstration should be a step towards the realization of challenging tasks such as electron-spin readout, heralded single-photon generation for linear-optics quantum computing and spin-photon entanglement.

  19. Spin-orbit twisted spin-flip waves in CdMnTe quantum wells

    NASA Astrophysics Data System (ADS)

    Karimi, Shahrzad; Perez, Florent; Baboux, Florent; D'Amico, Irene; Vignale, Giovanni; Ullrich, Carsten

    We present a numerical study of spin-flip wave dispersions in a spin-polarized electron gas in a dilute magnetic semiconductor heterostructure, using time-dependent density-functional response theory. The system under study is an n-doped CdMnTe quantum well with an in-plane magnetic field. Rashba and Dresselhaus spin-orbit coupling induces a wavevector-dependent spin splitting in the conduction bands. The spin waves hence travel through a spin-orbit twisted medium. We calculate the spin-wave dispersion to second order in spin-orbit coupling, including impurity scattering effects. Our results are compared with recent inelastic light scattering experiments. Work supported by by DOE Grant No. DE-FG02-05ER46213.

  20. Quantum control of spin-nematic squeezing in a dipolar spin-1 condensate.

    PubMed

    Huang, Yixiao; Xiong, Heng-Na; Yang, Yang; Hu, Zheng-Da; Xi, Zhengjun

    2017-02-24

    Versatile controllability of interactions and magnetic field in ultracold atomic gases ha now reached an era where spin mixing dynamics and spin-nematic squeezing can be studied. Recent experiments have realized spin-nematic squeezed vacuum and dynamic stabilization following a quench through a quantum phase transition. Here we propose a scheme for storage of maximal spin-nematic squeezing, with its squeezing angle maintained in a fixed direction, in a dipolar spin-1 condensate by applying a microwave pulse at a time that maximal squeezing occurs. The dynamic stabilization of the system is achieved by manipulating the external periodic microwave pulses. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is numerical simulated and agrees with a stability analysis. Moreover, the stability range coincides well with the spin-nematic vacuum squeezed region which indicates that the spin-nematic squeezed vacuum will never disappear as long as the spin dynamics are stabilized.

  1. Quantum nonunital dynamics of spin-bath-assisted Fisher information

    SciTech Connect

    Hao, Xiang Wu, Yinzhong

    2016-04-15

    The nonunital non-Markovian dynamics of qubits immersed in a spin bath is studied without any Markovian approximation. The environmental effects on the precisions of quantum parameter estimation are taken into account. The time-dependent transfer matrix and inhomogeneity vector are obtained for the description of the open dynamical process. The dynamical behaviour of one qubit coupled to a spin bath is geometrically described by the Bloch vector. It is found out that the nonunital non-Markovian effects can engender the improvement of the precision of quantum parameter estimation. This result contributes to the environment-assisted quantum information theory.

  2. Computer studies of multiple-quantum spin dynamics

    SciTech Connect

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.

  3. Nonequilibrium spin noise in a quantum dot ensemble

    NASA Astrophysics Data System (ADS)

    Smirnov, D. S.; Glasenapp, Ph.; Bergen, M.; Glazov, M. M.; Reuter, D.; Wieck, A. D.; Bayer, M.; Greilich, A.

    2017-06-01

    The spin noise in singly charged self-assembled quantum dots is studied theoretically and experimentally under the influence of a perturbation, provided by additional photoexcited charge carriers. The theoretical description takes into account generation and relaxation of charge carriers in the quantum dot system. The spin noise is measured under application of above barrier excitation for which the data are well reproduced by the developed model. Our analysis demonstrates a strong difference of the recharging dynamics for holes and electrons in quantum dots.

  4. Topological spin texture in a quantum anomalous Hall insulator.

    PubMed

    Wu, Jiansheng; Liu, Jie; Liu, Xiong-Jun

    2014-09-26

    The quantum anomalous Hall (QAH) effect has been recently discovered in an experiment using a thin-film topological insulator with ferromagnetic ordering and strong spin-orbit coupling. Here we investigate the spin degree of freedom of a QAH insulator and uncover the fundamental phenomenon that the edge states exhibit a topologically stable spin texture in the boundary when a chiral-like symmetry is present. This result shows that edge states are chiral in both the orbital and spin degrees of freedom, and the chiral edge spin texture corresponds to the bulk topological states of the QAH insulator. We also study the potential applications of the edge spin texture in designing topological-state-based spin devices, which might be applicable to future spintronic technologies.

  5. Coherence and control of single electron spins in quantum dots

    NASA Astrophysics Data System (ADS)

    Vandersypen, Lieven

    2008-03-01

    Following our earlier work on single-shot read-out and relaxation of a single spin in a quantum dot, we now demonstrate coherent control of a single spin (detection is done using a second spin in a neighbouring dot). First, we manipulate the spin using conventional magnetic resonance. Next, we show that we can also rotate the spin using electric fields instead of magnetic fields. In both cases, 90 rotations can be realized in about 50 ns or less. We use these control techniques to probe decoherence of an isolated electron spin. The spin dephases in about 30 ns, due to the hyperfine interaction with the uncontrolled nuclear spin bath in the host material of the dot. However, since the nuclear spin dynamics is very slow, this dephasing can be largely reversed using a spin-echo pulse. Echo decay times of about 0.5 us are obtained at 70 mT. In parallel, we have started work on quantum dots in graphene, which is expected to offer superior coherence times. As a first step, we have succeeded in opening a bandgap in bilayer graphene, necessary for electrostatic confinement of carriers. F.H.L. Koppens et al., Nature 446, 56 (2006). K.C. Nowack et al., Science Express, 1 Nov 2007. F.H.L. Koppens et al., arXiv:0711.0479. J.B. Oostinga, Nature Mat., in press.

  6. Ambient nanoscale sensing with single spins using quantum decoherence

    NASA Astrophysics Data System (ADS)

    McGuinness, L. P.; Hall, L. T.; Stacey, A.; Simpson, D. A.; Hill, C. D.; Cole, J. H.; Ganesan, K.; Gibson, B. C.; Prawer, S.; Mulvaney, P.; Jelezko, F.; Wrachtrup, J.; Scholten, R. E.; Hollenberg, L. C. L.

    2013-07-01

    Magnetic resonance detection is one of the most important tools used in life-sciences today. However, as the technique detects the magnetization of large ensembles of spins it is fundamentally limited in spatial resolution to mesoscopic scales. Here we detect the natural fluctuations of nanoscale spin ensembles at ambient temperatures by measuring the decoherence rate of a single quantum spin in response to introduced extrinsic target spins. In our experiments 45 nm nanodiamonds with single nitrogen-vacancy (NV) spins were immersed in solution containing spin 5/2 Mn2+ ions and the NV decoherence rate measured though optically detected magnetic resonance. The presence of both freely moving and accreted Mn spins in solution were detected via significant changes in measured NV decoherence rates. Analysis of the data using a quantum cluster expansion treatment of the NV-target system found the measurements to be consistent with the detection of 2500 motionally diffusing Mn spins over an effective volume of (16 nm)3 in 4.2 s, representing a reduction in target ensemble size and acquisition time of several orders of magnitude over conventional, magnetic induction approaches to electron spin resonance detection. These measurements provide the basis for the detection of nanovolume spins in solution, such as in the internal compartments of living cells, and are directly applicable to scanning probe architectures.

  7. Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators

    SciTech Connect

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    2016-08-24

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.

  8. Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators

    DOE PAGES

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    2016-08-24

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less

  9. Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators

    PubMed Central

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    2016-01-01

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516

  10. The Fock space of loopy spin networks for quantum gravity

    NASA Astrophysics Data System (ADS)

    Charles, Christoph; Livine, Etera R.

    2016-08-01

    In the context of the coarse-graining of loop quantum gravity, we introduce loopy and tagged spin networks, which generalize the standard spin network states to account explicitly for non-trivial curvature and torsion. Both structures relax the closure constraints imposed at the spin network vertices. While tagged spin networks merely carry an extra spin at every vertex encoding the overall closure defect, loopy spin networks allow for an arbitrary number of loops attached to each vertex. These little loops can be interpreted as local excitations of the quantum gravitational field and we discuss the statistics to endow them with. The resulting Fock space of loopy spin networks realizes new truncation of loop quantum gravity, allowing to formulate its graph-changing dynamics on a fixed background graph plus local degrees of freedom attached to the graph nodes. This provides a framework for re-introducing a non-trivial background quantum geometry around which we would study the effective dynamics of perturbations. We study how to implement the dynamics of topological BF theory in this framework. We realize the projection on flat connections through holonomy constraints and we pay special attention to their often overlooked non-trivial flat solutions defined by higher derivatives of the δ -distribution.

  11. Pauli spin blockade in CMOS double quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kotekar-Patil, D.; Corna, A.; Maurand, R.; Crippa, A.; Orlov, A.; Barraud, S.; Hutin, L.; Vinet, M.; Jehl, X.; De Franceschi, S.; Sanquer, M.

    2017-03-01

    Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport experiments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.

  12. Spin-dependent quantum interference in photoemission process from spin-orbit coupled states.

    PubMed

    Yaji, Koichiro; Kuroda, Kenta; Toyohisa, Sogen; Harasawa, Ayumi; Ishida, Yukiaki; Watanabe, Shuntaro; Chen, Chuangtian; Kobayashi, Katsuyoshi; Komori, Fumio; Shin, Shik

    2017-02-24

    Spin-orbit interaction entangles the orbitals with the different spins. The spin-orbital-entangled states were discovered in surface states of topological insulators. However, the spin-orbital-entanglement is not specialized in the topological surface states. Here, we show the spin-orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin-orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin-orbit interaction.

  13. Spin-dependent quantum interference in photoemission process from spin-orbit coupled states

    NASA Astrophysics Data System (ADS)

    Yaji, Koichiro; Kuroda, Kenta; Toyohisa, Sogen; Harasawa, Ayumi; Ishida, Yukiaki; Watanabe, Shuntaro; Chen, Chuangtian; Kobayashi, Katsuyoshi; Komori, Fumio; Shin, Shik

    2017-02-01

    Spin-orbit interaction entangles the orbitals with the different spins. The spin-orbital-entangled states were discovered in surface states of topological insulators. However, the spin-orbital-entanglement is not specialized in the topological surface states. Here, we show the spin-orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin-orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin-orbit interaction.

  14. Force on a slow moving impurity due to thermal and quantum fluctuations in a 1D Bose-Einstein condensate

    SciTech Connect

    Roberts, David; Sykes, Andrew

    2009-01-01

    We study the drag force acting on an impurity moving through a 1D Bose-Einstein condensate in the presence of both quantum and thermal fluctuations. We are able to find exact analytical solutions of the partial differential equations to the level of the Bogoliubov approximation. At zero temperature, we find a nonzero force is exerted on the impurity at subcritical velocities, due to the scattering of quantum fluctuations. We make the following explicit assumptions: far from the impurity the system is in a quantum state given by that of a zero (or finite) temperature Bose-Einstein condensate, and the scattering process generates only causally related reflection/transmission. The results raise unanswered questions in the quantum dynamics associated with the formation of persistent currents.

  15. Velocity-dependent quantum phase slips in 1D atomic superfluids

    PubMed Central

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D’Errico, Chiara

    2016-01-01

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips. PMID:27188334

  16. Designing defect spins for wafer-scale quantum technologies

    SciTech Connect

    Koehl, William F.; Seo, Hosung; Galli, Giulia; Awschalom, David D.

    2015-11-27

    The past decade has seen remarkable progress in the development of the nitrogen-vacancy (NV) defect center in diamond, which is one of the leading candidates for quantum information technologies. The success of the NV center as a solid-state qubit has stimulated an active search for similar defect spins in other technologically important and mature semiconductors, such as silicon carbide. If successfully combined with the advanced microfabrication techniques available to such materials, coherent quantum control of defect spins could potentially lead to semiconductor-based, wafer-scale quantum technologies that make use of exotic quantum mechanical phenomena like entanglement. In this article, we describe the robust spin property of the NV center and the current status of NV center research for quantum information technologies. We then outline first-principles computational modeling techniques based on density functional theory to efficiently search for potential spin defects in nondiamond hosts suitable for quantum information applications. The combination of computational modeling and experimentation has proven invaluable in this area, and we describe the successful interplay between theory and experiment achieved with the divacancy spin qubit in silicon carbide.

  17. Quantum metrology with spin cat states under dissipation.

    PubMed

    Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong

    2015-12-09

    Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.

  18. Quantum metrology with spin cat states under dissipation

    NASA Astrophysics Data System (ADS)

    Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong

    2015-12-01

    Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.

  19. Quantum metrology with spin cat states under dissipation

    PubMed Central

    Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong

    2015-01-01

    Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms. PMID:26647821

  20. Simulating electron spin entanglement in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Rodriguez-Moreno, M. A.; Hernandez de La Luz, A. D.; Meza-Montes, Lilia

    2011-03-01

    One of the biggest advantages of having a working quantum-computing device when compared with a classical one, is the exponential speedup of calculations. This exponential increase is based on the ability of a quantum system to create and operate on entangled states. In order to study theoretically the entanglement between two electron spins, we simulate the dynamics of two electron spins in an electrostatically-defined double quantum dot with a finite barrier height between the dots. Electrons are initially confined to separated quantum dots. Barrier height is varied and the spin entanglement as a function of this variation is investigated. The evolution of the system is simulated by using a numerical approach for solving the time-dependent Schrödinger equation for two particles. Partially supported by VIEP-BUAP.

  1. Quantum dot spin coherence governed by a strained nuclear environment

    PubMed Central

    Stockill, R.; Le Gall, C.; Matthiesen, C.; Huthmacher, L.; Clarke, E.; Hugues, M.; Atatüre, M.

    2016-01-01

    The interaction between a confined electron and the nuclei of an optically active quantum dot provides a uniquely rich manifestation of the central spin problem. Coherent qubit control combines with an ultrafast spin–photon interface to make these confined spins attractive candidates for quantum optical networks. Reaching the full potential of spin coherence has been hindered by the lack of knowledge of the key irreversible environment dynamics. Through all-optical Hahn echo decoupling we now recover the intrinsic coherence time set by the interaction with the inhomogeneously strained nuclear bath. The high-frequency nuclear dynamics are directly imprinted on the electron spin coherence, resulting in a dramatic jump of coherence times from few tens of nanoseconds to the microsecond regime between 2 and 3 T magnetic field and an exponential decay of coherence at high fields. These results reveal spin coherence can be improved by applying large magnetic fields and reducing strain inhomogeneity. PMID:27615704

  2. Electron-Nuclear Spin Transfer in Triple Quantum Dot Networks

    NASA Astrophysics Data System (ADS)

    Prada, Marta; Toonen, Ryan; Harrison, Paul

    2005-03-01

    We investigate the conductance spectra of coupled quantum dots to study systematically the nuclear spin relaxation of delta- and y-junction networks and observe spin blockade dependence on the electronic configurations. We derive the conductance using the Beenakker approach generalised to an array of quantum dots where we consider the nuclear spin transfer to electrons by hyperfine coupling. This allows us to predict the relevant memory effects on the different electronic states by studying the evolution of the single electron resonances in presence of nuclear spin relaxation. We find that the gradual depolarisation of the nuclear system is imprinted in the conductance spectra of the multidot system. Our calculations of the temporal evolution of the conductance resonance reveal that spin blockade can be lifted by hyperfine coupling.

  3. Interaction-driven exotic quantum phases in spin-orbit-coupled spin-1 bosons

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Natu, Stefan S.; Spielman, I. B.; Das Sarma, S.

    2016-02-01

    We study the interplay between large-spin, spin-orbit coupling, and superfluidity for bosons in a two-dimensional optical lattice, focusing on the spin-1 spin-orbit-coupled system recently realized at the Joint Quantum Institute [Campbell et al., arXiv:1501.05984]. We find a rich quantum phase diagram where, in addition to the conventional phases—superfluid and insulator—contained in the spin-1 Bose-Hubbard model, there are new lattice symmetry breaking phases. For weak interactions, the interplay between two length scales, the lattice momentum and the spin-orbit wave vector, induce a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone at a nonzero spin-orbit strength. This state is characterized by spin-density-wave order, which arises from the spin-1 nature of the system. Interactions suppress spin-density-wave order, and favor a superfluid only at the Brillouin zone edge. This state has spatially oscillating mean-field order parameters, but a homogeneous density. We show that the spin-density-wave superfluid phase survives in a two-dimensional harmonic trap, and thus establish that our results are directly applicable to experiments on 87Rb,7Li, and 41K.

  4. Quantum Spin Baths Induced Transition of Decoherence and Entanglement

    SciTech Connect

    Chen Pochung; Lai Chengyan; Hung, J.-T.; Mou Chungyu

    2008-11-07

    We investigate the reduced dynamics of single or two qubits coupled to an interacting quantum spin bath modeled by a XXZ spin chain. By using the method of time-dependent density matrix renormalization group (t-DMRG), we evaluate nonperturbatively the induced decoherence and entanglement. We find that the behavior of both decoherence and entanglement strongly depend on the phase of the underlying spin bath. We show that spin baths can induce entanglement for an initially disentangled pair of qubits. We observe that entanglement sudden death only occurs in paramagnetic phase and discuss the effect of the coupling range.

  5. Reply to ``Comment on `Spin and statistics in nonrelativistic quantum mechanics: The spin-zero case' ''

    NASA Astrophysics Data System (ADS)

    Peshkin, Murray

    2003-10-01

    The preceding Comment states that I have assumed the conclusion in my proof from nonrelativistic quantum mechanics that spin-zero particles must be bosons, and that the theory presented is different from standard quantum mechanics. I show here that neither of those statements is true.

  6. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  7. Spin Nematics, Valence-Bond Solids, and Spin Liquids in SO(N) Quantum Spin Models on the Triangular Lattice.

    PubMed

    Kaul, Ribhu K

    2015-10-09

    We introduce a simple model of SO(N) spins with two-site interactions which is amenable to quantum Monte Carlo studies without a sign problem on nonbipartite lattices. We present numerical results for this model on the two-dimensional triangular lattice where we find evidence for a spin nematic at small N, a valence-bond solid at large N, and a quantum spin liquid at intermediate N. By the introduction of a sign-free four-site interaction, we uncover a rich phase diagram with evidence for both first-order and exotic continuous phase transitions.

  8. Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2013-09-01

    In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called

  9. Quantum information processing with electronic and nuclear spins in semiconductors

    NASA Astrophysics Data System (ADS)

    Klimov, Paul Victor

    Traditional electronic and communication devices operate by processing binary information encoded as bits. Such digital devices have led to the most advanced technologies that we encounter in our everyday lives and they influence virtually every aspect of our society. Nonetheless, there exists a much richer way to encode and process information. By encoding information in quantum mechanical states as qubits, phenomena such as coherence and entanglement can be harnessed to execute tasks that are intractable to digital devices. Under this paradigm, it should be possible to realize quantum computers, quantum communication networks and quantum sensors that outperform their classical counterparts. The electronic spin states of color-center defects in the semiconductor silicon carbide have recently emerged as promising qubit candidates. They have long-lived quantum coherence up to room temperature, they can be controlled with mature magnetic resonance techniques, and they have a built-in optical interface operating near the telecommunication bands. In this thesis I will present two of our contributions to this field. The first is the electric-field control of electron spin qubits. This development lays foundation for quantum electronics that operate via electrical gating, much like traditional electronics. The second is the universal control and entanglement of electron and nuclear spin qubits in an ensemble under ambient conditions. This development lays foundation for quantum devices that have a built-in redundancy and can operate in real-world conditions. Both developments represent important steps towards practical quantum devices in an electronic grade material.

  10. Quantum and semi-classical transport in RTDs using NEMO 1-D

    NASA Technical Reports Server (NTRS)

    Klimeck, G.; Stout, P.; Bowen, R. C.

    2003-01-01

    NEMO 1-D has been developed primarily for the simulation of resonant tunneling diodes, and quantitative and predictive agreements with experimental high performance, high current density devices have been achieved in the past.

  11. Quantum and semi-classical transport in RTDs using NEMO 1-D

    NASA Technical Reports Server (NTRS)

    Klimeck, G.; Stout, P.; Bowen, R. C.

    2003-01-01

    NEMO 1-D has been developed primarily for the simulation of resonant tunneling diodes, and quantitative and predictive agreements with experimental high performance, high current density devices have been achieved in the past.

  12. Quantum and classical correlations in electron-nuclear spin echo

    SciTech Connect

    Zobov, V. E.

    2014-11-15

    The quantum properties of dynamic correlations in a system of an electron spin surrounded by nuclear spins under the conditions of free induction decay and electron spin echo have been studied. Analytical results for the time evolution of mutual information, classical part of correlations, and quantum part characterized by quantum discord have been obtained within the central-spin model in the high-temperature approximation. The same formulas describe discord in both free induction decay and spin echo although the time and magnetic field dependences are different because of difference in the parameters entering into the formulas. Changes in discord in the presence of the nuclear polarization β{sub I} in addition to the electron polarization β{sub S} have been calculated. It has been shown that the method of reduction of the density matrix to a two-spin electron-nuclear system provides a qualitatively correct description of pair correlations playing the main role at β{sub S} ≈ β{sub I} and small times. At large times, such correlations decay and multispin correlations ensuring nonzero mutual information and zero quantum discord become dominant.

  13. Quantum dust magnetosonic waves with spin and exchange correlation effects

    SciTech Connect

    Maroof, R.; Qamar, A.; Mushtaq, A.

    2016-01-15

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.)

  14. Quantum dust magnetosonic waves with spin and exchange correlation effects

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Mushtaq, A.; Qamar, A.

    2016-01-01

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).

  15. Physical optimization of quantum error correction circuits with spatially separated quantum dot spins.

    PubMed

    Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2013-05-20

    We propose an efficient protocol for optimizing the physical implementation of three-qubit quantum error correction with spatially separated quantum dot spins via virtual-photon-induced process. In the protocol, each quantum dot is trapped in an individual cavity and each two cavities are connected by an optical fiber. We propose the optimal quantum circuits and describe the physical implementation for correcting both the bit flip and phase flip errors by applying a series of one-bit unitary rotation gates and two-bit quantum iSWAP gates that are produced by the long-range interaction between two distributed quantum dot spins mediated by the vacuum fields of the fiber and cavity. The protocol opens promising perspectives for long distance quantum communication and distributed quantum computation networks.

  16. Intrinsic Spin Hall Effect Induced by Quantum Phase Transition in HgCdTe Quantum Wells

    SciTech Connect

    Yang, Wen; Chang, Kai; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    Spin Hall effect can be induced both by the extrinsic impurity scattering and by the intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. This difference gives a direct mechanism to experimentally distinguish the intrinsic spin Hall effect from the extrinsic one.

  17. Spin-dependent quantum transport in nanoscaled geometries

    NASA Astrophysics Data System (ADS)

    Heremans, Jean J.

    2011-10-01

    We discuss experiments where the spin degree of freedom leads to quantum interference phenomena in the solid-state. Under spin-orbit interactions (SOI), spin rotation modifies weak-localization to weak anti-localization (WAL). WAL's sensitivity to spin- and phase coherence leads to its use in determining the spin coherence lengths Ls in materials, of importance moreover in spintronics. Using WAL we measure the dependence of Ls on the wire width w in narrow nanolithographic ballistic InSb wires, ballistic InAs wires, and diffusive Bi wires with surface states with Rashba-like SOI. In all three systems we find that Ls increases with decreasing w. While theory predicts the increase for diffusive wires with linear (Rashba) SOI, we experimentally conclude that the increase in Ls under dimensional confinement may be more universal, with consequences for various applications. Further, in mesoscopic ring geometries on an InAs/AlGaSb 2D electron system (2DES) we observe both Aharonov-Bohm oscillations due to spatial quantum interference, and Altshuler-Aronov-Spivak oscillations due to time-reversed paths. A transport formalism describing quantum coherent networks including ballistic transport and SOI allows a comparison of spin- and phase coherence lengths extracted for such spatial- and temporal-loop quantum interference phenomena. We further applied WAL to study the magnetic interactions between a 2DES at the surface of InAs and local magnetic moments on the surface from rare earth (RE) ions (Gd3+, Ho3+, and Sm3+). The magnetic spin-flip rate carries information about magnetic interactions. Results indicate that the heavy RE ions increase the SOI scattering rate and the spin-flip rate, the latter indicating magnetic interactions. Moreover Ho3+ on InAs yields a spin-flip rate with an unusual power 1/2 temperature dependence, possibly characteristic of a Kondo system. We acknowledge funding from DOE (DE-FG02-08ER46532).

  18. Spin effects in perturbative quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.; Lepage, G.P.

    1980-12-01

    The spin dependence of large momentum transfer exclusive and inclusive reactions can be used to test the gluon spin and other basic elements of QCD. In particular, exclusive processes including hadronic decays of heavy quark resonances have the potential of isolating QCD hard scattering subprocesses in situations where the helicities of all the interacting constituents are controlled. The predictions can be summarized in terms of QCD spin selection rules. The calculation of magnetic moment and other hadronic properties in QCD are mentioned.

  19. Quantum spin-Hall effect and topologically invariant Chern numbers.

    PubMed

    Sheng, D N; Weng, Z Y; Sheng, L; Haldane, F D M

    2006-07-21

    We present a topological description of the quantum spin-Hall effect (QSHE) in a two-dimensional electron system on a honeycomb lattice with both intrinsic and Rashba spin-orbit couplings. We show that the topology of the band insulator can be characterized by a 2 x 2 matrix of first Chern integers. The nontrivial QSHE phase is identified by the nonzero diagonal matrix elements of the Chern number matrix (CNM). A spin Chern number is derived from the CNM, which is conserved in the presence of finite disorder scattering and spin nonconserving Rashba coupling. By using the Laughlin gedanken experiment, we numerically calculate the spin polarization and spin transfer rate of the conducting edge states and determine a phase diagram for the QSHE.

  20. Quantum engineering of spin and anisotropy in magnetic molecular junctions

    PubMed Central

    Jacobson, Peter; Herden, Tobias; Muenks, Matthias; Laskin, Gennadii; Brovko, Oleg; Stepanyuk, Valeri; Ternes, Markus; Kern, Klaus

    2015-01-01

    Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy. PMID:26456084

  1. New Hamiltonians for loop quantum cosmology with arbitrary spin representations

    NASA Astrophysics Data System (ADS)

    Ben Achour, Jibril; Brahma, Suddhasattwa; Geiller, Marc

    2017-04-01

    In loop quantum cosmology, one has to make a choice of SU(2) irreducible representation in which to compute holonomies and regularize the curvature of the connection. The systematic choice made in the literature is to work in the fundamental representation, and very little is known about the physics associated with higher spin labels. This constitutes an ambiguity of which the understanding, we believe, is fundamental for connecting loop quantum cosmology to full theories of quantum gravity like loop quantum gravity, its spin foam formulation, or cosmological group field theory. We take a step in this direction by providing here a new closed formula for the Hamiltonian of flat Friedmann-Lemaître-Robertson-Walker models regularized in a representation of arbitrary spin. This expression is furthermore polynomial in the basic variables which correspond to well-defined operators in the quantum theory, takes into account the so-called inverse-volume corrections, and treats in a unified way two different regularization schemes for the curvature. After studying the effective classical dynamics corresponding to single and multiple-spin Hamiltonians, we study the behavior of the critical density when the number of representations is increased and the stability of the difference equations in the quantum theory.

  2. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model.

    PubMed

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-07

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  3. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model

    NASA Astrophysics Data System (ADS)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-01

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  4. 1D versus 3D quantum confinement in 1-5 nm ZnO nanoparticle agglomerations for application in charge-trapping memory devices

    NASA Astrophysics Data System (ADS)

    El-Atab, Nazek; Nayfeh, Ammar

    2016-07-01

    ZnO nanoparticles (NPs) have attracted considerable interest from industry and researchers due to their excellent properties with applications in optoelectronic devices, sunscreens, photocatalysts, sensors, biomedical sciences, etc. However, the agglomeration of NPs is considered to be a limiting factor since it can affect the desirable physical and electronic properties of the NPs. In this work, 1-5 nm ZnO NPs deposited by spin- and dip-coating techniques are studied. The electronic and physical properties of the resulting agglomerations of NPs are studied using UV-vis-NIR spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM), and their application in metal-oxide-semiconductor (MOS) memory devices is analyzed. The results show that both dip- and spin-coating techniques lead to agglomerations of the NPs mostly in the horizontal direction. However, the width of the ZnO clusters is larger with dip-coating which leads to 1D quantum confinement, while the smaller ZnO clusters obtained by spin-coating enable 3D quantum confinement in ZnO. The ZnO NPs are used as the charge-trapping layer of a MOS-memory structure and the analysis of the high-frequency C-V measurements allow further understanding of the electronic properties of the ZnO agglomerations. A large memory window is achieved in both devices which confirms that ZnO NPs provide large charge-trapping density. In addition, ZnO confined in 3D allows for a larger memory window at lower operating voltages due to the Poole-Frenkel charge-emission mechanism.

  5. Control and manipulation of quantum spin switching and spin correlations in [Tb2] molecular magnet under a pulse magnetic field

    NASA Astrophysics Data System (ADS)

    Farberovich, Oleg V.; Bazhanov, Dmitry I.

    2017-10-01

    A general study of [Tb2] molecular magnet is presented using the general spin Hamiltonian formalism. A spin-spin correlators determined for a spin wave functions in [Tb2] are analyzed numerically and compared in details with the results obtained by means of conventional quantum mechanics. It is shown that the various expectation values of the spin operators and a study of their corresponding probability distributions allow to have a novel understanding in spin dynamics of entangled qubits in quantum [Tb2] system. The obtained results reveal that the properties of spin-spin correlators are responsible for the entanglement of the spin qubit under a pulse magnetic field. It allows us to present some quantum circuits determined for quantum computing within SSNQ based on [Tb2] molecule, including the CNOT and SWAP gates.

  6. Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W.; Glazman, Leonid I.; von Oppen, Felix

    2016-12-01

    We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2 π . This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8 π -periodic (or Z4) fractional Josephson effect in the context of recent experiments.

  7. Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions.

    PubMed

    Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W; Glazman, Leonid I; von Oppen, Felix

    2016-12-23

    We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8π-periodic (or Z_{4}) fractional Josephson effect in the context of recent experiments.

  8. Pure dephasing of single Mn spin in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Dingyang; Lai, Wenxi; Yang, Wen

    2017-08-01

    We present comprehensive analytical and numerical studies on the pure dephasing of a single Mn spin in a semiconductor quantum dot due to (i) its sp-d exchange interaction with an electronic environment, and (ii) its hyperfine interaction with the nuclear spin environment. For (i), by modeling the electronic environment by an open two-level system, we provide exact analytical expressions and present detailed analysis for the Mn spin pure dephasing in both the Markovian and non-Markovian regimes. This provides a clear physical picture and a general theoretical framework based on which we estimate the Mn spin pure dephasing due to various fluctuations (such as thermal excitation, optical pumping, tunneling, or electron/hole spin relaxation) of the electronic environment and reveals a series of interesting behaviors, such as thermal, optical, and electrical control of the crossover between the Markov and non-Markov regimes. In particular, we find rapid Mn spin pure dephasing on a nanosecond time scale by the thermal fluctuation and optical pumping, but these mechanisms can be strongly suppressed by shifting the electron envelope function relative to the Mn atom with an external electric field through the quantum-confined Stark effect. The thermal fluctuation mechanism is also exponentially suppressed at low temperature. For (ii), we find that the Mn spin dephasing time is limited by the thermal fluctuation of the nuclear spins to a few microseconds even at low temperature and its value varies from sample to sample, depending on the distribution of spinful isotopes on the nearest-neighbor sites surrounding the substitutional Mn atom. Our findings may be useful to understand and suppress the Mn spin pure dephasing for its applications in quantum information processing.

  9. Nuclear inelastic scattering of 1D polymeric Fe(II) complexes of 1,2,4-aminotriazole in their high-spin and low-spin state

    NASA Astrophysics Data System (ADS)

    Wolny, Juliusz A.; Rackwitz, Sergej; Achterhold, Klaus; Muffler, Kai; Schünemann, Volker

    2012-03-01

    The vibrational properties of Fe(II) 1D spin crossover polymers have been characterized by nuclear inelastic scattering (NIS). The complexes under study were the tosylate and perchlorate salts of ([Fe(4-amino-1,2,4-triazole)3]^{+2})_n complexes. The complexes have LS (S = 0) marker bands in the range of 300-500 cm - 1, while the marker bands corresponding to the HS (S = 2) state are detected between 200 cm - 1 and 300 cm - 1, in line with the decreasing Fe-N bond strengths during the transition from LS to HS. Accompanying DFT calculations using the functional B3LYP and the basis set CEP-31G confirm these assignments.

  10. Spin and Chiral Orderings of Frustrated Quantum Spin Chains

    NASA Astrophysics Data System (ADS)

    Kaburagi, Makoto; Kawamura, Hikaru; Hikihara, Toshiya

    1999-10-01

    The ordering offrustrated S=1/2 and 1 XY and Heisenberg spin chains with the competing nearest- and next-nearest-neighbor antiferromagneticcouplings is studied by the exact diagonalization and density-matrix renormalization-group methods. It is found that theS=1 XY chain exhibits both gapless and gapped `chiral' phases characterizedby the spontaneous breaking of parity, in which thelong-range order parameter is a chirality, κi=SixSi+1y-SiySi+1x, whereas the spin correlation decays either algebraically or exponentially. Such chiral phases are not realized in the S=1/2 XY chainor in the Heisenberg chains.

  11. Quantum states of dark solitons in the 1D Bose gas

    NASA Astrophysics Data System (ADS)

    Sato, Jun; Kanamoto, Rina; Kaminishi, Eriko; Deguchi, Tetsuo

    2016-07-01

    We present a series of quantum states that are characterized by dark solitons of the nonlinear Schrödinger equation (i.e. the Gross-Pitaevskii equation) for the one-dimensional Bose gas interacting through the repulsive delta-function potentials. The classical solutions satisfy the periodic boundary conditions and we simply call them classical dark solitons. Through exact solutions we show corresponding aspects between the states and the solitons in the weak coupling case: the quantum and classical density profiles completely overlap with each other not only at an initial time but also at later times over a long period of time, and they move together with the same speed in time; the matrix element of the bosonic field operator between the quantum states has exactly the same profiles of the square amplitude and the phase as the classical complex scalar field of a classical dark soliton not only at the initial time but also at later times, and the corresponding profiles move together for a long period of time. We suggest that the corresponding properties hold rigorously in the weak coupling limit. Furthermore, we argue that the lifetime of the dark soliton-like density profile in the quantum state becomes infinitely long as the coupling constant approaches zero, by comparing it with the quantum speed limit time. Thus, we call the quantum states quantum dark soliton states.

  12. Topological insulators in silicene: Quantum hall, quantum spin hall and quantum anomalous hall effects

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko

    2013-12-01

    Silicene is a monolayer of silicon atoms forming a two-dimensional honeycomb lattice, which shares almost every remarkable property with graphene. The low energy dynamics is described by Dirac electrons, but they are massive due to relatively large spin-orbit interactions. I will explain the following properties of silicene: 1) The band structure is controllable by applying an electric field. 2) Silicene undergoes a phase transition from a topological insulator to a band insulator by applying external electric field. 3) The topological phase transition can be detected experimentally by way of diamagnetism. 4) There is a novel valley-spin selection rules revealed by way of photon absorption. 5) Silicene yields a remarkably many phases such as quantum anomalous Hall phase and valley polarized metal when the exchange field is additionally introduced. 6) A silicon nanotubes can be used to convey spin currents under an electric field.

  13. Spin-Orbit Coupling in Quantum Dot Cell Arrays

    NASA Astrophysics Data System (ADS)

    Fernando, Rojas; Francisco, Mireles; Ernesto, Cota; Ulloa, Sergio E.

    2002-03-01

    We investigate the role of spin-orbit interaction on the energy spectra, charge and spin configurations of a planar semiconductor quantum dot cell array in a square geometry. The quantum dot array is assumed to be formed by electrical gate confinement, for instance, of a two dimensional electron gas on a semiconductor heterojunction. Hence, it is expected that while tunneling between neighboring dots, the hopping electron will couple its spin with its orbital degree of freedom, due to the interfacial electric fields defining the structure. The spin-orbit (Rashba-like) coupling effect is modelled in a tight-binding formalism with nearest-neighbor spin-dependent interactions. An extended Hubbard Hamiltonian is used to describe the electrons in each cell (with an excess of two electrons per cell), taking into account intra- and inter-cell Coulomb interactions, as well as intra-cell tunneling. We present results for the energy spectrum as a function of the relevant parameters in the cell: tunneling amplitude, spin-orbit coupling t_SO, and dot size imperfections. We find that a number of spin-degeneracies are broken with increasing t_SO. The charge- and spin-polarizations in the cell in the presence of a driver, as well as the interplay between cells will be discussed for different system parameters.

  14. Spontaneous emission and optical control of spins in quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.

    Quantum dots are attractive due to their potential technological applications and the opportunity they provide for study of fundamental physics in the mesoscopic scale. This dissertation studies optically controlled spins in quantum dots in connection to quantum information processing. The physical realization of the quantum bit (qubit) consists of the two spin states of an extra electron confined in a quantum dot. Spin rotations are performed optically, by use of an intermediate charged exciton (trion) state. The two spin states and the trion form a Λ-type system. The merits of this system for quantum information processing include integrability into a solid-state device, long spin coherence time, and fast and focused optical control. In this dissertation, we study the optical decay mechanisms of the trion state in the quantum dot. Using a master-equation approach, we derive microscopically the optical decay of the three-level system and find a novel term, the so-called spontaneously generated coherence (SGC). The latter, though predicted more than a decade ago for atomic Λ-systems satisfying certain conditions, had not been detected yet in any system. We found that in quantum dots, these conditions can be satisfied. We present the experiment which, in collaboration with our theory, constituted the first measurement of SGC. We establish the unification of SGC, polarization entanglement, and two-pathway decay. By keeping track of the spontaneously emitted photon dynamics, we find the conditions on the couplings that determine which effect will take place. We have thus placed SGC in a more quantum informational framework, characterizing it as lack of entanglement between the emitted photon and the three-level system. We develop a theory of ultrafast optical single-qubit rotations by use of 2pi pulses, which have the two-fold advantage of minimal trion excitation and negligible spin precession. The analytically solvable hyperbolic secant pulses of Rosen and Zener

  15. Robust Quantum State Transfer in Random Unpolarized Spin Chains

    NASA Astrophysics Data System (ADS)

    Yao, N. Y.; Jiang, L.; Gorshkov, A. V.; Gong, Z.-X.; Zhai, A.; Duan, L.-M.; Lukin, M. D.

    2011-01-01

    We propose and analyze a new approach for quantum state transfer between remote spin qubits. Specifically, we demonstrate that coherent quantum coupling between remote qubits can be achieved via certain classes of random, unpolarized (infinite temperature) spin chains. Our method is robust to coupling-strength disorder and does not require manipulation or control over individual spins. In principle, it can be used to attain perfect state transfer over an arbitrarily long range via purely Hamiltonian evolution and may be particularly applicable in a solid-state quantum information processor. As an example, we demonstrate that it can be used to attain strong coherent coupling between nitrogen-vacancy centers separated by micrometer distances at room temperature. Realistic imperfections and decoherence effects are analyzed.

  16. Quantum and tunneling capacitance in charge and spin qubits

    NASA Astrophysics Data System (ADS)

    Mizuta, R.; Otxoa, R. M.; Betz, A. C.; Gonzalez-Zalba, M. F.

    2017-01-01

    We present a theoretical analysis of the capacitance of a double quantum dot in the charge and spin qubit configurations probed at high frequencies. We find that, in general, the total capacitance of the system consists of two state-dependent terms: the quantum capacitance arising from adiabatic charge motion and the tunneling capacitance that appears when repopulation occurs at a rate comparable or faster than the probing frequency. The analysis of the capacitance lineshape as a function of externally controllable variables offers a way to characterize the qubits' charge and spin state as well as relevant system parameters such as charge and spin relaxation rates, tunnel coupling, electron temperature, and electron g factor. Overall, our analysis provides a formalism to understand dispersive qubit-resonator interactions which can be applied to high-sensitivity and noninvasive quantum-state readout.

  17. Propagation of nonclassical correlations across a quantum spin chain

    SciTech Connect

    Campbell, S.; Apollaro, T. J. G.; Di Franco, C.; Banchi, L.; Cuccoli, A.; Vaia, R.; Plastina, F.; Paternostro, M.

    2011-11-15

    We study the transport of quantum correlations across a chain of interacting spin-1/2 particles. As a quantitative figure of merit, we choose a symmetric version of quantum discord and compare it with the transported entanglement, addressing various operating regimes of the spin medium. Discord turns out to be better transported for a wide range of working points and initial conditions of the system. We relate this behavior to the efficiency of propagation of a single excitation across the spin chain. Moreover, we point out the role played by a magnetic field in the dynamics of discord in the effective channel embodied by the chain. Our analysis can be interestingly extended to transport processes in more complex networks and the study of nonclassical correlations under general quantum channels.

  18. Long-range interactions in antiferromagnetic quantum spin chains

    NASA Astrophysics Data System (ADS)

    Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.

    2017-08-01

    We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.

  19. Tunable Few-Electron Quantum Dots as Spin Qubits

    NASA Astrophysics Data System (ADS)

    Elzerman, Jeroen; Hanson, Ronald; Greidanus, Jacob; Willems van Beveren, Laurens; de Franceschi, Silvano; Vandersypen, Lieven; Tarucha, Seigo; Kouwenhoven, Leo

    2003-03-01

    Recently it was proposed to make a quantum bit using the spin of an electron in a quantum dot. We present the first experimental steps towards realizing a system of two coupled qubits. The Zeeman splitting between the two spin states defining the qubit is measured for a one-electron dot in a parallel magnetic field. For a two-electron dot, we control the spin singlet-triplet energy difference with a perpendicular magnetic field, and we induce a transition from singlet to triplet ground state. We find relaxation from triplet to singlet to be extremely slow (> 1 mus), which is promising for quantum computing. We couple two few-electron dots, creating the first fully tunable few-electron double dot. Its charge configuration can be read out with a nearby QPC acting as an integrated charge detector.

  20. Spin transport for a quantum wire with coexistence of Rashba and Dresselhaus spin-orbit coupling in quantum wire and two leads

    NASA Astrophysics Data System (ADS)

    Fu, X.; Gao, H. X.

    2016-02-01

    We theoretically investigate the spin-dependent conductance, the total conductance and the spin polarization of a quantum wire with the coexistence of Rashba and Dresselhaus spin-orbit coupling in the quantum wire and two leads, respectively. First, we find that the Rashba or Dresselhaus spin-orbit coupling in the quantum wire induces the split of spin-dependent conductance and forms the out-of-plane spin polarization. Moreover, when Rashba strength or Dresselhaus strength in the quantum wire increases, the split of conductance is enlarged and the intensity of spin polarization is enhanced accordingly. Furthermore, when two spin-orbit couplings coexist in the quantum wire and two leads, the addition of spin-orbit coupling in two leads expands the oscillation ranges of conductance plateaus and spin polarization, respectively, and further strengthens the magnitude of spin polarization. In particular, when the Rashba coupling in two leads exists and the quantum wire is wide, the total conductance jumps to upper conductance plateaus and the direction of spin polarization changes, while for the Dresselhaus coupling no such results exist. Our calculations indicate that one can realize the modulation of the strength and direction of spin polarization by altering the width of wire, the Rashba or Dresselhaus strength in quantum wire, the Rashba or Dresselhaus strength in two leads, respectively, which may be used to design the spin filter.

  1. Spins and photons: connecting quantum registers in diamond

    NASA Astrophysics Data System (ADS)

    Childress, Lily

    2012-06-01

    Long-lived electronic and nuclear spin states have made the nitrogen-vacancy (NV) defect in diamond a leading candidate for quantum information processing in the solid state. Multi-qubit quantum registers formed by single defects and nearby nuclear spins can currently be controlled and detected with high fidelity. Nevertheless, development of coherent connections between distant NVs remains an outstanding challenge. One advantage to working with solid-state defects is the opportunity to integrate them with microfabricated mechanical, electronic, or optical devices; in principle, such devices could mediate interactions between registers, turning them into nodes within a larger quantum network. In the last few months, several experiments have made key steps toward realizing a coherent quantum interface between individual NV centers using a mechanical quantum bus [1] or optical channels [2,3]. This talk will explore the current state of the art, and report on recent observation of two photon quantum interference between different gate-tunable defect centers [2]. These results pave the way towards measurement-based entanglement between remote NV centers and the realization of quantum networks with solid-state spins.[4pt] [1] Kolkowitz et al., Science 335, 1603 (2012)[2] Bernien et al., Phys. Rev. Lett. 108, 043604 (2012)[3] Sipahigil et al., http://lanl.arxiv.org/abs/1112.3975

  2. Parametric pumping of the two-dimensional quantum spin liquid

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2017-02-01

    With the help of the exact solution of the Kitaev model the parametric pumping of the two-dimensional quantum spin liquid under the action of the ac magnetic field is studied. In the dynamical regime the field produces oscillations of the magnetization with the field's frequency, modulated by the Rabi-like oscillations. In the steady-state regime, the Rabi-like oscillations are damped. The absorption of the ac field by the Kitaev spin model is finite and manifests resonance features. Such a behavior is generic for quantum spin liquids with fermionic excitations, and it is different from the linear spin-wave response of magnetically ordered systems to such a parametric pumping.

  3. Measurement-based teleportation along quantum spin chains.

    PubMed

    Barjaktarevic, J P; McKenzie, R H; Links, J; Milburn, G J

    2005-12-02

    We examine the teleportation of an unknown spin-1/2 quantum state along a quantum spin chain with an even number of sites. Our protocol, using a sequence of Bell measurements, may be viewed as an iterated version of the 2-qubit protocol of C. H. Bennett et al. [Phys. Rev. Lett. 70, 1895 (1993)]. A decomposition of the Hilbert space of the spin chain into 4 vector spaces, called Bell subspaces, is given. It is established that any state from a Bell subspace may be used as a channel to perform unit fidelity teleportation. The space of all spin-0 many-body states, which includes the ground states of many known antiferromagnetic systems, belongs to a common Bell subspace. A channel-dependent teleportation parameter [symbol: see text] is introduced, and a bound on the teleportation fidelity is given in terms of [symbol: see text].

  4. Entropy and correlation functions of a driven quantum spin chain

    SciTech Connect

    Cherng, R. W.; Levitov, L. S.

    2006-04-15

    We present an exact solution for a quantum spin chain driven through its critical points. Our approach is based on a many-body generalization of the Landau-Zener transition theory, applied to a fermionized spin Hamiltonian. The resulting nonequilibrium state of the system, while being a pure quantum state, has local properties of a mixed state characterized by finite entropy density associated with Kibble-Zurek defects. The entropy and the finite spin correlation length are functions of the rate of sweep through the critical point. We analyze the anisotropic XY spin-1/2 model evolved with a full many-body evolution operator. With the help of Toeplitz determinant calculus, we obtain an exact form of correlation functions. The properties of the evolved system undergo an abrupt change at a certain critical sweep rate, signaling the formation of ordered domains. We link this phenomenon to the behavior of complex singularities of the Toeplitz generating function.

  5. Anomalous spin precession and spin Hall effect in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Bi, Xintao; He, Peiru; Hankiewicz, E. M.; Winkler, R.; Vignale, Giovanni; Culcer, Dimitrie

    2013-07-01

    Spin-orbit (SO) interactions give a spin-dependent correction r̂so to the position operator, referred to as the anomalous position operator. We study the contributions of r̂so to the spin Hall effect (SHE) in quasi-two-dimensional (2D) semiconductor quantum wells with strong band-structure SO interactions that cause spin precession. The skew scattering and side-jump scattering terms in the SHE vanish, but we identify two additional terms in the SHE, due to r̂so, which have not been considered in the literature so far. One term reflects the modification of spin precession due to the action of the external electric field (the field drives the current in the quantum well), which produces, via r̂so, an effective magnetic field perpendicular to the plane of the quantum well. The other term reflects a similar modification of spin precession due to the action of the electric field created by random impurities, and appears in a careful formulation of the Born approximation. We refer to these two effects collectively as anomalous spin precession and we note that they contribute to the SHE to the first order in the SO coupling constant even though they formally appear to be of second order. In electron systems with weak momentum scattering, the contribution of the anomalous spin precession due to the external electric field equals 1/2 the usual side-jump SHE, while the additional impurity-dependent contribution depends on the form of the band-structure SO coupling. For band-structure SO coupling linear in wave vector, the two anomalous spin precession contributions cancel. For band-structure SO coupling cubic in wave vector, however, they do not cancel, and the anomalous spin precession contribution to the SHE can be detected in a high-mobility 2D electron gas with strong SO coupling. In 2D hole systems, both anomalous spin precession contributions vanish identically.

  6. Controlled exchange interaction for quantum logic operations with spin qubits in coupled quantum dots

    SciTech Connect

    Moskal, S.; Bednarek, S.; Adamowski, J.

    2007-09-15

    A two-electron system confined in two coupled semiconductor quantum dots is investigated as a candidate for performing quantum logic operations with spin qubits. We study different processes of swapping the electron spins by a controlled switching on and off of the exchange interaction. The resulting spin swap corresponds to an elementary operation in quantum-information processing. We perform direct simulations of the time evolution of the two-electron system. Our results show that, in order to obtain the full interchange of spins, the exchange interaction should change smoothly in time. The presence of jumps and spikes in the time characteristics of the confinement potential leads to a considerable increase of the spin-swap time. We propose several mechanisms to modify the exchange interaction by changing the confinement potential profile and discuss their advantages and disadvantages.

  7. Numerical evidence of quantum melting of spin ice: quantum-classical crossover

    NASA Astrophysics Data System (ADS)

    Kato, Yasuyuki; Onoda, Shigeki

    2015-03-01

    Unbiased quantum Monte-Carlo simulations are performed on the simplest case of the quantum spin ice model, namely, the nearest-neighbor spin-1/2 XXZ model on the pyrochlore lattice with an antiferromagnetic longitudinal and a weak ferromagnetic transverse exchange couplings, J and J⊥. On cooling across TCSI ~ 0 . 2 J , the specific heat shows a broad peak associated with a crossover to a classical Coulomb liquid regime characterized by a remnant of the pinch-point singularity in longitudinal spin correlations as well as the Pauling ice entropy for | J⊥ | << J , as in classical spin ice. On further cooling, the entropy restarts gradually decaying to zero for J⊥ >J⊥ c ~ - 0 . 104 J , as expected for bosonic quantum Coulomb liquids. With negatively increasing J⊥ across J⊥ c, a first-order transition occurs at a nonzero temperature from the quantum Coulomb liquid to an XY ferromagnet. Relevance to magnetic rare-earth pyrochlore oxides is discussed.

  8. Study of spin-polarized plasma driven by spin force in a two-dimensional quantum electron gas

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Zhai, Feng; Yi, Lin

    2016-12-01

    We examine the collective spin-polarized density motion in an unmagnetized plasma under a high frequency electromagnetic (EM) wave modulation. Spin effect in a quantum plasma is considered for the first time at a finite temperature near the Fermi temperature with considering collisional damping. A nonlinear two-fluid spin quantum magnetohydrodynamic model is used and solved self-consistently. The nonlinear effect and the reducing g-factor enhance the spin-polarization, while the collisional damping decreases the spin polarization. Strong spin-polarization is derived and the contribution of the spin-polarized current to the EM wave is much larger than that of the classical current.

  9. Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots

    NASA Astrophysics Data System (ADS)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2007-12-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. By studying suitable choices of magnetic field and lateral dot size, we determine regions where the spin relaxation rates can be practically suppressed. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  10. Quantum spins and quasiperiodicity: a real space renormalization group approach.

    PubMed

    Jagannathan, A

    2004-01-30

    We study the antiferromagnetic spin-1/2 Heisenberg model on a two-dimensional bipartite quasiperiodic structure, the octagonal tiling, the aperiodic equivalent of the square lattice for periodic systems. An approximate block spin renormalization scheme is described for this problem. The ground state energy and local staggered magnetizations for this system are calculated and compared with the results of a recent quantum Monte Carlo calculation for the tiling. It is conjectured that the ground state energy is exactly equal to that of the quantum antiferromagnet on the square lattice.

  11. Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions

    PubMed Central

    Massarotti, D.; Pal, A.; Rotoli, G.; Longobardi, L.; Blamire, M. G.; Tafuri, F.

    2015-01-01

    The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits. PMID:26054495

  12. Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions.

    PubMed

    Massarotti, D; Pal, A; Rotoli, G; Longobardi, L; Blamire, M G; Tafuri, F

    2015-06-09

    The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits.

  13. Hybrid quantum systems with ultracold spins and optomechanics

    NASA Astrophysics Data System (ADS)

    Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Date, Aditya; Schwab, Keith; Meystre, Pierre; Vengalattore, Mukund

    2016-05-01

    Linear cavity optomechanics has enabled radiation pressure cooling and sensing of mechanical resonators at the quantum limits. However, exciting and unrealized avenues such as generating massive macroscopic nonclassical states, quantum signal transduction, and phonon-based manybody physics each require strong, nonlinear interactions. In our group, we are exploring three approaches to realizing strong optomechanical nonlinearities - i. using atomically thin graphene membranes, ii. coupling optomechanical systems with ultracold atomic spins, and iii. using microtoroidal optomechanical resonators strongly coupled to atoms trapped in their evanescent fields. We describe our progress in each of these efforts and discuss ongoing studies on various aspects of quantum enhanced metrology, nonequilibrium dynamics of open quantum systems and quantum transduction using these novel hybrid quantum systems. This work is supported by the DARPA QuASAR program through a Grant from the ARO.

  14. Work exchange between quantum systems: the spin-oscillator model.

    PubMed

    Schröder, Heiko; Mahler, Günter

    2010-02-01

    With the development of quantum thermodynamics it has been shown that relaxation to thermal equilibrium and with it the concept of heat flux may emerge directly from quantum mechanics. This happens for a large class of quantum systems if embedded into another quantum environment. In this paper, we discuss the complementary question of the emergence of work flux from quantum mechanics. We introduce and discuss two different methods to assess the work source quality of a system, one based on the generalized factorization approximation, the other based on generalized definitions of work and heat. By means of those methods, we show that small quantum systems can, indeed, act as work reservoirs. We illustrate this behavior for a simple system consisting of a spin coupled to an oscillator and investigate the effects of two different interactions on the work source quality. One case will be shown to allow for a work source functionality of arbitrarily high quality.

  15. Spin relaxation rates in quantum dots: Role of the phonon modulated spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Alcalde, A. M.; Romano, C. L.; Marques, G. E.

    2008-11-01

    We calculate the spin relaxation rates in InAs and GaAs parabolic quantum dots due to the interaction of spin carriers with acoustical phonons. We consider a spin relaxation mechanism completely intrinsic to the system, since it is based on the modulation of the spin-orbit interaction by the acoustic phonon potential, which is independent of any structural properties of the confinement potential. The electron-phonon deformation potential and the piezoelectric interaction are described by the Pavlov-Firsov spin-phonon Hamiltonian. Our results demonstrate that, for narrow-gap semiconductors, the deformation potential interaction becomes dominant. This behavior is not observed for wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the relaxation processes. We also demonstrate that the spin relaxation rates are particularly sensitive to values of the Landé g-factor, which depend strongly on the spatial shape of the confinement.

  16. Quantum Spin Hall Effect and Tunable Spin Transport in As-Graphane.

    PubMed

    Zhang, L Z; Zhai, F; Jin, Kyung-Hwan; Cui, B; Huang, Bing; Wang, Zhiming; Lu, J Q; Liu, Feng

    2017-07-12

    Tunable spin transport in nanodevices is highly desirable to spintronics. Here, we predict existence of quantum spin Hall effects and tunable spin transport in As-graphane, based on first-principle density functional theory and tight binding calculations. Monolayer As-graphane is constituted by using As adsorbing on graphane with honeycomb H vacancies. Owing to the surface strain, monolayer As-graphane nanoribbons will self-bend toward the graphane side. The naturally curved As-graphane nanoribbons then exhibit unique spin transport properties, distinctively different from the flat ones, which is a two-dimensional topological insulator. Under external stress, one can realize tunable spin transport in curved As-graphane nanoribon arrays. Such intriguing mechanical bending induced spin flips can offer promising applications in the future nanospintronics devices.

  17. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-05-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  18. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    PubMed Central

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  19. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  20. Triple quantum filtered spectroscopy of homonuclear three spin-1/2 systems employing isotropic mixing

    NASA Astrophysics Data System (ADS)

    Kirwai, Amey; Chandrakumar, N.

    2016-08-01

    We report the design and performance evaluation of novel pulse sequences for triple quantum filtered spectroscopy in homonuclear three spin-1/2 systems, employing isotropic mixing (IM) to excite triple quantum coherence (TQC). Our approach involves the generation of combination single quantum coherences (cSQC) from antisymmetric longitudinal or transverse magnetization components employing isotropic mixing (IM). cSQC's are then converted to TQC by a selective 180° pulse on one of the spins. As IM ideally causes magnetization to evolve under the influence of the spin coupling Hamiltonian alone, TQC is generated at a faster rate compared to sequences involving free precession. This is expected to be significant when the spins have large relaxation rates. Our approach is demonstrated experimentally by TQC filtered 1D spectroscopy on a 1H AX2 system (propargyl bromide in the presence of a paramagnetic additive), as well as a 31P linear AMX system (ATP in agar gel). The performance of the IM-based sequences for TQC excitation are compared against the standard three pulse sequence (Ernst et al., 1987) and an AX2 spin pattern recognition sequence (Levitt and Ernst, 1983). The latter reaches the unitary bound on TQC preparation efficiency starting from thermal equilibrium in AX2 systems, not considering relaxation. It is shown that in systems where spins relax rapidly, the new IM-based sequences indeed perform significantly better than the above two known TQC excitation sequences, the sensitivity enhancement being especially pronounced in the case of the proton system investigated. An overview of the differences in relaxation behavior is presented for the different approaches. Applications are envisaged to Overhauser DNP experiments and to in vivo NMR.

  1. Performance of an irreversible quantum Carnot engine with spin 12.

    PubMed

    Wu, Feng; Chen, Lingen; Wu, Shuang; Sun, Fengrui; Wu, Chih

    2006-06-07

    The purpose of this paper is to investigate the effect of quantum properties of the working medium on the performance of an irreversible Carnot cycle with spin 12. The optimal relationship between the dimensionless power output P* versus the efficiency eta for the irreversible quantum Carnot engine with heat leakage and other irreversible losses is derived. Especially, the performances of the engine at low temperature limit and at high temperature limit are discussed.

  2. Observation of individual spin quantum transitions of a single antiproton

    NASA Astrophysics Data System (ADS)

    Smorra, C.; Mooser, A.; Besirli, M.; Bohman, M.; Borchert, M. J.; Harrington, J.; Higuchi, T.; Nagahama, H.; Schneider, G. L.; Sellner, S.; Tanaka, T.; Blaum, K.; Matsuda, Y.; Ospelkaus, C.; Quint, W.; Walz, J.; Yamazaki, Y.; Ulmer, S.

    2017-06-01

    We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unambiguous detection of axial frequency shifts in presence of a strong magnetic bottle, reaches a fidelity of 92.1%. Spin-state initialization with > 99.9% fidelity and an average initialization time of 24 min are demonstrated. This is a major step towards an antiproton magnetic moment measurement with a relative uncertainty on the part-per-billion level.

  3. Spin degeneracy and conductance fluctuations in open quantum dots.

    PubMed

    Folk, J A; Patel, S R; Birnbaum, K M; Marcus, C M; Duruöz, C I; Harris, J S

    2001-03-05

    The dependence of conductance fluctuations on parallel magnetic field is used as a probe of spin degeneracy in open GaAs quantum dots. The variance of fluctuations at high parallel field is reduced from the low-field variance (with broken time-reversal symmetry) by factors ranging from roughly 2 in a 1 microm (2) dot to greater than 4 in 8 microm (2) dots. The factor of 2 is expected for Zeeman splitting of spin-degenerate channels. A possible explanation for the larger suppression based on field-dependent spin-orbit scattering is proposed.

  4. Birth and death processes and quantum spin chains

    NASA Astrophysics Data System (ADS)

    Grünbaum, F. Alberto; Vinet, Luc; Zhedanov, Alexei

    2013-06-01

    This paper underscores the intimate connection between the quantum walks generated by certain semi-infinite spin chain Hamiltonians and classical birth and death processes. It is observed that transition amplitudes between single excitation states of the spin chains have an expression in terms of orthogonal polynomials which is analogous to the Karlin-McGregor representation formula of the transition probability functions for classes of birth and death processes. As an application, we present a characterization of spin systems for which the probability to return to the point of origin at some time is 1 or almost 1.

  5. Quantum fluctuations in a disordered two-dimensional spin model

    SciTech Connect

    Gawiec, P.; Grempel, D.R.

    1996-08-01

    We study the effect of quantum fluctuations on the spin stiffness of a disordered two-dimensional anisotropic spin model within an 1/{ital S} expansion. We find that these fluctuations, very weak in the pure system, may be quite strong in the presence of bond disorder provided the latter introduces frustration in the system. As a consequence of the disorder-induced increase in the amplitude of zero-point fluctuations, the spin stiffness constant of the system vanishes in certain regions of parameter space, leading to the appearance of a spin-liquid phase in parts of the phase diagram where a spin-glass phase would be expected classically. {copyright} {ital 1996 The American Physical Society.}

  6. Spin effects in coupled quantum dots under ac electric fields

    NASA Astrophysics Data System (ADS)

    Meza-Montes, Lilia; Hernandez, Arezky H.; Ulloa, Sergio E.

    2007-03-01

    Spin control has recently attracted attention for applications in spin-based devices. Different effects and applied fields have been suggested to accomplish the goal. We explore the time evolution of electronic spin in coupled quantum dots under harmonic electric fields. Using the Floquet formalism, we obtain the time dependent wave function in terms of the Floquet states and the quasi-energy spectrum for a single electron in double InSb dots. The spatial part of the wave function includes the SIA and BIA spin-orbit effects. The spectral force is analyzed at anti-crossings of the quasi-energy bands as a function of the field strength. The resulting dynamical symmetries and the way they reflect in the time evolution of the spin clouds will be discussed.

  7. Complementary spin transistor using a quantum well channel

    PubMed Central

    Park, Youn Ho; Choi, Jun Woo; Kim, Hyung-jun; Chang, Joonyeon; Han, Suk Hee; Choi, Heon-Jin; Koo, Hyun Cheol

    2017-01-01

    In order to utilize the spin field effect transistor in logic applications, the development of two types of complementary transistors, which play roles of the n- and p-type conventional charge transistors, is an essential prerequisite. In this research, we demonstrate complementary spin transistors consisting of two types of devices, namely parallel and antiparallel spin transistors using InAs based quantum well channels and exchange-biased ferromagnetic electrodes. In these spin transistors, the magnetization directions of the source and drain electrodes are parallel or antiparallel, respectively, depending on the exchange bias field direction. Using this scheme, we also realize a complementary logic operation purely with spin transistors controlled by the gate voltage, without any additional n- or p-channel transistor. PMID:28425459

  8. Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: Spin-electron acoustic wave appearance.

    PubMed

    Andreev, Pavel A

    2015-03-01

    The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin

  9. Performance of 1D quantum cellular automata in the presence of error

    NASA Astrophysics Data System (ADS)

    McNally, Douglas M.; Clemens, James P.

    2016-09-01

    This work expands a previous block-partitioned quantum cellular automata (BQCA) model proposed by Brennen and Williams [Phys. Rev. A. 68, 042311 (2003)] to incorporate physically realistic error models. These include timing errors in the form of over- and under-rotations of quantum states during computational gate sequences, stochastic phase and bit flip errors, as well as undesired two-bit interactions occurring during single-bit gate portions of an update sequence. A compensation method to counteract the undesired pairwise interactions is proposed and investigated. Each of these error models is implemented using Monte Carlo simulations for stochastic errors and modifications to the prescribed gate sequences to account for coherent over-rotations. The impact of these various errors on the function of a QCA gate sequence is evaluated using the fidelity of the final state calculated for four quantum information processing protocols of interest: state transfer, state swap, GHZ state generation, and entangled pair generation.

  10. All-electrical generation of spin-polarized currents in quantum spin Hall insulators

    NASA Astrophysics Data System (ADS)

    Tao, L. L.; Cheung, K. T.; Zhang, L.; Wang, J.

    2017-03-01

    The control and generation of spin-polarized current (SPC) without magnetic materials and an external magnetic field is a big challenge in spintronics and normally requires a spin-flip mechanism. In this Rapid Communication, we show the theoretical discovery of all-electrical generation of SPC without relying on spin-flip spin-orbit coupling (SOC). We find that the SPC can be produced as long as an energy-dependent phase difference between the spin up and down electrons can be established. We verify this through quantum transport calculations on a gated stanene zigzag nanoribbon, which is a quantum spin Hall (QSH) insulator. Our calculations indicate that the transient current as well as ac conductance are significantly spin polarized, which results from the genetic phase difference between spin up and down electrons after traversing the system. Our results are robust against edge imperfections and generally valid for other QSH insulators, such as silicene and germanene, etc. These findings establish a different route for generating SPCs by purely electrical means and open the door for interesting applications of semiconductor spintronics.

  11. Wigner Crystallization in the Quantum 1D Jellium at All Densities

    NASA Astrophysics Data System (ADS)

    Jansen, S.; Jung, P.

    2014-11-01

    The jellium is a model, introduced by Wigner (Phys Rev 46(11):1002, 1934), for a gas of electrons moving in a uniform neutralizing background of positive charge. Wigner suggested that the repulsion between electrons might lead to a broken translational symmetry. For classical one-dimensional systems this fact was proven by Kunz (Ann Phys 85(2):303-335, 1974), while in the quantum setting, Brascamp and Lieb (Functional integration and its applications. Clarendon Press, Oxford, 1975) proved translation symmetry breaking at low densities. Here, we prove translation symmetry breaking for the quantum one-dimensional jellium at all densities.

  12. Constraining quantum critical dynamics: (2+1)D Ising model and beyond.

    PubMed

    Witczak-Krempa, William

    2015-05-01

    Quantum critical (QC) phase transitions generally lead to the absence of quasiparticles. The resulting correlated quantum fluid, when thermally excited, displays rich universal dynamics. We establish nonperturbative constraints on the linear-response dynamics of conformal QC systems at finite temperature, in spatial dimensions above 1. Specifically, we analyze the large frequency or momentum asymptotics of observables, which we use to derive powerful sum rules and inequalities. The general results are applied to the O(N) Wilson-Fisher fixed point, describing the QC Ising model when N=1. We focus on the order parameter and scalar susceptibilities, and the dynamical shear viscosity. Connections to simulations, experiments, and gauge theories are made.

  13. Quantum control and engineering of single spins in diamond

    NASA Astrophysics Data System (ADS)

    Toyli, David M.

    The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical

  14. Ultrafast optical coherent control of individual electron and hole spins in a semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    de Greve, Kristiaan

    2012-02-01

    We report on the complete optical coherent control of individual electron and hole spin qubits in InAs quantum dots. With a magnetic field in Voigt geometry, broadband, detuned optical pulses couple the spin-split ground states, resulting in Rabi flopping. In combination with the Larmor precession around the external magnetic field, this allows an arbitrary single-qubit operation to be realized in less than 20 picoseconds [1,2]. Slow fluctuations in the spin's environment lead to shot-to-shot variations in the Larmor precession frequency. In a time-ensemble measurement, these would prevent a measurement of the true decoherence of the qubit, and instead give rise to ensemble dephasing. This effect was overcome by implementing a spin echo measurement scheme for both electron and hole spins, where an optical π-pulse refocuses the spin coherence and filters out the slow variations in Larmor precession frequency. We measured coherence times up to 3 microseconds [2,3]. Finally, our optical pulse manipulation scheme allows us to probe the hyperfine interaction between the single spin and the nuclei in the quantum dot. Interesting non-Markovian dynamics could be observed in the free-induction decay of a single electron spin, whereas the complete absence of such effects illustrates the reduction of the hyperfine interaction for hole spin qubits. We measured and modeled these effects, and explain the non-Markovian electron spin dynamics as involving a feedback effect resulting from both the strong Overhauser shift of the electron spin and spin dependent nuclear relaxation [2,4]. [4pt] [1] D. Press, T. D. Ladd, B. Zhang and Y. Yamamoto, Nature 456, 218 (2008)[0pt] [2] K. De Greve, P. McMahon, D. Press et al., Nat. Phys. 7, 872 (2011)[0pt] [3] D. Press, K. De Greve, P. McMahon et al., Nat. Phot. 4, 367 (2010)[0pt] [4] T. D. Ladd, D. Press, K. De Greve et al., Phys. Rev. Lett. 105, 107401 (2010)

  15. Single-Shot Ternary Readout of Two-Electron Spin States in a Quantum Dot Using Spin Filtering by Quantum Hall Edge States.

    PubMed

    Kiyama, H; Nakajima, T; Teraoka, S; Oiwa, A; Tarucha, S

    2016-12-02

    We report on the single-shot readout of three two-electron spin states-a singlet and two triplet substates-whose z components of spin angular momentum are 0 and +1, in a gate-defined GaAs single quantum dot. The three spin states are distinguished by detecting spin-dependent tunnel rates that arise from two mechanisms: spin filtering by spin-resolved edge states and spin-orbital correlation with orbital-dependent tunneling. The three states form one ground state and two excited states, and we observe the spin relaxation dynamics among the three spin states.

  16. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells

    SciTech Connect

    Koralek, Jake; Weber, Chris; Orenstein, Joe; Bernevig, Andrei; Zhang, Shoucheng; Mack, Shawn; Awschalom, David

    2011-08-24

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH). SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba ({alpha}) and linear Dresselhaus ({beta}{sub 1}), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term ({beta}{sub 3}) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as {alpha} {yields} {beta}{sub 1}. Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning {alpha} and {beta}{sub 1}. Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying {beta}{sub 3} as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics.

  17. Effects of geometry and linearly polarized cavity photons on charge and spin currents in a quantum ring with spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Arnold, Thorsten; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2014-05-01

    We calculate the persistent charge and spin polarization current inside a finite-width quantum ring of realistic geometry as a function of the strength of the Rashba or Dresselhaus spin-orbit interaction. The time evolution in the transient regime of the two-dimensional (2D) quantum ring connected to electrically biased semi-infinite leads is governed by a time-convolutionless non-Markovian generalized master equation. The electrons are correlated via Coulomb interaction. In addition, the ring is embedded in a photon cavity with a single mode of linearly polarized photon field, which is polarized either perpendicular or parallel to the charge transport direction. To analyze carefully the physical effects, we compare to the analytical results of the toy model of a one-dimensional (1D) ring of non-interacting electrons with spin-orbit coupling. We find a pronounced charge current dip associated with many-electron level crossings at the Aharonov-Casher phase ΔΦ = π, which can be disguised by linearly polarized light. Qualitative agreement is found for the spin polarization currents of the 1D and 2D ring. Quantitatively, however, the spin polarization currents are weaker in the more realistic 2D ring, especially for weak spin-orbit interaction, but can be considerably enhanced with the aid of a linearly polarized electromagnetic field. Specific spin polarization current symmetries relating the Dresselhaus spin-orbit interaction case to the Rashba one are found to hold for the 2D ring, which is embedded in the photon cavity.

  18. Non-Abelian statistics and topological quantum information processing in 1D wire networks

    NASA Astrophysics Data System (ADS)

    Alicea, Jason; Oreg, Yuval; Refael, Gil; von Oppen, Felix; Fisher, Matthew P. A.

    2011-03-01

    Topological quantum computation provides an elegant way around decoherence, as one encodes quantum information in a non-local fashion that the environment finds difficult to corrupt. Here we establish that one of the key operations---braiding of non-Abelian anyons---can be implemented in one-dimensional semiconductor wire networks. Previous work [Lutchyn et al., arXiv:1002.4033 and Oreg et al., arXiv:1003.1145] provided a recipe for driving semiconducting wires into a topological phase supporting long-sought particles known as Majorana fermions that can store topologically protected quantum information. Majorana fermions in this setting can be transported, created, and fused by applying locally tunable gates to the wire. More importantly, we show that networks of such wires allow braiding of Majorana fermions and that they exhibit non-Abelian statistics like vortices in a p+ip superconductor. We propose experimental setups that enable the Majorana fusion rules to be probed, along with networks that allow for efficient exchange of arbitrary numbers of Majorana fermions. This work paves a new path forward in topological quantum computation that benefits from physical transparency and experimental realism.

  19. The impact of soil moisture on the spin up of 1-D Noah land surface model at a site in monsoonal region

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A.; Mandal, M.

    2014-12-01

    Model spin-up is the process through which the model is adequately equilibrated to ensure balance between the mass fields and velocity fields. In this study, an offline 1-D Noah land surface model (LSM) has been used to investigate the impact of soil moisture on the model spin up at Kharagpur, India which is a site in monsoonal region. The model is integrated recursively for 3-years to assess its spin-up behavior. Several numerical experiments are performed to investigate the impact of initial soil moisture and subsequent dry or wet condition on model spin-up. These include simulations with different initial soil moisture content (observed soil moisture; dry soil; moderately wet soil; saturated soil), simulations initialized before different rain conditions (no rain; infrequent rain; continuous rain) and simulations initialized in different seasons (Winter, Spring, Summer/Pre-Monsoon, Monsoon and Autumn). It is noted that the model has significantly longer spin-up when initialized with very low initial soil moisture content than with higher soil moisture content. It is also seen that in general, simulations initialized just before a continuous rainfall event have the least spin-up time. In a region affected by the monsoon, such as Kharagpur, this observation is reinforced by the results from the simulations initialized in different seasons. It is seen that for monsoonal region, the model spin-up time is least for simulations initialized during Summer/Pre-monsoon. Model initialized during the Monsoon has a longer spin-up than that initialized in any other season. It appears that the model has shorter spin-up if it reaches the equilibrium state predominantly via drying process. It is also observed that the spin-up of offline 1-D Noah LSM may be as low as two months under quasi-equilibrium condition if the initial soil moisture content and time of start of simulations are chosen carefully.

  20. Chain-based order and quantum spin liquids in dipolar spin ice

    NASA Astrophysics Data System (ADS)

    McClarty, P. A.; Sikora, O.; Moessner, R.; Penc, K.; Pollmann, F.; Shannon, N.

    2015-09-01

    Recent experiments on the spin-ice material Dy2Ti2O7 suggest that the Pauling "ice entropy," characteristic of its classical Coulombic spin-liquid state, may be lost at low temperatures [Pomaranski et al., Nat. Phys. 9, 353 (2013), 10.1038/nphys2591]. However, despite nearly two decades of intensive study, the nature of the equilibrium ground state of spin ice remains uncertain. Here we explore how long-range dipolar interactions D , short-range exchange interactions, and quantum fluctuations combine to determine the ground state of dipolar spin ice. We identify the organizational principle that ordered ground states are selected from a set of "chain states" in which dipolar interactions are exponentially screened. Using both quantum and classical Monte Carlo simulation, we establish phase diagrams as a function of quantum tunneling g and temperature T , and find that only a very small gc≪D is needed to stabilize a quantum spin liquid ground state. We discuss the implications of these results for Dy2Ti2O7 .

  1. Quantum Langevin approach for non-Markovian quantum dynamics of the spin-boson model

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Yang; Chen, Mi; Yu, Ting; You, J. Q.

    2016-02-01

    One longstanding difficult problem in quantum dissipative dynamics is to solve the spin-boson model in a non-Markovian regime where a tractable systematic master equation does not exist. The spin-boson model is particularly important due to its crucial applications in quantum noise control and manipulation as well as its central role in developing quantum theories of open systems. Here we solve this important model by developing a non-Markovian quantum Langevin approach. By projecting the quantum Langevin equation onto the coherent states of the bath, we can derive a set of non-Markovian quantum Bloch equations containing no explicit noise variables. This special feature offers a tremendous advantage over the existing stochastic Schrödinger equations in numerical simulations. The physical significance and generality of our approach are briefly discussed.

  2. Edge dynamics in a quantum spin Hall state: effects from Rashba spin-orbit interaction.

    PubMed

    Ström, Anders; Johannesson, Henrik; Japaridze, G I

    2010-06-25

    We analyze the dynamics of the helical edge modes of a quantum spin Hall state in the presence of a spatially nonuniform Rashba spin-orbit (SO) interaction. A randomly fluctuating Rashba SO coupling is found to open a scattering channel which causes localization of the edge modes for a weakly screened electron-electron (e-e) interaction. A periodic modulation of the SO coupling, with a wave number commensurate with the Fermi momentum, makes the edge insulating already at intermediate strengths of the e-e interaction. We discuss implications for experiments on edge state transport in a HgTe quantum well.

  3. Correlation inequalities for quantum spin systems with quenched centered disorder

    NASA Astrophysics Data System (ADS)

    Contucci, Pierluigi; Lebowitz, Joel L.

    2010-02-01

    It is shown that random quantum spin systems with centered disorder satisfy correlation inequalities previously proved [P. Contucci and J. Lebowitz, Ann. Henri Poincare 8, 1461 (2007)] in the classical case. Consequences include monotone approach of pressure and ground state energy to the thermodynamic limit. Signs and bounds on the surface pressures for different boundary conditions are also derived for finite range potentials.

  4. Random matrix theory and critical phenomena in quantum spin chains

    NASA Astrophysics Data System (ADS)

    Hutchinson, J.; Keating, J. P.; Mezzadri, F.

    2015-09-01

    We compute critical properties of a general class of quantum spin chains which are quadratic in the Fermi operators and can be solved exactly under certain symmetry constraints related to the classical compact groups $U(N)$, $O(N)$ and $Sp(2N)$. In particular we calculate critical exponents $s$, $\

  5. From spin glass to quantum spin liquid ground states in molybdate pyrochlores.

    PubMed

    Clark, L; Nilsen, G J; Kermarrec, E; Ehlers, G; Knight, K S; Harrison, A; Attfield, J P; Gaulin, B D

    2014-09-12

    We present new magnetic heat capacity and neutron scattering results for two magnetically frustrated molybdate pyrochlores: S=1 oxide Lu_{2}Mo_{2}O_{7} and S=1/2 oxynitride Lu_{2}Mo_{2}O_{5}N_{2}. Lu_{2}Mo_{2}O_{7} undergoes a transition to an unconventional spin glass ground state at T_{f}∼16  K. However, the preparation of the corresponding oxynitride tunes the nature of the ground state from spin glass to quantum spin liquid. The comparison of the static and dynamic spin correlations within the oxide and oxynitride phases presented here reveals the crucial role played by quantum fluctuations in the selection of a ground state. Furthermore, we estimate an upper limit for a gap in the spin excitation spectrum of the quantum spin liquid state of the oxynitride of Δ∼0.05  meV or Δ/|θ|∼0.004, in units of its antiferromagnetic Weiss constant θ∼-121  K.

  6. Adjustable Spin-Spin Interaction with 171Yb+ ions and Addressing of a Quantum Byte

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christof

    2015-05-01

    Trapped atomic ions are a well-advanced physical system for investigating fundamental questions of quantum physics and for quantum information science and its applications. When contemplating the scalability of trapped ions for quantum information science one notes that the use of laser light for coherent operations gives rise to technical and also physical issues that can be remedied by replacing laser light by microwave (MW) and radio-frequency (RF) radiation employing suitably modified ion traps. Magnetic gradient induced coupling (MAGIC) makes it possible to coherently manipulate trapped ions using exclusively MW and RF radiation. After introducing the general concept of MAGIC, I shall report on recent experimental progress using 171Yb+ ions, confined in a suitable Paul trap, as effective spin-1/2 systems interacting via MAGIC. Entangling gates between non-neighbouring ions will be presented. The spin-spin coupling strength is variable and can be adjusted by variation of the secular trap frequency. In general, executing a quantum gate with a single qubit, or a subset of qubits, affects the quantum states of all other qubits. This reduced fidelity of the whole quantum register may preclude scalability. We demonstrate addressing of individual qubits within a quantum byte (eight qubits interacting via MAGIC) using MW radiation and measure the error induced in all non-addressed qubits (cross-talk) associated with the application of single-qubit gates. The measured cross-talk is on the order 10-5 and therefore below the threshold commonly agreed sufficient to efficiently realize fault-tolerant quantum computing. Furthermore, experimental results on continuous and pulsed dynamical decoupling (DD) for protecting quantum memories and quantum gates against decoherence will be briefly discussed. Finally, I report on using continuous DD to realize a broadband ultrasensitive single-atom magnetometer.

  7. Quantum sweeps, synchronization, and Kibble-Zurek physics in dissipative quantum spin systems

    NASA Astrophysics Data System (ADS)

    Henriet, Loïc; Le Hur, Karyn

    2016-02-01

    We address dissipation effects on the nonequilibrium quantum dynamics of an ensemble of spins-1/2 coupled via an Ising interaction. Dissipation is modeled by a (Ohmic) bath of harmonic oscillators at zero temperature and correspond either to the sound modes of a one-dimensional Bose-Einstein (quasi-)condensate or to the zero-point fluctuations of a long transmission line. We consider the dimer comprising two spins and the quantum Ising chain with long-range interactions and develop an (mathematically and numerically) exact stochastic approach to address nonequilibrium protocols in the presence of an environment. For the two-spin case, we first investigate the dissipative quantum phase transition induced by the environment through quantum quenches and study the effect of the environment on the synchronization properties. Then we address Landau-Zener-Stueckelberg-Majorana protocols for two spins and for the spin array. In this latter case, we adopt a stochastic mean-field point of view and present a Kibble-Zurek-type argument to account for interaction effects in the lattice. Such dissipative quantum spin arrays can be realized in ultracold atoms, trapped ions, and mesoscopic systems and are related to Kondo lattice models.

  8. Quantum gates controlled by spin chain soliton excitations

    SciTech Connect

    Cuccoli, Alessandro; Nuzzi, Davide; Vaia, Ruggero; Verrucchi, Paola

    2014-05-07

    Propagation of soliton-like excitations along spin chains has been proposed as a possible way for transmitting both classical and quantum information between two distant parties with negligible dispersion and dissipation. In this work, a somewhat different use of solitons is considered. Solitons propagating along a spin chain realize an effective magnetic field, well localized in space and time, which can be exploited as a means to manipulate the state of an external spin (i.e., a qubit) that is weakly coupled to the chain. We have investigated different couplings between the qubit and the chain, as well as different soliton shapes, according to a Heisenberg chain model. It is found that symmetry properties strongly affect the effectiveness of the proposed scheme, and the most suitable setups for implementing single qubit quantum gates are singled out.

  9. Floquet control of quantum dissipation in spin chains

    NASA Astrophysics Data System (ADS)

    Chen, Chong; An, Jun-Hong; Luo, Hong-Gang; Sun, C. P.; Oh, C. H.

    2015-05-01

    Controlling the decoherence induced by the interaction of quantum system with its environment is a fundamental challenge in quantum technology. Utilizing Floquet theory, we explore the constructive role of temporal periodic driving in suppressing decoherence of a spin-1/2 particle coupled to a spin bath. It is revealed that, accompanying the formation of a Floquet bound state in the quasienergy spectrum of the whole system including the system and its environment, the dissipation of the spin system can be inhibited and the system tends to coherently synchronize with the driving. It can be seen as an analog to the decoherence suppression induced by the structured environment in spatially periodic photonic crystal setting. Comparing with other decoherence control schemes, our protocol is robust against the fluctuation of control parameters and easy to realize in practice. It suggests a promising perspective of periodic driving in decoherence control.

  10. Quantum control of a trapped electron spin in a quantum dot using photon polarization.

    PubMed

    Dubin, François; Combescot, Monique; Brennen, Gavin K; Melet, Romain

    2008-11-21

    We present an original scheme to rotate at will one electron spin trapped in a quantum dot by just acting on pump-laser polarization: The quantum control is based on the virtual excitation of electron light-hole pairs with pi symmetry, as possibly done by using a single laser beam with a propagation axis slightly tilted with respect to a weak magnetic field. This allows us to fully control the effective axis of the electron spin rotation through the pump polarization. Our analysis shows that quantum dots with inverted valence states are ideal candidates for ultrafast, high-fidelity, all optical control.

  11. Monte Carlo Studies of Quantum Spin Ladders

    NASA Astrophysics Data System (ADS)

    Greven, Martin

    1997-03-01

    We study antiferromagnetic nearest-neighbor spin-1/2 Heisenberg ladders, comprised of nc chains (2 <= nc <= 6) with ratio R = J_bot/J_| of inter- to intra-chain couplings.(M. Greven, R. J. Birgeneau, and U.-J. Wiese, Phys. Rev. Lett. 77, 1865 (1996).) The correlation length ξ(n_c,RT) is deduced from measurements of the correlation function. For even n_c, the static structure factor exhibits a peak at a temperature below the corresponding spin gap Δ(n_c,R). The quantities Δ(n_c,1) and ξ(n_c,1T arrow 0), with nc = 4 and 6, agree quantitatively with recent results(S. Chakravarty, Phys. Rev. Lett. 77, 4446 (1996); G. Sierra, to be published.) for the O non-linear σ-model. For R <= 0.5, the correlation function of the two-chain ladder is in excellent agreement with analytic results from conformal field theory,(D. G. Shelton, A. A. Nersesyan, and A. M. Tsvelik, Phys. Rev. B 53, 8521 (1996).) and ξ(2,RT) exhibits simple scaling behavior. We also investigate the effects of both systematic and random dilution on a spin-1/2 two-chain antiferromagnetic Heisenberg ladder.(M. Greven and R. J. Birgeneau, unpublished work.) Measurements of the correlation length demonstrate that such a ladder with a single spin removed from every m^th rung (m > 2) is equivalent to a spin-1/2 chain with effective lattice constant a_eff = m and coupling J_eff = J_eff(m). Random dilution leads to low-temperature Curie behavior of the uniform susceptibility and to a remarkable enhancement of the correlation length. At weak random dilution, the Curie constant is found to be in quantitative agreement with that for the random-coupling spin-1/2 chain.

  12. Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state tomography.

    PubMed

    Bonk, F A; deAzevedo, E R; Sarthour, R S; Bulnes, J D; Freitas, J C C; Guimarães, A P; Oliveira, I S; Bonagamba, T J

    2005-08-01

    This article presents the realization of many self-reversible quantum logic gates using two-qubit quadrupolar spin 3/2 systems. Such operations are theoretically described using propagation matrices for the RF pulses that include the effect of the quadrupolar evolution during the pulses. Experimental demonstrations are performed using a generalized form of the recently developed method for quantum state tomography in spin 3/2 systems. By doing so, the possibility of controlling relative phases of superimposed pseudo-pure states is demonstrated. In addition, many aspects of the effect of the quadrupolar evolution, occurring during the RF pulses, on the quantum operations performance are discussed. Most of the procedures presented can be easily adapted to describe selective pulses of higher spin systems (>3/2) and for spin 1/2 under J couplings.

  13. Versatile microwave-driven trapped ion spin system for quantum information processing.

    PubMed

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof

    2016-07-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer.

  14. Versatile microwave-driven trapped ion spin system for quantum information processing

    PubMed Central

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof

    2016-01-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233

  15. A bifunctional spin detector made of quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Shi, Zhangsheng; Wu, Jiansheng

    2016-10-01

    The spin selection of the topological boundary states (TBS) which are protected by the chiral-like symmetry in quantum anomalous Hall insulator (QAHI) can be used to construct a bifunctional spin detector (SD). Such device made of QAHIs in parallel with opposite chirality can divide an incoming spin-polarized current into two outgoing currents. The agreement between numerical and analytical calculation proves that the SD device functions as both spin filter and spin separator well in reflecting the spin polarization of source material from the ratio of two currents. The monotonic relation of spin polarization and current ratio suggests that using such kind of device, the spin polarization can be obtained directly. We also find that such device has a broad working energy region attributed by the TBS within the bulk gap. Combining with the result that the current ratio is barely dependent on the coupling between candidate materials and device, it is reasonable to apply this technique with a stable measuring accuracy. Furthermore, the features such as having simple geometry, being manipulated without external magnetic field, and the prospect of working at room temperature make this proposed device seem promising in developing future low-power-consumption spintronic device.

  16. Critical properties of dissipative quantum spin systems in finite dimensions

    NASA Astrophysics Data System (ADS)

    Takada, Kabuki; Nishimori, Hidetoshi

    2016-10-01

    We study the critical properties of finite-dimensional dissipative quantum spin systems with uniform ferromagnetic interactions. Starting from the transverse field Ising model coupled to a bath of harmonic oscillators with Ohmic spectral density, we generalize its classical representation to classical spin systems with O(n) symmetry and then take the large-n limit to reduce the system to a spherical model. The exact solution to the resulting spherical model with long-range interactions along the imaginary time axis shows a phase transition with static critical exponents coinciding with those of the conventional short-range spherical model in d+2 dimensions, where d is the spatial dimensionality of the original quantum system. This implies that the dynamical exponent is z = 2. These conclusions are consistent with the results of Monte Carlo simulations and renormalization group calculations for dissipative transverse field Ising and O(n) models in one and two dimensions. The present approach therefore serves as a useful tool for analytically investigating the properties of quantum phase transitions of the dissipative transverse field Ising and other related models. Our method may also offer a platform to study more complex phase transitions in dissipative finite-dimensional quantum spin systems, which have recently received renewed interest in the context of quantum annealing in a noisy environment.

  17. Engineering quantum spin Hall insulators by strained-layer heterostructures

    NASA Astrophysics Data System (ADS)

    Akiho, T.; Couëdo, F.; Irie, H.; Suzuki, K.; Onomitsu, K.; Muraki, K.

    2016-11-01

    Quantum spin Hall insulators (QSHIs), also known as two-dimensional topological insulators, have emerged as an unconventional class of quantum states with insulating bulk and conducting edges originating from nontrivial inverted band structures and have been proposed as a platform for exploring spintronics applications and exotic quasiparticles related to the spin-helical edge modes. Despite theoretical proposals for various materials, however, experimental demonstrations of QSHIs have so far been limited to two systems—HgTe/CdTe and InAs/GaSb—both of which are lattice-matched semiconductor heterostructures. Here, we report transport measurements in yet another realization of a band-inverted heterostructure as a QSHI candidate—InAs/InxGa1-xSb with lattice mismatch. We show that the compressive strain in the InxGa1-xSb layer enhances the band overlap and energy gap. Consequently, high bulk resistivity, two orders of magnitude higher than for InAs/GaSb, is obtained deep in the band-inverted regime. The strain also enhances bulk Rashba spin-orbit splitting, leading to an unusual situation where the Fermi level crosses only one spin branch for electronlike and holelike bands over a wide density range. These properties make this system a promising platform for robust QSHIs with unique spin properties and demonstrate the strain to be an important ingredient for tuning spin-orbit interaction.

  18. Quantum decoherence dynamics of divacancy spins in silicon carbide

    SciTech Connect

    Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; Miao, Kevin C.; Galli, Giulia; Awschalom, David D.

    2016-09-29

    Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Lastly, our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.

  19. Quantum decoherence dynamics of divacancy spins in silicon carbide

    PubMed Central

    Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; Miao, Kevin C.; Galli, Giulia; Awschalom, David D.

    2016-01-01

    Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H–SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state. PMID:27679936

  20. Quantum decoherence dynamics of divacancy spins in silicon carbide

    DOE PAGES

    Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; ...

    2016-09-29

    Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs aremore » both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Lastly, our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.« less

  1. Quantum decoherence dynamics of divacancy spins in silicon carbide.

    PubMed

    Seo, Hosung; Falk, Abram L; Klimov, Paul V; Miao, Kevin C; Galli, Giulia; Awschalom, David D

    2016-09-29

    Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the (29)Si and (13)C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.

  2. A quantum yield determination of O/1D/ production from ozone via laser flash photolysis

    NASA Technical Reports Server (NTRS)

    Philen, D. L.; Davis, D. D.; Watson, R. T.

    1977-01-01

    The quantum yield of electronically excited atomic oxygen produced from ozone photolysis was measured at 298 K from wavelengths of 293.0 to 316.5 nm. The reaction of the atomic oxygen with N2O to form excited NO2 was used to monitor the O production; a frequency-doubled flashlamp-pumped dye laser which provided tunable ultraviolet in the desired spectral region with 0.1-nm linewidth served as the photolysis source. The atomic oxygen quantum yield was found to be constant below 300 nm, with a sharp decrease centered at 308 nm and a diminution to less than one tenth of the constant value by 313.5 nm.

  3. Monte Carlo Simulation of Quantum Critical Spin Systems

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    1998-03-01

    The recent development of the loop algorithm(H.G. Evertz et al.), Phys. Rev. Lett. 70, 875 (1993); B.B. Beard and U.-J. Wiese, Phys. Rev. Lett. 77, 5130 (1996). for quantum Monte Carlo simulations has opened up a new field of problems that can be studied by quantum Monte Carlo. High precision simulations of phase transitions in quantum spin systems are now possible. In this talk we shall present results on two simulations of quantum phase transitions between a Néel ordered phase and a gapped resonating valence bond (RVB) phase in two and three spatial dimensions. The critical exponents for such a quantum phase transition have been calculated in two dimensions on a 1/5- depleted CaV_4O9 type lattice.(M. Troyer et al.), Phys. Rev. Lett. 76, 3822 (1996); J. Phys. Soc. Jpn. 66, 2957 (1997). Our results on large lattices are, in contrast to some of the previous simulations on smaller systems, consistent with a mapping to the non-linear sigma model and support the conjecture that the Berry phase terms are dangerously irrelevant. Another simulation in three spatial dimensions was motivated by experiments on the coupled spin ladder compound LaCuO_2.5. Early magnetic susceptibility measurements on this material were interpreted to be consistent with a spin gap of order 400K, while NMR and μSR measurements showed antiferromagnetic ordering at around T_N≈110K. Quantum Monte Carlo simulations were used to fit the experimental measurements and identified this material as a nearly quantum critical but ordered three-dimensional quantum Heisenberg antiferromagnet.(M. Troyer et al.), Phys. Rev. B 55, R6117 (1997); B. Normand and T.M. Rice, Phys. Rev. B 54, 7180 (1996).

  4. Positive and Negative Coulomb Drag in a 1D Quantum Circuit

    NASA Astrophysics Data System (ADS)

    Laroche, Dominique; Gervais, Guillaume; Lilly, Mike; Reno, John

    2012-02-01

    We report Coulomb drag measurements between tunable vertically-coupled quantum wires. The wires are fabricated in a GaAs/AlGaAs double quantum well heterostructure with a 15 nm barrier separating the quantum wells. The Coulomb drag signal is mapped out versus the number of subbands occupied in each wire, and regions of both positive and negative drag are observed (D. Laroche et. al. Nature Nanotechnology, doi:10.1038/nnano.2011.182). The observation of negative Coulomb drag at a high one-dimensional electronic density is not predicted by the usual momentum-transfer model for Coulomb drag and shows that the existing picture of the drag effect in one-dimension is incomplete. In order to clarify the origin of this negative signal, temperature dependencies of the Coulomb drag are presented both in the positive and in the negative drag regimes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. On The Exact and JWKB Solution of 1D Quantum Harmonic Oscillator by Mathematica

    NASA Astrophysics Data System (ADS)

    Deniz, Coşkun

    2016-04-01

    Although being the fundamental semiclassical approximation method mainly used in quantum mechanics and optical waveguides, JWKB method along with the application of the associated JWKB asymptotic matching rules is known to give exact solutions for the Quantum Harmonic Oscillator (QHO). Asymptotically matched JWKB solutions are typically accurate or exact in the entire domain except for a narrow domain around the classical turning points where potential energy equals the total energy of the related quantum mechanical system. So, one has to cope with this diverging behavior at the classical turning points since it prohibits us from using continuity relations at the related boundaries to determine the required JWKB coefficients. Here, a computational diagram and related mathematica codes to surmount the problem by applying parity matching for even and odd JWKB solutions rather than boundary continuities are being presented. In effect, JWKB coefficients as well as the conversion factor for the dimensionless form of the Schrodingers equation, which is common to both exact and JWKB solutions, is being successfully obtained.

  6. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.

    PubMed

    Vasseur, Romain; Moore, Joel E

    2014-04-11

    The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.

  7. Quantum Spin-Quantum Anomalous Hall Insulators and Topological Transitions in Functionalized Sb(111) Monolayers.

    PubMed

    Zhou, Tong; Zhang, Jiayong; Zhao, Bao; Zhang, Huisheng; Yang, Zhongqin

    2015-08-12

    Electronic and topological behaviors of Sb(111) monolayers decorated with H and certain magnetic atoms are investigated by using ab initio methods. The drastic exchange field induced by the magnetic atoms, together with strong spin-orbit coupling (SOC) of Sb atoms, generates one new category of valley polarized topological insulators, called quantum spin-quantum anomalous Hall (QSQAH) insulators in the monolayer, with a band gap up to 53 meV. The strong SOC is closely related to Sb px and py orbitals, instead of pz orbitals in usual two-dimensional (2D) materials. Topological transitions from quantum anomalous Hall states to QSQAH states and then to time-reversal-symmetry-broken quantum spin Hall states are achieved by tuning the SOC strength. The behind mechanism is revealed. Our work is helpful for future valleytronic and spintronic applications in 2D materials.

  8. Quantum coherence of spin-boson model at finite temperature

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Xu, Jing-Bo

    2017-02-01

    We investigate the dynamical behavior of quantum coherence in spin-boson model, which consists of a qubit coupled to a finite-temperature bosonic bath with power-law spectral density beyond rotating wave approximation, by employing l1-norm as well as quantum relative entropy. It is shown that the temperature of bosonic bath and counter-rotating terms significantly affect the decoherence rate in sub-Ohmic, Ohmic and super-Ohmic baths. At high temperature, we find the counter-rotating terms of spin-boson model are able to increase the decoherence rate for sub-Ohmic baths, however, for Ohmic and super-Ohmic baths, the counter-rotating terms tend to decrease the value of decoherence rate. At low temperature, we find the counter-rotating terms always play a positive role in preserving the qubit's quantum coherence regardless of sub-Ohmic, Ohmic and super-Ohmic baths.

  9. Global phase diagram and quantum spin liquids in a spin-1/2 triangular antiferromagnet

    NASA Astrophysics Data System (ADS)

    Gong, Shou-Shu; Zhu, W.; Zhu, J.-X.; Sheng, D. N.; Yang, Kun

    2017-08-01

    We study the spin-1 /2 Heisenberg model on the triangular lattice with the nearest-neighbor J1>0 , the next-nearest-neighobr J2>0 Heisenberg interactions, and the additional scalar chiral interaction Jχ(S⃗i×S⃗j) .S⃗k for the three spins in all the triangles using large-scale density matrix renormalization group calculation on cylinder geometry. With increasing J2 (J2/J1≤0.3 ) and Jχ (Jχ/J1≤1.0 ) interactions, we establish a quantum phase diagram with the magnetically ordered 120∘, stripe, and noncoplanar tetrahedral phase. In between these magnetic order phases, we find a chiral spin liquid (CSL) phase, which is identified as a ν =1 /2 bosonic fractional quantum Hall state with possible spontaneous rotational symmetry breaking. By switching on the chiral interaction, we find that the previously identified spin liquid in the J1-J2 triangular model (0.08 ≲J2/J1≲0.15 ) shows a phase transition to the CSL phase at very small Jχ. We also compute the spin triplet gap in both spin liquid phases, and our finite-size results suggest a large gap in the odd topological sector but a small or vanishing gap in the even sector. We discuss the implications of our results on the nature of the spin liquid phases.

  10. Memory-built-in quantum cloning in a hybrid solid-state spin register.

    PubMed

    Wang, W-B; Zu, C; He, L; Zhang, W-G; Duan, L-M

    2015-07-16

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.

  11. Memory-built-in quantum cloning in a hybrid solid-state spin register

    NASA Astrophysics Data System (ADS)

    Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.

    2015-07-01

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.

  12. Memory-built-in quantum cloning in a hybrid solid-state spin register

    PubMed Central

    Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.

    2015-01-01

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science. PMID:26178617

  13. The Helical Liquid and the Edge of Quantum Spin Hall Systems

    NASA Astrophysics Data System (ADS)

    Wu, Congjun; Bernevig, B. Andrei; Zhang, Shou-Cheng

    2006-03-01

    The edge states of the recently proposed quantum spin Hall systems constitute a new symmetry class of one-dimensional liquids dubbed the ``helical liquid,'' where the spin orientation is determined by the direction of electron motion. We prove a no-go theorem which states that a helical liquid with an odd number of components cannot be constructed in a purely 1D lattice system. In a helical liquid with an odd number of components, a uniform gap in the ground state can only appear when the time-reversal (TR) symmetry is spontaneously broken by interactions. On the other hand, a correlated two-particle backscattering term by an impurity can become relevant while keeping the TR invariance. We further study the Kondo effect in such a liquid which exhibits new features in the structure of the screening cloud.

  14. Interaction-induced spin polarization in quantum dots.

    PubMed

    Rogge, M C; Räsänen, E; Haug, R J

    2010-07-23

    The electronic states of lateral many-electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb-blockade peaks are measured. A zigzag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.

  15. Hexagonal plaquette spin-spin interactions and quantum magnetism in a two-dimensional ion crystal

    NASA Astrophysics Data System (ADS)

    Nath, R.; Dalmonte, M.; Glaetzle, A. W.; Zoller, P.; Schmidt-Kaler, F.; Gerritsma, R.

    2015-06-01

    We propose a trapped ion scheme en route to realize spin Hamiltonians on a Kagome lattice which, at low energies, are described by emergent {{{Z}}}2 gauge fields, and support a topological quantum spin liquid ground state. The enabling element in our scheme is the hexagonal plaquette spin-spin interactions in a two-dimensional ion crystal. For this, the phonon-mode spectrum of the crystal is engineered by standing-wave optical potentials or by using Rydberg excited ions, thus generating localized phonon-modes around a hexagon of ions selected out of the entire two-dimensional crystal. These tailored modes can mediate spin-spin interactions between ion-qubits on a hexagonal plaquette when subject to state-dependent optical dipole forces. We discuss how these interactions can be employed to emulate a generalized Balents-Fisher-Girvin model in minimal instances of one and two plaquettes. This model is an archetypical Hamiltonian in which gauge fields are the emergent degrees of freedom on top of the classical ground state manifold. Under realistic situations, we show the emergence of a discrete Gauss’s law as well as the dynamics of a deconfined charge excitation on a gauge-invariant background using the two-plaquettes trapped ions spin-system. The proposed scheme in principle allows further scaling in a future trapped ion quantum simulator, and we conclude that our work will pave the way towards the simulation of emergent gauge theories and quantum spin liquids in trapped ion systems.

  16. Asymptotic Analysis of Spin Networks with Applications to Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Haggard, Hal Mayi

    This work initiates a study of the semiclassical limit of quantum gravity using a geometrical formulation of WKB theory and the Hamilton-Jacobi equation. Few conceptual principles are available to guide physicists in the construction of a quantum theory of gravity. Experimentally accessible signals are notoriously difficult to extract from existing proposals and one of the few reasonable constraints that we can impose is that the proposals agree with general relativity in the classical limit. Because general relativity is such a rich classical theory this is a non-trivial condition, one that has yet to be quantitatively achieved by any theory of quantum gravity. The main focus of the dissertation is on the semiclassics of SU(2) spin networks. Spin networks play an important role in the loop gravity approach to quantum gravity, where they furnish a convenient and geometrically meaningful basis for the Hilbert space. Previous work on the semiclassics and asymptotics of spin networks have focused on a coherent state approach. Here we provide alternative methods based on geometrical Lagrangian manifolds. This new perspective is complementary; for example, calculation of amplitudes is very straightforward, and should open new research avenues. The thesis consists of two parts. In the first part, Foundations, we review the geometrical formulation of WKB theory and introduce the theory of spin networks from the beginning. These chapters make the tools and applications covered in this thesis readily accessible to new researchers and open the door to further cross-fertilization between researchers in semiclassics and loop gravity. In the second part, Applications, we focus on two applications of semiclassical theory to objects arising in loop gravity. In the loop approach to quantum gravity the geometry of space becomes discretized. Our first application is a derivation of the semiclassical spectrum and wavefunctions of the volume operator of a tetrahedral grain of space. A

  17. Induced Superconductivity in the Quantum Spin Hall Edge

    NASA Astrophysics Data System (ADS)

    Ren, Hechen; Hart, Sean; Wagner, Timo; Leubner, Philipp; Muehlbauer, Mathias; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; Yacoby, Amir

    2014-03-01

    Two-dimensional topological insulators have a gapped bulk and helical edge states, making it a quantum spin Hall insulator. Combining such edge states with superconductivity can be an excellent platform for observing and manipulating localized Majorana fermions. In the context of condensed matter, these are emergent electronic states that obey non-Abelian statistics and hence support fault-tolerant quantum computing. To realize such theoretical constructions, an essential step is to show these edge channels are capable of carrying coherent supercurrent. In our experiment, we fabricate Josephson junctions with HgTe/HgCdTe quantum wells, a two-dimensional material that becomes a quantum spin Hall insulator when the quantum well is thicker than 6.3 nm and the bulk density is depleted. In this regime, we observe supercurrents whose densities are confined to the edges of the junctions, with edge widths ranging from 180 nm to 408 nm. To verify the topological nature of these edges, we measure identical junctions with HgTe/HgCdTe quantum wells thinner than 6.3 nm and observe only uniform supercurrent density across the junctions. This research is supported by Microsoft Corporation Project Q, the NSF DMR-1206016, the DOE SCGF Program, the German Research Foundation, and EU ERC-AG program.

  18. Nuclear-Spin Measurements of Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshiro

    Nuclear magnetic resonance (NMR) is widely used in the physical, chemical, and biological sciences. However, conventional NMR techniques based on induction-detection have drawbacks of low-sensitivity and the need of a relatively large sample. It is not suitable to investigate single or double layers (or their nanostructure), which is essential in studying quantum Hall (QH) effects. In this presentation, I discussed a resistively-detected technique to overcome the low-sensitivity limitation of conventional NMR and its application to QH systems. Resistively-detected nuclear-spin-based measurements rely on enhanced interactions between electron and nuclear spins at the degenerate point of different electron-spin states. For example, at the ν = 2/3 degenerate point in a AlGaAs/GaAs system,1-3 nuclear-spin polarization far beyond the thermal equilibrium is generated using current flow (dynamic nuclear-spin polarization). Moreover, nuclear-spin polarization can be detected as enhanced resistance, which is proportional to the magnetization, Mz, of nuclear spins.2 It should be stressed that the special states of ν = 2/3 are needed for dynamic nuclear-spin polarization and Mz detection, but we can apply NMR spectrum and nuclear-spin relaxation (T1 time) measurements for any state we want to estimate. These nuclear-spin-based measurements were successfully applied to characterize QH systems, especially their electron-spin features, using single and double layer systems where characteristics are controlled electrically by the gate biases. For a single layer, we could clarify skyrmion,2 spin-polarization of composite fermion,4 and enhanced spin-orbit interactions in a strongly asymmetric confinement.5 Exciting phases, like a canted antiferromagnetic phase, were studied in a double layer QH system with a total filling factor of 2 (Refs. 6, 7). The low-frequency mode was sensitively detected by monitoring T1, reflecting correlated electron spin features.7 The clear

  19. Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons

    SciTech Connect

    Gopar, Víctor A.

    2014-01-14

    Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studied phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.

  20. Towards Quantum Teleportation Between a Photonic Qubit and a Quantum Dot Spin State

    NASA Astrophysics Data System (ADS)

    Wong, Jia Jun; Yang, Jian; Kwiat, Paul

    2015-05-01

    Quantum teleportation plays a vital role in quantum computation and communication, as it provides an interface between dissimilar qubits, allowing the possibility to exploit experimental advantages presented in different quantum systems. For example, a quantum dot spin qubit can be used for long storage time while a telecom wavelength photonic qubit can be used for robust information transfer between distant parties. Here we are developing a narrowband single-photon source with the aim of demonstrating quantum teleportation of a photonic state to a quantum dot spin state. To ensure high indistinguishability between the photon sources, cavity-enhanced spontaneous parametric down-conversion is used to generate narrowband photons of 200 MHz, matching the entangled spin-photon state emitted from the quantum dot. The source cavity mainly consists of three optical components in sequence, type-II nonlinear crystal (PPKTP), a KTP crystal for double-resonance tuning and a concave output coupler. By placing a polarizing beam splitter after the source, a single photon can be heralded at an expected rate of 13 kHz. To achieve high fidelity, an electro-optic modulator can be used to match the frequencies of the down-conversion and quantum dot photons.

  1. Quantum Computational Complexity of Spin Glasses

    DTIC Science & Technology

    2011-03-19

    the absence of an external magnetic field, and the Robertson - Seymour theorem from graph theory. We gave as an example a set of quantum circuits with a...classical algorithm for the Ising partition function of any planar graph in the absence of an external magnetic field, and the Robertson - Seymour theorem

  2. Dynamics of a j =3/2 quantum spin liquid

    NASA Astrophysics Data System (ADS)

    Natori, W. M. H.; Daghofer, M.; Pereira, R. G.

    2017-09-01

    We study a spin-orbital model for 4 d1 or 5 d1 Mott insulators in ordered double perovskites with strong spin-orbit coupling. This model is conveniently written in terms of pseudospin and pseudo-orbital operators representing multipoles of the effective j =3/2 angular momentum. Similarities between this model and the effective theories of Kitaev materials motivate the proposal of a chiral spin-orbital liquid with Majorana fermion excitations. The thermodynamic and spectroscopic properties of this quantum spin liquid are characterized using parton mean-field theory. The heat capacity, spin-lattice relaxation rate, and dynamic structure factor for inelastic neutron scattering are calculated and compared with the experimental data for the spin liquid candidate Ba2YMoO6 . Moreover, based on a symmetry analysis, we discuss the operators involved in resonant inelastic x-ray scattering (RIXS) amplitudes for double-perovskite compounds. In general, the RIXS cross sections allow one to selectively probe pseudospin and pseudo-orbital degrees of freedom. For the chiral spin-orbital liquid in particular, these cross sections provide information about the spectrum for different flavors of Majorana fermions.

  3. Quantum Optics with Spins and Photons in Diamond

    NASA Astrophysics Data System (ADS)

    Chu, Yiwen; Togan, Emre; Lukin, Mikhail

    2012-02-01

    Quantum control of interactions between photons and solid-state systems has important applications in quantum information, metrology, and the study of material properties. The nitrogen-vacancy (NV) color center in diamond is one such solid-state system that has shown great promise as an optically addressable spin qubit and highly sensitive magnetometer. We present recent work on coherent control of spin-photon interactions in a complex solid-state environment using coherent population trapping (CPT). The intrinsic magnetic field sensitivity of our CPT scheme allows us to measure the instantaneous Overhauser field associated with the ^13C bath present in the diamond crystal. We show that this quantum measurement technique can be used to prepare a state of the ^13C bath that has much reduced uncertainty in the associated Overhauser field. Such a state is verified by observing a modification and narrowing of the transmission window. The preparation of a more well-defined configuration of the nuclear spin environment could lead to an increase in the coherence times of the NV electronic spin qubit, which in turn has applications in increasing the sensitivity of NV-based magnetometers.

  4. Optical Pulse Control of Electron and Nuclear Spins in Quantum Dots

    DTIC Science & Technology

    2009-01-01

    2 T. Kennedy,1 A. Bracker,1 and T. Reinecke1 1Electronics Science and Technology Division 2George Mason University Introduction: Quantum information...decryption of codes with long encryption keys. Electron spins in quantum dots (QDs) are being widely investigated as qubits for storage and processing...field quantum dot la se r pu ls es z x y nuclear spins electron spin + nuclear spin field Sx El lip tic ity ( ra d) Delay time (ps) tim e Sy

  5. Competing exotic quantum phases of spin- 12 ultracold lattice bosons with extended spin interactions

    DOE PAGES

    Chang, Chia-Chen; Rousseau, Valéry G.; Scalettar, Richard T.; ...

    2015-08-12

    Advances in pure optical trapping techniques now allow the creation of degenerate Bose gases with internal degrees of freedom. Systems such as 87Rb, 39K or 23Na in the F = 1 hyperfine state offer an ideal platform for studying the interplay of super fluidity and quantum magnetism. Motivated by the experimental developments, we study ground state phases of a two-component Bose gas loaded on an optical lattice. We describe this effectively by the Bose-Hubbard Hamiltonian with onsite and near neighbor spin-spin interactions. One important feature of our investigation is the inclusion of interconversion (spin-flip) terms between the two species, whichmore » has been observed in optical lattice experiments. Furthermore, using mean-field theory and quantum Monte Carlo simulations, we map out the phase diagram of the system. A rich variety of phases is identified, including antiferromagnetic (AF) Mott insulators, ferromagnetic and AF super fluids.« less

  6. Spin-dependent thermoelectric effect and spin battery mechanism in triple quantum dots with Rashba spin-orbital interaction

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Ping; Zhang, Yu-Ying; Wang, Qiang; Nie, Yi-Hang

    2016-11-01

    We have studied spin-dependent thermoelectric transport through parallel triple quantum dots with Rashba spin-orbital interaction (RSOI) embedded in an Aharonov-Bohm interferometer connected symmetrically to leads using nonequilibrium Green’s function method in the linear response regime. Under the appropriate configuration of magnetic flux phase and RSOI phase, the spin figure of merit can be enhanced and is even larger than the charge figure of merit. In particular, the charge and spin thermopowers as functions of both the magnetic flux phase and the RSOI phase present quadruple-peak structures in the contour graphs. For some specific configuration of the two phases, the device can provide a mechanism that converts heat into a spin voltage when the charge thermopower vanishes while the spin thermopower is not zero, which is useful in realizing the thermal spin battery and inducing a pure spin current in the device. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274208 and 11447170).

  7. Spin-dependent quantum interference in photoemission process from spin-orbit coupled states

    PubMed Central

    Yaji, Koichiro; Kuroda, Kenta; Toyohisa, Sogen; Harasawa, Ayumi; Ishida, Yukiaki; Watanabe, Shuntaro; Chen, Chuangtian; Kobayashi, Katsuyoshi; Komori, Fumio; Shin, Shik

    2017-01-01

    Spin–orbit interaction entangles the orbitals with the different spins. The spin–orbital-entangled states were discovered in surface states of topological insulators. However, the spin–orbital-entanglement is not specialized in the topological surface states. Here, we show the spin–orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin–orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin–orbit interaction. PMID:28232721

  8. Quantum control of spin-nematic squeezing in a dipolar spin-1 condensate

    PubMed Central

    Huang, Yixiao; Xiong, Heng-Na; Yang, Yang; Hu, Zheng-Da; Xi, Zhengjun

    2017-01-01

    Versatile controllability of interactions and magnetic field in ultracold atomic gases ha now reached an era where spin mixing dynamics and spin-nematic squeezing can be studied. Recent experiments have realized spin-nematic squeezed vacuum and dynamic stabilization following a quench through a quantum phase transition. Here we propose a scheme for storage of maximal spin-nematic squeezing, with its squeezing angle maintained in a fixed direction, in a dipolar spin-1 condensate by applying a microwave pulse at a time that maximal squeezing occurs. The dynamic stabilization of the system is achieved by manipulating the external periodic microwave pulses. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is numerical simulated and agrees with a stability analysis. Moreover, the stability range coincides well with the spin-nematic vacuum squeezed region which indicates that the spin-nematic squeezed vacuum will never disappear as long as the spin dynamics are stabilized. PMID:28233786

  9. Quantum Spin Hall Effect in Inverted Type II Semiconductors

    SciTech Connect

    Liu, Chaoxing; Hughes, Taylor L.; Qi, Xiao-Liang; Wang, Kang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum spin Hall (QSH) state is a topologically non-trivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells. In this work we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. Because of a rare band alignment the quantum well band structure exhibits an 'inverted' phase similar to CdTe/HgTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking and inter-layer charge transfer are essential. By standard self-consistent calculations, we show that the QSH state persists when these corrections are included, and a quantum phase transition between the normal insulator and the QSH phase can be electrically tuned by the gate voltage.

  10. Hyperfine Interactions for Hole Spins in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Philippoppoulos, Pericles; Chesi, Sefano; Coish, William

    2014-03-01

    Due to the anisotropic nature of the hyperfine coupling for hole spins in semiconductor quantum dots, these systems may show significantly longer coherence times than electron spins given the correct quantum-dot geometry and magnetic field orientation. This advantage of hole spins relies on the hyperfine tensor taking-on an Ising-like form. This form of the hyperfine coupling has been recently called into question with experiments that have been interpreted to indicate a strong hybridization of p-like and d-like components in the valence band of III-V semiconductors. However, this interpretation relies on two assumptions: (1) That spin-orbit coupling is weak in these systems compared to the anisotropic crystal field, and (2) that higher-angular-momentum contributions are negligible. Assumption (1) may break down in light of the fact that the spin-orbit energy is even larger than the principle gap in InAs, and assumption (2) is difficult to justify in any crystal that breaks pure rotational symmetry. Using a generalization of the group-theoretic analysis in, we show here that relaxing either of these assumptions can restore the Ising-like nature of the hyperfine tensor, albeit for a particular choice of coupling constants.

  11. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin.

    PubMed

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-11

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796±0.020. Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  12. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-01

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  13. Room-temperature spin-photon interface for quantum networks

    NASA Astrophysics Data System (ADS)

    Hong, Fang-Yu; Fu, Jing-Li; Wu, Yan; Zhu, Zhi-Yan

    2017-02-01

    Although remarkable progress has been achieved recently, to construct an optical cavity where a nitrogen-vacancy (NV) colour centre in diamond is coupled to an optical field in the strong coupling regime is rather difficult. We propose an architecture for a scalable quantum interface capable of interconverting photonic and NV spin qubits, which can work well without the strong coupling requirement. The dynamics of the interface applies an adiabatic passage to sufficiently reduce the decoherence from an excited state of a NV colour centre in diamond. This quantum interface can accomplish many quantum network operations like state transfer and entanglement distribution between qubits at distant nodes. Exact numerical simulations show that high-fidelity quantum interface operations can be achieved under room-temperature and realistic experimental conditions.

  14. Multiple quantum magic-angle spinning using rotary resonance excitation

    NASA Astrophysics Data System (ADS)

    Vosegaard, Thomas; Florian, Pierre; Massiot, Dominique; Grandinetti, Philip J.

    2001-03-01

    We have discovered rotary resonances between rf field strength, ω1, and magic-angle spinning (MAS) frequency, ωR, which dramatically enhance the sensitivity of triple quantum preparation and mixing in the multiple-quantum MAS experiment, particularly for quadrupolar nuclei having low gyromagnetic ratios or experiencing strong quadrupole couplings. Triple quantum excitation efficiency minima occur when 2ω1=nωR, where n is an integer, with significant maxima occurring between these minima. For triple quantum mixing we observe maxima when ω1=nωR. In both preparation and mixing the pulse lengths required to reach maxima exceed one rotor period. We have combined these rotary resonance conditions into a new experiment called FASTER MQ-MAS, and have experimentally demonstrated a factor of 3 enhancement in sensitivity in comparison to conventional MQ-MAS.

  15. Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots

    SciTech Connect

    Khaetskii, Alexander V.; Nazarov, Yuli V.

    2001-09-15

    We have studied spin-flip transitions between Zeeman sublevels in GaAs electron quantum dots. Several different mechanisms which originate from spin-orbit coupling are shown to be responsible for such processes. It is shown that spin-lattice relaxation for the electron localized in a quantum dot is much less effective than for the free electron. The spin-flip rates due to several other mechanisms not related to the spin-orbit interaction are also estimated.

  16. Lars Onsager Prize Talk: 1+1d conformal field theories as natural languages for asymptotically large-scale quantum computing

    NASA Astrophysics Data System (ADS)

    Friedan, Daniel

    2010-03-01

    An abstract argument is offered that the ideal physical systems for asymptotically large-scale quantum computers are near-critical quantum circuits, critical in the bulk, whose bulk universality classes are described by 1+1d conformal field theories. One in particular -- the Monster conformal field theory -- is especially ideal, because all of its bulk couplings are irrelevant.

  17. Logarithmic current fluctuations in nonequilibrium quantum spin chains.

    PubMed

    Antal, T; Krapivsky, P L; Rákos, A

    2008-12-01

    We study zero-temperature quantum spin chains, which are characterized by a nonvanishing current. For the XX model starting from the initial state mid R:cdots, three dots, centered upward arrow upward arrow upward arrow downward arrow downward arrow downward arrowcdots, three dots, centered we derive an exact expression for the variance of the total spin current. We show that asymptotically the variance exhibits an anomalously slow logarithmic growth; we also extract the subleading constant term. We then argue that the logarithmic growth remains valid for the XXZ model in the critical region.

  18. Quantum phase transition in dimerised spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali

    2015-11-01

    Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.

  19. Quantum Critical Spin-2 Chain with Emergent SU(3) Symmetry

    NASA Astrophysics Data System (ADS)

    Chen, Pochung; Xue, Zhi-Long; McCulloch, I. P.; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S.-K.

    2015-04-01

    We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU (3 )1 Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.

  20. Quantum spin Hall effect in nanostructures based on cadmium fluoride

    SciTech Connect

    Bagraev, N. T.; Guimbitskaya, O. N.; Klyachkin, L. E.; Koudryavtsev, A. A.; Malyarenko, A. M.; Romanov, V. V.; Ryskin, A. I.; Shcheulin, A. S.

    2010-10-15

    Tunneling current-voltage (I-V) characteristics and temperature dependences of static magnetic susceptibility and specific heat of the CdB{sub x}F{sub 2-x}/p-CdF{sub 2}-QW/CdB{sub x}F{sub 2-x} planar sandwich structures formed on the surface of an n-CdF{sub 2} crystal have been studied in order to identify superconducting properties of the CdB{sub x}F{sub 2-x} {delta} barriers confining the p-type CdF{sub 2} ultranarrow quantum well. Comparative analysis of current-voltage (I-V) characteristics and conductance-voltage dependences (measured at the temperatures, respectively, below and above the critical temperature of superconducting transition) indicates that there is an interrelation between quantization of supercurrent and dimensional quantization of holes in the p-CdF{sub 2} ultranarrow quantum well. It is noteworthy that detection of the Josephson peak of current in each hole subband is accompanied by the appearance of the spectrum of the multiple Andreev reflection (MAR). A high degree of spin polarization of holes in the edge channels along the perimeter of the p-CdF{sub 2} ultranarrow quantum well appears as a result of MAR and makes it possible to identify the quantum spin Hall effect I-V characteristics; this effect becomes pronounced in the case of detection of nonzero conductance at the zero voltage applied to the vertical gate in the Hall geometry of the experiment. Within the energy range of superconducting gap, the I-V characteristics of the spin transistor and quantum spin Hall effect are controlled by the MAR spectrum appearing as the voltage applied to the vertical gate is varied. Beyond the range of the superconducting gap, the observed I-V characteristic of the quantum spin Hall effect is represented by a quantum conductance staircase with a height of the steps equal to e{sub 2}/h; this height is interrelated with the Aharonov-Casher oscillations of longitudinal and depends on the voltage applied to the vertical gate.

  1. 8 π -periodic dissipationless ac Josephson effect on a quantum spin Hall edge via a quantum magnetic impurity

    NASA Astrophysics Data System (ADS)

    Hui, Hoi-Yin; Sau, Jay D.

    2017-01-01

    Time-reversal invariance places strong constraints on the properties of the quantum spin Hall edge. One such restriction is the inevitability of dissipation in a Josephson junction between two superconductors formed on such an edge without the presence of interaction. Interactions and spin-conservation breaking are key ingredients for the realization of the dissipationless ac Josephson effect on such quantum spin Hall edges. We present a simple quantum impurity model that allows us to create a dissipationless fractional Josephson effect on a quantum spin Hall edge. We then use this model to substantiate a general argument that shows that any such nondissipative Josephson effect must necessarily be 8 π periodic.

  2. Effective computation of quantum discord in a multiqubit spin chain

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, A.

    2016-12-01

    Quantum discord is a non-classical correlation beyond quantum entanglement, which is a possible resource for quantum information technologies. The computation of quantum discord is a difficult problem due to the necessity of global optimization. We present the original semi-algebraic method for the effective computation of discord in the multi-qubit spin chain interacting with the impurity spin. We use the random mutations algorithm in a non-standard way: not for the minimization, but for the verification of inequalities. More specifically, we use it to check the constancy condition of the minimum of conditional entropy. After that, the discord can be calculated effectively by the algebraic procedures, and we construct the discord surface for different values of the structural parameter of the model. The considered approach for the verification of inequalities by global optimization algorithms can be used in a wide variety of applications, especially, in the theory of quantum correlations, which contains a lot of definitions based on minimums and maximums.

  3. Two-axis-twisting spin squeezing by multipass quantum erasure

    NASA Astrophysics Data System (ADS)

    Wang, Mingfeng; Qu, Weizhi; Li, Pengxiong; Bao, Han; Vuletić, Vladan; Xiao, Yanhong

    2017-07-01

    Many-body entangled states are key elements in quantum information science and quantum metrology. One important problem in establishing a high degree of many-body entanglement using optical techniques is the leakage of the system information via the light that creates such entanglement. We propose an all-optical interference-based approach to erase this information. Unwanted atom-light entanglement can be removed by destructive interference of three or more successive atom-light interactions, leaving behind only atom-atom entanglement. This quantum erasure protocol allows implementation of spin squeezing with Heisenberg scaling using coherent light and a cold or warm atomic ensemble. Calculations show that a significant improvement in the squeezing exceeding 10 dB is obtained compared to previous methods, and substantial spin squeezing is attainable even under moderate experimental conditions. Our method enables the efficient creation of many-body entangled states with simple setups and, thus, is promising for advancing technologies in quantum metrology and quantum information processing.

  4. Spin polarization of half-quantum vortex in systems with equal spin pairing.

    PubMed

    Vakaryuk, Victor; Leggett, Anthony J

    2009-07-31

    We present a variational analysis for a half-quantum vortex (HQV) in the equal-spin-pairing superfluid state which, under suitable conditions, is believed to be realized in Sr(2)RuO(4) and (3)He-A. Our approach is based on a description of the HQV in terms of a BCS-like wave function with a spin-dependent boost. We predict a novel feature: the HQV, if stable, should be accompanied by a nonzero spin polarization. Such a spin polarization would exist in addition to the one induced by the Zeeman coupling to the external field and hence may serve as an indicator in experimental search for HQV.

  5. Analysis of quantum Monte Carlo dynamics for quantum adiabatic evolution in infinite-range spin systems

    NASA Astrophysics Data System (ADS)

    Inoue, Jun-Ichi

    2011-03-01

    We analytically derive deterministic equations of order parameters such as spontaneous magnetization in infinite-range quantum spin systems obeying quantum Monte Carlo dynamics. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. We discuss several possible applications of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we argue the ground state searching for infinite-range random spin systems via quantum adiabatic evolution. We were financially supported by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science, No. 22500195.

  6. Optical Spin Noise of a Single Hole Spin Localized in an (InGa)As Quantum Dot

    NASA Astrophysics Data System (ADS)

    Dahbashi, Ramin; Hübner, Jens; Berski, Fabian; Pierz, Klaus; Oestreich, Michael

    2014-04-01

    We advance spin noise spectroscopy to the ultimate limit of single spin detection. This technique enables the measurement of the spin dynamic of a single heavy hole localized in a flat (InGa)As quantum dot. Magnetic field and light intensity dependent studies reveal even at low magnetic fields a strong magnetic field dependence of the longitudinal heavy hole spin relaxation time with an extremely long T1 of ≥180 μs at 31 mT and 5 K. The wavelength dependence of the spin noise power discloses for finite light intensities an inhomogeneous single quantum dot spin noise spectrum which is explained by charge fluctuations in the direct neighborhood of the quantum dot. The charge fluctuations are corroborated by the distinct intensity dependence of the effective spin relaxation rate.

  7. Spins of Andreev states in double quantum dots

    NASA Astrophysics Data System (ADS)

    Su, Zhaoen; Chen, Jun; Yu, Peng; Hocervar, Moira; Plissard, Sebastien; Car, Diana; Tacla, Alexandre; Daley, Andrew; Pekker, David; Bakkers, Erik; Frolov, Sergey

    Andreev (or Shiba) states in coupled double quantum dots is an open field. Here we demonstrate the realization of Andreev states in double quantum dots in an InSb nanowire coupled to two NbTiN superconductors. The magnetic field dependence of the Andreev states has been explored to resolve the spins in different double dot configurations. The experiment helps to understand the interplay between pair correlation, exchange energy and charging energy with a well-controlled system. It also opens the possibility to implement Majorana modes in Kitaev chains made of such dots.

  8. Quantum signatures of breathers in a finite Heisenberg spin chain.

    PubMed

    Djoufack, Z I; Kenfack-Jiotsa, A; Nguenang, J P; Domngang, S

    2010-05-26

    A map of a quantum Heisenberg spin chain into an extended Bose-Hubbard-like Hamiltonian is set up. Within this framework, the spectrum of the corresponding Bose-Hubbard chain, on a periodic one-dimensional lattice containing two, four, and six bosons shows interesting detailed band structures. These fine structures are studied using numerical diagonalization, and nondegenerate and degenerate perturbation theory. We also focus our attention on the effect of the anisotropy and Heisenberg exchange energy on the detailed band structures. The signature of the quantum breather is also set up by the square of the amplitudes of the corresponding eigenvectors in real space.

  9. Fluctuations of the heat exchanged between two quantum spin chains.

    PubMed

    Landi, Gabriel T; Karevski, Dragi

    2016-03-01

    The statistics of the heat exchanged between two quantum XX spin chains prepared at different temperatures is studied within the assumption of weak coupling. This provides simple formulas for the average heat and its corresponding characteristic function, from which the probability distribution may be computed numerically. These formulas are valid for arbitrary sizes and therefore allow us to analyze the role of the thermodynamic limit in this nonequilibrium setting. It is found that all thermodynamic quantities are extremely sensitive to the quantum phase transition of the XX chain.

  10. Quantum simulation via filtered Hamiltonian engineering: application to perfect quantum transport in spin networks.

    PubMed

    Ajoy, Ashok; Cappellaro, Paola

    2013-05-31

    We propose a method for Hamiltonian engineering that requires no local control but only relies on collective qubit rotations and field gradients. The technique achieves a spatial modulation of the coupling strengths via a dynamical construction of a weighting function combined with a Bragg grating. As an example, we demonstrate how to generate the ideal Hamiltonian for perfect quantum information transport between two separated nodes of a large spin network. We engineer a spin chain with optimal couplings starting from a large spin network, such as one naturally occurring in crystals, while decoupling all unwanted interactions. For realistic experimental parameters, our method can be used to drive almost perfect quantum information transport at room temperature. The Hamiltonian engineering method can be made more robust under decoherence and coupling disorder by a novel apodization scheme. Thus, the method is quite general and can be used to engineer the Hamiltonian of many complex spin lattices with different topologies and interactions.

  11. Thermally enhanced Wigner oscillations in two-electron 1D quantum dots.

    PubMed

    Cavaliere, F; Ziani, N Traverso; Negro, F; Sassetti, M

    2014-12-17

    Motivated by a recent experiment (Pecker et al 2013 Nat. Phys. 9 576), we study the stability, with respect to thermal effects, of Friedel and Wigner density fluctuations for two electrons trapped in a one-dimensional quantum dot. Diagonalizing the system exactly, the finite-temperature average electron density is computed. While the weak and strong interaction regimes display a Friedel oscillation or a Wigner molecule state at zero temperature, which as expected smear and melt as the temperature increases, a peculiar thermal enhancement of Wigner correlations in the intermediate interaction regime is found. We demonstrate that this effect is due to the presence of two different characteristic temperature scales: T(F), dictating the smearing of Friedel oscillations, and T(W), smoothing Wigner oscillations. In the early Wigner molecule regime, for intermediate interactions, T(F) < T(W) leading to the enhancement of the visibility of Wigner oscillations. These results complement those obtained within the Luttinger liquid picture, valid for larger numbers of particles.

  12. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-01

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  13. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities

    PubMed Central

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-01-01

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low. PMID:25518899

  14. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  15. Quantum spin Hamiltonians for the SU(2)k WZW model

    NASA Astrophysics Data System (ADS)

    Nielsen, Anne E. B.; Cirac, J. Ignacio; Sierra, Germán

    2011-11-01

    We propose to use null vectors in conformal field theories to derive model Hamiltonians of quantum spin chains and the corresponding ground state wavefunction(s). The approach is quite general, and we illustrate it by constructing a family of Hamiltonians whose ground states are the chiral correlators of the SU(2)k WZW model for integer values of the level k. The simplest example corresponds to k = 1 and is essentially a nonuniform generalization of the Haldane-Shastry model with long-range exchange couplings. At level k = 2, we analyse the model for N spin 1 fields. We find that the Renyi entropy and the two-point spin correlator show, respectively, logarithmic growth and algebraic decay. Furthermore, we use the null vectors to derive a set of algebraic, linear equations relating spin correlators within each model. At level k = 1, these equations allow us to compute the two-point spin correlators analytically for the finite chain uniform Haldane-Shastry model and to obtain numerical results for the nonuniform case and for higher-point spin correlators in a very simple way and without resorting to Monte Carlo techniques.

  16. Control of the spin geometric phase in semiconductor quantum rings

    NASA Astrophysics Data System (ADS)

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-09-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  17. Control of the spin geometric phase in semiconductor quantum rings

    PubMed Central

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov–Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations. PMID:24067870

  18. Control of the spin geometric phase in semiconductor quantum rings.

    PubMed

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  19. Criticality without Frustration for Quantum Spin-1 Chains

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey; Caha, Libor; Movassagh, Ramis; Nagaj, Daniel; Shor, Peter W.

    2012-11-01

    Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small values of s. While FF spin-1/2 chains are known to have unentangled ground states, the case s=1 remains less explored. We propose the first example of a FF translation-invariant spin-1 chain that has a unique highly entangled ground state and exhibits some signatures of a critical behavior. The ground state can be viewed as the uniform superposition of balanced strings of left and right brackets separated by empty spaces. Entanglement entropy of one half of the chain scales as (1)/(2)log⁡n+O(1), where n is the number of spins. We prove that the energy gap above the ground state is polynomial in 1/n. The proof relies on a new result concerning statistics of Dyck paths which might be of independent interest.

  20. Spin jam induced by quantum fluctuations in a frustrated magnet

    PubMed Central

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P.; Huang, Q.; Copley, John R. D.; Lee, Seung-Hun

    2015-01-01

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr3+ (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga3+ impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p>0.8) and a cluster spin glass for lower magnetic concentration (p<0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood. PMID:26324917

  1. Criticality without frustration for quantum spin-1 chains.

    PubMed

    Bravyi, Sergey; Caha, Libor; Movassagh, Ramis; Nagaj, Daniel; Shor, Peter W

    2012-11-16

    Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small values of s. While FF spin-1/2 chains are known to have unentangled ground states, the case s=1 remains less explored. We propose the first example of a FF translation-invariant spin-1 chain that has a unique highly entangled ground state and exhibits some signatures of a critical behavior. The ground state can be viewed as the uniform superposition of balanced strings of left and right brackets separated by empty spaces. Entanglement entropy of one half of the chain scales as 1/2 log n+O(1), where n is the number of spins. We prove that the energy gap above the ground state is polynomial in 1/n. The proof relies on a new result concerning statistics of Dyck paths which might be of independent interest.

  2. Diffusion quantum Monte Carlo for atomic spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Zhu, Minyi; Guo, Shi; Mitas, Lubos

    2013-03-01

    We present a generalization of the quantum Monte Carlo methods (QMC) for dealing with the spin-orbit (SO) effects in heavy atom systems. For heavy elements, the spin-orbit interaction plays an important role in electronic structure calculation and becomes comparable to the exchange, correlations and other effects. We implement relativistic lj-dependent effective core potentials for valence-only calculations. Due to the spin-dependent Hamiltonian, the antisymmetric trial wave functions are constructed from two-component spinors in jj-coupling so that the states are labeled by its total angular momentum J. A new spin representation is proposed which is based on summation over all possible spin states without generating large fluctutations and the fixed-phase approximation is used to avoid the sign problem. Our approach is different from the recent idea based on rotating (sampling) the spinors according to the action of the spin-orbit operator. We demonstrate the approach on heavy atom and small molecular systems in both variational and diffusion Monte Carlo methods and we calculate both ground and excited states. The results show very good agreement with independent methods and experimental results within the accuracy of the used effective core potentials. Research supported by NSF and ARO.

  3. Spin jam induced by quantum fluctuations in a frustrated magnet.

    PubMed

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P; Huang, Q; Copley, John R D; Lee, Seung-Hun

    2015-09-15

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr(3+) (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga(3+) impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p > 0.8) and a cluster spin glass for lower magnetic concentration (p < 0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood.

  4. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    PubMed

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  5. Solid State Quantum Computing Using Spin Qubits in Silicon Quantum Dots (QCCM)

    DTIC Science & Technology

    2009-07-16

    electron silicon quantum dot. In the absence of a perpendicular magnetic field, we find that spin-orbit coupling is not the main source of singlet-triplet...in an external magnetic field perpendicular to the plane of the dot, spin-orbit coupling plays a particularly important role for decoherence...Indeed, a strong anisotropy emerges: parallel magnetic field can increase substantially the relaxation time due to Zeeman splitting, but when the

  6. Multistability and spin diffusion enhanced lifetimes in dynamic nuclear polarization in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Forster, F.; Mühlbacher, M.; Schuh, D.; Wegscheider, W.; Giedke, G.; Ludwig, S.

    2015-12-01

    The control of nuclear spins in quantum dots is essential to explore their many-body dynamics and exploit their prospects for quantum information processing. We present a unique combination of dynamic nuclear spin polarization and electric-dipole-induced spin resonance in an electrostatically defined double quantum dot (DQD) exposed to the strongly inhomogeneous field of two on-chip nanomagnets. Our experiments provide direct and unrivaled access to the nuclear spin polarization distribution and allow us to establish and characterize multiple fixed points. Further, we demonstrate polarization of the DQD environment by nuclear spin diffusion which significantly stabilizes the nuclear spins inside the DQD.

  7. Measuring nonequilibrium retarded spin-spin Green's functions in an ion-trap-based quantum simulator

    NASA Astrophysics Data System (ADS)

    Yoshimura, Bryce T.; Freericks, J. K.

    2016-05-01

    Recently a variant on Ramsey interferometry for coupled spin-1 /2 systems was proposed to directly measure the retarded spin-spin Green's function. In conventional experimental situations, the spin system is initially in a nonequilibrium state before the Ramsey interferometry is performed, so we examine the nonequilibrium retarded spin-spin Green's functions within the transverse-field Ising model. We derive the lowest four spectral moments to understand the short-time behavior and we employ a Lehmann-like representation to determine the spectral behavior. We simulate a Ramsey protocol for a nonequilibrium quantum spin system that consists of a coherent superposition of the ground state and diabatically excited higher-energy states via a temporally ramped transverse magnetic field. We then apply the Ramsey spectroscopy protocol to the final Hamiltonian, which has a constant transverse field. The short time allows us to extract the initial transport of many-body correlations, while the long-time behavior relates to the excitation spectra of the Hamiltonian. Compressive sensing is employed in the data analysis to efficiently extract that spectra.

  8. Quantum spin Hall phase and surface spin current in Bi and Sb

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi

    2007-03-01

    In the quantum spin Hall (QSH) phase, the bulk is gapped while edge states are gapless and carry spin currents. Experimental studies for the QSH phase are called for. To search for candidates of the 2D QSH phase, we relate the spin Hall conductivity in insulators with magnetic response of the orbital magnetization to the Zeeman field. In this respect, bismuth is promising since it is a strong diamagnet enhanced by spin-orbit coupling. For a 2D (111)-bilayer bismuth, we calculate the Z2 topological number, the band structure for the strip geometry, the spin Chern number, and the parity at the time-reversal symmetric wavenumbers. We predict that the (111)-bilayer bismuth will be a QSH phase [1]. On the other hand, it was proposed recently that 3D bismuth is a simple insulator, and not the QSH phase, by parity consideration [2]. Transition from the 2D QSH topological phase to the 3D simple insulator phase is described by gradually increasing inter-bilayer hopping, thereby band-touching occurs at high- symmetry points and parities of the wavefunctions are exchanged. Similar discussion applies for Sb, where 2D bilayer is a simple insulator and 3D bulk is the QSH phase. Finally, we compare the theory with the ARPES data showing surface spin-splitting (spin current) for various surfaces of Bi and Sb. [1] S. Murakami, cond-mat/0607001 (to appear in Phys. Rev. Lett.). [2] L. Fu, C. L. Kane, cond-mat/0611341.

  9. Generation of Quality Pulses for Control of Qubit/Quantum Memory Spin States: Experimental and Simulation

    DTIC Science & Technology

    2016-09-01

    TECHNICAL REPORT 3046 September 2016 GENERATION OF QUALITY PULSES FOR CONTROL OF QUBIT/QUANTUM MEMORY SPIN STATES: EXPERIMENTAL AND SIMULATION...nuclear spin states of qubits/quantum memory applicable to semiconductor, superconductor, ionic, and superconductor-ionic hybrid technologies. As the...expected control of the spin flipping and rotation in the Bloch sphere

  10. Numerical Evidence of Quantum Melting of Spin Ice: Quantum-to-Classical Crossover

    NASA Astrophysics Data System (ADS)

    Kato, Yasuyuki; Onoda, Shigeki

    2015-08-01

    Unbiased quantum Monte Carlo simulations are performed on the nearest-neighbor spin-1/2 pyrochlore X X Z model with an antiferromagnetic longitudinal and the weak ferromagnetic transverse exchange couplings, J and J⊥ . The specific heat exhibits a broad peak at TCSI˜0.2 J associated with a crossover to a classical Coulomb liquid regime showing a suppressed spin-ice monopole density, a broadened pinch-point singularity, and the Pauling entropy for |J⊥|≪J , as in classical spin ice. On further cooling, the entropy restarts decaying for J⊥>J⊥c˜-0.104 J , producing another broad specific heat peak for a crossover to a bosonic quantum Coulomb liquid, where the spin correlation contains both photon and quantum spin-ice monopole contributions. With negatively increasing J⊥ across J⊥c, a first-order thermal phase transition occurs from the quantum Coulomb liquid to an X Y ferromagnet. Relevance to magnetic rare-earth pyrochlore oxides is discussed.

  11. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    SciTech Connect

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Enders, J.; Köhler, A.; Kozela, A.

    2013-11-07

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.

  12. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bodek, K.; Caban, P.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.; Rembieliński, J.; Rozpedzik, D.; Włodarczyk, M.; Zejma, J.

    2013-11-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.

  13. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-07-29

    We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.

  14. Optical pumping of a single hole spin in a quantum dot.

    PubMed

    Gerardot, Brian D; Brunner, Daniel; Dalgarno, Paul A; Ohberg, Patrik; Seidl, Stefan; Kroner, Martin; Karrai, Khaled; Stoltz, Nick G; Petroff, Pierre M; Warburton, Richard J

    2008-01-24

    The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation. However, this advantage is offset by the hyperfine interaction between the electron spin and the 10(4) to 10(6) spins of the host nuclei in the quantum dot. Random fluctuations in the nuclear spin ensemble lead to fast spin decoherence in about ten nanoseconds. Spin-echo techniques have been used to mitigate the hyperfine interaction, but completely cancelling the effect is more attractive. In principle, polarizing all the nuclear spins can achieve this but is very difficult to realize in practice. Exploring materials with zero-spin nuclei is another option, and carbon nanotubes, graphene quantum dots and silicon have been proposed. An alternative is to use a semiconductor hole. Unlike an electron, a valence hole in a quantum dot has an atomic p orbital which conveniently goes to zero at the location of all the nuclei, massively suppressing the interaction with the nuclear spins. Furthermore, in a quantum dot with strong strain and strong quantization, the heavy hole with spin-3/2 behaves as a spin-1/2 system and spin decoherence mechanisms are weak. We demonstrate here high fidelity (about 99 per cent) initialization of a single hole spin confined to a self-assembled quantum dot by optical pumping. Our scheme works even at zero magnetic field, demonstrating a negligible hole spin hyperfine interaction. We determine a hole spin relaxation time at low field of about one millisecond. These results suggest a route to the realization of solid-state quantum networks that can intra-convert the spin state with the polarization of a photon.

  15. Selective spin transport through a quantum heterostructure: Transfer matrix method

    NASA Astrophysics Data System (ADS)

    Dey, Moumita; Maiti, Santanu K.

    2016-09-01

    In the present work, we propose that a one-dimensional quantum heterostructure composed of magnetic and non-magnetic (NM) atomic sites can be utilized as a spin filter for a wide range of applied bias voltage. A simple tight-binding framework is given to describe the conducting junction where the heterostructure is coupled to two semi-infinite one-dimensional NM electrodes. Based on transfer matrix method, all the calculations are performed numerically which describe two-terminal spin-dependent transmission probability along with junction current through the wire. Our detailed analysis may provide fundamental aspects of selective spin transport phenomena in one-dimensional heterostructures at nanoscale level.

  16. Driven spin systems as quantum thermodynamic machines: Fundamental limits

    NASA Astrophysics Data System (ADS)

    Henrich, Markus J.; Mahler, Günter; Michel, Mathias

    2007-05-01

    We show that coupled two-level systems like qubits studied in quantum-information processing can be used as a thermodynamic machine. At least three qubits or spins are necessary and they must be arranged in a chain. The system is interfaced between two split baths and the working spin in the middle is externally driven. The machine performs Carnot-type cycles and is able to work as a heat pump or engine depending on the temperature difference of the baths, ΔT , and the energy difference in the spin system, ΔE . It can be shown that the efficiency is a function of ΔT and ΔE .

  17. Fingerprints of quantum spin ice in Raman scattering

    NASA Astrophysics Data System (ADS)

    Fu, Jianlong; Rau, Jeffrey G.; Gingras, Michel J. P.; Perkins, Natalia B.

    2017-07-01

    We develop a theory of the dynamical response of a minimal model of quantum spin ice (QSI) by means of inelastic light scattering. In particular, we are interested in the Raman response of the fractionalized U(1) spin liquid realized in the XXZ QSI. We show that the low-energy Raman intensity is dominated by spinon and gauge fluctuations. We find that the Raman response in the QSI state of that model appears only in the T2 g polarization channel. We show that the Raman intensity profile displays a broad continuum from the spinons and coupled spinon and gauge fluctuations, and a low-energy peak arising entirely from gauge fluctuations. Both features originate from the exotic interaction between photon and the fractionalized excitations of QSI. Our theoretical results suggest that inelastic Raman scattering can in principle serve as a promising experimental probe of the nature of a U(1) spin liquid in QSI.

  18. Measuring Majorana nonlocality and spin structure with a quantum dot

    NASA Astrophysics Data System (ADS)

    Prada, Elsa; Aguado, Ramón; San-Jose, Pablo

    2017-08-01

    Robust zero-bias transport anomalies in semiconducting nanowires with proximity-induced superconductivity have been convincingly demonstrated in various experiments. While these are compatible with the existence of Majorana zero modes at the ends of the nanowire, a direct proof of their nonlocality and topological protection is now needed. Here we show that a quantum dot at the end of the nanowire may be used as a powerful spectroscopic tool to quantify the degree of Majorana nonlocality through a local transport measurement. Moreover, the spin polarization of dot subgap states at singlet-doublet transitions in the Coulomb blockade regime allows the dot to directly probe the spin structure of the Majorana wave function and indirectly measure the spin-orbit coupling of the nanowire.

  19. Clustering of Nonergodic Eigenstates in Quantum Spin Glasses.

    PubMed

    Baldwin, C L; Laumann, C R; Pal, A; Scardicchio, A

    2017-03-24

    The two primary categories for eigenstate phases of matter at a finite temperature are many-body localization (MBL) and the eigenstate thermalization hypothesis (ETH). We show that, in the paradigmatic quantum p-spin models of the spin-glass theory, eigenstates violate the ETH yet are not MBL either. A mobility edge, which we locate using the forward-scattering approximation and replica techniques, separates the nonergodic phase at a small transverse field from an ergodic phase at a large transverse field. The nonergodic phase is also bounded from above in temperature, by a transition in configuration-space statistics reminiscent of the clustering transition in the spin-glass theory. We show that the nonergodic eigenstates are organized in clusters which exhibit distinct magnetization patterns, as characterized by an eigenstate variant of the Edwards-Anderson order parameter.

  20. Clustering of Nonergodic Eigenstates in Quantum Spin Glasses

    NASA Astrophysics Data System (ADS)

    Baldwin, C. L.; Laumann, C. R.; Pal, A.; Scardicchio, A.

    2017-03-01

    The two primary categories for eigenstate phases of matter at a finite temperature are many-body localization (MBL) and the eigenstate thermalization hypothesis (ETH). We show that, in the paradigmatic quantum p -spin models of the spin-glass theory, eigenstates violate the ETH yet are not MBL either. A mobility edge, which we locate using the forward-scattering approximation and replica techniques, separates the nonergodic phase at a small transverse field from an ergodic phase at a large transverse field. The nonergodic phase is also bounded from above in temperature, by a transition in configuration-space statistics reminiscent of the clustering transition in the spin-glass theory. We show that the nonergodic eigenstates are organized in clusters which exhibit distinct magnetization patterns, as characterized by an eigenstate variant of the Edwards-Anderson order parameter.

  1. Typicality in spin-network states of quantum geometry

    NASA Astrophysics Data System (ADS)

    Anza, Fabio; Chirco, Goffredo

    2016-10-01

    In this work, we extend the so-called typicality approach, originally formulated in statistical mechanics contexts, to S U (2 ) -invariant spin-network states. Our results do not depend on the physical interpretation of the spin network; however, they are mainly motivated by the fact that spin-network states can describe states of quantum geometry, providing a gauge-invariant basis for the kinematical Hilbert space of several background-independent approaches to quantum gravity. The first result is, by itself, the existence of a regime in which we show the emergence of a typical state. We interpret this as the proof that in that regime there are certain (local) properties of quantum geometry which are "universal." Such a set of properties is heralded by the typical state, of which we give the explicit form. This is our second result. In the end, we study some interesting properties of the typical state, proving that the area law for the entropy of a surface must be satisfied at the local level, up to logarithmic corrections which we are able to bound.

  2. Rate coefficients from quantum and quasi-classical cumulative reaction probabilities for the S(1D) + H2 reaction.

    PubMed

    Jambrina, P G; Lara, Manuel; Menéndez, M; Launay, J-M; Aoiz, F J

    2012-10-28

    Cumulative reaction probabilities (CRPs) at various total angular momenta have been calculated for the barrierless reaction S((1)D) + H(2) → SH + H at total energies up to 1.2 eV using three different theoretical approaches: time-independent quantum mechanics (QM), quasiclassical trajectories (QCT), and statistical quasiclassical trajectories (SQCT). The calculations have been carried out on the widely used potential energy surface (PES) by Ho et al. [J. Chem. Phys. 116, 4124 (2002)] as well as on the recent PES developed by Song et al. [J. Phys. Chem. A 113, 9213 (2009)]. The results show that the differences between these two PES are relatively minor and mostly related to the different topologies of the well. In addition, the agreement between the three theoretical methodologies is good, even for the highest total angular momenta and energies. In particular, the good accordance between the CRPs obtained with dynamical methods (QM and QCT) and the statistical model (SQCT) indicates that the reaction can be considered statistical in the whole range of energies in contrast with the findings for other prototypical barrierless reactions. In addition, total CRPs and rate coefficients in the range of 20-1000 K have been calculated using the QCT and SQCT methods and have been found somewhat smaller than the experimental total removal rates of S((1)D).

  3. Quantum spin Hall effect in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Finocchiaro, F.; Guinea, F.; San-Jose, P.

    2017-06-01

    Motivated by a recent experiment (Sanchez-Yamagishi et al 2016 Nat. Nanotechnol. 214) reporting evidence of helical spin-polarized edge states in layer-biased twisted bilayer graphene under a magnetic flux, we study the possibility of stabilising a quantum spin Hall (QSH) phase in such a system, without Zeeman or spin-orbit couplings, and with a QSH gap induced instead by electronic interactions. We analyse how magnetic flux, electric field, interlayer rotation angle, and interactions (treated at a mean field level) combine to produce a pseudo-QSH with broken time-reversal symmetry, and spin-polarized helical edge states. The effect is a consequence of a robust interaction-induced ferrimagnetic ordering of the quantum Hall ground state under an interlayer bias, provided the two rotated layers are effectively decoupled at low energies. We discuss in detail the electronic structure and the constraints on system parameters, such as the angle, interactions and magnetic flux, required to reach the pseudo-QSH phase. We find, in particular, that purely local electronic interactions are not sufficient to account for the experimental observations, which demand at least nearest-neighbour interactions to be included.

  4. Spin foam models for quantum gravity

    NASA Astrophysics Data System (ADS)

    Perez, Alejandro

    The definition of a quantum theory of gravity is explored following Feynman's path-integral approach. The aim is to construct a well defined version of the Wheeler-Misner- Hawking ``sum over four geometries'' formulation of quantum general relativity (GR). This is done by means of exploiting the similarities between the formulation of GR in terms of tetrad-connection variables (Palatini formulation) and a simpler theory called BF theory. One can go from BF theory to GR by imposing certain constraints on the BF-theory configurations. BF theory contains only global degrees of freedom (topological theory) and it can be exactly quantized á la Feynman introducing a discretization of the manifold. Using the path integral for BF theory we define a path integration for GR imposing the BF-to-GR constraints on the BF measure. The infinite degrees of freedom of gravity are restored in the process, and the restriction to a single discretization introduces a cut- off in the summed-over configurations. In order to capture all the degrees of freedom a sum over discretization is implemented. Both the implementation of the BF-to-GR constraints and the sum over discretizations are obtained by means of the introduction of an auxiliary field theory (AFT). 4-geometries in the path integral for GR are given by the Feynman diagrams of the AFT which is in this sense dual to GR. Feynman diagrams correspond to 2-complexes labeled by unitary irreducible representations of the internal gauge group (corresponding to tetrad rotation in the connection to GR). A model for 4-dimensional Euclidean quantum gravity (QG) is defined which corresponds to a different normalization of the Barrett-Crane model. The model is perturbatively finite; divergences appearing in the Barrett-Crane model are cured by the new normalization. We extend our techniques to the Lorentzian sector, where we define two models for four-dimensional QG. The first one contains only time-like representations and is shown to be

  5. Optically Driven Spin Based Quantum Dots for Quantum Computing

    DTIC Science & Technology

    2008-01-01

    system approach to quantum optics, Lecture Notes in Physics (Springer, Berlin, 1993). [5] H. M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70, 548 (1993...Electrical Engineering and Computer Science Department of Physics Harrison M. Randall Laboratory of Physics The University of Michigan Ann Arbor, MI...48109 Phone: 734-764-4469 Email: dst@umich.edu Co-Principal Investigator: L.J. Sham Department of Physics The University of California – San

  6. QUANTUM INFORMATION. Coherent coupling of a single spin to microwave cavity photons.

    PubMed

    Viennot, J J; Dartiailh, M C; Cottet, A; Kontos, T

    2015-07-24

    Electron spins and photons are complementary quantum-mechanical objects that can be used to carry, manipulate, and transform quantum information. To combine these resources, it is desirable to achieve the coherent coupling of a single spin to photons stored in a superconducting resonator. Using a circuit design based on a nanoscale spin valve, we coherently hybridize the individual spin and charge states of a double quantum dot while preserving spin coherence. This scheme allows us to achieve spin-photon coupling up to the megahertz range at the single-spin level. The cooperativity is found to reach 2.3, and the spin coherence time is about 60 nanoseconds. We thereby demonstrate a mesoscopic device suitable for nondestructive spin readout and distant spin coupling. Copyright © 2015, American Association for the Advancement of Science.

  7. Spin squeezing, negative correlations, and concurrence in the quantum kicked top model.

    PubMed

    Wang, Xiaoqian; Ma, Jian; Song, Lijun; Zhang, Xihe; Wang, Xiaoguang

    2010-11-01

    We study spin squeezing, negative correlations, and concurrence in the quantum kicked top model. We prove that the spin squeezing and negative correlations are equivalent for spin systems with only symmetric Dicke states populated. We numerically analyze spin squeezing parameters and concurrence in this model and find that the maximal spin squeezing direction, which refers to the minimal pairwise correlation direction, is strongly influenced by quantum chaos. Entanglement (spin squeezing) sudden death and sudden birth occur alternatively for the periodic and quasiperiodic cases, while only entanglement (spin squeezing) sudden death is found for the chaotic case.

  8. Room temperature spin diffusion in (110) GaAs/AlGaAs quantum wells

    PubMed Central

    2011-01-01

    Transient spin grating experiments are used to investigate the electron spin diffusion in intrinsic (110) GaAs/AlGaAs multiple quantum well at room temperature. The measured spin diffusion length of optically excited electrons is about 4 μm at low spin density. Increasing the carrier density yields both a decrease of the spin relaxation time and the spin diffusion coefficient Ds. PMID:21711662

  9. Induced superconductivity in the quantum spin Hall edge

    NASA Astrophysics Data System (ADS)

    Hart, Sean; Ren, Hechen; Wagner, Timo; Leubner, Philipp; Mühlbauer, Mathias; Brüne, Christoph; Buhmann, Hartmut; Molenkamp, Laurens W.; Yacoby, Amir

    2014-09-01

    Topological insulators are a newly discovered phase of matter characterized by gapped bulk states surrounded by conducting boundary states. Since their theoretical discovery, these materials have encouraged intense efforts to study their properties and capabilities. Among the most striking results of this activity are proposals to engineer a new variety of superconductor at the surfaces of topological insulators. These topological superconductors would be capable of supporting localized Majorana fermions, particles whose braiding properties have been proposed as the basis of a fault-tolerant quantum computer. Despite the clear theoretical motivation, a conclusive realization of topological superconductivity remains an outstanding experimental goal. Here we present measurements of superconductivity induced in two-dimensional HgTe/HgCdTe quantum wells, a material that becomes a quantum spin Hall insulator when the well width exceeds dC = 6.3 nm (ref. ). In wells that are 7.5 nm wide, we find that supercurrents are confined to the one-dimensional sample edges as the bulk density is depleted. However, when the well width is decreased to 4.5 nm the edge supercurrents cannot be distinguished from those in the bulk. Our results provide evidence for supercurrents induced in the helical edges of the quantum spin Hall effect, establishing this system as a promising avenue towards topological superconductivity. In addition to directly confirming the existence of the topological edge channels, our results also provide a measurement of their widths, which range from 180 nm to 408 nm.

  10. Quantum Spin-Ice and Dimer Models with Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Glaetzle, A. W.; Dalmonte, M.; Nath, R.; Rousochatzakis, I.; Moessner, R.; Zoller, P.

    2014-10-01

    Quantum spin-ice represents a paradigmatic example of how the physics of frustrated magnets is related to gauge theories. In the present work, we address the problem of approximately realizing quantum spin ice in two dimensions with cold atoms in optical lattices. The relevant interactions are obtained by weakly laser-admixing Rydberg states to the atomic ground-states, exploiting the strong angular dependence of van der Waals interactions between Rydberg p states together with the possibility of designing steplike potentials. This allows us to implement Abelian gauge theories in a series of geometries, which could be demonstrated within state-of-the-art atomic Rydberg experiments. We numerically analyze the family of resulting microscopic Hamiltonians and find that they exhibit both classical and quantum order by disorder, the latter yielding a quantum plaquette valence bond solid. We also present strategies to implement Abelian gauge theories using both s - and p -Rydberg states in exotic geometries, e.g., on a 4-8 lattice.

  11. Driving a first order quantum phase transition by coupling a quantum dot to a 1D charge density wave

    NASA Astrophysics Data System (ADS)

    Weiss, Y.; Goldstein, M.; Berkovits, R.

    2007-02-01

    The ground state properties of a one-dimensional system with particle-hole symmetry, consisting of a gate controlled dot coupled to an interacting reservoir, are explored using the numerical DMRG method. It has previously been shown that the system's thermodynamic properties as a function of the gate voltage in the Luttinger liquid phase are qualitatively similar to the behaviour of a non-interacting wire with an effective (renormalized) dot-lead coupling. Here we examine the thermodynamic properties of the wire in the charge density wave phase, and show that these properties behave quite differently. The number of electrons in the system remains constant as a function of the gate voltage, while the total energy becomes linear. Moreover, by tuning the gate voltage on the dot in the charge density wave phase it is possible to drive the wire through a first order quantum phase transition in which the population of each site in the wire is inverted.

  12. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate

    NASA Astrophysics Data System (ADS)

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H. C.; Steffens, P.; Boehm, M.; Hao, Yiqing; Quintero-Castro, D. L.; Harriger, L. W.; Frontzek, M. D.; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun

    2016-12-01

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

  13. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate.

    PubMed

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H C; Steffens, P; Boehm, M; Hao, Yiqing; Quintero-Castro, D L; Harriger, L W; Frontzek, M D; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun

    2016-12-05

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed 'spinons'). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

  14. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate

    DOE PAGES

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; ...

    2016-12-05

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering amore » wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.« less

  15. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate

    SciTech Connect

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; Li, Yuesheng; Shen, Shoudong; Pan, Bingying; Wang, Qisi; Walker, H. C.; Steffens, P.; Boehm, M.; Hao, Yiqing; Quintero-Castro, D. L.; Harriger, L. W.; Frontzek, M. D.; Hao, Lijie; Meng, Siqin; Zhang, Qingming; Chen, Gang; Zhao, Jun

    2016-12-05

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

  16. Vanishing current hysteresis under competing nuclear spin pumping processes in a quadruplet spin-blockaded double quantum dot

    SciTech Connect

    Amaha, S.; Hatano, T.; Tarucha, S.; Gupta, J. A.; Austing, D. G.

    2015-04-27

    We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.

  17. Reaching the quantum limit of sensitivity in electron spin resonance

    SciTech Connect

    Bienfait, A.; Pla, J. J.; Kubo, Y.; Stern, M.; Zhou, X.; Lo, C. C.; Weis, C. D.; Schenkel, T.; Thewalt, M. L. W.; Vion, D.; Esteve, D.; Julsgaard, B.; Mølmer, K.; Morton, J. J. L.; Bertet, P.

    2015-12-14

    The detection and characterization of paramagnetic species by electron spin resonance (ESR) spectroscopy is widely used throughout chemistry, biology and materials science, from in vivo imaging to distance measurements in spin-labelled proteins. ESR relies on the inductive detection of microwave signals emitted by the spins into a coupled microwave resonator during their Larmor precession. However, such signals can be very small, prohibiting the application of ESR at the nanoscale (for example, at the single-cell level or on individual nanoparticles). Here in this work, using a Josephson parametric microwave amplifier combined with high-quality-factor superconducting microresonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly four orders of magnitude. We demonstrate the detection of 1,700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise ratio, reduced to 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance. In conclusion, the detection volume of our resonator is ~0.02nl, and our approach can be readily scaled down further to improve sensitivity, providing a new versatile toolbox for ESR at the nanoscale.

  18. Reaching the quantum limit of sensitivity in electron spin resonance

    DOE PAGES

    Bienfait, A.; Pla, J. J.; Kubo, Y.; ...

    2015-12-14

    The detection and characterization of paramagnetic species by electron spin resonance (ESR) spectroscopy is widely used throughout chemistry, biology and materials science, from in vivo imaging to distance measurements in spin-labelled proteins. ESR relies on the inductive detection of microwave signals emitted by the spins into a coupled microwave resonator during their Larmor precession. However, such signals can be very small, prohibiting the application of ESR at the nanoscale (for example, at the single-cell level or on individual nanoparticles). Here in this work, using a Josephson parametric microwave amplifier combined with high-quality-factor superconducting microresonators cooled at millikelvin temperatures, we improvemore » the state-of-the-art sensitivity of inductive ESR detection by nearly four orders of magnitude. We demonstrate the detection of 1,700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise ratio, reduced to 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance. In conclusion, the detection volume of our resonator is ~0.02nl, and our approach can be readily scaled down further to improve sensitivity, providing a new versatile toolbox for ESR at the nanoscale.« less

  19. Reaching the quantum limit of sensitivity in electron spin resonance.

    PubMed

    Bienfait, A; Pla, J J; Kubo, Y; Stern, M; Zhou, X; Lo, C C; Weis, C D; Schenkel, T; Thewalt, M L W; Vion, D; Esteve, D; Julsgaard, B; Mølmer, K; Morton, J J L; Bertet, P

    2016-03-01

    The detection and characterization of paramagnetic species by electron spin resonance (ESR) spectroscopy is widely used throughout chemistry, biology and materials science, from in vivo imaging to distance measurements in spin-labelled proteins. ESR relies on the inductive detection of microwave signals emitted by the spins into a coupled microwave resonator during their Larmor precession. However, such signals can be very small, prohibiting the application of ESR at the nanoscale (for example, at the single-cell level or on individual nanoparticles). Here, using a Josephson parametric microwave amplifier combined with high-quality-factor superconducting microresonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly four orders of magnitude. We demonstrate the detection of 1,700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise ratio, reduced to 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance. The detection volume of our resonator is ∼ 0.02 nl, and our approach can be readily scaled down further to improve sensitivity, providing a new versatile toolbox for ESR at the nanoscale.

  20. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

    PubMed

    Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M

    2012-12-03

    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

  1. All exactly solvable U(1)-invariant quantum spin 1 chains from Hecke algebra

    SciTech Connect

    Alcarez, F.C. ); Koberle, R. ); Lima-Santos, A. )

    1992-12-10

    In this paper, the authors obtain all exactly integrable spin 1 quantum chains, which are U(1) invariant and satisfy the Hecke algebra. The authors present various generalizations for arbitrary spin S and discuss their solution via Bethe ansatz methods.

  2. Electron-Nuclear Spin Dynamics in a Mesoscopic Solid-State Quantum Computer

    SciTech Connect

    Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Nagaev, K.E.

    1998-12-07

    We numerically simulate the process of nuclear spin measurement in Kane's quantum computer. For this purpose, we model the quantum dynamics of two coupled nuclear spins located on {sup 31}P donors implanted in Si. We estimate the minimum time of measurement necessary for the reliable transfer of quantum information from the nuclear spin subsystem to the electronic one and the probability of error for typical values of external noise.

  3. Spin-orbital quantum liquid on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Corboz, Philippe

    2013-03-01

    The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.

  4. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time

    NASA Astrophysics Data System (ADS)

    Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.

    2016-08-01

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  5. Non-Abelian topological spin liquids from arrays of quantum wires or spin chains

    NASA Astrophysics Data System (ADS)

    Huang, Po-Hao; Chen, Jyong-Hao; Gomes, Pedro R. S.; Neupert, Titus; Chamon, Claudio; Mudry, Christopher

    2016-05-01

    We construct two-dimensional non-Abelian topologically ordered states by strongly coupling arrays of one-dimensional quantum wires via interactions. In our scheme, all charge degrees of freedom are gapped, so the construction can use either quantum wires or quantum spin chains as building blocks, with the same end result. The construction gaps the degrees of freedom in the bulk, while leaving decoupled states at the edges that are described by conformal field theories (CFT) in (1 +1 ) -dimensional space and time. We consider both the cases where time-reversal symmetry (TRS) is present or absent. When TRS is absent, the edge states are chiral and stable. We prescribe, in particular, how to arrive at all the edge states described by the unitary CFT minimal models with central charges c <1 . These non-Abelian spin liquid states have vanishing quantum Hall conductivities, but nonzero thermal ones. When TRS is present, we describe scenarios where the bulk state can be a non-Abelian, nonchiral, and gapped quantum spin liquid, or a gapless one. In the former case, we find that the edge states are also gapped. The paper provides a brief review of non-Abelian bosonization and affine current algebras, with the purpose of being self-contained. To illustrate the methods in a warm-up exercise, we recover the tenfold way classification of two-dimensional noninteracting topological insulators using the Majorana representation that naturally arises within non-Abelian bosonization. Within this scheme, the classification reduces to counting the number of null singular values of a mass matrix, with gapless edge modes present when left and right null eigenvectors exist.

  6. Spin accumulation assisted by the Aharonov-Bohm-Fano effect of quantum dot structures.

    PubMed

    Gong, Wei-Jiang; Han, Yu; Wei, Guo-Zhu; Du, An

    2012-09-17

    : We investigate the spin accumulations of Aharonov-Bohm interferometers with embedded quantum dots by considering spin bias in the leads. It is found that regardless of the interferometer configurations, the spin accumulations are closely determined by their quantum interference features. This is mainly manifested in the dependence of spin accumulations on the threaded magnetic flux and the nonresonant transmission process. Namely, the Aharonov-Bohm-Fano effect is a necessary condition to achieve the spin accumulation in the quantum dot of the resonant channel. Further analysis showed that in the double-dot interferometer, the spin accumulation can be detailedly manipulated. The spin accumulation properties of such structures offer a new scheme of spin manipulation. When the intradot Coulomb interactions are taken into account, we find that the electron interactions are advantageous to the spin accumulation in the resonant channel.

  7. Specific features of optical orientation and relaxation of electron spins in quantum wells with a large spin splitting

    SciTech Connect

    Averkiev, N. S.; Glazov, M. M.

    2008-08-15

    The processes of optical spin orientation and spin relaxation of electrons are treated theoretically for semiconductor quantum wells, in which the spin splitting of the energy spectrum is comparable with the characteristic energy of charge carriers. The density matrix of photoexcited electrons at the instant of optical excitation is obtained in explicit form. A system of kinetic equations describing the behavior of the spin density matrix at an arbitrary relation between the average energy of charge carriers and the spin splitting is derived. It is demonstrated that, upon photoexcitation, a noticeable degree of orientation can be attained only in the pulse mode of operation, when the photoexcitation pulse duration is comparable with the period of spin precession in the field of spin splitting. It is shown that the total spin of the ensemble of electrons exhibits oscillations damping with time; the shape and damping time of the oscillations are sensitive to the parameters of photoexcitation and the spin splitting.

  8. A quantum phase switch between a single solid-state spin and a photon.

    PubMed

    Sun, Shuo; Kim, Hyochul; Solomon, Glenn S; Waks, Edo

    2016-06-01

    Interactions between single spins and photons are essential for quantum networks and distributed quantum computation. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals implement a quantum switch where the spin flips the state of the photon and a photon flips the spin state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin state strongly modulates the polarization of a reflected photon, and a single reflected photon coherently rotates the spin state. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.

  9. First-principles calculations: half-metallic Au-V(Cr) quantum wires as spin filters.

    PubMed

    Min, Y; Yao, K L; Liu, Z L; Gao, G Y; Cheng, H G; Zhu, S C

    2009-03-04

    The half-metallic behavior of Au-V(Cr) quantum wires adsorbed on an armchair (5, 5) boron nitride nanotube is obtained by performing spin-polarized density functional calculations. The density of states shows a metallic property at the Fermi level for the majority spin channel and a semiconductor gap in the minority spin channel. The half-metallic behavior of the quantum wire/nanotube complex originates from the half-metallic behavior of the free-standing Au-V(Cr) quantum wires. The calculations of spin-polarized transport indicate that such a one-dimensional half-metallic magnet can be used as a spin filter.

  10. Controllable effects of quantum fluctuations on spin free-induction decay at room temperature.

    PubMed

    Liu, Gang-Qin; Pan, Xin-Yu; Jiang, Zhan-Feng; Zhao, Nan; Liu, Ren-Bao

    2012-01-01

    Fluctuations of local fields cause decoherence of quantum objects. Usually at high temperatures, thermal noises are much stronger than quantum fluctuations unless the thermal effects are suppressed by certain techniques such as spin echo. Here we report the discovery of strong quantum-fluctuation effects of nuclear spin baths on free-induction decay of single electron spins in solids at room temperature. We find that the competition between the quantum and thermal fluctuations is controllable by an external magnetic field. These findings are based on Ramsey interference measurement of single nitrogen-vacancy center spins in diamond and numerical simulation of the decoherence, which are in excellent agreement.

  11. Spin effects on the instability and propagation modes of electrostatic plasma waves in quantum plasmas

    SciTech Connect

    Ki, Dae-Han; Jung, Young-Dae

    2011-09-19

    The effects of the electron spin interaction on the pure instability and propagation modes of the quantum electrostatic waves are investigated in cold quantum electron plasmas. It is found that the influence of the electron spin interaction increases the group velocity of the propagation mode of the quantum electrostatic wave. In addition, it is shown that the electron spin interaction enhances the growth rate of the instability mode of the quantum electrostatic wave. It is also found that the effects of the electron spin interaction would be more important in the domain of small Fermi wave numbers.

  12. Geometric quantum gates for an electron-spin qubit in a quantum dot

    NASA Astrophysics Data System (ADS)

    Malinovsky, Vladimir; Rudin, Sergey

    2012-06-01

    A scheme to perform arbitrary unitary operations on a single electron-spin qubit in a quantum dot is proposed. The design is based on the geometrical phase acquired after a cyclic evolution by the qubit state. The scheme is utilizing ultrafast linearly-chirped pulses providing adiabatic excitation of the qubit states and the geometric phase is fully controlled by the relative phase between pulses. The analytic expression of the evolution operator for the electron spin in a quantum dot, which provides a clear geometrical interpretation of the qubit dynamics, is obtained. Using parameters of InGAN/GaN, GaN/AlN quantum dots we provide an estimate for the time scale of the qubit rotations and parameters of the external fields. Robustness of the proposed scheme against external noise is also discussed.

  13. Quantum anomalous Hall and quantum spin-Hall phases in flattened Bi and Sb bilayers

    PubMed Central

    Jin, Kyung-Hwan; Jhi, Seung-Hoon

    2015-01-01

    Discovery of two-dimensional topological insulator such as Bi bilayer initiates challenges in exploring exotic quantum states in low dimensions. We demonstrate a promising way to realize the Kane-Mele-type quantum spin Hall (QSH) phase and the quantum anomalous Hall (QAH) phase in chemically-modified Bi and Sb bilayers using first-principles calculations. We show that single Bi and Sb bilayers exhibit topological phase transitions from the band-inverted QSH phase or the normal insulator phase to Kane-Mele-type QSH phase upon chemical functionalization. We also predict that the QAH effect can be induced in Bi or Sb bilayers upon nitrogen deposition as checked from calculated Berry curvature and the Chern number. We explicitly demonstrate the spin-chiral edge states to appear in nitrogenated Bi-bilayer nanoribbons. PMID:25672932

  14. Spin-dependent coupling between quantum dots and topological quantum wires

    NASA Astrophysics Data System (ADS)

    Hoffman, Silas; Chevallier, Denis; Loss, Daniel; Klinovaja, Jelena

    2017-07-01

    Considering Rashba quantum wires with a proximity-induced superconducting gap as physical realizations of Majorana bound states and quantum dots, we calculate the overlap of the Majorana wave functions with the local wave functions on the dot. We determine the spin-dependent tunneling amplitudes between these two localized states and show that we can tune into a fully spin polarized tunneling regime by changing the distance between dot and Majorana bound state. Upon directly applying this to the tunneling model Hamiltonian, we calculate the effective magnetic field on the quantum dot flanked by two Majorana bound states. The direction of the induced magnetic field on the dot depends on the occupation of the nonlocal fermion formed from the two Majorana end states which can be used as a readout for such a Majorana qubit.

  15. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    ERIC Educational Resources Information Center

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  16. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    ERIC Educational Resources Information Center

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  17. Quantum-ring spin interference device tuned by quantum point contacts

    NASA Astrophysics Data System (ADS)

    Diago-Cisneros, Leo; Mireles, Francisco

    2013-11-01

    We introduce a spin-interference device that comprises a quantum ring (QR) with three embedded quantum point contacts (QPCs) and study theoretically its spin transport properties in the presence of Rashba spin-orbit interaction. Two of the QPCs conform the lead-to-ring junctions while a third one is placed symmetrically in the upper arm of the QR. Using an appropriate scattering model for the QPCs and the S-matrix scattering approach, we analyze the role of the QPCs on the Aharonov-Bohm (AB) and Aharonov-Casher (AC) conductance oscillations of the QR-device. Exact formulas are obtained for the spin-resolved conductances of the QR-device as a function of the confinement of the QPCs and the AB/AC phases. Conditions for the appearance of resonances and anti-resonances in the spin-conductance are derived and discussed. We predict very distinctive variations of the QR-conductance oscillations not seen in previous QR proposals. In particular, we find that the interference pattern in the QR can be manipulated to a large extend by varying electrically the lead-to-ring topological parameters. The latter can be used to modulate the AB and AC phases by applying gate voltage only. We have shown also that the conductance oscillations exhibits a crossover to well-defined resonances as the lateral QPC confinement strength is increased, mapping the eigenenergies of the QR. In addition, unique features of the conductance arise by varying the aperture of the upper-arm QPC and the Rashba spin-orbit coupling. Our results may be of relevance for promising spin-orbitronics devices based on quantum interference mechanisms.

  18. Quantum-ring spin interference device tuned by quantum point contacts

    SciTech Connect

    Diago-Cisneros, Leo; Mireles, Francisco

    2013-11-21

    We introduce a spin-interference device that comprises a quantum ring (QR) with three embedded quantum point contacts (QPCs) and study theoretically its spin transport properties in the presence of Rashba spin-orbit interaction. Two of the QPCs conform the lead-to-ring junctions while a third one is placed symmetrically in the upper arm of the QR. Using an appropriate scattering model for the QPCs and the S-matrix scattering approach, we analyze the role of the QPCs on the Aharonov-Bohm (AB) and Aharonov-Casher (AC) conductance oscillations of the QR-device. Exact formulas are obtained for the spin-resolved conductances of the QR-device as a function of the confinement of the QPCs and the AB/AC phases. Conditions for the appearance of resonances and anti-resonances in the spin-conductance are derived and discussed. We predict very distinctive variations of the QR-conductance oscillations not seen in previous QR proposals. In particular, we find that the interference pattern in the QR can be manipulated to a large extend by varying electrically the lead-to-ring topological parameters. The latter can be used to modulate the AB and AC phases by applying gate voltage only. We have shown also that the conductance oscillations exhibits a crossover to well-defined resonances as the lateral QPC confinement strength is increased, mapping the eigenenergies of the QR. In addition, unique features of the conductance arise by varying the aperture of the upper-arm QPC and the Rashba spin-orbit coupling. Our results may be of relevance for promising spin-orbitronics devices based on quantum interference mechanisms.

  19. Quantum corrections for spinning particles in de Sitter

    NASA Astrophysics Data System (ADS)

    Fröb, Markus B.; Verdaguer, Enric

    2017-04-01

    We compute the one-loop quantum corrections to the gravitational potentials of a spinning point particle in a de Sitter background, due to the vacuum polarisation induced by conformal fields in an effective field theory approach. We consider arbitrary conformal field theories, assuming only that the theory contains a large number N of fields in order to separate their contribution from the one induced by virtual gravitons. The corrections are described in a gauge-invariant way, classifying the induced metric perturbations around the de Sitter background according to their behaviour under transformations on equal-time hypersurfaces. There are six gauge-invariant modes: two scalar Bardeen potentials, one transverse vector and one transverse traceless tensor, of which one scalar and the vector couple to the spinning particle. The quantum corrections consist of three different parts: a generalisation of the flat-space correction, which is only significant at distances of the order of the Planck length; a constant correction depending on the undetermined parameters of the renormalised effective action; and a term which grows logarithmically with the distance from the particle. This last term is the most interesting, and when resummed gives a modified power law, enhancing the gravitational force at large distances. As a check on the accuracy of our calculation, we recover the linearised Kerr-de Sitter metric in the classical limit and the flat-space quantum correction in the limit of vanishing Hubble constant.

  20. Control of the cavity reflectivity using a single quantum dot spin

    NASA Astrophysics Data System (ADS)

    Sun, Shuo; Kim, Hyochul; Solomon, Glenn; Waks, Edo

    2015-03-01

    The implementation of quantum network and distributive quantum information processing relies on interaction between stationary matter qubits and flying photons. The spin of a single electron or hole confined in a quantum dot is considered as promising matter qubit as it possesses microsecond coherence time and allows picosecond timescale control using optical pulses. The quantum dot spin can also interact with a photon by controlling the optical response of a strongly coupled cavity. Yet all the experimental demonstrations of the cavity spectrum control have used neutral dots. The spin-dependent cavity spectrum for a strongly coupled charged quantum dot and cavity system has not been reported. Here, we report an experimental realization of a spin-photon interface using a strongly coupled quantum dot and cavity system. We show large modulation of the cavity reflection spectrum by manipulating the spin states of the quantum dot. The spin-photon interface is crucial for realizing a quantum logic gate or generating hybrid entanglement between a quantum dot spin and a photon. Our results represent an important step towards semiconductor based quantum logic devices and on-chip quantum networks.